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 ABSTRACT 
We use the three-species cyclic competition model 

(Rock-Paper-Scissors), described by reactions A + B → 

2B,  B + C → 2C, C + A → 2A, for emulating a computer 

network with e-mail viruses. Different topologies of 

the network bring about different dynamics of the 

epidemics. When the parameters of the network are 

varied, it is observed that very high clustering 

coefficients are necessary for a pandemics to happen. 

The differences between the networks of computer 

users, e-mail networks, and social networks, as well as 

their role in determining the nature of epidemics are 

also discussed. 

 

PERMBLEDHJE 
Ne përdorim modelin e garës ciklike mes tri specieve 

(Guri-Letra-Gërshërët), i cili përshkruhet nga 

reaksionet A + B → 2B,  B + C → 2C, C + A → 2A, për të 

emuluar një rrjet kompjuterik me viruse që përhapen 

nëpërmjet postës elektronike. Topologji të ndryshme 

të rrjetit shkaktojnë dinamikë të ndryshme të 

epidemisë. Kur variojmë parametrat e rrjetit, vërejmë 

se, që të kemi pandemi, nevojiten koeficientë tepër të 

lartë agregimi. Ne diskutojmë ndryshimet ndërmjet 

rrjetave të përdoruesve të kompjuterave, të postës 

elektronike e rrjetave shoqërore, si edhe rolin që 

luajnë ato në përcaktimin e natyrës së epidemisë. 
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INTRODUCTION 

The Internet is a complex network of computers and 

routers, connected by wires or wireless links, the 

World Wide Web is a network of web pages connected 

by hyperlinks, the social networks are composed of 

human beings and social connections. All these are 

examples of complex networks, whose structure has 

interested scientists, particularly physicists, in recent 

years. Three concepts are central to the modern 

understanding of complex networks: 

Small worlds: Despite the large size of the network, 

there is always a relatively short path between any two 

nodes. The best known example is the “six degrees of 

separation” idea, discovered by Stanley Milgram [15] 

who stated that there is a path of acquaintances with 

typical length of six between any pair of people in the 

United States. 

Clustering: In social networks, particularly, we observe 

the formation of “cliques”, representing circles of 

friends or acquaintances in which everybody knows 

everybody. This attribute is characterized by the 

clustering coefficient, defined for a node i with ki>1 

edges as follows: Ci = 2Ei / [ki (ki-1)], where Ei is the 

number of links between the ki nodes connected to the 

i-th node [20]. Their average over the network gives its 

clustering coefficient. 

Degree distribution: The number of edges (links) for a 

particular node is known as the degree of that node. 

The degree distribution P(k) for the real networks 

(World Wide Web [3], Internet [10], and metabolic 

networks [14]) has a power-law tail: P(k) ≈ k
-γ

. 

Networks with the above degree distribution 

(independent of N) are called scale-free [1]. 

The topology of the Internet is studied at the router 

level, and at the interdomain level. Faloutsos et al. [10] 

report power-law distributions with exponents around 

2.2 at the interdomain level, and 2.48 at the router 

level. The clustering coefficient is 0.18 and 0.3 [17]. 

Similar topology has been observed in many social 

networks.  

In previous works we have considered a non-spatial 

version of three-species competition models, and 

studied their long-term behaviour [12, 13]. They 

exhibit the extinction of one of the species, when there 

are no migrations, or survival of all three, when there 

are enough migrations into and out of the system.  
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However, these models do not correctly represent the 

real spatial structure of the interaction and migration 

networks [2]. In this paper we will present a model 

that relates to the spread and survival of e-mail viruses 

in the Internet. 

 

THE ABC CYCLIC MODEL ON A SCALE-FREE NETWORK 
The ABC model we have previously studied in the non-

spatial version has relevance to epidemiological 

studies, since it resembles the case when the immunity 

to a particular infectious disease is only temporary, 

otherwise known in epidemiology as the SIRS 

(Susceptible-Infected-Recovered-Susceptible) model 

[11]. (The similarity is not present at all the steps 

within the SIRS model.) This is particularly relevant 

when one is interested in the spread of computer 

viruses in the Internet. We would like to be able to 

predict, just as for ordinary infectious diseases, 

whether they will flare up and die out, or remain 

endemic. Several questions arise, the answer to which 

will be determined by the topology of the system. First, 

let us discuss the relevance of the SIRS model to the 

computer viruses' spread. 

 

COMPUTER AND E-MAIL VIRUS FEATURES 
The very name of computer viruses comes from the 

obvious resemblance to natural viruses: their ability to 

self-replicate, high speed of spreading, the ability to 

select the target system (i.e. each virus only targets 

certain systems, or groups of systems), the ability to 

infect non-infected systems, our difficulties in fighting 

them, etc. Recently one can also add an increasing rate 

of mutation and the appearance of new generations of 

viruses. The global distribution of the viruses in a large 

degree is determined by the mass-production and 

popularity of personal computers, which are 

particularly vulnerable to infection, due to their 

standardised architecture and software. 

Many viruses are able to mutate by modifying their 

own code randomly, so that it is difficult to establish 

certain fingerprinting characteristics of a given virus. It 

makes a reappearing virus unrecognisable to the 

antivirus software, causing reinfection. This 

circumstance justifies the use of a SIRS model for this 

class of viruses. The spread of computing networks 

created an environment on which the viruses would 

thrive. But the contrary is also true: computing 

networks create the environment in which the 

antiviruses can spread very quickly. Hence the spread 

of some sorts of computer infections (but not all of 

them) can be epidemiologically modelled by a SIRS 

model. Our ABC cyclic model, described by reactions A 

+ B → 2B, B + C → 2C, C + A → 2A (all three at equal 

rates), is a good first realisation of the SIRS model. 

MODELS OF NETWORKS WITH DIFFERENT 
TOPOLOGIES 
Very good reviews in the field have been written by R. 

Albert and A.-L. Barabási [2], S.N. Dorogovtsev and 

J.F.F. Mendes [7], M.E.J. Newman [16], etc. We will 

give very short descriptions of relevant models. 

A network is represented by a graph, i.e. a set of nodes 

and edges (links) between them. The theory of random 

graphs was founded by Erdös and Rényi [8, 9]. A 

random graph is defined as N nodes connected by n 

edges, randomly chosen among all possible edges [8]. 

Erdös and Rényi [9] showed that there is a sudden 

change in the cluster structure as the average degree 

per node <k> goes through 1: from a loose collection of 

small clusters, a large cluster is formed, which for 

<k>c=1 has approximately N
2/3

 of the nodes, and for 

larger <k> has a number of nodes proportional to 

network size N. For large N the degree distribution of a 

random network is Poisson with mean <k>. Random 

networks have clustering coefficients that are much 

smaller than those observed in real-world networks. 

The origin of the scale-free behaviour in networks was 

first addressed by Barabási and Albert [3]. They 

attributed the scale-free nature of the networks to two 

mechanisms present in many networks. The Barabási-

Albert (BA) algorithm has two important ingredients: 

(i) Growth: Start with a small (m0) number of nodes; 

every step add a new node with m(≤ m0) edges which 

link the newly added node to m nodes already in the 

network. 

(ii) Preferential attachment: The probability that the 

new node will be connected to node i depends on the 

degree ki of node i: P(ki)  = ki / Σ kj. 

This algorithm produces a scale-free network with an 

exponent equal to 3 for the power-law degree 

distribution. This model is a minimal one that captures 

the mechanisms responsible for the power-law degree 

distribution. 

The CM is already the standard for simulating networks 

of a given γ. For each node, its degree k is drawn from 

the power-law probability distribution function. Then 

pairs of links are randomly placed between the nodes, 

until they get “saturated” [5, 6]. This model creates 

correlations in the connectivity distribution between 

the system nodes for γ<3. UCM uses the same 

algorithm for the construction of the network, except 

that the upper cutoff is fixed beforehand at kmax=N
1/2

. 

Then the connectivity correlations disappear [4]. 

The spread of ideas, innovations, and computer viruses 

is influenced immensely by the network structure. 

Many studies of dynamics on networks have been and 

are being done [18, 19]. This area of study is a rapidly 

developing one. 
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SIMULATIONS OF ABC MODEL IN NETWORKS WITH 
DIFFERENT TOPOLOGIES 
We tried to simulate the behaviour of the ABC model 

in a network, generated according to the rules 

described above. Of course, the above model does not 

completely describe real life networks, but it is a good 

toy model. In each case, the random networks, as well 

as scale-free networks (generated with BA, CM and 

UCM algorithm), were used for comparison. 

In our approach to the simulation of our systems, we 

have to simulate continuous time Markov processes. In 

these processes the event times are exponentially 

distributed, and the characteristic time depends on the 

current configuration of the system. First, we initialize 

the simulation: the nodes are assigned an initial state 

at random, i.e. A, B, or C with probability 1/3, and then 

they are assigned a “wake up” time with exponential 

distribution. The node with the smallest time will be 

activated: if its state is, say, B, it will convert the nodes 

at state A among the ones it is connected to (emulating 

infection at contact), and analogously for other states. 

The process is then iterated. 

 

NO PANDEMICS IN THE INTERNET! 
We started our simulations with the scale-free (BA, 

CM, UCM) models. In all cases the number of A, B, C 

individuals drifts with time, but none of them becomes 

zero. This situation is observed in network sizes up to 

50 000 and <k> up to 200. A typical time series of the 

simulations of the ABC cyclic system in a scale-free 

network is shown in Fig. 1. 

 

 
Figure 1. A typical time series for the ABC model in a 

scale-free network of size N=900. 

 

This situation is very applicable to network viruses. 

Indeed we have seen viruses reappear several times in 

the real life. But does this mean that we cannot have 

pandemics in small-world and scale-free networks? 

The computer users and e-mail networks appear as 

“diluted” versions of the social networks, so their 

clustering coefficient is lower, close to those obtained 

with the Barabási-Albert model, for which the ABC 

model does not reach fixation. As far as clustering 

goes, in one end of the spectrum are the social 

networks, which are highly clustered, with clustering 

coefficients around 0.2, while in the other end are the 

random networks, which are “maximally distributed”. 

Runs performed on random networks were quite 

surprising: one would require enormous connectivities 

(p) to reach fixation on them! A plot of critical 

connectivity vs. network size for the random networks 

is shown in Fig. 2. The critical connectivity reaches 

values close to 0.36, which is enormous. 

 

 
Figure 2. Critical connectivity vs. network size for 

random networks. 

 

CONCLUSIONS 
The modern computer and e-mail viruses, with their 

ability to mutate, or the absence of a reliable antivirus, 

call for SIRS epidemiologic models, rather than simply 

SIR. Simulations of the spread and evolution of such 

systems in different scale-free topologies show that all 

three types, (A, B, or C) are present in the network at 

all times. This result would relate to the observed 

peaks and valleys of epidemics. Runs performed on 

random networks show that the critical connectivities 

approach 0.36, which is quite unreachable in the real 

life networks. Apparently, the computer viral 

epidemics do not exhibit the same characteristics as 

human epidemics, because the clustering coefficients 

for the computer users/e-mail networks cannot 

achieve the critical values. It seems that the pandemics 

of a virus in the Internet is an unlikely event, unlike 

pandemics in human social networks. The Internet is 

threatened more by the side-effect of extreme 

congestion from the uncontrolled multiplication of 

viruses. 
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