
The 道(Tao) of Parallelism in Algorithms

Zhuoran Shi

Exploiting parallelism in irregular algorithms

Parallel programming needs new abstractions
- dependence graphs are inadequate: cannot represent parallelism in irregular algorithms

New abstraction:
- operator formulation
- data centric abstraction

(regular algorithms become special case)

Key insights
- amorphous data parallelism (ADP) is ubiquitous
- TAO analysis: structure in algorithms

- use TAO structure to exploit ADP efficiently

Inadequacy of static dependence graphs

Node: computations

Ege: dependeces between computations

> computations that are not ordered by the transitive closure of the dependence
relation can be executed in parallel.

> dependences between computations in irregular algorithms are functions of
runtime data values, so they cannot be rep- resented usefully by a static
dependence graph.

Inadequacy of static dependence graphs - Example

Delaunay mesh refinement
- Don’t care non-determinism
- final mesh depends on order in
- which bad triangles are processed

Data structure: graph
- nodes: triangles
- edges: triangle adjacencies

Parallelism
- triangles with disjoint cavities can be processed in

parallel
- parallelism depends on runtime values
- static dependence graph cannot be generated
- parallelization must be done at runtime

example: Delaunay Mesh Refinement
(DMR)

 Operator formulation of algorithms

> algorithm is viewed in terms of its
action(operator) on data structure

- active elements
- neighbourhoods: nodes that might be

read/written
- ordering

> Amorphous data parallelism (ADP)
- process active nodes in parallel, subject to

neighborhood and ordering constraints
- how do we exploit ADP

Tao-analysis of algorithms

Amorphous data-parallelism - Implementation Strategy

● Baseline: speculative parallel execution
● Exploiting structure to reduce overheads: is it a cautious algorithm
● Exploiting structure for coordinated scheduling

○ autonomous （baseline implementation）
■ uncoordinated: online conflict detection, rollback for correct execution

○ coordinated (eliminating speculative overheads)
■ coordinated: only non-conflicting iterations are scheduled for parallel execution

Case studies of algorithms: tao-analysis + implementation strategy

● Operator: Morph
○ refinement
○ coarsening

■ edge contraction
■ node elimination
■ sub-graph contraction

○ general morph
● Operator: Local computation

○ topology-driven
○ data-driven

● Operator: Reader

Case studies of applications

Barnes-Hut n-body simulation: four phases, each with a
different structural classification

1. Tree-build:
a. topology: tree
b. operator: refinement morph
c. active nodes: topology-driven and unordered

2. Summarize:
a. topology: tree
b. operator: local computation
c. active nodes: topology-driven and ordered

3. Force-computation:
a. topology: tree
b. operator: reader
c. active nodes: unordered

4. Force update:
a. topology: set
b. operator: local computation
c. active nodes: topology-driven and unordered

Extensions

1. Nested amorphous data-parallelism
a.

2. Pipeline parallelism
a.

3. Task parallel execution
a.

Conclusion

- to do

