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The regulation of plant growth by the circadian clock
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Department of Plant Biology, Michigan State University, East Lansing, MI, USA

INTRODUCTION

The circadian clock is a biological oscillator that maintains
rhythms of about 24 h under constant environmental condi-
tions. In addition, the periodicity of biological oscillators
does not change significantly with changes in temperature
over the physiological range, an effect described as tempera-
ture compensation. In photosynthetic organisms numerous
processes are regulated by the circadian clock, such as carbon
fixation, transpiration and other ecophysiological traits, as
well as the cell cycle, flowering time, stress responses and
gene expression (Yakir et al. 2007; McClung 2008; Edwards
et al. 2011; Matsuo & Ishiura 2011).

It is currently postulated that this endogenous rhythm allows
the organisms to predict daily as well as seasonal environmen-
tal changes and coordinate their physiological process to opti-
mise their growth. In support for this hypothesis, it has been
observed that in several cases organisms grow more under
light ⁄ dark diel cycles of overall length that match their endoge-
nous circadian rhythms (Ouyang et al. 1998; Woelfle et al.
2004; Dodd et al. 2005; Graf et al. 2010; Yerushalmi et al.
2011). When their endogenous period differs from 24 h, such
as under different temperatures or due to mutations in clock
components, the optimal cycle length is often not 24 h (Ketell-
apper 1960; Dodd et al. 2005; Graf et al. 2010). Light ⁄ dark
cycles of an overall length shorter or longer than 24 h are
termed T-cycles. In Arabidopsis thaliana, toc1 and cca1 ⁄ lhy,
both short period mutants with a period of about 20 h, grow
better at T-cycles of 20 h than in 28 h cycles and the reverse is
true for the long period ztl mutant that displays an endogenous
period of about 28 h (Somers et al. 1998, 2000; Dodd et al.
2005; Graf et al. 2010). Interestingly, under the tested

conditions, the optimal cycle length for toc1 and ztl mutants is
still 24 h (Graf et al. 2010). Thus the role of the clock appears
to be more complex than just matching internal with external
rhythms. Furthermore, changes in expression of clock genes in
Arabidopsis hybrids and allopolyploids have been correlated
to the improved growth of these lines (Ni et al. 2009). How-
ever, the mechanisms leading to these changes in clock gene
expression remain unknown.

Numerous endogenous and environmental factors regulate
cell and organ growth in photosynthetic organisms and many
of these factors are modulated through the circadian clock
(Fig. 1). Recent advances are beginning to shed light on the
role of the clock in these different processes and how these
interactions specify the timing of growth under both light ⁄ -
dark and constant environmental conditions.

CIRCADIAN GROWTH RHYTHMS IN PLANTS

Numerous diel growth rhythms have been described in vas-
cular plants (Walter et al. 2009), and in several cases these
rhythms are maintained under constant conditions (Fig. 1).
Growth in plants is regulated by environmental factors such
as temperature, light and water availability, as well as by car-
bon availability, developmental stage and the circadian clock.
The interaction between these factors determines the phase of
maximal growth rate in different plant organs (Fig. 1).

In dicots such as Nicotiana tabacum, Ricinus communis,
Arabidopsis thaliana and Flaveria bidenti, growth in older
leaves predominantly occurs at the end of the night period
and beginning of the light period when grown under light ⁄
dark cycles. This pattern does not change significantly when
temperature cycles are supplemented to the light ⁄ dark cycles.
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ABSTRACT

Circadian regulated changes in growth rates have been observed in numerous plants
as well as in unicellular and multicellular algae. The circadian clock regulates a
multitude of factors that affect growth in plants, such as water and carbon avail-
ability and light and hormone signalling pathways. The combination of high-resolu-
tion growth rate analyses with mutant and biochemical analysis is helping us
elucidate the time-dependent interactions between these factors and discover the
molecular mechanisms involved. At the molecular level, growth in plants is modu-
lated through a complex regulatory network, in which the circadian clock acts at
multiple levels.
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Under constant light and temperature conditions, the pattern
continues, with a shift into the subjective day (Walter et al.
2002; Walter & Schurr 2005; Wiese et al. 2007; Poire et al.
2011). In contrast, under diel cycles Zea mays displays only a
small increase in growth at the beginning of the dark and
light periods whereas temperature cycles promote strong
growth rate oscillations (Poire et al. 2011). With temperature
cycles, the growth rate peaks a few hours after the maximum
temperature is reached, in a similar pattern as observed for
field-grown corn and sorghum (Johnson 1967; Acevedo et al.
1979). No growth rhythms were observed for either rice or
corn under constant light conditions (Poire et al. 2011).
These results suggest that monocot leaf growth is strongly
influenced by temperature but not by the circadian clock.

Interestingly, the maximum rate of leaf growth in Arabid-
opsis varies depending on the leaf age (Pantin et al. 2011).
Under well-watered conditions, very young leaves display
maximum growth during the day and low growth at night.
Depending on the ecotype, 2–5 days after emergence, maxi-
mal growth shifts to the night period, in agreement with
other studies (Poire et al. 2011).

Aside from temperature and age of the leaf, plant growth
is influenced by carbon availability in a clock-dependent
manner (Fig. 1). In the presence of exogenous sucrose, in
Arabidopsis the rate of hypocotyl growth oscillates for several
days, with a maximum rate at the end of the night in light ⁄
dark cycles and during the subjective day under constant
light conditions (Dowson-Day & Millar 1999; Nozue et al.
2007). In the absence of exogenous sucrose, hypocotyls grow
for only 1 day, with peaks at both beginning of the day and
beginning of the night, after which growth ceases (Stewart
et al. 2011).

Root growth rates also display rhythms under diel growth
conditions, which continue under both constant light and
constant dark conditions in rice and Arabidopsis but not in
tobacco (Nagel et al. 2006; Iijima & Matsushita 2011; Maizel
et al. 2011; Yazdanbakhsh et al. 2011). In Arabidopsis, root
growth rate starts increasing during the night, with a peak a
couple of hours after dawn (Maizel et al. 2011; Yazdanbakhsh
et al. 2011). In contrast, maximum growth rates occur during
the day in rice (Iijima & Matsushita 2011). It is important to
mention that roots were never illuminated in the rice experi-
ments but were illuminated during the light periods in the
Arabidopsis experiments. In order to study the shoot effect
on root growth it might be important to carry out these

experiments with darkened roots in order to avoid direct
light effects on these organs.

The clock also regulates phase-specific growth and cell
division in unicellular and multicellular algae (Makarov et al.
1995; Mori et al. 1996; Luning et al. 1997; Nikaido & John-
son 2000; Serrano et al. 2009), with cell division occurring
during the subjective night. The observation that growth rates
oscillate under constant environmental conditions in different
plant organs and different species with periods of �24 h
indicates that the circadian clock plays a nearly universal role
in the regulation of growth in photosynthetic organisms.

THE CIRCADIAN CLOCK IN ARABIDOPSIS THALIANA

The circadian clock in photosynthetic eukaryotes is regulated
by multiple interlocked transcriptional ⁄ translational feedback
loops. The clock of A. thaliana is the best described so far
and therefore a more detailed summary will be restricted to
this model plant.

The Arabidopsis circadian clock has a complex intercon-
nected structure formed by positive and negative feedback
loops. The dawn-expressed MYB transcription factors CCA1
and LHY repress the expression of evening genes TOC1,
LUX, ELF3 and ELF4 (Alabadi et al. 2001; Hazen et al. 2005;
Kikis et al. 2005; Li et al. 2011). In turn, the expression of
these evening genes is necessary for CCA1 and LHY transcrip-
tion (Alabadi et al. 2001; Hazen et al. 2005; Kikis et al. 2005;
Pruneda-Paz et al. 2009; Li et al. 2011). Furthermore, CCA1
and LHY act positively on the expression of PRR9 and PRR7
that are expressed during the day (Farre et al. 2005). PRR9
and PRR7 as well as PRR5 directly repress CCA1 and LHY
expression (Nakamichi et al. 2010).

Recent results indicate that the activation of CCA1 and LHY
by evening-expressed clock genes is indirect (Fig. 2). It has
been shown that TOC1, at least partly, activates CCA1 expres-
sion by counteracting the negative effect of the CCA1 repressor
CHE1 (Pruneda-Paz et al. 2009). ELF3, ELF4 and LUX have
been shown to directly repress the expression of PRR9 (Dixon
et al. 2011; Helfer et al. 2011). Since the levels of PRR7 are also
elevated in elf3 mutants (Dixon et al. 2011), the positive effect
on CCA1 and LHY expression might be via the regulation of
these repressors, PRR9 and PRR7, by ELF3, ELF4 and LUX.
Based on mathematical modelling and gene expression analy-
ses, a third negative transcriptional feedback loop between
TOC1 and GI has been proposed (Locke et al. 2005, 2006).

Fig. 1. Summary of current observations on growth dynamics and of factors affecting growth rates in plants. ‘Diel’ corresponds to growth under light ⁄
dark and ⁄ or warm ⁄ cold conditions. ‘Circadian’ describes growth under constant environmental conditions, either constant light or constant darkness. In

the middle panel, green represents leaves, dark brown is stems and light brown is roots. References are provided in the text.
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Two additional transcriptional regulatory loops have been
recently described. RVE8, a MYB transcription factor closely
related to CCA1, is involved in a feedback loop with PRR5
(Rawat et al. 2011). In addition, RVE8 positively regulates
the expression of TOC1 (Farinas & Mas 2011). This indicates
that RVE8 could be the long-missing activator of several
evening-expressed genes. Furthermore, LWD1 and LWD2 are
two WD domain-containing proteins expressed in the even-
ing that play a role in regulation of the circadian period in
A. thaliana (Wu et al. 2008). LWD1 forms a positive regula-
tory loop with PRR9 (Fig. 2) and also directly regulates the
expression of TOC1 and PRR5 (Wang et al. 2011).

Clock gene expression in several organisms is regulated via
post-transcriptional processes (recently reviewed in Staiger &
Green 2011). In Arabidopsis, alternative splicing plays an
important role in maintaining rhythms (Hong et al. 2010;
Sanchez et al. 2010). PRMT5 is a protein involved in regula-
tion of the spliceosome, and prmt5 mutants are affected in
the splicing of PRR9 leading to a long-period phenotype
(Deng et al. 2010; Hong et al. 2010; Sanchez et al. 2010).

The activity and levels of many of these clock components
are also post-translationally regulated. The F-box protein
ZTL is a novel photoreceptor that mediates the degradation
of both PRR5 and TOC1 (Mas et al. 2003; Kiba et al. 2007;
Baudry et al. 2010). In addition, PRR3 stabilises TOC1 most
likely by inhibiting the TOC1–ZTL interaction (Para et al.
2007). GI regulates stability of ZTL (Kim et al. 2007) and
PRR5 regulates the nuclear import and phosphorylation of
TOC1 (Wang et al. 2010) (Fig. 2). PRR7 protein levels are
regulated by both light and the circadian clock via a still
unknown mechanism (Farre & Kay 2007). Furthermore,

PRR9 protein levels are also regulated by light (Ito et al.
2007) and the content of ELF3 and GI is modulated by
COP1 (Yu et al. 2008). CCA1 is also phosphorylated by CK2,
which is important for its DNA binding activity and affects
temperature compensation in Arabidopsis (Sugano et al. 1998,
1999; Daniel et al. 2004; Portoles & Mas 2010).

Mutant analysis has led to the discovery of several other
genes with important roles in maintaining rhythmicity in
Arabidopsis. Currently, data are lacking to directly relate these
genese into the above-mentioned feedback loops (Ding et al.
2007; Kim et al. 2008; Jones et al. 2010; Lu et al. 2010;
Johansson et al. 2011; Jones & Harmer 2011). Finally, numer-
ous light signalling components also play important roles in
maintaining rhythms under constant conditions (Millar et al.
1995; Millar & Kay 1996; Devlin & Kay 2000; Staiger et al.
2003; Allen et al. 2006; Yu et al. 2008; Strasser et al. 2010; Li
et al. 2011). Recent results are beginning to shed light on
how light and circadian signalling networks interact. For
example, the expression of ELF4 is regulated by light via the
constitutive activators FHY3, FAR1 and HY5, and is
repressed in a time-specific manner by the clock components
CCA1 and LHY (Li et al. 2011). In addition, it has been
recently shown that DET1 mediates the transcriptional
repression activity of CCA1 and LHY (Lau et al. 2011).

CONSERVATION OF CLOCKS AMONG PHOTOSYN-
THETIC EUKARYOTES

Although little is known about the mechanisms regulating
the circadian clock in other plants, orthologues of Arabidopsis
genes have been identified in a number of vascular plants

Fig. 2. Graphic representation of the circadian clock and of signalling processes regulating hypocotyl growth in Arabidopsis thaliana. Black lines indicate

transcriptional regulation by a known mechanism. Blue lines, indicate post-translational regulation processes and grey lines, represent processes in which

the molecular mechanisms remains unknown. Aux, auxin; GA, gibberellin; R, red light; FR, far-red light.
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and functional conservation has been described in several
cases (for a recent review see Song et al. 2011). Furthermore,
recent genomic efforts have identified orthologues of Arabid-
opsis clock genes in Selaginella (Banks et al. 2011) and Physc-
omitrella (Okada et al. 2009a,b; Holm et al. 2011; Satbhai
et al. 2011b). Functional characterisation of putative clock
genes in Physcomitrella suggests a functional conservation
with vascular plants (Okada et al. 2009b; Satbhai et al.
2011a). Green algae have also been shown to have at least a
subset of similar clock genes (Corellou et al. 2009; Matsuo &
Ishiura 2011). Interestingly, post-transcriptional regulation is
sufficient for rhythmicity in the green alga Ostreoccocus, as is
the case in cyanobacteria (Nakajima et al. 2005; O’Neill et al.
2011). Little is known about the mechanisms underlying the
circadian clock in red algae and secondary endosymbionts.
However, circadian rhythms have been detected in all algae
analysed and have been extensively studied in some systems
such as the dinoflagellate Gonyaulax polyedra (now Lingulodi-
nium polyedra) (Suzuki & Johnson 2001; Hastings 2007).

ROLE OF CELL EXPANSION AND CELL DIVISION ON
CIRCADIAN GROWTH RHYTHMS

The coordination of cell expansion, DNA replication and cell
division is necessary for optimal growth in plants. The circa-
dian clock controls reversible cell expansion processes such as
stomatal opening (Gorton et al. 1989; Meidner & Willmer
1993; Salome et al. 2002) and pulvini motor cell volume
changes (Satter et al. 1974; Mayer & Fischer 1994). Circadian
regulated growth has also been observed in tissues where
growth is due to cell expansion. In the Arabidopsis hypocotyl
the majority of cells are formed in the embryo and, therefore,
growth is due to cell volume change (Gendreau et al. 1997;
Saibo et al. 2003). The same occurs at the later stages of leaf
expansion, since cell division rates decrease rapidly during
the first 6–8 days after leaf emergence (Donnelly et al. 1999;
De Veylder et al. 2001; Autran et al. 2002; Asl et al. 2011).
This shows that the circadian clock regulates cell expansion
processes that lead to organ growth.

It remains an open question whether the circadian clock
regulates DNA replication and ⁄ or cell division in plants. In
Arabidopsis, cell division rates in different organs do not
always match a 24-h cycle, although maximal cell division
rates in leaves are about 1.0–1.6 divisions per day (De Veylder
et al. 2001; Autran et al. 2002). In plants, DNA replication
does not necessarily correlate with cell division and cells
undergo several cycles of endoduplication during cell differen-
tiation. Furthermore, nuclear ploidy level correlates strongly
with cell size (Sugimoto-Shirasu & Roberts 2003). It will be
interesting to study whether DNA replication and ⁄ or cell divi-
sion events occur continuously or are regulated in a diel
and ⁄ or circadian fashion. The expression of several cell cycle
genes oscillates in constant conditions (Blasing et al. 2005).
For example, the expression of the mitotic marker CYCB1;1
cycles under light ⁄ dark, with a peak in the middle of the night
(http://diurnal.cgrb.oregonstate.edu/). In addition, the expres-
sion of CYCD3;3, which is involved in regulating the duration
of the mitotic phase and the transition to endocycles (Dewitte
et al. 2007), cycles in both light ⁄ dark and constant light con-
ditions, peaking during the second part of the night and at
dawn, respectively. CYCD3;1 and CYCD3;2 both cycle strongly

in light ⁄ dark but only weakly under constant light. Moreover,
leaf growth rhythms oscillate under light ⁄ dark cycles at early
stages of leaf development where there is a high mitotic index
(Pantin et al. 2011). Taken together, these results indicate that
circadian-regulated growth may be partly attributed to clock-
regulated cell division.

In unicellular and multicellular algae, cell division occurs
during the night (Sweeney & Hastings 1958; Edmunds &
Laval-Martin 1984; Carre & Edmunds 1993; Goto & Johnson
1995; Makarov et al. 1995; Titlyanov et al. 1996; Luning et al.
1997) as observed in cyanobacteria (Mori et al. 1996). This
process is regulated ⁄ gated by the circadian clock and has
been proposed to protect DNA from damaging UV radiation
during the DNA replication process (Nikaido & Johnson
2000). Interestingly, it has recently been shown in Arabidopsis
that UVB-induced gene expression is gated via the circadian
clock, but no time-specific changes in UV sensitivity have
been detected so far (Feher et al. 2011). New technologies
such as sheet fluorescence microscopy, which allows imaging
of whole organs at a single-cell resolution, will allow us to
differentiate growth due to cell division and cell expansion,
and analyse rates of cell division over longer time scales at
the whole organ level (Maizel et al. 2011; Sena et al. 2011).

WATER AND CARBON AVAILABILITY AFFECT
GROWTH RHYTHMS

Negative water potential is necessary for growth. If the
growth-induced water potential is smaller than the gradient
due to transpiration, cell expansion will be limited (Tang &
Boyer 2002; Boyer & Silk 2004). Circadian changes in water
potential regulate leaf movement in Phaseolus vulgaris, which
is caused by reversible changes in cell volume (Kiyosawa
1979). The circadian clock also regulates stomatal conduc-
tance and transpiration (Sothern et al. 2002; Dodd et al.
2004, 2005). Therefore, circadian growth rhythms might be
partly regulated by circadian changes in water availability in
different parts of the plant.

It has been proposed that diurnal changes in transpiration
are due to changes in ABA levels (Tallman 2004). Since ABA
levels are modulated by clock components, they could also
explain oscillations in transpiration rates under constant con-
ditions (Fukushima et al. 2009). In addition, the expression of
many ABA-modulated genes is regulated by the circadian clock
(Mizuno & Yamashino 2008). For example, it has been shown
that TOC1 represses the expression of GUN5, which is induced
by ABA (Legnaioli et al. 2009). However, changes in night
transpiration rates in Arabidopsis do not affect overall plant
growth in well-watered plants (Christman et al. 2009), and
therefore the role of ABA and transpiration rate on plant
growth under non-stress conditions remains to be investigated.

In Arabidopsis roots, water content oscillates, with a peak
at dusk (Takase et al. 2011). These oscillations are main-
tained under both constant light and darkness, with the peak
shifted to the subjective night. These circadian oscillations
are absent in the arrhythmic elf3-1 mutant. As mentioned,
Arabidopsis roots start growing at dusk, and their growth
peaks at the end of the subjective night under constant con-
ditions (Yazdanbakhsh et al. 2011), indicating that high water
content precedes maximal growth rates. At the whole seedling
level, the expression of the cell membrane aquaporins PIP1;2
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and PIP2;1 is clock-regulated (Takase et al. 2011). The
authors hypothesise that increased aquaporin levels at dawn
increase water transport from the root to the shoot. This
increased influx could correspond with the acceleration in
growth rate at dawn in Arabidopsis leaves and hypocotyls
under both light ⁄ dark and constant light conditions (Nozue
et al. 2007; Poire et al. 2011; Stewart et al. 2011).

Aquaporins could also be involved in both reversible as
well as irreversible circadian-regulated changes in cell volume
in leaves. Leaf movements can be caused by differential
growth in the adaxial and abaxial sides of leaf blades and pet-
ioles or by the reversible changes in turgor in legumes (Ueh-
lein & Kaldenhoff 2008). Oscillations in the expression of
plasma membrane aquaporins in both pulvinus cells of
Samanea saman and Nicotiana tabacum petioles correlate
with changes in water permeability under constant light con-
ditions (Moshelion et al. 2002; Siefritz et al. 2004).

Overall plant growth is also limited by the rate of degrada-
tion of transient leaf starch at night, a process regulated by
the circadian clock. Short period clock mutants (cca1 ⁄ lhy)
that degrade transient starch faster and therefore ‘run out of’
starch by the end of the night display low biomass accumula-
tion (Graf et al. 2010). This phenomenon is not observed
when these mutant plants are grown in shorter T-cycles that
match their endogenous short period. In a similar way, leaves
of starchless Arabidopsis mutants display reduced nocturnal
growth (Wiese et al. 2007).

As described above, the presence of exogenous sucrose
leads to elevated growth rates of Arabidopsis hypocotyls at
the end of the night (Nozue et al. 2007; Stewart et al. 2011).
In the absence of exogenous sucrose, Arabidopsis hypocotyls
grow in the morning and at the beginning of the night until
the cotyledons have expanded. Sucrose addition leads to the
majority of hypocotyl growth occurring at the end of the
night, and continued extension of the hypocotyl growth
phase after the expansion of the cotyledons (Stewart et al.
2011). This indicates that hypocotyl growth is carbon-limited,
particularly during the night.

Sink organ growth is dependent on an imported carbon
source and, therefore, carbon availability is necessary for
growth and growth oscillations in roots. For example, root
growth stops after removal of the shoot in N. tabacum (Nagel
et al. 2006). In 11- to 15-day-old Arabidopsis roots, the trans-
fer of the plant to constant darkness stops root growth, but
one additional weak growth cycle is achieved when the seed-
lings are placed on media containing sucrose. This exogenous
sucrose, however, is not able to maintain either the overall
root growth rate or the strong growth rate oscillations of
light-grown Arabidopsis seedlings (Yazdanbakhsh et al. 2011).
It has been shown that the circadian clock in Arabidopsis
roots, in contrast to leaves, is influenced by sucrose and leaf
photosynthesis (James et al. 2008). Therefore, the small effect
of exogenous sucrose on root growth could indicate that this
sucrose is not metabolised as efficiently as endogenous sugars,
and ⁄ or that fluctuations in sucrose availability from the
leaves is necessary for entraining the circadian clock and
maintaining optimal growth oscillations in the roots.

The circadian-controlled supply of carbon from the shoot
during the night is necessary for optimal root growth. The
roots of Arabidopsis pgm mutants, which are starchless, as
well as roots of the cca1 ⁄ lhy double mutant that have reduced

leaf starch levels early during the night, display very low
growth rates at the end of the night (Yazdanbakhsh et al.
2011). These results contrast with cyclic growth in constant
darkness in very young rice seedlings (Iijima & Matsushita
2011). This observation might be due to carbon coming from
the endosperm and not only from photosynthesis at early
stages of root development. Therefore, root developmental
stage is likely to have a strong influence on root growth.

It remains an open question whether the oscillations in
root growth rates under constant light conditions are caused
by changes in photosynthate availability from the shoots.
Although leaf starch accumulation in constant light follows a
circadian rhythm, there is no depletion of starch during the
subjective night in higher plants (Lu et al. 2005, 2006; Weise
et al. 2006). However, the levels of maltose, a product of
starch degradation, display strong circadian oscillations in
Arabidopsis (Lu et al. 2005). Furthermore, starchless mutants
still displayed circadian root growth rate oscillations under
constant light conditions (Yazdanbakhsh et al. 2011). Thus it
is still possible that export of photosynthate from the leaves
is controlled by the clock and might influence the root circa-
dian clock and its growth (James et al. 2008; Haydon et al.
2011).

Interaction between high carbon availability during the day
but high water availability during the night could explain the
changes in the time of maximal growth rates in Arabidopsis
leaves grown under light ⁄ dark cycles. As mentioned, young
Arabidopsis leaves grow predominantly during the day,
although under water stress growth occurs at night even dur-
ing the very early stages of development (Pantin et al. 2011).
In contrast, starchless mutants maintain the ‘growth in the
light’ pattern until later in development. Leaf turgor in
1-day-old leaves is higher at the end of the day than at the
end of the night, which is opposite to what is observed in
older leaves. In addition, young leaves accumulate less starch
at the end of the day and, therefore, might not be able to
maintain high growth rates during the night (Pantin et al.
2011). Detailed analysis of water and carbon availability and
growth rates in constant light will help us determine how
these factors affect circadian-regulated growth.

MOLECULAR MECHANISMS REGULATING GROWTH

The elongation of the Arabidopsis hypocotyl is the best-stud-
ied model at the molecular level. Recent discoveries show the
circadian clock modulates light, sugar and hormone signals
to regulate rhythmic growth of this organ under different
environmental conditions. In Arabidopsis, the increased
growth of the hypocotyl under short photoperiods and shad-
ing (low R ⁄ FR ratios) can be explained by the interaction of
the clock and light signals with the bHLH transcription fac-
tors PIF4 and PIF5. PIF4 and PIF5 RNA levels are regulated
by the circadian clock and peak in the first half of the day
under long days. Under shorter photoperiods, a larger pro-
portion of their expression occurs in the night period (Niwa
et al. 2009; Kunihiro et al. 2011; Nusinow et al. 2011). This
pattern of expression is regulated by the repression of PIF4
and PIF5 transcription through a complex formed by clock
components LUX, ELF3 and ELF4 (Fig. 2) (Nusinow et al.
2011). PIF4 and PIF5 protein levels are additionally regulated
by light in a phyB-dependent manner (Fig. 2). PIF4 and PIF5
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interact via their N-terminus PHYB-interacting domain with
PHYB (Khanna et al. 2004; Lorrain et al. 2008). They become
phosphorylated upon light exposure and are degraded by
activated phytochrome, thus their levels are elevated in the
shade and under low R ⁄ FR ratios if these conditions coincide
with high RNA levels (Nozue et al. 2007; Shen et al. 2007;
Lorrain et al. 2008; Hornitschek et al. 2009; Nusinow et al.
2011).

This is a novel external coincidence model that explains the
clock and photoperiod dependence of hypocotyl growth as
well as its shade avoidance response in Arabidopsis (Weinig
2000; Salter et al. 2003; Nozue et al. 2007; Niwa et al. 2009;
Coluccio et al. 2011; Kerwin et al. 2011; Kunihiro et al. 2011).
High levels of PIF4 and PIF5 during the night period explain
the long hypocotyl phenotype of several circadian clock
mutants and their different responses to different photoperi-
ods (Niwa et al. 2009). ATHB-2 is a far-red light-induced
gene that regulates cell expansion and the shade avoidance
response (Fig. 2) (Steindler et al. 1999). It is directly regulated
by PIF4 and PIF5 in a photoperiod-dependent manner (Kuni-
hiro et al. 2011). ATHB-2 is further regulated by a putative
circadian transcription factor, TZP, which is expressed in the
morning and is involved in the control of hypocotyl growth
(Fig. 2) (Loudet et al. 2008). These observations show that
growth is regulated through a complex regulatory network in
which the clock modulates several components. A similar
mechanism could regulate growth in other plants. The photo-
period-dependent growth of Physcomitrella protonemal colo-
nies is dependent on the circadian clock. Specifically, the
disruption of PpCCA1a and PpCCA1b, which leads to a short
period phenotype, also causes faster growth under long days
but not short days (Okada et al. 2009a,b). This finding sug-
gests that a clock-dependent photoperiod regulation of
growth might be conserved in non-vascular plants.

It has recently been shown that sucrose increases hypocotyl
growth rate and leads to elevated PIF5 protein levels in both
light and darkness in transgenic Arabidopsis plants constitu-
tively expressing PIF5 (Stewart et al. 2011). Furthermore, the
growth response to sucrose is significantly reduced in the pif
quadruple mutant (Leivar et al. 2009; Stewart et al. 2011). In
the wild type, PIF5 RNA levels are regulated by the circadian
clock and, therefore, it is likely that this sucrose-mediated
induction of PIF5 protein levels is dependent on the time of
day. This result would indicate that carbon induction of
hypocotyl growth is gated by the circadian clock and place
PIFs as central hubs integrating circadian, environmental and
metabolic signals.

The circadian clock gates the transcriptional regulation of
auxin-responsive genes as well as auxin-promoted hypocotyl
growth in Arabidopsis seedlings. Both maximal auxin-induced
gene expression and growth occur at the end of the night
(Covington & Harmer 2007). Since pif4pif5 double mutants
are less responsive to auxin-induced growth, this effect might
also be partly mediated by PIF4 and PIF5 (Nozue et al.
2011). It has recently been shown that PIF4 and PIF5 regulate
the expression of several auxin-inducible genes in a photope-
riod-dependent manner (Kunihiro et al. 2011), indicating
that they might be involved in the circadian gating of auxin
signals. In addition, the clock-regulated transcription factor
RVE1 mediates auxin-dependent hypocotyl growth, probably
by regulating auxin biosynthesis genes (Fig. 2) (Rawat et al.

2009) in a manner independent of PIF4 and PIF5. Auxin also
strongly influences the rhythmic growth of the Arabidopsis
floral stem (Jouve et al. 1998, 1999). The inhibition of stem
growth caused by decapitation can be reversed by auxin
treatment. This treatment also restores growth rate oscilla-
tions. These results suggest that although auxin levels cycle in
the stem and rosette leaves of Arabidopsis under both diel
and constant light conditions, peaking at dusk (Jouve et al.
1999; Rawat et al. 2009), auxin synthesis is not the only cause
of the growth rate oscillations. It will be interesting to study
whether PIF4 and PIF5 are involved in the floral stem auxin-
dependent rhythmic growth.

In a similar manner as auxin, it has recently been shown
that gibberellin (GA)-induced gene expression is also gated
by the circadian clock in Arabidopsis (Arana et al. 2011). In
addition, GA induces hypocotyl growth during the night but
not during the day. During the GA signalling process, the
binding of GA to the GID1 receptor leads to the degradation
of DELLA proteins (Gao et al. 2011). In turn, DELLA pro-
teins repress growth at least partly by inhibiting the activity
of PIF4 (Gao et al. 2011). Arana et al. (2011) showed that
the activation of DELLA expression only restricts hypocotyl
growth when it occurs during the night, but not during the
day. The RNA levels of the GA receptors GID1a ⁄ b ⁄ c cycle,
and cyclic growth occurs even when these receptors are
expressed constitutively, indicating that it is likely that GA
levels also oscillate. In contrast, a DELLA quintuple mutant
does not display growth oscillations, even though it does not
have clock defects. Thus cyclic repression of growth by DEL-
LAs is necessary for rhythmic hypocotyl growth. Although it
has been shown that DELLA proteins inhibit the activity of
PIF4 and that pif4 mutants display a reduced sensitivity to
GA (de Lucas et al. 2008), there is little overlap in gene
expression changes between a DELLA quintuple mutant
grown under light ⁄ dark cycles and pif quadruple mutants
grown under constant dark or light conditions (Arana et al.
2011). This discrepancy might be due to the different roles of
PIF transcription factors during early stages of photomorpho-
genesis and diurnal growth conditions.

CONCLUDING REMARKS

The circadian clock modulates numerous signalling and phys-
iological processes that regulate plant growth. In spite of
recent advances on this topic, several open questions remain.
For example, it is still unclear which are the mechanisms reg-
ulating growth oscillations under constant light conditions.
In the case of the Arabidopsis hypocotyl, PIF4 and PIF5
appear to play a role under constant conditions since pif
mutants display a short hypocotyl phenotype under constant
light (Leivar et al. 2008; Shin et al. 2009). However, since
PIF4 and PIF5 are degraded in the light, their function in
extended constant light conditions remains to be investigated.
There is also little known about the mechanisms regulating
time-dependent growth in tissues other than the Arabidopsis
hypocotyl. Environmental conditions differentially regulate
growth of different organs. For example, PIF4 and PIF5
mediate hypocotyl ⁄ stem elongation under low R ⁄ FR. How-
ever, under these conditions leaf blade growth is inhibited
(Tsukaya 2005), suggesting that the mechanisms of leaf and
hypocotyl growth might be different.
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