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Abstract—Intrusion detection is the identification of  
unauthorized use, misuse, and abuse of computer system 
infrastructures by both system insiders and external intruders. 
Detecting intrusion in distributed network from outside network 
segment as well as from inside is a difficult problem. Network based 
Intrusion Detection System (NIDS) must analyze a large volume of 
data while not placing a significant added load on the monitoring 
systems and networks.  This paper presents a framework for a 
distributed network intrusion detection system (dNIDS) based on the 
artificial immune system concept. In this framework, an adaptive 
immune mechanism through unsupervised machine learning 
methods is proposed to classify network traffic into either normal 
(“self”) and suspicious profiles (“non-self”) respectively. 
Experimentally, our approach distributes the NIDS among all 
connected network segments, allowing NIDS in each segment to 
identify potential threats individually and enabling the sharing of 
identified threat vectors between the communicating distributed 
NIDSs. Analysis of the technique for distribution of this information 
about threat vectors is presented. 

Keywords—Artificial Immune System; Negative Selection; 
Genetic Algorithm; IDS; dNIDS 

I.  INTRODUCTION  
Many techniques have been deployed to combat security 

issues inherent in computer systems and its interconnecting 
networks. More especially networks comprising of computers 
that hold sensitive information like medical records of patients 
that visit a hospital. One of these techniques involves the 
deployment of an intrusion detection system (IDS). An IDS 
serves as an additional wall for protecting critical systems due to 
the ability of hackers to subvert other protection systems like 
firewalls [1]. 

The importance of protecting networks interconnecting 
medical devices cannot be overemphasized. Examples of attacks 
against such networks include malware attacks which a hacker 
can use to create backdoors for siphoning data out of the network 
and ransomware attack which is a form of attack where the 
hacker encrypts the files in devices connected to the health care 
network and demands money before such files will be decrypted. 

Currently, health care networks are protected from malicious 
traffic via a multilayered security infrastructure that includes 
network intrusion detection systems (NIDS). Though NIDS are 
useful for identifying malicious activity in a network, they only 
have a single vantage point, which limits their ability to detect 
distributed or coordinated attacks [2]. Also, a zero-day attack [3] 
(an attack for which no signature exists) experienced by an 
organization’s NIDS located, say in Texas, USA might not be a 

zero-day attack for another of its NIDS located, say in Delhi, 
India or another company’s NIDS located in the same state. 
Therefore, if all the NIDS exchanged their detected threat 
information, more network threats can be stopped by a 
coordinated effort of all participating NIDS from the different or 
same organization. 

In this paper, we propose a fully distributed NIDS (dNIDS) 
model to protect an organization’s health care network from 
cyber-attacks. All participating NIDS will use the negative 
selection algorithm (NSA) inspired by the human immune 
system (HIS) to monitor the network interconnecting medical 
devices and equipment. The dNIDS components include IDSs 
that are located at the entry point of various interconnected 
network segments. These segments might be owned by the same 
organization or different organizations who have agreed to share 
their knowledge of threat vectors. 

The remaining part of the paper is organized as follows; 
Section II discusses intrusion detection systems in more depth 
and the related work in the field of distributed and non-
distributed IDS. Section III deals with artificial immune system 
and the algorithms that exist in this field. In section IV, we will 
explain the components of our proposed distributed IDS, its 
objectives, and the implementation details. The experimental 
setup and results are discussed in section V followed by our 
conclusion and future work in sections VI. 

II. INTRUSION DETECTION SYSTEM (IDS) 
Intrusion detection is defined as the process of intelligently 

monitoring the events occurring in a computer system or 
network, analyzing them for signs of violations of the security 
policy. The primary aim of Intrusion Detection Systems (IDS) is 
to protect the availability, confidentiality and integrity of critical 
networked information systems [4]. 

A. IDS Classification 
IDS can be classified based on the detection method used, 

the source of information or its topological structure [5]. 

 IDSs can be classified according to the detection approach 
they utilize into anomaly-based IDS and the signature based 
IDS. Anomaly-based intrusion detection monitors network 
traffic and user activities for abnormal behavior. On the other 
hand, a signature-based IDS uses a database with signatures to 
identify possible attacks and malicious activities. IDSs are also 
classified, according to how the data being used for intrusion 
detection is obtained, into host-based IDS and network-based 
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IDS.  Host-based IDS (HIDS) monitors specific host machines 
while a network-based IDS (NIDS) identifies intrusions on key 
network points. Another classification of IDS is according to its  
topology or structure which can be centralized or distributed. In 
the distributed configuration, the distributed IDS (DIDS) 
consists of multiple IDSs over a large network communicating 
with each other or with a central server. These communicating 
IDSs could be all NIDS -forming a distributed NIDS (dNIDS), 
all HIDS or a combination of both. Distributed monitoring 
allows early detection of planned and coordinated attacks and 
thereby allowing the network administrators to take preventive 
measures. DIDS also helps to control the spreading of worms, 
improve network monitoring and incident analysis, attack 
tracing and helps detect new threats [5].  

B. Related Work 
There is a great deal of work that is currently being done in 

the area of intrusion detection. Much of the work centers on 
improvement in the ability of systems to detect attacks and the 
speed of network traffic that can be handled.  

Snapp et al. [6] proposed a centralized DIDS model. This 
method makes the DIDS director a central point of failure for 
this architecture. Crosbie and Spafford [7], proposed distributed 
IDS where communication IDSs would broadcast activities that 
have been flagged as malicious activities between themselves to 
assist in intrusion detection. On distributed IDSs that utilized 
artificial immune system (AIS), Hosseinpour et al., [8] proposed 
a DIDS based on the AIS which uses a central engine. All the 
participating IDSs are synced with this central engine which also 
serves as a middle-man between two IDSs intending to share a 
detector record with each other. Afzali and Azmi [9] proposed a 
multi-agent AIS (MAIS-IDS) approach. MAIS-IDS has higher 
recognition accuracy by collaboration between virtual machines 
than individual works. 

Our approach to solving this problem differs in the sense that 
it uses a fully distributed NIDS approach where no central 
controller is needed, and participating NIDS (each located at the 
entry point of the network to which they are a member of) 
communicate with each other directly. And instead of sending 
all “suspicions” of intrusions to all agents, it only informs the 
agents of actual intrusions that it was successful in detecting.  

III. ARTIFICIAL IMMUNE SYSTEM 
The algorithms that exist in the field of AIS exploit the 

immune system's characteristics of learning and memory to 
solve diverse problems. These algorithms are based on human 
immune system (HIS) models taken from the field of 
immunology. Immunology uses models for understanding the 
structure and function of the immune system. The self-nonself 
(SNS) model is an immunology model that have been 
successfully utilized in AIS in the design of IDS systems to 
detect network attacks; both insider and outsider. [10] [3] [11]. 

A. Self-nonself (SNS) Model 
This model focuses on the adaptive nature of the immune 

system, i.e., it uses the adaptive immune system and its memory 
or self-learning capability. In this model, the B cells (which are 
called detectors in AIS) would have antigen specific receptors 

that can recognize non-self or foreign bodies and in turn initiate 
an immune system response that is specific to the system where 
this AIS model is applied. In this technique, the first step 
according to Forrest et al. [11] involves randomly generating 
detectors (which is the AIS’s equivalent of B cell in HIS). These 
detectors that are still immature are then exposed to a set of self-
structures. Any detector that reacts or matches any member of 
the self set is eliminated. The remaining members of the detector 
set that were unreactive with any member of the self set become 
mature detectors. This detector selection technique is called 
negative selection and the algorithm used to perform this 
computation is called a negative selection algorithm (NSA) [11].  

When a mature detector encounters a pathogen or non-self 
entity that it has been exposed to previously during the negative 
selection phase, it mounts a very rapid and efficient response that 
is called the secondary response. When a new pathogen that 
does not bind with any mature detector is encountered, the 
immune system mounts a primary response during which the 
immune system tries to learn the pattern of this unseen pathogen 
so that it can mount a secondary response next time the same 
pathogen shows up.  

From the discussions so far in this section, it is seen that AIS 
would be a good approach to solving the security problems 
inherent in computer networks. This is because computer 
networks are similar to the human body; thus, a digital immune 
system can be created for networks to fight intrusion just like the 
way the immune cells fight pathogens. In dNIDS, especially in 
a fully dNIDS, it is necessary that information about attacks be 
exchanged between constituent NIDS. This exchange involves 
moving attack information across the network from one NIDS 
to another. This migration technique is similar to the way the 
immune cells recirculate through the blood, homing at various 
secondary lymphoid organs where they interact with foreign 
antigens. 

IV. PROPOSITION OF A NEW APPROACH TO DNIDS DESIGN BASED 
ON NEGATIVE SELECTION 

A. The Proposed Approach Objectives 
Attack strategies employed by computer hackers have 

become complex and well-coordinated in recent years. Worms 
that propagate and reproduce in a network have become 
prevalent. Also, given that most organizations have multiple 
sites spanning across an entire country or state, if a NIDS agent 
is installed on these sites (at the entry point of each) and made 
to share information about intrusions, this could lead to an 
effective and fast way to detect attacks across the organization’s 
network. The goal of this proposed approach is to build a 
distributed NIDS to detect attacks across an organization’s 
network. Also, this dNIDS would able to detect zero-day attacks 
through interactions with other NIDS in another geolocation. 

B. Description of the Proposed Approach 
We propose an approach to dNIDS design that uses the 

negative selection algorithm derived from AIS explained in the 
preceding section. This dNIDS would consist of autonomous 
agents that communicate with each other. See Fig. 1. These 
agents: IDS1, IDS2, IDS3 and IDS4 (all of which are network-
based, i.e., NIDSs) independently run the NSA to generate rules 
for detecting and classifying network intrusions into self and 
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nonself. Each NIDSs has a table of rules or detectors and due to 
their inter-communication with one another, they also have 
information about detection rules from other NIDS. 

The detector that matches an attack after detector generation 
and training would be promoted to a memory detector. It is these 
memory detectors that IDSs exchange with each other. The 
mature detectors (i.e., detectors that have been generated, 
trained, but have not matched any attack over the course of its 
live span) is not part of this detector exchange.  

In Fig. 1, T (in days) represents how long a detector has been 
in existence from the time it became a memory detector. T can 
be used with a chosen detector lifecycle to eliminate expired 
rules from the table. 

Since the NIDS agents are running the NSA independently, 
a duplicate of a particular rule (detector) could be received. Each 
IDS agent assigns a weight called W to each detector rule. In 
Fig. 1, IDS1 agent received detector 2 from two out of the 4 
communicating IDS agents. W can be used as a means to 
determine if an entry in the table comes from a false positive. 
This is because, if two geologically disperse NIDS that was 
trained using different data reports that same memory detector, 
then it is highly likely that this detector is a true positive. It can 
be seen that IDS1 agent only keeps a single copy, and fills up 
the “from” field of the table with the name of the first IDS agent 
(i.e. IDS2) that informed it of this new rule. 

 
Fig. 1. Rule table as seen in each network intrusion detection system. 

C. Implementation 
In this section, implementation details are presented. 

Implementation of the distributed NIDS framework involves the 
following steps: 

1. Data capture phase. 

2. Feature selection phase. 

3. Data preprocessing phase. 

4. Detector generation phase. 

5. Monitoring phase. 

6. Memory detector distribution phase. 

 

1) Data capture:  
In this phase, traffic flowing into the network is captured by 

the NIDS agents positioned at the entry point of each 
subnetwork. This data capturing can be achieved with network 
packet sniffer tool like Tcpdump [15].  

2) Feature selection phase: 
Feature selection is the process of selecting a subset of 

relevant features for use in model construction. The central 
premise when using a feature selection technique is that the data 
contains many features that are either redundant or irrelevant, 
and can thus be removed without incurring much loss of 
information [16].  

The information gain (IG) feature selection technique which 
falls under the filter feature selection method was used in this 
phase. For details about this technique, see [17]. 

3) Data preprocessing: 
In data preprocessing, the data related to the features selected 

in the preceding subsection is analyzed. All the nominal data like 
the protocol type is converted into a suitable representation 
which could be binary or an integer value depending on the data 
classification algorithm requirements.  This is because most data 
classification techniques are affected by noisy data and extreme 
values. Hence, selected features with unormalized continuous 
values, xi are normalized to a value between 0 and 1 using (1): 

�������� 	 
��

��

���

��                       (1) 

4) Detector generation: 
The first NSA algorithm [11] which was proposed by forest 

et. al. is an exhaustive approach. The limitation of this approach 
is the computational difficulty of generating valid detectors, 
which grows exponentially with the size of the self [18]. So, to 
solve the problems of the exhaustive approach, we need a 
technique for implementing the NSA which locates a detector 
instead of selecting them at random as in the case of the 
exhaustive approach. For this, we employ an evolutionary 
approach using a genetic algorithm (GA). 

GAs are adaptive heuristic search algorithm based on the 
evolutionary ideas of natural selection and genetics. As such 
they represent an intelligent exploitation of a random search 
used to solve optimization problems. Each generation consists 
of a population of character strings that are analogous to the 
chromosome that we see in our DNA. Each individual 
represents a point in a search space and a possible solution. The 
individuals in the population are then made to go through a 
process of evolution [19]. Algorithm 1, shows the steps taken 
by our approach to detector generation using GA. 

 A detector is defined as d = (c, rd), where c = (c1, c2, …, cm) 
is an m-dimensional point that corresponds to the center of a unit 
hypersphere with rd as its radius. In this detector generation 
phase, the main task is to generate a set of detectors, with the 
center of each detector being at least (rd + rs) distance away from 
the center of its nearest self element (which has radius = rs).  

 The GA is initialized with random individuals. Two parents; 
P1 and P2 are drawn from the initialized samples at random with 
equal probability. Crossover is performed with these two parents 
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to create two offspring (C1 and C2) with a probability Cp called 
the crossover probability. The kind of crossover used here is the 
one-point crossover.  

To perform mutation on C1 and C2, a position in the chromosome 
of each is chosen at random from [1,2…m] and flipped with a 
mutation probability Mp. This flipping is done by replacing the 
value of the attribute in the randomly selected location with a 
randomly generated value that lies between [0, 1].  

 

After mutation, the fitness of C1 and C2 is evaluated using 
the function in (2): 

������������������� 	 ����  ! """""""""""""�#� 
Where rs is a threshold value (allowable variation) of a self 

point; in other words, a point at a distance greater than rs from 
the self sample is considered to be abnormal. D is the distance 
between the individual and the nearest self. This distance 
measure is calculated using the Euclidean distance measure 
given by (3): 

$��� %� 	 &'�(� ) *��+
,

�-�
.
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The fitness of both parents used for the crossover together 
with the resulting offspring is calculated. Also, the distance 
between (C1 and P1) and (C2 and P2) are both calculated. P1 in 
the population is replaced by C1 if C1 has a better fitness and the 
distance between its center and that of P1 is greater than rs. 
Similar action is taken for replacing P2. The fittest individuals 
are selected as the detectors. 

5) Monitoring/Testing phase: 
After the detectors have been generated using NSA, it is 

tested to see how many of these detectors would match to a 

nonself entity. If the distance between the center of a test sample 
and the center of the nearest detector is less than or equal to rd 
(which is set be equal to rs to create hyperspheres of the same 
size i.e. fixed size detectors), this test sample is said to be 
abnormal (an attack). Otherwise, it is classified as normal (self).  

6) Memory detector distribution: 
A dNIDS table distribution application is written using the 

python programming language to facilitate the sharing and 
updating of the detector table explained in section 4. Every 
participating NIDS runs this application. 

Once a detector is promoted to a memory detector in a NIDS 
running this application, a thread in the application would update 
the table with this new rule (i.e., detector). After an interval 
called the update interval (usually set to a small value), this new 
rule is communicated to all the NIDS directly connected to 
originating NIDS just like in distance vector routing algorithms.    

The content of the update includes the rule(s) that haven’t 
been shared since the last update interval and the time since each 
of these detectors or rules became a memory detector. The 
receiving NIDS(s), updates its table by first searching to see if 
an entry for this detector exists. If an entry exists, it updates W 
using (4): 

0 	 �1"1�"��2��"3���"4��"3�5������1"1�"6�3��5�6����7"89$: """""""""""""�;� 
If this rule entry does not exist, it is created, and the 

numerator of (7) becomes one. Also, the “from” field is filled up 
with the ID of the sending NIDS, which in this case is the name 
of the NIDS. Fig. 2, shows the distributed network of NIDS. The 
red circles indicate the NIDSs with an unsent update. These 
NIDSs will wait until the next update interval. 

After an update, the nodes become blue colored. From Fig. 
2, it is seen that the NIDSs are positioned at the entry point of 
each site’s network. This allows all the traffic passing through 
the network in each site to be inspected by its NIDS. Given that 
all these sites are owned by the same organization, the table 
distribution application has a global site view of the status of all 
NIDS.  

 
Fig. 2. Topology showing interconnected distributed network intrusion 

detection systems. 

Algorithm 1:  NSA using Genetic Algorithm 
 
Input: S<U (“self-set”); rS =self radius 
Output: a set of detector D<U (“detector set”) 
1:    population = random individuals 
2:    for the specified number of generations do 
3:        for the size of the population do 
4:             Select two individuals, (parent1 and parent2), 

with uniform probability. 
5:             Apply crossover with probability Cp to 

generate two offspring (child1 and child2). 
6:             Mutate child1 and child2 with probability Mp 
7:             If distance (child1,parent1) > rS and fitness 

(child1) > fitness (parent1) then 
8:                 parent1 = child1 
9:             end if 
10:           If  distance (child2,parent2) > rS and fitness 

(child2) > fitness(parent2) then 
11:               parent2 = child2 
12:           end if 
13:      end for 
14:  end for 
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V. EXPERIMENTAL RESULTS AND DISCUSSION 
The first 5 stages that constitute this dNIDS implementation 

technique (data capture, feature selection, data preprocessing, 
detector generation and monitoring phase), are initially carried 
out in a test network where the yet-to-be-deployed NIDSs are 
trained with the company’s “self” traffic to recognize non-self 
elements. On completion of the training, these NIDSs are 
moved to the distribution network. After these NIDSs become 
live, they execute the last phase which involves memory 
detector distribution. Going forward, packets passing through 
the networks protected by these NIDSs are copied by the NIDS 
in the destination network and compared to the detectors stored 
in detector table. If it matches a Detector (i.e. falls within the 
detection radius), this packet is flagged as an intrusion. Given 
that these NIDSs are trained to differentiate between self and 
non-self, with good detector coverage, new attacks that have not 
been seen before (zero day attacks) or even variants of the one 
the company is already aware of, can also be detected. 

A. Data Capture and Feature Selection 
For the data capture phase explained in section IV, NSL-

KDD [20] dataset was used. This dataset consists of 41 features 
and 4 different attack classes. The KDDTrain+20% was used to 
train the detectors. The KDDTrain+20% consists of 25192 
instances out of which 13449 is normal data and 11743 is the 
attack data. For detailed information about this dataset, see [21]. 

The 41 features were reduced to 8 using IG to ensure a small 
detector table size. These 8 features were selected based on their 
information gain shown in Fig. 3. Only the features with 
information gain above 0.42 (line 1 of Fig. 3) were selected i.e. 
5,3,6,4,30,29,33 and 34. Table 1 below shows the mapping of 
the IG selected features to its name and a brief description of 
each. 

 
Fig. 3. Information gain of all forty-one features of the dataset. 

TABLE I.  DESCRIPTION OF SELECTED FEATURES 

Feature Description 
5 (src_bytes): Number of data bytes transferred from 

source to destination in single connection 
3 (service): Destination network service used 
6 (dst_bytes): Number of data bytes transferred from 

destination to source in single connection 
4 (flag): Status of the connection – Normal or Error 
30 (diff_srv_rate): The % of connections that were to 

different services, among the connections aggregated in 
count 

29 (same_srv_rate): The % of connections that were to the 
same service, among the connections aggregated in count 

33 (dst_host_srv_count): The % of connections that were to 
the same service, among the connections aggregated in 
dst_host_count  

34 (dst_host_same_srv_rate): The % of connections that 
were to different services, among the connections 
aggregated in dst_host_count  

B. Negative selection and detector distribution 
For the Genetic algorithm used for the negative selection, the 
following parameter values were chosen: number of 
generations: 100; mutation prob. (Mp): 2/(no of features); 
crossover prob. (Cp): 1.0 and a crossover point of 3. 

Sixty percent (60%) of the normal samples drawn from the 
NSL-KDD training data (specifically the KDDTrain+20%) is 
used as the self samples for the NSA while the remaining forty 
percent (40%) and all the anomaly samples are used for testing 
the generated detector after training.  

In order to compare performance with other classification 
techniques that could be employed in the dNIDs, we also apply 
support vector machine (SVM), Naïve Bayes and J48 (see [22] 
for more information on these classifiers) to the same dataset 
with the same selected features. These techniques are compared 
in terms of accuracy. The idea is to calculate the number of true 
positives (TP, anomalous elements identified as anomalous), 
true negatives (TN, normal elements identified as normal), false 
positives (FP, normal elements identified as anomalous) and 
false negatives (FN, anomalous elements identified as normal). 
These values are, however, used to calculate two measures of 
effectiveness): 

"""""""""$���5��1�">����$>� 	 ?@?@ A B8""""""""""""""""""""�C� 
 

B����"���32"3���"�BD� 	 B@?8 A B@""""""""""""""""�E� 
In general, we want a very high detection rate with a very 

low false alarm rate. However, there is a tradeoff between these 
two measures. Fig. 4, shows the different FA and DR values 
gotten for the different intrusion detection approaches.  

Fig. 4. Summary of detection result on the KDDTrain+20% dataset. 
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The NSA-GA was selected as the classifier to be used in this 
dNIDS framework instead of the J48 because to train the NIDSs 
(which will later become part of the dNIDSs) using NSA-GA, 
only the self samples were used, unlike the J48 which requires 
both self and nonself samples to build detection rules. This 
requirement by the J48 makes the J48 susceptible to strains of 
attacks; even strains of attacks it encountered during the training 
phase. By training with only self samples, the NIDSs using 
NSA-GA need not know the nature of abnormal activities or 
how their traffic statistics look like before being able to detect 
such (similar to how the human body need not know the nature 
of a pathogen before detecting its presence). To increase the DR, 
a high number of GA generation run is recommended. And to 
reduce the FA, the detection radius can be reduced from 0.4 used 
in this experiment to 0.1, but the only challenge in doing this is 
that this will lead to an increase in the number of detectors 
needed to fill up the search space.  

To test the detector distribution, the developed table 
distribution python application was installed on 4 out of 16 
Ubuntu 14.04 [23] virtual machines which are connected to form 
the topology shown in Fig. 2. Here, 4 subnetworks are created 
with each having a NIDS (that runs the NSA) at its network 
input. 300 random attacks are selected from the NSL-KDD test 
data which was not used for the training or monitoring phase, 
and this was considered as a zero-day attack. These attacks were 
presented to a NIDS in one of the machines. This NIDS was 
successful in detecting 207 of these attacks after a processing 
time of 4 secs. After identification of these attacks by the NIDS, 
the detectors that matched these new attacks were sent to the 
neighboring NIDSs after a duration of 3 secs. The same attacks 
were launched against these receiving NIDSs and they were able 
to utilize the detectors they received in classifying the attacks 
within a processing time of less than 1 sec. Hence, these attacks 
which could have been a zero-day attack to the receiving NIDS 
was successfully detected and classified. The size of the table in 
each NIDS is proportional to the number of NIDSs that make up 
the dNIDS (which in turn is proportional to the number of 
subnetworks).  

VI. CONCLUSION 
In this paper, we have managed to describe the framework 

for a fully distributed NIDS that utilizes the NSA in its 
constituent NIDS. Genetic algorithm was explored as a 
technique for generating the detectors which form the building 
block of the NSA. Also, the performance of other techniques 
including J48, SVM and Naïve Bayes which could be used as an 
alternative agent (running on the NIDS) were compared to our 
proposed algorithm. A technique for distribution of detectors 
between participating NIDS was also explained. Our future 
work will expand on this area further by implementing a fully 
distributed NIDS that that uses both the self-nonself model and 
another AIS algorithm called danger theory for anomaly 
detection, and other techniques to facilitate intercommunication 
between NIDS. 
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