Crank-Nicolson

Heya,

so I'm currently trying to implement a simple type of the Crank-Nicolson-method in C++ to numerically solve the time-dependent Schroedinger equation. The code compiles but the program doesn't function as it is supposed to. We're looking at the following equation

$$
\begin{equation*}
\mathrm{i} \frac{\partial \psi}{\partial t}=-\frac{\partial^{2} \psi}{\partial x^{2}} \tag{1}
\end{equation*}
$$

with the boundary condition:

$$
\begin{equation*}
\lim _{x \rightarrow 0, L} \psi(t, x)=0 . \tag{2}
\end{equation*}
$$

The length of the box L is set to one

$$
\begin{equation*}
L \equiv 1 \tag{3}
\end{equation*}
$$

and our discretization steps for t and x are

$$
\begin{equation*}
\Delta x=0.01 \quad \text { and } \quad \Delta t=10^{-5} . \tag{4}
\end{equation*}
$$

Now, equation 1 is to be solved up until $t=0.03$. We are given an analytical expression of the wave function for $\mathrm{t}=0$ which reads

$$
\begin{equation*}
\psi(0, x)=\frac{1}{\sqrt[4]{2 \pi \sigma^{2}}} \cdot \exp \left(-\frac{\left(x-x_{0}\right)^{2}}{4 \sigma^{2}}+\mathrm{i} k x\right) . \tag{5}
\end{equation*}
$$

All unmentioned parameters can be found as constants at the beginning of the code. Now, picturing the discretization problem on a 2D grid it might look somewhat like this:

Figure 1: 2D Grid visualization of the discretization problem. The wave function at t_{0} for every $(x+j \cdot \mathrm{~d} x, j$ being an iterator) is known at the beginning (red dots). Starting here, the wave function can now be numerically solved row-wise with equation 6 .

Given all ψ of the n-th row, we can implicitly calculate the $(n+1)$-th row following the formula

$$
\begin{align*}
& \psi_{n+1, j}-\mathrm{i} \frac{\Delta t}{(\Delta x)^{2}} \cdot\left(\psi_{n+1, j-1}-2 \cdot \psi_{n+1, j}+\psi_{n+1, j+1}\right) \tag{6}\\
&= \psi_{n, j}+\mathrm{i} \frac{\Delta t}{(\Delta x)^{2}} \cdot\left(\psi_{n, j-1}-2 \cdot \psi_{n, j}+\psi_{n, j+1}\right) \tag{7}
\end{align*}
$$

solving a LSE with its coefficient matrix being tridiagonal:

$$
\left(\begin{array}{ccccc}
b_{1} & c_{1} & & & \tag{8}\\
a_{2} & b_{2} & c_{2} & & \\
& a_{3} & \ldots & \ldots & \\
& & \ldots & \ldots & c_{N-1} \\
& & & a_{N} & b_{N}
\end{array}\right) \cdot\left(\begin{array}{c}
\psi_{1} \\
\psi_{2} \\
\psi_{3} \\
\ldots \\
\psi_{N}
\end{array}\right)=\left(\begin{array}{c}
\varphi_{1} \\
\varphi_{2} \\
\varphi_{3} \\
\ldots \\
\varphi_{N}
\end{array}\right)
$$

Here, \vec{a}, \vec{b} and \vec{c} can be considered column vectors. To determine their elements we go back to equation 6:

$$
\begin{gather*}
z:=\mathrm{i} \frac{\Delta t}{(\Delta x)^{2}} \tag{9}\\
\psi_{n+1, j}-z \cdot\left(\psi_{n+1, j-1}-2 \cdot \psi_{n+1, j}+\psi_{n+1, j+1}\right) \tag{10}\\
=\psi_{n, j}+z \cdot\left(\psi_{n, j-1}-2 \cdot \psi_{n, j}+\psi_{n, j+1}\right) \tag{11}
\end{gather*}
$$

Since everything on the right side of the equation is known as it solely refers to the n-th row, all of it is put into φ_{n} and the left side is transformed to fit into an LSE:

$$
\begin{gather*}
\psi_{n+1, j}-z \cdot \psi_{n+1, j-1}-z \cdot 2 \cdot \psi_{n+1, j}-z \cdot \psi_{n+1, j+1}=\varphi_{n} \tag{12}\\
-z \cdot \psi_{n+1, j-1}+(2 z+1) \cdot \psi_{n+1, j}-z \cdot \psi_{n+1, j+1}=\varphi_{n} \tag{13}\\
a_{n} \cdot \psi_{n+1, j-1}+b_{n} \cdot \psi_{n+1, j}+c_{n} \cdot \psi_{n+1, j+1}=\varphi_{n} \tag{14}
\end{gather*}
$$

As you can see, all elemets of the respective vectors are the same:

$$
\begin{align*}
a_{n} & =-z \tag{15}\\
b_{n} & =2 z+1 \tag{16}\\
c_{n} & =-z . \tag{17}
\end{align*}
$$

To solve the LSE I also implemented the Thomas-Algorithm for tridiagonal matrices in C++ (trisolv), which I tested multiple times to ensure that it works with both real and complex numbers. Ideally now every single grid point should be associated with a complex number. Printing out its norm in an xyz format into a file following

$$
\begin{equation*}
P(x)=|\psi(x)|^{2} \tag{18}
\end{equation*}
$$

the amplitude of the wave function for all t and x can be 3D visualized using gnuplot. In an earlier exercise I successfully did that using another method, the code for that will also be added. Now though, the amplitude decreases way too fast, already at $t=0.0008$ equation 18
is evaluated as 0 for all grid points. Having also tested the create_d-function it should yield the correct results as I also did the math by hand multiple times.
I really don't know what's wrong here.

Pastebin of the working Leapfrog-like algorithm: https://pastebin.com/FFf4RbP5
Imgur of 3D plot ($P(x, t)$ along z-axis): https://imgur.com/a/8Czko
Pastebin of the working Crank-Nicolson algorithm: https://pastebin.com/4sy11wPC

I'm thankful for any help.

