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Time Series

Time series is a series of data points indexed by time stamps.

Change point detection online or offline

Methods are parametric or nonparametric

Methods assume the time series is stationary or non-stationary

Also, by different dependancy structures (for example AR(1))



Time Series

Definition
Time series {Xt} is called (weakly) stationary if
I E (Xt) is independent of time
I The covariance function

Cov(Xt+h,Xt) = E [(Xt+h − E (Xt+h))(Xt − E (Xt))]

is independent of time for each h

Definition
Let {Xt} be a stationary time series. Autocorrelation at lag h is
defined as

ρX (h) = Cov(Xt+h,Xt)



Time Series
Definition
Let {Xt} be a stationary time series. Autoregressive model AR(1)
assumes it satisfies

Xt = φXt−1 + Zt , t = 0, 1, . . .

where {Zt} ∼WN(0, σ2), |φ| < 1 and Zt is uncorrelated with Xs

for each s < t.
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Multiple Change Points and Autoregression

In the normal IID case we used the at most one change (AMOC)
model. Looking for more than 1 change point is computationally
intensive. We need to find number of change points m and check
all their configurations, with sequence length n, there is(

n

m

)
If n = 173 is it is in the upcoming real life example, we need to
consider 1.2× 1052 cases. We can use genetic algorithms to
decrease the search space. [7] uses MDL scores to fit the best
model to our data set.

Instead of the IID case, we will work with a simple first-order
autoregression AR(1), which allows the variables to be dependant.



Multiple Change Ponts and Autoregression

We develop the MDL score function for the precipitation example.

We will construct a lognormal model for X1, . . . ,XN that allows for
a reference series Y1, ,YN and autocorrelation. Let µ1, . . . , µm+1
be the location parameters with m change points. If Xt and Yt are
independent and lognormally distributed, then we can model
St = ln(Xt/Yt) as a correlated Gaussian series with a simple
first-order autoregression (AR(1)). φ is the autocorrelation
coefficient and σ2 is the white noise variance. Such model satisfies

St = µr(t) + εt , ε = φt−1 + Zt

where {Zt} ∼WN(0, σ2). For a fixed number of data points, say
m, occuring at times τ1, . . . , τm let r(t) denote the regime number
at which regime number at which the time t data point is sampled
from. So, if the first change happened at t = 10, then
r(t) = 1, t < 10.



Multiple Change Points and Autoregression

The likelihood of this model, allowing for a mean shift at each
change point time, is

L(µ1, . . . , µm+1, φ, σ
2) =

= (2π)−N/2

(
N∏
t=1

vt

)−1/2

exp

[
−1
2

N∑
t=1

(St − Ŝt)
2

vt

]
Ŝt is the best linear prediction of St and the history S1, . . . ,St−1
and vt = E [(St − Ŝt)

2)] is the mean squared prediction error. The
AR(1) dynamics give

Ŝt = µr(t) + φ[St−1 − µr(t−1)]

for t ≥ 2 and Ŝ1 = µ1. The prediction errors are vt = σ2 for t ≥ 2
with the first one v1 = σ2/(1− φ2).



Multiple Change Points and Autoregression

While optimizing this likelihood is more complex with AR(1) than
the IID normal case, it is still not overly difficult and there are also
methods for AR(p) models. The mean estimator for l-th segment is

µ̂l =
1

τl − τl−1

N∑
t∈Rl

St

This estimator is asymptotically adjusted for edge effects. The
variance parameter σ2 and autocorrelation coefficient φ are
estimated from all data points

σ̂2 =

∑N
t=1(St − Ŝt)

2

N

φ̂ =

∑N
t=2[St − µ̂r(t)][St−1 − µ̂r(t−1)]∑N

t=2[St−1 − µ̂r(t−1)]2



Multiple Change Points and Autoregression

Inserting the estimators into the likelihood L, we get

− ln(Lopt) = − ln(L[µ̂1, . . . , µ̂m+1, σ̂
2, φ̂]) =

N

2
[
1+ ln(2π) + ln(σ̂2)

]
.

The model penalty term for MDL is given by

P = log2(m) +
m∑
i=2

log2(τi ) + 2 log2(N) +
m+1∑
i=1

log2(τi − τi−1)

2
.



Multiple Change Points and Autoregression

We take the optimized likelihood and the penalty term to get MDL.

Changing base 2 logarithms to natural logarithms and ignoring
terms constant in N we get

MDL = − log2(Lopt) + P =
N

2
ln(σ̂2) +

m+1∑
i=1

ln(τi − τi−1)

2
+

+ ln(m) +
m∑
i=2

ln(τi ),

where Lopt is the optimized likelihood and P is a penalty term



Multiple Change Points and Autoregression
Next, we want to determine the optimal model and we do it by
minimizing the minimum length score. We want to find m and the
change point locations τ1, . . . , τm. We use genetic algorithms.

Each parameter configuration is expressed as a chromosome of the
form (m, τ1, . . . , τm). Chromosomes for 200 were first simulated at
random.

Children of the first generation are made by combining the fitter
individuals of the first generation (m, τ1, . . . , τm) and (j , η1, . . . , ηj).
Their chromosomes are combined to produce the child
(m + j , δ1, . . . , δm+j). So, the child has both sets of change points.

Next, we thin the change point times of the child by a coin flip for
each point. In other words, there is an equal chance to keep or
throw away each change point. Some extra possibilities are added
to provide more variety.

Iterations run until a termination condition is met.



Real Life Example (Multiple Change Points)

Figure: Annual precipitation series from New Bedford, Massachusetts,
during 1818–1990.



Real Life Example (Multiple Change Points)

Figure: The algorithm without autoregression converged to a model with
for change points at times 1867, 1910, 1965, and 1967. The algorithms
converged to the same change points with autoregression and the
autocorrelation coefficients came out to be φ̂ = 0.021.



Bernoulli Model (CUSUM)

Let X1,X2, . . . be a sequence of Bernoulli random variables with
parameters p1, p2, . . .. We want to test if there is a change point
and the parameter increases at some time stamp k . We monitor for
the change point sequentially with the CUSUM test statistic

Bk = max(0,Bk−1 + (Xk − r)), k = 1, 2, . . .

with B0 = 0. The parameter 0 < r < 1 is the reference value. The
test signals when Bk > H, where H is a control limit.

How to choose r and H? Reference [6] recommends

r =
|p+ − p−|

2
, where p+ is the parameter value for "in control"

process and p− is the parameter for "out of control" process. The
control limit H should be 5 times the process standard deviation.



Real Life Examples (Bernoulli CUSUM)
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Figure: Data x1, x2, . . . , x100 from the Bernoulli distribution with
parameter p = 0.05. Control limit H = 2.96 wasn’t achieved.



Real Life Example (Bernoulli CUSUM)
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Figure: Data x1, x2, . . . , x30 from the Bernoulli distribution with
parameter p = 0.05 and for x30, x31, . . . , x100 the parameter changed to
p = 0.2. Yellow marking is when Bk > H and the test signalled.



Direct Density-Ratio Estimation

An online nonparametric method based on [9]. It likelihood based
but we don’t make assumptions about the dependancy. It can also
detect change points for higher order autoregressive models AR(p).

Let y(t) be a d-dimensional time series at time t. We split the
time series into two consequetive time windows: reference and test.
Let us define the forward subsequence of length k at time t

Y (t) = [y(t)T , y(t + 1)T , . . . , y(t + k − 1)T ]T .

The core likelihood based test is

s(Y ) = ln
pte(Y )

prf(Y )
,

where pte is the test sequence density and prf is the reference
sequence density.



Direct Density-Ratio Estimation

Let trf and tte be the starting positions of the reference interval and
the test interval. Let us denote

Yrf(i) = Y (trf + i − 1),

Yte(i) = Y (tte + i − 1).

We test the following hypothesis:

H0 : p(Y (i)) = prf(Y (i)), for trf ≤ i < t,

H1 :p(Y (i)) = prf(Y (i)), for trf ≤ i < tte,

p(Y (i)) = pte(Y (i)), for tte ≤ i < t.



Direct Density-Ratio Estimation

we can decide whether there is a change point between the
reference and test intervals by monitoring the logarithm of the
likelihood ratio:

S =
nte∑
i=1

ln
pte(Y (i))

prf(Y (i))
,

where nte is the number of indices in the test interval.

If S crosses a predetermined threshold, then a change occurs.

How do we calculated the fraction in S? We model the ratio with a
nonparametric Gaussian kernel.

The parameter estimation process is adjusted for the method to be
online.



Direct Density-Ratio Estimation

Figure: New sample is given y(t) and the test and reference intervals are
shifted one step to the future. Gaussian kernel parameters are updated.
The logarithm of the likelihood is then calculated with the new
parameters. If S is above the given threshold, we found a change point.



Real Life Example (Density-Ratio)

Figure: AR(4) data set with a change point at t = 1000.



Deep Learning for Human-Specified Change Points

Let us define a new term, breakpoint which is a human-specified
change point.

[8] introduced an unsupervised method for detecting breakpoints in
time series. It can also be generalized for change points.

We are given time series with Nc variables and T time stamps
d ∈ RNc×T . We partition d into series of segments, according to
the time window Nw . Let us denote the time windows as
s1, s2, . . . , sNcNw .

We use unsupervised methods - autoencoders with 2 hidden layers
(example). Data is mapped to hidden units with an encoder to
obtain the feature representation

f = Eenc(s) = genc(Ws + be),

where genc is a nonlinear activation function and be is a bias vector.



Deep Learning for Human-Specified Change Points

Features are then mapped back to the data domain with

s̃ = Dec(f ) = gdec(W
′f + bd),

where usually gdec = genc, W ′ = W T and bd is a bias vector.

We use the stochastic gradient descent to minimize the error of the
reconstructed sample Dec(Eenc(s)) to get the optimal values for
W , b, bd ,W

′.

min J(W , be , bd ,W
′) = min

T/Nw∑
t=1

L(st ,Dec(Eec(st))) + λ
∑
t,i

W 2
t,i

where L(u, v) is a loss function depending on the input range.



Deep Learning for Human-Specified Change Points

Breakpoints are detected when the representative features are
extracted. For each feature, distance is calculated sequentially for
time windows. For the t-th timestamp, the distance between the
consecutive features ft and ft−1 are

Distt =
‖ft − ft−1‖2√
‖ft‖2 × ‖ft−1‖2

The sequence {Distt}T/Nw

t=1 describes how the features change over
time. The sequence is plotted and the local maximums are the
breakpoints.



Real Life Example (Deep Learning)



Summary

I Time series
I Change point detection
I Multiple change point detection with AR(1) model and

evolutionary algorithm
I Real life example (multiple change points)
I Bernoulli model (CUSUM)
I Real life examples (Bernoulli CUSUM)
I Density-ratio test statistics for more general dependency

structures
I Real life example AR(4) (density-ratio)
I Deep learning for human-specified change points
I Real life example (deep learning)


