Anonymous Post-quantum Cryptocash

Huang Zhang, Fangguo Zhang, Haibo tian Sun Yat-sen University, Guangzhou, China

Man Ho Au
The Hong Kong Polytechnic University, Hong Kong, China

E-mail: isszhfg@mail.sysu.edu.cn
Curaçao, FC2018, March 01

Outline

- Backgrounds and Motivations

What is Cryptocash?
Why Cryptocash from ring signatures?
Why Post-quantum cryptocash?

- Basic tool:

Linkable Ring Signature Based on Ideal-Lattices

- Post-quantum cryptocash from ring signatures
- Conclusion

Cryptocash

- Example
- Bitcoin
- Security requirements
- Anonymity
- Unforgeability
- Avoiding Double-spending
- Decentralization
- POW, POS...

Cryptocash based on signatures VS

 ring signatures- Bitcoin——Classic signatures
- Relatively weaker anonymity [OKJ2013], [RS2013]
- Allowance for key reusage
- Monero (CryptNote)——Ring signatures
- Relatively stronger anonymity
- Enforcement of one-time keys
- Tradeoff between efficiency and anonymity

Quantum Algorithms

- 1994, Shor's algorithm [S1994]:
- for solving IF and DLP
- Quantum Fourier transformation
- 1995, Grover's Algorithm:
- Quadratic speedup for searching
- The problem class BOP:
- "Bounded-error Quantum Polynomial time"
- IF, DLPEBOP

Cryptography is not over yet !

Why Post-quantum cryptocash?

How Post-quantum cryptocash?

- Double Hash size
- Replace ECDSA using post-quantum signature
- Traditional cryptography schemes \rightarrow Post quantum schemes, if necessary

Post-quantum Cryptography

- Hash-based
- Code-based
- Lattice-based
- Multivariate-quadratic-polynomial-based
- Elliptic-Curve-Isogeny-based
- Symmetric cryptography (AES)

Why lattice?

The similarity between ISIS and DLP:

ISIS problem:
Ay $=\mathbf{b}$
$\| y| |<\delta$

DL problem:
$g^{y}=b$

Implementation	Security	Signature Size	SK Size	PK Size	Sign (ms)	Sign/s	Verify (ms)	Verify s
BLISS-0	$\leqslant 60$ bits	3.3 kb	1.5 kb	3.3 kb	0.241	4 k	0.017	59 k
BLISS-I	128 bits	5.6 kb	2 kb	7 kb	0.124	8 k	0.030	33 k
BLISS-II	128 bits	5 kb	2 kb	7 kb	0.480	2 k	0.030	33 k
BLISS-III	160 bits	6 kb	3 kb	7 kb	0.203	5 k	0.031	32 k
BLISS-IV	192 bits	6.5 kb	3 kb	7 kb	0.375	2.5 k	0.032	31 k
RSA 1024	$72-80 \mathrm{bits}$	1 kb	1 kb	1 kb	0.167	6 k	0.004	91 k
RSA 2048	$103-112 \mathrm{bits}$	2 kb	2 kb	2 kb	1.180	0.8 k	0.038	27 k
RSA 4096	$\geqslant 128 \mathrm{bits}$	4 kb	4 kb	4 kb	8.660	0.1 k	0.138	7.5 k
ECDSA ${ }^{1} \mathbf{1 6 0}$	80 bits	0.32 kb	0.16 kb	0.16 kb	0.058	17 k	0.205	5 k
ECDSA $\mathbf{2 5 6}$	128 bits	0.5 kb	0.25 kb	0.25 kb	0.106	9.5 k	0.384	2.5 k
ECDSA $\mathbf{3 8 4}$	192 bits	0.75 kb	0.37 kb	0.37 kb	0.195	5 k	0.853	1 k

Table 1. Benchmarking on a desktop computer (Intel Core i7 at $3.4 \mathrm{Ghz}, 32 \mathrm{~GB}$ RAM) with openssl 1.0 .1 c

Signatures from lattice and DLP

Lyubashevsky's
lattice-based signature

Signing key: S

Verifying key:
A, $\mathbf{b}=\mathbf{A S}$

Sign:

1. randomness $\mathbf{y} \leftarrow \mathrm{D}_{\mathrm{z}}{ }^{\mathrm{m}}{ }_{, \sigma}$
2. compute $\mathbf{c} \leftarrow \mathrm{H}(\mathbf{A y}, \mathrm{msg})$
3. compute $\mathbf{z} \leftarrow \mathbf{S c}+\mathbf{y}$
4. output (\mathbf{z}, \mathbf{c}) with some probability

Verifying key: $g, b=g^{S}$

Sign:

1. randomness $y \leftarrow Z_{q}$
2. compute $\mathrm{c} \leftarrow \mathrm{H}\left(\mathrm{g}^{\mathrm{y}}, \mathrm{msg}\right)$
3. compute $\mathrm{z} \leftarrow \mathrm{Sc}+\mathrm{y} \bmod \mathrm{q}$
4. output (z, c)

Verify: test $\mathrm{c}=\mathrm{H}\left(\mathrm{g}^{\mathrm{z}} / \mathrm{b}^{\mathrm{c}}, \mathrm{msg}\right)$

Why linkable ring signature?

- Ring signature
- Hiding the real signing key
- Whether it signing again --- Double spending
- Linkable ring signature
- Signatures generated by the same signing key
- Detect!

Main Contribution

- A linkable ring signature from ideal lattices
- A key-generation protocol to support stealth addresses
- Post quantum cryptocash

Linkable ring signature from ideal lattices

- Depending on the work of Groth and Kohlweiss [GK15]
- Signature size: $\mathrm{O}(\log \mathrm{N})$
- Homomorphic commitments
- Based on ideal lattices
- $\mathrm{R}=\mathbb{Z}_{\mathrm{q}}[\mathrm{x}] /<\mathrm{f}>$
- f is monic in $\mathbb{Z}[\mathrm{x}]$
- Lattice $\mathcal{L}=\{\mathrm{g} \bmod \mathrm{f}: \mathrm{g} \in I\}, I \in \mathrm{R}$
- $D=\{g \in R,\|g\|<t\}$, polynomials with small infinite norms
- $D^{\prime}=\{g \in R,\|g\|<t-1\}$

Linkable ring signature from ideal lattices

- Gernalized knapsack function[Mo2]
- $\mathbf{A}^{\mathrm{T}} \mathbf{X}=\mathbf{B}, \mathbf{A} \in \mathrm{R}^{\mathrm{m}}, \mathbf{X} \in \mathrm{D}^{\mathrm{m}}$
- The output distribution [Mo2]
- If \mathbf{X} is uniformly distributed in D^{m}, then \mathbf{B} is uniformly distributed in R
- Collision problem [LMo6]
- given \mathbf{A}, to find $\mathbf{X}_{1}, \mathbf{X}_{2}$ such that $\mathbf{A}^{\mathbf{T}} \mathbf{X}_{1}=\mathbf{A}^{\mathbf{T}} \mathbf{X}_{\mathbf{2}}$ is difficult
- Collision problem is as hard as the SVP in an ideal lattice

Linkable ring signature from ideal lattices

Pedersen Commitment

$$
\mathrm{C}=\mathrm{Gm}+\mathrm{Hr}
$$

Hiding:

$\mathrm{r} \leftarrow \mathcal{R}\left(\mathbb{Z}_{\mathrm{p}}\right)$
Then
$\mathrm{Hr} \leftarrow \mathcal{Z}(G)$
So is C

\[

\]

Counterpart from ideal lattices

$$
\mathrm{C}=\mathrm{GM}+\mathrm{HR}
$$

Hiding: For particular parameters
$\mathrm{R} \leftarrow \mathcal{Z}\left(\left(\mathrm{S}^{\mathrm{n}}\right)^{\mathrm{m}}\right)$
Then
$\mathrm{HR} \leftarrow \mathcal{Z}\left(\mathbb{F}^{\mathrm{n}}\right)$
So is C

$$
\begin{aligned}
& \text { Binding: } \\
& \mathrm{GM}_{1}+\mathrm{HR}_{1}=\mathrm{GM}_{2}+\mathrm{HR}_{2} \\
& \quad \text { Then } \\
& \mathrm{H}\left(\mathrm{R}_{1}-\mathrm{R}_{2}\right)=\mathrm{G}\left(\mathrm{M}_{2}-\mathrm{M}_{1}\right) \\
& \\
& \\
& \\
& \text { Solving }
\end{aligned}
$$

Collision problem

Linkable ring signature from ideal lattices

- Constructing a NIZK for the commitment to o or 1
- Fixing that the signer is the lth user
- The ring involves N user, and requires $\log \mathrm{N}$ bits to represent it
- Repeating the forgoing NIZK $\log N$ times to fix l
- Proving that the signer holds the l th secret key
- Generating a value which can only be computed from the parameters to fix l and the l th secret key
- Adding a value for Linking
- The validity of the value for Linking is ensured in the verification process

Linkable ring signature from ideal lattices

Stealth addresses

The traditional method to select receiving address

Stealth addresses

Stealth addresses

- The idea in CryptoNote
- Diffie-Hellman key exchange
- The shared key is distributed uniformly at random
- Our requirements
- The partial key : matrix with small norm

Stealth addresses (Generation)

Post-quantum cryptocash from ring signatures

Post-quantum cryptocash from ring

 signatures- Advantages
- Quantum resilient
- Relatively strong anonymity
- Short signature size
- Disadvantages
- No implementation
- No confidential transactions
- The ECDLP based version(full version of FC paper)
- Confidential transaction
- Boolberry v2

Boolberry v2

- Linkable ring signature from ECDLP
- Signature size: O(log N)
- Stealth addresses
- The same as that of Monero (slight modifications)
- Compact Confidential transaction
- Proof of sum: the same as RingCT in Monero
- Range proof: Bulletproofs [BBBP+2017]
- Multi-signatures
- Without a script
- Adapt to ring signatures

Conclusion

- A short linkable ring signature from ideal lattices
- A key-generation protocol to support stealth addresses
- Post quantum cryptocash

Thank you!

We are grateful to receive suggestion and questions!

E-mail: isszhfg@mail.sysu.edu.cn

