European Junior Olympiad in Informatics 2019
August 23 - August 29, 2019
Maribor, Slovenia
covering

T-Covering

If you have ever played Tetris, you might know that one of the figures looks as follows:

We will call this figure a T-tetromino; a tetromino is just a fancy word for a connected geometric figure composed of four cells. The cell marked with \times will be called the center cell.

Manca draws a rectangular grid with m rows and n columns and writes a number into each cell. The rows of the table are numbered from 0 to $m-1$ and the columns are numbered from 0 to $n-1$. She also marks some cells as special, e.g., by painting them red. After that, she asks Nika, a friend of hers, to place T-tetrominoes on the grid in such a way that the following conditions are met:

- The number of T-tetrominoes has to be the same as the number of special cells. For each Ttetromino, its center cell has to lie on some special cell.
- No pair of T-tetrominoes may overlap.
- All T-tetrominoes have to completely lie on the grid.

Note that there are four possible orientations of each T-tetromino $(\top, \perp, \vdash$, and \dashv).
If the conditions cannot be satisfied, Nika should answer No; if they can, she has to find such a placement of T-tetrominoes that the sum of the numbers in the cells covered by the T-tetrominoes is maximum possible. In this case, she has to tell Manca the maximum sum.

Write a program to help Nika solve the riddle.

Input

Each line contains a sequence of integers separated by a single space.
The first line of the input contains the integers m and n. Each of the following m lines contains n integers from the interval $[0,1000]$. The j-th integer in the i-th line represents the number written in the j-th cell of the i-th row of the grid. The next line contains an integer $k \in\{1, \ldots, m n\}$. This line is followed by k more lines, each of which consists of integers $r_{i} \in\{0, \ldots, m-1\}$ and $c_{i} \in\{0, \ldots, n-1\}$, which represent the position (the row index and column index, respectively) of the i-th special cell. The list of special cells does not contain any duplicates.

Output

Print the maximum possible sum of the numbers in the cells covered by the T-tetrominoes, or No if no valid placement of T-tetrominoes exists.

Constraints

- $1 \leq m n \leq 10^{6}$.

Subtasks

- 5 points: $k \leq 1000$; for each pair of distinct special cells i and j, we have $\left|r_{i}-r_{j}\right|>2$ or $\left|c_{i}-c_{j}\right|>2$.
- 10 points: $k \leq 1000$; for each pair of distinct special cells i and j, it holds that if $\left|r_{i}-r_{j}\right| \leq 2$ and $\left|c_{i}-c_{j}\right| \leq 2$, then $\left(r_{i}, c_{i}\right)$ and $\left(r_{j}, c_{j}\right)$ are adjacent by side, or more formally the following statement is true $\left(\left|r_{i}-r_{j}\right|=1\right.$ and $\left|c_{i}-c_{j}\right|=0$) or ($\left|r_{i}-r_{j}\right|=0$ and $\left|c_{i}-c_{j}\right|=1$).
- 10 points: $k \leq 1000$; for each pair of distinct special cells i and j, it holds that if $\left|r_{i}-r_{j}\right| \leq 2$ and $\left|c_{i}-c_{j}\right| \leq 2$, then $\left|r_{i}-r_{j}\right| \leq 1$ and $\left|c_{i}-c_{j}\right| \leq 1$.
- 10 points: $k \leq 1000$; all special cells lie in the same row.
- 15 points: $k \leq 10$.
- 20 points: $k \leq 1000$.
- 30 points: no additional constraints.

Example 1

Input

```
5
3 8 1 0 9
4 6 2 5 8 3
197395
2 6 8 4 5 7
3 8 2 7 3 6
3
1
2
34
```


Output

Comment

To achieve the maximum sum, Nika may place the tetrominoes as follows:

- -1 on the cell $(1,1)$;
- \vdash on the cell $(2,2)$;
- \perp on the cell $(3,4)$.

Example 2

Input

56
738109
462583
197395
268457
382736
3
11
22
33

Output

No

