10 yr HERMES op Mercator

Prof. Dr. Hans Van Winckel Institute of Astronomy KU Leuven university Belgium

The Mercator Telescope

Roque de los Muchachos observatory La Palma (Canary Island)

Prime site for astronomical observations in Europe

- 1.2 m telescope
- Operated by KU Leuven

Why on La Palma ?

- Remote site: no light pollution
 Ley del Cielo regulates artificial and street lighting
- Clear & transparent sky
- Limited cloud cover (28° latitude)
- Trade winds produce stable, turbulence-free atmosphere Very sharp images (0.5 – 1 arcsec)

Why Mercator if you have access to the VLT

-SAL

The second s

Or to the E-ELT (2024) ?

Mercator: Niche in observational astrophysics

Provides complementary unique possibilities to international (& space) facilities:TIMES-SERIES over a wide range of scales and cadences **Requirements:**

- 1) World-class instruments: instrument development programme 2) Operational model: Pooled observations with priority driven scheduling.
- 3) Userfriendly robust operational environment 4) Continuous improvements/developments

Mercator: Instruments

HERMES

MAIA

HERMES-Consortium: Kick-off 19/01/2005 Science start: 01/06/2009

Project Engineer: Gert Raskin PI: Hans Van Winckel

IvS-KUL co-i: C. Waelkens

HERMES

IAA-ULB co-i: A. Jorissen

Landessternwarte Tautenburg co-i: H. Lehman

ROB co-i: H. Hensberge, Y Fremat

Observatoire de Genève

Radial velocity : $(\lambda - \lambda_0) / \lambda_0 = velocity/c$ High resolution: 85 000 corresponds to 3.5 km/s in V High stability to allow 10 m/s accuracy. Wide spectral domain helps

S/N: small instrument

Power of high-resolution spectroscopy

Slit spectrograph resolution

High spectral resolution

- •Small telescope diameter D_{τ}
- •Small slit Φ
- •Large beam diameter D hense Large optical elements

High flux: •Large D_{T} •Wide slit Φ

White-pupil layout

Hermes: white pupil Design

R2.70 blaze:69.7°

HRF: slicer

đ

File Edit Vie	ew Frame B	Bin Zoom	Scale Colo	or Region	WCS A	halysis	Help
ile	THARNE-HRF-	1.fits					
bject	None					Ý	
alue						1 .	
/CS						× ×	
hysical X		- Y					
nage X		Y					
rame1 Zoom	4.000	Angle	0.000				
file edit	view	frame	oin zoon	n scale	colo	or region	wcs help
enter align	in out to	fit none	x y xy	0 degrees	90 deg	jrees 180 de	egrees 270 degrees

Basic values and dimensions

slice angle	65.49°
prism angle	46.50°
prism height	25.00 mm
prism entrance	23.72 mm
slicer plate	0.17 mm
slit width sliced	0.10 mm
distance of slices	0.28 mm
total slit length	0.49 mm
focus difference	0.25 mm

blaze profiles so S/N is very dependent on the distance from the blazewavelength

reddest orders
do not overlap.

- orders: 40 to 94

Spectrograph Performance

04SEP

date:

Ē

14 Jul

2009

12:42

User:

hane

RON ~ **3-4e⁻**

Take multiple exposures

Illustrations: raw frames

FF HRF fibre

File	Edi	t Vie	ew F	rame	Bin	Zoom	Scal	e	Color	Regio	n	WCS	Ana	lysis				Help
File			00388	513_H	RF_FF	.fits												
Objec	t		Flat											111				
Value			;	2867									ШA					
WCS													MA	<mark>- →</mark> ×				
Physi	cal	×	9	43.000		Y	2404	.000						H^{\perp}				
Image	•	×	9	43.000		Y	2404	.000						// /				
Frame	e1 (Zoom).500	A	ngle	0.0	000						//				
file		edit	V	iew	fran	ne	bin	z	:oom	sc	ale	C	olor	re	gion	1	vcs	help
abou	ıt	ope	n	save i	mage	sa	ve fits		save	mpeg		heade	r	print		page s	setup	exit
)		5000	D	10	000		15000		20	000		250	00	3	0000)	350	00

t Vie	w
	00
	Wa
×	
X	
odit	1
eur	
ope	n s s
	30

ThArNe HRF fibre

Frame	Bin	Zoom	Scale	Color	Region	WCS	Analysis	\$		Help
0.500	RF_TH.1 cal	Y Y Jle	0.0					×		
view	frame	e	bin	zoom	scale	CO	olor	region	WCS	help
save i	mage	sav	e fits	save	mpeg	header	r pri	nt p	age setup	exit
264	40		2650		2660		2670		2680	

Spectrograph room...

Final result: example spectrum of Polaris

Raw frame All spectral orders (40-94)

Small spectral part 610-620 nm

Hermes Design

double slicer

acclimatisation !! +/- 0.01 K

Software

	Local Time	Process	Level	Description
	1 2009-05-12 15:38:11.	96 LOG.HERMES	INFO	Mode has been changed to HRF_TH
	2 2009-05-12 15:38:11.	04 LOG.HERMES	INFOL4	Fibre mask has been changed to: HRF open
E	3 2009-05-12 15:38:11.4	63 LOG.HERMES	INFOL4	Fibre selector has been changed to: HRF
F	4 2009-05-12 15:37:49.	34 LOG.HERMES	INFOL4	Source selector has been changed to: Thorium-Argon + Neon lamps
ŀ	5 2009-05-12 15:37:43.	66 LOG.HERMES	INFOL4	The red halogen lamp is now switched OFF
Ī	6 2009-05-12 15:37:42.	258 LOG.HERMES	INFOL4	The blue halogen lamp is now switched OFF
Ľ.	- 2000 OF 10 15-07-40		INFOLM	ADD has been alwayed to Olarad

Ougenbosch 2018

PR slide...

	D_T	R	Coverage	Flux	Flux/m ²	М	M/m ²
	[m]	$[\lambda/\Delta\lambda]$	[nm]	[e ⁻ /nm]	$[e^{-}/(nm m^{2})]$	[R x Flux]	[R x Flux/m ²]
HARPS	3.6 ^a	115 000	378-691	31 070	3050	3570 k	351 k
Espadons	3.6^{b}	80 000	369-1048	44 250	4350	3540 k	348 k
SARG	3.5^{c}	86 000	370-1000**	18 680	1940	1610 k	167 k
FIES	2.5^{d}	67 000	364-736	8620	1760	580 k	118 k
FEROS	2.2^{e}	48 000	360-920	31 400	8260	1510 k	397 k
Sophie	1.93^{f}	75 000	387-694	7200	2460	540 k	185 k
Coralie	1.2^{g}	60 000	390-681	3550	3140	213 k	188 k
HERMES	1.2^{h}	85 000	377-900	9360	8270	795 k	703 k

Raskin, et al., 2011, A&A 526, 69

https://fys.kuleuven.be/ster/pub/pub#PhD

Mercator: Operational Model

Priority driven pooled observations after peer review process

Requirements: Robust (Telescope, Instruments) Easy to use Direct evaluation of quality Optimal monitoring schemes Science graded pipeline

So: lots of software (MOCS, MESA, DRS (release 6))

Science Programmes: Phase I, Phase II converted into DB

Trouble shooting: night report + fast feedback (7/7)

Weekly skype conferences with whole team

All nights are service nights: 80% from the pool, 20% for own experiments

Continuous Technical Developments

- 2018: new fibre link (octogonal fibres)
- 2018-2019: upgrade network and all computers
- 2020: New Wavelength Calibration Unit

(cotutelle Macquarie: PhD project)

Next talk by Gert Raskin

The new TCS

- The development methodology: knowledge-driven development
 - –based on multi-disciplinary modeling of the system requirements, mechanics, electronics and software
 - –not only the system itself is modeled using a vocabulary, but also the meaning (semantics) of this vocabulary is formally described => increased reusability of the models => a consistent, verifiable, and evolvable new TCS for Mercator

Supervisors: Prof. dr. ir. G. Deconinck Prof. dr. H. Van Winckel Ing. P. Saey, co-supervisor

KU LEUVEN

ARENBERG DOCTORAL SCHOOL Faculty of Engineering Science

Knowledge-driven development of telescope control systems

Wim Pessemier

Dissertation presented in partial fulfillment of the requirements for the degree of Doctor of Engineering Science (PhD): Electrical Engineering

The new TCS

• ... a big change for the telescope!

The new TCS

- New electronics for the telescope's:
 - -cover
 - _M1
 - _M2
 - _M3
 - –hydrostatic bearing
 - –safety system
 - _time reference system
 - -axes motion control system
 - _telemetry

new sensor and actuator interface electronics

new telescope motors

new motor drive electronics

Mercator: Science and Leverage

Science Results:

~ 90 000 science spectra over ~ 80 science programmes ~ 388 publications among which ~ 244 in peer reviewed journals (Nature, Astronomy and Astrophysics, Astrophysical Journal, MNRAS etc.)

Leverage for science exploitation funding:

- HERMES spectrograph (KU Leuven, ULB, ROB, Tautenburg, Geneva)
- BRAIN projects (KUL, ULB, ROB)
- Baekeland (technology development with idustry partner)
- WPs 3 ERC Advanced/Consolidator grants (Prof. Aerts; Prof. Sana)
- several FWO grants; KU Leuven grants

Leverage for Education and outreach:

- Master course
- STEM module (full trimester) for highschool (astronomy as gateway to STEM)
- Teachers@Mercator
- Local outreach

Science return... biased and non-complete

Raskin, et al., 2011, A&A 526, 69:

Common themes (among others) :

Follow-up Space (Kepler, CoRot)

Chemical Composition

Binaries

We ran/are running in total ~80 science programmes

RGB in wide binaries

Kepler follow-up: mass discrepancy problem in massive binaries

Tkachenko et al., 2014; similar tests Garcia et al., 2014

- 452 HERMES spectra + Kepler: V380 Cyg
- masses: 11.43 and 7.00 Solar masses
- evolutionary tracks versus observed HR location:

large overshoot or extreme rotation are needed

Chemical Composition

Nb is mono-isotopic as Beta-decay product of ⁹³Zr

So in extrinsic S stars: ⁹³Nb is equal to 93 Zr and hence A(Zr)/A(Nb) equals to $A(Zr)/A(^{93}Zr)$ on the AGB.

T-indicator: ${}^{13}C(\alpha,n){}^{16}O$ is neutron source

Chemical tagging of Moving groups and Streams

Pompeia et al., 2011; Tabernero et al. 2012, 2017

- Stellar kinematic groups are kinematically coherent groups of stars that might have a
- **Galactic kinematics**
- Analyses of differential abundances to trace
- Many objects wide apart: HERMES
- Hyades supercluster stream can only partly come from Hyades cluster
- Ursa Major Moving group is less affected by field star contamination

Chemical composition of stars with Brown Dwarfs

Stars with Brown Dwarf companions or not metal rich

BD are failed stars, not failed planets

Maldonado et al., 2017; 2015

Binary Evolution

stars in binary systems can interact in various ways:

tidal interaction

wind accretion & tidally enhanced winds

common envelope evolution

Common theme : Binary Evolution

Figure 2. Flow chart for the Monte Carlo simulations. RLOF stands for Roche lobe overflow, CE for common envelope, MS for main sequence, WD for white dwarf, *1 for star 1 (primary), and +2 for star 2 (secondary). The figures give the percentages for each evolutionary channel in simulation 6. See text for further explanations.

e.g. Han et al., 2005, MNRAS 272, 800

Bipolar planetary nebulae 508

Common theme : Binary Evolution

Figure 2. Flow chart for the Monte Carlo simulations. RLOF stands for Roche lobe overflow, CE for common envelope, MS for main sequence, WD for white dwarf, *1 for star 1 (primary), and *2 for star 2 (secondary). The figures give the percentages for each evolutionary channel in simulation 6. See text for further explanations.

e.g. Han et al., 2005, MNRAS 272, 800

Oudenbosch 2018

508

PNe binaries are spiralled-in systems

Hen 2-428 2 x 0.88 Msun

Santander-Garcia et al, 2015, Nature

Overcontact, double degenerate SN type 1a progenitor !!

What we expect: Orbital evolution low- to intermediate-mass stars

Nie et al., 2012

- **Population Synthesis:**
- Prediction: bimodal distribution
- Common Envelope Results: inspiraling

Orbital evolution post-AGB binaries: many unknowns remain

Binaries: ranges in P and e

Oomen et al., 2018, A&A; Van Winckel, 2018

sdB wide binaries

Vos et al., 2018; 2017; 2015; 2013 ; 2011

Van der Swaelmen et al., 2017; Jorissen et al. 2016; PhD Ana Escorza

Phd Ana Escorza

Pulsations versus Orbital Motion

1.5

2.0

1.0

Phase

10

-20 -30

0.0

0.5

Good sampling is needed !!

Photospheric shocks induce linedeformation.

Manick et al., 2017; PhD Manick

Example: TW Cam (RV Tauri pulsator) Pulsation period: 43d **Orbital Period: 654d**

Orbits, circumstellar gas and jets

Gorlova et al., 2012; Bollen et al. 2016, 2017, PhD Bollen **Oudenbosch 2018**

High velocity ouflow: wide cone

Bollen et al., 2017, A&A; 2018, in prep

Wide opening angleInclination dependent - Angle dependent velocity law in cone

Often detected: jets created by circumcompanion accretion disc

Giants with planets (or Brown Dwarfs)

Jorissen et al., 2016; Hrudkova et al., 2017

HE0017+0055 (CEMP rs star) Long Period: 2940 days Short Period: 384 days

very low mass function

Planet candidate system: HD175370 (88 years (!) 350 days)

Problem:

Other systems reveal similar properties

HE 1120-2122 (~1 year short period on long period) HD76396 (~1 year short period on long period)

Pulsational Modulation?

First PNe central stars on wide spectroscopic orbits

Van Winckel et al., 2014; Jones et al., 2017; Aller et al. 2018

Why 1.2m Mercator ?

Niche in experimental astrophysics Thanks to:

- Instrument development programme (HERMES, Maia and pipeline reduction)
- Technology development programme (TCS, fibre link, Fabry Perot)
- Adequate operational model

Ideal complement to space photometry as well as large international infrastructure !

