lambda's handy dandy
 IB number theory cheat sheet

Cheatsheet template taken from wch.github.io/latexsheet (Copyright © 2014 Winston Chang), a LATEXtemplate shared under the Creative Commons
Attribution-NonCommercial-ShareAlike 3.0 Unported License. This Chea Attribution-NonCommercial-ShareAlike 3.0 Unported License. This Cheat
sheet is mainly modeled after the discrete mathematics section in Pearson' sheet is mainly modeled after
IB Mathematics HL textbook.

Fundamental concepts

Well-ordering principle. Each non-empty subset of \mathbb{Z}^{+} has a least element
Mathematical induction. Let $P(n)$ be a proposition on $n \in \mathbb{Z}^{+}$. If $P(1)$ and $P(k) \Longrightarrow P(k+1)$ then $P(n)$ holds for all $n \geq 1$.
Strong mathematical induction. Let $P(n)$ be a proposition on $n \in \mathbb{Z}^{+}$. If $P(1)$ and $P(s)$ for all $1 \leq s \leq k \Longrightarrow P(k+1)$, then $P(n)$ holds for all $n \geq 1$ Pigeonhole principle. If the union of n sets contains more than n elements, then at least one of those sets contains more than one element.

Basic divisibility definitions and results

 Let $a, b \in \mathbb{Z}$.- $a \mid b \Longleftrightarrow n a=b$ for some $n \in \mathbb{Z}$. We write $a \mid b$ when a is a factor of b and say that a divides b.
- $\operatorname{gcd}(a, b)=g \Longleftrightarrow g$ is the greatest integer that divides both a and b, and we say that g is the greatest common divisor of a and b. Integers a and b are coprime if and only if $\operatorname{gcd}(a, b)=1$.
- $\operatorname{lcm}(a, b)=l \Longleftrightarrow l$ is the smallest integer such that $a \mid l$ and $b \mid l$, and we say that l is the least common multiple of a and b.

Theorem 1. $\operatorname{gcd}(a, b) \cdot \operatorname{lcm}(a, b)=a b$.
Theorem 2. $a \mid b$ and $b|c \Longrightarrow a| c$.
Theorem 3. $a \mid b$ and $a|c \Longrightarrow a|(b \pm c)$.
Theorem 4. If $a, b \in \mathbb{Z}$ with $b>0$, then there are unique $q, r \in \mathbb{Z}$ such that $a=q b+r$ with $0 \leq r<b$. We call r the remainder of a divided by b, and q the quotient. Theorem 5. If $a, b \neq 0$, then $\operatorname{gcd}(a, b)$ is the smallest positive integer such that $\operatorname{gcd}(a, b)=a x+b y$ for $x, y \in \mathbb{Z}$.
Theorem 6. If $a=b q+r$ for $b>0$ and $0 \leq r<b$, then $\operatorname{gcd}(a, b)=\operatorname{gcd}(b, r)$.
Theorem 7. For $a, b \neq 0, \operatorname{gcd}(a, b)=1$ if and only if there exist $x, y \in \mathbb{Z}$ such that $a x+b y=1$.
Theorem 8 (Fundamental thm. of arithmetic). Every $n>1$ in \mathbb{Z} can be expressed as $n=p_{1}^{a_{1}} p_{2}^{a_{2}} \ldots p_{k}^{a_{k}}$ for distinct primes p_{1}, \ldots, p_{k} and $a_{1}, \ldots, a_{k} \in \mathbb{Z}^{+}$.

Euclidean algorithm

Let $a, b \in \mathbb{Z}$ with $a \geq b>0$. We can find $\operatorname{gcd}(a, b)$ using the Euclidean algorithm. Write a as

$$
a=b q_{1}+r_{1} \quad \text { for } \quad 0 \leq r_{1}<b .
$$

If $r_{1}=0$ then $b \mid a$ and $\operatorname{gcd}(a, b)=b$. Otherwise if $r_{1}>0$, write b as

$$
b=r_{1} q_{2}+r_{2} \text { for } 0 \leq r_{2}<r_{1}
$$

If $r_{2}=0$ then $\operatorname{gcd}(a, b)=r_{1}$. If $r_{2}>00$, we repeat the process as follows.

$$
\begin{aligned}
a & =b q_{1}+r_{1}, & & 0<r_{1}<b \\
b & =r_{1} q_{2}+r_{2}, & & 0<r_{2}<r_{1} \\
r_{1} & =r_{2} q_{3}+r_{3}, & & 0<r_{3}<r_{2}
\end{aligned}
$$

$$
\begin{array}{ll}
r_{n-2}=r_{n-1} q_{n}+r_{n}, & 0<r_{n}<r_{n-1} \\
r_{n-1}=r_{n} q_{n+1}+0 &
\end{array}
$$

Then, $\operatorname{gcd}(a, b)=r_{n}$ (the last non-zero remainder).

Modular arithmetic

For $a, b \in \mathbb{Z}$, we write

$$
a \equiv b(\bmod m) \Longleftrightarrow m \mid(a-b)
$$

and we say that a and b are congruent modulo m.
Theorem 9. Congruence modulo m is an equivalence relation. Also, if $a \equiv b(\bmod m)$ with $a, b, c, d, m \in \mathbb{Z}$ and $d, m>0$, we have

$$
\begin{aligned}
a+c & \equiv b+c(\bmod m), \\
a-c & \equiv b-c(\bmod m), \\
a c & \equiv b c(\bmod m), \\
a^{d} & \equiv b^{d}(\bmod m) .
\end{aligned}
$$

Theorem 10. For $a, b, c, m \in \mathbb{Z}$ with $m>0$ and $g=\operatorname{gcd}(a, b)$,

$$
a c \equiv b c(\bmod m) \Longrightarrow a \equiv b\left(\bmod \frac{m}{g}\right)
$$

Linear congruences

Theorem 11. If $\operatorname{gcd}(a, b) \mid b$, then the number of solutions for the congruence $a x \equiv b(\bmod m)$ which are incongruent to eachother $\bmod m$ is equal to $\operatorname{gcd}(a, b)$.

To solve a system of multivariate linear congruences such as

$$
\begin{aligned}
& a x+b y \equiv e(\bmod m) \\
& c x+d y \equiv f(\bmod m)
\end{aligned}
$$

you can use row-reduction to isolate variables and obtain single-variable linear congruences.

Diophantine equations

A linear homogeneous Diophantine equation in two variables $x, y \in \mathbb{Z}$ is an equation of the form $a x+b y=c$ where $a, b, c \in \mathbb{Z}$.
Theorem 12. For $a, b, c \in \mathbb{Z}, a, b \neq 0$, the Diophantine equation $a x+b y=c$ has a solution in integers (x, y) if and only if $\operatorname{gcd}(a, b) \mid c$.
Theorem 13. Let $g=\operatorname{gcd}(a, b)$. If $x=x_{0}$ and $y=y_{0}$ is a particular solution to $a x+b y=c$ then all other solutions are of the form

$$
x=x_{0}+\frac{b}{g} \lambda \quad \text { and } \quad y=y_{0}-\frac{a}{g} \lambda
$$

where λ is an arbitrary integer.
Strategies for finding particular solutions for Diophantine equations

To find a particular integer solution to $a x+b y=c$, one might use these methods.

- Trial and error (not recommended).
- Via calculator (isolate x or y on one side of the equation and enter as a function into your calculator. Many calculators have a 'table' function that plots integer values for the independent variable. Look for solutions where the dependent variable is also an integer.)
- With linear congruences (write $a x+b y=c$ as $a x \equiv c(\bmod b)$ and solve $)$.
- Use the extended (reverse) Euclidean algorithm to obtain a particular solution $\left(x^{\prime}, y^{\prime}\right)$ for $a x^{\prime}+b y^{\prime}=g$ where $g=\operatorname{gcd}(a, b)$. Then, multiply both sides of the equation by $\frac{c}{g}$ to obtain

$$
a\left(x^{\prime} \frac{c}{g}\right)+b\left(y^{\prime} \frac{c}{g}\right)=c
$$

and hence obtain the particular solution $x=x^{\prime} \frac{c}{g}$ and $y=y^{\prime} \frac{c}{g}$ for $a x+b y=c$.

Extended Euclidean algorithm (a.k.a. reverse Euclidean algorithm)

This algorithm can be used to solve the Diophantine equation $a x+b y=\operatorname{gcd}(a, b)$. In other words, it is an algorithm to express $\operatorname{gcd}(a, b)$ as a linear combination of a and b. Firstly, one would apply the regular Euclidean algorithm on a and b to determine $\operatorname{gcd}(a, b)$, storing all the quotients and remainders, then 'reversing' the algorithm. As an example, we will find a particular solution (x, y) for $64 x+27 y=\operatorname{gcd}(64,27)$. Applying the Euclidean algorithm, we have

$$
\begin{aligned}
64 & =27 \cdot 2+10 \\
27 & =10 \cdot 2+7 \\
10 & =7 \cdot 1+3 \\
7 & =3 \cdot 2+1 \\
3 & =1 \cdot 3+0 .
\end{aligned}
$$

Since 1 is the last non-zero remainder, $1=\operatorname{gcd}(64,27)$. Now, we solve for this remainder in terms of 64 and 27. We see that $1=7-3 \cdot 2$. Since 3 was one of the previous remainders, we can replace 3 with $10-7 \cdot 1$ to obtain

$$
\begin{aligned}
1 & =7-(10-7 \cdot 1) \cdot 2 \\
& =7 \cdot 3-10 \cdot 2
\end{aligned}
$$

Since 7 was also a previous remainder, we can express it in terms of its previous remainders and repeat the process until we arrive at a final answer in terms of 64 and 27:

$$
\begin{aligned}
1 & =7-(10-7 \cdot 1) \cdot 2 \\
& =7 \cdot 3-10 \cdot 2 \\
& =(27-10 \cdot 2) \cdot 3-10 \cdot 2 \\
& =27 \cdot 3-10 \cdot 8 \\
& =27 \cdot 3-(64-27 \cdot 2) \cdot 8 \\
& =27 \cdot 19-64 \cdot 8
\end{aligned}
$$

Hence, we have a solution $x=-8$ and $y=19$.

Fermat's little theorem

Theorem 14. If p is prime, then for any $a \in \mathbb{Z}$, we have

$$
a^{p} \equiv a(\bmod p) .
$$

If a and p are coprime, then we have

$$
a^{p-1} \equiv 1(\bmod p) .
$$

Applying the Chinese remainder thm.

Let $m_{1}, m_{2}, \ldots, m_{r} \in \mathbb{Z}^{+}$be pairwise coprime. To find a solution modulo $M=m_{1} m_{2} \ldots m_{r}$ to the system of linear congruences

$$
\begin{aligned}
& x \equiv a_{1}\left(\bmod m_{1}\right) \\
& x \equiv a_{2}\left(\bmod m_{2}\right) \\
& \vdots \\
& x \equiv a_{r}\left(\bmod m_{r}\right),
\end{aligned}
$$

we first let $M_{k}=\frac{M}{m_{k}}=m_{1} m_{2} \ldots m_{k-1} m_{k+1} \ldots m_{r}$. For each $1 \leq k \leq r$ we can solve the congruence

$$
M_{k} x_{k} \equiv 1\left(\bmod m_{k}\right)
$$

to obtain x_{k} for $1 \leq k \leq r$. Then the unique solution modulo M to the original system of equations is

$$
x \equiv a_{1} M_{1} x_{1}+a_{2} M_{2} x_{2}+\cdots+a_{r} M_{r} x_{r}(\bmod M)
$$

Integer representations \& operations

Theorem 15. For any base $b \in \mathbb{Z}^{+}$, every $n \in \mathbb{Z}^{+}$can be written in the form

$$
n=a_{k} \cdot b^{k}+\cdots+a_{1} \cdot b^{1}+a_{0} \cdot b^{0}=\sum_{i=0}^{k} a_{i} b^{i}
$$

for $k \in \mathbb{Z}, k \geq 0$, and each $a_{i} \in Z^{+}$with $a_{i} \leq b-1$, and $a_{k} \neq 0$.
Numbers expressed in a base b other than 10 are often denoted $\left(a_{k} a_{k-1} \ldots a_{2} a_{1}\right)_{b}$ where each a_{i} denotes a digit in base b.
To convert a number n from base 10 to arbitrary base b, simply divide repeatedly by b, storing the remainders.
Then, reverse the list of remainders and concatenate
them. The result is the base b representation of n.
To add/multiply numbers in base b, create an addition or multiplication table for all the digits in base b and proceed to use the standard long addition/multiplication algorithms.

Recurrence relations

A linear homogeneous recurrence relation (LHRR) of degree k with constant coefficients is a recurrence relation of the form

$$
a_{n}=c_{k} a_{n-k}+c_{k+1} a_{n-k-1}+\ldots c_{n} a_{1}=\sum_{i=1}^{k} c_{i} a_{n-i}
$$

which which defines the sequence $a_{1}, a_{2}, a_{3} \ldots$
A LHRR can be solved using its characteristic polynomial by letting $a_{n}=x^{n}$ and dividing by the highest power of x that appears in the resulting equation. For $a_{n}=c_{1} a_{n-1}+c_{2} a_{n-2}$, we have

$$
x^{n}-c_{1} x^{n-1}-c_{2} x^{n-2}=0 .
$$

Dividing by x^{n-2}, the characteristic polynomial equation becomes

$$
x^{2}-c_{1} x-c_{2}=0 .
$$

The roots of this equation determine the solution to the LHRR If the characteristic polynomial has two distinct real roots r_{1} and r_{2}, then

$$
a_{n}=b r_{1}^{n}+d r_{2}^{n},
$$

If it has one real root r, then

$$
a_{n}=b r^{n}+d n r^{n}
$$

and if it has two conjugate complex zeroes $z_{1}=(d, \theta)$ and $z_{2}=(d,-\theta)$ where d is the modulus and θ is the argument, then

$$
a_{n}=d^{n}(b \cos (n \theta)+d \sin (n \theta)
$$

In each case, b and d are real constants determined by the initial conditions of the LHRR.
Theorem 16. If v_{n} and w_{n} are two solutions to the LHRR a_{n}, then any linear combination of v_{n} and w_{n} will also be a solution (i.e., $b_{n}=\lambda v_{n}+\mu w_{n}$ is a solution, $\lambda, \mu \in \mathbb{R})$.

Non-homogeneous relations

A linear non-homogeneous recurrence relation (LNHRR) of degree k with constant coefficients is a recurrence relation of the form

$$
a_{n}=\left(\sum_{i=1}^{k} c_{i} a_{n-i}\right)+f(n)
$$

Theorem 17. If p_{n} is a particular solution for the LNHRR $a_{n}=\left(\sum_{i=1}^{k} c_{i} a_{n-i}\right)+f(n)$ and h_{n} is a solution of the associated LHRR $a_{n}=\sum_{i=1}^{k} c_{i} a_{n-i}$, then every solution for the non-homogeneous relation is of the form $p_{n}+h_{n}$.

