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PDTX for cancer treatment

 Conventional methods:

- surgery

- radiation therapy

- chemotherapy

systemic side effects

high radiation doses

 Photodynamic therapy (PDT):

non-invasive method

no systemic side effects

temporary photosensitization

low penetration

X-Ray induced photodynamic therapy (PDTX)
 lower radiation doses

 ex vivo activation enabled (no X-ray exposure to the 
patient)

 higher efficiency

Fig. 1: Photodynamic therapy.
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How does it work?

Fig. 2: Principle of the PDTX.

Fig. 3: Jablonski diagram illustrating a 
photosensitized production of the reactive 
oxygen species in the PDTX.
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Why LuAG:Pr3+?

 chemically stable and non-toxic;

 cubic structure, high density and Zeff;

 suitable average size to promote EPR effect;

 radiation stability and high luminescence intensity;

 Pr3+ ensures spectrum overlapping with the absorption band of PpIX.



Material Characterization

Fig. 4: Diffractograms of LuAG:Pr3+@SiO2-PpIX (A), 
LuAG:Pr3+@SiO2 (B) and LuAG:Pr3+ (C) compared with 
standard data of LuAG from ICDD PDF-2 database (card 
No. 01-073-1368, dashed lines). Data are offset for 
clarity.

Specific surface area:

LuAG:Pr3+ LuAG:Pr3+@SiO2

(29.6±0.4) m2/g (32.0±0.2) m2/g



Fig. 5: TEM images of the as-prepared LuAG:Pr3+ (A), 
LuAG:Pr3+@SiO2 (B) and LuAG:Pr3+@SiO2-PpIX (C). 



Fig. 6: X-ray excited room temperature (RT) RL spectra of 
LuAG:Pr3+, LuAG:Pr3+@SiO2 and LuAG:Pr3+@SiO2-PpIX samples.

Fig. 7: Normalized (to a maximum) RT PL emission spectra under 
excitation λex. = 250 nm (LuAG:Pr3+, LuAG:Pr3+@SiO2 and 
LuAG:Pr3+@SiO2-PpIX samples) and λex. = 410 nm (LuAG:Pr3+@SiO2-
PpIX sample).



Fig. 8: RT PL decays of the 320 nm emission excited at 281 nm (4f –
5d absorption band of Pr3+).  In (A) LuAG:Pr3+, in (B) LuAG:Pr3+@SiO2
and in (C) LuAG:Pr3+@SiO2-PpIX. Experimental data are approximated 
by a function I(t) displayed in the figures. Red line is a convolution of 
I(t) and instrumental response (blue line in the figures). 

Fig. 9: RT PL decays of the 630 nm emission in 
LuAG:Pr3+@SiO2-PpIX. In (A) excitation at 281 nm, in (B) 
excitation at 389 nm. Experimental data are 
approximated by a function I(t) in the figure. Red line 
is a convolution of I(t) and instrumental response (blue 
line in the figure).



Singlet oxygen detection

Fig. 10: RT PL emission spectra (λex = 450 nm) of pure 
APF (before and after X-ray irradiation) and 
LuAG:Pr3+@SiO2-PpIX + APF after X-ray irradiation.

• APF (aminophenyl fluorescein) commercial probe;

• NaN3 as a 1O2-quencher.

Fig. 11: RT PL emission spectra (λex = 450 nm) of 
LuAG:Pr3+@SiO2-PpIX + APF and LuAG:Pr3+@SiO2-PpIX + 
APF + NaN3 samples.



Conclusions

 LuAG:Pr3+@SiO2-PpIX nanocomposite material was prepared;

 RT RL and PL spectra suggest the energy transfer from Pr3+ ions to 
PpIX outer layer;

 The decay time measurements indicate the non-radiative energy
transfer from the LuAG:Pr3+ core to photosensitizer molecules;

 Singlet oxygen production using the prepared nanocomposite was
demonstrated using APF chemical probe.
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