
Distributed Network Intrusion Detection System: An
Artificial Immune System Approach

Obinna Igbe Ihab Darwish Tarek Saadawi
Electrical Engineering Department

City University of New York, City College

Abstract—Intrusion detection is the identification of
unauthorized use, misuse, and abuse of computer system
infrastructures by both system insiders and external intruders.
Detecting intrusion in distributed network from outside network
segment as well as from inside is a difficult problem. Network based
Intrusion Detection System (NIDS) must analyze a large volume of
data while not placing a significant added load on the monitoring
systems and networks. This paper presents a framework for a
distributed network intrusion detection system (dNIDS) based on the
artificial immune system concept. In this framework, an adaptive
immune mechanism through unsupervised machine learning
methods is proposed to classify network traffic into either normal
(“self”) and suspicious profiles (“non-self”) respectively.
Experimentally, our approach distributes the NIDS among all
connected network segments, allowing NIDS in each segment to
identify potential threats individually and enabling the sharing of
identified threat vectors between the communicating distributed
NIDSs. Analysis of the technique for distribution of this information
about threat vectors is presented.

Keywords—Artificial Immune System; Negative Selection;
Genetic Algorithm; IDS; dNIDS

I. INTRODUCTION
Many techniques have been deployed to combat security

issues inherent in computer systems and its interconnecting
networks. More especially networks comprising of computers
that hold sensitive information like medical records of patients
that visit a hospital. One of these techniques involves the
deployment of an intrusion detection system (IDS). An IDS
serves as an additional wall for protecting critical systems due to
the ability of hackers to subvert other protection systems like
firewalls [1].

The importance of protecting networks interconnecting
medical devices cannot be overemphasized. Examples of attacks
against such networks include malware attacks which a hacker
can use to create backdoors for siphoning data out of the network
and ransomware attack which is a form of attack where the
hacker encrypts the files in devices connected to the health care
network and demands money before such files will be decrypted.

Currently, health care networks are protected from malicious
traffic via a multilayered security infrastructure that includes
network intrusion detection systems (NIDS). Though NIDS are
useful for identifying malicious activity in a network, they only
have a single vantage point, which limits their ability to detect
distributed or coordinated attacks [2]. Also, a zero-day attack [3]
(an attack for which no signature exists) experienced by an
organization’s NIDS located, say in Texas, USA might not be a

zero-day attack for another of its NIDS located, say in Delhi,
India or another company’s NIDS located in the same state.
Therefore, if all the NIDS exchanged their detected threat
information, more network threats can be stopped by a
coordinated effort of all participating NIDS from the different or
same organization.

In this paper, we propose a fully distributed NIDS (dNIDS)
model to protect an organization’s health care network from
cyber-attacks. All participating NIDS will use the negative
selection algorithm (NSA) inspired by the human immune
system (HIS) to monitor the network interconnecting medical
devices and equipment. The dNIDS components include IDSs
that are located at the entry point of various interconnected
network segments. These segments might be owned by the same
organization or different organizations who have agreed to share
their knowledge of threat vectors.

The remaining part of the paper is organized as follows;
Section II discusses intrusion detection systems in more depth
and the related work in the field of distributed and non-
distributed IDS. Section III deals with artificial immune system
and the algorithms that exist in this field. In section IV, we will
explain the components of our proposed distributed IDS, its
objectives, and the implementation details. The experimental
setup and results are discussed in section V followed by our
conclusion and future work in sections VI.

II. INTRUSION DETECTION SYSTEM (IDS)
Intrusion detection is defined as the process of intelligently

monitoring the events occurring in a computer system or
network, analyzing them for signs of violations of the security
policy. The primary aim of Intrusion Detection Systems (IDS) is
to protect the availability, confidentiality and integrity of critical
networked information systems [4].

A. IDS Classification
IDS can be classified based on the detection method used,

the source of information or its topological structure [5].

 IDSs can be classified according to the detection approach
they utilize into anomaly-based IDS and the signature based
IDS. Anomaly-based intrusion detection monitors network
traffic and user activities for abnormal behavior. On the other
hand, a signature-based IDS uses a database with signatures to
identify possible attacks and malicious activities. IDSs are also
classified, according to how the data being used for intrusion
detection is obtained, into host-based IDS and network-based

2015 IEEE First Conference on Connected Health: Applications, Systems and Engineering Technologies

978-1-5090-0943-5/16 $25.00 © 2016 IEEE

DOI 10.1109/CHASE.2016.36

101

2016 IEEE First Conference on Connected Health: Applications, Systems and Engineering Technologies

978-1-5090-0943-5/16 $25.00 © 2016 IEEE

DOI 10.1109/CHASE.2016.36

101

IDS. Host-based IDS (HIDS) monitors specific host machines
while a network-based IDS (NIDS) identifies intrusions on key
network points. Another classification of IDS is according to its
topology or structure which can be centralized or distributed. In
the distributed configuration, the distributed IDS (DIDS)
consists of multiple IDSs over a large network communicating
with each other or with a central server. These communicating
IDSs could be all NIDS -forming a distributed NIDS (dNIDS),
all HIDS or a combination of both. Distributed monitoring
allows early detection of planned and coordinated attacks and
thereby allowing the network administrators to take preventive
measures. DIDS also helps to control the spreading of worms,
improve network monitoring and incident analysis, attack
tracing and helps detect new threats [5].

B. Related Work
There is a great deal of work that is currently being done in

the area of intrusion detection. Much of the work centers on
improvement in the ability of systems to detect attacks and the
speed of network traffic that can be handled.

Snapp et al. [6] proposed a centralized DIDS model. This
method makes the DIDS director a central point of failure for
this architecture. Crosbie and Spafford [7], proposed distributed
IDS where communication IDSs would broadcast activities that
have been flagged as malicious activities between themselves to
assist in intrusion detection. On distributed IDSs that utilized
artificial immune system (AIS), Hosseinpour et al., [8] proposed
a DIDS based on the AIS which uses a central engine. All the
participating IDSs are synced with this central engine which also
serves as a middle-man between two IDSs intending to share a
detector record with each other. Afzali and Azmi [9] proposed a
multi-agent AIS (MAIS-IDS) approach. MAIS-IDS has higher
recognition accuracy by collaboration between virtual machines
than individual works.

Our approach to solving this problem differs in the sense that
it uses a fully distributed NIDS approach where no central
controller is needed, and participating NIDS (each located at the
entry point of the network to which they are a member of)
communicate with each other directly. And instead of sending
all “suspicions” of intrusions to all agents, it only informs the
agents of actual intrusions that it was successful in detecting.

III. ARTIFICIAL IMMUNE SYSTEM
The algorithms that exist in the field of AIS exploit the

immune system's characteristics of learning and memory to
solve diverse problems. These algorithms are based on human
immune system (HIS) models taken from the field of
immunology. Immunology uses models for understanding the
structure and function of the immune system. The self-nonself
(SNS) model is an immunology model that have been
successfully utilized in AIS in the design of IDS systems to
detect network attacks; both insider and outsider. [10] [3] [11].

A. Self-nonself (SNS) Model
This model focuses on the adaptive nature of the immune

system, i.e., it uses the adaptive immune system and its memory
or self-learning capability. In this model, the B cells (which are
called detectors in AIS) would have antigen specific receptors

that can recognize non-self or foreign bodies and in turn initiate
an immune system response that is specific to the system where
this AIS model is applied. In this technique, the first step
according to Forrest et al. [11] involves randomly generating
detectors (which is the AIS’s equivalent of B cell in HIS). These
detectors that are still immature are then exposed to a set of self-
structures. Any detector that reacts or matches any member of
the self set is eliminated. The remaining members of the detector
set that were unreactive with any member of the self set become
mature detectors. This detector selection technique is called
negative selection and the algorithm used to perform this
computation is called a negative selection algorithm (NSA) [11].

When a mature detector encounters a pathogen or non-self
entity that it has been exposed to previously during the negative
selection phase, it mounts a very rapid and efficient response that
is called the secondary response. When a new pathogen that
does not bind with any mature detector is encountered, the
immune system mounts a primary response during which the
immune system tries to learn the pattern of this unseen pathogen
so that it can mount a secondary response next time the same
pathogen shows up.

From the discussions so far in this section, it is seen that AIS
would be a good approach to solving the security problems
inherent in computer networks. This is because computer
networks are similar to the human body; thus, a digital immune
system can be created for networks to fight intrusion just like the
way the immune cells fight pathogens. In dNIDS, especially in
a fully dNIDS, it is necessary that information about attacks be
exchanged between constituent NIDS. This exchange involves
moving attack information across the network from one NIDS
to another. This migration technique is similar to the way the
immune cells recirculate through the blood, homing at various
secondary lymphoid organs where they interact with foreign
antigens.

IV. PROPOSITION OF A NEW APPROACH TO DNIDS DESIGN BASED
ON NEGATIVE SELECTION

A. The Proposed Approach Objectives
Attack strategies employed by computer hackers have

become complex and well-coordinated in recent years. Worms
that propagate and reproduce in a network have become
prevalent. Also, given that most organizations have multiple
sites spanning across an entire country or state, if a NIDS agent
is installed on these sites (at the entry point of each) and made
to share information about intrusions, this could lead to an
effective and fast way to detect attacks across the organization’s
network. The goal of this proposed approach is to build a
distributed NIDS to detect attacks across an organization’s
network. Also, this dNIDS would able to detect zero-day attacks
through interactions with other NIDS in another geolocation.

B. Description of the Proposed Approach
We propose an approach to dNIDS design that uses the

negative selection algorithm derived from AIS explained in the
preceding section. This dNIDS would consist of autonomous
agents that communicate with each other. See Fig. 1. These
agents: IDS1, IDS2, IDS3 and IDS4 (all of which are network-
based, i.e., NIDSs) independently run the NSA to generate rules
for detecting and classifying network intrusions into self and

102102

nonself. Each NIDSs has a table of rules or detectors and due to
their inter-communication with one another, they also have
information about detection rules from other NIDS.

The detector that matches an attack after detector generation
and training would be promoted to a memory detector. It is these
memory detectors that IDSs exchange with each other. The
mature detectors (i.e., detectors that have been generated,
trained, but have not matched any attack over the course of its
live span) is not part of this detector exchange.

In Fig. 1, T (in days) represents how long a detector has been
in existence from the time it became a memory detector. T can
be used with a chosen detector lifecycle to eliminate expired
rules from the table.

Since the NIDS agents are running the NSA independently,
a duplicate of a particular rule (detector) could be received. Each
IDS agent assigns a weight called W to each detector rule. In
Fig. 1, IDS1 agent received detector 2 from two out of the 4
communicating IDS agents. W can be used as a means to
determine if an entry in the table comes from a false positive.
This is because, if two geologically disperse NIDS that was
trained using different data reports that same memory detector,
then it is highly likely that this detector is a true positive. It can
be seen that IDS1 agent only keeps a single copy, and fills up
the “from” field of the table with the name of the first IDS agent
(i.e. IDS2) that informed it of this new rule.

Fig. 1. Rule table as seen in each network intrusion detection system.

C. Implementation
In this section, implementation details are presented.

Implementation of the distributed NIDS framework involves the
following steps:

1. Data capture phase.

2. Feature selection phase.

3. Data preprocessing phase.

4. Detector generation phase.

5. Monitoring phase.

6. Memory detector distribution phase.

1) Data capture:
In this phase, traffic flowing into the network is captured by

the NIDS agents positioned at the entry point of each
subnetwork. This data capturing can be achieved with network
packet sniffer tool like Tcpdump [15].

2) Feature selection phase:
Feature selection is the process of selecting a subset of

relevant features for use in model construction. The central
premise when using a feature selection technique is that the data
contains many features that are either redundant or irrelevant,
and can thus be removed without incurring much loss of
information [16].

The information gain (IG) feature selection technique which
falls under the filter feature selection method was used in this
phase. For details about this technique, see [17].

3) Data preprocessing:
In data preprocessing, the data related to the features selected

in the preceding subsection is analyzed. All the nominal data like
the protocol type is converted into a suitable representation
which could be binary or an integer value depending on the data
classification algorithm requirements. This is because most data
classification techniques are affected by noisy data and extreme
values. Hence, selected features with unormalized continuous
values, xi are normalized to a value between 0 and 1 using (1):

�������� 	
��

��

���

�� (1)

4) Detector generation:
The first NSA algorithm [11] which was proposed by forest

et. al. is an exhaustive approach. The limitation of this approach
is the computational difficulty of generating valid detectors,
which grows exponentially with the size of the self [18]. So, to
solve the problems of the exhaustive approach, we need a
technique for implementing the NSA which locates a detector
instead of selecting them at random as in the case of the
exhaustive approach. For this, we employ an evolutionary
approach using a genetic algorithm (GA).

GAs are adaptive heuristic search algorithm based on the
evolutionary ideas of natural selection and genetics. As such
they represent an intelligent exploitation of a random search
used to solve optimization problems. Each generation consists
of a population of character strings that are analogous to the
chromosome that we see in our DNA. Each individual
represents a point in a search space and a possible solution. The
individuals in the population are then made to go through a
process of evolution [19]. Algorithm 1, shows the steps taken
by our approach to detector generation using GA.

 A detector is defined as d = (c, rd), where c = (c1, c2, …, cm)
is an m-dimensional point that corresponds to the center of a unit
hypersphere with rd as its radius. In this detector generation
phase, the main task is to generate a set of detectors, with the
center of each detector being at least (rd + rs) distance away from
the center of its nearest self element (which has radius = rs).

 The GA is initialized with random individuals. Two parents;
P1 and P2 are drawn from the initialized samples at random with
equal probability. Crossover is performed with these two parents

103103

to create two offspring (C1 and C2) with a probability Cp called
the crossover probability. The kind of crossover used here is the
one-point crossover.

To perform mutation on C1 and C2, a position in the chromosome
of each is chosen at random from [1,2…m] and flipped with a
mutation probability Mp. This flipping is done by replacing the
value of the attribute in the randomly selected location with a
randomly generated value that lies between [0, 1].

After mutation, the fitness of C1 and C2 is evaluated using
the function in (2):

������������������� 	 ���� ! """""""""""""�#�
Where rs is a threshold value (allowable variation) of a self

point; in other words, a point at a distance greater than rs from
the self sample is considered to be abnormal. D is the distance
between the individual and the nearest self. This distance
measure is calculated using the Euclidean distance measure
given by (3):

$��� %� 	 &'�(�) *��+
,

�-�
.
� +! """"""""""""""""""""�/�

The fitness of both parents used for the crossover together
with the resulting offspring is calculated. Also, the distance
between (C1 and P1) and (C2 and P2) are both calculated. P1 in
the population is replaced by C1 if C1 has a better fitness and the
distance between its center and that of P1 is greater than rs.
Similar action is taken for replacing P2. The fittest individuals
are selected as the detectors.

5) Monitoring/Testing phase:
After the detectors have been generated using NSA, it is

tested to see how many of these detectors would match to a

nonself entity. If the distance between the center of a test sample
and the center of the nearest detector is less than or equal to rd
(which is set be equal to rs to create hyperspheres of the same
size i.e. fixed size detectors), this test sample is said to be
abnormal (an attack). Otherwise, it is classified as normal (self).

6) Memory detector distribution:
A dNIDS table distribution application is written using the

python programming language to facilitate the sharing and
updating of the detector table explained in section 4. Every
participating NIDS runs this application.

Once a detector is promoted to a memory detector in a NIDS
running this application, a thread in the application would update
the table with this new rule (i.e., detector). After an interval
called the update interval (usually set to a small value), this new
rule is communicated to all the NIDS directly connected to
originating NIDS just like in distance vector routing algorithms.

The content of the update includes the rule(s) that haven’t
been shared since the last update interval and the time since each
of these detectors or rules became a memory detector. The
receiving NIDS(s), updates its table by first searching to see if
an entry for this detector exists. If an entry exists, it updates W
using (4):

0 	 �1"1�"��2��"3���"4��"3�5������1"1�"6�3��5�6����7"89$: """""""""""""�;�
If this rule entry does not exist, it is created, and the

numerator of (7) becomes one. Also, the “from” field is filled up
with the ID of the sending NIDS, which in this case is the name
of the NIDS. Fig. 2, shows the distributed network of NIDS. The
red circles indicate the NIDSs with an unsent update. These
NIDSs will wait until the next update interval.

After an update, the nodes become blue colored. From Fig.
2, it is seen that the NIDSs are positioned at the entry point of
each site’s network. This allows all the traffic passing through
the network in each site to be inspected by its NIDS. Given that
all these sites are owned by the same organization, the table
distribution application has a global site view of the status of all
NIDS.

Fig. 2. Topology showing interconnected distributed network intrusion

detection systems.

Algorithm 1: NSA using Genetic Algorithm

Input: S<U (“self-set”); rS =self radius
Output: a set of detector D<U (“detector set”)
1: population = random individuals
2: for the specified number of generations do
3: for the size of the population do
4: Select two individuals, (parent1 and parent2),

with uniform probability.
5: Apply crossover with probability Cp to

generate two offspring (child1 and child2).
6: Mutate child1 and child2 with probability Mp
7: If distance (child1,parent1) > rS and fitness

(child1) > fitness (parent1) then
8: parent1 = child1
9: end if
10: If distance (child2,parent2) > rS and fitness

(child2) > fitness(parent2) then
11: parent2 = child2
12: end if
13: end for
14: end for

104104

V. EXPERIMENTAL RESULTS AND DISCUSSION
The first 5 stages that constitute this dNIDS implementation

technique (data capture, feature selection, data preprocessing,
detector generation and monitoring phase), are initially carried
out in a test network where the yet-to-be-deployed NIDSs are
trained with the company’s “self” traffic to recognize non-self
elements. On completion of the training, these NIDSs are
moved to the distribution network. After these NIDSs become
live, they execute the last phase which involves memory
detector distribution. Going forward, packets passing through
the networks protected by these NIDSs are copied by the NIDS
in the destination network and compared to the detectors stored
in detector table. If it matches a Detector (i.e. falls within the
detection radius), this packet is flagged as an intrusion. Given
that these NIDSs are trained to differentiate between self and
non-self, with good detector coverage, new attacks that have not
been seen before (zero day attacks) or even variants of the one
the company is already aware of, can also be detected.

A. Data Capture and Feature Selection
For the data capture phase explained in section IV, NSL-

KDD [20] dataset was used. This dataset consists of 41 features
and 4 different attack classes. The KDDTrain+20% was used to
train the detectors. The KDDTrain+20% consists of 25192
instances out of which 13449 is normal data and 11743 is the
attack data. For detailed information about this dataset, see [21].

The 41 features were reduced to 8 using IG to ensure a small
detector table size. These 8 features were selected based on their
information gain shown in Fig. 3. Only the features with
information gain above 0.42 (line 1 of Fig. 3) were selected i.e.
5,3,6,4,30,29,33 and 34. Table 1 below shows the mapping of
the IG selected features to its name and a brief description of
each.

Fig. 3. Information gain of all forty-one features of the dataset.

TABLE I. DESCRIPTION OF SELECTED FEATURES

Feature Description
5 (src_bytes): Number of data bytes transferred from

source to destination in single connection
3 (service): Destination network service used
6 (dst_bytes): Number of data bytes transferred from

destination to source in single connection
4 (flag): Status of the connection – Normal or Error
30 (diff_srv_rate): The % of connections that were to

different services, among the connections aggregated in
count

29 (same_srv_rate): The % of connections that were to the
same service, among the connections aggregated in count

33 (dst_host_srv_count): The % of connections that were to
the same service, among the connections aggregated in
dst_host_count

34 (dst_host_same_srv_rate): The % of connections that
were to different services, among the connections
aggregated in dst_host_count

B. Negative selection and detector distribution
For the Genetic algorithm used for the negative selection, the
following parameter values were chosen: number of
generations: 100; mutation prob. (Mp): 2/(no of features);
crossover prob. (Cp): 1.0 and a crossover point of 3.

Sixty percent (60%) of the normal samples drawn from the
NSL-KDD training data (specifically the KDDTrain+20%) is
used as the self samples for the NSA while the remaining forty
percent (40%) and all the anomaly samples are used for testing
the generated detector after training.

In order to compare performance with other classification
techniques that could be employed in the dNIDs, we also apply
support vector machine (SVM), Naïve Bayes and J48 (see [22]
for more information on these classifiers) to the same dataset
with the same selected features. These techniques are compared
in terms of accuracy. The idea is to calculate the number of true
positives (TP, anomalous elements identified as anomalous),
true negatives (TN, normal elements identified as normal), false
positives (FP, normal elements identified as anomalous) and
false negatives (FN, anomalous elements identified as normal).
These values are, however, used to calculate two measures of
effectiveness):

"""""""""$���5��1�">����$>� 	 ?@?@ A B8""""""""""""""""""""�C�

B����"���32"3���"�BD� 	 B@?8 A B@""""""""""""""""�E�
In general, we want a very high detection rate with a very

low false alarm rate. However, there is a tradeoff between these
two measures. Fig. 4, shows the different FA and DR values
gotten for the different intrusion detection approaches.

Fig. 4. Summary of detection result on the KDDTrain+20% dataset.

 Rate

0.835
0.979 0.995 0.989

0.049 0.02 0.005 0.017
0

0.2

0.4

0.6

0.8

1

Naïve Bayes SVM J48 NSA-GA

DR FA

105105

The NSA-GA was selected as the classifier to be used in this
dNIDS framework instead of the J48 because to train the NIDSs
(which will later become part of the dNIDSs) using NSA-GA,
only the self samples were used, unlike the J48 which requires
both self and nonself samples to build detection rules. This
requirement by the J48 makes the J48 susceptible to strains of
attacks; even strains of attacks it encountered during the training
phase. By training with only self samples, the NIDSs using
NSA-GA need not know the nature of abnormal activities or
how their traffic statistics look like before being able to detect
such (similar to how the human body need not know the nature
of a pathogen before detecting its presence). To increase the DR,
a high number of GA generation run is recommended. And to
reduce the FA, the detection radius can be reduced from 0.4 used
in this experiment to 0.1, but the only challenge in doing this is
that this will lead to an increase in the number of detectors
needed to fill up the search space.

To test the detector distribution, the developed table
distribution python application was installed on 4 out of 16
Ubuntu 14.04 [23] virtual machines which are connected to form
the topology shown in Fig. 2. Here, 4 subnetworks are created
with each having a NIDS (that runs the NSA) at its network
input. 300 random attacks are selected from the NSL-KDD test
data which was not used for the training or monitoring phase,
and this was considered as a zero-day attack. These attacks were
presented to a NIDS in one of the machines. This NIDS was
successful in detecting 207 of these attacks after a processing
time of 4 secs. After identification of these attacks by the NIDS,
the detectors that matched these new attacks were sent to the
neighboring NIDSs after a duration of 3 secs. The same attacks
were launched against these receiving NIDSs and they were able
to utilize the detectors they received in classifying the attacks
within a processing time of less than 1 sec. Hence, these attacks
which could have been a zero-day attack to the receiving NIDS
was successfully detected and classified. The size of the table in
each NIDS is proportional to the number of NIDSs that make up
the dNIDS (which in turn is proportional to the number of
subnetworks).

VI. CONCLUSION
In this paper, we have managed to describe the framework

for a fully distributed NIDS that utilizes the NSA in its
constituent NIDS. Genetic algorithm was explored as a
technique for generating the detectors which form the building
block of the NSA. Also, the performance of other techniques
including J48, SVM and Naïve Bayes which could be used as an
alternative agent (running on the NIDS) were compared to our
proposed algorithm. A technique for distribution of detectors
between participating NIDS was also explained. Our future
work will expand on this area further by implementing a fully
distributed NIDS that that uses both the self-nonself model and
another AIS algorithm called danger theory for anomaly
detection, and other techniques to facilitate intercommunication
between NIDS.

REFERENCES
[1] J. Thomas and A. Abraham, “Distributed Intrusion detection systems: a

computational intelligence approach, applications of information systems
to Homeland Security and Defense,” chapter 15, pp. 105-135, 2005.

[2] P. Barford, S. Jha, V. Yegneswaran, “Fusion and filtering in distributed
intrusion detection systems,” In Proc. Annual Allerton Conference on
Communication, Control and Computing, September, 2004.

[3] M. M. Elhaj, H. Hamrawi, M. Suliman, “A multi-layer network defense
system using artificial immune system,” In Computing, Electrical and
Electronics Engineering (ICCEEE), 2013 International Conference on pp.
232-236. IEEE.

[4] N. Bashah, I. B. Shanmugam, and A. M. Ahmed, “Hybrid intelligent
intrusion detection system,” Proceedings of World Academy of Science,
Engineering and Technology, vol. 6, June 2005.

[5] P. Kazienko and P. Dorosz, “Intrusion detection systems (IDS) Part 2 -
classification; methods; techniques,” Online. Retrieved 1 January 2016,
from http://windowssecurity.com

[6] S. Snapp, J. Brentano, and G. Dias et al., “DIDS (Distributed Intrusion
Detection System) – motivation, architecture, and an early prototype,” In
Proceedings of the 14th National Computer Security Conference, October
1991.

[7] M. Crosbie and G. Spafford, “Defending a computer system using
autonomous agents,” Technical Report 95-022, COAST Laboratory -
Purdue University, 1994.

[8] F. Hosseinpour, A. Meulenberg, S. Ramadass, P. Vahdani, and Z.
Moghaddasi, “Distributed agent based model for intrusion detection
system based on artificial immune system,” Int. J. Digit. Content Technol.
its Appl., vol. 7, pp. 206–214, 2013

[9] N. Afzali and R. Azmi, “MAIS-IDS: a distributed intrusion detection
system using multi-agent AIS approach,” Eng. Appl. Artif. Intell. vol. 35,
pp. 286–298, 2014

[10] A. EshghiShargh, “Using artificial immune system on implementation of
Intrusion detection systems”, Third UKSim European Symposium on
Computer Modeling and Simulation, pp. 164 168, 2009

[11] S.A. Hofmeyr and S. Forrest, “Architecture for an artificial immune
system,” Evolutionary Computation, vol. 8, no. 4, pp. 443–473, 2000

[12] P. Matzinger, “Tolerance, Danger and the Extended Family,” Annual
Review of Immunology, Vol. 12, pp. 991-1045, 1994.

[13] J Greensmith, U Aickelin, S Cayzer, “Introducing dendritic cells as a
novel immune-inspired algorithm for anomaly detection,” Proceedings
ICARIS-2005, 4th International Conference on Arti�cial Immune
Systems, LNCS 3627, pp. 153-167, Springer-Verlag, 2005.

[14] U. Aickelin and J. Greensmith, “Sensing danger: innate immunology for
intrusion detection,” In Information Security Technical Report, ISSN
1363-4127 (In Press). ELSEVIER, 2007

[15] Tcpdump. http://www.tcpdump.org
[16] Feature selection. In Wikipedia, The Free Encyclopedia. Retrieved 02:23,

January 7, 2016, from
https://en.wikipedia.org/w/index.php?title=Feature_selection&oldid=69
5639260

[17] A. Moore, “Information Gain,” Lecture Notes. 2003.
http://www.autonlab.org/tutorials/

[18] D. Dasgupta, F. Nino, “Immunological computation: theory and
applications,” Auerbach Publications, 2008.

[19] Introduction to Genetic Algorithms,
http://www.doc.ic.ac.uk/~nd/surprise_96/journal/vol1/hmw/article1.html
(accessed January 2, 2016).

[20] “Nsl-kdd data set for network-based intrusion detection systems.”
Available on: http://nsl.cs.unb.ca/KDD/NSLKDD.html, March 2009.

[21] L. Dhanabal, S.P. Shantharajah, “A study on NSL-KDD dataset for
intrusion detection system based on classification algorithms,”
International Journal of Advanced Research in Computer and
Communication Engineering Vol. 4, Issue 6, June 2015.

[22] Classification methods,http://www.d.umn.edu/~padhy005/Chapter5.html
[23] Ubuntu 14.04.3, http://releases.ubuntu.com/14.04/

106106

