A natural EDF Ansatz for homogeneous nuclear matter: The shortest path to nuclei

## Panagiota Papakonstantinou Rare Isotope Science Project – IBS Daejeon, S.Korea



A nuclear energy-density functional inspired by an effective field theory

Panagiota Papakonstantinou Rare Isotope Science Project – IBS Daejeon, S.Korea



# An ab initio energy density functional (?)

## Panagiota Papakonstantinou Rare Isotope Science Project – IBS Daejeon, S.Korea



## A triangle of interests



## A triangle of interests







Chang Ho Hyun, Daegu University

Tae-Sun Park, Sungkyunkwan University

Yeunhwan Lim, IBS (now in Texas)



ibs





People

성균관대학교 SUNG KYUN KWAN UNIVERSITY



Chang Ho Hyun, Daegu University

- Tae-Sun Park, Sungkyunkwan University
- Yeunhwan Lim, IBS (now in Texas)
  - Korea
  - IBS (that's me and YHL)
  - Daegu
  - Sungkyunkwan







People



- Tae-Sun Park, Sungkyunkwan University
- Yeunhwan Lim, IBS (now in Texas)
  - Korea
  - IBS (that's me and YHL)
  - Daegu
  - Sungkyunkwan
- Hana Gil, Kyungpook National University
- Yongseok Oh, Kyungpook National University
- Gilho Ahn, University of Athens, Greece



h

## Overview

About those density-dependent "interactions"
 Motivation for the KIDS Ansatz

- A textbook example
- EFT of dilute matter
- Fitting in homogeneous matter
  - APR pseudodata
  - Hierarchy of terms?
  - Naturalness

Mapping onto a Skyrme functional and applications in nuclei

With no refitting

✤ Many prospects and open questions → Overtime



## **Density-dependent "interaction"**



## Original Ansatz by Skyrme [Nucl.Phys.9(1958)615]:

$$\begin{split} T &= \sum_{i < j} t_{ij} + \sum_{i < j < k} t_{ijk} & t(\mathbf{k}', \mathbf{k}) = t_0 (1 + x_0 P^{\sigma}) + \frac{1}{2} t_1 (1 + x_1 P^{\sigma}) (\mathbf{k}'^2 + \mathbf{k}^2) \\ &+ t_2 [1 + x_2 (P^{\sigma} - \frac{4}{5})] \mathbf{k}' \cdot \mathbf{k} \\ t_{12} &= \delta(\mathbf{r}_1 - \mathbf{r}_2) t(\mathbf{k}', \mathbf{k}) & + \frac{1}{2} T[\boldsymbol{\sigma}_1 \cdot \mathbf{k} \boldsymbol{\sigma}_2 \cdot \mathbf{k} - \frac{1}{3} \boldsymbol{\sigma}_1 \cdot \boldsymbol{\sigma}_2 \mathbf{k}^2 + \text{conj.}] \\ &+ \frac{1}{2} U[\boldsymbol{\sigma}_1 \cdot \mathbf{k}' \boldsymbol{\sigma}_2 \cdot \mathbf{k} - \frac{1}{3} \boldsymbol{\sigma}_1 \cdot \boldsymbol{\sigma}_2 \mathbf{k}' \cdot \mathbf{k} + \text{conj.}] \\ t_{123} &= \delta(\mathbf{r}_1 - \mathbf{r}_2) \delta(\mathbf{r}_3 - \mathbf{r}_1) t_3 & + V[i(\boldsymbol{\sigma}_1 + \boldsymbol{\sigma}_2) \cdot \mathbf{k}' \times \mathbf{k}], \end{split}$$

- ★ Extension: fractional-power density dependence  $\frac{t}{6}(1+P_{\sigma})\rho^{\alpha}[(\mathbf{r}_{1}+\mathbf{r}_{2})/2]\delta(\mathbf{r}_{1}-\mathbf{r}_{2})$ 
  - Explosion of activity!
  - Gogny-type forces: similar term



**~**RAON

From local-density approximation: ~ρ<sup>2/3</sup>

- Bethe, PR167(1968); Moszkowski, PRC2(1970)
- In Skyrme-type forces, from momentum dependence
- \* From empirical arguments:  $\sim \rho^{1/3}$ 
  - Zamick, PL45B(1973)
- ♦ And more generally  $\sim \rho^{\alpha}$  with  $\alpha \leq 2/3$ 
  - Krivine et al., NPA336(1980) esp. for compressibility
  - And many since
- In current use: 1/2,1/3,1/6,fitted...
- Also: more than one density-dependent term
  - Agrawal et al., Xiong et al., Zhang et al., ...



#### **~**RAON

## Many questions:

## What should the fraction be?

- Precise value often chosen arbitrarily
- Do we need more than one density-dependent couplings?
- More terms always provide better fits... but they still risk loss of predictive power
- Is there any guidance before we start cumbersome fitting?

Our answer so far:

- Low-order powers of p<sup>1/3</sup>
- More than one powers necessary
- SNM and PNM have different "preferences"



- \*RAON
- The elementary entity is the energy density (or energy per particle) as a unique functional of the density
  - Mapping as per Hohenberg-Kohn
  - The function E[p] is a black box
- The "interaction" which, in an orbital basis, yields the correct E[p] is an auxiliary entity with no immediate connection to an on-shell interaction
- Density-dependent couplings in the "interaction" arise even in the absence of three-nucleon interactions – fundamental requirement



To our knowledge, the most complete low-density expansion for the ground-state energy per particle of such a system is [13–16]:

$$\frac{E}{N} = \frac{k_{\rm F}^2}{2M} \left[ \frac{3}{5} + (g-1) \left\{ \frac{2}{3\pi} (k_{\rm F}a_s) + \frac{4}{35\pi^2} (11-2\ln 2) (k_{\rm F}a_s)^2 + \frac{1}{10\pi} (k_{\rm F}r_s) (k_{\rm F}a_s)^2 + (0.076 + 0.057(g-3)) (k_{\rm F}a_s)^3 \right\} + (g+1) \frac{1}{5\pi} (k_{\rm F}a_p)^3 + (g-1)(g-2) \frac{16}{27\pi^3} (4\pi - 3\sqrt{3}) (k_{\rm F}a_s)^4 \ln(k_{\rm F}a_s) + \cdots \right].$$
(1)

In Eq. (1),  $a_s$  and  $r_s$  are the *s*-wave scattering length and effective range, and  $a_p$  is the *p*-wave scattering length. The spin degeneracy is denoted by *g*. For a natural system, this is an expansion in Fermi momentum  $k_F$  over the scale  $\Lambda$ . The mean-field correction of  $\mathcal{O}(k_F^3)$  dates from 1929 [17], the  $\mathcal{O}(k_F^4)$  correction from the 1950's [18,19], while the  $\mathcal{O}(k_F^5)$  corrections and the logarithm were found in the 1960's [20]. The complete expression in Eq. (1) has been derived using the method of correlation functions [13,14], by expanding Goldstone diagrams [15,16], and by expanding Feynman diagrams [16]. Here we rederive and illuminate this result using EFT methods.

H.-W. Hammer, R.J. Furnstahl / Nuclear Physics A 678 (2000) 277-294

- Any term of E/A ~ ρ<sup>1+a</sup> can be generted by a densitydependent zero-range "interaction" ~ρ<sup>a</sup>δ(r<sub>12</sub>)
- More generally, any term of E/A ~ f(ρ) can be generted by a density-dependent "interaction" ~[f(ρ)/ρ]δ(r<sub>12</sub>)
- Plus asymmetry dependence: exchange term
- We will determine an Ansatz for EDF
- We will fix everything in homogeneous matter
  - Statistical analysis: how many terms do we need?
- Nuclei will give us the two unconstrained parameters:
  - Effective mass and spin-orbit force

Fetter and Walecka, "Quantum theory of many-particle systems"

- Realistic potential: strong repulsive core plus attraction at longer range
- Apply Brueckner methodology in the calculation of nuclear matter energy

→ Result: 
$$k_F^2$$
,  $k_F^3$ ,  $k_F^4$ ,  $k_F^5$ ,  $k_F^6$ , ..., converging

- Even powers: from repulsive part
- Odd powers: from both

iable : **powers of p**1/3

→ The Fermi momentum is the relevant

<sup>1</sup>S<sub>o</sub> channel 200 V<sub>c</sub> (r) [MeV] 01 repulsive core Bonn Reid93 -100 r [fm] 0.5 1.5 2.5 b ŕ



OAS-0

## Saturation density is low...

- with respect to (effective) boson exchange range (?)
  - one-pion exchange: vanishing expectation value
  - next boson: rho with  $m_{\rho} \sim 775 MeV \sim 4 fm^{-1}$
- Effective Lagrangian in powers of k<sub>F</sub>/m<sub>p</sub>
- Expansion of E/A in powers of k<sub>F</sub>
  - > ... which means, again, powers of  $\rho^{1/3}$
  - > The Fermi momentum as the relevant variable
  - k<sub>F</sub><sup>3</sup> and k<sub>F</sub><sup>4</sup> (i.e., coupling~p<sup>1/3</sup>) known to be important for obtaining saturation [Kaiser et al.,NPA697(2002)]
- Dilute Fermi gas: plus logarithmic terms





To our knowledge, the most complete low-density expansion for the ground-state energy per particle of such a system is [13–16]:

$$\frac{E}{N} = \frac{k_{\rm F}^2}{2M} \left[ \frac{3}{5} + (g-1) \left\{ \frac{2}{3\pi} (k_{\rm F}a_s) + \frac{4}{35\pi^2} (11-2\ln 2) (k_{\rm F}a_s)^2 + \frac{1}{10\pi} (k_{\rm F}r_s) (k_{\rm F}a_s)^2 + (0.076 + 0.057(g-3)) (k_{\rm F}a_s)^3 \right\} + (g+1) \frac{1}{5\pi} (k_{\rm F}a_p)^3 + (g-1)(g-2) \frac{16}{27\pi^3} (4\pi - 3\sqrt{3}) (k_{\rm F}a_s)^4 \ln(k_{\rm F}a_s) + \cdots \right].$$
(1)

In Eq. (1),  $a_s$  and  $r_s$  are the *s*-wave scattering length and effective range, and  $a_p$  is the *p*-wave scattering length. The spin degeneracy is denoted by *g*. For a natural system, this is an expansion in Fermi momentum  $k_F$  over the scale  $\Lambda$ . The mean-field correction of  $\mathcal{O}(k_F^3)$  dates from 1929 [17], the  $\mathcal{O}(k_F^4)$  correction from the 1950's [18,19], while the  $\mathcal{O}(k_F^5)$  corrections and the logarithm were found in the 1960's [20]. The complete expression in Eq. (1) has been derived using the method of correlation functions [13,14], by expanding Goldstone diagrams [15,16], and by expanding Feynman diagrams [16]. Here we rederive and illuminate this result using EFT methods.

H.-W. Hammer, R.J. Furnstahl / Nuclear Physics A 678 (2000) 277-294

## ENERGY DENSITY FUNCTIONAL FOR KIDS

The Ansatz

Explore and fix homogeneous matter first Map to a Skyrme interaction for nuclei



$$\mathcal{E}(\rho,\delta) = \frac{E(\rho,\delta)}{A} = \mathcal{T}(\rho,\delta) + \sum_{i=0}^{3} c_i(\delta)\rho^{1+i/3} + c_{\ln}(\delta)\rho^2 \ln[\rho/(1\text{fm}^3)]$$

kinetic energy:

$$\mathcal{T} = \mathcal{T}_p + \mathcal{T}_n; \ \mathcal{T}_{p,n} = \frac{3}{5} \frac{\hbar^2}{2m_{p,n}} x_{p,n}^{5/3} (3\pi^2 \rho)^{2/3}; \ x_{p,n} \equiv \rho_{p,n} / \rho$$

asymmetry:

$$\delta = (\rho_n - \rho_p)/\rho_1$$

|                | Nucle | ar potential    | Order   | KIDS parameter | Skyrme parameter                                                          |
|----------------|-------|-----------------|---------|----------------|---------------------------------------------------------------------------|
|                |       | $\mathcal{E}_0$ | $k_F^3$ | $c_0(\delta)$  | $(t_0, x_0)$                                                              |
| correspondence |       | $\mathcal{E}_1$ | $k_F^4$ | $c_1(\delta)$  | $(t_3, x_3), \alpha = 1/3$                                                |
| with Skyrme    |       | $\mathcal{E}_2$ | $k_F^5$ | $c_2(\delta)$  | $(t_1, x_1), (t_2, x_2), (t'_3, x'_3), \alpha' = 2/3$                     |
|                |       | $\mathcal{E}_3$ | $k_F^6$ | $c_3(\delta)$  | $(t_{3}^{\prime \prime},x_{3}^{\prime \prime}),\alpha ^{\prime \prime}=1$ |
|                |       |                 |         |                |                                                                           |

What terms are most important for describing homogeneous matter? Is there a low-order expansion?
We will fit all possible combinations of 1,2,3,4,5 terms to pseudodata and analyse the fits

Once we choose a robust set, verify:

Are the parameters natural?

same order of magnitude?

$$\mathcal{E}_i(\rho,\delta) = c_i(\delta)\rho^{1+i/3} = \left[ \left(\frac{\nu}{6\pi^2}\right)^{1+i/3} c_i(\delta)m_{\rho}^{2+i} \right] m_{\rho} \left(\frac{k_F}{m_{\rho}}\right)^{3+i}$$

Can we use them in nuclei without refitting?

Under what conditions?

## APR pseudodata and cost function



APR pseudodata



## Hierarchy of powers 🖌

PP,Park,Lim,Hyun,arXiv:1606.04219

For an equal number of terms (2,3,...), a combination of lower-power terms gives a better fit than a compination of higher-power terms

|                                         | eta=0                 | $\beta = \frac{1}{2}$ | $\beta = 1$           | [           |
|-----------------------------------------|-----------------------|-----------------------|-----------------------|-------------|
|                                         | SNM PNM               | SNM PNM               | SNM PNM               | ſ           |
| k = 0                                   | 1.595335 0.397036     | 0.930742 0.171609     | 0.490650 0.071632     | -           |
| k = 1                                   | 1.801776 0.346198     | $1.527834 \ 0.223333$ | $1.089477 \ 0.138133$ |             |
| k = 0, 1                                | 0.013044 0.022028     | 0.003866 0.007482     | $0.001151 \ 0.001566$ | -           |
| k = 0, 2                                | 0.009356 $0.005804$   | $0.012267 \ 0.001864$ | 0.009435 0.000719     |             |
| k = 0, 3                                | $0.041156 \ 0.002160$ | $0.047771 \ 0.003059$ | $0.035831 \ 0.003220$ |             |
| k = 1, 2                                | 0.085297 0.005936     | $0.108696 \ 0.009991$ | 0.090303 0.010973     |             |
| k = 1, 3                                | $0.175982 \ 0.014031$ | $0.216418 \ 0.022334$ | $0.183405 \ 0.023312$ | Shown here: |
| k = 2, 3                                | 0.342376 $0.031821$   | $0.440564 \ 0.048252$ | 0.398009 0.050970     | chi-square  |
| k=0,1,2                                 | 0.005009 0.003287     | 0.002588 0.001781     | 0.001016 0.000529     | values      |
| k=0,2,3                                 | $0.006453 \ 0.002055$ | $0.004070 \ 0.001540$ | $0.001284 \ 0.000636$ | values      |
| k = 1, 2, 3                             | 0.021528 0.005183     | $0.018591 \ 0.005162$ | $0.008571 \ 0.003018$ |             |
| $k=0,1,{ m ln}$                         | 0.007486 0.007088     | $0.003000 \ 0.002874$ | $0.001025 \ 0.000696$ |             |
| $k=0,3,\ln$                             | 0.009117 0.002129     | $0.006681 \ 0.001878$ | 0.002380 0.000930     |             |
| k = 0, 1, 2, 3                          | 0.001616 0.000163     | 0.001731 0.000188     | 0.001015 0.000138     |             |
| $k = 0, 1, 2, \left(\frac{7}{3}\right)$ | $0.001420 \ 0.000115$ | 0.001597 0.000136     | $0.001016 \ 0.000112$ |             |
| $k=0,1,2,{ m ln}$                       | $0.001314 \ 0.000094$ | $0.001510 \ 0.000107$ | $0.001011 \ 0.000092$ |             |
| $k = 0, 1, 2, (\frac{1}{6})$            | $0.002277 \ 0.000462$ | $0.002072 \ 0.000415$ | $0.000977 \ 0.000221$ |             |

## Details in the preprint

PP,Park,Lim,Hyun,arXiv:1606.04219

A hierarchy of terms, where the lower-order ones are more important than the higher-order ones, is inferred from the present results:

- Generally speaking, for a given number of non-zero parameters, the sets which include the k = 0 term give better fits than those which do not. There are a few exceptions and mostly for low  $\beta$ .
- In the majority of cases, if we replace the k = 1 term with the k = 3 term we get noticeably higher  $\chi_n^2$  values. This result is in concordance with the preference for Skyrme functionals with a fractional-power, rather than linear, density dependence.
- If we use only two parameters, the sets of two low-order parameters produce better hts than the sets of two higher-order parameters. For example for  $\beta = 1$  one may arrange the sets from the best to worst as follows: For SNM,  $k = (0, 1), (0, 2), (0, 3), (1, 2), (1, 3), (2, 3), (3, \ln)$ .<sup>1</sup> For PNM the order is the same except that k = (0, 2) is better than (0, 1).
- In fact for smaller  $\beta$  the k = 3 term in PNM seems more efficient. The inclusion of a linear dependence in Skyrme functionals might be recommended especially for dense-matter applications. We note that the discontinuity of the data may contaminate the systematics of the low- $\beta$  fits.
- For three parameters, we found that the smallest  $\chi_n^2$  are generally obtained without the logarithmic term.

## Hierarchy of powers 🖌

#### Replacing $\rho^{1/3}$ with linear dependence – e.g.

|                                         | eta=0                 | $\beta = \frac{1}{2}$ | $\beta = 1$                | [           |
|-----------------------------------------|-----------------------|-----------------------|----------------------------|-------------|
|                                         | SNM PNM               | SNM PNM               | SNM PNM                    |             |
| k = 0                                   | 1.595335 0.397036     | 0.930742 0.171609     | 0.490650 0.071632          |             |
| k = 1                                   | $1.801776 \ 0.346198$ | $1.527834 \ 0.223333$ | $1.089477 \ 0.138133$      |             |
| k = 0, 1                                | 0.013044 0.022028     | 0.003866 0.007482     | 0.001 <u>151 0.001</u> 566 |             |
| k = 0, 2                                | 0.009356 $0.005804$   | $0.012267 \ 0.001864$ | 0.009435 0.000719          |             |
| k = 0, 3                                | $0.041156 \ 0.002160$ | 0.047771 0.003059     | 0.035831 0.003220          |             |
| k = 1, 2                                | 0.085297 0.005936     | $0.108696 \ 0.009991$ | 0.090303 0.010973          |             |
| k = 1, 3                                | $0.175982 \ 0.014031$ | $0.216418 \ 0.022334$ | 0.183405 0.023312          | Shown here: |
| k = 2, 3                                | 0.342376 $0.031821$   | $0.440564 \ 0.048252$ | 0.398009 0.050970          | chi-square  |
| k = 0, 1, 2                             | 0.005009 0.003287     | 0.002588 0.001781     | 0.001016 0.000529          | voluoo      |
| k = 0, 2, 3                             | 0.006453 0.002055     | $0.004070 \ 0.001540$ | $0.001284 \ 0.000636$      | values      |
| k = 1, 2, 3                             | 0.021528 0.005183     | $0.018591 \ 0.005162$ | $0.008571 \ 0.003018$      |             |
| $k=0,1,\ln$                             | 0.007486 0.007088     | $0.003000 \ 0.002874$ | 0.001025 0.000696          |             |
| $k = 0, 3, \ln$                         | 0.009117 0.002129     | $0.006681 \ 0.001878$ | 0.002380 0.000930          |             |
| k = 0, 1, 2, 3                          | 0.001616 0.000163     | 0.001731 0.000188     | 0.001015 0.000138          |             |
| $k = 0, 1, 2, \left(\frac{7}{3}\right)$ | $0.001420 \ 0.000115$ | 0.001597 0.000136     | $0.001016 \ 0.000112$      |             |
| $k=0,1,2,{ m ln}$                       | $0.001314 \ 0.000094$ | 0.001510 0.000107     | 0.001011 0.000092          |             |
| $k = 0, 1, 2, (\frac{1}{6})$            | $0.002277 \ 0.000462$ | $0.002072 \ 0.000415$ | 0.000977 0.000221          |             |

## Details in the preprint

PP,Park,Lim,Hyun,arXiv:1606.04219

A hierarchy of terms, where the lower-order ones are more important than the higher-order ones, is inferred from the present results:

- Generally speaking, for a given number of non-zero parameters, the sets which include the k = 0 term give better fits than those which do not. There are a few exceptions and mostly for low  $\beta$ .
- In the majority of cases, if we replace the k = 1 term with the k = 3 term we get noticeably higher  $\chi_n^2$  values. This result is in concordance with the preference for Skyrme functionals with a fractional-power, rather than linear, density dependence.
- If we use only two parameters, the sets of two low-order parameters produce better fits than the sets of two higher-order parameters. For example for  $\beta = 1$  one may arrange the sets from the best to worst as follows: For SNM,  $k = (0, 1), (0, 2), (0, 3), (1, 2), (1, 3), (2, 3), (3, \ln)$ .<sup>1</sup> For PNM the order is the same except that k = (0, 2) is better than (0, 1).
- In fact for smaller  $\beta$  the k = 3 term in PNM seems more efficient. The inclusion of a linear dependence in Skyrme functionals might be recommended especially for dense-matter applications. We note that the discontinuity of the data may contaminate the systematics of the low- $\beta$  fits.
- For three parameters, we found that the smallest  $\chi_n^2$  are generally obtained without the logarithmic term.

#### Fit quality almost indifferent to choice of $4^{th}$ term. Interesting exception: $\rho^{1/6}$ (somewhat worse fits, generally)

|   |                                         | eta=0                 | $\beta = \frac{1}{2}$ | $\beta = 1$           | [           |
|---|-----------------------------------------|-----------------------|-----------------------|-----------------------|-------------|
| Γ |                                         | SNM PNM               | SNM PNM               | SNM PNM               | ĺ           |
| Γ | k = 0                                   | 1.595335 0.397036     | 0.930742 0.171609     | 0.490650 0.071632     |             |
|   | k = 1                                   | 1.801776 0.346198     | $1.527834 \ 0.223333$ | $1.089477 \ 0.138133$ |             |
| Γ | k = 0, 1                                | 0.013044 0.022028     | 0.003866 0.007482     | 0.001151 0.001566     | -           |
|   | k = 0, 2                                | $0.009356 \ 0.005804$ | $0.012267 \ 0.001864$ | $0.009435 \ 0.000719$ |             |
|   | k = 0, 3                                | $0.041156 \ 0.002160$ | $0.047771 \ 0.003059$ | $0.035831 \ 0.003220$ |             |
|   | k = 1, 2                                | 0.085297 0.005936     | $0.108696 \ 0.009991$ | 0.090303 0.010973     |             |
|   | k = 1, 3                                | $0.175982 \ 0.014031$ | $0.216418 \ 0.022334$ | $0.183405 \ 0.023312$ | Shown here: |
|   | k = 2, 3                                | 0.342376 $0.031821$   | $0.440564 \ 0.048252$ | 0.398009 0.050970     | chi-square  |
| Γ | k = 0, 1, 2                             | 0.005009 0.003287     | 0.002588 0.001781     | 0.001016 0.000529     | values      |
|   | k = 0, 2, 3                             | $0.006453 \ 0.002055$ | $0.004070 \ 0.001540$ | 0.001284 0.000636     | values      |
|   | k=1,2,3                                 | 0.021528 0.005183     | $0.018591 \ 0.005162$ | $0.008571 \ 0.003018$ |             |
|   | $k=0,1,\mathrm{ln}$                     | 0.007486 0.007088     | $0.003000 \ 0.002874$ | 0.001025 0.000696     |             |
|   | $k=0,3,\mathrm{ln}$                     | 0.009117 0.002129     | $0.006681 \ 0.001878$ | 0.002380 0.000930     |             |
|   | k = 0, 1, 2, 3                          | 0.001616 0.000163     | 0.001731 0.000188     | 0.001015 0.000138     |             |
|   | $k = 0, 1, 2, \left(\frac{7}{3}\right)$ | $0.001420 \ 0.000115$ | 0.001597 0.000136     | $0.001016 \ 0.000112$ |             |
|   | $k=0,1,2,{ m ln}$                       | $0.001314 \ 0.000094$ | $0.001510 \ 0.000107$ | $0.001011 \ 0.000092$ |             |
|   | $k = 0, 1, 2, \left(\frac{1}{6}\right)$ | $0.002277 \ 0.000462$ | $0.002072 \ 0.000415$ | $0.000977 \ 0.000221$ |             |

No 5<sup>th</sup> term needed



PP,Park,Lim,Hyun,arXiv:1606.04219

|      |            | $\beta$ | Matter | $c_0$   | $c_1$   | $c_2$    | $c_3$   | $\varrho_0$ | $\mathcal{E}_0$ | $K_{\infty}$ |
|------|------------|---------|--------|---------|---------|----------|---------|-------------|-----------------|--------------|
|      |            |         |        |         |         |          |         |             | J               | L            |
|      |            | 0       | SNM    | -863.36 | 1945.05 | -2060.20 | 1129.96 | 0.178       | -15.4           | 215          |
|      | fits       | 0       | PNM    | -483.96 | 1433.54 | -2119.68 | 1385.22 |             | 34.2            | 55.9         |
|      | E C        | 1       | SNM    | -753.98 | 1389.20 | -1171.03 | 678.87  | 0.177       | -15.8           | 234          |
|      | 1 fr       | 2       | PNM    | -451.91 | 1254.32 | -1812.62 | 1221.33 |             | 34.4            | 56.0         |
|      | Z          | 1       | SNM    | -613.13 | 620.22  | 154.72   | -46.05  | 0.171       | -16.1           | 247          |
|      | S          | T       | PNM    | -408.56 | 991.76  | -1323.81 | 937.96  |             | 34.0            | 54.9         |
| _    | , (<br>, ( | ] 1     | SNM    | -648.72 | 676.25  | 200.92   | -98.73  | 0.160       | -16.0           | 240          |
| from | n<br>n     | ad-1    | PNM    | -451.91 | 1254.32 | -1812.62 | 1221.33 |             | 32.8            | 47.9         |
| ΣL   | а<br>о́    |         | SNM    | -664.52 | 763.55  | 40.13    | 0.00    | 0.160       | -16.0           | 240          |
| S o  | ad-,       | aq-2    | PNM    | -411.13 | 1007.78 | -1354.64 | 956.47  |             | 33.5            | 50.5         |

≻ c<sub>0</sub>,c<sub>1</sub> robust
≻ For PNM, also c<sub>2</sub>, c<sub>3</sub>



Calculations with chiral interactions reproduced, although they were not used for fitting



### Dense matter: neutron stars



## **Other constraints**



## Other constraints

| -     | Model    | $K_0$ [MeV]   | $-Q_0$ [MeV]   | $J \; [MeV]$ | $L \; [MeV]$ | $K_{\tau,v}$ [MeV] | $S( ho_0/2)/J$  | $3P_{PNM}/(L\rho_0)$ |
|-------|----------|---------------|----------------|--------------|--------------|--------------------|-----------------|----------------------|
| -     | KIDS     | 240.00        | 372.65         | 32.75        | 49.10        | -375.06            | 0.667           | 1.03                 |
|       | GSkI     | 230.27        | 405.70         | 32.03        | 63.45        | -364.24            | 0.620           | 1.02                 |
|       | GSkII    | 234.14        | 400.15         | 34.22        | 67.08        | -409.23            | 0.616           | 1.07                 |
|       | SSk      | 228.40        | 373.81         | 33.46        | 52.74        | -349.08            | 0.673           | 1.03                 |
|       | LNS      | 210.84        | 382.65         | 33.43        | 61.46        | -384.60            | 0.631           | 1.06                 |
|       | MSk7     | 231.23        | 385.37         | 27.95        | 9.40         | -315.39            | 0.786           | 1.13                 |
|       | SLy4     | 229.82        | 362.94         | 32.00        | 45.96        | -322.86            | 0.691           | 1.03                 |
|       | SkM*     | 216.61        | 386.08         | 30.03        | 45.78        | -349.01            | 0.662           | 1.10                 |
| Dutra | a et nþ. | $200\sim 260$ | $200\sim 1200$ | $30\sim35$   | $40\sim76$   | $-760\sim-372$     | $0.57\sim 0.86$ | $0.90 \sim 1.10$     |
| 20    |          |               |                |              |              |                    |                 |                      |

#### *Gil*,*PP*,*Hyun*,*Oh*, *in preparation*

## **Dilute neutron matter**



### **Dilute neutron matter**



## What terms are most important for describing homogeneous matter?

- We will fit all possible combinations of 1,2,3,4,5 terms to the APR pseudodata and analyse the fits
- Once we choose a robust set, verify:
- Are the parameters natural?

same order of magnitude?

$$\mathcal{E}_i(\rho,\delta) = c_i(\delta)\rho^{1+i/3} = \left[\left(\frac{\nu}{6\pi^2}\right)^{1+i/3}c_i(\delta)m_{\rho}^{2+i}\right]m_{\rho}\left(\frac{k_F}{m_{\rho}}\right)^{3+i}$$

Can we use them in nuclei without refitting?

Under what conditions?



## **Power hierarchy and naturalness**

Fermi momentum calculus and power hierarchy:
 |E<sub>0</sub>| > |E<sub>1</sub>| > |E<sub>2</sub>| > |E<sub>3</sub>| within a large density range
 For SNM up to ~1fm<sup>-3</sup>, for PNM up to 0.05fm<sup>-3</sup>





## "Natural" Ansatz

At the very least: reproduce homogeneous matter (to the best of our knowledge)

- Better: based on a power expansion
  - Underlying EFT??
- Best: coefficients showing naturalness



-RAON

What terms are most important for describing homogeneous matter?

We will fit all possible combinations of 1,2,3,4,5 terms to the APR pseudodata and analyse the fits

Once we choose a robust set, verify:

Are the parameters natural?

same order of magnitude?

$$\mathcal{E}_i(\rho,\delta) = c_i(\delta)\rho^{1+i/3} = \left[\left(\frac{\nu}{6\pi^2}\right)^{1+i/3}c_i(\delta)m_{\rho}^{2+i}\right]m_{\rho}\left(\frac{k_F}{m_{\rho}}\right)^{3+i}$$

Can we use them in nuclei without refitting?

Under what conditions?



## APPLICATIONS IN NUCLEI

Map to a Skyrme interaction for nuclei

First results appear in: Gil,PP,Hyun,Park,Oh, Acta Phys.Pol.B48,305 Gil,Oh,Hyun,PP, Sae Mulli 67,456 (2017)

|          |         | ß    | Matter               | Co      | C1      | Co       | Co         | 00    | Eo     | $K_{aa}$   |
|----------|---------|------|----------------------|---------|---------|----------|------------|-------|--------|------------|
|          |         | Ρ    | 10100001             | 0       | 01      | 02       | 03         | 50    | 1      | 11.00<br>T |
|          |         |      |                      |         |         |          |            |       | J      | L          |
|          |         | 0    | $\operatorname{SNM}$ | -863.36 | 1945.05 | -2060.20 | 1129.96    | 0.178 | -15.4  | 215        |
|          | fits    | 0    | PNM                  | -483.96 | 1433.54 | -2119.68 | 1385.22    |       | 34.2   | 55.9       |
|          | L D     | 1    | SNM                  | -753.98 | 1389.20 | -1171.03 | 678.87     | 0.177 | -15.8  | 234        |
|          | A fr    | 2    | PNM                  | -451.91 | 1254.32 | -1812.62 | 1221.33    |       | 34.4   | 56.0       |
|          | Z       | 1    | SNM                  | -613.13 | 620.22  | 154.72   | -46.05     | 0.171 | -16.1  | 247        |
|          | S       | 1    | PNM                  | -408.56 | 991.76  | -1323.81 | 937.96     |       | 34.0   | 54.9       |
| _        | n*)     | ad 1 | SNM                  | -648.72 | 676.25  | 200.92   | -98.73     | 0.160 | -16.0  | 240        |
|          |         | ad-1 | PNM                  | -451.91 | 1254.32 | -1812.62 | 1221.33    |       | 32.8   | 47.9       |
| ⊢<br>≧ L | а,<br>П | ad 9 | SNM                  | -664.52 | 763.55  | 40.13    | 0.00       | 0.160 | -16.0  | 240        |
| 2        | ad o.   | ad-2 | PNM                  | -411.13 | 1007.78 | -1354.64 | 956.47     |       | 33.5   | 50.5       |
|          |         |      |                      |         |         |          | for onella |       | in nuo |            |

adopted set for applications in nuclei

- SNM with canonical values of  $\rho_0$ ,  $E_0$ ,  $K_{inf}$
- "Agnostic" w.r.t. m\*/m

## Skyrme-type interaction

$$v_{i,j}(\mathbf{k}, \mathbf{k}') = (t_0 + y_0 P_{\sigma}) \delta(\mathbf{r}_i - \mathbf{r}_j) + \frac{1}{2} (t_1 + y_1 P_{\sigma}) [\delta(\mathbf{r}_i - \mathbf{r}_j) \mathbf{k}^2 + \mathbf{k}'^2 \delta(\mathbf{r}_i - \mathbf{r}_j)] + (t_2 + y_2 P_{\sigma}) \mathbf{k}' \cdot \delta(\mathbf{r}_i - \mathbf{r}_j) \mathbf{k}$$
  
"yi" replaces "txi" because t, may be   
zero and the respective y, may be finite.  
Cf. c\_i(0) and t\_{i3} of ad-2} + \frac{1}{6} \sum\_{n=1}^{3} (t\_{3n} + y\_{3n} P\_{\sigma}) \rho^{n/3} \delta(\mathbf{r}\_i - \mathbf{r}\_j)   
+ iW\_0 \mathbf{k}' \times \delta(\mathbf{r}\_i - \mathbf{r}\_j) \mathbf{k} \cdot (\sigma\_i - \sigma\_j), \qquad (4)

zero and

| Nuclear potential | Order   | KIDS parameter | Skyrme parameter                                                  |
|-------------------|---------|----------------|-------------------------------------------------------------------|
| $\mathcal{E}_0$   | $k_F^3$ | $c_0(\delta)$  | $(t_0, x_0)$                                                      |
| $\mathcal{E}_1$   | $k_F^4$ | $c_1(\delta)$  | $(t_3, x_3), \alpha = 1/3$                                        |
| $\mathcal{E}_2$   | $k_F^5$ | $c_2(\delta)$  | $(t_1, x_1), (t_2, x_2), (t'_3, x'_3), \alpha' = 2/3$             |
| $\mathcal{E}_3$   | $k_F^6$ | $c_3(\delta)$  | $(t_3^{\prime\prime},x_3^{\prime\prime}),\alpha^{\prime\prime}=1$ |

## **Application in nuclei**

- Skyrme-type density-dependent "interaction"
- Skyrme-Hartree-Fock equations
- Parameters already known from homogeneous matter
- … except those which do not contribute to the energy of homogeneous matter:
  - Contribution of momentum-dependent terms t<sub>1</sub>-t<sub>2</sub> to c<sub>2</sub>(δ); effective mass

$$c_2(\delta) = k \cdot c_2(\delta) + (1-k) \cdot c_2(\delta) \equiv c_2^{t_3'=0}(\delta) + c_2^{t_1=t_2=0}(\delta)$$

#### Two free parameters:

- portion of momentum dependence k: From energy and radius of <sup>16</sup>O, <sup>40</sup>Ca
- spin-orbit strength W<sub>0</sub> :

From energy and radius of <sup>48</sup>Ca, <sup>208</sup>Pb





First results appeared in: Gil, PP, Hyun, Park, Oh, Acta Phys. Pol. B48, 305 Gil, Oh, Hyun, PP, Sae Mulli 67, 456 (2017)

-

11

#### 4.5 Exp. Exp. 14 14 <sup>40</sup>Ca 160Cal. Cal. 3.5 [MeV] [MeV] 8 4 R<sub>c</sub> [fm] لے 3.5 لی 3 8 2.5 3 6 6 2.5 2 0.3 0.2 0.1 0.2 0.1 0.3 0.1 0.2 0.3 0.1 0.2 0 0 0 0 k k k k (a)





(b)

k~0.11 => m\*/m ~0.995

## Two parameters left

0.3



- Skyrme-type density-dependent "interaction"
- Skyrme-Hartree-Fock equations
- Parameters already known from homogeneous matter
- … except those which do not contribute to the energy of homogeneous matter:
  - Contribution of momentum-dependent terms  $t_1$  and  $t_2$  to  $c_2(\delta);$  effective mass

 $c_2(\delta) = k \cdot c_2(\delta) + (1-k) \cdot c_2(\delta) \equiv c_2^{t_3'=0}(\delta) + c_2^{t_1=t_2=0}(\delta)$ 

k~0.11 reproduces the energy and radius of  $^{16}\text{O},\,^{40}\text{Ca}$ 





## Results – energies and radii

- All but two parameters from homogeneous matter
- Two parameters (k,  $W_0$ ) from E and  $R_{ch}$  of <sup>16</sup>O, <sup>40</sup>Ca, <sup>48</sup>Ca, <sup>208</sup>Pb.
- Results of <sup>28</sup>O, <sup>60</sup>Ca, <sup>90</sup>Zr, <sup>132</sup>Sn are predictions.



## not fitted Results – single-particle levels

KIDS KIDS KIDS KIDS Exp. GSkI SLy4 UNEDF2 GSkI SLy4 Exp. UNEDF2 (FP) (APR) (APR) (FP) Neutron Proton  $3p_{1/2}$ 2f<sub>5/2</sub> 3p<sub>1/2</sub>  $3s_{1/2}$ Energy [MeV]  $2f_{5/2}$ Energy [MeV]  $3s_{1/2}$ 3p<sub>3/2</sub> 2d<sub>3/2</sub>  $2d_{3/2}$  $1i_{13/2}$  $1h_{11/2}$ 1i<sub>13/2</sub> 1h11/2 1h<sub>9/2</sub> 2f<sub>7/2</sub> 3p<sub>3/2</sub>  $2f_{7/2}$  $2d_{5/2}$ 2d5/2 -10-10-11 -11 1h<sub>9/2</sub> 1g7/2 -12-12 $1g_{7/2}$ -13 -13 (a)(b) GSkI SLy4 KIDS(APR) KIDS(FP) UNEDF2 neutron 4.344.509.311.68.3 m\*/m~0.995 (!) 4.553.047.311.82.2proton

Level schemes of <sup>208</sup>Pb

TABLE IV: Mean deviation D of the single particle levels in Fig. 5 in units of %.

Gil, PP, Hyun, Oh, in preparation

## **Results- predictions**



Prediction of <sup>28</sup>O and <sup>60</sup>Ca

|                  |                     | $^{28}O$            |                      |                     | $^{60}Ca$           |                                |
|------------------|---------------------|---------------------|----------------------|---------------------|---------------------|--------------------------------|
| Model            | $E/A \; [{ m MeV}]$ | $R_c \; [{\rm fm}]$ | $\Delta r_{np}$ [fm] | $E/A \; [{ m MeV}]$ | $R_c \; [{\rm fm}]$ | $\Delta r_{np} \; [\text{fm}]$ |
| SLy4             | 6.1925              | 2.8656              | 0.58476              | 7.703               | 3.6734              | 0.4435                         |
| $\mathrm{SkM}^*$ | 6.4114              | 2.8646              | 0.61631              | 7.7857              | 3.6713              | 0.4685                         |
| KIDS             | 6.0757              | 2.8353              | 0.66398              | 7.6652              | 3.6452              | 0.4960                         |
| AME20            | 12: 5.9883          |                     |                      |                     |                     |                                |



### Prospects

- Symmetry energy : surface vs. volume, ...
- Neutron skin with pygmy resonance, dipole polarizabilityMore high order terms and range of convergence
- Neutron systems (drops)
- Pairing, deformation, ...



## Implications

Fractional density dependence in Skyrme-type couplings is fundamentally justified through the k<sub>F</sub> dependence of the dilute system

- Or, generally, of the interacting-Fermion system
- Skyrme and Gogny "interactions" are not Hamiltonians
  - EDF a legitimate "black box"

Siven a functional: a good description of homogeneous matter leads to a surprisingly good description of finite nuclei as long as the ρ<sup>5/3</sup> term (i.e., the ρ<sup>2/3</sup> coupling) is not fully ascribed to momentum dependence <sup>(\*)</sup>

(\*) same procedure can be followed for higher-order terms



## OVERTIME

Effective theories of SNM vs PNM How about excitations? Linear response theory 1/3 vs 1/6

## And why not density-matrix expansion?

#### (comments on the ensuing powers)



- Is saturated nuclear matter "dilute"? Why?
  - In-medium scattering lengths ??
- What terms are trully important for *neutron* matter? Why the difference with symmetric matter?
  - Currently examining higher-order terms, various signatures of convergence...

Are there stringent *formal* answers?





## Linear response theory: HF=>RPA

residual interaction = derivative of mean field, OK



## Given interaction + many-body method

- Variational reference state + Equations of Motion
- To lowest order, HF+RPA
- Systematic inclusion of correlations / mp-mh until convergence
  - "Wave-function approach"
  - Known Hamiltonian

Energy-density functionals + linear-response theory

- Kohn-Sham EDFT
- E[p,...] known; Hamiltonian not necessarily known
- *"black box"*
- The order of truncation depends on the application



**~**RAON

E[p] : will give correct expectation values etc of onebody operators

- Centroids of giant resonances?
- BUT: X momentum distribution (sensitive to short-range correlations)
- If you need higher-order effects perhaps you need an extended functional : E[ρ<sub>2</sub>]
  - Incl. the non-trivial part of the two-body density matrix

$$g(\vec{r}_1, \vec{r}_2) = \rho_2(\vec{r}_1, \vec{r}_2) - \left[\rho_1(\vec{r}_1, \vec{r}_1)\rho_1(\vec{r}_2, \vec{r}_2) - \frac{1}{\nu}\rho_1(\vec{r}_1, \vec{r}_2)\rho_1(\vec{r}_2, \vec{r}_1)\right]$$

- A nuclear "energy 2-body density functional" ?
- Would need ab initio guidance! (Correlated system)
- Cf geminal methods in quantum chemistry



Will examine 4 cases:

- **3** terms { $\rho$ ,  $\rho^{1+\alpha}$ ,  $\rho^{5/3}$ } or **4** terms { $\rho$ ,  $\rho^{1+\alpha}$ ,  $\rho^{5/3}$ ,  $\rho^{2}$ } in PNM
- Power α = 1/3 or 1/6
- SNM: 3 terms determined from  $E_0$ ,  $\rho_0$ ,  $K_{inf}$ 
  - Power  $\alpha = 1/3$  or 1/6, respectively
- Illustration: effective mass



Will examine 4 cases:

- **3** terms { $\rho$ ,  $\rho^{1+\alpha}$ ,  $\rho^{5/3}$ } or **4** terms { $\rho$ ,  $\rho^{1+\alpha}$ ,  $\rho^{5/3}$ ,  $\rho^{2}$ } in PNM
- Power  $\alpha = 1/3$  or 1/6
- **\*** SNM: 3 terms determined from  $E_0$ ,  $\rho_0$ ,  $K_{inf}$ 
  - Power  $\alpha$  = 1/3 or 1/6, respectively
- Illustration: effective mass

|               | 4 terms                                                     | 3 terms                                                   |        |
|---------------|-------------------------------------------------------------|-----------------------------------------------------------|--------|
| 1/3           | t <sub>1</sub> =268<br>t <sub>2</sub> =-157<br>m*/m=0.995   | t <sub>1</sub> =245<br>t <sub>2</sub> =-172<br>m*/m=1.031 | robust |
| 1/6<br>robust | t <sub>1</sub> =317<br>]t <sub>2</sub> =-153<br>_m*/m=0.957 | t <sub>1</sub> =880<br>t <sub>2</sub> =67<br>m*/m=0.653   | ates   |

Thank you!

マネストきょして ~

Work supported by the Rare Isotope Science Project of the Institute for Basic Science funded by Ministry of Science, ICT and Future Planning and the National Research Foundation (NRF) of Korea (2013M7A1A1075764).