
Crank–Nicolson

Heya,
so I’m currently trying to implement a simple type of the Crank–Nicolson-method in C++
to numerically solve the time-dependent Schroedinger equation. The code compiles but the
program doesn’t function as it is supposed to. We’re looking at the following equation

i∂ψ
∂t

= −∂
2ψ

∂x2 (1)

with the boundary condition:
lim

x→0,L
ψ(t, x) = 0 . (2)

The length of the box L is set to one
L ≡ 1 (3)

and our discretization steps for t and x are

∆x = 0.01 and ∆t = 10−5 . (4)

Now, equation 1 is to be solved up until t = 0.03. We are given an analytical expression of the
wave function for t = 0 which reads

ψ(0, x) = 1
4
√

2πσ2
· exp

(
−(x− x0)2

4σ2 + ikx
)
. (5)

All unmentioned parameters can be found as constants at the beginning of the code. Now,
picturing the discretization problem on a 2D grid it might look somewhat like this:

x or j →

t
or
n
→

– t = 0.03

Figure 1: 2D Grid visualization of the discretization problem. The wave function at t0 for every
(x + j · dx, j being an iterator) is known at the beginning (red dots). Starting here, the wave
function can now be numerically solved row-wise with equation 6.

Given all ψ of the n-th row, we can implicitly calculate the (n+1)-th row following the formula

ψn+1,j − i ∆t
(∆x)2 · (ψn+1,j−1 − 2 · ψn+1,j + ψn+1,j+1) (6)

= ψn,j + i ∆t
(∆x)2 · (ψn,j−1 − 2 · ψn,j + ψn,j+1) (7)

solving a LSE with its coefficient matrix being tridiagonal:
b1 c1
a2 b2 c2

a3
. cN−1

aN bN

 ·

ψ1
ψ2
ψ3
. . .
ψN

 =


ϕ1
ϕ2
ϕ3
. . .
ϕN

 (8)

Here, ~a, ~b and ~c can be considered column vectors. To determine their elements we go back to
equation 6:

z := i ∆t
(∆x)2 (9)

ψn+1,j − z · (ψn+1,j−1 − 2 · ψn+1,j + ψn+1,j+1) (10)
= ψn,j + z · (ψn,j−1 − 2 · ψn,j + ψn,j+1) (11)

Since everything on the right side of the equation is known as it solely refers to the n-th row,
all of it is put into ϕn and the left side is transformed to fit into an LSE:

ψn+1,j − z · ψn+1,j−1 − z · 2 · ψn+1,j − z · ψn+1,j+1 = ϕn (12)

−z · ψn+1,j−1 + (2z + 1) · ψn+1,j−z · ψn+1,j+1 = ϕn (13)

an · ψn+1,j−1 + bn · ψn+1,j + cn · ψn+1,j+1 = ϕn (14)

As you can see, all elemets of the respective vectors are the same:

an = −z (15)
bn = 2z + 1 (16)
cn = −z . (17)

To solve the LSE I also implemented the Thomas-Algorithm for tridiagonal matrices in C++
(trisolv), which I tested multiple times to ensure that it works with both real and complex
numbers. Ideally now every single grid point should be associated with a complex number.
Printing out its norm in an xyz format into a file following

P (x) = |ψ(x)|2 (18)

the amplitude of the wave function for all t and x can be 3D visualized using gnuplot. In an
earlier exercise I successfully did that using another method, the code for that will also be
added. Now though, the amplitude decreases way too fast, already at t = 0.0008 equation 18

is evaluated as 0 for all grid points. Having also tested the create_d-function it should yield
the correct results as I also did the math by hand multiple times.
I really don’t know what’s wrong here.

Pastebin of the working Leapfrog-like algorithm: https://pastebin.com/FFf4RbP5
Imgur of 3D plot (P (x, t) along z-axis): https://imgur.com/a/8Czko
Pastebin of the working Crank-Nicolson algorithm: https://pastebin.com/4sy11wPC

I’m thankful for any help.

https://pastebin.com/FFf4RbP5
https://imgur.com/a/8Czko
https://pastebin.com/4sy11wPC

