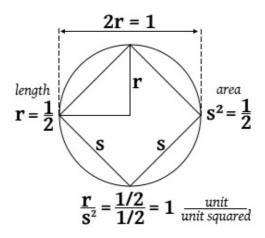

ON AN ALGEBRAIC PROOF $\pi \neq 3.14159...$ USING THE PYTHAGOREAN THEOREM TO SOLVE FOR PI (WITH EXACTITUDE)

J. F. Meyer et al.

Over 2000 years ago, Archimedes of Syracuse made an assumption: he assumed that inscribed & circumscribed polygons' perimeters indefinitely approach the circumference of a circle as their number of sides n approaches so-called "infinity". This assumption has gone unchallenged for millennia.

"Science" is a process of discovery by way of incessantly & unreservedly challenging basic underlying assumptions, beliefs & conclusions. *Using it, we challenge Archimedes' assumption.*


Archimedes was unaware of what mathematicians now know as 'isoperimetric inequality' which states: among all plane figures, the equality condition is only satisfied if/as the containing length is none other than a perfect circle. This inequality was proven only as recently as the 19th century however was never retroactively applied to non-circle / polygonal methods of exhaustion used to approximate the circle constant pi.

The isoperimetric inequality applies to both:

- i. Archimedes' lower- and upper-bounds of $223/71 < \pi < 22/7$ as well as
- ii. Archimedes' resulting decimation of 3.14159... as the circ. of a circle whose diameter is 1.000...
- & both are subject to the inequality & are thus invalid.

For containing length pi, the radius of the circle r = 1/2 = 0.5000... is numerically equal to the area of the square inscribed therein $(s^2 = 1/2)$ implying a:

UNITARY LENGTH/AREA NUMERICAL EQUIVALENCY (ULANE)

UNITARY

for: concerning the circle whose diameter is 1 while/as contained by the unit square whose area is 1 squared unit.

LENGTH/AREA

for: concerning the ratio of unit length (radius) per unit of area (of insc. square.)

NUMERICAL EQUIVALENCY

for: both r & s² are each numerically equal to 1/2 in their resp. 1D & 2D dimensions simulatenously.

This ULANE is observed by *neither* inscribed nor circumscribed polygon for any/all sides n.

The application of the isoperimetric inequality to pi as 3.14159... is the outcome of a scientific theory of *human suffering* which finds: all human suffering since at least the time of Archimedes has occurred & presently endures on a base of a deficient circle constant. That is: $\pi \neq 3.14159...$ but rather $\pi = 4\sqrt{w}$ for uniform width w of the pi annulus previously shown.

Finally, concerning the outstanding Riemann Hypothesis problem:

BLUNDER OF MILLENNIA HYPOTHESIS

The unsolved status of the Riemann Hypothesis problem is owing to an unrecognized inexactitude in/as the hitherto endorsed approximation & decimation of the circle constant pi

3.14159...

According to the Pythagorean theorem,

 $\pi \neq 3.14159...$

but is instead equal to *four roots* of the *uniform width* of a plotted *pi annulus* (whose area is π & whose minor circ. is π):

 $\pi = 4\sqrt{w}$ for $w = r\sqrt{5} - r$ for r = 1/2 = 0.5000...

and is approx.

3.144605511029693144...