NutraHacker

Complete Gene Mutation Report for Customer: 5169023a-2a2f-4576-ba55-d69922902583

Instructions:

NutraHacker reports mutations (single nucleotide polymorphisms) in this uploaded genome. Genes not reported in this report are either normal, not actionable, or not currently detected by NutraHacker. The expected allele is the one seen in a normally functioning gene. The high risk alleles reported are the ones measured from the uploaded genome. NutraHacker reports the effects of these mutations as discovered by published empirical data and suggests nutritional supplements that can mitigate potential issues caused by these mutations.

This report is meant to serve as a guide for nutritional supplementation for the owner of the genome and is not applicable to any other individual. Supplement quantities and dosages are not included as they are indicated on the purchased product. Multiple recommendations for the same supplement does not mean that the dosage should be multiplied. In the case of a conflict (such as a particular vitamin being both encouraged and discouraged), the owner of the genome should assess his/her own personal biology to decide whether to include or discard that particular supplement.

NOTICE:

State law allows any person to provide nutritional advice or give advice concerning proper nutrition--which is the giving of advice as to the role of food and food ingredients, including dietary supplements. This state law does NOT confer authority to practice medicine or to undertake the diagnosis, prevention, treatment, or cure of any disease, pain, deformity, injury, or physical or mental condition and specifically does not authorize any person other than one who is a licensed health practitioner to state that any product might cure any disease, disorder, or condition.

NutraHacker reports are for scientific, educational and nutritional information only and are not intended to diagnose, cure, treat or prevent any disease, disorder or condition.

Thank you for using NutraHacker. To your health!

Gender of customer: Male

A total of 55 mutations were detected at this time for your genome out of the 195 polymorphisms assessed.

There were 18 homozygous mutations.

There were 2 sex-linked mutations.

There were 35 heterozygous mutations.

Please continue to the next page to begin your discovery process.

Category	RSID	Gene	Expected	Genotype: Risk	Genotype Freq	Gene Function	Consequences	Encourage	Avoid
Detoxification	rs1131857	CPOX4	А	GT: 1/2	36.1087%	Coproporphyrinogen oxidase	N272H, his variant, referred to	NAC, Glutathione,	Sources of mercury
							herein as 'CPOX4', both increases	Possibly EDTA for	exposure
							sensitivity to the neurobehavioral	chelation	
							effects of Hg (Echeverria et al.		
							2006) and modifies urinary		
							porphyrin excretion as a potential		
							biomarker of this effect (Woods et		
							al. 2005, Li and Woods 2009).		
							The population frequencies of the		
							homozygous wildtype (A/A),		
							heterozygous (A/C) and		
							homozygous mutant (C/C)		
							genotypes within this cohort were		
							0.72, 0.25, and 0.03, respectively,		
							and were equally prevalent		
							among males and females,		
							suggesting substantial exposure		
							to the CPOX4 variant.		
Detoxification	rs72547513	CYP1A2	С	AA: 2/2	N/A	Hydroxylation or dealkylation of	CYP1A2*11 allele with	Induce with broccoli,	Curcumin, Cumin,
						xenobiotics, Phase I, metabolize	approximately 5% activity of that	Cabbage,	Grapefruit
						E2 to 2-hydroxyestradiol	of the CYP1A2 wild type	Diindolylmethane,	
								Glucarate, NAC,	
								Cardamom,	
								Sulforaphane	
Detoxification	rs762551	CYP1A2	А	AC: 1/2	46.8902%	Hydroxylation or dealkylation of	Slow to metabolize caffeine, Main	Induce with broccoli,	Curcumin, Cumin,
						xenobiotics, Phase I, metabolize	liver pathway	Cabbage,	Grapefruit
						E2 to 2-hydroxyestradiol		Diindolylmethane,	
								Glucarate, NAC,	
								Cardamom,	
								Sulforaphane	
Detoxification	rs1056827	CYP1B1	G	AC: 1/2	42.4033%	4-hydroxylation of estrogen	Increased enzyme activity,	Diindolylmethane	
							undesirable 4-hydroxylation of		
							estrogen		

Category	RSID	Gene	Expected	Genotype: Risk	Genotype Freq	Gene Function	Consequences	Encourage	Avoid
Detoxification	rs16947	CYP2D6	G	AG: 1/2	47.4512%	Detoxifies 20% of prescription	Possible ultra metabolizer		Substrates of this
						drugs			enzyme
Detoxification	rs1050450	GPX1	С	AG: 1/2	39.2615%	Glutathione peroxidase functions	Deficiency in glutathione	Selenium, Iodine	
						in the detoxificationof hydrogen	peroxidase		
						peroxide, and is one of the most			
						important antioxidant enzymes in			
						humans.			
Detoxification	rs1800668	GPX1	С	AG: 1/2	22.4286%	Glutathione peroxidase functions	Decreased activity of glutathione	Selenium	
						in the detoxificationof hydrogen	peroxidase		
						peroxide, and is one of the most			
						important antioxidant enzymes in			
						humans.			
Detoxification	rs1695	GSTP1	G	AG: 1/2	42.4696%	Conjugation toxins to glutathione	Persons having the alleles AA or	NAC, Whey	Vitamin E
							AG had an increase in		
							inflammatory interleukin-6 (IL-6)		
							upon supplementing		
							alpha-tocopherol (the most		
							common form of Vitamin E in a		
							North American diet) while those		
							with GG saw a decrease.		
Detoxification	rs1208	NAT2	А	GG: 2/2	14.6514%	This gene encodes an enzyme	Fast metabolizer	NAC, Vitamin B2,	
						that functions to both activate and		Vitamin B3, Vitamin	
						deactivate arylamine and		B5, Molybdenum	
						hydrazine drugs and carcinogens.			
Detoxification	rs1799929	NAT2	С	TT: 2/2	N/A	This gene encodes an enzyme	Decreased activity	NAC, Vitamin B2,	
						that functions to both activate and		Vitamin B3, Vitamin	
						deactivate arylamine and		B5, Molybdenum	
						hydrazine drugs and carcinogens.			
Detoxification	rs1801280	NAT2	Т	CT: 1/2	46.1933%	This gene encodes an enzyme	Decreased activity	NAC, Vitamin B2,	
						that functions to both activate and		Vitamin B3, Vitamin	
						deactivate arylamine and		B5, Molybdenum	
						hydrazine drugs and carcinogens.			

Category	RSID	Gene	Expected	Genotype: Risk	Genotype Freq	Gene Function	Consequences	Encourage	Avoid
Detoxification	rs1800566	NQO1	С	AG: 1/2	35.5447%	Reduces quinones to	This is a null mutation and		
						hydroquinones (vitamin E	removal of carcinogenic quinones		
						alpha-tocopherol quinone,	is affected negatively		
						menadione, benzene quinones)			
Detoxification	rs182420	SULT2A1	А	CT: 1/2	25.5034%	Catalyze the sulfate conjugation	Decreased enzyme function	NAC, MSM, Taurine	
						of many hormones,			
						neurotransmitters, drugs, and			
						xenobiotic compounds			
Neurotransmitter	rs165722	COMT	А	CC: 2/2	32.6762%	Degrades catecholamines, Phase	Decreased COMT activity	Hydroxy B12	Methyl B12, Methyl
Levels						II, inactivates hydroxy-estrogens		(hydroxycobalamin)	donors
Neurotransmitter	rs4646312	COMT	G	CT: 1/2	41.2943%	Degrades catecholamines, Phase	Decreased COMT activity	Hydroxy B12	Methyl B12, Methyl
Levels						II, inactivates hydroxy-estrogens		(hydroxycobalamin)	donors
Neurotransmitter	rs6269	COMT	А	AG: 1/2	44.7595%	Degrades catecholamines, Phase	Decreased COMT activity	Hydroxy B12	Methyl B12, Methyl
Levels						II, inactivates hydroxy-estrogens		(hydroxycobalamin)	donors
Neurotransmitter	rs2391191	DAOA	G	AG: 1/2	49.3000%	D-amino acid oxidase activator,	Associated with cognitive manic	Idebenone,	
Levels						which degrades D-serine, a potent	symptoms	Piracetam,	
						activator of NMDA receptors		Magnesium, Taurine,	
								Lithium orotate	
Neurotransmitter	rs701567	DAOA	G	CT: 1/2	49.9551%	D-amino acid oxidase activator,	Associated with cognitive manic	Idebenone,	
Levels						which degrades D-serine, a potent	symptoms	Piracetam,	
						activator of NMDA receptors		Magnesium, Taurine,	
								Lithium orotate	
Neurotransmitter	rs3749034	GAD1	А	GG: 2/2	68.6151%	Catalyzes production of GABA	High glutamate, low GABA	Taurine, Theanine,	MSG
Levels						from glutamate		NAC,Glycine, Vitamin	
								B3	
Neurotransmitter	rs3828275	GAD1	G	TT: 2/2	7.46300%	Catalyzes production of GABA	High glutamate, low GABA	Taurine, Theanine,	MSG
Levels						from glutamate		NAC,Glycine	
Neurotransmitter	rs1137070	MAO-A	С	T: 1/1	N/A	Oxidizes serotonin, dopamine,	Increased expression MAO-A	Curcumin	
Levels						epinephrine, norepinephrine			
Neurotransmitter	rs2283729	МАО-В	G	A: 1/1	7.93250%	Oxidizes phenethylamine,	Lower mental energy		Quercetin, Other
Levels						benzethylamine, dopamine			MAOB inhibitors

Category	RSID	Gene	Expected	Genotype: Risk	Genotype Freq	Gene Function	Consequences	Encourage	Avoid
Neurotransmitter	rs2769605	NTRK2	С	CT: 1/2	43.9018%	Neurotrophic tyrosine kinase	Decreased BDNF	Theanine, Curcumin,	
Levels						receptor type 2		Beta-alanine, Lithium	
								orotate,	
								Phosphatidylserine	
Neurotransmitter	rs2070762	TH	Т	AG: 1/2	47.8166%	Tyrosine hydroxylase, produces	Low dopamine	N-acetyl-tyrosine,	
Levels						dopamine from tyrosine		Mucuna pruriens (with	
								caution)	
Folate One-Carbon	rs651852	BHMT08	Т	CT: 1/2	48.0752%	Methylates homocysteine to	Downregulation	Phosphatidylcholine,	
Metabolism /						methionine		TMG,	
Methylation (FOCM)								Phosphatidylserine,	
								Zinc	
Folate One-Carbon	rs1801181	CBS	G	AG: 1/2	38.8293%	Adds I-serine to homocysteine to	Upregulation, high taurine, high	Ornithine/Arginine,	Methyl donors,
Metabolism /						produce I-cystathionine	ammonia, high sulfates, decrease	Manganese,	Vitamin B6 (P-5-P
Methylation (FOCM)							in glutatione synthesis	Molybdenum, Zinc,	form ok), Taurine,
								SAMe inhibits, CoQ10	Sulfates, BCAA
Folate One-Carbon	rs1643649	DHFR	Т	CT: 1/2	27.2580%	Reduces dihydrofolate to	Decreased function of enzyme	Reduced forms of	Green tea, EGCG
Metabolism /						tetrahydrofolate		folate, Glycine	
Methylation (FOCM)									
Folate One-Carbon	rs6922269	MTHFD1	G	AG: 1/2	30.5454%	MTHFD1L is an enzyme involved	Mitochondrial folate abnormality	Vitamin B12, Choline	
Metabolism /		L				in THF synthesis in mitochondria			
Methylation (FOCM)									
Folate One-Carbon	rs1801131	MTHFR	А	GG: 2/2	0.00710%	Converts folic acid to	Low BH4, excess ammonia, low	L-methylfolate,	Folinic acid, Folate
Metabolism /						5-methyltetrahydrofolate	nitric oxide, does NOT lead to	Vitamin B3,	
Methylation (FOCM)							high homocysteine, however high	Potassium, Ornithine,	
							superoxide	Vitamin B6, Vitamin	
								B12, Vitamin C,	
								Rooibos, Manganese	
Folate One-Carbon	rs1805087	MTR	Α	AG: 1/2	34.2065%	Converts homocysteine into	Upregulation that can deplete	Methyl B12,	
Metabolism /						methionine	methyl-b12.	L-methylfolate,	
Methylation (FOCM)								Lithium orotate,	
								Grapeseed extract	
Folate One-Carbon	rs1801394	MTRR	Α	GG: 2/2	19.7362%	Methylates, recycles vitamin b12	Poor methylation of Vitamin B12	Methyl B12,	
Metabolism /							leading to higher homocysteine	L-methylfolate	
Methylation (FOCM)							levels.		

Category	RSID	Gene	Expected	Genotype: Risk	Genotype Freq	Gene Function	Consequences	Encourage	Avoid
Folate One-Carbon Metabolism / Methylation (FOCM)	rs1802059	MTRR	G	AG: 1/2	42.7445%	Methylates, recycles vitamin b12	Less active enzyme	Methyl B12	
HPA axis / Endocrine	rs1501299	ADIPOQ	С	GT: 1/2	43.8136%	Important adipokine involved in the control of fat metabolism and	Decreased adiponectin	Omega-3 fatty acids like fish oil, Coffee,	
						insulin sensitivity, with direct anti-diabetic, anti-atherogenic and anti-inflammatory activities.		Leucine, Magnesium, Fiber, Exercise	
HPA axis / Endocrine	rs1501899	CaSR	G	AA: 2/2	14.7929%	Calcium sensitive receptor	s7652589 and rs1501899 were also associated with nephrolithiasis in patients with normal citrate excretion	Vitamin K, Magnesium	Calcium
HPA axis / Endocrine	rs1801260	CLOCK	А	AG: 1/2	34.2473%	Circadian Locomotor Cycles Kaput	Late sleeping time	Be mindful of sleep time	
HPA axis / Endocrine	rs2234693	ESR1	Т	CC: 2/2	20.3175%	Estrogen receptor alpha	Female health affected	Diindolylmethane	
HPA axis / Endocrine	rs9340799	ESR1	А	AG: 1/2	39.4495%	Estrogen receptor alpha	Female health affected	Diindolylmethane	
HPA axis / Endocrine	rs1256030	ESR2	С	AG: 1/2	47.4890%	Estrogen receptor beta	Female health affected	Diindolylmethane	
HPA axis / Endocrine	rs560887	G6PC2	Т	CC: 2/2	72.8756%	This gene encodes an enzyme belonging to the glucose-6-phosphatase catalytic subunit family. These enzymes are part of a multicomponent integral membrane system that catalyzes the hydrolysis of glucose-6-phosphate, the terminal step in gluconeogenic and glycogenolytic pathways, allowing the release of glucose into the bloodstream. The family member encoded by this gene is found in pancreatic islets.	Fasting blood glucose level higher. This is actually the more common form	Chromium, Vanadium	High carb diets
HPA axis / Endocrine	rs1866388	NR3C1	G	AA: 2/2	60.1431%	Glucocorticoid receptor	Mutation associated with generalized glucocorticoid resistance, high cortisol, CFS	Phosphatidylserine, Possibly ketogenic diet	

Category	RSID	Gene	Expected	Genotype: Risk	Genotype Freq	Gene Function	Consequences	Encourage	Avoid
HPA axis / Endocrine	rs852977	NR3C1	G	AA: 2/2	56.1304%	Glucocorticoid receptor	Mutation associated with	Phosphatidylserine,	
							generalized glucocorticoid	Possibly ketogenic	
							resistance, high cortisol, CFS	diet	
HPA axis / Endocrine	rs1544410	VDR	G	CT: 1/2	42.7506%	Vitamin D Receptor	Downregulated Vitamin D	Vitamin D3, Sage,	Methyl donors
							receptor	Rosemary	
Cardiovascular	rs4654748	ALPL	С	CT: 1/2	45.9348%	alkaline phosphatase	Lower concentration b6	Vitamin B6	
Cardiovascular	rs5882	CETP	G	AG: 1/2	48.7481%	Cholesterol ester transfer protein	Cholesterol levels affected	Low fat diet	
Cardiovascular	rs854571	PON1	С	CT: 1/2	48.5938%	Major antiatherosclerotic	Decreased function	Omega-3 fatty acids	Cholesterol, High fat
						component of HDL		like fish oil, Fat	diet
								soluble antioxidants,	
								Vitamin K	
Cardiovascular	rs2516839	USF1	G	CT: 1/2	49.8381%	Upstream Stimulatory Factor 1	Cholesterol levels affected	Fiber	High fat diet
Digestion / Elimination	rs6564851	BCMO1	G	TT: 2/2	20.5608%	Key enzyme in beta-carotene	reduced catalytic activity by 48%	Vitamin A	
					1	metabolism to vitamin A.			
Digestion / Elimination	rs6420424	BCMO1	А	AG: 1/2	49.4600%	Key enzyme in beta-carotene	reduced catalytic activity by 59%	Vitamin A	
						metabolism to vitamin A.			
Digestion / Elimination	rs7501331	BCMO1	С	CT: 1/2	27.3055%	Key enzyme in beta-carotene	poor converter	Vitamin A	
						metabolism to vitamin A.			
Digestion / Elimination	rs492602	FUT2	Т	GG: 2/2	20.9144%	Fucosyltransferase 2 enzyme	Reduced intestinal microbiota	Probiotics	
						which determines 'secretor status'	diversity but higher vitamin B12		
							levels		
Digestion / Elimination	rs601338	FUT2	G	AA: 2/2	20.6845%	Fucosyltransferase 2 enzyme	Reduced intestinal microbiota	Probiotics	
						which determines 'secretor status'	diversity, non secretor		
Digestion / Elimination	rs602662	FUT2	G	AA: 2/2	21.8525%	Fucosyltransferase 2 enzyme	Reduced intestinal microbiota	Probiotics	
						which determines 'secretor status'	diversity. Interferes with		
							absorption of B12. Individuals on		
							vegetarian diet with GG		
							(homozygous major genotype)		
							have significantly lower levels of		
							vitamin B(12).		

Category	RSID	Gene	Expected	Genotype: Risk	Genotype Freq	Gene Function	Consequences	Encourage	Avoid
Digestion / Elimination	rs10889677	IL-23R	С	AA: 2/2	15.1568%	Important part of the inflammatory	Affects intestinal health	Probiotics, Omega-3	
						response against infection. It		fatty acids like fish oil,	
						promotes upregulation of the		Vitamin D3	
						matrix metalloprotease MMP9,			
						increases angiogenesis and			
						reduces CD8+ T-cell infiltration.			
Energy / Oxidation	rs10370	SOD2	G	GT: 1/2	N/A	Mitochondrial Superoxide	Decreased gene function. Noise	Manganese, Vitamin	Alcohol, Noise
						Dismutase 2	induced hearing loss, rs10370	E in tocotrienol form	(greater chance for
							'TT', rs4880 'GG' diplo-genotype		hearing loss)
							(diplotype) was associated with		
							more gray matter shrinkage in 76		
							individuals who report chronic		
							high levels of alcohol		
							consumption.		
Energy / Oxidation	rs4880	SOD2	А	AG: 1/2	48.9123%	Mitochondrial Superoxide	Decreased gene function. Noise	Manganese, Vitamin	Alcohol, Noise
						Dismutase 2	induced hearing loss, rs10370	E in tocotrienol form	(greater chance for
							'TT', rs4880 'GG' diplo-genotype		hearing loss)
							(diplotype) was associated with		
							more gray matter shrinkage in 76		
							individuals who report chronic		
							high levels of alcohol		
							consumption.		