LUAG:Pr3*-porphyrin based
nanohybrid system for singlet
oxygen production: toward the
next generation of PDTX drugs
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PDTX for cancer treatment

» Conventional methods: -~ | » Photodynamic therapy (PDT):
r
- surgery g non-invasive method
- radlatlon therapy no systemic side effects

- chemotherapy

systemic side effects temporary photosensitization
high radiation doses low penetration Fig. 1. Egoto

X-Ray induced photodynamic therapy (PDTX)

v lower radiation doses

v ex vivo activation enabled (no X-ray exposure to the

patient) / ,
v higher efficiency




How does it work?
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Fig. 3: Jablonski diagram illustrating a
. photosensitized production of the reactive
102 oxygen species in the PDTX.

Fig. 2: Principle of the PDTX.




Preparation of the PDTX drug

APTES, EDC,
sol gel PplX, TEA
— —
N P TEOS, 0°C, inert
NH,OH, atmosphere
ethanol

synthesis of NP using
photo-induced method encapsulation of NP in
Si0, amorphous shell

conjugation of NP with
PpIX molecules

Why LUAG:Pr3+?

v chemically stable and non-toxic;

v cubic structure, high density and Z;

v suitable average size to promote EPR effect;

v radiation stability and high luminescence intensity;

v Pr3 ensures spectrum overlapping with the absorption band of PpIX.
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Material Characterization
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Specific surface area:

LUAG:Pr3+ LUAG:Pr3*@sio,

(29.6+0.4) m2/g  (32.00.2) m%/g
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Fig. 4: Diffractograms of LUAG:Pr3*@SiO,-PpIX (A),
LUAG:Pr3*@Si0, (B) and LUAG:Pr3* (C) compared with
standard data of LUAG from ICDD PDF-2 database (card
No. 01-073-1368, dashed lines). Data are offset for
clarity.




Fig. 5: TEM images of the as-prepared LUAG:Pr3* (A),
LUAG:Pr3@Si0, (B) and LUAG:Pr3*@Si0,-PpIX (C).
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Fig. 6: X-ray excited room temperature (RT) RL spectra of Fig. 7: Normalized (to a maximum) RT PL emission spectra ndef
LUAG:Pr3*, LUAG:Pr3*@SiO, and LUAG:Pr3*@SiO,-PpIX samples. excitation A, =250 nm (LUAG:Pr3*, LUAG:Pr**@Si0, and
LUAG:Pr3*@Si0,-PpIX samples) and A, = 410 nm (LUAG: Pr3v@
PpIX sample).
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Fig. 8: RT PL decays of the 320 nm emission excited at 281 nm (4f -
5d absorption band of Pr3*). In (A) LUAG:Pr3*, in (B) LUAG:Pr3**@SiO,
and in (C) LUAG:Pr3+@SiO,-PpIX. Experimental data are approximated
by a function I(t) displayed in the figures. Red line is a convolution of
I(t) and instrumental response (blue line in the figures).
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Fig. 9: RT PL decays of the 630 nm emission in
LUAG:Pr3*@Si0,-PplX. In (A) excitation at 281 nm,
excitation at 389 nm. Experimental data are %
approximated by a function I(t) in the figure. Red
is a convolution of I(t) and instrumental respons

line in the figure).



Singlet oxygen detection

APF (aminophenyl fluorescein) commercial probe;

PL amplitude [arb. u.]

NaN; as a '0,-quencher.

APF

APF 2 hours irradiation
—LUAG:Pr*@Si0,-PplX + APF, 1 hour irradiation
—LUAG:Pr*@8Si0,-PpIX + APF, 2 hours irradiation
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Fig. 10: RT PL emission spectra (A, = 450 nm) of pure
APF (before and after X-ray irradiation) and
LUAG:Pr3*@Si0,-PpIX + APF after X-ray irradiation.
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Fig. 11: RT PL emission spectra (A, = 450 nm) of
LUAG:Pr3*@Si0,-PpIX + APF and LUAG:Pr3*@SiO,-PpIX +
APF + NaN; samples.




Conclusions

» LUuAG:Pr3*@Si0,-PplX nanocomposite material was prepared;

» RT RL and PL spectra suggest the energy transfer from Pr3* ions to
PplX outer layer;

» The decay time measurements indicate the non-radiative energy
transfer from the LUAG:Pr3* core to photosensitizer molecules;

» Singlet oxygen production using the prepared nanocomposite was
demonstrated using APF chemical probe.
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