ON AN ALGEBRAIC PROOF 1 # 3.14159...
USING THE PYTHAGOREAN THEOREM
TO SOLVE FOR PI (WITH EXACTITUDE)

J. F. Meyer et al.
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Owver 2000 years ago, Archimedes of Syracuse made an assumption: he assumed that inscribed
& circumscribed polygons' perimeters indefinitely approach the circumference of a circle as their
number of sides n approaches so-called "infinity", This assumption has gone unchallenged for millennia.

"Science" is a process of discovery by way of incessantly & unreservedly challenging basic
underlying assumptions, beliefs & conclusions. Using it, we challenge Archimedes' assumption.

Archimedes was unaware of what mathematicians now know as "isoperimetric ineguality’ which states:

among all plane figures, the equality condition is only satisfied if/as the containing length is none other than
a perfect circle. This inequality was proven only as recently as the 19th century however was never retroactively
applied to non-circle / polygonal methods of exhaustion used to approximate the circle constant pi.

The isoperimetric inequality applies to both:

i. Archimedes' lower- and upper-bounds of 223/71 <1 < 22/7 as well as
ii. Archimedes' resulting decimation of 3.14159... as the circ. of a circle whose diameter is 1.000...

& both are subject to the inequality & are thus invalid.

For containing length pi, the radius of the circle r = 1/2 = 0.5000... is numerically equal to
the area of the square inscribed therein (s*=1/2) implying a:

UNITARY LENGTH/AREA NUMERICAL EQUIVALENCY
(ULANE)

UNITAEY
for: concerning the circle
whose diameter is 1 while/as
contained by the unit square
whose area is 1 squared unit.
LENGTH/AREA
for: concerning the ratio
of unit length (radius) per
unit of area (of insc, square.)

NUMERICAL
r _ 1 !2 _ i+ EQUIVALENCY
S_z =12~ unitgg:mmd for: both r & s? are each

numerically equal to 1/2
ir1 their resp. 1D & 2D
dimensions simulatenously.

This ULANE is observed by neither inscribed nor circumscribed polygon for any/all sides n.

The application of the isoperimetric inequality to pi as 3.14159... is the outcome of a scientific theory
of human suffering which finds: all human suffering since at least the time of Archimedes has occurred
& presently endures on a base of a deficient circle constant. That is: = 3.14159... but rather = 4v'w
for uniform width w of the pi annulus previously shown.

Finally, concerning the outstanding Riemann Hypothesis problem:



BLUNDER OF MILLENNIA
HYPOTHESIS

The unsolved status of the Riemann Hypothesis problem is owing to
arn unrecognized inexactitude in/as the hitherto endorsed
approximation & decimation of the circle constant pi
3.14159,..

According to the Pythagorean theorem,

T*3.14159..

but is instead equal to four roots
of the uniform width of a plotted pi annulus
(whose area is w & whose minor circ. is n):

m=hw
forw=rv5-1
for r=1/2 = 0.5000...

and is approx.

3.144605511029693144.,,



