

Anonymous Post-quantum Cryptocash

Huang Zhang, Fangguo Zhang, Haibo tian

Sun Yat-sen University, Guangzhou, China

Man Ho Au

The Hong Kong Polytechnic University, Hong Kong, China

E-mail: isszhfg@mail.sysu.edu.cn

Curaçao, FC2018, March 01

Outline

Backgrounds and Motivations

What is Cryptocash?
Why Cryptocash from ring signatures?
Why Post-quantum cryptocash?

- Basic tool:
 Linkable Ring Signature Based on Ideal-Lattices
- Post-quantum cryptocash from ring signatures
- Conclusion

Cryptocash

- Example
 - Bitcoin
- Security requirements
 - Anonymity
 - Unforgeability
 - Avoiding Double-spending
- Decentralization
 - POW, POS...

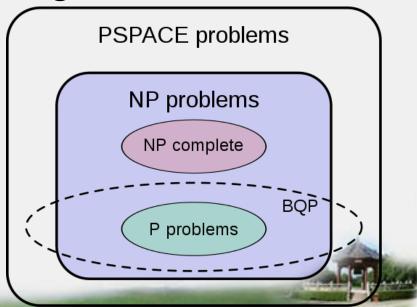
Cryptocash based on signatures VS ring signatures

- Bitcoin——Classic signatures
 - Relatively weaker anonymity [OKJ2013], [RS2013]
 - Allowance for key reusage
- Monero (CryptNote)——Ring signatures
 - Relatively stronger anonymity
 - Enforcement of one-time keys
 - Tradeoff between efficiency and anonymity

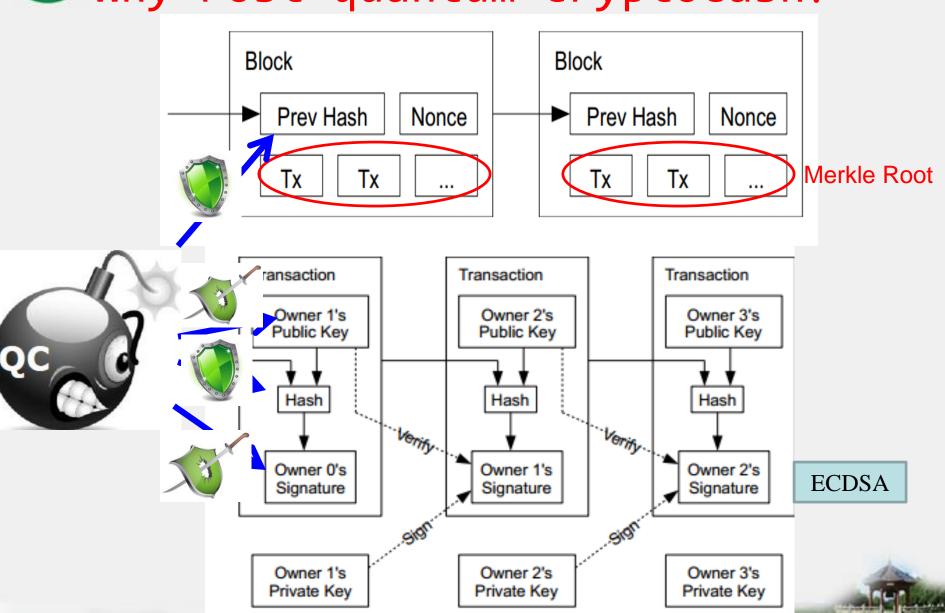
Quantum Algorithms

- 1994, Shor's algorithm [S1994]:
 - for solving IF and DLP
 - Quantum Fourier transformation
- 1995, Grover's Algorithm:
 - Quadratic speedup for searching
- The problem class BQP:
 - "Bounded-error Quantum Polynomial time"
 - IF, DLP∈BQP

Cryptography is not over yet!



Why Post-quantum cryptocash?



- Double Hash size
- Replace ECDSA using post-quantum signature
- Traditional cryptography schemes → Post quantum schemes, if necessary

Post-quantum Cryptography

- Hash-based
- Code-based
- Lattice-based
- Multivariate-quadratic-polynomial-based
- Elliptic-Curve-Isogeny-based
- Symmetric cryptography (AES)

NISTIR 8105

Report on Post-Quantum Cryptography

Lily Chen Stephen Jordan Yi-Kai Liu Dustin Moody Rene Peralta Ray Perlner Daniel Smith-Tone

Why lattice?

The similarity between ISIS and DLP:

ISIS problem:

Ay = b

||y||<δ

DL problem:

 $g^y = b$

Implementation	Security	Signature Size	SK Size	PK Size	Sign (ms)	Sign/s	Verify (ms)	Verify/s
BLISS-0	\leq 60 bits	$3.3~\mathrm{kb}$	1.5 kb	3.3 kb	0.241	4k	0.017	59k
BLISS-I	128 bits	$5.6~\mathrm{kb}$	2 kb	$7~\mathrm{kb}$	0.124	8k	0.030	33k
BLISS-II	128 bits	$5~\mathrm{kb}$	2 kb	$7~\mathrm{kb}$	0.480	2k	0.030	33k
BLISS-III	160 bits	$6~\mathrm{kb}$	3 kb	$7~\mathrm{kb}$	0.203	5k	0.031	32k
BLISS-IV	192 bits	6.5 kb	3 kb	$7~\mathrm{kb}$	0.375	2.5k	0.032	31k
RSA 1024	72-80 bits	1 kb	1 kb	1 kb	0.167	6k	0.004	91k
RSA 2048	103-112 bits	2 kb	2 kb	2 kb	1.180	0.8k	0.038	27k
RSA 4096	$\geqslant 128 \text{ bits}$	$4 \mathrm{\ kb}$	4 kb	4 kb	8.660	0.1k	0.138	7.5k
$ECDSA^1$ 160	80 bits	0.32 kb	0.16 kb	0.16 kb	0.058	17k	0.205	5k
ECDSA 256	128 bits	0.5 kb	$0.25~\mathrm{kb}$	$0.25~\mathrm{kb}$	0.106	9.5k	0.384	2.5k
ECDSA 384	192 bits	0.75 kb	$0.37~\mathrm{kb}$	$0.37~\mathrm{kb}$	0.195	5k	0.853	1k

Table 1. Benchmarking on a desktop computer (Intel Core i7 at 3.4Ghz, 32GB RAM) with openss1 1.0.1c

Signatures from lattice and DLP

Lyubashevsky's lattice-based signature

Schnorr's signature

Signing key:

S

Verifying key:

A, b=AS

Sign:

- 1. randomness $\mathbf{y} \leftarrow \mathbf{D}_{\mathsf{Z}^{\mathsf{m}},\sigma}$
- 2. compute $\mathbf{c} \leftarrow H(\mathbf{A}\mathbf{y}, \text{msg})$
- 3. compute $\mathbf{z} \leftarrow \mathbf{Sc} + \mathbf{y}$
- 4. output (**z**, **c**) with some probability

Verify:

- 1. **z** is short enough
- 2. test c=H(Az-bc, msg)

Signing key:

Verifying key: $g, b=g^S$

Sign:

- 1. randomness $y \leftarrow Z_a$
- 2. compute $c \leftarrow H(g^y, msg)$
- 3. compute $z \leftarrow Sc + y \mod q$
- 4. output (z, c)

Verify:

test $c=H(g^z/b^c, msg)$

Why linkable ring signature?

Ring signature

- Hiding the real signing key
- Whether it signing again --- Double spending

Linkable ring signature

- Signatures generated by the same signing key
- Detect!

Main Contribution

- A linkable ring signature from ideal lattices
- A key-generation protocol to support stealth addresses

Post quantum cryptocash

- Depending on the work of Groth and Kohlweiss [GK15]
 - Signature size: O(log N)
 - Homomorphic commitments
- Based on ideal lattices
 - $R=\mathbb{Z}_q[x]/\langle f \rangle$
 - f is monic in $\mathbb{Z}[x]$
 - Lattice $\mathcal{L} = \{ g \mod f : g \in I \}, I \in \mathbb{R}$
 - D= $\{g \in \mathbb{R}, ||g|| < t\}$, polynomials with small infinite norms
 - D'= $\{g \in \mathbb{R}, ||g|| < t-1\}$

- Gernalized knapsack function[Mo2]
 - $A^TX = B$, $A \in \mathbb{R}^m$, $X \in \mathbb{D}^m$
- The output distribution [Mo2]
 - If X is uniformly distributed in D^m , then B is uniformly distributed in R
- Collision problem [LMo6]
 - given A, to find X_1 , X_2 such that $A^TX_1 = A^TX_2$ is difficult
 - Collision problem is as hard as the SVP in an ideal lattice

Pedersen Commitment

$$C = Gm + Hr$$

Counterpart from ideal lattices

$$C = GM + HR$$

Hiding:
$$r \leftarrow \mathcal{U}(\mathbb{Z}_p)$$

Then

 $Hr \leftarrow \mathcal{U}(\mathbb{G})$

So is C

Hiding: For particular parameters

 $R \leftarrow \mathcal{U}((S^n)^m)$

Then

 $HR \leftarrow \mathcal{U}(\mathbb{F}^n)$

So is C

Binding:

$$Gm_1 + Hr_1 = Gm_2 + Hr_2$$

Then

$$G = H (r_2 - r_1) / (m_1 - m_2)$$

Solving

 $log_{G}H$

Binding:

$$GM_1 + HR_1 = GM_2 + HR_2$$

Then

$$H(R_1 - R_2) = G(M_2 - M_1)$$

Solving

Collision problem

- Constructing a NIZK for the commitment to o or 1
- Fixing that the signer is the *l*th user
 - The ring involves N user, and requires log N bits to represent it
 - Repeating the forgoing NIZK log N times to fix l
- Proving that the signer holds the *l*th secret key
 - Generating a value which can only be computed from the parameters to fix l and the lth secret key
- Adding a value for Linking
 - The validity of the value for Linking is ensured in the verification process

*l*th user

$$pk_i = \mathbf{Y}_i = \mathbf{G}\mathbf{X}_i$$
$$sk_I = \mathbf{X}_I \in D^{m \times m}$$

$$L=(\mathbf{Y}_0,\ldots,\mathbf{Y}_{N-1})$$

$$M = log N$$

 \mathbf{V}_{i} is the commitment for 0 or 1

verifier

Initial messsage

For
$$1 = 1, ..., M$$

$$\mathbf{K}_{\mathsf{i}}, \mathbf{C}_{\mathsf{i}}, \mathbf{D}_{\mathsf{i}}, \mathbf{E}_{\mathsf{i}} \leftarrow \mathbf{D}^{\mathsf{m} \times \mathsf{m}}$$

$$\mathbf{B}_{\mathbf{j}} \leftarrow \mathbf{D}^{\mathbf{m} \times \mathbf{m}}, \text{ if } l = 0$$

$$\mathbf{B}_{j} \leftarrow \mathbf{D}^{m \times m}$$
, if $l_{j} = 1$

$$\mathbf{V}_{i} \leftarrow \mathbf{H}(l_{i}\mathbf{I}) + \mathbf{G}\mathbf{K}_{i}$$

$$V_{a_i} = HB_i + GC_i$$

$$\mathbf{V}_{b_i} = \mathbf{H}(l_j \mathbf{B}_j) + \mathbf{G} \mathbf{D}_j$$

$$\mathbf{V}_{d_k} = \mathbf{\Sigma}_i \mathbf{Y}_i \mathbf{P}_{i,k} + \mathbf{G} \mathbf{E}_k$$

$$\mathbf{V'}_{d_k} = \mathbf{HE}_k$$

$$\mathbf{R}_l = \mathbf{H}\mathbf{X}_l$$

Fiat-Shamir challenge

$$S_1 = \{V_j, V_{a_j}, V_{b_j}, V_{d_{j-1}}, V_{d_{j-1}}\}_j$$

$$x = H(pp, u, L, S_1, \mathbf{R}_l)$$

Response

For
$$j = 1,...,M$$

$$\mathbf{W}_{\mathbf{j}} = l_{\mathbf{j}} \mathbf{x} \mathbf{I} + \mathbf{B}_{\mathbf{j}}$$

$$\mathbf{Z}_{a_i} = \mathbf{K}_j(\mathbf{x}\mathbf{I}) + \mathbf{C}_j$$

$$\mathbf{Z}_{b_j} = \mathbf{K}_j(\mathbf{x}\mathbf{I} - \mathbf{W}_j) + \mathbf{D}_j$$

$$S_2 = \{ \mathbf{W}_{j}, \mathbf{Z}_{a_j}, \mathbf{Z}_{b_j} \}_j$$

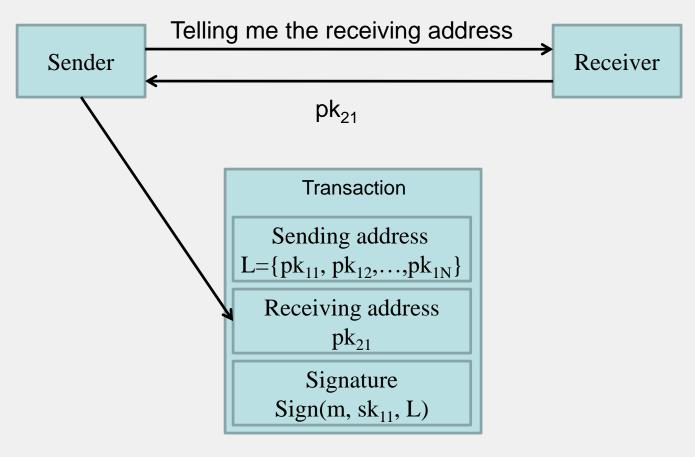
$$\mathbf{Z}_{d} = \mathbf{X}_{l}(\mathbf{x}^{\mathbf{M}}\mathbf{I}) - \mathbf{\Sigma}_{k}\mathbf{\tilde{E}}_{k}\mathbf{x}^{k}$$

For
$$j = 1,...,M$$

 $\mathbf{V}_{j}(x\mathbf{I}) + \mathbf{V}_{aj} = \mathbf{H}\mathbf{W}_{j} + \mathbf{G}\mathbf{Z}_{aj}$
 $\mathbf{V}_{j}(x\mathbf{I} - \mathbf{W}_{j}) + \mathbf{V}_{bj} = \mathbf{G}\mathbf{Z}_{bj}$
 $\mathbf{W}_{j}, \mathbf{Z}_{aj}, \mathbf{Z}_{bj}, \text{ are short}$

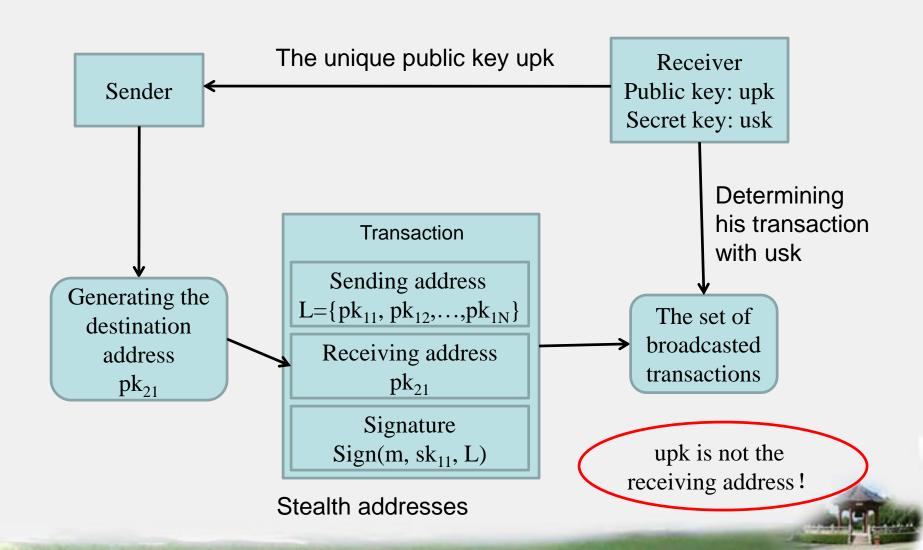
$$\begin{split} & \boldsymbol{\Sigma}_{i}(\boldsymbol{Y}_{i} \boldsymbol{\prod}_{j} \boldsymbol{W}_{j,i_{j}}) + \boldsymbol{\Sigma}_{k} \boldsymbol{V}_{d_{k}}(-\boldsymbol{x}^{k}) = & \boldsymbol{G}\boldsymbol{Z}_{d} \\ & \boldsymbol{R}_{l}(\boldsymbol{x}^{M}\boldsymbol{I}) + \boldsymbol{\Sigma}_{k} \boldsymbol{V'}_{d_{k}}(-\boldsymbol{x}^{k}) = & \boldsymbol{H}\boldsymbol{Z}_{d} \end{split}$$

Stealth addresses



The traditional method to select receiving address

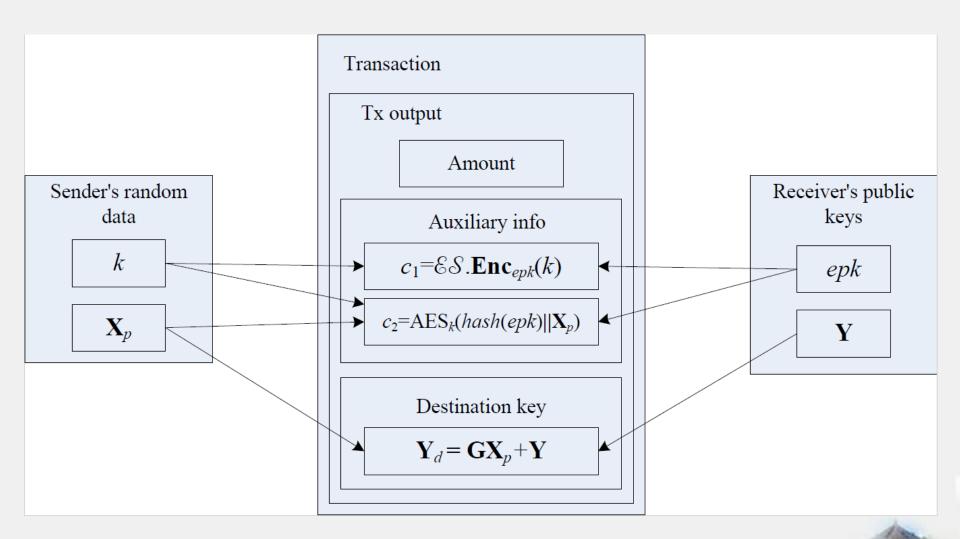
Stealth addresses



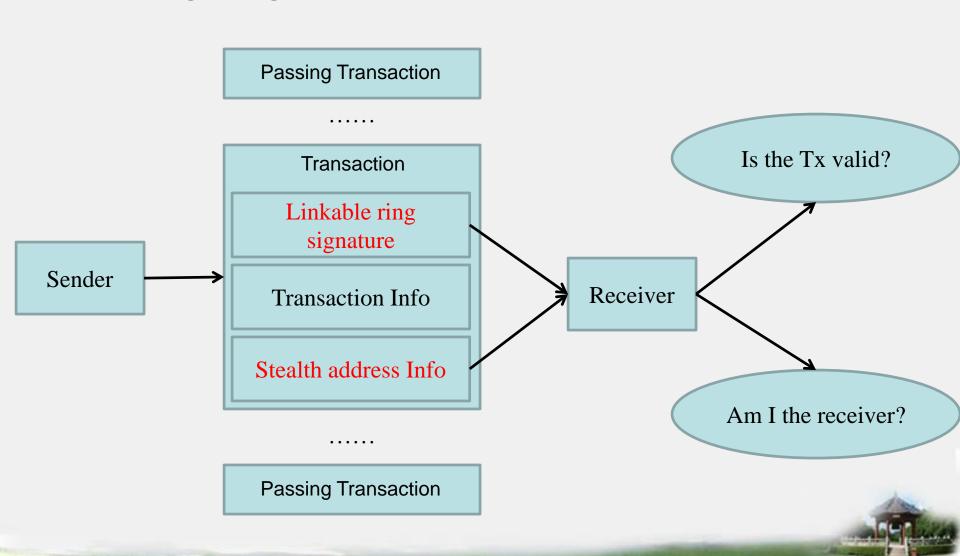
Stealth addresses

- The idea in CryptoNote
 - Diffie-Hellman key exchange
 - The shared key is distributed uniformly at random
- Our requirements
 - The partial key: matrix with small norm

Stealth addresses (Generation)



Post-quantum cryptocash from ring signatures



Post-quantum cryptocash from ring signatures

Advantages

- Quantum resilient
- Relatively strong anonymity
- Short signature size

Disadvantages

- No implementation
- No confidential transactions

• The ECDLP based version(full version of FC paper)

- Confidential transaction
- Boolberry v2

Boolberry v2

- Linkable ring signature from ECDLP
 - Signature size: O(log N)
- Stealth addresses
 - The same as that of Monero (slight modifications)
- Compact Confidential transaction
 - Proof of sum: the same as RingCT in Monero
 - Range proof: Bulletproofs [BBBP+2017]
- Multi-signatures
 - Without a script
 - Adapt to ring signatures

Conclusion

A short linkable ring signature from ideal lattices

A key-generation protocol to support stealth addresses

Post quantum cryptocash

We are grateful to receive suggestion and questions!

E-mail: isszhfg@mail.sysu.edu.cn

