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Machine Learning

— an ongoing revolution —
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But most of machine learning
nowadays
IS just curve fitting




Machine
Learning

Curve fitting

(correlations) - linear
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Machine
Learning

= Deep Neural Networks

Highly dimensional, highly nonlinear

curve fitting
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For Cancer Risk, a Bottle of Wine Equals
Many Cigarettes

By Rachael Rettner March 28, 2019 Health
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Moderate Wine Drinkers Live Longer, Study
Shows
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The debate over alcohol and health gets a positive boost from a detailg
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Could coffee help you lose weight?
New research suggests a fat-busting
effect
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E-cigarettes: Good news, bad news
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John Ross, MD, FIDSA
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Is coffee a health food? 01:06

California says coffee contains carcinogenic
chemical, but doesn't have to be labelled as
carcinogenic

Updated 4 Jun 2019, 3:29p

California has officially given its blessing to
coffee, declaring the beverage does not pose a
"significant” cancer risk despite containing a
chemical listed by the state as being

carcinogenic.

The official ruling, proposed a year ago and
confirmed on Monday (local time), came in
response to a Los Angeles judge ruling Starbucks
and other companies failed to show that benefits
from drinking coffee outweighed risks from a
byproduct of the roasting process.

The judge's ruling put the industry in jeopardy of

m

hedlth Food Finess Weliess Parenting Vital Signs

Daily or high-potency cannabis
INncreases risk of psychotic disordetr,
study finds

4 By Susan Scutti, CNN
I (© Updated 2331 GMT (0731 HKT) March 18, 2019

-

PHOTO: Roasted coffee beans contain acrylamide — a

Does marijuana lead to increase in mental illness? 03:42

News & buzz

d \

¥



Machine
Learning

Spurious Correlations

Fitting can be highly misleading

No. of Suicides in the US
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An elementary
problem (or not?)

The way we collect and
aggregate data matters
a lot but being
acknowledged is not
enough to learn from
data alone

No matter how many
(observational) data are
available, we will never
know which is the true
story

Cholesterol

Cholesterol

Exercise

Exercise



Causation is the key

What we (computers so
far) miss is causal
knowledge for predicting
the consequences of
actions

Causation for us is a
synonym of
understanding

Actual intelligence
needs causal
knowledge

But causal knowledge
is not in the data!




The Story Behind the Data

— why causality matters”? —




The drug appears to help

Simpson’s Paradox
men and women,

= Named after Edward Simpson but hurts the general

(born 1922) _
population

= A group of sick patients are
given the option to try a new
drug

= Among those who took the
drug, a lower percentage
recovered than among those
who did not

= However, when we partition
by gender, we see that:

* more men taking the drug
recover than do men are not
taking the drug, and

* more women taking the drug
recover than do women are
not taking the drug!




Simpson’s Paradox

= Named after Edward Simpson
(born 1922)

= A group of sick patients are
given the option to try a new
drug

= Among those who took the
drug, a lower percentage
recovered than among those
who did not

= However, when we partition
by gender, we see that:
* more men taking the drug

recover than do men are not
taking the drug, and

* more women taking the drug
recover than do women are
not taking the drug!

Example 1.2.1 We record the recovery rates of 700 patients who were given

access to the drug. A total of 350 patients chose to take the drug and 350

patients did not. The results of the study are shown in Table 1.1.

Table 1.1 Results of a study into a new drug, with gender being taken into account

Drug No Drug
patients| recovered| % recovered patients| recovered| % recovered
Men 87 81 93% 270 234 87%
Women 263 192 73% 80 55 69%
Combined data 350 273 78% 350 289 83%
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* more women taking the drug
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Example 1.2.1 We record the recovery rates of 700 patients who were given

. ’
Slmpson s Paradox access to the drug. A total of 350 patients chose to take the drug and 350

patients did not. The results of the study are shown in Table 1.1.
= Named after Edward Simpson

(born 1922)

Table 1.1 Results of a study into a new drug, with gender being taken into account

= A group of sick patients are
given the option to try a new Drug No Drug
drug patients| recovered| % recovered patients| recovered| % recovered

o) o)

= Among those who took the Men 87 81 93% 270 234 87%
drug, a lower percentage Women 263 192 73% 80 55 69%
recovered than among those Combined data 350 273 78% 350 289 83%
who did not

" However, when we partition Drug vs non-drug takers recovery rates:

by gender, we see that:
] = 93% vs 87% male
* more men taking the drug

recover than do men are not m 73% vs 69% female

taking the drug, and

n o () H |
« more women taking the drug 78% vs 83% general population!

recover than do women are
not taking the drug! Should a doctor prescribe the drug; to whom?

Should a policy maker approve the drug for use?




Understand the
causal story behind

the data From the data:
= What mechanism generated Table 1.1 Results of a study into a new drug, with gender being taken into account
the data? Drug No Drug
= Suppose: estrogen has a patients| recovered| % recovered patients| recovered| % recovered
negative effect on recovery Men 37 31 93% 270 234 87%
*  Women less likely to recover Women 263 192 73% 80 55 69%
h I f th
grﬁg men, regardless of the Combined data] 350 273 78% 350 289  83%

Conclusion: the drug appears to be harmful but it is not

» |f we select a drug taker at random, that person is more likely to be a woman
= Hence less likely to recover than a random person who doesn’t take the drug

Causal Story

= Being a woman is a common cause of both drug taking and failure to recover.
» To assess the effectiveness we need to compare subjects of the same gender.

(Ensures that any difference in recovery rates is not ascribable to estrogen)




Data Segregation

= We have solved the problem
using gender-segregated data

= Then let’s just segregate the
data whenever possible,
right?

WRONG!!!

= Consider a drug affecting
recovery by lowering blood
pressure (BP)

= Unfortunately, it has also a
toxic effect

Table 1.2 Results of a study into a new drug, with posttreatment blood pressure taken into account

No Drug Drug
patients| recovered| % recovered patients| recovered| % recovered
Low BP 87 81 93% 270 234 87%
High BP 263 192 73% 80 55 69%
Combined data 350 273 78% 350 289 83%

Should a doctor prescribe this drug or not?
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Once again, the answer follows from the way the data were generated.
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* in subpopulations—the group of people whose posttreatment BP is high and
the group whose posttreatment BP is low—we, of course, would not see that
effect; we would only see the drug’s toxic effect.




Data Segregation

= We have solved the problem
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"= Then let’s just segregate the
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Data Segregation

= We have solved the problem
using gender-segregated data

= Then let’s just segregate the
data whenever possible,

right? Table 1.2 Results of a study into a new drug, with posttreatment blood pressure taken into account
WRONG!!! _ No Drug _ Drug
patients| recovered| % recovered patients| recovered| % recovered
Low BP 87 81 93% 270 234 87%
= Consider a drug affecting . High BP 263 192 73% 80 55 69%
recovery by lowering blood Combined data 350 273 78% 350 289 83%

pressure (BP)

= Unfortunately, it has also a

Should a doctor prescribe this drug or not? YES
toxic effect

= Only by BP-segregating the data we can see the toxic effect

» |t makes no sense to segregate the data; we should use the combined data




Table 1.1 Results of a study into a new drug, with gender being taken into account

Data Segregation

Drug No Drug
patients| recovered| % recovered patients| recovered| % recovered
= We have solved the problem Men 87 81  93% 270 234 87%
using gender-segregated data Women 263 192 73% 80 55 69%
Combined data 350 273 78% 350 289 83%

= Then let’s just segregate the
data whenever possible,

right? Table 1.2 Results of a study into a new drug, with posttreatment blood pressure taken into account
WRONG!!! _ No Drug _ Drug
patients| recovered| % recovered patients| recovered| % recovered
Low BP 87 81 93% 270 234 87%
Consider a drug affecting _High BP 263 192|  73% 80 55|  69%
recovery by lowering blood Combined data 350 273 78% 350 289 83%
pressure (BP)
" Unfortunately, it has also a Should a doctor prescribe this drug or not? YES

toxic effect
= Only by BP-segregating the data we can see the toxic effect

» |t makes no sense to segregate the data; we should use the combined data

Note that the data are the same of Simpson’s Paradox.




The Ladder of Causation

— How to climb it —




JUDEA PEARL

WINNER OF THE TURING AWARD

AND DANA MACKENZIE

THE
BOOK OF

WHY

a W&“ o

THE NEW SCIENCE
OF CAUSE AND EFFECT

| ACTIVITY:  Tmagicang, Reerospection, Understandiog

QUESTIONS:  Wéat i Thad dowe .7 Wiy?
| (Was it X thar cansed Y¢ Whar if X had not
occurredr Whar i 1 had acred ditferentlyr)

EXAMPLES:  Wias u the aspum thar stopped my headacher
Would Kennedy be alse if Osomald had nor

| killed him® ‘\‘(-'h.'u if T had nat smoked for the

‘ | ]I-:.'l‘_.';'.ll'.\.?‘

L -

(3. COUNTERFACTUALS B

(2. INTERVENTION
ACTIVITY: Daonng, Intervening

| QUESTIONS: W of Tils ... ¢ Hows?

=== o [ e ;:'I | |=| What would ¥ be il Tdo X2
E _—D'_O NG_—— I TA [onar can | make Y happen?)

ol

|' I | ‘lr” J

|. ¥ N EXAMPLES:  If 1 take aspicin, will mv headache be cureds
‘! I | [1‘ [ What if we han cigarettese

L] [

er | e : -

|

(1. ASSOCIATION

D ACTIVITY: Sceing, Chserving

QUESTIONS: 10 4 1 ree o2

| (Howe arve the warables velared?

How would seemg X change my beliel in Y7

EXAMPLES:  What does a sympram rell me abour a disease?
[ Whar does a survey rell us about the
| clecton resules?

The
Ladder

of
Causation




Seeing; we are looking for

regularities in observations.

“What if | see ...?”

Calls for predictions based on passive observations.

It is characterized by the question “What if | see ...?”

For instance, imagine a medical doctor asking,

“What does a symptom tell me about a disease?”

(1. ASSOCIATION

| ACTIVITY:  Sccing, Observing

QUESTIONS:  1Eas i 1 ree 7
|

(Howw are the varables relaredr

How would seemg X change my beliel in Y7

EXAMPLES:  Whar does a sympram rell me abour a disease?
| Whar does a sorvey rell ns about the

| clechon resuls?




Intervention; ranks

higher than association

because it involves not just

seeing but changing what is.
L

“What if do ...?” & “How?”

We step up to the next level of causal queries when
we begin to change the world. A typical question for
this level is

“Does the patient recover whether | prescribe a
given drug?”

(2. INTERVENTION This already calls for a new
e . kind of knowledge, absent
i H“'llgl”l from the data, which we find at
EXAMPLES:  If 1 take aspicin, will mov headache be cureds rung tWO Of the Ladder Of

What of we han cigarettes?

-| ' Causation, Intervention.

Many scientists have been quite traumatized to learn
that none of the methods they learned in statistics is
sufficient even to articulate, let alone answer, a simple
question like

“Does the patient recover whether | prescribe a
given drug?”



Counterfactuals; ranks

higher than intervention

because it involves
imagining, retrospection

and understanding.

—_— —

3. COUNTERFACTUALS
ACTIVITY:  Imagicing, Reecospeetion, Understandiog
l QUESTIONS:  F%ar i Thad dowe .7 Wiy?

(Was it X thar caused Yr Whar if X had not
occucredr Whar 22 1 had acred ditferentlyr)
EXAMPLES:  Was u the aspirmn thar stopped my headacher
Wonld Kennedy be alse if Obswald had nor
killed him® What of T had nar smoked for the

lasr 2 vearsy

and ask,

aspirin?”

“What if | had done ...?” & “Why?”

We might wonder, My
headache is gone now, but
« Why?

 Was it the aspirin | took?
« The food | ate?

The good news | heard?

These queries take us to the top rung of the Ladder of
Causation, the level of Counterfactuals, because to
answer them we must go back in time, change history,

“What would have happened if | had not taken the

No experiment in the world can deny treatment to an
already treated person and compare the two outcomes,
so we must import a whole new kind of knowledge.



Bayesian (causal) Networks

— basic definitions —




Bayesian Networks

= We want a representation and visit to Asia? m
reasoning system that is based
on conditional (and marginal)
independence

Y
Bayesian Networks are such
representation @tub. or lung c@

* Named after Thomas Bayes
* Term coined in 1985 by Judea Pearl

positive X-ray?

* Compact yet expressive
representation

» Efficient reasoning procedures

* Their invention changed the primary
focus of Al from logic to probability




Table 1.1 Results of a study into a new drug, with gender being taken into account

Simpson’s Paradox _ Drug . No Drug
patients| recovered| % recovered patients| recovered| % recovered
Men 87 81 93% 270 234 87%
= Named after Edward Simpson Women 263 192 73% 80 55 69%
(born 1922) Combined data 350 273 78% 350 289 83%

= A group of sick patients are
given the option to try a new
drug

Table 1.2 Results of a study into a new drug, with posttreatment blood pressure taken into account

No Drug Drug

patients| recovered| % recovered patients| recovered| % recovered
" Among those who took the Low BP 87 81|  93% 270 234]  87%
drug, a lower percentage High BP 263 192|  73% 80 55|  69%

recovered than among those Combined data 350 273|  78% 350 289|  83%
who did not

= However, when we partition 006

by gender, we see that: 02 O r
" more men taking the drug A Q° 7 Q@

recover than do men are not
taking the drug, and

= more women taking the drug
recover than do women are
not taking the drug!

X Y X Y

drug recovery treatment recovery
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Healthcare, Medicine and Biology

— past and running research projects @MADLab —
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Gatti, E., Luciani, D., & Stella, F. (2011). A continuous time
Bayesian network model for cardiogenic heart failure.

Flexible Services and Manufacturing Journal, 24 (2), 496-515.



Movement id | Description
1 Abduction-adduction of the upper
i o limb on a frontal plane
‘5 "E 2 Abduction-adduction of the upper
E E [imb on a sagittal plane
= e D 3 External rotation of the forearm
L % 4 Flexion-extension of the elbow
; - 5 Pronation-supination of the forearm
QY M~ 6 Functional activity: eating
i F'd Functional activity: combing
Class index | Correctness | Speed Description
1 Correct Slow Reference
2 Correct Average | Reference
5 % Correct Fast Reference
0 4 Incorrect Average | Movement too small
(S 5 Incorrect Average | Typical compensatory
= action (first)
e 6 Incorrect Average | Typical compensatory
$tel|a, F. ar_ld Amer, Y. (2012?,.Continuous action (second)
time Bayesian network classifiers. Journal
of Biomedical Informatics, 45, 1108—1119. S——

2 classes



Microbial Communities in the Tropical Air Ecosystem

e Case of Study - A mix-
Absolute

ture of microorganisms is con- - Temperature Rain
stantly present in the environ- / A
. 039  -0.94 052
ment surrounding us. The at- v /, — 0.53
- - Relative /
mosphere IS no exception to —— Radiation = Turbolence F CO2
this observation [1]. L I il
040 -0.16 -0.21 (.29
e Methodology - Structural \ /
Y
Causal Models (SCM) learned Msenmeslia

from partial temporal order
and observational data. Figure 1: Estimated SCM for Ascomycota.
[1] E.S. Gusareva, E. Acerbi, K. J. Lau, et al., “Microbial communities in the tropical air

ecosystem follow a precise diel cycle,” Proceedings of the National Academy of Sciences.
vol. 116, no. 46, pp. 23299-23308, 2019.




Table 1 Performance comparison of CTBNs, DENs and GC on
simulated data for different network dimensions. Organism E._coli
(top) and S. cerevisiae (bottom). The data shown here
corresponds to Figure 3
Method NETSs size Me_a_n hissan Mean F4
precision recall
10 0.46 0.68 0.54
GC 20 0.40 0.70 0.49
50 0.24 0.82 0.37
100 0.16 0.82 0.27
10 0.90 0.29 0.41
N 20 0.55 0.42 0.47
10 0.66 0.58 D.61
20 0.72 0.48 0.57
IR 50 0.53 0.57 0.54
100 0.45 0.51 0.48
10 0.16 0.55 0.24
T 20 0.11 0.51 0.18
50 0.03 0.49 D.06
100 0.02 0.50 0.04
Method METs size Me_a_n Mean Mean Fy
precision recall
10 0.42 0.75 0.52
GC 20 0.28 0.81 0.41
50 0.22 0.78 0.34
100 0.14 0.80 0.23
10 0.62 0.53 0.56
i 20 0.60 0.57 0.58
10 0.95 0.58 0.69
20 0.72 0.70 0.70
SR 50 0.64 0.56 0.59
100 0.56 0.51 0.53
P - i 1 s Figure 7 IL6+TGF/31 inferred network. Node sizes are
50 0.05 0.50 0.08 proportional to the number of ocutgoing arcs.
100 0.02 0.50 0.05

Acerbi, E., Vigano, E., Poidinger, M., Mortellaro, A., Zelante, T., & Stella, F. (2016).

Continuous time Bayesian networks identify prdm1 as a negative regulator of th17 cell differentiation in humans.
Scientific Reports, 6, 23128.




Personalized Arterovenous Fistula Management through utility maximization with Influence Diagrams

Bregoli, A., Neri, L., Botler, M., Schumacher, E., Peralta, R., Ponce, P., & Bellocchio, F. (2021).
Personalized Arterovenous Fistula Management through Ultility Maximization with Influence Diagram.
In Proceedings of SMARTERCARE@ Al*IA (pp. 61-66).




Causal Discovery for Multicentric Study on Endometrial Cancer
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Zanga, Alessio, Alice Bernasconi, Peter J.F. Lucas, Hanny Pijnenborg, Casper Reijnen, Marco Scutari and Fabio Stella.
Risk Assessment of Lymph Node Metastases in Endometrial Cancer Patients: A Causal Approach.
Proceedings of HC@AIXIA 2022: 1st AlxIA Workshop on Artificial Intelligence For Healthcare (2022).

Zanga, Alessio, Alice Bernasconi, Peter J.F. Lucas, Hanny Pijnenborg, Casper Reijnen, Marco Scutari and Fabio Stella.
Causal Discovery with Missing Data in a Multicentric Clinical Study.
(In-Press) AIME 2023: 21st International Conference of Atrtificial Intelligence in Medicine (2023).




Prediction of Cardiovascular Diseases in Adolescent and Young Breast Cancer Patients
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To what extent, with a better understanding of causal mechanisms, it may be possible to identify, predict and explain individual susceptibility to cardiotoxicity prior to starting

cancer-related treatments in AYA with BC?

INgXl  pRedicting cardiOvascular diSeAses iN adolescent and young breast caNcer pAtients (ROSANNA)




Constraint Based Structure Learning for Continuous Time Bayesian Network
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Bregoli, Alessandro, Marco Scutari, and Fabio Stella.
A constraint-based algorithm for the structural learning of continuous-time Bayesian networks.
International Journal of Approximate Reasoning 138 (2021): 105-122.

Villa-Blanco, C., Bregoli, A., Bielza, C., Larranaga, P., & Stella, F. (2022, September).
Structure learning algorithms for multidimensional continuous-time Bayesian network classifiers.

In International Conference on Probabilistic Graphical Models (pp. 313-324). PMLR.




Causal Discovery from Interventional Data

Observational Interventional Counterfactual
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Zanga, Alessio, Elif Ozkirimli, and Fabio Stella.
A survey on causal discovery: theory and practice.
International Journal of Approximate Reasoning 151 (2022): 101-129.




MG-PerMed - Personalising myasthenia gravis medicine: from “one-fits-all” to patient-specific
immunosuppression - ERA-PerMed, 01/03/2023-28/02/2026.
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Fig. 1 Schematic representation of the terminal B cells lineage and
antibodies involved in the autoimmune attack to the neuromuscular
junction. B lyvmphocytes, plasma cells. and some of the key mole-
cules involved in the immune activation are represented together with
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available monoclonal antibodies and biologicals targeting CD mole-
cules or receptors. In bold, drugs are effective on different cells. MG.
myasthenia gravis: NMIJ. neuromuscular junction: MAC, membrane
attack complex




Data Fusion and Federated Causal Discovery - "Intelligent Ecosystem to improve the governance,
the sharing, and the re-use of health Data for Rare Cancers-IDEA4RC" - 2022-2026

3] E. Bareinboim and J. Pearl, “Causal mfelrenceand thedata-ﬂfuls!prl .[l)_r‘gbler.n,’ Proceedings = (Causal effects ‘
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Warning!!! Advertisement!!!

— why do | recommend Bayesian (causal) networks? —




Seven reasons for choosing Bayesian (causal) networks

= Exploit domain experts’ knowledge — useful bias

= Missing data management — harmful bias

» Effectively combine experimental and observational data
» Data efficient — limited amount of data

= Model uncertainty

= [Interpretable

» Effective decision making — address transportability issues
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