UNIVERSITÀ DELLA CALABRIA

DIPARTIMENTO DI MATEMATICA E INFORMATICA

Via P. Bucci, Cubo 30B 87036 Rende (CS) – ITALIA

2023 May 11th

Bayesian (Causal) networks for Healthcare, Medicine and Biology

Fabio Stella University of Milan-Bicocca Department of Informatics, Systems and Communication

Summary

- Machine Learning
- The Story Behind the Data
- The Ladder of Causation
- Bayesian (causal) networks
- Healthcare, Medicine and Biology

Bayesian (Causal) networks for Healthcare, Medicine and Biology

Fabio Stella University of Milan-Bicocca Department of Informatics, Systems and Communication

— an ongoing revolution —

Reinforcement Learning

- Learn by interacting with the environment
- The environment reacts to our decisions/actions
- Sequential learning, only at the end of the game we know our performance (reward/punishment)

OD:20:49

2016: World Go Champion Beaten by Deep Learning

Google DeepMind

Challenge Match

At last – a computer program that can beat a champion Go player PAGE484 ALL SYSTEMS GO

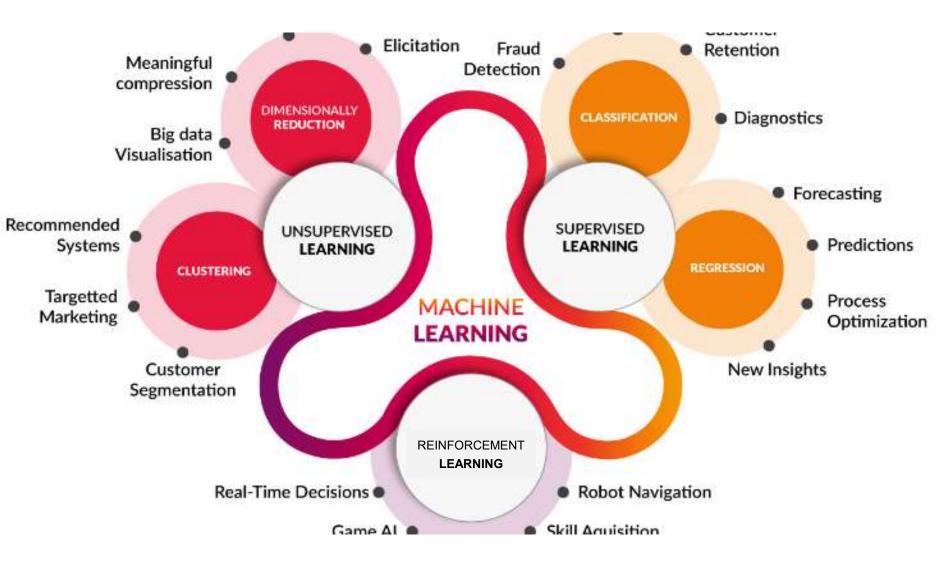
nature

CONCEPTION SONGBIRDS A LA CARTE llegal harvestof millions of Mediterraneen birds Ref. 62

SAFEGUARD TRANSPARENCY Don't let operness backgire on individuals meets

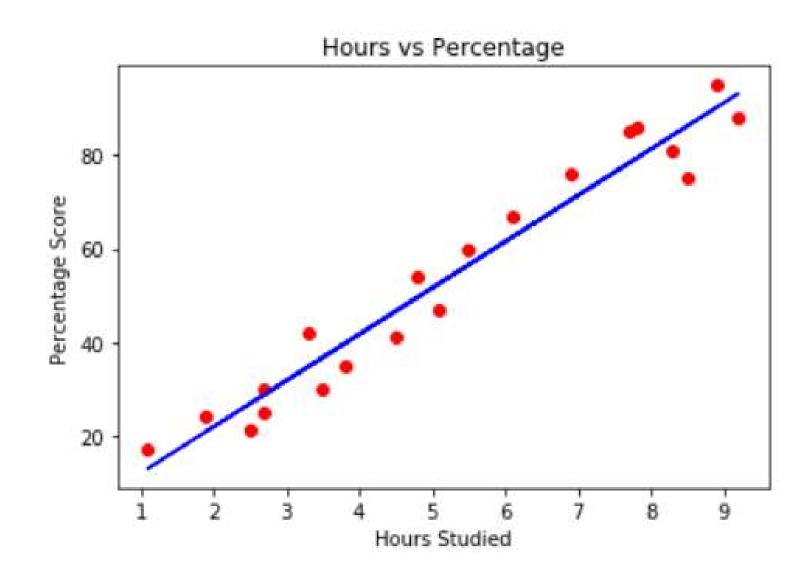
VHEN GENES WHEN GENES COT 'SELFISH' Duwkins's calling cand di warson

 Many different names for learning

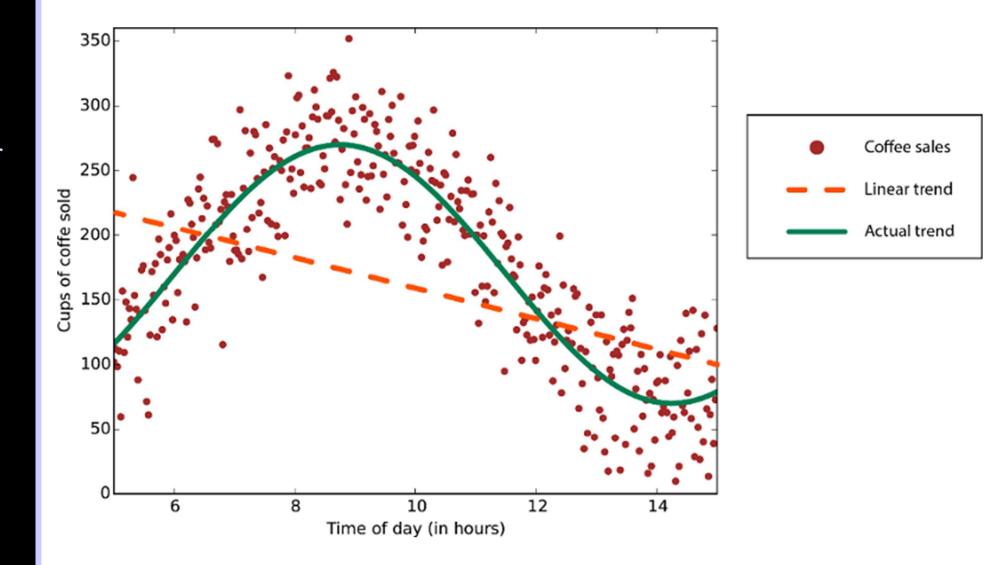


But most of machine learning nowadays is just curve fitting

Curve fitting
 (correlations) - linear



Curve fitting - nonlinear



Deep Neural Networks

Highly dimensional, highly nonlinear

curve fitting

For Cancer Risk, a Bottle of Wine Equals This Many Cigarettes

By Rachael Rettner March 28, 2019 Health

() C) 🚳 () C) C)

NEWS Moderate Wine Drinkers Live Longer, Study Shows NSW fires

The debate over alcohol and health gets a positive boost from a detaile older Americans

Inealth Food Fitness Wellness Parenting Vital Signs

By Katie Hunt, CNN

Could coffee help you lose weight? New research suggests a fat-busting effect

Is coffee a health food? 01:06

California says coffee contains carcinogenic chemical, but doesn't have to be labelled as carcinogenic

Updated 4 Jun 2019, 3:29pm

Print

California has officially given its blessing to coffee, declaring the beverage does not pose a "significant" cancer risk despite containing a chemical listed by the state as being carcinogenic.

The official ruling, proposed a year ago and confirmed on Monday (local time), came in response to a Los Angeles judge ruling Starbucks and other companies failed to show that benefits from drinking coffee outweighed risks from a byproduct of the roasting process

The judge's ruling put the industry in jeopardy of hefty civil penalties and in the position of either

PHOTO: Roasted coffee beans contain acrylamide - a

Pay My Bill

HEART	MIND & MOOD	PAIN	STAYING HEALTHY	CANCER	DISEASES
			3		- C-

Home » Harvard Health Blog » E-cigarettes: Good news, bad news - Harvard Health Blog

E-cigarettes: Good news, bad news

POSTED JULY 25, 2016, 9:30 AM , UPDATED AUGUST 05, 2019, 11:33 AM

Follow me at @JohnRossMD

Americans are confused about electronic cigarettes A recent poll showed that the public was about

CM health Food Fitness Wellness Parenting Vital Signs

Daily or high-potency cannabis increases risk of psychotic disorder, study finds

By Susan Scutti, CNN () Updated 2331 GMT (0731 HKT) March 19, 2019

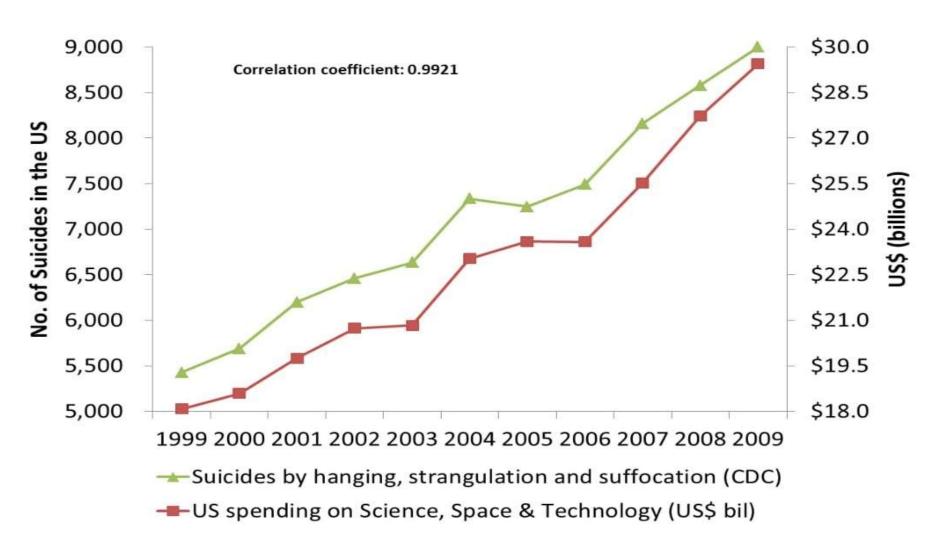
Does marijuana lead to increase in mental illness? 03:42

his is the Ca where Felicity

ver 2.000 p remains found deceased.

Spurious Correlations

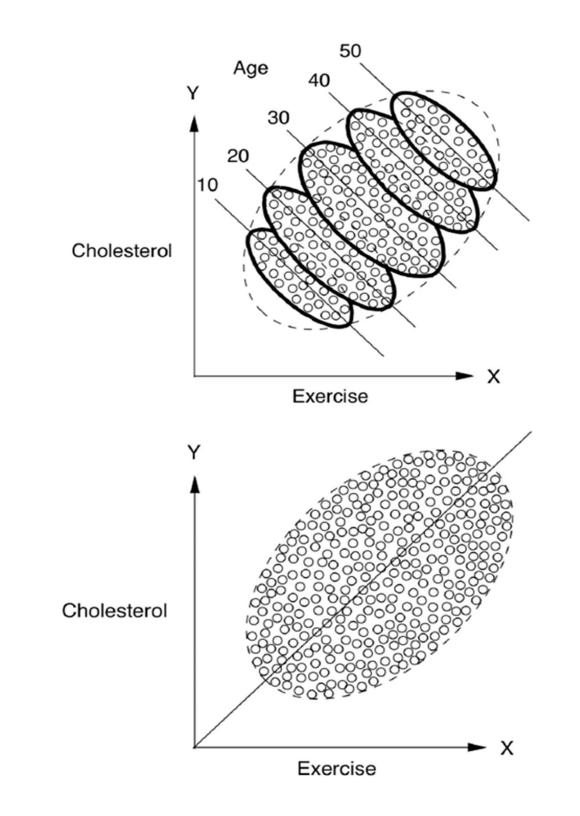
Fitting can be highly misleading



Spurious Correlations

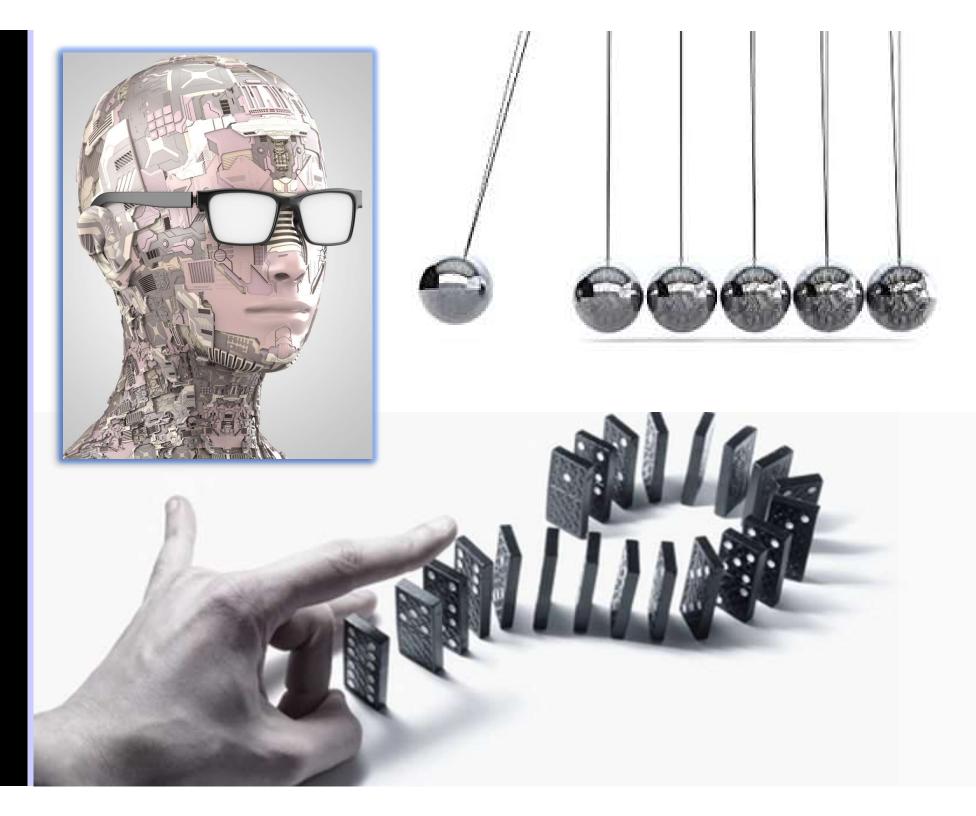
An elementary problem (or not?)

- The way we collect and aggregate data matters a lot but being acknowledged is not enough to learn from data alone
- No matter how many (observational) data are available, we will never know which is the true story



Causation is the key

- What we (computers so far) miss is causal knowledge for predicting the consequences of actions
- Causation for us is a synonym of understanding
- Actual intelligence needs causal knowledge
- But causal knowledge is not in the data!



The Story Behind the Data

— why causality matters? —

- Named after Edward Simpson (born 1922)
- A group of sick patients are given the option to try a new drug
- Among those who took the drug, a lower percentage recovered than among those who did not
- However, when we partition by gender, we see that:
 - *more* men taking the drug recover than do men are not taking the drug, and
 - more women taking the drug recover than do women are not taking the drug!

The drug appears to help men and women, but hurts the general population

- Named after Edward Simpson (born 1922)
- A group of sick patients are given the option to try a new drug
- Among those who took the drug, a lower percentage recovered than among those who did not
- However, when we partition by gender, we see that:
 - *more* men taking the drug recover than do men are not taking the drug, and
 - more women taking the drug recover than do women are not taking the drug!

Example 1.2.1 We record the recovery rates of 700 patients who were given access to the drug. A total of 350 patients chose to take the drug and 350 patients did not. The results of the study are shown in **Table 1.1**.

Table 1.1 Results of a study into a new drug, with gender being taken into account										
	Drug				No Drug					
	patients	recovered	% recovered		patients	recovered	% recovered			
Men	87	81	93%		270	234	87%			
Women	263	192	73%		80	55	69%			
Combined data	350	273	78%		350	289	83%			

- Named after Edward Simpson (born 1922)
- A group of sick patients are given the option to try a new drug
- Among those who took the drug, a lower percentage recovered than among those who did not
- However, when we partition by gender, we see that:
 - *more* men taking the drug recover than do men are not taking the drug, and
 - more women taking the drug recover than do women are not taking the drug!

Example 1.2.1 We record the recovery rates of 700 patients who were given access to the drug. A total of 350 patients chose to take the drug and 350 patients did not. The results of the study are shown in **Table 1.1**.

Table 1.1 Results of a study into a new drug, with gender being taken into account

		Drug		No Drug			
	patients	recovered	% recovered	patients	recovered	% recovered	
Men	87	81	93%	270	234	87%	
Women	263	192	73%	80	55	69%	
Combined data	350	273	78%	350	289	83%	

Drug vs non-drug takers recovery rates:

93% vs 87% male

(the drug helps)

- Named after Edward Simpson (born 1922)
- A group of sick patients are given the option to try a new drug
- Among those who took the drug, a lower percentage recovered than among those who did not
- However, when we partition by gender, we see that:
 - *more* men taking the drug recover than do men are not taking the drug, and
 - more women taking the drug recover than do women are not taking the drug!

Example 1.2.1 We record the recovery rates of 700 patients who were given access to the drug. A total of 350 patients chose to take the drug and 350 patients did not. The results of the study are shown in **Table 1.1**.

Table 1.1 Results of a study into a new drug, with gender being taken into account

		Drug		No Drug			
	patients	recovered	% recovered	patients	recovered	% recovered	
Men	87	81	93%	270	234	87%	
Women	263	192	73%	80	55	69%	
Combined data	350	273	78%	350	289	83%	

Drug vs non-drug takers recovery rates:

73% vs 69% female (the drug helps)

- Named after Edward Simpson (born 1922)
- A group of sick patients are given the option to try a new drug
- Among those who took the drug, a lower percentage recovered than among those who did not
- However, when we partition by gender, we see that:
 - *more* men taking the drug recover than do men are not taking the drug, and
 - more women taking the drug recover than do women are not taking the drug!

Example 1.2.1 We record the recovery rates of 700 patients who were given access to the drug. A total of 350 patients chose to take the drug and 350 patients did not. The results of the study are shown in **Table 1.1**.

Table 1.1 Results of a study into a new drug, with gender being taken into account

		Drug		No Drug		
	patients	recovered	% recovered	patients	recovered	% recovered
Men	87	81	93%	270	234	87%
Women	263	192	73%	80	55	69%
Combined data	350	273	78%	350	289	83%

Drug vs non-drug takers recovery rates:

• 78% vs 83% general population!

(the drug hurts) ???

- Named after Edward Simpson (born 1922)
- A group of sick patients are given the option to try a new drug
- Among those who took the drug, a lower percentage recovered than among those who did not
- However, when we partition by gender, we see that:
 - *more* men taking the drug recover than do men are not taking the drug, and
 - more women taking the drug recover than do women are not taking the drug!

Example 1.2.1 We record the recovery rates of 700 patients who were given access to the drug. A total of 350 patients chose to take the drug and 350 patients did not. The results of the study are shown in **Table 1.1**.

Table 1.1 Results of a study into a new drug, with gender being taken into account

	Drug				No Drug		
	patients	recovered	% recovered		patients	recovered	% recovered
Men	87	81	93%		270	234	87%
Women	263	192	73%		80	55	69%
Combined data	350	273	78%		350	289	83%

Drug vs non-drug takers recovery rates:

- 93% vs 87% male
- 73% vs 69% female
- 78% vs 83% general population!

Should a doctor prescribe the drug; to whom?

Should a policy maker approve the drug for use?

Understand the causal story behind the data

- What mechanism generated the data?
- Suppose: estrogen has a negative effect on recovery
 - Women less likely to recover than men, regardless of the drug

From the data:

Table 1.1 Results of a study into a new drug, with gender being taken into account										
	Drug				No Drug					
	patients	recovered	% recovered		patients	recovered	% recovered			
Men	87	81	93%		270	234	87%			
Women	263	192	73%		80	55	69%			
Combined data	350	273	78%		350	289	83%			

Conclusion: the drug appears to be harmful but it is not

- If we select a drug taker at random, that person is more likely to be a woman
- Hence less likely to recover than a random person who doesn't take the drug

Causal Story

- Being a woman is a common cause of both drug taking and failure to recover.
- To assess the effectiveness we need to compare subjects of the same gender.

(Ensures that any difference in recovery rates is not ascribable to estrogen)

- We have solved the problem using gender-segregated data
- Then let's just segregate the data whenever possible, right?

WRONG!!!

- Consider a drug affecting recovery by lowering blood pressure (BP)
- Unfortunately, it has also a toxic effect

Table 1.2 Results of a study into a new drug, with posttreatment blood pressure taken into account

	No Drug			Drug			
	patients	recovered	% recovered	patients	recovered	% recovered	
Low BP	87	81	93%	270	234	87%	
High BP	263	192	73%	80	55	69%	
Combined data	350	273	78%	350	289	83%	

Should a doctor prescribe this drug or not?

- We have solved the problem using gender-segregated data
- Then let's just segregate the data whenever possible, right?

WRONG!!!

- Consider a drug affecting recovery by lowering blood pressure (BP)
- Unfortunately, it has also a toxic effect

Table 1.2 Results of a study into a new drug, with posttreatment blood pressure taken into account

		No Drug		Drug		
	patients	recovered	% recovered	patients	recovered	% recovered
Low BP	87	81	93%	270	234	87%
High BP	263	192	73%	80	55	69%
Combined data	350	273	78%	350	289	83%

Should a doctor prescribe this drug or not?

Once again, the answer follows from the way the data were generated.

- We have solved the problem using gender-segregated data
- Then let's just segregate the data whenever possible, right?

WRONG!!!

- Consider a drug affecting recovery by lowering blood pressure (BP)
- Unfortunately, it has also a toxic effect

Table 1.2 Results of a study into a new drug, with posttreatment blood pressure taken into account

		No Drug		Drug			
	patients	recovered	% recovered	patients	recovered	% recovered	
Low BP	87	81	93%	270	234	87%	
High BP	263	192	73%	80	55	69%	
Combined data	350	273	78%	350	289	83%	

Should a doctor prescribe this drug or not?

Once again, the answer follows from the way the data were generated.

 In the general population, the drug might improve recovery rates because of its effect on blood pressure.

- We have solved the problem using gender-segregated data
- Then let's just segregate the data whenever possible, right?

WRONG!!!

- Consider a drug affecting recovery by lowering blood pressure (BP)
- Unfortunately, it has also a toxic effect

 Table 1.2 Results of a study into a new drug, with posttreatment blood pressure taken into account

		No Drug		Drug			
	patients	recovered	% recovered	patients	recovered	% recovered	
Low BP	87	81	93%	270	234	87%	
High BP	263	192	73%	80	55	69%	
Combined data	350	273	78%	350	289	83%	

Should a doctor prescribe this drug or not?

Once again, the answer follows from the way the data were generated.

- In the general population, the drug might improve recovery rates because of its effect on blood pressure.
- in subpopulations—the group of people whose posttreatment BP is high and the group whose posttreatment BP is low—we, of course, would not see that effect; we would only see the drug's toxic effect.

- We have solved the problem using gender-segregated data
- Then let's just segregate the data whenever possible, right?

WRONG!!!

- Consider a drug affecting recovery by lowering blood pressure (BP)
- Unfortunately, it has also a toxic effect

Table 1.2 Results of a study into a new drug, with posttreatment blood pressure taken into account

		No Drug		Drug			
	patients	recovered	% recovered	patients	recovered	% recovered	
Low BP	87	81	93%	270	234	87%	
High BP	263	192	73%	80	55	69%	
Combined data	350	273	78%	350	289	83%	

Should a doctor prescribe this drug or not?

Once again, the answer follows from the way the data were generated.

- In the general population, the drug might improve recovery rates because of its effect on blood pressure.
- in subpopulations—the group of people whose posttreatment BP is high and the group whose posttreatment BP is low—we, of course, would not see that effect; we would only see the drug's toxic effect.

- We have solved the problem using gender-segregated data
- Then let's just segregate the data whenever possible, right?

WRONG!!!

- Consider a drug affecting recovery by lowering blood pressure (BP)
- Unfortunately, it has also a toxic effect

Table 1.2 Results of a study into a new drug, with posttreatment blood pressure taken into account

		No Drug			Drug	
	patients	recovered	% recovered	patients	recovered	% recovered
Low BP	87	81	93%	270	234	87%
High BP	263	192	73%	80	55	69%
Combined data	350	273	78%	350	289	83%

Should a doctor prescribe this drug or not? **YES**

- Only by BP-segregating the data we can see the toxic effect
- It makes no sense to segregate the data; we should use the combined data

- We have solved the problem using gender-segregated data
- Then let's just segregate the data whenever possible, right?

WRONG!!!

- Consider a drug affecting recovery by lowering blood pressure (BP)
- Unfortunately, it has also a toxic effect

Table 1.1 Results of a study into a new drug, with gender being taken into account									
	Drug					No Dru	86		
	patients recovered % recovered			patients	recovered	% recovered			
Men	87	81	93%		270	234	87%		
Women	263	192	73%		80	55	69%		
Combined data	350	273	78%		350	289	83%		

Table 1.2 Results of a study into a new drug, with posttreatment blood pressure taken into account

		No Drug			Drug	
	patients	recovered	% recovered	patients	recovered	% recovered
Low BP	87	81	93%	270	234	87%
High BP	263	192	73%	80	55	69%
Combined data	350	273	78%	350	289	83%

Should a doctor prescribe this drug or not? **YES**

- Only by BP-segregating the data we can see the toxic effect
- It makes no sense to segregate the data; we should use the combined data

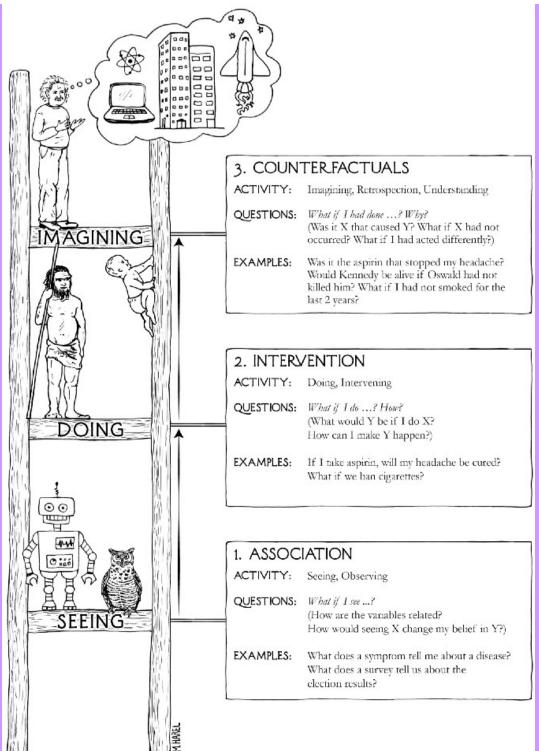
Note that the data are the same of Simpson's Paradox.

The Ladder of Causation — How to climb it —

JUDEA PEARL winner of the turing award AND DANA MACKENZIE

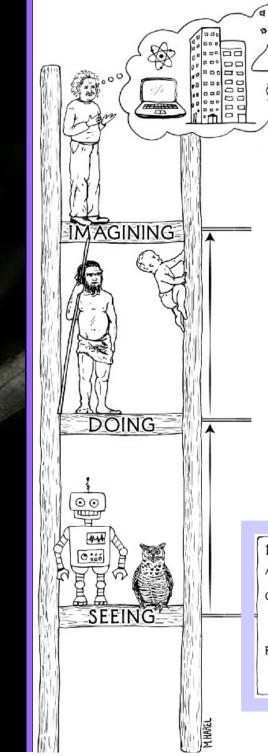
THE BOOKOF WHY

THE NEW SCIENCE OF CAUSE AND EFFECT



The Ladder of Causation

Seeing; we are looking for regularities in observations.



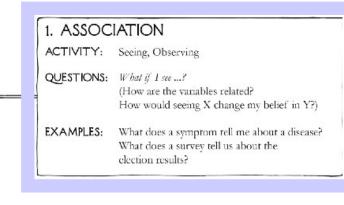
"What if I see ...?"

Calls for predictions based on passive observations.

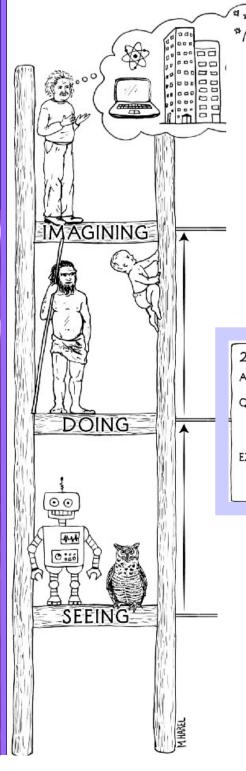
It is characterized by the question "What if I see ...?"

For instance, imagine a medical doctor asking,

"What does a symptom tell me about a disease?"



Intervention; ranks higher than association because it involves not just seeing but changing what is.



"What if do ...?" & "How?"

We step up to the next level of causal queries when we begin to change the world. A typical question for this level is

"Does the patient recover whether I prescribe a given drug?"

	(2. INTER	/ENTION
		ACTIVITY:	Doing, Intervening
_		QUESTIONS:	What if I do? How? (What would Y be if I do X? How can I make Y happen?)
		EXAMPLES:	If I take aspirin, will my headache be cured? What if we ban cigarettes?

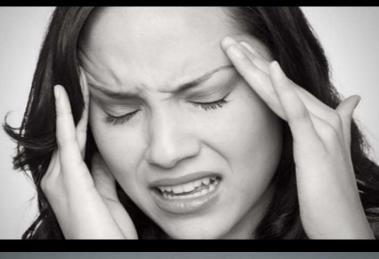
This already calls for a new kind of knowledge, absent from the data, which we find at rung two of the Ladder of Causation, **Intervention**.

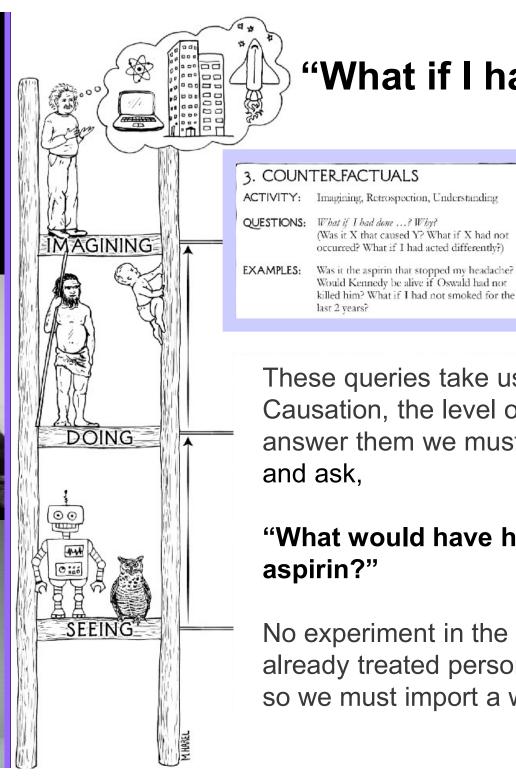
Many scientists have been quite traumatized to learn that none of the methods they learned in statistics is sufficient even to articulate, let alone answer, a simple question like

"Does the patient recover whether I prescribe a given drug?"

Counterfactuals; ranks

higher than intervention because it involves **imagining**, **retrospection** and **understanding**.





"What if I had done ...?" & "Why?"

We might wonder, My headache is gone now, but

- Why?
- Was it the aspirin I took?
- The food I ate?
- The good news I heard?

These queries take us to the top rung of the Ladder of Causation, the level of **Counterfactuals**, because to answer them we must go back in time, change history, and ask,

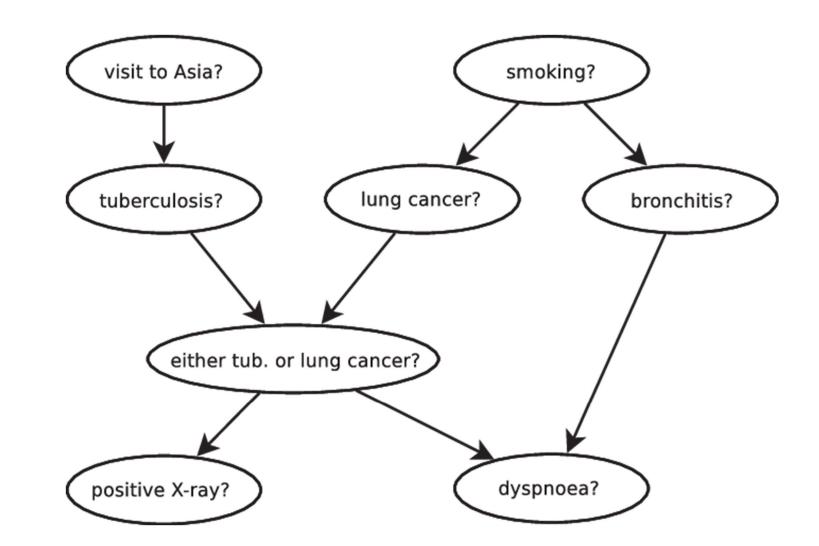
"What would have happened if I had not taken the aspirin?"

No experiment in the world can deny treatment to an already treated person and compare the two outcomes, so we must import a whole new kind of knowledge.

Bayesian (causal) Networks — basic definitions —

Bayesian Networks

- We want a representation and reasoning system that is based on conditional (and marginal) independence
 - Compact yet expressive representation
 - Efficient reasoning procedures
- Bayesian Networks are such representation
 - Named after Thomas Bayes
 - Term coined in 1985 by Judea Pearl
 - Their invention changed the primary focus of AI from logic to probability



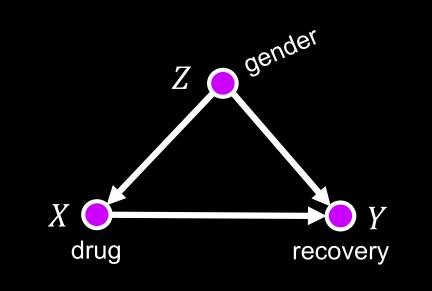
- Named after Edward Simpson (born 1922)
- A group of sick patients are given the option to try a new drug
- Among those who took the drug, a lower percentage recovered than among those who did not
- However, when we partition by gender, we see that:
 - more men taking the drug recover than do men are not taking the drug, and
 - more women taking the drug recover than do women are not taking the drug!

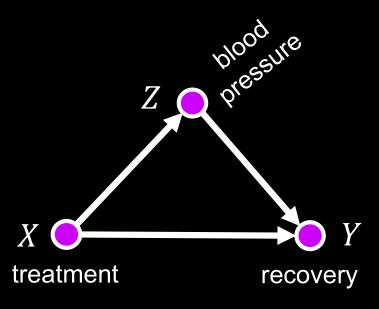
Table 1.1 Results of a study into a new drug, with gender being taken into account

	Drug				No Drug			
	patients	recovered	% recovered		patients	recovered	% recovered	
Men	87	81	93%		270	234	87%	
Women	263	192	73%		80	55	69%	
Combined data	350	273	78%		350	289	83%	

Table 1.2 Results of a study into a new drug, with posttreatment blood pressure taken into account

		No Drug			Drug	
	patients	recovered	% recovered	patients	recovered	% recovered
Low BP	87	81	93%	270	234	87%
High BP	263	192	73%	80	55	69%
Combined data	350	273	78%	350	289	83%





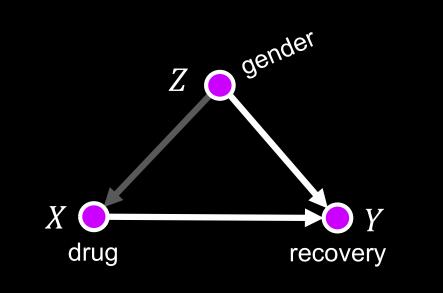
- Named after Edward Simpson (born 1922)
- A group of sick patients are given the option to try a new drug
- Among those who took the drug, a lower percentage recovered than among those who did not
- However, when we partition by gender, we see that:
 - more men taking the drug recover than do men are not taking the drug, and
 - more women taking the drug recover than do women are not taking the drug!

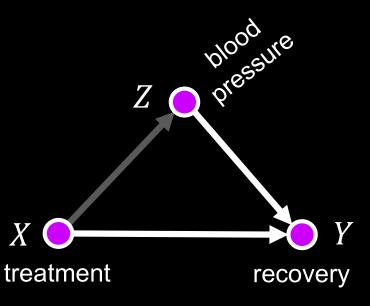
Table 1.1 Results of a study into a new drug, with gender being taken into account

	Drug				No Drug		
	patients	recovered	% recovered		patients	recovered	% recovered
Men	87	81	93%		270	234	87%
Women	263	192	73%		80	55	69%
Combined data	350	273	78%		350	289	83%

Table 1.2 Results of a study into a new drug, with posttreatment blood pressure taken into account

		No Drug			Drug	
	patients	recovered	% recovered	patients	recovered	% recovered
Low BP	87	81	93%	270	234	87%
High BP	263	192	73%	80	55	69%
Combined data	350	273	78%	350	289	83%





Simpson's Paradox

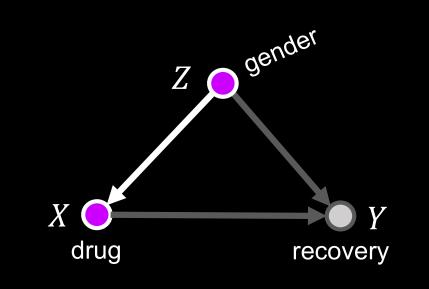
- Named after Edward Simpson (born 1922)
- A group of sick patients are given the option to try a new drug
- Among those who took the drug, a lower percentage recovered than among those who did not
- However, when we partition by gender, we see that:
 - more men taking the drug recover than do men are not taking the drug, and
 - more women taking the drug recover than do women are not taking the drug!

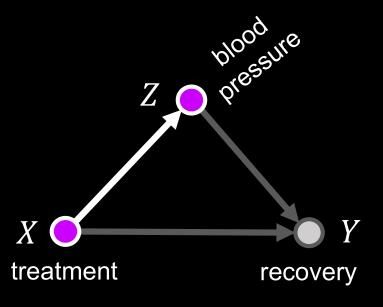
Table 1.1 Results of a study into a new drug, with gender being taken into account

	Drug			No Drug			
	patients	recovered	% recovered	patients	recovered	% recovered	
Men	87	81	93%	270	234	87%	
Women	263	192	73%	80	55	69%	
Combined data	350	273	78%	350	289	83%	

Table 1.2 Results of a study into a new drug, with posttreatment blood pressure taken into account

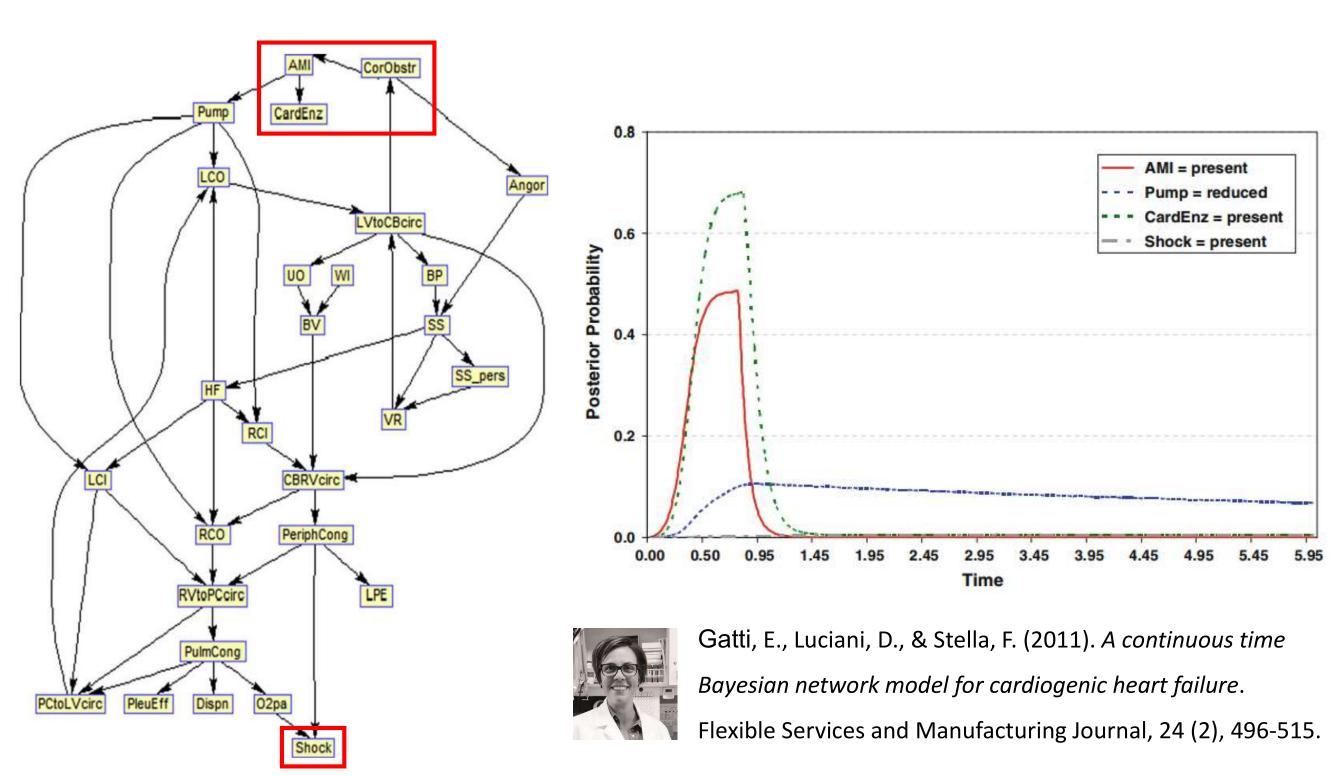
	No Drug				Drug			
	patients	recovered	% recovered	patients	recovered	% recovered		
Low BP	87	81	93%	270	234	87%		
High BP	263	192	73%	80	55	69%		
Combined data	350	273	78%	350	289	83%		





Healthcare, Medicine and Biology

— past and running research projects @MADLab —



Stella, F. and Amer, Y. (2012), Continuous time Bayesian network classifiers. *Journal of Biomedical Informatics*, 45, 1108–1119.

120 trajectories X 7 movements

6 classes

Movement id	Description
1	Abduction-adduction of the upper limb on a frontal plane
2	Abduction-adduction of the upper limb on a sagittal plane
3	External rotation of the forearm
4	Flexion-extension of the elbow
5	Pronation-supination of the forearm
6	Functional activity: eating
7	Functional activity: combing

Class index	Correctness	Speed	Description
1	Correct	Slow	Reference
2	Correct	Average	Reference
3	Correct	Fast	Reference
4	Incorrect	Average	Movement too small
5	Incorrect	Average	Typical compensatory action (first)
6	Incorrect	Average	Typical compensatory action (second)

2 classes

Microbial Communities in the Tropical Air Ecosystem

- Case of Study A mixture of microorganisms is constantly present in the environment surrounding us. The atmosphere is no exception to this observation [1].
- Methodology Structural Causal Models (SCM) learned from partial temporal order and observational data.

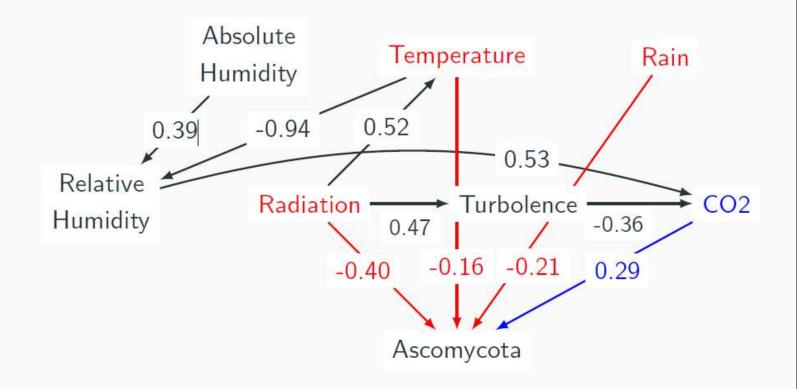
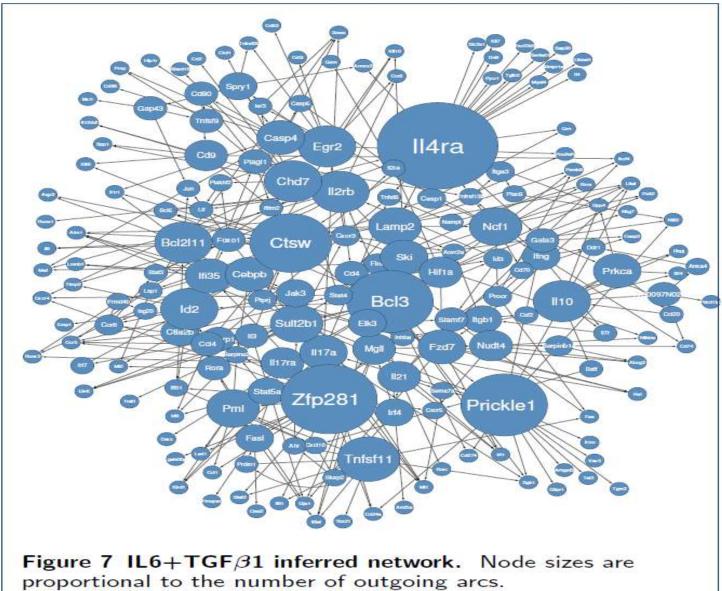


Figure 1: Estimated SCM for Ascomycota.

 E. S. Gusareva, E. Acerbi, K. J. Lau, *et al.*, "Microbial communities in the tropical air ecosystem follow a precise diel cycle," *Proceedings of the National Academy of Sciences*. vol. 116, no. 46, pp. 23299–23308, 2019. Table 1 Performance comparison of CTBNs, DBNs and GC on simulated data for different network dimensions. Organism *E.coli* (top) and *S. cerevisiae* (bottom). The data shown here corresponds to Figure 3

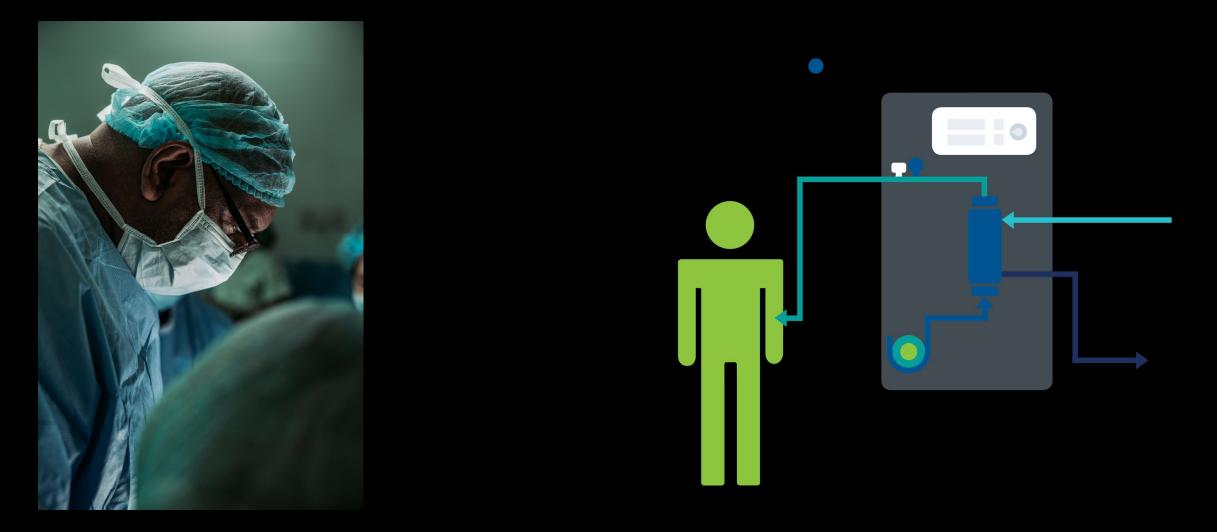
Method	NETs size	Mean precision	Mean recall	Mean F ₁
	10	0.46	0.68	0.54
CC	20	0.40	0.70	0.49
GC	50	0.24	0.82	0.37
	100	0.16	0.82	0.27
DBNs	10	0.90	0.29	0.41
	20	0.55	0.42	0.47
CTBNs	10	0.66	0.58	0.61
	20	0.72	0.48	0.57
	50	0.53	0.57	0.54
	100	0.45	0.51	0.48
Random	10	0.16	0.55	0.24
	20	0.11	0.51	0.18
	50	0.03	0.49	0.06
	100	0.02	0.50	0.04

Method	NETs size	Mean precision	Mean recall	Mean F ₁
GC	10	0.42	0.75	0.52
	20	0.28	0.81	0.41
	50	0.22	0.78	0.34
	100	0.14	0.80	0.23
DBNs	10	0.62	0.53	0.56
	20	0.60	0.57	0.58
CTBNs	10	0.95	0.58	0.69
	20	0.72	0.70	0.70
	50	0.64	0.56	0.59
	100	0.56	0.51	0.53
Random	10	0.18	0.59	0.27
	20	0.07	0.49	0.12
	50	0.05	0.50	0.08
	100	0.02	0.50	0.05



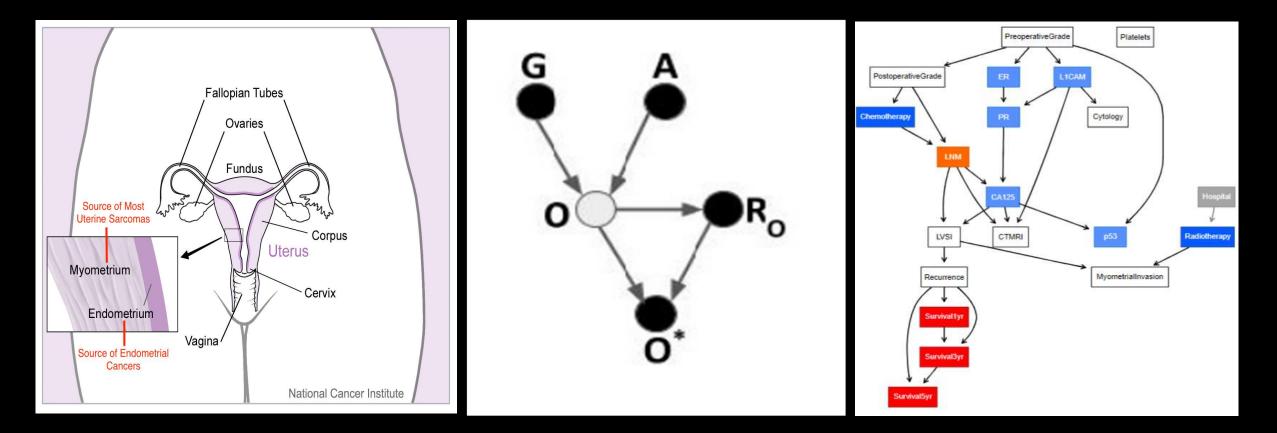
Acerbi, E., Vigano, E., Poidinger, M., Mortellaro, A., Zelante, T., & Stella, F. (2016). Continuous time Bayesian networks identify prdm1 as a negative regulator of th17 cell differentiation in humans. Scientific Reports, 6, 23128.

Personalized Arterovenous Fistula Management through utility maximization with Influence Diagrams



Bregoli, A., Neri, L., Botler, M., Schumacher, E., Peralta, R., Ponce, P., & Bellocchio, F. (2021). *Personalized Arterovenous Fistula Management through Utility Maximization with Influence Diagram.* In Proceedings of SMARTERCARE@ AI*IA (pp. 61-66).

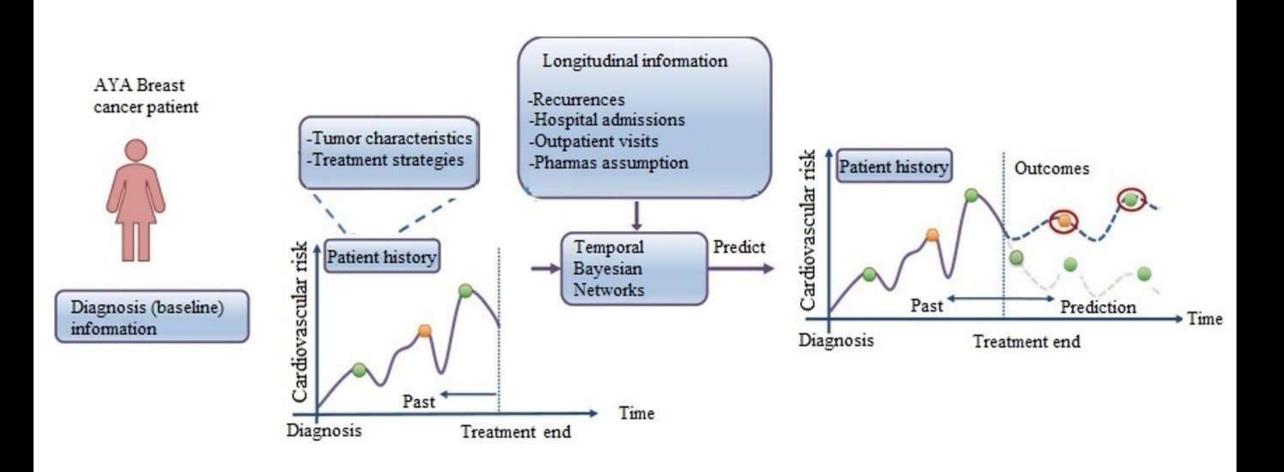
Causal Discovery for Multicentric Study on Endometrial Cancer



Zanga, Alessio, Alice Bernasconi, Peter J.F. Lucas, Hanny Pijnenborg, Casper Reijnen, Marco Scutari and Fabio Stella. *Risk Assessment of Lymph Node Metastases in Endometrial Cancer Patients: A Causal Approach.* Proceedings of HC@AlxIA 2022: 1st AlxIA Workshop on Artificial Intelligence For Healthcare (2022).

Zanga, Alessio, Alice Bernasconi, Peter J.F. Lucas, Hanny Pijnenborg, Casper Reijnen, Marco Scutari and Fabio Stella. *Causal Discovery with Missing Data in a Multicentric Clinical Study*. (In-Press) AIME 2023: 21st International Conference of Artificial Intelligence in Medicine (2023).

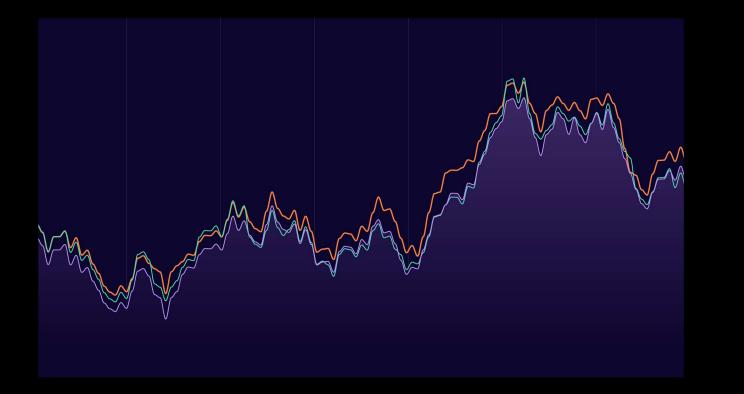
Prediction of Cardiovascular Diseases in Adolescent and Young Breast Cancer Patients

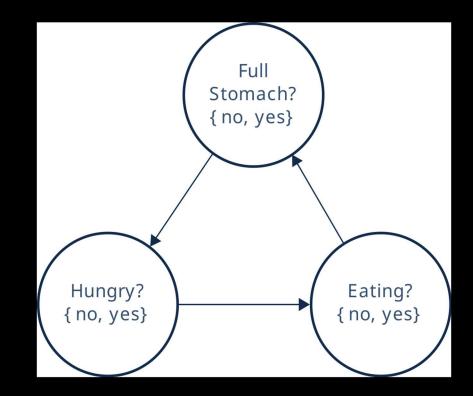


To what extent, with a better understanding of causal mechanisms, it may be possible to identify, predict and explain individual susceptibility to cardiotoxicity prior to starting cancer-related treatments in AYA with BC?

pRedicting cardiOvascular diSeAses iN adolescent and young breast caNcer pAtients (ROSANNA)

Constraint Based Structure Learning for Continuous Time Bayesian Network

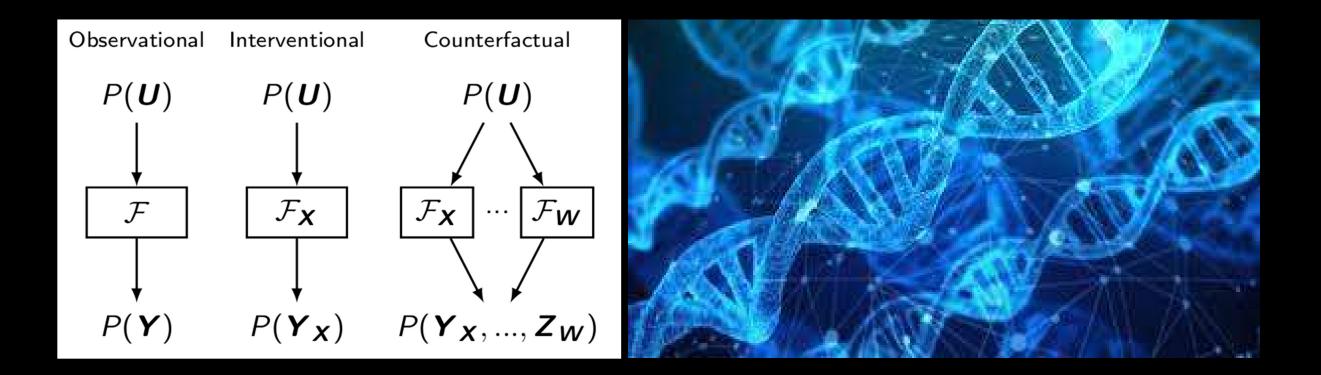




Bregoli, Alessandro, Marco Scutari, and Fabio Stella.

A constraint-based algorithm for the structural learning of continuous-time Bayesian networks. International Journal of Approximate Reasoning 138 (2021): 105-122.

Villa-Blanco, C., Bregoli, A., Bielza, C., Larranaga, P., & Stella, F. (2022, September). *Structure learning algorithms for multidimensional continuous-time Bayesian network classifiers.* In International Conference on Probabilistic Graphical Models (pp. 313-324). PMLR.



Zanga, Alessio, Elif Ozkirimli, and Fabio Stella. *A survey on causal discovery: theory and practice.* International Journal of Approximate Reasoning 151 (2022): 101-129. MG-PerMed - Personalising myasthenia gravis medicine: from "one-fits-all" to patient-specific immunosuppression - ERA-PerMed, 01/03/2023-28/02/2026.

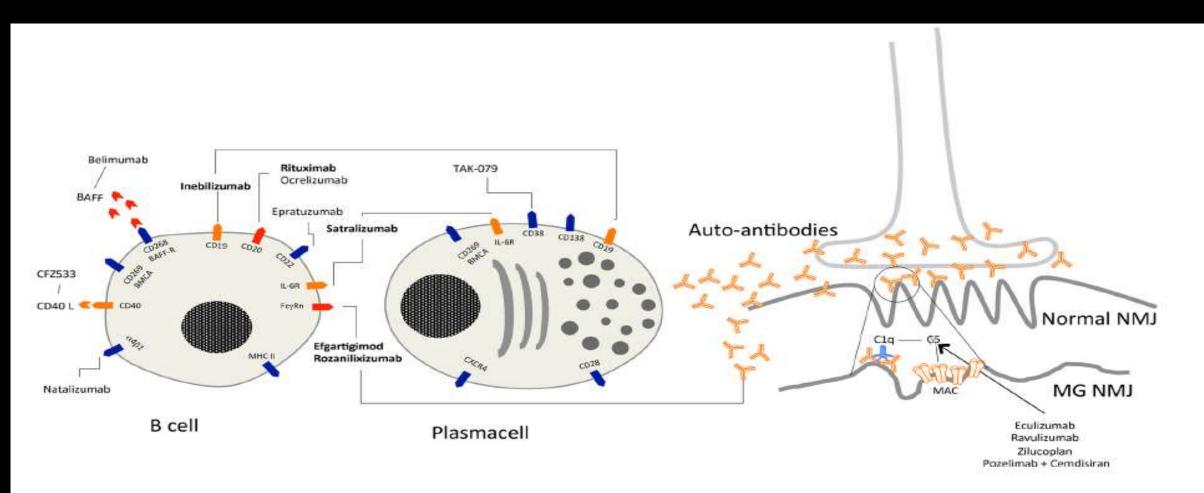
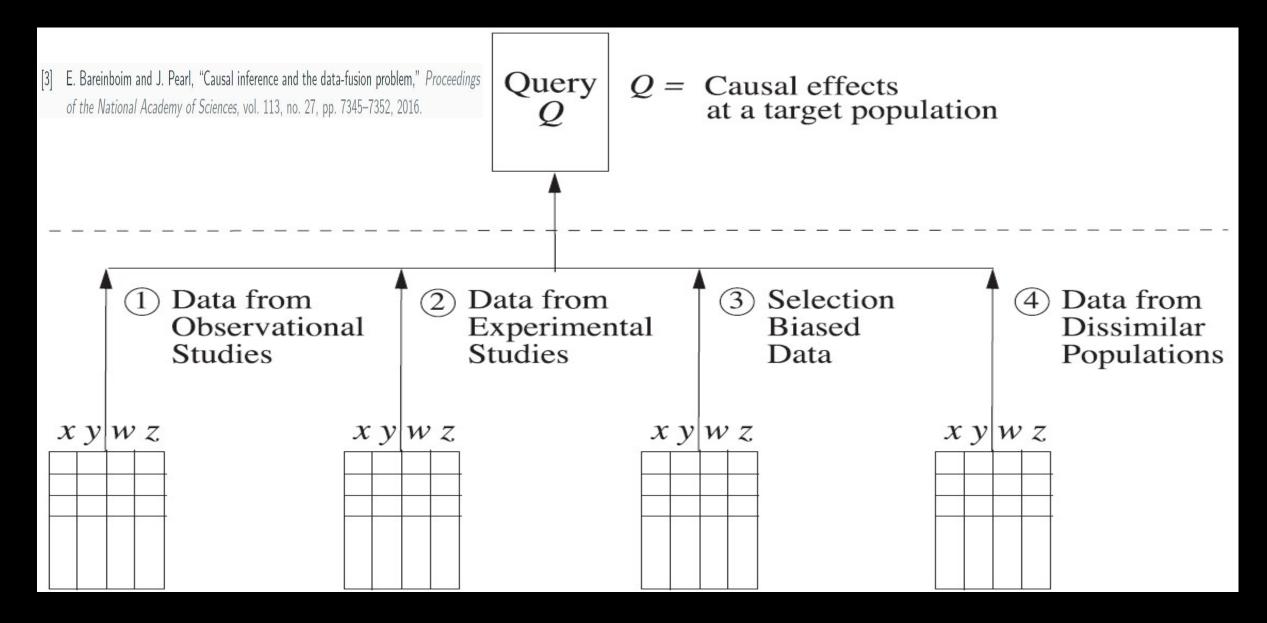


Fig. 1 Schematic representation of the terminal B cells lineage and antibodies involved in the autoimmune attack to the neuromuscular junction. B lymphocytes, plasma cells, and some of the key molecules involved in the immune activation are represented together with available monoclonal antibodies and biologicals targeting CD molecules or receptors. In bold, drugs are effective on different cells. MG, myasthenia gravis; NMJ, neuromuscular junction; MAC, membrane attack complex Data Fusion and Federated Causal Discovery - "Intelligent Ecosystem to improve the governance, the sharing, and the re-use of health Data for Rare Cancers-IDEA4RC" - 2022-2026



Warning!!! Advertisement!!!

— why do I recommend Bayesian (causal) networks? —

Seven reasons for choosing Bayesian (causal) networks

- Exploit domain experts' knowledge useful bias
- Missing data management harmful bias
- Effectively combine experimental and observational data
- Data efficient *limited amount of data*
- Model uncertainty
- Interpretable
- Effective decision making address transportability issues

Research Team @MadLab

Alice Bernasconi PhD Candidate in Computer Science (*Istituto Nazionale dei Tumori di Milano*) University of Milano-Bicocca.

Alessandro Bregoli PhD Candidate in Computer Science (Funded by *Fresenius Medical Care*) University of Milano-Bicocca.

Marco Locatelli Master Degree in Computer Science University of Milano-Bicocca.

Alessio Zanga PhD Candidate in Computer Science (Funded by *F. Hoffmann - La Roche SA*) University of Milano-Bicocca.

Niccolò Rocchi 2nd year Master student in Data Science Master Degree Student University of Milano-Bicocca.

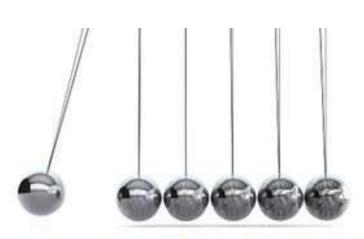
Marco Scutari PhD Senior Researcher in Bayesian Networks and Graphical Models Istituto Dalle Molle di Studi sull'Intelligenza Artificiale (IDSIA), Lugano (Swiss)

Peter Lucas Professor (Department of Datascience) University of Twente Enschede (Netherlands)

Søren Wengel Mogensen Postdoc Department of Automatic Control, Lund University (Sweden)

Collaborations

References



CAUSAL INFERENCE IN STATISTICS

A Primer

Judea Pearl Madelyn Glymour Nicholas P. Jewell

WILEY

DOI:10.1145/3271625

What just happened in artificial intelligence and how it is being misunderstood.

BY ADNAN DARWICHE

Human-Level Intelligence or Animal-Like Abilities?

"The vision systems of the eagle and the snake outperform everything that we can make in the laboratory, but snakes and eagles cannot build an eyeglass or a telescope or a microscope." JUDEA PEARL WINNER OF THE TURING AWARD

AND DANA MACKENZIE

THE BOOK OF WHY

THE NEW SCIENCE OF CAUSE AND EFFECT