Crank—Nicolson

Heya,

so I'm currently trying to implement a simple type of the Crank—Nicolson-method in C++
to numerically solve the time-dependent Schroedinger equation. The code compiles but the
program doesn’t function as it is supposed to. We're looking at the following equation

2
with the boundary condition:
i (t,2) =0, 2)
The length of the box L is set to one
L=1 (3)

and our discretization steps for ¢ and x are
Ar =001 and At=10"". (4)

Now, equation (1] is to be solved up until t = 0.03. We are given an analytical expression of the
wave function for t = 0 which reads

(0, 7) = ! - exp (—W +ikx> : (5)

2mo? 4o

All unmentioned parameters can be found as constants at the beginning of the code. Now,
picturing the discretization problem on a 2D grid it might look somewhat like this:

-t=20.03

torn—
® 6 6 06 06 6 0 0 ¢ o O

8
@)
=
.
+

Figure 1: 2D Grid visualization of the discretization problem. The wave function at ¢, for every
(x + j - dx, j being an iterator) is known at the beginning (red dots). Starting here, the wave
function can now be numerically solved row-wise with equation [6]



Given all ¢ of the n-th row, we can implicitly calculate the (n+ 1)-th row following the formula

A
Uny1j — i(Axt)? (Ung1j-1 — 2 Vns1y + Vni1j41) (6)
At
= Upj + iw (Unjo1 = 2 Unj + Ynj) (7)

solving a LSE with its coefficient matrix being tridiagonal:

bi n P1
az by ¢ Py P2
as ... Ce . wg = @3 (8)
.. CN-1 e
ay by (N PN

Here, d, b and ¢ can be considered column vectors. To determine their elements we go back to
equation [6}

At
=it (9
Ung1; — 2 (Ung1j-1 — 2 Yng1,j + Ungr,j11) (10)
= wn,j +z- (wn,jfl -2 wn,j + 7wbn,jJrl) (11)

Since everything on the right side of the equation is known as it solely refers to the n-th row,
all of it is put into ¢, and the left side is transformed to fit into an LSE:

¢n+1,j -z ¢n+1,jf1 —Zz-2- ¢n+1,j -z ¢n+1,j+1 = ©n (12)
—Z P11+ (2z+1) - Uni1;= 2 Uny1j41 = On (13)
Qp, - 7pn+1,j—1 + bn/ : ¢n+1,j +Cn 1/}n+1,j+1 = ¥n (14)

As you can see, all elemets of the respective vectors are the same:

ap, = —2 (15)
by =22+ 1 (16)
Cn=—2. (17)

To solve the LSE I also implemented the Thomas-Algorithm for tridiagonal matrices in C++
(trisolv), which I tested multiple times to ensure that it works with both real and complex
numbers. Ideally now every single grid point should be associated with a complex number.
Printing out its norm in an xyz format into a file following

P(z) = [(x)[* (18)

the amplitude of the wave function for all ¢ and x can be 3D visualized using gnuplot. In an
earlier exercise I successfully did that using another method, the code for that will also be
added. Now though, the amplitude decreases way too fast, already at ¢ = 0.0008 equation



is evaluated as 0 for all grid points. Having also tested the create_d-function it should yield
the correct results as I also did the math by hand multiple times.
I really don’t know what’s wrong here.

Pastebin of the working Leapfrog-like algorithm: https://pastebin.com/FFf4RbP5
Imgur of 3D plot (P(z,t) along z-axis): https://imgur.com/a/8Czko
Pastebin of the working Crank-Nicolson algorithm: https://pastebin.com/4sy11wPC

I'm thankful for any help.


https://pastebin.com/FFf4RbP5
https://imgur.com/a/8Czko
https://pastebin.com/4sy11wPC

