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Abstract 

The high cost per unit mass of launch and the fixed envelope of a launch vehicle fairing respectively 

incentivize the reduction of spacecraft mass and stowed volume, while the performance boosts that 

come from an increase in spacecraft dimensions incentivize the maximization of spacecraft deployed 

size.  Also, specific missions might benefit from a particular capability that represents a prohibitive 

addition of mass to the system or which may be performed inefficiently with current technology, and 

some missions cannot be accomplished without a capability that existing technologies cannot provide.  

New technologies, especially those that can contribute multiple capabilities that span the purviews of 

multiple subsystems, have the potential to enhance or even enable certain mission concepts.  

This thesis introduces the concept of an electromagnetic subsystem which can provide both structural 

and ancillary capabilities to a large spacecraft, due to the tendency of two powered coils to exert forces 

and torques on one another, as well as several missions that would benefit from such a subsystem and 

in the process help to mature the technology. 

As with any new technology, risks and challenges are identified as well as other enabling technologies 

which must be developed in parallel to make an electromagnetic subsystem possible.  One major risk 

comes from the fact that the only stable configuration of two magnets is collocated and attracting at the 

origin.  In repulsion, magnets are fundamentally unstable because they either diverge or rotate such 

that they attract and converge to the origin.  Elastic hardware is added to the system to provide 

restorative forces and torques, but instability of the system remains a concern. 

In this work, a validated methodology is developed for identifying pseudo-passive equilibria and 

classifying them as statically and dynamically stable or unstable and is applied to a series of 

electromagnetic structures of increasing realism and degrees of freedom to show that stable 

configurations can exist with appropriate boundary conditions.  The methodology is later applied to a 

variety of systems, including a larger structure with more coils and connective hardware with different 

properties, to observe how stability conditions change with changes in assumptions or system size.  

Thesis Supervisor: David W. Miller  
Title: Professor of Aeronautics and Astronautics
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1. Chapter 1 

Introduction 

1.1. Motivation 

The environment and logistics of getting to space present many challenges that directly and strongly guide 

the design of a spacecraft.  For example, the enormous cost per unit mass to launch a spacecraft is so high 

that reducing both the dry and the wet mass of the spacecraft are key design objectives.  At the same 

time, making the spacecraft dimensionally larger to reap the performance benefits of large spacecraft is 

another objective.   

The competing objectives of mass minimization and size maximization can be captured in a general sense 

by a single objective minimizing the linear or areal density of a structure (the mass per unit length or area).  

A structural technology that can reduce the density of a structure would enable larger structures for the 

same mass as a traditional structure (and the same size structures for less mass).  The two structural 

approaches to a lower-density spacecraft involve either creating a lower density structural material or 

system (inflatables, composites, isogrids, and tensegrity structures all pursue this approach) or a structural 

system capable of “ancillary” functions generally allocated to other subsystems, the latter of which would 

eliminate the need and the mass of additional hardware to provide those ancillary functions and 

capabilities.   

 

Figure 1: Visualization of approaches to reducing the mass of a space system 

Figure 1 displays generalized approaches to reducing spacecraft mass: reducing the parts (for instance, 

decreasing the mass of the structural subsystem, which is on average 20% of spacecraft dry mass [1]), 
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reducing the sum of the parts (having one subsystem perform ancillary functions), or reducing both 

(decreasing subsystem mass while also having it perform ancillary functions).   

This research proposes an electromagnetic subsystem that leverages the interaction of magnets with an 

external magnetic field to perform structural functions as well as some of the duties of other traditional 

spacecraft subsystems.  Some unique capabilities also exist that can only be performed by an 

electromagnetic subsystem.  However, new technologies come with unique challenges and risks that must 

be addressed and hopefully mitigated in the course of developing and maturing the technology.  In the 

case of electromagnetic structures, their arguably greatest advantage (the ability of electromagnets to 

exert a force or torque at a distance without contact) also presents a severe risk of instability, because 

there is no point of equilibrium for a coil in an external magnetic field save for the origin without requiring 

other forces acting upon it.  This innate instability is described by Earnshaw’s Theorem, which stated 

simply says that “A body with steady charges, magnetization or currents placed in a steady electric or 

magnetic field cannot rest in stable equilibrium under the action of electric and magnetic forces alone 

[2].”   The electromagnetic structures discussed in this thesis are magneto-elastic structures, meaning that 

they are both magnetically and elastically supported and constrained, the elastic components providing a 

potential means by which to achieve stability, but the risk still exists that such a structure might be 

statically unstable or easily made dynamically unstable by a small displacement or other injection of 

energy into the system.   

The primary goals of this thesis are to present the concept of electromagnetic structures, place it in the 

context of previous and existing work, develop and describe a path to obtaining flight heritage and 

technological maturity, and identify risks inherent in the concept, addressing the most severe of them, 

stability.  Another goal of this research, outside of the scope of this thesis, is to determine which of the 

three approaches in Figure 1 electromagnetic structures are capable of providing, such that 

electromagnetic structures can be traded against other structural technologies on common metrics like 

mass, density, power, and stiffness.   

This introductory chapter discusses the nomenclature of stability and establishes the framework of the 

rest of the thesis, including the validated methodology that will be developed and presented in this work 

for determining the relative stability of magneto-elastic structures.   
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1.2. Stability Nomenclature  

The systems studied in this thesis are conservative systems in that “work done by a force, or set of forces, 

is 

1. Independent of path. 

2. Equal to the difference between the final and initial values of an energy function. 

3. Completely reversible [3].”  

 

As there is no energy dissipation due to damping modeled in our springs nor resistive loss in the coils, our 

system is conservative of energy.  A potential energy function can be determined for a conservative 

system [4], and the following definitions largely depend on the potential energy of our system.  

1.2.1. Equilibrium 

A system configuration in equilibrium, hereafter referred to as an equilibrium, is defined as one which 

satisfies the two necessary conditions of force balance and torque balance [5]. This is achieved when the 

respective vector sums of all forces (𝐹⃗𝑖) and torques (τ⃗⃗𝑖) on each body in the system are zero, such that 

the forces and torque balances are satisfied for each body (coil) in the system, or 

∑ 𝐹⃗𝑖 = 0⃗⃗𝑛
𝑖=1 , ∑ τ⃗⃗𝑖 = 0⃗⃗𝑚

𝑖=1 , (1.1) 

where 𝑛 is the number of forces, 𝑚 is the number of torques (including but not limited to those induced 

by forces), and 𝑖 is the index used to sum over 𝑛 and 𝑚.  Linear and rotational momenta are conserved in 

the system.  In this thesis, the word equilibrium refers to static equilibrium, wherein the linear and 

rotational momenta of the system are not only conserved but equal to zero. 

If the system is described by a set of generalized coordinates 𝑋, such that 

𝑋 = {𝑥𝑖 ∶ 𝑖 ∈ 𝑆}, 𝑤ℎ𝑒𝑟𝑒 𝑆 = {1…𝑛}, 

where n is the cardinality of the set of generalized coordinates, then at an equilibrium,  

𝑎𝑙𝑙 (
𝜕𝑃

𝜕𝑥𝑖
)
0

= 0, (1.2) 

where P is the potential energy of the system at the equilibrium, signified by the subscript 0 [6], and 𝜕𝑥𝑖  

refers to the partial derivative with respect to a specific coordinate 𝑥𝑖 . The relationship between Equation 

(1.1) and potential energy is described as follows, if {𝑥𝑖 ∶ 𝑖 ∈ 𝑆} = {𝑥𝑡,𝑗, 𝑥𝑟,𝑘}, where {𝑥𝑡,𝑗 ∶ 𝑗 ∈ 𝑆𝑡}, 𝑆𝑡 =

{1…𝑛𝑡} are translational coordinates (represented by a t) and {𝑥𝑟,𝑘 ∶ 𝑘 ∈ 𝑆𝑟}, 𝑆𝑟 = {1…𝑛𝑟} are 

rotational coordinates, represented by an r.  𝑛𝑡 and 𝑛𝑟 are the cardinalities of the sets of translational and 

rotational coordinates respectively, and 𝑛 = 𝑛𝑡 + 𝑛𝑟.  This thesis will also use the vector 𝑋⃗ to refer to the 
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position of a system configuration in the generalized coordinates in which motion is permitted in that 

system, such that the previous equation can also be written as  

(
𝜕𝑃

𝜕𝑋⃗
)
0

= 0⃗⃗, (1.3) 

The work 𝑊𝑡,𝑗 done by a component of force 𝐹𝑡𝑜𝑡,𝑗 (or work 𝑊𝑟,𝑘 done by torque 𝜏𝑡𝑜𝑡,𝑘) in the direction 

of a single translational coordinate 𝑥𝑡,𝑗 (or rotational coordinate 𝑥𝑟,𝑘) for an infinitesimal displacement 

𝑑𝑥𝑡,𝑗 (or 𝑑𝑥𝑟,𝑘) is 

𝑊𝑡,𝑗 = 𝐹𝑡𝑜𝑡,𝑗𝑑𝑥𝑡,𝑗, 

and 

𝑊𝑟,𝑘 = 𝜏𝑡𝑜𝑡,𝑘𝑑𝑥𝑟,𝑘 . 

(1.4) 

Since the work done by a force (or torque, in the case of rotational coordinates) is equal to the decrease 

of the system’s potential energy [7] in the direction of 𝑥𝑡,𝑗 due to that force, the work can be written as 

𝑊𝑡,𝑗 = −(𝑑𝑃)𝑥𝑡,𝑗
, 

and for rotational coordinates, 

𝑊𝑟,𝑘 = −(𝑑𝑃)𝑥𝑟,𝑘
, 

(1.5) 

such that if the force vector 𝐹⃗𝑡𝑜𝑡 = [𝐹𝑡𝑜𝑡,1 …𝐹𝑡𝑜𝑡,𝑛𝑡
] is compiled for all translational coordinates at 

equilibrium, 

𝐹⃗𝑡𝑜𝑡 = [(
𝜕𝑊𝑡,1

𝜕𝑥𝑡,1
)

0

…(
𝜕𝑊𝑡,𝑛𝑡

𝜕𝑥𝑡,𝑛𝑡

)
0

 ]  = − [(
𝜕𝑃

𝜕𝑥𝑡,1
)

0

…(
𝜕𝑃

𝜕𝑥𝑡,𝑛𝑡

)
0

 ] = 0⃗⃗, (1.6) 

and for rotational coordinates 𝑥𝑟,𝑘,  

τ⃗⃗𝑡𝑜𝑡 = [(
𝜕𝑊𝑟,1

𝜕𝑥𝑟,1
)

0

…(
𝜕𝑊𝑟,𝑛𝑟

𝜕𝑥𝑟,𝑛𝑟

)
0

 ]  = − [(
𝜕𝑃

𝜕𝑥𝑟,1
)

0

…(
𝜕𝑃

𝜕𝑥𝑟,𝑛𝑟

)
0

 ] = 0⃗⃗. (1.7) 
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The principle of stationary potential energy states that a structure in static stability will have a stationary 

value of potential energy [8], meaning that the partial derivatives of potential energy in all directions at a 

static equilibrium position is zero.  This statement is consistent with Equation (1.2).  It will be seen in the 

dynamic stability sections in Chapters 3-5 that this corollary informs the later examination of potential 

energy curves and surfaces.  

1.2.2. Stability 

Once equilibria have been located, the stability of those equilibria, both static and dynamic, is of interest.  

In this work, stability is pseudo-passive, which in the context of this thesis means that no active control is 

being employed to ensure and maintain stability beyond the initial insertion of current through the 

electromagnets.  In some works [9], passive stability refers to systems that are stable without requiring 

any addition of energy to the system in addition to no active control; the current in the electromagnets 

represents an addition of energy, and therefore electromagnetic structural systems do not fulfill that 

more restrictive criterion. 

The principle of minimum potential energy states that “of all the displacements which satisfy the 

boundary conditions of a structural system, those corresponding to configurations of stable equilibrium 

make the total potential energy a relative minimum [8].” This statement refers in particular to static 

stability, which describes the behavior of the system forces and torques in response to a small 

displacement from equilibrium and is determined by examining the second derivative of the potential 

energy function.   

Static Stability of Equilibrium 

As stated by the principle of minimum potential energy, statically stable equilibria occur at relative minima 

of potential energy in all generalized coordinates being studied, or where 

𝑎𝑙𝑙 (
𝜕2𝑃

𝜕𝑥𝑖
2)

0

 > 0, 𝑖 = 1, 2…𝑛. (1.8) 

A displacement of a statically stable system from equilibrium results in a force and/or torque which tends 

to move the system back toward equilibrium [10]. 

Statically unstable equilibria occur at relative maxima of potential energy in any coordinate under study, 

or where  

𝑎𝑛𝑦 (
𝜕2𝑃

𝜕𝑥𝑖
2)

0

< 0, 𝑖 = 1, 2…𝑛. (1.9) 

A displacement of a statically unstable system from equilibrium results in a force and/or torque in the 

same direction as the displacement that tends to increase the displacement [10]. 
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Statically neutral equilibria occur at equilibria at which the potential energy function is essentially flat in 

any coordinate under study, or 

𝑎𝑛𝑦 (
𝜕2𝑃

𝜕𝑥𝑖
2)

0

= 0, 𝑖 = 1, 2…𝑛. (1.10) 

At statically neutral equilibria, higher derivatives of potential energy are needed in order to determine 

the stability of the system [10], but a small displacement from equilibrium would not result in any 

significant forces or torques that would work to either increase or decrease the displacement. Figure 2 

shows a representative potential energy curve in one dimension with the equilibria denoted with circles 

and classified as S/U/N for statically stable/unstable/neutrally stable respectively. The direction that the 

resultant force or torque from a perturbation would move the system is indicated by arrows. 

 

Figure 2: Representative potential energy curve in one dimension with equilibria located and labeled according to 
static stability 

It is important to note that an equilibrium can be statically stable with respect to one coordinate but 

unstable with respect to another, such as that which occurs at a saddlepoint in a two or more dimension 

potential energy function. There are also inflection points in the potential energy function that, within the 

same coordinate, are stable with respect to motion in the positive direction but unstable with respect to 

the negative direction (or vice versa). In this thesis, equilibria are only called statically stable if they are 

stable with respect to all coordinates {𝑥𝑖} in all directions. 

Dynamic Stability of Equilibrium 

Hoff [11] proposes a general definition of structural stability as follows: “A structure is in a stable state if 

admissible finite disturbances of its initial state of static or dynamic equilibrium are followed by 
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displacements whose magnitudes remain within allowable bounds during the required lifetime of the 

structure.”  Phrased differently, if a certain equilibrium configuration is desired for operation of the 

structure, then it is considered to be dynamically stable in addition to being statically stable if small 

disturbances from equilibrium result in motion that remains bounded on either side of the equilibrium.  It 

can be seen from this definition that dynamic stability is thus largely dependent on both the magnitude 

of admissible finite disturbances [11] as well as the allowable bounds [11] of resultant displacements, and 

so this definition will be explored below. 

Because dynamic stability is related to the behavior of the system in motion around an equilibrium, it 

becomes necessary to include kinetic energy in our analysis.    In a conservative system, the total energy 

𝐸 is a constant, such that 

𝑇 + 𝑃 = 𝐸, 
(1.11) 

where 𝑇 is the kinetic energy and 𝑃 is the potential energy of the system.  When a system is at rest at an 

equilibrium point, 

𝑃𝑒𝑞 = 𝐸𝑒𝑞 and  𝑇 = 0, (1.12) 

where 𝑃𝑒𝑞 is at a minimum.   

 

Figure 3: Energy curve showing relative energies and displacement bounds 
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Figure 3 shows the same energy curve as in Figure 2 with each of the (non-neutrally stable) static 

equilibrium positions labeled with a letter A through D and point B being the initial position of our system, 

such that  

𝑃𝑒𝑞 = 𝑃𝐵.  (1.13) 

When an initial kinetic energy 𝑇𝑡0
 (which is always positive) is added to the system at point B at the start 

of a dynamic simulation (defined by the subscript 𝑡0) either by an external force or torque or by 

prescribing a small displacement from equilibrium, the new energy 𝐸𝑡0
 is 

𝐸𝑡0
= 𝑃𝑒𝑞 + 𝑇𝑡0

, (1.14) 

such that 

𝐸𝑡0
> 𝑃𝑒𝑞 , (1.15) 

which means that the system after adding 𝑇𝑡0
 has its greatest kinetic energy at the equilibrium position B 

because point B occurs at the minimum in the potential energy functional over the range considered.  𝑥𝐼 

and 𝑥𝐼𝐼 represent the displacement bounds associated with an 𝑃𝑡0
 that satisfies  𝑃𝑒𝑞 < 𝐸𝑡0

< 𝑃𝑐. At these 

bounds, the energy in the system is purely potential, and oscillation occurs between these bounds.  This 

kind of bounded motion, where the initial point B is included in the path of motion, is often called 

unbuckled motion in the field of structural stability [12]. Figure 3’s potential energies are equivalent to the 

total energy of the system when the kinetic energy of the system is zero at that point, such as if the system 

is at rest at equilibrium or when the system’s motion reaches its bounds.  

It can be seen from Figure 3 that 𝑃𝐴 > 𝑃𝐶. In the case where 𝑇𝑡0
 is large enough that 

𝑃𝑒𝑞 + 𝑇𝑡0
= 𝑃𝐶 , (1.16) 

then “the system can reach point C with zero velocity (T = 0), and there exists a possibility of motion 

escaping (passing position C) or becoming unbounded.  Such a motion is termed buckled motion [12].” 

This 𝑇𝑡0
 is called the critical initial kinetic energy (𝑇𝑡0,𝑐𝑟𝑖𝑡) and corresponds to the maximum admissible 

finite disturbance mentioned earlier, whereas 𝑥𝐼(𝑃𝑐) and 𝑥𝐼𝐼(𝑃𝑐)  represent the maximum allowable 

bounds.  It is likely of interest to a system designer to operate with a margin of safety within the 

aforementioned categories. 
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Point B is observed to have a lower potential energy than point D, but because of the existence of the 

relative maximum at C, it is possible for a system to achieve unbuckled motion around both B and D, the 

magnitude and bounds of that motion being determined by the shape of the potential energy curve in its 

neighborhood.  The type of system depicted in Figure 3 is not a globally stable [13] system because it is 

not an infinitely deep, well-shaped structure where the potential energy curve goes to positive infinity on 

either end of the x axis, which would thus ensure that the system is always resting at or oscillating around 

an equilibrium.   Points B and D are referred to as metastable equilibria because there exists a disturbance 

for which the system motion escapes and does not return to the equilibrium [13]. 

From this discussion, it can be concluded that any statically stable equilibrium can be dynamically stable, 

so long as the critical initial kinetic energy for that point is not exceeded.  If 𝑇𝑡0,𝑐𝑟𝑖𝑡 is exceeded, then the 

system is dynamically unstable and experiencing buckled motion. One of the goals of this thesis is to 

explore how the critical initial kinetic energy changes with different choices of design variables.  
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1.3. Objectives 

There are three primary questions that this thesis seeks to answer. 

 What applications would be enhanced or enabled by an electromagnetic subsystem and how? 

An electromagnetic subsystem possesses a number of potential structural and ancillary 

capabilities, many of which could enhance or enable future space missions that require these 

capabilities.  What missions could utilize electromagnets to achieve challenging requirements or 

enhance performance metrics?  Several such missions are discussed in Chapter 2, along with a 

proposed pathway that uses three anchoring applications to drive maturation of the technology. 

 

 Is it possible for two or more connected electromagnetic coils in space to be pseudo-passively 

stable, both statically and dynamically?   

In other words, does there exist at least one pseudo-passively stable system of connected 

electromagnetic coils?  For a system to remain at rest in a configuration, it needs to be in 

equilibrium, with no resultant net forces or torques acting on its constituent bodies.  Pseudo-

passive stability, both static and dynamic, is evaluated about equilibrium points.  This thesis 

attempts to answer this question by locating equilibrium points for a system and then evaluating 

stability around those points.  The methods by which the work in this thesis accomplishes the 

aforementioned tasks are described generally in Section 1.4 and in more detail in each of Chapters 

3, 4, and 5.  

 If so, what are the conditions on the design and operation of such a system to achieve and 

maintain stability? 

If existence of a pseudo-passively stable configuration can be shown, what are the requirements 

on design parameters and system boundary conditions in order for stability to be achieved, and 

how sensitive to these parameters is the static and dynamic stability of an equilibrium point?  This 

thesis answers this question symbolically for simple problems then uses these symbolic trends to 

inform the analysis of more complex problems for which symbolic insight is not as useful. 
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1.4. Thesis Overview and Approach 

The physical fundamentals and capabilities of electromagnets, as well as their past and potential uses on 

spacecraft missions, are described in Chapter 2 in order to further motivate why electromagnetic 

structures are useful and why a method for determining the relative stability of electromagnetic 

structures is important for maturation and eventual implementation of the technology on a real mission.   

Chapter 2 focuses on the structural capabilities of an electromagnetic subsystem but also introduces and 

discusses ancillary capabilities of such a subsystem.  After these capabilities are broadly discussed, they 

are explored in the context of three selected applications that were selected to provide a maturation 

pathway for superconducting technology in space and to represent a cross-section of potential multi-

functional allocation to the electromagnetic structure subsystem:  torque coils for satellites in 

geostationary orbit, a large deployed loop antenna for precipitation of protons out of the inner Van Allen 

belt with electromagnetic ion cyclotron (EMIC) waves, and a next generation space-based observatory 

with electromagnetically deployed and formation flown elements.  From there, the key enabling 

technologies and several risks are established, including the risk associated with instability of an 

electromagnetic structure.  

In order to develop a validated and reliable method for finding and evaluating equilibria and their relative 

static and dynamic stability as per Section 1.2, this thesis takes a three–tier approach presented in Figure 

4, progressively increasing the complexity of the system being studied while systematically validating each 

successive step using the last.  These three tiers are presented with example problems in Chapters 3, 4, 

and 5 respectively.   

 

Figure 4: Three-tiered approach and validation steps 

The simplest system considered can be described using closed-form, linearizable equations of motion that 

can be explored analytically and symbolically.  The Analytical system uses what is known as the dipole 
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model, approximating the coils as point magnetic dipole moments, in order to calculate an approximate 

magnetic field and resultant forces and torques between the coils.  The dipole model, which is more 

accurate at greater separation distances, is explained in more detail in Section 3.1.  The stability of the 

Analytical system can be calculated classically, using linear algebra to examine for what design parameter 

values the eigenvalues of the system have no positive real parts.  Chapter 3 presents the Analytical system. 

The Simple Numerical system uses the same basic model as the Analytical system except instead of 

exploring stability analytically, the Simple Numerical system uses finite differencing and numerical 

simulation to locate equilibria and classify them as stable or unstable statically and dynamically.  Because 

the system is still describable using linearizable equations, the results of the Simple Numerical system 

analyses should agree with those of the Analytical system, serving to validate the numerical approach to 

stability analysis.  Chapter 4 presents the Simple Numerical System. 

The Complex Numerical system uses the same numerical methods for assessing stability as does the 

Simple Numerical system, but it uses a more accurate model of the magnetic field of the coils, obeying 

the Biot-Savart law.  The Biot-Savart law can be written in closed form but is not well suited to 

linearization, making it difficult to take an analytical approach to the resultant forces and torques.  

Because the same numerical methods are being used by both the Complex Numerical and the Simple 

Numerical systems, the results of the Simple Numerical system can be used to validate the Biot-Savart 

model in the region where the dipole model is most accurate as well as to investigate the impact of using 

the dipole model versus the Biot-Savart model at smaller separation distances.  Chapter 5 presents the 

Complex Numerical System.   

Once both the technique and the model used in the Complex Numerical system have been validated, it 

can be applied to more complicated and more realistic systems, referred to henceforth as “real-world 

systems”, which include but are not limited to three-dimensional motion, more than two coils, and coils 

in different configurations than straight masts.    

Within each of the three tiers in Figure 4, three two-coil systems are studied: a single translational degree 

of freedom system (1DoF-T), a single rotational degree of freedom system (1DoF-R), and a combination 

of the two (2DoF).  In addition, for each of these systems, three separate steps are taken: equilibrium 

identification, static stability analysis, and dynamic stability analysis.  In order to organize all of the systems 

being studied and keep the reader oriented, Figure 5 shows the matrix format that will be repeated at the 

top of each subsection in Chapters 3, 4, and 5.  The matrix will be highlighted each time it appears to 

indicate what system and step is currently in progress.  Chapter 3’s subsections are shown as an example 

in Figure 5. 

Chapter 6 uses the methodology and model developed in Chapters 3-5 to study different structural real-

world problems and how changing assumptions affect the results of the methodology, including the 

addition of a third coil or the use of flexible tethers rather than springs.  Finally, Chapter 7 includes a brief 

discussion of conclusions, contributions, future directions, and takeaways from this thesis. 
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Figure 5: Approach matrix to be followed throughout Chapters 3, 4, and 5 
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2. Chapter 2 

Electromagnets in Space 

The use of electromagnets in space for a variety of applications is motivated by characteristics of both the 

space environment and of the electromagnets themselves, individually as well as in interaction with each 

other.  This chapter discusses these complimentary characteristics in general; reviews previous and 

existing uses of electromagnets in space specifically for actuation and support purposes; and then goes 

into depth on a maturation timeline for superconducting electromagnets in space, complete with three 

anchoring applications that motivate the development and advancement of this technology.  Finally, the 

necessity of stability analysis for risk reduction purposes is discussed as well as how this thesis fits into the 

existing field of electromagnetic stability.1 2 

2.1. Fundamentals  

Electromagnets and electromagnetic structures as spacecraft components are enabled by the 

fundamental physical principles of electromagnetism, superconductivity, and the unique features of the 

space environment.  This section briefly describes the underlying principles that enable HTS structures, 

including: 

1. The generation of Laplace forces via interaction of a magnetic field and current 

2. Superconductivity 

3. Enabling characteristics of the space environment (microgravity and vacuum) 

The resultant magnetic field 𝐵⃗⃗𝑖 at any point with respect to the 𝑖th current-carrying wire in a system can 

be described by the Biot-Savart law, integrating over the wire length (or coil circumference) with the 

differential length 𝑑𝑙𝑖   where 𝐼𝑖 is a constant current through the 𝑖th wire, 𝜇0 is the magnetic constant, 

4𝜋 × 10−7𝑁/𝐴2, and 𝑟𝑖𝑗 is the vector from each differential length element 𝑑𝑙𝑖 to the point where the 

field is being calculated: 

𝐵⃗⃗𝑖 =
𝜇0

4𝜋
∫

𝐼𝑖𝑑𝑙𝑖 × 𝑟𝑖𝑗

𝑟𝑖𝑗
3

𝐶𝑜𝑖𝑙 𝑖

. 
(2.1) 

                                                           

1 This chapter was adapted from an IAC 2014 paper: G. V. Gettliffe and D. W. Miller, "System Concept 
Development For Multifunctional Electromagnetically Actuated and Supported Space Structures," in International 
Astronautical Congress, Toronto, 2014. [63] 

2 The work in this chapter was largely done with the support of a NASA Innovative and Advanced Concepts (NIAC) 
Phase II grant (“MAGESTIC: Magnetically Enabled Structures Using Interacting Coils”), the final report of which [59] 
features many of the conclusions presented here. 
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The force on another (the 𝑗th, where 𝑗 ≠ 𝑖) current-carrying wire placed in the magnetic field of the first 

one is called the Laplace force and is described by the cross product of each of the second wire’s 

differential current segments with the field of the first wire, integrated over the second wire or coil:  

𝐹⃗𝑖𝑗 = 𝐼𝑗 ∫ 𝑑𝑙𝑗 × 𝐵⃗⃗𝑖

𝐶𝑜𝑖𝑙 𝑗

. 
(2.2) 

Parallel currents cause attractive forces while opposite currents cause repulsive forces.   

2.1.1. Superconductivity 

Superconductors are materials that conduct electrical current losslessly when isothermalized below a 

critical temperature 𝑇𝑐.  Superconductors have zero resistivity, with negligible quantities when 

approaching their 𝑇𝑐.  Every superconductor has a critical temperature, external magnetic field strength, 

and current density above which superconductivity ceases, as shown graphically as the critical surface in 

Figure 6.  The highest potential current density (while still remaining in the superconducting state) can be 

reached when the temperature and magnetic field are their lowest (though absolute zero is not quite 

possible) and so on for each of the three parameters.  Superconductors enable HTS structures because 

they are able to generate much larger forces than regular conductor magnets can generate.  The larger 

forces are due to the superconductor’s much larger current carrying capacity when superconducting, 

which translates to a larger distance over which superconductors can act upon each other for the same 

amount of mass [14]. 

 

Figure 6: Critical surface for high-temperature superconductor [15] depicting the values of current density, 
magnetic field, and temperature for which superconductivity can be sustained 

High-temperature superconductors, or HTSs, are those superconductors with 𝑇𝑐s above 77K, the boiling 

point of liquid nitrogen (LN2), enabling LN2 to be used as a coolant.  The higher a superconductor’s 𝑇𝑐, 

the less cooling it costs (in terms of power, storage, and consumables, for applications where a cryogen is 

not recycled). 
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2.1.2. Space Environment 

On the Earth’s surface, the strong unidirectional gravity vector as well as the cooling needs of 

superconductors make it difficult to use electromagnets as actuators or for continuous structural 

deployment.  They are often used in maglev trains and magnetic resonance imaging (MRI) machines, but 

those devices use massive stationary superconducting magnets that require liquid helium for cooling.  In 

the space environment, however, an electromagnet does not need an enormous magnetic field to actuate 

components, and there is no air transferring heat into the magnet by convection, making space a unique 

environment for the use of HTS structures.  

The microgravity environment of space enables HTS structures because spacecraft elements can be 

actuated without needing to dominate strong gravitational forces.  Only small forces are required to 

induce motion in microgravity, reducing the necessary size and current of electromagnets compared to 

what would be needed, for instance, to repel a coil upwards on the Earth’s surface [16]. 

The vacuum of space is both beneficial and detrimental to the use of superconductors.  If it can avoid 

radiated input from the sun or Earth or other bodies, a thermally isolated HTS subsystem can maintain 

temperature below its 𝑇𝑐 without cryogens.  However, it is difficult to remove heat from a system in a 

vacuum if it cannot be isolated from conductive or radiating heat sources. 
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2.2. Previous Work 

The most extensive use of electromagnets in space to date has been magnetorquers, coils of wire used to 

torque a spacecraft against the Earth’s geomagnetic field in order to dump momentum from the 

spacecraft’s attitude control components (discussed in more detail in Section 2.5.1).  With 

superconducting wire becoming cheaper, more flexible, and more manufacturable, the idea of using 

superconducting electromagnets for relative actuation of spacecraft and spacecraft elements became 

feasible.   

Electromagnetic formation flight (EMFF) [17], [18], [19], [20], [21] is a concept that would use three 

orthogonal superconducting coils per vehicle to provide a fully steerable electromagnetic dipole that can 

actuate against the field from another such vehicle and dipole.  A two-vehicle (3 degree-of-freedom each), 

liquid nitrogen-cooled air table testbed was created in 2003 by the MIT Space Systems Lab (MIT SSL) [18] 

to test the EMFF concept and develop controllers for such a system.  Figure 7 shows one of the two testbed 

vehicles with subsystem labels.  For reference, the diameter of the coils is 0.9m. 

 

Figure 7: MIT SSL 3DOF EMFF testbed [18] 

A microgravity EMFF testbed run by the University of Maryland and MIT SSL began operation on the 

International Space Station (ISS) in 2013-2014, called the Resonant Inductive Near-field Generation 

System (RINGS).  RINGS used aluminum coils instead of superconducting coils and was limited to one coil 

per vehicle instead of three, using the thrusters of the Synchronized Position Hold Engage and Reorient 

Experimental Satellites (SPHERES) for steering of the vehicles’ electromagnetic dipoles.  Since the 

governing equations of electromagnetic force are not specific to the type of wire (as discussed further in 

the next section), both the air-table testbed and the RINGS testbed contribute to the maturation of the 

EMFF concept.  Figure 8 shows one of the RINGS attached to a SPHERES unit on an air table.  

EMFF and RINGS both used active control to reach and maintain relative position, and both were free-

flying missions without connective hardware.  Neither investigated pseudo-passive stability or integrated 
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elastic forces into their analyses, save for the use of elastic tethers to hold one RING to the wall of the ISS 

to fix its position.   

 

Figure 8: A SPHERE outfitted with RINGS hardware in laboratory [16] 

Electromagnetic tensioning of membranous or hollow structures has been proposed on multiple 

occasions, such as Zubrin’s “magsail” concept in which a large plasma wind sail is supported using a flexible 

HTS perimeter to magnetically repel itself into a flat circle and keep the sail under tension.  For the initial 

deployment of such a sail, Zubrin ultimately settled upon a non-magnetic rotating boom system to deploy 

the sail via centrifugal force, citing “reliable deployment” as a key issue for magsails [22]. A NIAC study by 

Powell et al. [23] discussed a “magnetically inflated cable” system for large space structures: flexible 

cables made of high-temperature superconducting wire expanding themselves magnetically, serving 

simultaneously as actuators, perimeter support, and standoff structures.  

The latter work is the closest thing proposed to the electromagnetically actuated and supported systems 

discussed in this thesis, but the analysis was more qualitative and high-level.  This work seeks to more 

quantitatively analyze the ability of electromagnets to support large space structures, as well as identify 

risks and other technologies that must be tackled for the technology to be feasible for use on future 

spacecraft.  Reliable deployment of flexible coils is a risk that is discussed further later in this chapter, and 

the stability work in this thesis will inform future work on deployment dynamics as introduced in Gettliffe 

2012 [16]. 

The stability of electromagnets in repulsion is a major concern of magnetic levitation systems, including 

but not limited to maglev trains and other hovering platforms in an environment with an established 

gravity vector [24] [25]. The use of stiffness and potential energy curves to study stability is well-

established, most applicably in Moon [2] [25], wherein the concept of magnetic stiffness and of 

magnetoelasticity are introduced.  His definition of magnetoelastic structures are those which experience 
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elastic deformation as a result of magnetic forces and torques, and though the systems studied in this 

thesis largely use rigid coils, the structure does experience elastic deformation as a result of magnetic 

effects.  This work specifically applies these basic concepts to the new concept of space-based magneto-

elastic systems in microgravity, establishing a non-dimensional stability evaluation methodology well 

suited to the needs of a spacecraft designer who may need to examine the relative stability of a number 

of systems and system configurations at once.  The critical initial kinetic energy is a metric by which a 

designer can know the tolerance of a particular system for external perturbations.  The methodology is 

applicable to a broad range of magneto-elastic structures.  The applications discussed in this chapter 

include multiple electromagnet configurations, from single, rigid coils as in magnetorquers to flexible coils, 

from tethered coils to free-flying coils.    
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2.3. Capabilities, Risks, and Key Enabling Technologies 

From the previous discussion, electromagnets are clearly capable of providing a number of capabilities to 

a spacecraft, both structural and otherwise.  This section discusses some of these identified capabilities 

as well as several key enabling technologies that will be required to make such an electromagnetic 

subsystem a reality.   

2.3.1. Structural Capabilities 

Structural capabilities in this work are considered to be functions that traditionally fall to the structural 

subsystem to perform, such as deployment, support, and operational actuation functions.  

Electromagnetic coils can repel, attract, and even shear with respect to one another when energized, 

providing the forces and torques required for structural motion and support.  Figure 9 shows seven 

structural functions that can be accomplished by electromagnetic coils depending on their boundary 

conditions, rigidity (a flexible coil’s self-field exerts a force upon itself to flatten and tension the coil into 

a circular shape), and phase of deployment (either the deployment or the operational phase).  The 

example structures studied in Chapters 3, 4, and 5 all utilize the Separate capability.  

Table 1 (from Gettliffe 2013 [16]) describes the configurations shown in Figure 9 and some of their 

potential uses on a spacecraft. 

 

Figure 9: Electromagnetic structural functions and configurations [16] 
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Table 1: Descriptions and uses for electromagnetic structural configurations 

 

  

Configuration Description Uses 

Expand A single, flexible HTS coil that is folded in its 

stowed position and uses its own magnetic field 

when current is run through it to expand to flat 

shape 

To deploy and hold taut the 

perimeters of large membranous 

or flexible structures 

Inflate A 3D structure is built with two or more repelling 

coils in a configuration that creates a space 

between the two, inflating a structure (bounded 

by flexible walls or tethers) 

To create a volume (such as a tank 

or toroidal perimeter) or to 

increase surface area (for solar 

cells) 

Unfold A series of coils embedded in or attached to a 

structure that is stowed folded and must be 

unfolded to become operational (folds can be 

hinges, springs, or couplings) 

To deploy long, flat structures (like 

solar panels) or to take advantage 

of mechanical resistance at folds to 

create variable angles 

Separate Corollary of Inflate, in which two or more coils 

repel each other in series facing each other to 

separate two parts of a spacecraft; tethered or 

membranous structure connecting 

To put large, controllable distance 

between two sensitive parts of 

spacecraft (such as a nuclear 

reactor, astronauts, optics, 

thrusters)  

Deform Two or more coils embedded in parts of the 

structure act magnetically on each other to 

temporarily deform or change the shape of the 

spacecraft 

To reduce radar cross section (RCS) 

or adjust shape for avoidance of 

debris 

Reconfigure Corollary of Deform, except Reconfigured state is 

sustainable and lasting 

To reduce drag profile or 

reconfigure satellite for different 

ConOps 

Refocus Two or more coils adjust their magnetic state 

such that an antenna or mirror is deformed to 

refocus it.  Orientation of coils dependent on 

original shape of mirror or antenna. 

To change focus lengths of mirrors 

and gains of antennas by reforming 

or moving their dishes, mirrors, or 

horns to Refocus them on a new 

target 
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2.3.2. Ancillary Capabilities 

As described previously, ancillary capabilities or functions are those qualities that electromagnets 

naturally possess or provide which would normally be allocated to a (non-structural) subsystem or which 

will save mass from another subsystem.  Some ancillary capabilities of superconducting electromagnetic 

coils in particular will be discussed here.   

Strong quasi-controllable magnetic field:  Superconducting electromagnets can carry large currents, 

translating to powerful magnetic fields.  Because the current is controllable, the field strengths can be 

manipulated as well (unlike with permanent magnets).  For applications that require deflecting particles 

(as in active radiation protection), such a manipulatable field would be desired.   

Naturally circular deployed area and/or tensioned perimeter: A flexible current-carrying loop or coil, 

when folded, experiences magnetic forces due to the interaction of its current with its own magnetic field 

such that it expands and is tensioned into a flat, circular shape.  There are some stowed configurations of 

such a flexible coil that will end up in a non-circular shape, such as a figure-8; but with planning, a large 

circular area with natural tensioning can be deployed from a stowed configuration.  The self-force of such 

a flexible coil becomes weak at large sizes, so magnetic deployment can also be combined with strain 

energy or inflation to fully overcome any material resistance to deployment.   

Consumable-free controllable actuation w.r.t non-contacting elements: Motion of spacecraft or 

spacecraft elements relative to one another is generally either a one-time only occurrence (pyrotechnics), 

requiring motors and other connective hardware, or thrusters, which consume propellant.  With 

electromagnetic formation flight, spacecraft can move with respect to one another without touching and 

without consumables (only electrical power).  Electromagnets can also provide an external torque on the 

spacecraft when interacting with an external magnetic field such as the Earth’s geomagnetic field.      

Lossless energy storage:  Superconductors, when below their superconducting critical temperature, 

operate without resistive losses.  Energy in an electromagnetic coil persists indefinitely (save for small 

losses in non-superconducting elements of the circuit if any exist), making superconducting magnetic 

energy storage (SMES) a possible alternative to batteries.  The lossless nature of superconductors also 

means that superconducting magnets are very low-power compared to non-superconducting magnets 

(though this difference is made up at least in part by the power requirements of cryocoolers if such devices 

are needed to bring superconductors below their critical temperature). 

Performs as well or better in cold environs:  Superconductors can handle a larger amplitude current at 

lower temperatures, meaning that for missions to outer planets or cryogenic missions, a superconducting 

electromagnet can store more energy and produce a stronger field if desired. 

Low exported vibration and heat transfer: Electromagnetically-supported structures (which have mostly 

empty space between them instead of solid structures) minimize the conductive pathways between 

spacecraft elements, enabling better thermal and vibrational isolation for sensitive components.  If the 
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structures are formation flying (having no connective hardware), then heat transfer is completely limited 

to radiation. 

Wireless power and/or data transfer:  Exposure to a changing magnetic field induces a current in wire, 

which allows the power to be transferred wirelessly from coil to coil, as well as data if it is encoded within 

the signal. 

In the following discussion of selected applications along the technology maturation pathway in Section 

2.5, these ancillary capabilities will be referred to and their role in the application discussed.  

2.3.3. Risks 

Because the previous uses of superconductors on spacecraft have been limited to small electronic 

components within payloads, such as microwave circuits and antennas (see the High Temperature 

Superconducting Space Experiment II, or HTSSE-II [26]), a number of risks associated with (relatively) large 

superconducting magnets for structural or other applications have been identified.  Some of the risks are 

related specifically to the lack of flight heritage or actually operating this technology in the space 

environment, while some are known challenges of superconducting magnets that require greater analysis 

or focused trade studies to reduce for a given application.  Table 2 shows some of the identified risks, split 

into three categories based on what facet of an electromagnet subsystem they involve, as well as some 

possible strategies for mitigating the risk, either decreasing its likelihood or consequence or both. 
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Table 2: Risks associated with an electromagnetic subsystem and possible mitigation strategies 

Category of Risk Risk Possible Mitigation Strategy 

Electromagnets 

& Deployment 

Uncompetitive performance/ 

cost 

Create detailed model of an electromagnetic (EM) mast, 

calculate cost as compared to similar example structures 

Unknown stability of 

configuration 

Design methodology for analyzing the static stability of EM 

structures of a range of sizes and field strengths 

Potential for no stable configs Implement active control 

Disturbances (Cryocooler, 

solar , external mag. field) 

Expand stability methodology to determine dynamic 

stability of statically stable configurations 

Inability of single expanding 

coil to deform itself plus 

attached equipment 

Create multidisciplinary model of the field and self-forces 

of a flexible coil with mass and bending stiffness of itself 

and cooling equipment 

Losses prohibitive in AC 

applications, rectangular tape 

Development of new winding patterns  to further minimize 

the component of magnetic field perpendicular to the wire 

Thermal Control Power consumption of cooling 

system is prohibitively high 

Development of better cryocoolers with lower power 

requirements for the same heat extraction 

Flexible cooling not available 

for flexible coil 

Development of a flexible cooling system capable of 

reaching and maintaining a coil at temperatures ≤ 77K 

Leakage of coolant if thermal 

hardware broken/pierced 

Investigate self-healing materials or a patching agent 

inserted into the coolant 

Power 

Management & 

Control 

Potential electromagnetic 

interference (EMI) between 

subsystems 

Take into account field strengths from magnetic elements 

when selecting and positioning other components; use EMI 

or lack of it as a metric in trade studies  

Distributing power across coils 

inefficient or prohibitive 

Consider flux pumping or individual batteries; model 

effects of attaching power cable to a tether 

Inadequate position accuracy 

and knowledge 

Strategic placement of magnetometers and known 

structural dimensions and currents or infrared sensors 

could provide position information 

Do not have controllers for 

connected coils or GEO desat 

Development of higher-fidelity magnetospheric models 

and robust controllers 

Do not have method for 

orthogonalizing coils  

Find and develop strategies for orthogonalizing coil signals 

to reduce signal interference (time, frequency, etc) 
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2.3.4. Key Enabling Technologies 

In the process of identifying the risks listed in Table 2, a number of key enabling technologies (KETs) were 

identified that, if developed, would reduce or even eliminate certain risks.  Table 3 gives these key 

technologies and what risks they are associated with.  Some KETs are required for certain electromagnetic 

capabilities to be made possible, whereas others make an electromagnetic subsystem less expensive to 

system budgets and therefore a more compelling option in trade studies.  Some are active areas of 

research (such as more power efficient and lighter weight cryocoolers or a controller for desaturation in 

the GEO magnetic field) because they are necessary for other applications (lighter and lower power 

cryocoolers are beneficial to any spacecraft payload that requires one, and a controller for desaturation 

is necessary for GEO magnetorquers and already under work [27].)   

Table 3: Key enabling technologies for mitigating risks listed in Table 2 

Category of KET KET Associated risk mitigation 

Electromagnets 

& Deployment 

Striated superconductors for lower 

AC losses 

Losses prohibitive in AC applications and rectangular 

tape 

 Twisting tape stacks to reduce 

perpendicular magnetic field 

Losses prohibitive in AC applications and rectangular 

tape 

 HTS with higher critical temperature 

𝑇𝑐  

Uncompetitive performance/cost with other 

structural options 

Thermal Control Flexible cooling system for flexible 

HTS 

Cooling not available for flexible coil 

 More power efficient and lighter 

weight cryocoolers 

Power consumption of cooling system is prohibitively 

high, and uncompetitive performance/cost with 

other structural options 

 Self-healing materials for puncture 

mitigation 

Leakage of coolant if thermal hardware 

broken/pierced 

Power 

Management & 

Control 

Controller for desaturation in GEO 

magnetic field 

Do not have controllers for connected coils or GEO 

desat 

 Phasing for 2+ matched sets of 

magnets w/out cross-interaction 

Do not have method for orthogonalizing coils to 

reduce signal interference 

 Controller for tethered or otherwise 

constrained magnets 

Potential for no stable configurations 

These KETs are provided so that mission planners interested in making use of an electromagnetic 

capability on their spacecraft are aware of preliminary investments of money and effort that may be 

required in order to make an electromagnetic subsystem possible.    
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2.4. Maturation Timeline 

In order for electromagnetic structures to be implemented on real missions, the constituent technologies 

need to be matured significantly, both individually, through testing in increasingly relevant environments, 

and by gradual combination of technologies into increasingly complex systems.  Figure 10 shows the 

maturation pathway that was proposed for high temperature superconducting electromagnetic coils 

cooled via a flexible forced vapor cooling system, starting from past single-technology laboratory testing 

and ending with far-future, fully-integrated operation on-orbit beyond geostationary orbit (GEO).  The 

intermediary steps combine existing technologies into more complex systems and add some new 

technologies such that the final complex system, the observatory, is a combination of existing and new 

technologies.  

Highlighted in red in Figure 10 are anchoring use-cases in the near-term, mid-term, and far-term.  These 

use-cases provide mission pulls to support the technology push proposed in this work, and each use-case 

complements the focus of each of the aforementioned time periods: 

Near-term spans the time period between now and five years from now with the goal of achieving 

Technology readiness Level (TRL) 5 for high-temperature superconducting electromagnets in orbit and 

proposing a demonstration mission for electromagnetic structures.  The near-term is focused on building 

flight heritage and further maturation of the technology from Earth-based concept to a functioning system 

on orbit, and the anchoring application is GEO magnetorquers.  

Mid-term spans the time period between five and fifteen years from now with the goal of enabling or 

enhancing new mission concepts that have heretofore been impossible or infeasible.  The mid-term is 

focused on addressing technical feasibility barriers, starting with those associated with the anchoring 

application of a large deployed superconducting antenna. 

Far-term spans the time period beyond fifteen years from now with the goal of using electromagnetic 

capabilities to imagine revolutionary mission concepts, reinventing how large spacecraft are imagined.  

Missions in the far-term, including the anchoring application of a large space-based observatory, will not 

just be enabled by but also be defined by their use of electromagnetic systems.  Therefore, it will be 

important to focus in the far-term on addressing barriers to the integration and operation of sometimes 

several different electromagnetic subsystems with each other and the rest of the spacecraft.   
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Figure 10: Technology maturation pathway with selected applications highlighted with grey borders and arrows 
connecting the individual electromagnet and thermal development paths 
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The environments of the steps in Figure 10 are also staged, such that the individual technologies are 

developed and tested in controlled laboratory settings on the ground, then combined and tested in a 

relevant but still controlled environment on the International Space Station (ISS), then the successively 

more difficult-to-reach free-flying environments of low Earth orbit (LEO), GEO, and the second Earth-Sun 

Lagrangian point (L2).  Increasingly relevant environments are a requirement for increasing the TRL of a 

technology, and Figure 11 shows how each of the selected example missions increases and expands the 

number of environments in which superconductors and electromagnetic structures have been flown, 

while showcasing and maturing the three technology areas introduced in Section 2.3.3, Electromagnets 

and Deployment, Thermal Control,  and Power Management and Control.  (AMP refers to ARMADAS, 

MEDUSA, and PHOENIX, a collection of robotic assembly programs and technology that might be 

leveraged to help develop such a fractionated observatory.) 

Given the difficulty of realistically testing the dynamics of a relatively low-stiffness structure in the 

presence of a strong directional gravity vector, as is present at the Earth’s surface, other, more relevant 

environments are necessary for maturation of MAGESTIC and an increase in TRL of any MAGESTIC 

structure.  The ISS presents a fundamental maturation environment for magnetic structures because the 

dynamic response of such structures in deployment is too long to effectively be studied in a parabolic 

flight, but the abilities that ISS presents to observe the dynamics, test many different system 

configurations and conditions, and reset if there are malfunctions are essential to the development of a 

broadly-applicable technology without one specific design.  Flying a small satellite to test MAGESTIC 

deployment dynamics is very inefficient, given that the data that could be obtained from structural 

telemetry of one deployment (since there is no easy way to reset the system for another trial of the same 

or different configuration) is nowhere near as useful as being able to observe it with human eyes.   
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Figure 11: Selected use cases and the electromagnet, thermal, and power needs for each 
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2.5. Example Missions 

In order to exhibit the capabilities of electromagnetic structures, Section 2.5.1 presents a more detailed 

description and analysis of the three applications selected to anchor the maturation timeline in each of 

the three epochs introduced in Section 2.4, followed by discussion in Section 2.5.2 of an application that 

could be necessary at any time without warning, a magnetic asteroid tug.  

2.5.1. Selected Applications for Maturation Timeline   

The following three subsections give preliminary analysis of the near-term, mid-term, and far-term 
anchoring applications on the maturation timeline presented in Figure 10. 

Near-term: GEO Magnetorquer 

Spacecraft in low-Earth orbit (LEO) typically use reaction wheels or control moment gyros (CMGs) for 

attitude control and magnetic torque coils, or magnetorquers, to desaturate their wheels or gyros by 

causing an external torque to act on the spacecraft (the magnetic torque induced by the interaction of 

the Earth’s geomagnetic field with the magnetorquer).  In GEO, spacecraft generally require the use of 

thrusters (also used for stationkeeping) for the desaturation of their reaction wheels and/or CMGs 

because the Earth’s geomagnetic field is significantly weaker at GEO than at LEO.  GEO satellites are 

typically lifetime-limited by their propellant, so a consumable-free desaturation method like 

magnetorquers would be hugely beneficial to GEO spacecraft lifetimes. 

A quick way to approximate the strength of the Earth’s geomagnetic field at a distance r from the center 

of the Earth is via the first-order dipole Earth model, wherein the field strength 𝐵0 falls off proportional 

to 
1

𝑟3, or:  

|𝐵0| = Bsurf (
RE

r
)
3
√1 + 3 cos2 𝜃,  

(2.3) 

where Bsurf is the mean strength of the geomagnetic field on Earth’s surface, 3.12 ∗ 10−5 T, RE is the 

radius of the earth, and 𝜃 is the co-latitude measured from the north magnetic pole.  For comparison, the 

magnetic field strength at 42164 km from the center of the Earth (GEO) is 251.7 times weaker than the 

magnetic field strength at 6678.1km from the Earth’s center (a 300km altitude orbit, LEO).   

In addition to the weakness of the field at GEO, one thing the first-order Earth dipole model does not 

capture is the time-variance of the field at GEO, due to the interaction of the solar wind’s interaction with 

the magnetosphere.  Because the Earth dipole model does not capture this time-variance, it can only 

reliably be used to describe geomagnetic field strength out to about three Earth radii from the Earth’s 

center [28]. 
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This work focuses on one of these two barriers to the use of magnetorquers for desaturation at GEO; the 

issue of weak field strength can potentially be resolved via the use of superconductors.  Prediction of the 

field strength over time is an active field of research for space weather scientists, and there exist several 

models for the geomagnetic and magnetospheric fields over time [28], [29], [30]. Another way of 

compensating for the uncertainty of the field is to design robust controllers for magnetorquers at GEO 

that can compensate for a lack of precise knowledge of the geomagnetic field strength at that location 

and time. 

Magnetic torque 𝜏𝑚𝑎𝑔,𝑖 on the 𝑖th current-carrying coil with magnetic moment 𝜇𝑖 in an external magnetic 

field 𝐵⃗⃗ is determined by  

𝜏𝑚𝑎𝑔 = 𝜇𝑖 × 𝐵⃗⃗.  
(2.4) 

It can be seen from Equation (2.4) that the magnitude of magnetic torque is the product of the magnetic 

field strength and the strength of the magnetic moment of the coil; the same torque can be induced from 

a weak magnetic moment in a strong external field as can be induced by a strong magnetic moment in a 

weak external field.  Since the field strength at GEO cannot be increased, the magnitude of the magnetic 

moment can instead be increased. 

The magnetic moment 𝜇 of an air-cored current-carrying coil of area 𝐴𝑟𝑒𝑎, turns 𝑁 and current 𝐼 is as 

follows: 

𝜇 = 𝑁𝐼𝐴𝑟𝑒𝑎 ,  
(2.5) 

where the direction of 𝐴𝑟𝑒𝑎  is normal to the area enclosed by the coil, such that the current I is flowing 

counter-clockwise around 𝐴𝑟𝑒𝑎.  According to Desiderio et al. [27], 3000-4000 𝐴𝑚2 is a good estimate for 

the magnetic dipole moment needed from a torque coil for continuous magnetic momentum unloading 

for an average GEO spacecraft.  A large magnetic moment can be provided with a) a large area, b) lots of 

turns, or c) a high current.  Superconducting magnetorquers provide the latter.      

Magnetorquers used on LEO spacecraft are typically wound with copper wire and are one of two form 

factors: large area, flat, air-cored coils (often wound around the perimeter of one of the spacecraft sides 

or solar arrays) or small area, tall, iron-cored coils (often called torque rods, with several placed 

orthogonally inside the spacecraft to provide desaturation in all axes).  Ferromagnetic cores provide a 

stronger magnetic dipole than air-cores because the core acts to concentrate the magnetic field lines, but 

torque rods are typically reserved for spacecraft with larger mass budgets, due to the large mass of iron 

cores.  This analysis focuses on large area, flat, air-cored torque coils wound with high-temperature 

superconducting (HTS) wire, but it would not be impossible to create an iron-cored HTS-wound torque 

rod. 
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Figure 12 shows for a given area of coil how many ampere-turns (𝐼 ∗ 𝑁) are required to produce magnetic 

dipole strengths of 3000, 3500, and 4000 𝐴𝑚2, while Figure 13 shows that for 5𝑚2, the number of turns 

with a current of 150A is roughly 5 turns.  The mass of a 150A coil (using the density of the 6mm 

Superpower HTS wire) is shown versus the coil area in Figure 14. 

The knee in the curve is around 5𝑚2 – larger areas do not save that many ampere-turns. 5𝑚2 is also a 

reasonable area to assume that a GEO spacecraft can accommodate, so 5𝑚2 will be used as an example 

coil area going forward.  Figure 13 assumes that the wire is carrying 150A (the critical current for the 

commercially available 6mm wide SuperPower HTS wire [31]) and shows how many turns would then be 

required for the same magnetic dipole strengths as in Figure 12. 
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Figure 12: Ampere-turns versus area of coil required for several example magnetic moments 

 

Figure 13: Turns versus area of coil required for several example magnetic moments 
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Figure 14: Mass versus area of coil required for a magnetic moment of 3500 𝐴𝑀2 

A mass of 0.14kg for a magnet capable of providing 3500𝐴𝑚2 is very low.  Note that this value does not 

account for the hardware required to cool the coil to 77K with liquid nitrogen, which will add significantly 

to the mass.  Comparing a single turn coil of copper with one of HTS wire, both coils of the same mass and 

wire area, the HTS coil provides a magnetic dipole moment two orders of magnitude larger than that of 

the copper coil.   

The copper versus HTS comparison is not just about mass of the coil, however, or many-turn copper 

magnetorquers would be used regularly at GEO.  Even with heavy coils, the propellant savings would be 

still likely be worth the tradeoff.  One of the defining characteristics of a superconductor is that when it is 

cooled below its superconducting temperature, the wire is lossless.  This allows a high-amperage current 

to pass through an HTS wire without melting it or losing any energy to heat.  In contrast, copper is resistive, 

and some of the electrical energy passed through it is converted to heat.  Too many turns of copper (and 

no convection in the vacuum of space) would eventually heat a copper coil to its melting point.  So, while 

a massive copper coil could theoretically provide the needed magnetic moment, it would require 

additional cooling hardware as well to evacuate the emitted heat, making adding extra propellant to the 

spacecraft the more reasonable of the two options for desaturation.  Both HTS and copper coils requiring 

additional thermal hardware at GEO makes the choice between the two magnetorquer options simple.   
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Further work includes an analysis of how much less propellant would be required if magnetorquers were 

used on a GEO spacecraft as well as a more detailed thermal comparison of HTS and copper 

magnetorquers. 

Mid-term: EMIC Wave Antenna  

The Van Allen belts are regions encircling the Earth in which the Earth’s geomagnetic field has trapped 

and concentrated energetic charged particles.  The trapped particles come from cosmic rays, solar flares 

and storms, and other processes.  There are two major Van Allen belts. The inner belt, which encompasses 

the equatorial region roughly between 0.2 and 2 Earth radii from the Earth’s surface (1,000-6,000 km 

altitude), comprises electrons and protons; the outer belt spans 3 to 10 Earth radii from the Earth’s surface 

(13,000-60,000 km) and comprises mainly electrons [32]. 

Charged particles are not healthy for spacecraft or humans as they can cause unwanted single event 

effects in spacecraft electronics and damage DNA in human cells, leading to cancer or other health 

concerns.  Spacecraft in high LEO or highly elliptical orbits pass through the inner belt and are thus exposed 

to high dosages of radiation.  Geostationary orbit is 35,786 km in altitude, so satellites in GEO are also 

constantly exposed to the particles trapped in the outer belt.  A method for cleaning the trapped particles 

out of the Van Allen belts would reduce the radiation dosage to current and future space missions.   

The charged particles in the Van Allen belts travel in helical paths around the geomagnetic field lines and 

bounce back and forth along the lines, reversing directions at mirror points along the field line where the 

angle, or pitch angle, between the helical path and the field line is 90 degrees.  If the mirror points occur 

in atmosphere dense enough that the charged particles collide with atmospheric particles, then the 

charged particles are absorbed by the atmosphere and are no longer trapped.  Particles with mirror points 

at low altitudes (and thus will precipitate into the atmosphere within a few cycles) have pitch angles that 

fall inside an altitude-defined loss cone around the field line during the middle of a bounce [33].  Particles 

with equatorial pitch angles outside of the loss cone stay trapped around the field line unless an external 

influence such as interaction with a plasma wave scatters their pitch angle into the loss cone. 

It has been observed that ultra low and very low frequency waves (ULF and VLF) can scatter trapped 

particles into the loss cone, freeing them from the Van Allen Belts.  Whistler waves (with frequencies of 

kHz) interact with electrons, while electromagnetic ion cyclotron (EMIC) waves (with frequencies less than 

10 Hz) can interact with both protons and electrons, making them a good option for reducing the trapped 

radiation in the inner Van Allen belt [34].  A mission incorporating a large space-based antenna that could 

emit EMIC waves and begin precipitating inner belt protons would be both scientifically and economically 

valuable.  This section will briefly discuss how superconducting electromagnets contribute to and enable 

the EMIC wave mission; for more in-depth analysis of the EMIC wave mission, antenna design and 

performance, see de Soria 2014 [34].  The following discussion includes a brief summary of the findings 

from the aforementioned paper.   
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A very large (30 m diameter) magnetic loop antenna was chosen for this application because of its very 

small radiation resistance in plasma compared to a linear dipole antenna.  To prevent large voltages from 

forming across a static AC coil due to its enormous self-inductance, a rotating DC (direct current) coil was 

selected, which in the far field (5000 km or so away from the antenna) has a dipole component equivalent 

to two static orthogonal AC coils if the rotation rate of the coil matches the desired frequency of its signal.  

In order to make the spinning antenna gyroscopically stable, it would be necessary to design the 

spacecraft such that the antenna is spinning around a major axis of inertia.  Figure 15 shows the basic 

concept of the rotating antenna in the frame of its orbit and the Earth’s magnetic field (𝐵0) as well as a 

potential concept that splits the spacecraft into two buses to make the coil’s spinning axis a major axis of 

inertia.    

 

Figure 15: Concept EMIC-wave antenna in (a, left) orbit and (b, right) as a major-axis spinner [34] 

In order to radiate the power necessary to detect whether the EMIC wave technique works (25W with a 

30 m diameter coil), high-temperature superconductors were selected.  Cooling superconductors to 

colder temperatures increases their performance, as previously stated, but then the cryocoolers 

necessary to achieve such temperatures demand more power and mass, so there is always a trade 

between power, mass, and performance when working with superconductors in space. 

Additionally, a 30 m diameter antenna would not fit in a launch vehicle fairing and would need to be 

deployed somehow, likely via a combination of magnetic self-force, strain energy and inflation.  

Centrifugal force would not be ideal in the case of this antenna because it would mean inducing 

acceleration and motion around a different axis (normal to the plane of the coil) than the antenna should 

spin, which would stiffen it against efforts to spin it up around the correct axis (in the plane of the coil).  

To date, only rigid heat pipes for the isothermalization of superconducting coils have been created [18].  

A rigid heat pipe would not work for a coil large enough to need to be folded or otherwise stowed within 

a launch vehicle.  In light of the difficulties of deployment and cooling, as part of our NIAC Phase II study, 

the University of Maryland Space Power and Propulsion Lab developed a flexible vapor-cooling system for 
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cooling superconducting coils to cryogenic temperatures.  In addition, the cooling system uses strain 

energy (a compressed spring around the exterior of the tube) and inflation pressure (from the vapor) to 

assist deployment of a flexible coil.   

A scientific proof-of-concept mission of the EMIC-wave antenna is possible with a smaller (5 m diameter 

coil) that doesn’t require deployment and can be rigid.  However, demonstrating a flexible cooling and 

deployment system would be a big step towards creating a mission that could start removing radiation in 

measurable quantities. 

Far-term: Observatory 

Space-based observatories are by necessity complex and precise structures.  Each successive observatory 

has increasingly stringent requirements and the observatory’s designers accommodate these 

requirements with often unique structures and solutions. Figure 16 depicts a notional “Next Next 

Generation Space Telescope” that incorporates many of the structural and ancillary capabilities 

mentioned in Section 2.3. 

 

Figure 16: Notional depiction of a “Next Next Generation Space Telescope” incorporating many structural and 
ancillary electromagnetic functions [16] 

Some of the uses incorporated in this futuristic observatory (or other variants upon it) are: 

Sunshield/starshade separation and tensioning.  Sunshields are structures found in cryogenic telescopes 

such as the James Webb Space Telescope (JWST), which has instruments that must be kept at cryogenic 

temperatures in order to observe in infrared.   Figure 17 shows a multi-layered sunshield where 

superconducting coils around the perimeter of the layers are tensioning the layers radially as well as 
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repelling against each other to fan the layers apart.  Referring back to the structural configurations shown 

in Figure 9, the sunshield depicted in Figure 17 includes both Expand and Separate. 

 

Figure 17: Notional electromagnetically-tensioned multi-layer sunshield for a cryogenic telescope 

In a telescope wherein some of the spacecraft is kept at cryogenic temperatures, the ancillary capability 

of a superconducting magnet to perform better in cold environments could also be leveraged. 

For an occulting telescope like the proposed New Worlds Observer [35], a starshade might be used – an 

enormous flower-like membranous structure positioned great distances away from the telescope itself in 

order to occult a star and allow for study of a planetary system around said star.  A starshade is also a 

structure that could benefit from electromagnetic perimeter tensioning or deployment. 

Positioning of optics: Figure 16 shows a telescope in which multiple parts of the spacecraft are formation 

flying with each other without any physical contact.  In particular, formation flying the secondary mirror 

with respect to the primary mirror eliminates the obscuration of a tower joining the two as well as takes 

advantage of the thermal and vibration isolation ancillary capabilities.   

Using an example of a telescope positioned at GEO, the necessary strength can be explored of the 

magnetic dipoles on each of the primary and secondary mirrors to provide the required force to keep the 

two optics aligned.  The primary mirror mass is assumed to be 100,000 kg (could also include the rest of 

the spacecraft) with a secondary mirror mass of 5,000 kg.  The distance between the two is 150 m.  The 

center of mass of the two-body system is along the orbit, aligned with the origin of the coordinate system 

seen in Figure 18 below. 
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Figure 18: Coordinate system of formation flying optics example [36] 

Of interest are the positions of the primary and secondary mirrors with respect to the center of mass of 

the system.   Figure 19 shows the positions 𝑥𝑝 and 𝑥𝑠 of the primary and secondary mirrors respectively 

as well as the basic parameters of the problem. 

 

Figure 19: Orientation of primary and secondary mirrors if they are separated in the x direction 

Assumed is a nominal orbit with no active orbit control, a spherical Earth (no J2 perturbation), and no-

drag, magnetic or solar pressure perturbations.  The frame origin/center of mass is in a circular orbit and 

rotates about the z-axis once per orbit. 

The center of mass of the system is at 

𝑚𝑝𝑥𝑝+𝑚𝑠𝑥𝑠

𝑚𝑝+𝑚𝑠
= 𝑥𝑐𝑚 = 0,  (2.6) 

so solving for 𝑥𝑝 and 𝑥𝑠,  

𝑥𝑝 =
𝑚𝑠

𝑚𝑝 + 𝑚𝑠
𝑑 = 7.14 meters, (2.7) 

and 
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𝑥𝑠 = −
𝑚𝑝

𝑚𝑝+𝑚𝑠
𝑑 = −142.86 meters.  (2.8) 

Change x to y or z for cases where the mirrors are separated in those directions.   

Considering the Hill’s frame where 𝑛𝑜𝑟𝑏 is the orbital rate = 7.29 × 10-5 rad/s (GEO), and 𝑎𝑥, 𝑎𝑦, and 𝑎𝑧 

are accelerations: 

𝑥̈ − 2𝑛𝑜𝑟𝑏𝑦̇ − 3𝑛𝑜𝑟𝑏
2𝑥 = 𝑎𝑥 

𝑦̈ + 2𝑛𝑜𝑟𝑏𝑥̇                      = 𝑎𝑦 

𝑧̈                       + 𝑛𝑜𝑟𝑏
2𝑧 = 𝑎𝑧 

(2.9) 

If the mirrors are separated in x direction: 

𝑥̈ =  𝑦̈ = 𝑧̈ = 𝑥̇ = 𝑦̇ = z = y = 0, 

𝑎𝑥,𝑠 = −3𝑛𝑜𝑟𝑏
2𝑥𝑠 = 3𝑛𝑜𝑟𝑏

2 (
𝑚𝑝

𝑚𝑝+𝑚𝑠
𝑑),          

(2.10) 

and 

𝐹𝑥,𝑠 = 𝑚𝑠𝑎𝑥,𝑠 = 3𝑛𝑜𝑟𝑏
2 (

𝑚𝑝𝑚𝑠

𝑚𝑝+𝑚𝑠
𝑑) = −𝐹𝑥,𝑝 = 0.0114 N (attraction). (2.11) 

If mirrors are separated in z direction:  

𝑥̈ =  𝑦̈ = 𝑧̈ = 𝑥̇ = 𝑦̇ = x = y = 0, 

𝑎𝑧,𝑠 = 𝑛𝑜𝑟𝑏
2𝑧𝑠 = −𝑛𝑜𝑟𝑏

2 (
𝑚𝑝

𝑚𝑝+𝑚𝑠
𝑑),  

(2.12) 

and 

𝐹𝑧,𝑠 = 𝑚𝑠𝑎𝑧,𝑠 = −𝑛2 (
𝑚𝑝𝑚𝑠

𝑚𝑝 + 𝑚𝑠
𝑑) = −𝐹𝑧,𝑝 

= −0.0038 N (repulsion). 

(2.13) 

If mirrors are separated in y direction:  
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𝑥̈ =  𝑦̈ = 𝑧̈ = 𝑥̇ = 𝑦̇ = x = z = 0, 

𝑎𝑦,𝑠 = 0 = 𝐹𝑦,𝑠 = 𝐹𝑦,𝑝.  

(2.14) 

Separation in the x direction requires three times the force of separation in the z direction, but the x 

direction requires attraction, while z requires repulsion.  Magnetic attraction is inherently more stable 

than repulsion, but it’s likely that the orientation will depend on the mission objectives.  It can be seen 

that there is no force required to keep the mirrors the desired distance apart when they are aligned along 

the velocity vector, which comes as no surprise. 

The separation forces in x and z are small.  The goal is therefore to determine how large and/or massive 

the magnets attached to the formation flying mirrors would need to be in order to achieve these forces.   

When the coils are in the far-field, meaning at least 10 coil radii apart, they can be approximated as 

magnetic dipoles, for which the force between two parallel coils in repulsion or attraction is 

|𝐹| =
3𝜇0𝜇1𝜇2

2𝜋𝑑4
, 

(2.15) 

where 𝜇0 = 4𝜋 ∗ 10−7 N/A2 as previously mentioned, and the magnetic moments of the two coils are , 

𝜇1 and 𝜇2.  Assuming that the two coils have the same magnetic moment, 𝜇1 = 𝜇2 = 𝜇12, the magnitude 

of the force is therefore 

|𝐹| =
6 ∗ 10−7 ∗ 𝜇12

2

𝑑4
. 

(2.16) 

Inserting the material density and dimensions of SuperPower wire and solving for the magnetic moment 

in terms of the mass and radius of a coil, the force of a SuperPower HTS-wound magnet is roughly 

𝐹𝑆𝑃 ~
128.3(𝑚𝑅)2

𝑑4
, 

(2.17) 

where m is the mass of a single coil in kg, and R is the radius of the coils in meters.  Combining Equations 

(2.11), (2.13), and (2.17), 
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(𝑚𝑅)𝑥 =  √
0.0114∗1504

128.3
= 212.09 kg-m.  

(2.18) 

and 

(𝑚𝑅)𝑧 =  √
0.0038∗1504

128.3
= 122.45 kg-m.  

(2.19) 

It can be seen that as the size of the coil on each of the optical elements is increased, the mass of the 

magnet decreases, making it clear that increasing the radius of the coil if possible is beneficial to the mass 

budget (but the maximum radius may be capped by launch vehicle parameters or other environmental 

constraints.)  This analysis is valid for other formation flying elements, not just optical elements. 

Formation flying sunshield with respect to primary mirror: Another possible advantage of formation 

flying within an observatory with a sunshield or something similarly large is that the orientation of the 

parts can be adjusted over time.   

JWST’s nominal lifetime is limited by its propellant supply.  Barring another unexpected failure, the 

mission finishes when it runs out of fuel.  The propellant is used for two purposes after the spacecraft 

reaches its operational destination of the Earth-Sun L2 point: stationkeeping in its halo orbit around the 

L2 point and desaturation of its reaction wheels.  The reaction wheels on JWST saturate because of a net 

solar radiation pressure torque resulting from a center of pressure/center of mass offset on the 

spacecraft.  Because JWST’s sunshield is firmly attached to its primary mirror assembly, over the course 

of its orbit the offset varies but is not persistently zero.  Figure 20 shows how disconnecting the optical 

assembly from the sunshield of our futuristic telescope and formation flying them allows for translational 

momentum exchange.  
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Figure 20: Reducing the center of pressure/center of mass offset of a cryogenic telescope at L2 

By doing this, one is essentially “trimming” the sunshield over the course of the orbit to minimize the 

center of pressure/center of mass offset and therefore use less propellant for desaturation of the 

telescope.  Enumerating the propellant that could be saved by such a technique is a task for future work. 
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2.5.2. Asteroid Tug 

The anchoring applications discussed in the previous section are not the only applications enabled or 

enhanced by the use of electromagnetic coils and structures.  Some other types of missions that could 

benefit from the structural and ancillary capabilities of an electromagnetic spacecraft are shape 

maintenance of a solar sail, angular or linear momentum control of objects such as astronauts, cargo, or 

asteroids, and magnetic shielding of a spacecraft or habitat from radiation using superconducting 

magnets, the latter of which is an active field of research [37], [38].  Using magnets to tug an asteroid is 

an application of particular interest, given the clear advantages over a traditional gravity tug approach. 

A major potential application of electromagnetic coils on spacecraft that exists independent of a 

development timeline is a magnetic asteroid tug.  Given that a dangerous asteroid could be detected at 

any time, it is crucial that a mitigation strategy not only exist but be ready for quick deployment.  The 

faster a redirection technique can work, the larger the margin of safety that can be created.  While 

gravitational asteroid tugs are frequently discussed for redirecting asteroids that pose a threat to the 

Earth, the force that a gravitational tug is able to exert on an asteroid is not only incredibly small (reducing 

the possible acceleration of the asteroid-spacecraft system), but also hinges on the mass of the spacecraft, 

which actively goes against the goal of minimizing mass to minimize cost.  The dependence on mass also 

means that as fuel is expended, the force the tug exerts substantially decreases as well.   

The force exerted by an electromagnetic tug equipped with a large, superconducting electromagnetic coil, 

however, would not rely on mass explicitly, but rather on electrical power and the size of the 

electromagnet.  A magnetic tug is directly comparable to a gravitational tug, since both system concepts 

involve a vehicle that is not touching the asteroid but instead maintaining proximity and inducing some 

sort of force to pull the asteroid in a desired direction.  For the same mass spacecraft, an electromagnetic 

tug could exert orders of magnitude more attractive force on the asteroid than a gravitational tug, 

depending upon the asteroid’s magnetic and tumbling states.   

The asteroid would need to be ferromagnetic and either not tumbling with an oriented magnetic dipole 

moment, or not already possessing an oriented magnetic dipole moment.  A magnetic tug would be 

equipped with a strong directional HTS magnet that would either act to attract the magnet via its 

preexisting dipole moment or induce a time-variant alignment within the ferromagnetic core towards the 

HTS magnet.  Further work is necessary to investigate how well the latter technique would work, but it is 

an application that is very much worth exploring in detail. 

For a quick calculation of the ratio of force provided between magnetic and gravitational tugs of the same 

mass, this analysis uses the asteroid Vesta as an example and assumes that it is not spinning and will be 

being tugged in a direction along its magnetic dipole moment.  This analysis also assumes that the 

minimum paleointensity at Vesta’s surface is 2μT, based on meteorites found on Earth that likely sample 

Vesta’s crust [39], and that the coil (not including thermal system) is 5% of the magnetic tug’s mass, 

exploring later how changing that percentage changes the force ratio.  The distribution of mass (including 

power, propellant, and thermal systems) is not otherwise specified. 

The gravitational force between an asteroid and a spacecraft is 
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𝐹𝑔 =
𝐺𝑀𝐴𝑀𝑠𝑐

𝑑2
, 

where 𝐺 is the gravitational constant (6.67408 × 10−11 𝑚3

𝑘𝑔−𝑠2), 𝑀𝐴 is the mass of the asteroid, and 

𝑀𝑠𝑐  is the mass of the spacecraft. 𝑑 is the distance between the asteroid and the spacecraft.  The magnetic 

force between two aligned magnetic dipoles (using the dipole approximation for the magnetic moment 

of the coil, discussed in more detail in Chapter 3) is 

𝐹𝑚 =
3𝜇0𝐼𝑒𝑓𝑓𝐴𝑟𝑒𝑎𝜇𝐴

2𝜋𝑑4
, 

where N is the number of turns, 𝐴𝑟𝑒𝑎 is the area of the coil, d is the distance from the center of the coil 

to the center of the asteroid, 𝐼𝑒𝑓𝑓 is the effective current, or the current per turn 𝐼𝑡𝑢𝑟𝑛 times the number 

of turns N in the coil, 𝜇0 is the vacuum permeability, or 4𝜋 ∗ 10−7𝑁/𝐴2, and 𝜇𝐴 is Vesta’s magnetic dipole. 

To determine Vesta’s magnetic dipole from an assumed 2μT surface field and the radius of the asteroid 

𝑟𝑎𝑠𝑡~ 260𝑘𝑚, one can use the formula for magnetic field at a distance 𝑟𝑎𝑠𝑡 along moment axis: 

2𝜇T =
μ0

4𝜋
∗

2𝜇𝐴

(260 𝑘𝑚)3
, 

And therefore the magnetic dipole moment of the asteroid 𝜇𝐴 is 

𝜇𝐴 = 1.7576 ∗ 1017𝐴𝑚2. 

The best approximation for Vesta’s mass [40] is 

𝑀𝐴 = 2.591 ∗ 1020 𝑘𝑔. 

The ratio 𝑥𝑓 between the magnetic and gravitational forces is as follows: 

𝑥𝑓𝐹𝑔 = 𝐹𝑚, 𝑥𝑓 =
𝐹𝑚

𝐹𝑔
=

3𝜇0𝐼𝑒𝑓𝑓𝐴𝑟𝑒𝑎𝜇𝐴

2𝜋𝑑2𝐺𝑀𝐴𝑀𝑠𝑐
. 

The coil mass of a coil with radius 𝑅 and number of turns 𝑁 is assumed to be 

0.05𝑀𝑆𝐶 = 2𝜋𝑅𝑁 ∗ 𝐶𝑆𝐴 ∗ 𝜌𝐻𝑇𝑆, 

where CSA is wire cross-sectional area (𝑚2), and 𝜌𝐻𝑇𝑆 is the density of the wire (𝑘𝑔/𝑚3) . 

𝐴𝑟𝑒𝑎 = 𝜋𝑅2. 

Rearranging the above equation for coil mass in terms of N and multiplying by 𝐴𝑟𝑒𝑎, 

𝑁𝐴𝑟𝑒𝑎 = 𝑁𝜋𝑅2 =
𝑀𝑆𝐶 ∗ 𝑅

40 ∗ 𝐶𝑆𝐴 ∗ 𝜌𝐻𝑇𝑆
. 

Substituting known values into the equation for the ratio 𝑥𝑓,  
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𝑥𝑓 =
3𝜇0𝐼𝑡𝑢𝑟𝑛𝜇𝐴𝑀𝑆𝐶𝑅

80𝐶𝑆𝐴 ∗ 𝜌𝐻𝑇𝑆𝜋𝑑2𝐺𝑀𝐴𝑀𝑆𝐶
=

3𝜇0𝐼𝑡𝑢𝑟𝑛𝜇𝐴𝑅

80𝐶𝑆𝐴 ∗ 𝜌𝐻𝑇𝑆𝜋𝑑2𝐺𝑀𝐴
=

3𝜇0𝐼𝑡𝑢𝑟𝑛

80𝐶𝑆𝐴𝜌𝐻𝑇𝑆𝜋𝐺
∗ 

𝜇𝐴𝑅

𝑑2𝑀𝐴
. 

The first term, called 𝑍 for reference, comprises constant terms (with a final unit of 
𝑘𝑔

𝐴𝑚
, to avoid writing 

out all the units below), so its value can be determined as follows: 

𝑍 =
3𝜇0𝐼𝑡𝑢𝑟𝑛

80𝐶𝑆𝐴𝜌𝐻𝑇𝑆𝜋𝐺
=

3 ∗ 4𝜋 ∗ 10−7 ∗ 150

80 ∗ 6 ∗ 10−7 ∗ 8583.33𝜋 ∗ 6.67 ∗ 10−11
= (6.55013 ∗ 106)

𝑘𝑔

𝐴𝑚
. 

Inserting the properties of Vesta [39] gives 

𝑍𝜇𝐴

𝑀𝐴
=

(6.55013 ∗ 106)
𝑘𝑔
𝐴𝑚

∗ (1.7576 ∗ 1017𝐴𝑚2)

2.591 ∗ 1020𝑘𝑔
= 4443.27𝑚, 

𝑥𝑓 =
𝑍𝜇𝐴𝑅

𝑑2𝑀𝐴
= 4443.27𝑚 ∗

𝑅

𝑑2
. 

𝑑 depends largely on the optimal distance from the asteroid to both reduce plume impingement of the 

thrusters on the asteroid and use propellant most efficiently, if the thrusters are not aligned with the 

vector of movement.  This high-level calculation gives an idea of how the ratio changes depending on how 

large the coil can be made and how closely the spacecraft can operate to the asteroid.  Clearly, the larger 

radius the coil the better, the only drawback being that a larger coil would mean more mass dedicated to 

a thermal system (depending on where in the solar system the asteroid is located) and less to propellant, 

and deployment of that coil also becomes necessary when the radius exceeds that of the launch vehicle 

fairing.  It is also worth noting that a larger force exerted on the asteroid allows faster movement.   

How does this ratio change if more or less of the spacecraft mass is devoted to the naked coil? The effect 

of percentage of spacecraft mass dedicated to the coil can be found by multiplying Z by the multiplier 

between 5% and the desired mass percent.  For example, if the coil is 50% of the mass of the spacecraft, 
𝑍𝜇𝐴

𝑀𝐴
 = 10* 4443.27m = 44432.7 m. 

It should be noted that this analysis just compares the relative forces, while an electromagnetic tug would 

also exert a gravitational force by virtue of its having mass, so at a given instant, an electromagnetic tug 

would exert 𝐹𝑡𝑜𝑡,𝐴 = 𝐹𝑔 + 𝐹𝑚 force on the asteroid, or 

𝐹𝑡𝑜𝑡,𝐴 = 𝐹𝑔(1 + 𝑥𝑓), 

which is by necessity no less than 𝐹𝑔.  This analysis does not take into account a cooling system required 

for the superconducting magnet, fuel, mission lifetime or how including an EM coil might change those 

parameters, but it is clear that if an asteroid could possibly be or become magnetized, then an 

electromagnetic component to a tug would be a very useful option to explore. 
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2.5.3. Stability Significance 

Though stability of elastically-connected electromagnet structures is the primary focus of this thesis, many 

of the applications discussed in this section do not fall into this category.  While development of the 

specific stability methodology in this thesis will benefit the next-next-generation space observatory, which 

may have sun shields or long booms elastically connected and magnetically tensioned, the discussed 

applications all afford different insight into the problem of instability and/or suffer from the risk of 

instability in some way. 

Magnetorquers: The development and deployment of HTS magnetorquers at GEO provides insight into 

the nature and strength of the perturbations to an electromagnet based on changes in the Earth’s 

magnetic field at the location of the spacecraft.  Whereas the methodology developed in this thesis 

provides a way of calculating the minimum kinetic energy that could made a statically stable equilibrium 

dynamically unstable, system designers also need data to inform their estimates of the perturbation 

energy that they should expect for their mission profiles.   

EMIC-wave antenna:  A spinning antenna presents a whole host of stability related issues, gyroscopic 

stability being the most significant.  A spinning EMIC-wave antenna requires the spacecraft to be designed 

specifically for its stability, which may require going so far as to actually split the spacecraft into two buses, 

each kept at a distance from the spin axis to change the major axis of inertia for the system.  A spinning 

magnetic moment in the Earth’s magnetic field also imparts a constant magnetic torque that must be 

accounted for when studying the motion and precession stability of such a spacecraft [41]. 

Next-next-generation observatory: An observatory could feature a number of electromagnetic 

capabilities, structural or otherwise, as discussed earlier in this section.  Stability in the context that it is 

discussed in this thesis is clearly applicable to any of the passive magnetic elements of the spacecraft that 

are elastically connected, but the potential energy curves contributed to by a number of spatially 

scattered electromagnets can also identified local potential energy minima as good locations for the 

positioning of active magnetic elements.  Actively controlled magnetic elements could be elastically 

connected, for instance, if no pseudo-passive stable equilibria can be found for a specific set of 

requirements, but more likely they are disconnected and free-flying as in electromagnetic formation 

flight.   

Asteroid tug: One of the reasons the asteroid tug is a “tug“ and not a “shove” is that magnets are only 

stable in attraction, when they are aligned with an external magnetic field; trying to push an asteroid from 

behind could result in divergent behavior between the two, since the asteroid and spacecraft coil would 

want to rotate to align and attract.  Such torques on the spacecraft could result in the best case in greater 

use of propellant for stationkeeping or worst case in the spacecraft colliding with the asteroid.  Also, the 

gravitational attraction between the two would work in the opposite direction of what is desired in the 

pushing case.   

Instability is clearly a major concern for any spacecraft application using electromagnets, and this work 

seeks to address some of the fundamental aspects of magnetic structural stability analysis and provide a 

foundational basis for such analyses going forward.   
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3. Chapter 3 

Analytical Stability 

Initial exploration of a topic is often done by starting with a simple system that can be described with 

simple equations and then adding complexity from there.  This approach permits broad understanding of 

the concepts of interest and the impact of assumptions and design choices on results, as well as easy 

visualization of results. In this chapter, a simple magnetic structure is introduced for which analytical 

equations of motion and stability techniques are given and explored in a comprehensive way in order to 

be referenced in and used to validate later chapters.     

Each of the three rows of the approach matrix from Figure 5 (equilibrium identification, static stability, 

and dynamic stability) are explicitly addressed in order for each of three systems: a translational single 

degree of freedom system, a rotational single degree of freedom system, and a two degree of freedom 

system that combines the previous two systems.  Figure 21 depicts the three systems to be studied in this 

chapter and how they fit into the overall approach matrix as introduced in Figure 5 and will be used 

throughout this chapter with the relevant section highlighted to give the reader a visual guide through 

the analysis.  Those sections that have already been addressed will be shaded with diagonal lines. 

 

Figure 21: Three analytical systems to be studied in this chapter 

Non-dimensionalization is an important part of this chapter.  Dimensioned and dimensionless equations 

and calculations are presented side by side throughout the chapter to provide physical insight as well as 

generalizability of the analyses. 
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The results of the analytical assessment in this chapter are used to validate the model and approach used 

in the simple numerical problem of Chapter 3, which will in turn be used to validate the model and 

approach used in the more complex numerical problem of Chapter 5 such that the complex numerical 

model and approach can be used for a number of problems.   
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3.1. Dipole Model 

As mentioned in Section 1.4, a simple model for the magnetic field at any point around a magnetic coil is 

to model the coil as a magnetic dipole moment.  This model is henceforth called the dipole model.  Figure 

22a shows the magnetic moment of a coil based on its design parameters, pointing in the direction 

dictated by the direction of the current around the loop and the right hand rule.  𝐼𝑒𝑓𝑓 refers to the effective 

current through the coil, or the current through one turn 𝐼 multiplied by the number of turns 𝑁. 

                

Figure 22: (a) Magnetic dipole moment of a current-carrying coil, (b) bar magnet aligned with magnetic moment 

In this chapter, the system is graphically depicted using bar magnets as in Figure 22b, with the convention 

of pointing the north pole of the magnet in the direction of the magnetic moment.  The following equation 

[20] for the dipole model gives the magnetic field vector at any point in space 𝑃𝑜𝑖𝑛𝑡 as a result of the 

magnetic moment 𝜇 and a vector 𝑟 pointing from the center of the dipole to 𝑃𝑜𝑖𝑛𝑡, r being the distance 

between those points:  

𝐵⃗⃗(𝑟) =
𝜇0

4𝜋
[
3(𝜇 ∙ 𝑟)𝑟

𝑟5
−

𝜇

𝑟3
]. (3.1) 

The forces and torques between two dipoles, 𝜇1 and 𝜇2, as shown in Figure 23 are given by Equations 

(3.2)-(3.4) [20], the magnet which the force or torque is acting on being denoted in the following equations 

with subscript 1 and 2 (𝐹⃗𝑚𝑎𝑔,1 is the magnetic force on dipole 1 from dipole 2, for example). The angles 

of magnets 1 and 2 (left and right) respectively around the z axis with respect to the x axis are 𝛼 and 𝛽, 

and 𝜂 and 𝛿 are the angles about the x axis with respect to the y axis.  When 𝛼 and 𝛽 = 0, it can be seen 

that the dipoles are in a repelling (anti-aligned) configuration. The magnitude of the distance between the 

coils is given by 𝑥, with 𝑟 = 𝑥𝑖.̂  𝜇0 is the vacuum permeability coefficient, or 4𝜋 × 10−7 𝑁

𝐴2. 
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Figure 23: Two magnetic dipoles and the variables used to describe their configuration 

𝐹⃗𝑚𝑎𝑔,1 = −
3𝜇0𝜇1𝜇2

4𝜋𝑥4 [
2 cos𝛼 cos𝛽 − sin𝛼 sin 𝛽 cos(𝜂 − 𝛿)

− sin𝛼 cos𝛽 cos 𝜂 − cos𝛼 sin𝛽 cos𝛿
− sin𝛼 cos𝛽 sin 𝜂 − cos𝛼 sin𝛽 sin 𝛿

] = −𝐹⃗𝑚𝑎𝑔,2, (3.2) 

 

𝜏𝑚𝑎𝑔,1 = 
𝜇0𝜇1𝜇2

4𝜋𝑥3 [

− sin𝛼 sin𝛽 sin(𝜂 − 𝛿)
−2 sin𝛼 cos𝛽 sin 𝜂 − cos𝛼 sin𝛽 sin 𝛿
2 sin𝛼 cos𝛽 cos𝜂 + cos𝛼 sin𝛽 cos 𝛿

], 

and 

(3.3) 

𝜏𝑚𝑎𝑔,2 = 
𝜇0𝜇1𝜇2

4𝜋𝑥3 [

sin𝛼 sin𝛽 sin(𝜂 − 𝛿)
−sin𝛼 cos𝛽 sin𝜂 − 2 cos𝛼 sin𝛽 sin𝛿
sin𝛼 cos𝛽 cos𝜂 + 2 cos𝛼 sin𝛽 cos 𝛿

]. (3.4) 

The magnetic field resulting from a current carrying coil at a point in space as predicted by the dipole 

model is not very accurate to the true value except at distances 𝑑 significantly larger than the radius 𝑅 of 

the coil (𝑥 ≫ 𝑅).  This is because when a coil is close to a point of interest 𝑃𝑜𝑖𝑛𝑡 (𝑥~𝒪(𝑅)), such as point 

𝑃𝑜𝑖𝑛𝑡 positioned along the axis of the coil in Figure 24a, the actual field observed at that point is the sum 

of the contributions to the field of each infinitesimal segment 𝑑𝑙 around the circumference of the coil, all 

of which are located a coil radius 𝑅 from the center of the coil and therefore are a nonzero angle Θ from 

the axis of the coil.  A better approximation of the coil magnetic field that sums contributions from 

numerically discretized elements is given by the Biot-Savart law, which was defined in Section 2.1.   
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Figure 24: (a) Point in the near-field of a coil, (b) point in the far-field of a coil 

As the coil gets farther away from point 𝑃, (𝑥 > 𝒪(𝑅)), as in Figure 24b,  the angle subtended by the coil 

with respect to 𝑃 becomes smaller and smaller until the coil effectively appears to be a dipole moment 

with no width.  At distances this large, referred to henceforth in this work as the far-field, the dipole model 

has very small error as compared to the Biot-Savart model, because all contributions to the field come 

from the center of the coil in the dipole model.  When 𝑥 ≤ 10𝑅, the dipole model exhibits significant error 

as compared to the Biot-Savart model.  Close proximity is henceforth called the near-field.  The error is 

compounded by the selection of the point or points of interest when calculating forces and torques from 

the magnetic field approximation.  When the second coil is approximated as a dipole moment, the 

magnetic field only needs to be calculated at the location of that dipole moment, versus at the center of 

every infinitesimally small current element around the circumference of the second coil, as it is done in 

the Biot-Savart model.  

To give numerical scale to the near- and far-field, the following figures graphically depict the error 

between the two magnetic models.  The axial dipole force and Biot-Savart force between magnets with 

the same magnetic moment are both plotted as a function of distance between the magnets in Figure 25, 

with two different axis scales.  The ratio of the axial dipole force between two coils to the Biot-Savart force 

as a function of distance is shown in Figure 26, again with two different axis scales. 

Figure 25 and Figure 26 show the significant overestimation of the magnetic force in the near-field by the 

dipole model.  As the distance between the magnets goes to zero, the axial Biot-Savart force approaches 

zero as well, consistent with two coaxial, coplanar coils.  The dipole force, however, goes to infinity, 

consistent with two bar magnets placed infinitely close together.  It can be seen from Figure 26, especially 

Figure 26b, that the dipole force approaches the Biot-Savart force and is a good approximate of the 

magnetic force at 𝑥 > 10 radii, at which point the dipole model has a ~6% error as compared to the Biot-

Savart force.  
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Figure 25: (a, left) Dipole and Biot-Savart forces versus distance with force on a logarithmic axis, (b, right) dipole 
and Biot-Savart forces versus distance, both logarithmic axes 

 

Figure 26: (a, left) Ratio of dipole to Biot-Savart force versus distance with force on a logarithmic axis, (b, right) 
ratio of dipole to Biot-Savart force versus distance, both logarithmic axes 

From Figure 25 and Figure 26, it can be seen that the dipole model of magnetic force is most accurate the 

farther apart the coils are and increasingly less accurate as the coils move closer together.  When the Biot-

Savart model is introduced in greater detail and implemented in Chapter 4, the results of this chapter are 

used to validate the use of the Biot-Savart model in the far-field, wherein the two models should 

increasingly agree.   
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3.2. Dipole Boom Design and Assumptions  

The general two-dimensional system being analyzed in this chapter is depicted in Figure 27, with the 

dipole moments visually represented as bar magnets following the aforementioned convention.  The 

magnets are connected by a linear spring of spring constant 𝑘 attached at the center of each magnet, with 

a torsional spring of spring constant 𝑘𝑟 providing resistance around the z axis.  𝑅1 and 𝑅2 represent the 

radii of the coils being approximated by dipole moments and thus also contribute to the magnitude of 

dipole moments 𝜇1 and 𝜇2, where  

𝜇𝑖 = 𝜋𝑁𝑖𝐼𝑖𝑅𝑖
2, 𝑖 = 1, 2. (3.5) 

 

Figure 27: General dipole system with two degrees of freedom 

Δ𝑥 and 𝛽 represent displacement in the two degrees of freedom that are permitted in this chapter – 

translation along the x axis and rotation about the z axis.  Translation is studied first, followed next by 

rotation and finally by the combination of the two.  The natural length of the linear spring is 𝑥0, such that 

∆𝑥 is the distance the spring is stretched or compressed at location 𝑥, and 

𝑥 = 𝑥0 + ∆𝑥. (3.6) 

The springs in this work are all assumed to have constant spring constants that do not depend on the 

stretched or compressed distance.  The left magnet/coil, magnet 1, is modeled as fixed in the inertial 

reference frame, not allowed to translate along or rotate around any axis.  Only magnet 2 is allowed to 

move in the degree(s) of freedom designated.  An alternative convention is one that fixes the center of 

mass of the system in the inertial frame, since no external forces are working to move the center of mass, 

and allows both coils to move about that point.  This convention was not picked because it would either 

require twice the number of degrees of freedom with two coils moving or require only relative degrees of 
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freedom to be considered, which is acceptable and effectively identical for the translational degree of 

freedom but restricts the rotational degree of freedom to only those configurations where both coils are 

tilted the same but opposite angles with respect to the central axis.  Since it was anticipated that a 

perturbation in a real system would likely affect a single coil, or at least not both coils in the same way, 

the single fixed coil convention was selected for study in this work.   

The equations of motion and analyses are presented both dimensionally and non-dimensionally, the latter 

most notably performed by framing distance in terms of number of coil radii, based on the radius of coil 

1.   

The spring force and torque given by the linear and torsional springs respectively, with 𝑘 (𝑁/𝑚) being 

the linear spring constant and 𝑘𝑟 (𝑁 ∙ 𝑚/𝑟𝑎𝑑) being the torsional spring constant, are: 

𝐹⃗𝑠𝑝𝑟,2 = −𝑘∆𝑥𝑖,̂ 

and 
(3.7) 

𝜏𝑠𝑝𝑟,2 = −𝑘𝑟𝛽𝑘̂. (3.8) 

Because rotation about the x axis is not permitted in any of the three systems studied in this chapter, and 

magnet 1 is not allowed to rotate at all, 𝛼, 𝜂 and 𝛿 = 0.  Therefore, Equations (3.2)-(3.4) simplify to the 

following: 

𝐹⃗𝑚𝑎𝑔,1 = −
3𝜇0𝜇1𝜇2

4𝜋𝑥4 [
2 cos 𝛽
− sin𝛽

0

] = −𝐹⃗𝑚𝑎𝑔,2, 
(3.9) 

𝜏𝑚𝑎𝑔,1 = 
𝜇0𝜇1𝜇2

4𝜋𝑥3 [
0
0

sin𝛽
], 

and 

(3.10) 

𝜏𝑚𝑎𝑔,2 = 
𝜇0𝜇1𝜇2

4𝜋𝑥3 [
0
0

2 sin𝛽
]. 

(3.11) 

Equations (3.10) and (3.11) show that the magnetic torque on magnet 2 is twice that of the torque on 

magnet 1 under the assumptions given.  This is not true for configurations with displacement in different 

degrees of freedom; there are some configurations in which the torque on magnet two is half that which 

acts on magnet 1.  For any rotations allowed, the magnetic torques given in Equations (3.3) and (3.4) fulfill 

conservation of momentum [20].  Because there are no external forces and torques acting on the system, 

the total angular momentum is zero between the magnets such that 

−
𝑥⃗

2
× 𝐹⃗𝑚𝑎𝑔,1 +

𝑥⃗

2
× 𝐹⃗𝑚𝑎𝑔,2 + 𝜏𝑚𝑎𝑔,1 + 𝜏𝑚𝑎𝑔,2 = [0]. (3.12) 
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The first two terms in Equation (3.12) are the torques acting about the center of the system as a result of 

the magnetic forces on the system, where 𝑥⃗ is the vector from the center of magnet 1 to the center of 

magnet 2.  

The analyses presented in this chapter are mostly symbolic, so it is not necessary to assign numerical 

values to the aforementioned variables until example systems are presented at the end of each section.      
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3.3. Translational Single Degree of Freedom 

 

The first analytical magnet system studied in this chapter is that which permits motion of magnet 2 

translationally in the x direction, as shown in Figure 28.  It is henceforth called the 1DoF-T system, with T 

standing for translational.  The torsional spring has been removed from this diagram to reduce any 

potential confusion since rotation is not allowed, and therefore it does not act.  In this diagram, the 

magnets are anti-aligned and thus repelling.  This is called the repulsive case going forward.  The attractive 

case refers to the flipping of the orientation of magnet 2 such that the dipole moments are now aligned. 

 

Figure 28: Translational single degree of freedom (1DoF-T) dipole system 

3.3.1. Force Balance 

A force balance is the first step to identifying equilibrium locations in the 1DoF-T system. 

Equations (3.9)-(3.11) simplify when 𝛼, 𝛽 = 0 as in Figure 28 to 

𝐹⃗𝑚𝑎𝑔,1 = −
3𝜇0𝜇1𝜇2

4𝜋𝑥4 [
2
0
0
] = −𝐹⃗𝑚𝑎𝑔,2, 

 

𝐹⃗𝑚𝑎𝑔,2 =
3𝜇0𝜇1𝜇2

2𝜋𝑥4 𝑖,̂ (3.13) 
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𝜏𝑚𝑎𝑔,1 = 
𝜇0𝜇1𝜇2

4𝜋𝑥3 [
0
0
0
] = [0], 

and 

(3.14) 

𝜏𝑚𝑎𝑔,2 = 
𝜇0𝜇1𝜇2

4𝜋𝑥3 [
0
0
0
] = [0]. (3.15) 

When the dipoles are oriented in opposite directions, the force between them is repulsive such that 

magnet 2 moves in the positive x direction, away from magnet 1.  The spring attaching the coils exert a 

retracting force in the negative x direction on magnet 2, and thus the total force on magnet 2 is as follows: 

𝐹⃗2,𝑟𝑒𝑝 = (
3𝜇0𝜇1𝜇2

2𝜋𝑥4
− 𝑘(𝑥 − 𝑥0)) 𝑖.̂ (3.16) 

If the magnets are exerting an attractive magnetic force (oriented in the same direction), then the total 

force becomes 

𝐹⃗2,𝑎𝑡𝑡 = (−
3𝜇0𝜇1𝜇2

2𝜋𝑥4
− 𝑘(𝑥 − 𝑥0)) 𝑖.̂ (3.17) 

Non-Dimensionalization of Force Balance Equations 

Because of the large number of variables in Equations (3.16) and (3.17), non-dimensionalizing the 

equation to reduce the dimensionality of the variable space and thus reduce the number of plots 

necessary to explore that variable space is of interest.  Three characteristic variables (one each of length, 

time, and mass) are selected to scale all other variables with dimensions of length, time, or mass.  The 

radius of coil 1, 𝑅1, is selected as the characteristic length variable.  𝒯 is the characteristic time variable, 

and is selected based on the natural frequency of coil 2 attached to the linear spring, such that 𝒯 = 1/𝜔 =

√𝑚2/𝑘 . The mass of coil 2, 𝑚2, is chosen as the characteristic mass variable. Table 4 defines the 

dimensionless auxiliary variables, denoted by a tilde (~), that are used in the non-dimensionalization. 
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Table 4: Dimensionless variable definitions 

Dimensionless variable  Variable definition 

𝑅̃1 ≡
𝑅1

𝑅1
= 1 

Radius of coil/magnet 1 

𝑅̃2 ≡
𝑅2

𝑅1
 

Radius of coil/magnet 2 

𝑅̃3 ≡
𝑅3

𝑅1
 

Radius of coil/magnet 3 (relevant in Chapter 6) 

𝑥̃ ≡
𝑥

𝑅1
 Distance from the center of coil 1 to the center of coil 2 

𝑥̃0 ≡
𝑥0

𝑅1
 Natural length of the linear spring 

𝑡̃ ≡
𝑡

𝒯
 

Time 

𝑚̃2 ≡
𝑚2

𝑚2
= 1 Mass of coil/magnet 2 

𝑚̃3 ≡
𝑚3

𝑚2
=

𝑅̃3

𝑅̃2

 
Mass of coil/magnet 3 (relevant in Chapter 6) 

Substituting the above dimensionless variables into Equations (3.16) and (3.17) and replacing 𝐹2,𝑟𝑒𝑝 and 

𝐹2,𝑎𝑡𝑡 with mass multiplied by acceleration of magnet 2 yields the following general equations of motion, 

using Equation (3.5) for the magnetic moment definition: 

Repulsive: 

𝑚2𝑚̃2

𝑑2(𝑅1𝑥̃)

𝑑(𝒯𝑡̃)2
= (

3𝜋𝜇0𝐼
2𝑁2𝑅̃2

2𝑅̃1
2

2𝑥̃4
− 𝑘(𝑅1𝑥̃ − 𝑅1𝑥̃0)) 𝑖̂, 

and 

(3.18) 

Attractive: 

𝑚2𝑚̃2

𝑑2(𝑅1𝑥̃)

𝑑(𝒯𝑡̃)2
= (−

3𝜋𝜇0𝐼
2𝑁2𝑅̃2

2𝑅̃1
2

2𝑥̃4
− 𝑘(𝑅1𝑥̃ − 𝑅1𝑥̃0)) 𝑖̂. (3.19) 



79 

 

Mass is a function of coil radius, and therefore it is necessary to expand out the mass term, where N is the 

number of turns in the coil, and 𝜌 is the mass per unit length of wire: 

𝑚2 = 2𝜋𝑅̃2𝑅1𝑁𝜌. 

Grouping all the constant terms, the following non-dimensional equations of motion are left: 

Repulsive: 

𝑚̃2

𝑑2𝑥̃

𝑑𝑡̃2
= ((

3𝜇0𝐼
2𝑁𝑅̃2𝑅̃1

2𝒯2

4𝑅1
2𝜌

)
1

𝑥̃4
−

𝑘𝒯2

2𝜋𝑅̃2𝑅1𝑁𝜌
(𝑥̃ − 𝑥̃0)) 𝑖,̂ 

and 

(3.20) 

Attractive: 

𝑚̃2

𝑑2𝑥̃

𝑑𝑡̃2
= ((−

3𝜇0𝐼
2𝑁𝑅̃2𝑅̃1

2𝒯2

4𝑅1
2𝜌

)
1

𝑥̃4
−

𝑘𝒯2

2𝜋𝑅̃2𝑅1𝑁𝜌
(𝑥̃ − 𝑥̃0)) 𝑖.̂ (3.21) 

From Equations (3.20) and (3.21), non-dimensional coefficients 𝛾 and 𝑘∗ can be defined, both of which 

are always positive:  

𝛾 =
3𝜇0𝐼

2𝑁𝑅̃2𝑅̃1
2𝒯2

4𝑅1
2𝜌

, 

and 

(3.22) 

𝑘∗ =
𝑘𝒯2

2𝜋𝑅̃2𝑅1𝑁𝜌
=

𝑘𝑚2

𝑘𝑚2
= 1. 

(3.23) 

such that the equations simplify to 

𝐹̃⃗2,𝑟𝑒𝑝,𝑁𝐷 = 𝑚̃2

𝑑2𝑥̃

𝑑𝑡̃2
= (

𝛾

𝑥̃4
− 𝑘∗(𝑥̃ − 𝑥̃0)) 𝑖̂, (3.24) 
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and 

𝐹̃⃗2,𝑎𝑡𝑡,𝑁𝐷 = 𝑚̃2

𝑑2𝑥̃

𝑑𝑡̃2
= (

−𝛾

𝑥̃4
− 𝑘∗(𝑥̃ − 𝑥̃0)) 𝑖.̂ (3.25) 

The aforementioned equations and non-dimensional coefficients will be used in the rest of this section.  

As in the dimensional case, the term associated with the magnetic force switches signs between the 

repulsive and attractive cases.  The left hand side of these equations, 𝐹̃⃗2,𝑟𝑒𝑝,𝑁𝐷 and 𝐹̃⃗2,𝑎𝑡𝑡,𝑁𝐷, represent a 

non-dimensional total force, which will be what is plotted in future visualizations of these equations.   

𝑘∗ can be seen in Equation (3.23) to equal 1 given the selected definition of 𝒯.  The rest of this chapter 

and others will continue to use 𝑘∗ for generality in equations and plots because the terms do not cancel 

out in the same way in the rotational case (which uses a separate non-dimensional spring constant, 𝑘𝑟
∗)  

or when more than 2 coils are being modeled.  Because 𝑘∗ = 1, however, additional values of 𝑘∗ do not 

need to be explored in the two-coil case. 

3.3.2. Equilibrium Identification 

 

As defined in Section 1.2.1, equilibrium is determined by finding where the net forces and/or torques are 

zero.  Because magnet 1 is fixed in inertial space, the balances on coil 2 are used to satisfy the equilibrium 

criteria. 

It should be noted that in the translational single degree of freedom (1DoF-T) problem, only a force 

balance is considered, since a torque imbalance would not result in rotation because rotation in this 

system is not permitted.  It so happens that when 𝛽 = 0, there is no torque between the two magnets (as 

shown by Equations (3.10) and (3.11)), and therefore there is always a torque balance in the 1DoF-T case.  

In the rotational 1DoF (1DoF-R) case to be considered next, however, only a torque balance is considered, 

and a force balance is not otherwise satisfied by the conditions of the system.  In the combined 2DoF case, 

both a force and torque balance will be required to achieve equilibrium.   

The force balance in the repulsive case, and thus equilibrium in the x direction, occurs when Equation 

(3.16) is zero, or 
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3𝜇0𝜇1𝜇2

2𝜋𝑥4
= 𝑘(𝑥 − 𝑥0). (3.26) 

Non-Dimensionalization of Equilibrium 

The non-dimensional repulsive force balance occurs when Equation (3.24) equals zero, or 

𝛾

𝑥̃4
= 𝑘∗(𝑥̃ − 𝑥̃0), 

and 

𝛾

𝑘∗
= 𝑥̃4(𝑥̃ − 𝑥̃0). 

(3.27a) 

(3.27b) 

 In the attractive case, the left side of Equations (3.26) and (3.27a) becomes negative.   

Example Dimensioned Equilibrium Identification 

The solutions to Equation (3.26) are best found by graphical examination.  Figure 29a plots both sides of 

Equation (3.26) to examine for what values of 𝑥 they intersect (which are equilibrium points) in the 

compressed regime (𝑥 < 𝑥0, which occurs when the magnetic force is attractive).  Figure 29b plots both 

sides of Equation (3.26)  in the tensioned regime (𝑥 > 𝑥0, which occurs when the magnetic force is 

repulsive).  It should be noted that for this graphical examination and all the rest of the equilibrium 

identifications in this chapter, the step size for x is 0.02, meaning there is a point every 0.02 meters (or no 

units, in the dimensional case).  In Chapter 4, smaller step sizes will be examined to determine how it 

affects the accuracy of equilibrium identification. 

In order to plot Equation (3.26), some numerical values are required.  Plotted in Figure 29 are the 

magnitude of the magnetic force between two magnetic moments of 25133 and 36191 𝐴𝑚2 (based on 

80 A and 100 turns in each coil, coil 1 with a radius of 1 m and coil 2 with a radius of 1.2 m) as well as 

several spring forces (each with a different value of 𝑘) against distance 𝑥.  The natural length of each 

spring is assumed to be 𝑥0 = 2 m.  It should be noted that both magnetic moments are positive and that 

for the repulsive case, the negative sign that comes from the opposite direction current is pulled out and 

appears as appropriate; 𝜇1 and 𝜇2 are magnitudes. 

In the compressed regime, the spring is compressed, and therefore the spring forces all act in the positive 

x direction.  In order to compress the springs, an attractive magnetic force is required such that the 

magnetic dipole force on magnet 2 acts in the negative x direction.  Therefore, anywhere that the spring 

force curves intersect with the dipole force curve, the total force is zero, making that point an equilibrium.  
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The same concept applies in the tensioned regime, wherein the spring forces are now negative, and the 

dipole force is now positive.  The absolute values of each side of Equation (3.26) are plotted because of 

the logarithmic y axis.  The numbered circles in each plot of Figure 29 represent an equilibrium point, and 

when they are detailed in Table 5, they are assigned as 𝑥#𝑎 or 𝑥#𝑏, where # is the number in the circle 

atop the equilibrium point, and a and b refer to the attractive and repulsive plots respectively.   

Figure 29a has four equilibrium points, two on each of the two stiffest spring constants, k = 1000 and k = 

10000.  The more elastic spring constants plotted have no equilibria with the dipole force, which physically 

would mean that such a spring would be infinitely compressed to zero length as magnet 2 is pulled back 

to coincide with magnet 1.  Equilibria 1a and 2a occur when the magnets are less than one coil radius 

apart (their associated 𝑥 values indicated by 𝑥1𝑎, 𝑥2𝑎, and so forth in this section), and equilibria 3a and 

4a occur very close to 𝑥0, indicating only a small amount of compression.  For the k=10000 spring, and 

similarly for the k = 1000 spring, when 𝑥 < 𝑥1𝑎 and 𝑥 > 𝑥4𝑎, the magnetic force is larger in magnitude 

than the spring force, and when 𝑥1𝑎 < 𝑥 < 𝑥4𝑎, the spring force dominates the magnetic force.  

Figure 29b has a very different pattern of equilibria than Figure 29a; each spring force intersects once with 

the dipole force.  The two stiffest springs have equilibria very close to 𝑥0, indicating a small amount of 

stretching.  The more elastic the spring, the more the spring is stretched at equilibrium, which is consistent 

with two magnets repelling against successively weaker springs. Table 5 gives the associated 𝑥 values of 

the equilibria shown in Figure 29. 

Table 5: x values of equilibria identified in Figure 29 

Attractive Repulsive 

Equilibrium 

ID 

k value 𝑥 value at 

equilibrium 

Equilibrium 

ID 

k value 𝑥 value at 

equilibrium 

𝑥1𝑎 10000 0.4319 𝑥1𝑏 10000 2.0037 

𝑥2𝑎 1000 0.8257 𝑥2𝑏 1000 2.0320 

𝑥3𝑎 1000 1.9632 𝑥3𝑏 100 2.2233 

𝑥4𝑎 10000 1.9964 𝑥4𝑏 50 2.3549 

   𝑥5𝑏 20 2.5985 

   𝑥6𝑏 5 3.1329 

The stability of these identified equilibria, both static and dynamic, will be explored in the rest of this 

section. 
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Figure 29: Absolute value of spring forces and (a, top) attractive magnetic dipole force or (b, bottom) repulsive 
magnetic dipole force, with 1DoF-T equilibrium points identified, from Equation (3.26) 
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Example Non-Dimensional Equilibrium Identification 

The non-dimensional solutions to Equations (3.27) are best found by graphical examination.  Figure 30a 

plots the absolute value of both sides of Equation (3.27b) to examine for what values of 𝑥̃ they intersect 

(which are equilibrium points) in the compressed regime (𝑥̃ < 𝑥̃0, which occurs when the magnetic force 

is attractive).  Figure 31b plots both sides of Equation (3.27b) in the tensioned regime (𝑥̃ > 𝑥̃0, which 

occurs when the magnetic force is repulsive).   

The reason for plotting Equation (3.27b) instead of Equation (3.27a) is that 𝛾/𝑘∗ is the value that 

determines the equilibrium values of 𝑥,̃ and condensing the two into one non-dimensional term reduces 

the number of lines that must be plotted, since 𝑥̃4(𝑥̃ − 𝑥̃0) only depends on 𝑥̃0, which is considered fixed 

for the sake of this chapter.  Also, 𝑘∗ = 1 in this particular system, so any variation in  𝛾/𝑘∗ is attributable 

to variation in 𝛾, which is linked to both magnetic design variables and the spring constant 𝑘.  The plots 

look slightly different in shape from the dimensioned case and come with less physical intuition to the 

lines but more generalizability, such that the dimensioned and non-dimensioned sections of this chapter 

provide different insight on the same problem.  Because the terms are rearranged, however, in this section 

the “left side” (𝛾/𝑘∗) and “right side” (𝑥̃4(𝑥̃ − 𝑥̃0)) are referred to rather than “magnetic” and “spring” 

forces.   

As in the dimensioned case, in the compressed regime/attractive case, the right side is positive in 𝑥,̃ and 

the left side is negative in 𝑥̃.  In the tensioned regime/repulsive case, the right side is negative in 𝑥̃, and 

the left side is now positive in 𝑥̃.  The absolute values of each side of Equation (3.27b) are plotted because 

of the logarithmic y axis.  Anywhere that a horizontal left side line intersects with the right side curve, the 

equation balances, making that point an equilibrium.  The numbered circles in each plot of Figure 30 

represent an equilibrium point.   

The same trends are visible in Figure 30 as in the previous section.  The attractive case, shown in Figure 

30a, shows that each left and right side combo has either zero or two equilibria.  If the latter, then one 

exists very close to 𝑥̃ = 2 and the other somewhere 𝑥̃ < 1.  If no equilibria exist, it is because the left side 

is larger than the right side, which corresponds with stronger magnetic moments and/or weaker springs.  

One can imagine a 𝛾/𝑘∗ value expected to just barely intersect with the maximum absolute value of 

𝑥̃4(𝑥̃ − 𝑥̃0), or 
𝛾

𝑘∗ = 2.621439 at 𝑥̃𝑚𝑎𝑥 = 8/5.  This value is added to the table below for later study of its 

static and dynamic stability, since it represents a convergence of a statically stable and a statically unstable 

equilibrium. 

The repulsive case, shown in Figure 30b, has exactly one equilibrium for every combination of left and 

right side, indicating that any value of 𝛾/𝑘∗ could be chosen to result in a stable repulsive equilibrium.  

Larger values of 𝛾/𝑘∗ result in a greater distance from 𝑥̃0. 

Table 6 gives the associated 𝑥̃ values of the equilibria shown in Figure 30, in the same format as the 

previous section. 
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Table 6: 𝑥̃ values of equilibria identified in Figure 30 

Attractive Repulsive 

Equilibrium 

ID 

 𝛾/𝑘∗ 𝑥̃ value at 

equilibrium 

Equilibrium 

ID 

 𝛾/𝑘∗ 𝑥̃ value at 

equilibrium 

𝑥̃1𝑎 1 1.0001 𝑥̃1𝑏 1 2.0563 

𝑥̃2𝑎 2 1.3003 𝑥̃2𝑏 2 2.1028 

𝑥̃3𝑎 2 1.8159 𝑥̃3𝑏 5 2.2098 

𝑥̃4𝑎 1 1.9269    

𝑥̃𝑚𝑎𝑥 2.621439 8/5    

The stability of these identified equilibria, both static and dynamic, will be explored in the rest of this 

section. 
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Figure 30: Absolute values of non-dimensional (ND) spring forces and absolute values of ND (a, top) attractive 
magnetic dipole force or (b, bottom) repulsive magnetic dipole force, with ND 1DoF-T equilibrium points identified, 

from Equation (3.27b) 
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3.3.3. Static Stability Classification 

 

In this section, the static stability of the 1DoF-T equilibria identified in the previous section is evaluated. 

Stiffness Approach 

Now that an equilibrium point has been identified, static stability at that point can be determined by 

looking at the sign of the total stiffness of the system.  Stiffness in general is determined by the spatial 

derivative of a force or the change in the force due to a unit displacement [25]. Because the system under 

study has only one degree of freedom, there is only one generalized coordinate (x) in which force can 

cause motion in the system, and therefore the stiffnesses in this section are scalar values (rather than 

matrices).  In the case of elastic, or spring, stiffness, the spring constant 𝑘 is the stiffness of the spring, 

such that from Hooke’s law, which says if Δ𝑥 is measured from 𝑥0, 

𝐹𝑠𝑝𝑟𝑖𝑛𝑔,𝑥 = −𝑘𝑠𝑝𝑟𝑖𝑛𝑔Δ𝑥, (3.28) 

and because the spring stiffness is assumed to be constant and 𝐹𝑠𝑝𝑟𝑖𝑛𝑔 thus linear, 

𝑘𝑠𝑝𝑟𝑖𝑛𝑔 = −(
𝑑𝐹𝑠𝑝𝑟𝑖𝑛𝑔,𝑥

𝑑𝑥
)

𝑥=𝑥𝑒𝑞

, (3.29) 

where the derivative is calculated at 𝑥 = 𝑥𝑒𝑞.   

It can be seen from Equation (3.29) that a positive stiffness means that the force is negative and thus 

restorative as the spring is stretched away from its natural length 𝑥0.  If only 𝐹𝑠𝑝𝑟𝑖𝑛𝑔,𝑥 is acting on the 

body, then positive stiffness means that the equilibrium is statically stable, a fact that makes easy 

conceptual sense since if no other forces are acting on the body,  𝑥𝑒𝑞 = 𝑥0, and the spring remains 

undeformed and at rest.   

Magnetic stiffness is defined similarly, according to Moon [25]: 
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𝑘𝑚𝑎𝑔 = (
𝑑𝐹𝑚𝑎𝑔,𝑥

𝑑𝑥
)

𝑥=𝑥𝑒𝑞

, (3.30) 

with a negative 𝑘𝑚𝑎𝑔 representing a restorative force.  In this work, however, the sign convention has 

been switched to allow combination of magnetic stiffness and spring stiffness into a total stiffness, such 

that 

𝑘𝑚𝑎𝑔 = −(
𝑑𝐹𝑚𝑎𝑔,𝑥

𝑑𝑥
)

𝑥=𝑥𝑒𝑞

, (3.31) 

and a positive stiffness entails a restorative force with a positive displacement away from equilibrium.  

Total stiffness is therefore determined by the change in the total (elastic and magnetic) force due to a unit 

change in the position of the body in a specific generalized coordinate, or 

𝜅𝑡𝑜𝑡 = −(
𝑑𝐹𝑡𝑜𝑡,𝑥

𝑑𝑥
)
𝑥=𝑥𝑒𝑞

,  (3.32) 

where 

(𝐹𝑡𝑜𝑡)𝑥=𝑥𝑒𝑞
= (𝐹𝑚𝑎𝑔 + 𝐹𝑠𝑝𝑟𝑖𝑛𝑔)

𝑥=𝑥𝑒𝑞
 . (3.33) 

Therefore, if 𝜅𝑡𝑜𝑡 is positive at the equilibrium location 𝑥, then the equilibrium is statically stable.  It should 

be noted that if 𝜅𝑡𝑜𝑡 is positive but very close to 0, the equilibrium may be essentially statically neutral, 

with higher derivatives required to more rigorously determine static stability [25].  

In this chapter, an analytical formulation of stability is desired, so the derivative of Equation (3.16) is taken 

with respect to 𝑥: 

𝑑

𝑑𝑥
(𝐹2,𝑟𝑒𝑝,𝑥) =

𝑑

𝑑𝑥
(
3𝜇0𝜇1𝜇2

2𝜋𝑥4
− 𝑘(𝑥 − 𝑥0)), 

and (3.34) 
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𝑑

𝑑𝑥
(𝐹2,𝑟𝑒𝑝,𝑥) =

−6𝜇0𝜇1𝜇2

𝜋𝑥5
− 𝑘. 

Similarly, the derivative of Equation (3.17) is 

𝑑

𝑑𝑥
(𝐹2,𝑎𝑡𝑡,𝑥) =

6𝜇0𝜇1𝜇2

𝜋𝑥5
− 𝑘. (3.35) 

 

Non-Dimensionalization of Stiffness 

The non-dimensional version of each of Equations (3.34) and (3.35) are as follows from Equations (3.24) 

and (3.25): 

Repulsive: 

𝑑

𝑑𝑥̃
(𝐹̃2,𝑟𝑒𝑝,𝑁𝐷,𝑥) =

𝑑

𝑑𝑥̃
(

𝛾

𝑥̃4
− 𝑘∗(𝑥̃ − 𝑥̃0)), 

and 

𝑑

𝑑𝑥̃
(𝐹̃2,𝑟𝑒𝑝,𝑁𝐷,𝑥) =

−4𝛾

𝑥̃5
− 𝑘∗, (3.36) 

Attractive:  

𝑑

𝑑𝑥̃
(𝐹̃2,𝑎𝑡𝑡,𝑁𝐷,𝑥) =

𝑑

𝑑𝑥̃
(
−𝛾

𝑥̃4
− 𝑘∗(𝑥̃ − 𝑥̃0)), 

and 

𝑑

𝑑𝑥̃
(𝐹̃2,𝑎𝑡𝑡,𝑁𝐷,𝑥) =

4𝛾

𝑥̃5
− 𝑘∗. (3.37) 

The dimensional derivatives are compared in the next subsection to another method of evaluating static 

stability via eigenvalue analysis. 
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Eigenvalue Approach 

Another technique for evaluating the stability of a nonlinear system of equations is Jacobian linearization 

of a nonlinear system around an equilibrium [42], [43] followed by eigenvalue analysis of the Jacobian.  

This process involves first constructing a Jacobian matrix of the system at equilibrium points in order to 

approximate the system linearly. This linearization is done because “the eigenvalues of a system linearized 

around a fixed point can determine the stability behavior of a system around the fixed point. The particular 

stability behavior depends upon the existence of real and imaginary components of the eigenvalues, along 

with the signs of the real components and the distinctness of their values [44].”  

This technique is focused on the transient response of a system, which refers to how the system response 

changes over time.  As discussed in Section 1.2, static instability means dynamic instability and a divergent 

transient response in at least one generalized coordinate.  Static stability can be dynamically stable, 

neutrally stable, or unstable, depending on the initial conditions of the system.  If any of the eigenvalues 

of the system are in the right hand plane (RHP) of the complex plane, meaning that they have a positive 

real part, then the system is statically unstable and thus dynamically unstable.  If all of the eigenvalues are 

in the left hand plane (LHP), meaning that they have negative real parts, then the system is statically 

stable, its dynamic stability yet to be determined.  Repeated eigenvalues on the imaginary axis result in a 

statically unstable system [45].      

A special case: If the system has non-repeated eigenvalues on the imaginary axis (meaning that those 

eigenvalues have no real parts), then it is statically stable and neutrally dynamically stable.  A pair of 

eigenvalues on the imaginary axis of equal and opposite sign result in a constant oscillating response that 

neither decays nor increases in amplitude [45].  Because the systems investigated in this thesis are 

modeled with no energy dissipation mechanism, neutrally dynamically stable systems are accepted as 

dynamically stable, though in a real system, there would be energy dissipation that would factor into the 

eigenvalues.   

The non-homogenous versions of the ODEs in Equations (3.16) and (3.17) are given by Equations (3.38) 

and (3.39) respectively, where 𝑚2 is the mass of magnet 2: 

𝑚2𝑥̈ = (
3𝜇0𝜇1𝜇2

2𝜋𝑥4
− 𝑘(𝑥 − 𝑥0)), 

and 

(3.38) 

𝑚2𝑥̈ = (−
3𝜇0𝜇1𝜇2

2𝜋𝑥4
− 𝑘(𝑥 − 𝑥0)). 

(3.39) 
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Each of the two second-order equations above can each be described with a system of two first-order 

equations. Equation (3.38) can be rewritten as follows, using 𝑦 as a dummy variable to facilitate the split: 

𝑦 =  𝑥̇, 

and 

{

𝑥̇ = 𝑓𝑟𝑒𝑝(𝑥, 𝑦) = 𝑦                                                 

𝑦̇ = 𝑔𝑟𝑒𝑝(𝑥, 𝑦) =  
1

𝑚2
(
3𝜇0𝜇1𝜇2

2𝜋𝑥4
− 𝑘(𝑥 − 𝑥0))

, 

(3.40) 

and Equation (3.39): 

{

𝑥̇ = 𝑓𝑎𝑡𝑡(𝑥, 𝑦) = 𝑦                                                     

𝑦̇ = 𝑔𝑎𝑡𝑡(𝑥, 𝑦) =
1

𝑚2
(−

3𝜇0𝜇1𝜇2

2𝜋𝑥4
− 𝑘(𝑥 − 𝑥0))

. (3.41) 

The Jacobian of Equation (3.40) calculated in general and not yet at a specific point, is 

𝐽𝑟𝑒𝑝 =

[
 
 
 
 
𝜕𝑓𝑟𝑒𝑝

𝜕𝑥

𝜕𝑓𝑟𝑒𝑝

𝜕𝑦
𝜕𝑔𝑟𝑒𝑝

𝜕𝑥

𝜕𝑔𝑟𝑒𝑝

𝜕𝑦 ]
 
 
 
 

= [

0 1

−
6𝜇0𝜇1𝜇2

𝑚2𝜋𝑥5
−

𝑘

𝑚2
0]. (3.42) 

The eigenvalues of Equation (3.42) calculated by solving for where  

det(𝐽𝑟𝑒𝑝 − 𝜆𝑟𝑒𝑝[𝐼𝑛]) = 0, [46] 

are as follows: 

𝜆𝑟𝑒𝑝,1,2 = ±√−
6𝜇0𝜇1𝜇2

𝑚2𝜋𝑥5
−

𝑘

𝑚2
. (3.43) 

Because the system modeled in this chapter does not include a damping or velocity-dependent term, both 

eigenvalues in Equation (3.43) are equal and of opposite sign.  Real roots of opposite sign result in an 

unstable saddle node [44] because one eigenvalue thus has a positive real part.  Therefore, the only way 

to ensure that the system is stable at any given equilibrium is to solve for where the formula inside the 
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radical is negative, as the square root of a negative number is necessarily imaginary and will therefore 

result in two purely imaginary eigenvalues: 

−
6𝜇0𝜇1𝜇2

𝑚2𝜋𝑥5
−

𝑘

𝑚2
< 0, 

or, if 𝑚2 is multiplied out, 

−
6𝜇0𝜇1𝜇2

𝜋𝑥5
− 𝑘 < 0. (3.44) 

Immediately, it can be seen that Equation (3.44) and Equation (3.35) represent the same equation: 

𝑑

𝑑𝑥
(𝐹2,𝑟𝑒𝑝,𝑥) = −

6𝜇0𝜇1𝜇2

𝜋𝑥5
− 𝑘 < 0. 

Because an equilibrium point requires positive stiffness (and thus a negative derivative of force) to be 

stable via the stiffness technique, both the stiffness and eigenvalue techniques reach the same conclusion, 

and thus the stiffness approach has been validated for future use in this chapter and future chapters. 

Following the same process with the attractive case, the formula to be satisfied for purely imaginary 

eigenvalues is  

6𝜇0𝜇1𝜇2

𝜋𝑥5
− 𝑘 < 0. (3.45) 

The first terms in each of Equations (3.44) and (3.45) are linked to the magnetic force and are indeed the 

derivatives of the magnetic force equation in each of the repulsive and attractive cases, respectively.  𝜇1 

and 𝜇2 are dependent on the dimensions of, number of turns in, and the current through each of the two 

coils, and therefore as any of those three variables increases, the magnetic term increases as well.  The 

second term is of course the derivative of the spring force, assumed linear in this work. 

All of the coefficients involved in Equations (3.44) and (3.45) are positive, which means that the inequality 

in Equation (3.44) is always fulfilled for any equilibrium point, and therefore all equilibria should be 

statically stable in the repulsive case.  Equation (3.45) is more interesting because if 𝑘 is smaller than the 

first term, the inequality is not fulfilled.  Thus, when the static stabilities of the equilibria identified in 

Figure 29 are calculated next, if there is a mix of stabilities in the attractive case, stability will occur for 

larger 𝑘 values, and instability will occur for smaller 𝑘 values. 
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Example Dimensional Stability Calculations 

Table 7 shows Equation (3.34) or (3.35) (depending on whether the magnets are attracting or repelling) 

inserted into Equation (3.32) to obtain the stiffness 𝜅𝑡𝑜𝑡 at each of the 𝑥 values listed in Table 5 (basically 

just switching the signs on Equations (3.34) and (3.35)).  The signs of the stiffnesses in Table 7 determine 

whether each equilibria is statically stable (positive) or unstable (negative).  Statically stable equilibria are 

bolded. 

Table 7: Stiffness values 𝜅𝑡𝑜𝑡 at each equilibrium in Figure 29, with statically stable equilibria bolded 

Attractive Repulsive 

Equil. ID k value 

(N-m) 

𝑥 value at 

equilibrium (m) 

𝜅𝑡𝑜𝑡 

(N/m) 

Equil. ID k value 

(N-m) 

𝑥 value at 

equilibrium (m) 

𝜅𝑡𝑜𝑡 

(N/m) 

𝑥1𝑎 10000 0.4319 -135250 𝒙𝟏𝒃 10000 2.0037 10068 

𝑥2𝑎 1000 0.8257 -4690  𝒙𝟐𝒃 1000 2.0320 1063 

𝒙𝟑𝒂 1000 1.9632 930  𝒙𝟑𝒃 100 2.2233 140 

𝒙𝟒𝒂 10000 1.9964 9930 𝒙𝟒𝒃 50 2.3549 80 

    𝒙𝟓𝒃 20 2.5985 38 

    𝒙𝟔𝒃 5 3.1329 12 

From Table 7, it can be seen that all of the equilibria in the repulsive system are stable, as well as the 

equilibria that occur close to 𝑥0 in the attractive system.  If the system starts at one of these distances 

and is slightly displaced, the system experiences a force in the x direction towards the equilibrium.  Those 

equilibria in the attractive system which occur within a distance of one coil radius (𝑥1𝑎 and 𝑥2𝑎) are 

statically unstable.  If the system starts at either 𝑥1𝑎 or 𝑥2𝑎 and is slightly displaced, the system will 

experience a force increasing the distance from the equilibrium in the direction of the displacement 

Example Non-dimensional Stability Calculations 

Table 8 shows Equation (3.36) or (3.37) (depending on whether the magnets are attracting or repelling) 

inserted into Equation (3.32) to obtain the non-dimensional stiffness 𝜅𝑡𝑜𝑡,𝑁𝐷 at each of the 𝑥̃ values listed 

in Table 6 (basically just switching the signs on Equations (3.36) and (3.37)).  The signs of the stiffnesses in 

Table 8 determine whether each equilibria is statically stable (positive) or unstable (negative).  Statically 

stable equilibria are bolded.   

As mentioned at the end of Section 3.3.3 for the dimensional case, all of the coefficients involved in 

Equations (3.36) and (3.37) are positive, which means that the repulsive stiffness is always positive, and 

therefore all repulsive equilibria should be statically stable.  Equation (3.37) and the attractive case are 

more interesting, because if 𝑘∗ is smaller than 4𝛾/𝑥̃5, then a negative stiffness and instability results, such 

that stability requires 
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𝑘∗ >
4𝛾

𝑥̃5
. 

𝑘∗ is known to be 1 by definition, so 𝛾 is therefore equal to  𝛾/𝑘∗.   

Table 8: Non-dimensional stiffness values 𝜅𝑡𝑜𝑡,𝑁𝐷 at each equilibrium in Figure 30, statically stable equilibria bolded 

Attractive Repulsive 

Equil. 

ID 

 𝛾/𝑘∗ 𝛾 𝑥̃ value  𝜅𝑡𝑜𝑡,𝑁𝐷  Equil. 

ID 

𝛾/𝑘∗ 𝛾 𝑥̃ value  𝜅𝑡𝑜𝑡,𝑁𝐷  

𝑥̃1𝑎 1 1 1.0001 -2.9980 𝒙̃𝟏𝒃 1 1 2.0563 1.1088 

𝑥̃2𝑎 2 2 1.3003 -1.1521 𝒙̃𝟐𝒃 2 2 2.1028 1.1946 

𝒙̃𝟑𝒂 2 2 1.8159 0.5948 𝒙̃𝟑𝒃 5 5 2.2098 1.3795 

𝒙̃𝟒𝒂 1 1 1.9269 0.8494      

𝑥̃𝑚𝑎𝑥 2.62144 2.62144 8/5 0.0001      

The two statically stable attractive equilibria near 𝑥̃ = 2 are as expected, as are the two statically unstable 

equilibria for the same 𝛾/𝑘∗ values closer to 𝑥̃ = 1.  Also, interestingly, 𝑥̃𝑚𝑎𝑥 is very close to 0 and 

effectively statically neutrally stable.  

The above observations provoke another question: how much is a “slight” displacement, or how much 

can the system be displaced from each equilibrium before subsequent motion diverges from and no 

longer oscillates about the original equilibrium point? In other words, how much of a displacement can 

be tolerated before the system switches from dynamically stable to dynamically unstable?  The next 

section addresses this question.  
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3.3.4. Dynamic Stability  

 

In this section, the dynamic stability of the 1DoF-T system equilibria is determined, this concluding the 

study of the system. 

As introduced in Section 1.2.2, any statically stable equilibrium can be dynamically stable if the critical 

initial kinetic energy 𝑇𝑡0,𝑐𝑟𝑖𝑡  for that point is not exceeded.  In this section, the conditions for dynamic 

stability about an equilibrium are analytically determined.  

In order to determine the critical initial kinetic energy, the potential energy of the system needs to be 

calculated.  From Equation (1.6), it can be seen that force is the derivative of potential energy, and 

therefore by integrating the force over x, a relative potential energy function can be obtained.   

Repulsive Case 

In the repulsive case, Equation (3.16) is integrated in the generalized coordinate 𝑥 to obtain potential 

energy (the subscript T referring to 1DoF-T): 

𝑃𝑟𝑒𝑝,𝑇 = −∫𝐹2,𝑟𝑒𝑝,𝑥 𝑑𝑥 = −∫(
3𝜇0𝜇1𝜇2

2𝜋𝑥4
− 𝑘(𝑥 − 𝑥0))  𝑑𝑥 

=
𝜇0𝜇1𝜇2

2𝜋𝑥3
+

𝑘𝑥2

2
− 𝑘𝑥0𝑥 + 𝐶, (3.46) 

where 𝐶 is a constant of integration that is unknown. 𝐶 and what it represents will be discussed more in 

Section 5.3.4, but because 𝑇𝑡0,𝑐𝑟𝑖𝑡 is calculated by examining the difference between the potential energy 

of two equilibria, 𝐶 is assumed to be zero to begin with; however, nonzero values will be explored a little 

later in this section for plotting reasons. 

Figure 31b shows Equation (3.46) plotted versus distance, with the locations of the equilibria seen in 

Figure 29b numbered.  The black lines are where the potential energy is positive, and the grey lines are 

the absolute value of the negative valued potential energy.  As such, statically stable equilibria occur at 

apparent local maxima in the grey lines, which are actually local minima in the potential energy functional.  
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The local maxima in Figure 31b are clear and straightforward, one per spring constant, at the same 

locations as the equilibria in Figure 29b.   

It is interesting to note that since there are no unstable equilibria in the system within the domain plotted, 

any size perturbation from equilibrium will result in motion around the equilibrium; there is no critical 

initial kinetic energy, and therefore the equilibria in the 1DoF-T repulsive system are all globally stable 

because potential energy goes to positive infinity at 𝑥 = 0 and 𝑥 = ∞.  Even if the potential energy were 

plotted beyond 5 radii, the potential energy functional remains monotonically increasing as 𝑥 → ∞.  

Attractive Case 

In the attractive case, Equation (3.17) is integrated in the generalized coordinate 𝑥 to obtain potential 

energy: 

𝑃𝑎𝑡𝑡,𝑇 = −∫𝐹2,𝑎𝑡𝑡,𝑥 𝑑𝑥 = −∫(−
3𝜇0𝜇1𝜇2

2𝜋𝑥4
− 𝑘(𝑥 − 𝑥0))  𝑑𝑥 

= −
𝜇0𝜇1𝜇2

2𝜋𝑥3
+

𝑘𝑥2

2
− 𝑘𝑥0𝑥 + 𝐶. (3.47) 

Again, 𝐶 is assumed to be zero.  As in Figure 31b, Figure 31a uses grey lines to represent the absolute 

value of the negative valued potential energy functional, except this time for the attractive case.   

It can be seen that the two unstable equilibria in the attractive case, located at 𝑥1𝑎  and 𝑥2𝑎 as shown in 

Table 8, occur at minima in the grey lines and thus at local maxima in the potential energy function.  This 

is consistent with the definition of static instability as given by Equation (1.9).  The two stable equilibria in 

the attractive case, occurring at 𝑥3𝑎 and 𝑥4𝑎, occur at maxima in the grey lines and thus at local minima 

in the potential energy function, consistent with the definition of static stability in Equation (1.8).  It can 

be seen that the global minimum in the potential energy function occurs when 𝑥 = 0, but this is because 

the magnetic force goes to infinity at this point, not because there is an equilibrium at this point.  

It can be seen that all of the more elastic springs (k = 5 to 100) are monotonically increasing in potential 

energy as 𝑥 increases.  There are no values of x for which the derivative of potential energy is zero, and 

therefore no equilibria exist in those systems, as shown also in Figure 29a. 

The critical initial kinetic energy at each of the stable equilibria in Figure 31a is determined by the 

difference between 𝑃𝑎𝑡𝑡,𝑇(𝑥3𝑎) and 𝑃𝑎𝑡𝑡,𝑇(𝑥2𝑎) (for the equilibrium at 𝑥3𝑎) and the difference between 

𝑃𝑎𝑡𝑡,𝑇(𝑥4𝑎) and 𝑃𝑎𝑡𝑡,𝑇(𝑥1𝑎) (for the equilibrium at 𝑥4𝑎).   This is because there are two permissible 

directions for displacement, +𝑥 and − 𝑥, and two local maxima in each direction (the unstable equilibria 

in the  −𝑥 direction and the monotonically increasing potential energy function in the +𝑥 direction).  The 
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unstable equilibria for each of 𝑘 = 10000 𝑁/𝑚 and 𝑘 = 1000 𝑁/𝑚 have lower potential energies than 

𝑃𝑎𝑡𝑡,𝑇(𝑥 = 4) for both functions, and therefore they determine the critical initial kinetic energy of the 

stable equilibria. 

In order to visualize the actual potential energy curves, 𝐶 in Equations (3.46) and (3.47) are now assumed 

to be 105.5, roughly the magnitude of the minimum potential energy observed in Figure 31 (though the 

actual minimum in Figure 31a is −∞).  This value of 𝐶 is selected such that all data are positive and thus 

can be plotted on logarithmic axes without taking the absolute value of the data as in Figure 31.  Equations 

(3.46) and (3.47) are plotted again in Figure 32 with the new value of C.  It’s not as easy to see the discrete 

lines plotted in Figure 32 as in Figure 31, but it can be seen more clearly that stiffer springs result in deeper 

valleys in the potential energy functional with steeper walls, which indicates greater dynamic stability (to 

be investigated in Section 3.3.4).   It can also be seen that the only difference between the attractive and 

repulsive potential energy functions is the behavior of the curves approaching 𝑥 = 0.  In the attractive 

case, 𝑃𝑎𝑡𝑡,𝑇 → −∞ as 𝑥 → 0, and in the repulsive case, 𝑃𝑎𝑡𝑡,𝑇 → +∞ as 𝑥 → 0. 
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Figure 31: Potential energy versus distance in the (a, top) dimensioned attractive case, and the (b, bottom) 
dimensioned repulsive case, with grey lines being the absolute values of negative energies 
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Figure 32: Potential energy versus distance in the (a, top) dimensioned attractive case, and the (b, bottom) 

dimensioned repulsive case, with 𝐶 = 105.5 added to make values all positive 



100 

 

Non-Dimensionalization of Potential Energy 

The nondimensional version of Equation (3.46), the repulsive potential energy, is calculated as follows: 

𝑃̃𝑟𝑒𝑝,𝑇 = −∫𝐹̃2,𝑟𝑒𝑝,𝑁𝐷,𝑥 𝑑𝑥̃ = −∫(
𝛾

𝑥̃4
− 𝑘∗(𝑥̃ − 𝑥̃0))  𝑑𝑥̃ 

=
𝛾

3𝑥̃3
+

𝑘∗𝑥̃2

2
− 𝑘∗𝑥̃0𝑥̃ + 𝐶. (3.48) 

The nondimensional version of Equation (3.47), the attractive potential energy, is calculated as follows: 

𝑃̃𝑎𝑡𝑡,𝑇 = −∫𝐹̃2,𝑎𝑡𝑡,𝑁𝐷,𝑥 𝑑𝑥̃ = −∫(−
𝛾

𝑥̃4
− 𝑘∗(𝑥̃ − 𝑥0̃) )  𝑑𝑥̃ 

=
−𝛾

3𝑥̃3
+

𝑘∗𝑥̃2

2
− 𝑘∗𝑥̃0𝑥̃ + 𝐶. (3.49) 

Equations (3.48) and (3.49) are plotted in Figure 33a and Figure 33b respectively for the values of 𝑘∗ = 1 

and 𝛾 calculated from 𝛾/𝑘∗ as given in Table 8.  The three repulsive equilibria given in Table 8, 

𝑥̃1𝑏 , 𝑥̃2𝑏 , and 𝑥̃3𝑏 are globally stable, since they are at the single minima of a potential energy wells that 

go to +∞ on either side of the range of interest.  The attractive equilibria, for the two lower values of 𝛾, 

have one stable and one unstable equilibrium per line, as seen in the dimensional evaluation in the 

previous section.  From Figure 33b it can clearly been be seen that, as expected, larger values of 𝛾, 

associated with stronger magnetic moments, increase the distance 𝑥̃ at which the stable repulsive 

equilibrium is achieved. 
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Figure 33: Non-dimensional potential energy versus distance in the (a, top) ND attractive case, and the (b, bottom) 
ND repulsive case, with grey lines being the absolute values of negative energies 
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Critical Dimensional Initial Kinetic Energy and Simulation 

Only the attractive case has calculable critical initial kinetic energy for its stable equilibria, since for the 

attractive equilibria, there is actually the possibility of escaping, buckled motion over the unstable 

equilibrium on each line.  The repulsive case’s global stability means that there is no possibility of escaping 

motion. 

Since the critical initial kinetic energy is determined by the difference between two potential energies, 

either Figure 31 or Figure 32 can be used. The former is selected to allow for finer evaluation of the 

energies at each point.  From Figure 32a, it can be seen that the dimensional critical initial kinetic energies 

of the statically stable equilibria 𝑥3𝑎 and 𝑥4𝑎 are determined by the potential energy at each of the 

statically unstable equilibria 𝑥2𝑎 and 𝑥1𝑎, respectively.  For 𝑥3𝑎 , 

𝑇𝑡0,𝑐𝑟𝑖𝑡(𝑥3𝑎) = 𝑃𝑎𝑡𝑡,𝑇(𝑥2𝑎) − 𝑃𝑎𝑡𝑡,𝑇(𝑥3𝑎) =  −103.21317𝐽 + 103.30607 𝐽,  

and 

𝑇𝑡0,𝑐𝑟𝑖𝑡(𝑥3𝑎) = (𝑥3𝑎) = 389.6540 𝐽. (3.50) 

For 𝑥4𝑎, 

𝑇𝑡0,𝑐𝑟𝑖𝑡(𝑥4𝑎) = 𝑃𝑎𝑡𝑡,𝑇(𝑥1𝑎) − 𝑃𝑎𝑡𝑡,𝑇(𝑥4𝑎) =  −103.99847 𝐽 + 104.30151𝐽, 

and 

𝑇𝑡0,𝑐𝑟𝑖𝑡(𝑥4𝑎) = (𝑥4𝑎) = 10057 𝐽. (3.51) 

It can be seen from Equations (3.50) and (3.51) that 𝑇𝑡0,𝑐𝑟𝑖𝑡(𝑥4𝑎) >  𝑇𝑡0,𝑐𝑟𝑖𝑡(𝑥3𝑎), meaning that the 

amount of energy that would need to be introduced to the system to make the k=10000 N/m equilibrium 

dynamically unstable is greater than that required to make the k = 1000 N/m equilibrium unstable.  

Therefore, the equilibrium at 𝑥4𝑎 is more tolerant of perturbation than the equilibrium at 𝑥3𝑎 and is 

therefore “more” dynamically stable.  The takeaway is that larger spring constants result in larger critical 

initial kinetic energies. 

Critical Non-Dimensional Initial Kinetic Energy and Simulation 

Similar to the previous dimensional case, the critical initial kinetic energies of the statically stable non-

dimensional equilibria at 𝑥̃3𝑎 and 𝑥̃4𝑎 are determined by the difference in non-dimensional potential 

energies with respect to 𝑥̃2𝑎 and 𝑥̃1𝑎, respectively.  For 𝑥̃3𝑎: 
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𝑇̃𝑡0,𝑐𝑟𝑖𝑡(𝑥̃3𝑎) = 𝑃̃𝑎𝑡𝑡,𝑇(𝑥̃2𝑎) − 𝑃̃𝑎𝑡𝑡,𝑇(𝑥̃3𝑎) =  −100.313541  + 100.320977, 

and  

𝑇̃𝑡0,𝑐𝑟𝑖𝑡(𝑥̃3𝑎) = 0.0355. (3.52) 

For 𝑥4𝑎, 

𝑇̃𝑡0,𝑐𝑟𝑖𝑡(𝑥̃4𝑎 ) = 𝑃̃𝑎𝑡𝑡,𝑇(𝑥̃1𝑎) − 𝑃̃𝑎𝑡𝑡,𝑇(𝑥̃4𝑎) =  −100.263359  + 100.310438, 

and 

𝑇̃𝑡0,𝑐𝑟𝑖𝑡(𝑥̃4𝑎) = 0.2100. (3.53) 

As in Section 3.3.4, the curve with the smallest 
𝛾

𝑘∗ value is more tolerant to perturbation.   

3.3.5. Summary 

In Section 3.3, a single translational degree of freedom spring-magnet system was presented and its 

equilibria identified and analyzed for their static and dynamic stability.  It can be seen that the repulsive 

equilibria are all statically and dynamically stable, whereas attractive equilibria are a mix of statically 

stable and unstable and that dynamic stability is based upon the difference in potential energy between 

the stable and the unstable equilibria in systems with a spring constant large enough to have equilibria.  

The larger the spring constant, the higher the critical initial kinetic energy required to make the statically 

stable equilibrium dynamically unstable.   
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3.4. Rotational Single Degree of Freedom 

 

The second analytical magnet system studied in this chapter is that which permits motion of magnet 2 

rotationally around the z axis, as shown in Figure 34.  The linear spring has been replaced by a nonelastic 

massless rod since translation is not allowed in this system, and thus the linear spring experiences no 

deformation.  Though force is not required to balance in this system, the two cases studied are still called 

the attractive and repulsive cases.  

Figure 34 depicts the repulsive case, in which β = 0 corresponds to anti-aligned magnets and would result 

in repulsion if force were being considered.  The attractive case refers to when the orientation of magnet 

2 is flipped, and thus β = 0 corresponds to aligned magnets.  β is positive in the +𝑧 direction and will be 

studied over the range of −
𝜋

2
≤ 𝛽 ≤

𝜋

2
.  Referring to Figure 34, this range starts with the north pole of 

magnet 2 being pointed in the −𝑦 direction, continues through being pointed in the +𝑥 direction and 

ends with the north pole pointed in the +𝑦 direction. 

 

Figure 34: Rotational single degree of freedom (1DoF-T) dipole system 

In the system above, 𝑥 is constant and equivalent to the natural length of the spring, while the torsional 

spring stretches and compresses to provide an elastic torque on magnet 2.  
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3.4.1. Torque Balance 

As mentioned in Section 3.3.1, a torque balance is the goal of this system, and whereas a torque balance 

was implicit in the 1DoF-T system, there is not a force balance in this (1DoF-R) system because the 

magnetic force is never equivalent to zero.  Force will hereafter be ignored in this section because neither 

magnet is free to move translationally in response to a force.  

Equations (3.9) - (3.11) simplify when 𝛼 = 0 and 𝑥 = 𝑥0 as in Figure 34 to 

𝐹⃗𝑚𝑎𝑔,2 = 
3𝜇0𝜇1𝜇2

4𝜋𝑥4 [
2 cos𝛽
− sin𝛽

0

], (3.54) 

𝜏𝑚𝑎𝑔,1 = 
𝜇0𝜇1𝜇2

4𝜋𝑥0
3 [

0
0

sin 𝛽
], 

and 

(3.55) 

𝜏𝑚𝑎𝑔,2 = 
𝜇0𝜇1𝜇2

4𝜋𝑥0
3 [

0
0

2 sin 𝛽
]. (3.56) 

Equation (3.55) is not used in this system since magnet 1 is not free to rotate or move in any way, so this 

section focuses on Equation (3.56).  From Equation (3.8), the elastic torque about the 𝑧 axis is given by  

𝜏𝑠𝑝𝑟,2 = −𝑘𝑟𝛽𝑘̂, (3.57) 

and therefore the total torque on magnet 2 with 𝛽 = 0 corresponding to anti-aligned magnets (repulsive 

case) is 

𝜏2,𝑟𝑒𝑝 = (
𝜇0𝜇1𝜇2

2𝜋𝑥0
3 sin𝛽 − 𝑘𝑟𝛽) 𝑘̂. (3.58) 

The torque on magnet 2 in the attractive case is 

𝜏2,𝑎𝑡𝑡 = (−
𝜇0𝜇1𝜇2

2𝜋𝑥0
3 sin𝛽 − 𝑘𝑟𝛽) 𝑘̂. (3.59) 
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Non-Dimensionalization of Torque Balance Equations 

As in Section 3.3, a non-dimensionalization of the torque balance is of interest to reduce the 

dimensionality of the variable space.   Substituting the same dimensionless auxiliary variables as defined 

in Table 4 into Equations (3.58) and (3.59) and replacing 𝜏2,𝑟𝑒𝑝 and 𝜏2,𝑎𝑡𝑡 with mass moment of inertia 

multiplied by rotational acceleration of magnet 2 yields the following general equations of motion, using 

Equation (3.5) for the magnetic moment definition.   

Repulsive: 

𝐼𝑧
𝑑2(𝛽)

𝑑(𝒯𝑡̃)2
= (

𝜋𝜇0𝐼
2𝑁2𝑅̃2

2𝑅̃1
2𝑅1

2𝑥̃0
3 sin𝛽 − 𝑘𝑟𝛽) 𝑘̂, (3.60) 

and attractive: 

𝐼𝑧
𝑑2(𝛽)

𝑑(𝒯𝑡̃)2
= (−

𝜋𝜇0𝐼
2𝑁2𝑅̃2

2𝑅̃1
2𝑅1

2𝑥̃0
3 sin𝛽 − 𝑘𝑟𝛽) 𝑘̂. (3.61) 

𝛽 is already dimensionless, so it does not require its own dimensionless variable, but it should be noted 

that the 𝛽 values of the equilibria in the dimensional and non-dimensional cases will necessarily be 

different.  The mass moment of inertia is  

𝐼𝑧 =
𝑚2𝑅2

2

2
=

𝑚2𝑚̃2𝑅̃2
2𝑅1

2

2
. 

So Equations (3.60) and (3.61) become, with the definition of 𝑚2 substituted in as well, 

Repulsive: 

𝑚̃2𝑅̃2
2

2

𝑑2(𝛽)

𝑑(𝑡̃)2

𝑑2(𝛽)

𝑑(𝑡̃)2
= (

𝜇0𝐼
2𝑁𝑅̃2𝑅̃1

2𝒯2

4𝑅1
2𝜌𝑥̃0

3 sin𝛽 −
𝑘𝑟𝒯

2

2𝜋𝑅̃2𝑅1
3𝑁𝜌

𝛽) 𝑘̂, (3.62) 

and attractive: 

𝑚̃2𝑅̃2
2

2

𝑑2(𝛽)

𝑑(𝑡̃)2
= (−

𝜇0𝐼
2𝑁𝑅̃2𝑅̃1

2𝒯2

4𝑅1
2𝜌𝑥̃0

3 sin 𝛽 −
𝑘𝑟𝒯

2

2𝜋𝑅̃2𝑅1
3𝑁𝜌

𝛽) 𝑘̂. (3.63) 
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From Equations (3.62) and (3.63), a non-dimensional magnetic torque coefficient 𝜉 and spring torque 

coefficient 𝑘𝑟
∗ can be defined, both of which are always positive:  

𝜉 =
𝜇0𝐼

2𝑁𝑅̃2𝑅̃1
2𝒯2

4𝑅1
2𝜌

, 

and 

(3.64) 

𝑘𝑟
∗  =

𝑘𝑟𝒯
2

2𝜋𝑅̃2𝑅1
3𝑁𝜌

=
𝑘𝑟

𝑘𝑅1
2. 

(3.65) 

It can be noted from Equations (3.64) and (3.22) that 

𝜉 =
𝛾

3
 (3.66) 

such that the equations simplify to 

𝜏̃2,𝑟𝑒𝑝,𝑁𝐷 =
𝑚̃2𝑅̃2

2

2

𝑑2(𝛽)

𝑑(𝑡̃)2

𝑑2(𝛽)

𝑑(𝑡̃)2
= (

𝛾

3𝑥̃0
3 sin𝛽 − 𝑘𝑟

∗ 𝛽) 𝑘̂, 

 

(3.67) 

and 

𝜏̃2,𝑎𝑡𝑡,𝑁𝐷

𝑚2̃𝑅̃2
2

2

𝑑2(𝛽)

𝑑(𝑡̃)2
= (−

𝛾

3𝑥̃0
3 sin𝛽 − 𝑘𝑟

∗ 𝛽) 𝑘̂. (3.68) 

Note that 𝑥̃0
3 was not included in 𝜉 because Section 3.3 uses 𝑥̃ instead of 𝑥̃0, and this avoids needing to 

define another variable.  As in the dimensional case, the term associated with the magnetic torque 

switches signs between the repulsive and attractive cases.  These equations and non-dimensional 

coefficients will be used in the rest of this section.  The left hand side of these equations, 𝜏̃2,𝑟𝑒𝑝,𝑁𝐷 and 

𝜏̃2,𝑎𝑡𝑡,𝑁𝐷, represents a non-dimensional total torque, which will be what is plotted in future visualizations 

of these equations.   
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3.4.2. Equilibrium Identification 

 

In this section, 1DoF-R equilibria are identified in each of the repulsive and attractive cases. 

In this section, a torque balance on magnet 2 about the z axis indicates an equilibrium point.  The torque 

balance in the repulsive case occurs when Equation (3.58) equals zero, or 

𝜇0𝜇1𝜇2

2𝜋𝑥0
3 sin𝛽 = 𝑘𝑟𝛽. (3.69) 

And in the attractive case, torque balance occurs when Equation (3.69) equals zero, or 

−
𝜇0𝜇1𝜇2

2𝜋𝑥0
3 sin𝛽 = 𝑘𝑟𝛽. (3.70) 

In order for the signs to be such that Equation (3.70) can be satisfied, either 𝛽 must equal zero, or sin𝛽 

needs to be the opposite sign of 𝛽, which does not occur within the range of −
𝜋

2
≤ 𝛽 ≤

𝜋

2
.  Thus, it can 

be predicted that the only equilibria possible in the attractive case would occur at 𝛽 = 0, which 

corresponds to both a magnetic torque and a spring torque of zero.  

However, it is possible for Equation (3.69) to be satisfied somewhere other than at 𝛽 = 0, but it would 

require that  

𝜇0𝜇1𝜇2

2𝜋𝑘𝑟𝑥0
3 =

𝛽

sin𝛽
= 𝜑. (3.71) 

The constant term on the left hand side of Equation (3.69) is called 𝜑 for ease of reference.   
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Figure 35: 𝛽/ 𝑠𝑖𝑛 𝛽 versus 𝛽, showing that equilibria only exist when 1 ≤
𝜇0𝜇1𝜇2

2𝜋𝑘𝑠𝑥0
3 ≤

𝜋

2
 

At some point over the range −
𝜋

2
≤ 𝛽 ≤

𝜋

2
, Figure 35 shows that the acceptable range of values that 𝜑 

can take to achieve an equilibrium is  

1 ≤ 𝜑 ≤
𝜋

2
. (3.72) 

The next section selects some example variable values, at least one combination of which should 

produce non-zero equilibria in the repulsive case.  

Non-Dimensionalization of Equilibrium  

The non-dimensional repulsive torque balance occurs when Equation (3.67) equals zero, or 

𝛾

3𝑥̃0
3𝑘𝑟

∗
=

𝛽

sin𝛽
= 𝜑, 

and 

𝛾

𝑘𝑟
∗ =

3𝑥̃0
3𝛽

sin𝛽
, 

(3.73) 

where 

𝛾

3𝑥̃0
3𝑘𝑟

∗
=

𝜋𝜇0𝐼
2𝑁2𝑅̃2

2𝑅̃1
2𝑅1

𝑥̃0
3𝑘𝑟

. 

In the attractive case, the left sides of Equations (3.71) and (3.73) become negative. 
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Example Dimensional Equilibrium Identification 

The same magnetic moment values (𝜇1 = 25133 𝐴𝑚2 and 𝜇2 = 36191 𝐴𝑚2) studied in Section 3.3.2 are 

used in the example equilibrium identification for the 1DoF-R system.  Again, these magnetic moments 

were calculated assuming that coil 1 has a radius of 1 m and coil 2 has a radius of 2 meters, with all other 

variables identical.  Three torsional spring constants are examined (𝑘𝑟 = 1, 5, 25 𝑁 ∙ 𝑚/𝑟𝑎𝑑), and the 

magnetic torque is calculated at two different 𝑥0 values (𝑥0 = 1.75, 3).  Figure 36a plots both sides of 

Equation (3.69) in the repulsive case; Figure 36b plots both sides of Equation (3.70) in the attractive case.   

There are two line-types plotted in Figure 36: lines without symbols represent two different magnetic 

torques, based on each of the two different values of 𝑥0, whereas the lines with symbols represent the 

spring torques.  As in previous plots, the grey lines are the absolute values of negative values for each 

torque.  Equilibria would occur anywhere a grey line and a black line of different line-types intersect. 

It can be seen from both Figure 36a that, as expected, the only attractive equilibria occur at 𝛽1,𝑎 = 0 and 

that there are 6 equilibria at that point (every combination of plotted magnetic and spring torque).  Figure 

36b is more interesting, as there are the six equilibria at 𝛽3,𝑏 = 0 as well as several mirrored equilibria on 

either side of zero.  These equilibria (at 𝛽1,𝑏 , 𝛽4,𝑏 for 𝑥0 = 1.75 and 𝑘𝑟 = 25𝑁 ∙ 𝑚/𝑟𝑎𝑑;  𝛽2,𝑏 , 𝛽5,𝑏 for 𝑥0 =

3 and 𝑘𝑟 = 5 𝑁 ∙ 𝑚/𝑟𝑎𝑑) exist because 𝜑 is within the prescribed bounds for nonzero equilibria.   

Table 9 gives the locations of the equilibria from Figure 36 as well as the value of 𝜑 for each point.  It can 

be seen that 𝜑 is within the prescribed bounds for all nonzero equilibria. 

Table 9: 𝛽 values for dimensional equilibria identified in Figure 36 

Attractive Repulsive 

Equilibrium 

ID 

𝑘𝑟 , 𝑥0 

values 

(
𝑁𝑚

𝑟𝑎𝑑
  & m) 

𝛽 value at 

eq. 

(radians) 

Equilibrium 

ID 

𝑘𝑟, 𝑥0 

values 

(
𝑁𝑚

𝑟𝑎𝑑
  & m) 

𝛽 value at 

eq. 

(radians) 

𝜑 

𝛽1𝑎−1 1, 1.75 0 𝛽1𝑏 25, 1.75 -1.3128 1.3577 

𝛽1𝑎−2 1, 3 0 𝛽2𝑏 5, 3 -1.2975 1.3475 

𝛽1𝑎−3 5, 1.75 0 𝛽3𝑏−1 1, 1.75 0 33.9436 

𝛽1𝑎−4 5, 3 0 𝛽3𝑏−2 1, 3 0 6.7376 

𝛽1𝑎−5 25, 1.75 0 𝛽3𝑏−3 5, 1.75 0 6.7887 

𝛽1𝑎−6 25, 3 0 𝛽3𝑏−4 5, 3 0 1.3475 

   𝛽3𝑏−5 25, 1.75 0 1.3577 

   𝛽3𝑏6 25, 3 0 0.2695 

   𝛽4𝑏 25, 1.75 1.2975 1.3475 

   𝛽5𝑏 5, 3 1.3128 1.3577 
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Figure 36: Spring torques and (a, top) attractive magnetic dipole torque or (b, bottom) repulsive magnetic dipole 
torque, with 1DoF-R equilibrium points identified 
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Example Non-Dimensional Equilibrium Identification 

Figure 37 plots both sides of Equation (3.73) in both the attractive and repulsive cases for 𝑥̃0 = 2 in order 

to determine for what values of 𝛽 they intercept and thus are in equilibrium.  Equation (3.73) is somewhat 

reorganized to reduce the number of variables being plotted, and therefore the conditions for equilibria 

are slightly different from the previous section: equilibria occur anywhere where two lines of the same 

sign/color intersect, versus in Figure 36 where equilibria occur at the intersection of dissimilar lines.  It 

should be noted that Equation (3.67) (pre-reorganization) also balances when 𝛽 = 0, as in the 

dimensional section, and thus every 𝛾/𝑘𝑟
∗ curve (three total in Figure 37) has an equilibrium at 𝛽 = 0 in 

addition to those identified in Figure 37. The 𝛽 = 0 equilibria are not visible in Figure 37, so they are 

represented in Table 10 by 𝛽0𝑎,𝑁𝐷−# or the attractive case, 𝛽0𝑏,𝑁𝐷−# for the repulsive case, where # is a 

number 1 through 3.   

It can be seen from Figure 37 that an increase or decrease in 𝑥̃0 will just shift the 3𝑥̃0
3(𝛽/ sin𝛽) curve up 

or down respectively so that only one such curve is plotted.  It can also be seen that larger values of  𝛾/𝑘𝑟
∗ 

result in non-zero equilibria closer to 𝛽 = ±𝜋/2, since the magnetic force is large compared to the 

stiffness of the torsional spring, so the magnet can twist more before the spring provides a sufficient 

restorative torque to balance. 

Table 10: 𝛽 values for non-dimensional equilibria identified in Figure 37 

Attractive Repulsive 

Equilibrium 

ID 

𝛾

𝑘𝑟
∗ 𝛽 value at 

eq. 

(radians) 

Equilibrium 

ID 

𝛾

𝑘𝑟
∗ 𝛽 value at 

eq. 

(radians) 

𝛽0𝑎,𝑁𝐷−1 35 0 𝛽1𝑏,𝑁𝐷 35 -1.4472 

𝛽0𝑎,𝑁𝐷−2 30 0 𝛽2𝑏,𝑁𝐷 30 -1.1311 

𝛽0𝑎,𝑁𝐷−3 25 0 𝛽3𝑏,𝑁𝐷 25 -0.4929 

   𝛽0𝑏,𝑁𝐷−1 35 0 

   𝛽0𝑏,𝑁𝐷−2 30 0 

   𝛽0𝑏,𝑁𝐷−3 25 0 

   𝛽4𝑏,𝑁𝐷 35 1.4472 

   𝛽5𝑏,𝑁𝐷 30 1.1311 

   𝛽6𝑏,𝑁𝐷 25 0.4929 

The stability of these identified rotational dimensional and non-dimensional equilibria, both static and 

dynamic, will be explored in the rest of this section. 
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Figure 37: Non-dimensional (ND) right side of Equation (3.73) and several ND (a, top) absolute values of the 
attractive -𝛾/𝑘𝑟

∗ or (b, bottom) absolute values of the repulsive 𝛾/𝑘𝑟
∗, with ND 1DoF-R equilibrium points identified 

and 𝑥̃0=2 
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3.4.3. Static Stability Classification 

 

In this section, the static stability of the 1DoF-R equilibria identified in the previous section is evaluated. 

Examining the static stability of the 1DoF-R system is very similar to examining that of the 1DoF-T system, 

save for the use of torques instead of forces.  This section uses the stiffness approach from Section 3.3.3, 

similar to in Equations (3.34) and (3.35). The derivative of torque about magnet 2 (Equation (3.58)) is 

taken with respect to the single generalized coordinate in which it is permissible to have motion: 

𝑑

𝑑𝛽
(𝜏2,𝑟𝑒𝑝) =

𝑑

𝑑𝛽
(
𝜇0𝜇1𝜇2

2𝜋𝑥0
3 sin𝛽 − 𝑘𝑟𝛽), 

and 

𝑑

𝑑𝛽
(𝜏2,𝑟𝑒𝑝)  =

𝜇0𝜇1𝜇2

2𝜋𝑥0
3 cos𝛽 − 𝑘𝑟. (3.74) 

Similarly, the derivative of Equation (3.59) is 

𝑑

𝑑𝛽
(𝜏2,𝑎𝑡𝑡) = −

𝜇0𝜇1𝜇2

2𝜋𝑥0
3 cos 𝛽 − 𝑘𝑟. (3.75) 
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Non-Dimensionalization of Stiffness 

The nondimensional version of each of Equations (3.74) and (3.75) are as follows from Equations (3.67) 

and (3.68): 

Repulsive: 

𝑑

𝑑𝛽
(𝜏̃2,𝑟𝑒𝑝,𝑁𝐷) =

𝑑

𝑑𝛽
(

𝛾

3𝑥̃0
3 sin 𝛽 − 𝑘𝑟

∗ 𝛽), 

and 

𝑑

𝑑𝛽
(𝜏̃2,𝑟𝑒𝑝,𝑁𝐷) =

𝛾

3𝑥̃0
3 cos 𝛽 − 𝑘𝑟

∗ , 
(3.76) 

Attractive:  

𝑑

𝑑𝛽
(𝜏̃2,𝑎𝑡𝑡,𝑁𝐷) =

𝑑

𝑑𝛽
(−

𝛾

3𝑥̃0
3 𝑠𝑖𝑛 𝛽 − 𝑘𝑟

∗ 𝛽) , 

and 

𝑑

𝑑𝛽
(𝜏̃2,𝑎𝑡𝑡,𝑁𝐷) = −

𝛾

3𝑥̃0
3 𝑐𝑜𝑠 𝛽 − 𝑘𝑟

∗ . 
(3.77) 

Static stability results when the derivative of torque is negative (making the stiffness positive) [25], and 

therefore it is necessary for static stability that Equations (3.74)-(3.75) and (3.76)-(3.77) are less than zero 

for repulsive and attractive case equilibria respectively.  Equation (3.78) gives the formula for rotational 

stiffness using either 𝜏2,𝑟𝑒𝑝 or 𝜏2,𝑎𝑡𝑡 (or their non-dimensional equivalents) as 𝜏2: 

𝜅𝑡𝑜𝑡,𝑅 = −(
𝑑𝜏2

𝑑𝛽
)
𝛽=𝛽𝑒𝑞

 . 
(3.78) 
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Example Dimensional Static Stability Evaluation 

Cos𝛽 is positive over the range −
𝜋

2
≤ 𝛽 ≤

𝜋

2
, and therefore, because all the constants in the torque 

formulations are positive, the attractive derivative of torque is always negative as in Equation (3.75).  

Hence, all six of the equilibria at 𝛽1𝑎 are statically stable.  This is consistent with the tendency of a magnetic 

pole to be attracted to the opposite pole and to return to the position where the two opposing poles are 

closest.   

Table 11 is Table 9 with added stiffness values at the associated 𝛽 values for each equilibrium.  Equilibria 

that are statically stable are bolded within the table.  

Table 11: Rotational stiffness values 𝜅𝑡𝑜𝑡,𝑅  at each dimensional equilibrium in Figure 36, with statically stable 

equilibria bolded 

Attractive Repulsive 

Equil. 

ID 

𝑘𝑟, 𝑥0 values 

(
𝑁𝑚

𝑟𝑎𝑑
  & 𝑚) 

𝛽 value 

at equil. 

(radians) 

𝜅𝑡𝑜𝑡,𝑅 (
𝑁𝑚

𝑟𝑎𝑑
) 

Equil. 

ID 

𝑘𝑟, 𝑥0 values 

(
𝑁𝑚

𝑟𝑎𝑑
  & 𝑚) 

𝛽 value 

at equil. 

(radians) 

𝜅𝑡𝑜𝑡,𝑅 (
𝑁𝑚

𝑟𝑎𝑑
) 

𝜷𝟏𝒂−𝟏 1, 1.75 0 34.9436 𝜷𝟏𝒃 25, 1.75 -1.3128 16.3395 

𝜷𝟏𝒂−𝟐 1, 3 0 7.7376 𝜷𝟐𝒃 5, 3 -1.2975 3.1815 

𝜷𝟏𝒂−𝟑 5, 1.75 0 38.9436 𝛽3𝑏−1 1, 1.75 0 -32.9436 

𝜷𝟏𝒂−𝟒 5, 3 0 11.7376 𝛽3𝑏−2 1, 3 0 -5.7376 

𝜷𝟏𝒂−𝟓 25, 1.75 0 58.9436 𝛽3𝑏−3 5, 1.75 0 -28.9436 

𝜷𝟏𝒂−𝟔 25, 3 0 31.7376 𝛽3𝑏−4 5, 3 0 -1.7376 

    𝛽3𝑏−5 25, 1.75 0 -8.9436 

    𝜷𝟑𝒃−𝟔 25, 3 0 18.2624 

    𝜷𝟒𝒃 25, 1.75 1.2975 16.3395 

    𝜷𝟓𝒃 5, 3 1.3128 3.1815 

It can be seen from Table 11 that all of the attractive equilibria are statically stable, as expected, and that 

all of the nonzero equilibria in the repulsive case are also statically stable.  Interestingly enough, only one 

of the repulsive case 𝛽 = 0 equilibria was stable, and that was 𝛽3𝑏−6, which had both the largest 𝑘𝑟 and 

the largest 𝑥0.  It can be seen from Equation (3.74) that making both 𝑘𝑟 and 𝑥0 larger helps drive the 

equation towards a negative derivative and thus positive stiffness; this observation is most valuable 

conclusion that can be drawn from Table 11, especially since any operational system is going to be in 

repulsion and likely operating with large distances between the magnets in the system.   
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Example Non-Dimensional Static Stability Evaluation 

As in the dimensional formulation, it can be seen from Table 12 that all of the attractive equilibria, all of 

which occur when 𝛽 = 0, are stable.  Again, 𝑘𝑟
∗ is assumed to be 1. In the repulsive case, the values of 

𝛾/𝑘𝑟
∗ and 𝑥̃0 result in purely unstable repulsive equilibria at 𝛽0𝑏,𝑁𝐷 and stable equilibria at non-zero 

equilibria.  To further investigate this, Equation (3.76) is rearranged to determine when the derivative of 

torque is negative (making the stiffness positive): 

𝛾

𝑘𝑟
∗ cos𝛽 < 3𝑥̃0

3. 

Since cos𝛽 = 1 at 𝛽 = 0, stiffness is positive when 

𝛾

𝑘𝑟
∗ < 3𝑥̃0

3. 
(3.79) 

Since 𝑥̃0=2 in this case, 
𝛾

𝑘𝑟
∗ just needs to be less than 24 to result in static stability.  Because 

𝛾

𝑘𝑟
∗ =

[35, 30, 25] in the example case, Equation (3.79) explains the unanimous static instability when 𝛽 = 0.  

This inequality implies that as the distance between the coils increases, the magnetic to spring torque 

ratio can grow and still maintain static stability.  Increasing 𝑘𝑟
∗ has a similar effect, allowing greater 

magnetic torque while maintaining static stability.   

Table 12: Non-dimensional rotational stiffness values 𝜅𝑡𝑜𝑡,𝑁𝐷,𝑅 at each ND equilibrium in Figure 38, with statically 

stable equilibria bolded 

Attractive Repulsive 

Equil. ID 𝛾

𝑘𝑟
∗ 𝑘𝑟

∗ 𝛾 𝛽 value 

at eq. 

(radians) 

𝜅𝑡𝑜𝑡,𝑁𝐷 Equil. ID 𝛾

𝑘𝑟
∗ 𝑘𝑟

∗ 𝛾 𝛽 value 

at eq. 

(radians) 

𝜅𝑡𝑜𝑡,𝑁𝐷,𝑅 

𝜷𝟎𝒂,𝑵𝑫−𝟏 35 1 35 0 2.4583 𝜷𝟏𝒃,𝑵𝑫 35 1 35 -1.4472 0.8202 

𝜷𝟎𝒂,𝑵𝑫−𝟐 30 1 30 0 2.2500 𝜷𝟐𝒃,𝑵𝑫 30 1 30 -1.1311 0.4679 

𝜷𝟎𝒂,𝑵𝑫−𝟑 25 1 25 0 2.0417 𝜷𝟑𝒃,𝑵𝑫 25 1 25 -0.4929 0.0823 

      𝛽0𝑏,𝑁𝐷−1 35 1 35 0 -0.4583 

      𝛽0𝑏,𝑁𝐷−2 30 1 30 0 -0.2500 

      𝛽0𝑏,𝑁𝐷−3 25 1 25 0 -0.0417 

      𝜷𝟒𝒃,𝑵𝑫 35 1 35 1.4472 0.8202 

      𝜷𝟓𝒃,𝑵𝑫 30 1 30 1.1311 0.4679 

      𝜷𝟔𝒃,𝑵𝑫 25 1 25 0.4929 0.0823 
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3.4.4. Dynamic Stability  

 

In this section, the dynamic stability of the 1DoF-R system equilibria is determined, thus concluding the 

study of this system. 

Determining the dynamic stability of the stable equilibria identified in Table 11 requires calculation of the 

potential energy functional for a rotational system, which is again comprised of two terms – a magnetic 

potential energy and an elastic potential energy.  The moment from a torsional spring is given in Equation 

(3.57).  “Work 𝑊𝑟  done by the moment due to twisting through a very small angle 𝑑𝛽 [47]” about the +𝑧 

axis is given by (in combination with Equation (3.57)) 

𝑑𝑊𝑟 = −𝑘𝑟𝛽 ∙ 𝑑𝛽𝑘̂.  (3.80) 

The elastic potential energy 𝑉𝑅 of a torsional spring is “the negative of the total work done by the moment 

[47]” or 

𝑉𝑅 = −∫−𝑘𝑟𝛽 ∙ 𝑑𝛽𝑘̂ = ∫𝑘𝑟𝛽 ∙ 𝑑𝛽𝑘̂ =
1

2
𝑘𝑟𝛽

2 + 𝐶 . (3.81) 

Repulsive Case 

Using the same work-based approach as in Equation (3.81), the magnetic potential energy 𝑊𝑟𝑒𝑝 in the 

repulsive case can also be found with the negative integral of the work done by the magnetic dipole from 

0 to 𝛽, using the repulsive magnetic moment given by Equation (3.56): 

𝑊𝑟𝑒𝑝 = −∫𝜏2,𝑟𝑒𝑝 ∙ 𝑑𝛽𝑘̂ = −∫
𝜇0𝜇1𝜇2

2𝜋𝑥0
3 sin𝛽 ∙ 𝑑𝛽 =

𝜇0𝜇1𝜇2

2𝜋𝑥0
3 cos𝛽 + 𝐶. 

(3.82) 

As discussed previously, 𝐶 in each of Equations (3.81) and (3.82) are unknown constants of integration 

that do not effect relative potential energy, so they are set to zero here.  Equations (3.81) and (3.82) 
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combined are equivalent to the negative integral of Equation (3.58), the subscript R being used on 

potential energy because it is the 1DoF-R case: 

𝑃𝑟𝑒𝑝,𝑅 = −∫𝜏2,𝑟𝑒𝑝,𝑧 𝑑𝛽 = −∫(
𝜇0𝜇1𝜇2

2𝜋𝑥0
3 sin𝛽 − 𝑘𝑟𝛽) 𝑘̂𝑑𝛽 

=
𝜇0𝜇1𝜇2

2𝜋𝑥0
3 cos𝛽 +

𝑘𝑟𝛽
2

2
+  𝐶. 

(3.83) 

Figure 38b depicts the ten repulsive equilibria found in Section 3.4.2 with numbered circles on each plot, 

and it can be seen that the equilibria at 𝛽1𝑏, 𝛽2𝑏, 𝛽4𝑏, and 𝛽5𝑏 all occur at local minima in their respective 

functions.  Additionally, one of the equilibria at 𝛽 = 0, the one associated with a 𝑘𝑟 of 25 𝑁 ∙ 𝑚/𝑟𝑎𝑑 and 

an 𝑥0 of 3, is in fact statically stable.  All of these observations are consistent with the results in Table 11.   

It can be seen that at 𝛽3𝑏, wherein six equilibria occurred at 𝛽 = 0, the equilibria are grouped by the value 

of 𝑥0, with potential energy functions with an 𝑥0 of 1.75 being about an order of magnitude higher at their 

equilibrium than those with an 𝑥0 of 3.   

Attractive Case 

In the attractive case, (3.83) becomes 

𝑃𝑎𝑡𝑡,𝑅 = −∫𝜏2,𝑎𝑡𝑡,𝑧 𝑑𝛽 = −∫(−
𝜇0𝜇1𝜇2

2𝜋𝑥0
3 sin𝛽 − 𝑘𝑟𝛽) 𝑘̂ 𝑑𝛽 

= −
𝜇0𝜇1𝜇2

2𝜋𝑥0
3 cos𝛽 +

𝑘𝑟𝛽
2

2
+  𝐶. 

(3.84) 

Figure 38a identifies the six repulsive equilibria that are all located at 𝛽 = 0. Similar to the plots in Figure 

31, negative potential energy values are plotted as absolute values in grey, such that equilibria occurring 

at a plotted grey maxima are stable equilibria (since they are actually minima).  These equilibria occur at 

a global minimum in the range plotted, but since the potential energy function does not go to +∞ at 𝛽 =

 ±
𝜋

2
, they are not globally stable (since motion could still escape). 
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Non-Dimensionalization of Potential Energy 

The non-dimensional repulsive potential energy is equivalent to the negative integral of Equation (3.67): 

𝑃̃𝑟𝑒𝑝,𝑅 = −∫ 𝜏̃2,𝑟𝑒𝑝,𝑁𝐷,𝑧 𝑑𝛽 = −∫(
𝛾

3𝑥̃0
3 sin𝛽 − 𝑘𝑟

∗ 𝛽) 𝑘̂ 𝑑𝛽 

=
𝛾

3𝑥̃0
3 cos𝛽 +

𝑘𝑟
∗𝛽2

2
+  𝐶. 

(3.85) 

The non-dimensional attractive energy is equivalent to the negative integral of Equation (3.68): 

𝑃̃𝑎𝑡𝑡,𝑅 = −∫ 𝜏̃2,𝑎𝑡𝑡,𝑁𝐷,𝑧𝑑𝛽 = −∫(−
𝛾

3𝑥̃0
3 sin𝛽 − 𝑘𝑟

∗ 𝛽) 𝑘̂ 𝑑𝛽 

= −
𝛾

3𝑥̃0
3 cos𝛽 +

𝑘𝑟
∗𝛽2

2
+  𝐶. 

(3.86) 

Figure 39 shows all of the equilibria identified in Table 12, with Figure 39a showing the statically stable 

attractive equilibria at 𝛽 = 0 and Figure 39b showing the mix of repulsive equilibria.  The attractive 

equilibria occur at a global minimum, but they are not globally stable for the same reasons that the 

dimensional attractive equilibria are not globally stable. Figure 39b illustrates the earlier discussion about 

how the 𝛽0𝑏,𝑁𝐷 equilibrium switches from statically unstable to stable when  𝛾/𝑘𝑟
∗ drops below 24; as 𝛾 

decreases from 35 to 25, the ridge through 𝛽 = 0  flattens out from a very unstable peak at 𝛾 = 35 to a 

shallower peak at 𝛾 = 30, to a very shallow peak at 𝛾 = 25, indicating that further reduction would 

combine the two stable and one stable equilibrium per line into a single stable equilibrium at 𝛽 = 0. 
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Figure 38: Potential energy curves for the (a, top) attractive and (b, bottom) repulsive cases, with grey lines being 
the absolute values of negative energies 
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Figure 39: Non-dimensional potential energy curves for the (a, top) ND attractive and (b, bottom) ND repulsive 
cases, with 𝑥̃0=2 and grey lines being the absolute values of negative energies 
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Critical Dimensional Initial Kinetic Energy and Simulation 

Since the potential energy curves do not go to +∞ on the edges of our range, it is of interest to examine 

what happens when 𝛽 exceeds the range of −
𝜋

2
≤ 𝛽 ≤

𝜋

2
 in either direction.  Figure 40a shows the 

repulsive potential energy curve over the range −𝜋 ≤ 𝛽 ≤ 𝜋 for the three example cases with 𝑥0 = 1.75, 

and Figure 40b shows the repulsive potential energy curve over the same range for the three example 

cases with 𝑥0 = 3.  From these plots, it can be seen that for the four non-zero statically stable equilibria 

in the repulsive case, the critical initial kinetic energy is determined by the potential energy at 𝛽 = 0 for 

each curve.  For the two metastable equilibria 𝛽1𝑏, 𝛽4𝑏 on the curve with 𝑥0 = 1.75, 𝑘 = 25,  

𝑇𝑡0,𝑐𝑟𝑖𝑡(𝛽1𝑏 , 𝛽4𝑏) = 𝑃𝑟𝑒𝑝,𝑅(𝛽3𝑏−5) − 𝑃𝑟𝑒𝑝,𝑅(|𝛽1𝑏|) =  33.9436 𝐽 −  30.2035 𝐽, 

and 

𝑇𝑡0,𝑐𝑟𝑖𝑡(𝛽1𝑏, 𝛽4𝑏) = 3.7401 𝐽. (3.87) 

For the two metastable equilibria 𝛽2𝑏 , 𝛽5𝑏 on the curve with 𝑥0 = 3, 𝑘 = 5, 

𝑇𝑡0,𝑐𝑟𝑖𝑡(𝛽2𝑏 , 𝛽5𝑏) = 𝑃𝑟𝑒𝑝,𝑅(𝛽3𝑏−4) − 𝑃𝑟𝑒𝑝,𝑅(|𝛽2𝑏|) =  6.7376 𝐽 −  6.0273 𝐽, 

and 

𝑇𝑡0,𝑐𝑟𝑖𝑡(𝛽2𝑏 , 𝛽5𝑏) = 0.7103 𝐽. (3.88) 

It can be seen from Equations (3.87) and (3.88) that 𝑇𝑡0,𝑐𝑟𝑖𝑡(𝛽1𝑏, 𝛽4𝑏) >  𝑇𝑡0,𝑐𝑟𝑖𝑡(𝛽2𝑏 , 𝛽5𝑏), meaning that 

the amount of energy that would need to be introduced to the system to make either equilibria on the 

curve 𝑥0 = 1.75, 𝑘 = 25 dynamically unstable is greater than that required to make either equilibria on 

the curve 𝑥0 = 3, 𝑘 = 5 unstable.  Therefore, the equilibria at 𝛽1𝑏 and 𝛽4𝑏 are more tolerant of 

perturbation than the equilibria at 𝛽2𝑏 and 𝛽5𝑏 and are therefore better.  As seen in Figure 40, noting that 

the 𝛽 = −𝜋 limit is the same point as 𝛽 = 𝜋 and that the plot thus wraps around, the mode of instability 

on either curve is a switching from one equilibrium to the other, characteristic of metastable equilibria.   
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Critical Non-Dimensional Initial Kinetic Energy and Simulation 

As in the previous section, the behavior of the system beyond the bounds of −
𝜋

2
≤ 𝛽 ≤

𝜋

2
 is of interest.  

Figure 41 shows the non-dimensional repulsive potential energy curve over the range −𝜋 ≤ 𝛽 ≤ 𝜋 for the 

three curves plotted in Figure 39.  It can be seen that the two statically stable equilibria on each curve are 

metastable and that the mode of instability and escaping motion is switching from one equilibrium to the 

other.  As in the dimensional case, the critical initial kinetic energy of the two statically stable equilibria 

on each of the three curves under study are determined by the difference in potential energy between 

the stable equilibrium and the unstable equilibrium at 𝛽 = 0.  For the two metastable equilibria 

𝛽1𝑏,𝑁𝐷, 𝛽4𝑏,𝑁𝐷 on the curve with 𝛾 = 35, 

𝑇̃𝑡0,𝑐𝑟𝑖𝑡(𝛽1𝑏,𝑁𝐷, 𝛽4𝑏,𝑁𝐷) = 𝑃̃𝑟𝑒𝑝,𝑅(𝛽0𝑏,𝑁𝐷−1) − 𝑃̃𝑟𝑒𝑝,𝑅(|𝛽1𝑏,𝑁𝐷|) 

 = 100.16386 − 100.08884, 

𝑇̃𝑡0,𝑐𝑟𝑖𝑡(𝛽1𝑏,𝑁𝐷 , 𝛽4𝑏,𝑁𝐷) = 0.2313. (3.89) 

For the two metastable equilibria 𝛽2𝑏,𝑁𝐷, 𝛽5𝑏,𝑁𝐷 on the curve with 𝛾 = 30, 

𝑇̃𝑡0,𝑐𝑟𝑖𝑡(𝛽2𝑏,𝑁𝐷 , 𝛽5𝑏,𝑁𝐷) = 𝑃̃𝑟𝑒𝑝,𝑅(𝛽0𝑏,𝑁𝐷−2) − 𝑃̃𝑟𝑒𝑝,𝑅(|𝛽2𝑏,𝑁𝐷|) 

 =  100.09691 − 100.06890, 

𝑇̃𝑡0,𝑐𝑟𝑖𝑡(𝛽2𝑏,𝑁𝐷, 𝛽5𝑏,𝑁𝐷) = 0.0781. (3.90) 

For the two metastable equilibria 𝛽3𝑏,𝑁𝐷, 𝛽6𝑏,𝑁𝐷 on the curve with 𝛾 = 25, 

𝑇𝑡0,𝑐𝑟𝑖𝑡(𝛽3𝑏,𝑁𝐷 , 𝛽6𝑏,𝑁𝐷) = 𝑃̃𝑟𝑒𝑝,𝑅(𝛽0𝑏,𝑁𝐷−3) − 𝑃̃𝑟𝑒𝑝,𝑅(|𝛽3𝑏,𝑁𝐷|) 

 =  100.017729 − 100.016689, 

𝑇𝑡0,𝑐𝑟𝑖𝑡(𝛽3𝑏,𝑁𝐷, 𝛽6𝑏,𝑁𝐷) = 0.0025. (3.91) 

It can be seen from Equations (3.89)-(3.91) that the larger the 𝛾 or 𝛾/𝑘𝑟
∗ value, the more energy that needs 

to be introduced to the system to make a statically stable equilibrium dynamically unstable.   
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Figure 40: Potential energy curves for the repulsive case over the range −𝜋 ≤ 𝛽 ≤ 𝜋 for (a,top) 𝑥0 = 1.75 curves, 
and (b,bottom), 𝑥0 = 3 curves 
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Figure 41: Non-dimensional potential energy curves for the repulsive case over the range −𝜋 ≤ 𝛽 ≤ 𝜋  

3.4.1. Summary 

In Section 3.4, a single rotational degree of freedom spring-magnet system was presented; its equilibria 

were identified and analyzed for their static and dynamic stability.  It can be seen that in the 1DoF-R 

system, in contrast to Section 3.3, the attractive equilibria are the ones that are all statically and 

dynamically stable, whereas repulsive equilibria are a mix of statically stable and unstable.  Dynamic 

stability is based upon the difference in potential energy between the stable and the unstable equilibria 

in systems with a spring constant large enough to have equilibria.  The larger the spring constant, the 

higher the critical initial kinetic energy required to make the statically stable equilibrium dynamically 

unstable.    
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3.5. Two Degrees of Freedom 

 

The third and final analytical magnet system studied in this chapter, depicted in Figure 42, permits motion 

in both a translational and a rotational degree of freedom, effectively combining the systems from 

Sections 3.3 and 3.4 into a two degree of freedom system.  Both the linear and torsional springs are active 

in this system, since magnet 2 can move along the x axis and rotate around the z axis.  As opposed to the 

previous two sections in this chapter, only the repulsive case (within the bounds −𝜋/2 < 𝛽 < 𝜋/2; 

outside of these bounds, the system becomes attractive) will be considered in this section to simplify 

visualization of the system and its results. Also, after the equilibrium identification step, all analysis will 

be non-dimensional to further reduce the complexity of the formulations for static and dynamic stability.   

 

Figure 42: 2DoF (translational and rotational) system 

3.5.1. Force and Torque Balance 

In the 2DoF system, both a force and a torque balance are required for the system to be in equilibrium. 

Equations (3.9)-(3.11) apply as is to the system as depicted in Figure 42, and the formulas that will be used 

in this section are repeated below for reference: 
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𝐹⃗𝑚𝑎𝑔,2 = 
3𝜇0𝜇1𝜇2

4𝜋𝑥4 [
2 cos𝛽
− sin𝛽

0

], 

and 

(3.92a) 

𝜏𝑚𝑎𝑔,2 = 
𝜇0𝜇1𝜇2

4𝜋𝑥3 [
0
0

2 sin𝛽
]. (3.92b) 

Since only motion along the x axis is permitted, the y term in Equation (3.92a) is ignored going forward.  

Adding the linear spring force and torsional spring torque to Equations (3.92), respectively, the total 

force and torque are 

𝐹⃗2,𝑟𝑒𝑝 = (
3𝜇0𝜇1𝜇2

2𝜋𝑥4
cos𝛽 − 𝑘(𝑥 − 𝑥0)) 𝑖,̂ 

and 

(3.93a) 

𝜏2,𝑟𝑒𝑝 = (
𝜇0𝜇1𝜇2

2𝜋𝑥3
𝑠𝑖𝑛 𝛽 − 𝑘𝑟𝛽) 𝑘̂. (3.93b) 

Non-Dimensionalization of Force and Torque Balance Equations 

Using the non-dimensional terms and forces and torques defined in Equations (3.22)-(3.25) and (3.64)-

(3.68), the non-dimensional force and torque are 

𝐹̃⃗2,𝑟𝑒𝑝,𝑁𝐷 = (
𝛾

𝑥̃4
cos𝛽 − 𝑘∗(𝑥̃ − 𝑥0̃)) 𝑖̂,  

and 

(3.94a) 

𝜏̃2,𝑟𝑒𝑝,𝑁𝐷 = (
𝛾

3𝑥̃3
sin𝛽 − 𝑘𝑟

∗ 𝛽) 𝑘̂. (3.94b) 

Unlike in previous sections, Equations (3.93) and (3.94) are functions of two variables each, 

𝑥 (or 𝑥̃) and 𝛽.  In the next subsection, equilibria are found that fulfill both a force and a torque balance 

with the above equations. 
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3.5.2. Equilibrium Identification 

 

Finding equilibria in two generalized coordinates is more complex than for one coordinate.  First, both a 

force balance and a torque balance must be written by determining where Equations (3.93) equal zero. 

Equations (3.95) give the force and torque balance respectively: 

3𝜇0𝜇1𝜇2

2𝜋𝑥4
cos𝛽 = 𝑘(𝑥 − 𝑥0),  

and 

(3.95a) 

𝜇0𝜇1𝜇2

2𝜋𝑥3
𝑠𝑖𝑛 𝛽 = 𝑘𝑟𝛽. (3.95b) 

Immediately, it can be seen that (3.95b) is fulfilled when 𝛽=0, when zero torque is induced.  At this 

point, the equilibrium 𝑥 point is identical to that of the 1DoF-T case, which can be determined from 

graphical exploration of Equation (3.26), or Figure 29. 

The analytical approach to determining points (𝑥, 𝛽), where 𝛽 ≠ 0 and Equations (3.95) are both met is 

to solve Equation (3.95b) for 𝑥 and then substitute it into (3.95a): 

𝑥3 =
𝜇0𝜇1𝜇2

2𝜋𝑘𝑟𝛽
𝑠𝑖𝑛 𝛽,  

and 

3𝜇0𝜇1𝜇2

2𝜋 (
𝜇0𝜇1𝜇2
2𝜋𝑘𝑟𝛽

𝑠𝑖𝑛 𝛽)

4
3

cos𝛽 = 𝑘 ((
𝜇0𝜇1𝜇2

2𝜋𝑘𝑟𝛽
𝑠𝑖𝑛 𝛽)

1
3
− 𝑥0). 

(3.96) 

Equation (3.96) isn’t very friendly looking, but it allows for similar analysis as in Sections 3.3 and 3.4; by 

plotting both sides of Equation (3.96) over the range −
𝜋

2
≤ 𝛽 ≤

𝜋

2
 and finding intersections, the 𝛽 
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location of equilibria that satisfy both a force and torque balance can be found and then inserted into 

Equation (3.95b) to obtain the 𝑥 coordinate.   

Both sides of Equation (3.96) need to have the same sign.  cos𝛽 and 
𝑠𝑖𝑛 𝛽

𝛽
 are each always positive over 

the range under study, both equaling 1 when  𝛽 = 0 and cos𝛽 going to 0 at  𝛽 = ±
𝜋

2
.  All of the 

constants in the problem are positive, meaning that the left side of the equation is always positive or 

zero at the bounds.  The right side is positive only if    

𝜇0𝜇1𝜇2

2𝜋𝑘𝑟𝛽
𝑠𝑖𝑛 𝛽 > 𝑥0

3, 

or, rearranged, 

𝑘𝑟 <
𝜇0𝜇1𝜇2

2𝜋𝛽𝑥0
3 𝑠𝑖𝑛 𝛽. 

The minimum value of 
𝑠𝑖𝑛 𝛽

𝛽
,
2

𝜋
 occurs at the bounds, such that the most restrictive specification of 𝑘𝑟 is 

𝑘𝑟 <
𝜇0𝜇1𝜇2

𝜋2𝑥0
3 . (3.97) 

Non-Dimensionalization of Equilibrium 

The non-dimensional force and torque balances are met where Equations (3.94) equal zero, or, 

respectively 

𝛾

𝑥̃4
cos𝛽 = 𝑘∗(𝑥̃ − 𝑥̃0),  

and 

(3.98a) 

𝛾

3𝑥̃3
sin𝛽 = 𝑘𝑟

∗ 𝛽. (3.98b) 

As in the dimensional case, (3.98b) is fulfilled when 𝛽=0, and zero torque is induced.  At this point, the 

equilibrium 𝑥 point is identical to that of the 1DoF-T non-dimensionalized case, which can be 

determined from graphical exploration of Equation (3.27a) as in Figure 30. 
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To determine points (𝑥, 𝛽) where 𝛽 ≠ 0 and Equations (3.98) are met, Equation (3.98b) is solved for 𝑥̃ 

and then substituted into (3.98a): 

𝑥̃3 =
𝛾

3𝑘𝑟
∗

𝑠𝑖𝑛 𝛽

𝛽
, 

and 

𝛾

(
𝛾

3𝑘𝑟
∗
𝑠𝑖𝑛 𝛽

𝛽
 )

4/3
cos 𝛽 = 𝑘∗ ((

𝛾

3𝑘𝑟
∗

𝑠𝑖𝑛 𝛽

𝛽
 )

1
3
− 𝑥̃0). 

(3.99) 

Similarly to Equation (3.97), the left hand side of Equation (3.99) is always positive over the range in 

study, and therefore the right hand side also needs to be positive.  From this observation, it can be seen 

that the most restrictive specification on 𝑘𝑟
∗ based on 

𝑠𝑖𝑛 𝛽

𝛽
=

2

𝜋
 is 

𝑘𝑟
∗ <

2𝛾

3𝜋𝑥̃0
3. (3.100) 

In the next subsection, example values of the variables in Equation (3.99) are assigned such that the two 

sides of the equation can be plotted to observe for what values of 𝛽 the non-dimensional forces 

intersect, indicating that the system is in equilibrium.  The 𝛽 locations can then be inserted into 

Equation (3.98b) to obtain the 𝑥 coordinates of the 2DoF equilibria.     

Example Non-Dimensional Equilibrium Identification 

In this section, 𝑥̃0 is assumed to be 2 radii, and a range of values of 𝛾 (10, 20, 50) are studied.   These 

values can be used in combination with Equation (3.100) to select 𝑘𝑟
∗  values that allow secondary 

equilibria in each case.  However, for consistency of selection and a margin of safety, 𝑘𝑟
∗  is selected as a 

constant value based on 𝛾 = 20,  taken to equal 90% of the upper boundary of Equation (3.100) , or 

𝑘𝑟
∗ = 0.9

2𝛾

3𝜋𝑥̃0
3. (3.101) 

When 𝛾 = 20, 𝑘𝑟
∗ = 0.4775.   As such, it is expected that 𝛾 = 10 will not have secondary equilibria 

because the right side of Equation (3.99) will be negative.  For 𝛾 = 20 and 50, the 𝑘𝑟
∗ condition is met but 

not sufficient for proving the existence of secondary equilibria.  
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Figure 43a plots the total non-dimensional force (the left side of Equation (3.99) minus the right side of 

(3.99)) against 𝛽 with several different values of 𝛾, such that zero crossings represent equilibria in both 

force and torque even though the y axis is non-dimensional force.  Again, this is because the torque 

balance has been inserted into the force balance equation such that any force balance also guarantees a 

torque balance. Figure 43 only shows the non-zero equilibria. 

Table 13 gives the 𝛽 and 𝑥̃ values for each of the identified equilibria in Figure 43 as well as the equilibria 

at 𝛽 = 0. It can be noted that every value of 𝛾 has a guaranteed equilibrium at 𝛽 = 0 and that one of the 

three values of  𝛾 (the intermediate value) also has equilibria near 𝛽 = ±
𝜋

2
.   

Table 13: 𝛽 and 𝑥̃ values for equilibria in Figure 43 as well as the equilibria at 𝛽 = 0 

- 𝛽 + 𝛽 0 

Equil. 

ID 

γ 

values  

β  𝑥̃ Equil. 

ID 

γ 

values 

𝛽  𝑥̃ Equil. 

ID 

γ values  𝛽  𝑥̃ 

𝛽1,− 10 - - 𝛽1,+ 10 - - 𝛽1,0 10 0 2.338 

𝛽2,− 20 -1.445 2.1243 𝛽2,+ 20 1.445 2.1243 𝛽2,0 20 0 2.508 

𝛽3,− 50 - - 𝛽3,+ 50 - - 𝛽3,0 50 0 2.809 

Section 3.5.3 evaluates the static stability of each equilibrium point. 
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Figure 43: Total non-dimensional forces of Equation (3.99) (left side minus the right side) for various values of 𝛾 and 

𝑥̃0=2 shown for full range of −
𝜋

2
≤ 𝛽 ≤

𝜋

2
.  It can be seen that secondary equilibria only occur for  𝛾 = 20. 
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3.5.3. Static Stability Classification 

 

In this section, the static stability of the 2DoF equilibria identified in the previous section is evaluated. 

In Sections 3.3.3 and 3.4.3, the single degree of freedom meant that only one stiffness value needed to 

be calculated to evaluate static stability.  Now that motion in two generalized coordinates is allowed, a 

stiffness matrix must be calculated such that the real part of the eigenvalues of the stiffness matrix must 

all be positive for static stability (any zero eigenvalues indicate statically neutral stability in the direction 

of the associated eigenvector, and any negative eigenvalues indicate static instability in the direction of 

the associated eigenvector) [48].  Negative eigenvalues are possible because the electromagnets 

represent negative stiffness elements in the system.  Equation (3.102) gives the structure of the stiffness 

matrix.  It should be noted that the aforementioned stability convention corresponds to the eigenvalues 

of the stiffness matrix on its own, not the state-space displacement coefficient matrix.  If the latter were 

being used, the convention would switch signs for static stability and instability [48].   

[𝐾𝑁𝐷] = −

[
 
 
 
 
𝜕𝐹̃2

𝜕𝑥̃

𝜕𝐹̃2

𝜕𝛽
𝜕𝜏̃2

𝜕𝑥̃

𝜕𝜏̃2

𝜕𝛽 ]
 
 
 
 

. 

(3.102) 

Inserting the partial derivatives of Equations (3.94) into Equation (3.102), the non-dimensional stiffness 

matrix is 

[𝐾𝑁𝐷] = [

4𝛾

𝑥̃5
cos𝛽 + 𝑘∗

𝛾

𝑥̃4
sin𝛽

𝛾

𝑥̃4
sin 𝛽 −

𝛾

3𝑥̃3
cos𝛽 + 𝑘𝑟

∗
]. 

(3.103) 

While Equation (3.103) seems deceptively simple, its eigenvalues require Mathematica to find: 

𝜆1,2 =
𝑘∗ + 𝑘𝑟

∗

2
+ 𝛾 cos 𝛽 [

2

𝑥̃5
−

1

6𝑥̃3
]  ± 

±

√4 [(𝑘∗ + 𝑘𝑟
∗)𝑥̃5 + (4 −

𝑥̃2

3
) 𝛾 cos 𝛽]

2

− 8𝑥̃2[2𝑘∗𝑘𝑟
∗𝑥̃8 −

7𝛾2

3
+ (8𝑘𝑟

∗𝑥̃3 −
2𝑘∗𝑥̃5

3
) 𝛾 cos 𝛽 −

𝛾2

3
cos 2𝛽] .

4𝑥̃5
 (3.104) 
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Given the complexity of Equation (3.104), Table 14 gives the eigenvalues for the equilibria in Table 13 as 

calculated by Equation (3.104), double checked by MATLAB’s eig command on the stiffness matrix in 

Equation (3.103).   

Table 14: 2DoF stiffness matrix eigenvalues 𝜆1,2 at each equilibrium in Figure 43, statically stable equilibria bolded 

- 𝛽 

Equil. ID 𝛾 𝛽 𝑥̃ 𝜆1 𝜆2 

𝛽1,− 10 - - - - 

𝛽2,− 20 -1.445 2.1243 1.8725 -0.2502 

𝛽3,− 50 - - - - 

+ 𝛽 

Equil. ID 𝛾 𝛽 𝑥̃ 𝜆1 𝜆2 

𝛽1,+ 10 - - - - 

𝛽2,+ 20 1.445 2.1243 1.8725 -0.2502 

𝛽3,+ 50 - - - - 

𝛽 = 0 

Equil. ID 𝛾 𝛽 𝑥̃ 𝜆1 𝜆2 

𝜷𝟏,𝟎 10 0 2.338 1.5726 0.2167 

𝜷𝟐,𝟎 20 0 2.508 1.8062 0.0549 

𝛽3,0 50 0 2.809 2.1436 -0.2745 

 

From Table 14, it can be seen that the only statically stable equilibria (with two positive eigenvalues) are 

two of the three equilibria that occur at 𝛽 = 0, those for which  𝛾 = 10, 20, as expected.  The eigenvalue 

that tends to be negative is that eigenvalue where the ± is negative in Equation (3.104).  Unlike in the one 

dimensional problems earlier in this chapter, it is much more difficult to determine from Equation (3.104) 

the requirements on the 2DoF system for static stability.  Going forward with more complex systems, a 

less complicated calculation of the static stability of a list of equilibria is desirable.  Chapter 4 investigates 

a numerical method for static stability evaluation and uses the results of this section to validate that 

method.  The next section uses the stable equilibria that have been identified to investigate dynamic 

stability in two degrees of freedom. 
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3.5.4. Dynamic Stability 

 

In this section, the dynamic stability of the system equilibria is determined, this concluding the study of 

this system as well as the analytical step of the three-step approach.   

Again, the potential energy is used to determine the dynamic stability of the statically stable equilibria 

identified in the previous section.  However, because the system under study allows motion in two 

degrees of freedom, the potential energy functional is a three-dimensional surface rather than a two-

dimensional curve.  The resulting increase in complexity will make the calculation of critical initial kinetic 

energy more challenging.  

In Sections 3.3.4 and 3.4.4, potential energy is calculated by integrating the force equation with respect 

to 𝑥 (or 𝑥̃) or by integrating the torque equation with respect to angle 𝛽. In the two degree of freedom 

system, calculation of potential energy can be done either way in order to get the same result.  Jackson 

[49] explains that “the potential energy of a permanent magnetic moment (or dipole) in an external 

magnetic field can be obtained from either the force or the torque”, so it is shown below that the magnetic 

potential energy calculated from both force and torque are the same. 

In order to show that the magnetic potential energy calculated from both force and torque are the same, 

both are given below (in the repulsive case) and then compared along with the definitions of 𝛾 and 𝜉 from 

Equations (3.22) and (3.64) to show that they are identical: 

𝑃̃𝑚𝑎𝑔,𝑇 = −∫ 𝐹̃⃗2,𝑟𝑒𝑝,𝑚𝑎𝑔,𝑥 𝑑𝑥̃ = −∫(
𝛾

𝑥̃4
cos𝛽) 𝑖̂ 𝑑𝑥̃ 

=
𝛾

3𝑥̃3
cos𝛽 + 𝐶, 

and (3.105) 

𝑃̃𝑚𝑎𝑔,𝑅 = −∫ 𝜏̃2,𝑟𝑒𝑝,𝑚𝑎𝑔,𝑧 𝑑𝛽 = −∫(
𝛾

3𝑥̃3
𝑠𝑖𝑛 𝛽) 𝑘̂ 𝑑𝛽 

(3.106) 
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=
𝛾

3𝑥̃3
𝑐𝑜𝑠 𝛽 + 𝐶. 

It can easily be seen that Equations (3.105) and (3.106) are identical.  The elastic potential energies for 

the linear and torsional springs are as follows, denoted by 𝑉̃𝑇 and 𝑉̃𝑅 for the translational and rotational 

energies respectively:  

𝑉̃𝑇 = −∫ 𝐹̃⃗𝑠𝑝𝑟,𝑙𝑖𝑛 = −∫−(𝑘∗(𝑥̃ − 𝑥̃0)) 𝑖 ̂𝑑𝑥̃ =
𝑘∗𝑥̃2

2
− 𝑘∗𝑥̃0𝑥̃ + 𝐶, 

and (3.107) 

𝑉̃𝑅  = −∫ 𝜏̃𝑠𝑝𝑟,𝑙𝑖𝑛 = −∫−(𝑘𝑟
∗𝛽) 𝑘̂ 𝑑𝛽 =

𝑘𝑟
∗𝛽2

2
+ 𝐶, (3.108) 

such that the total non-dimensional repulsive potential energy in the 2DoF system is 

𝑃̃2𝐷𝑜𝐹 = 𝑉̃𝑇  + 𝑉̃𝑅  + 𝑃̃𝑚𝑎𝑔,𝑇 

=
𝛾

3𝑥̃3
cos𝛽 +

𝑘∗𝑥̃2

2
+

𝑘𝑟
∗𝛽2

2
− 𝑘∗𝑥̃0𝑥̃ + 𝐶. (3.109) 

The physical meaning of the value of 𝐶 is something that will be investigated in the next chapter, but for 

now, the potential energy values calculated in Equations (3.106)-(3.109) are sufficient to study relative 

potential energies.  𝐶 is taken to be the magnitude of the minimum value of Equation (3.109) for each 

configuration such that all the potential energy values in the range under study are positive and thus can 

be plotted logarithmically.  In the nine configurations explored, C is roughly 102.  

Because the plot of the potential energy functional in Equation (3.109) is three dimensional/a surface, the 

parameters and potential energy of each of the three systems presented in Table 14 are plotted in the 

three contour plots of Figure 44 respectively, with  𝛾 increasing from left to right.  The potential energy 

values shown along the colorbar are actually log10(𝑃̃2𝐷𝑜𝐹).  Equilibria are indicated by numbered dots 

corresponding to the equilibrium IDs in Table 14.  The distance range plotted in Figure 44 is 1.5 ≤ 𝑥̃ ≤

3.5, allowing for finer contouring of the plots in the regions of interest. 

A trend can be observed: as 𝛾 increases, the potential energy around the 𝛽 = 0 equilibrium goes from a 

deep well to a shallower, narrower well (spawning two saddle points on either side at the statically 

unstable secondary equilibria), to a saddlepoint, meaning that for large 𝛾, there are no statically stable 

equilibria.   
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Figure 44: Zoomed-in potential energy contours (1.5 ≤ 𝑥̃ ≤ 3.5) and equilibria (identified with dots and numbered 

according to Table 14) for the 2DoF system.  Colorbar values are log10(𝑃̃2𝐷𝑜𝐹). 

As 𝛾 increases for a fixed 𝑘∗ and 𝑘𝑟
∗, the 𝛽 = 0 equilibrium increases in the 𝑥̃ direction away from the 

natural spring length, as expected for stronger magnetic forces.   

It is interesting to note that an injection of kinetic energy into the system in the right direction could result 

in an orbiting of the system around a statically stable equilibrium, so long as the kinetic energy is less than 

the critical initial kinetic energy of that equilibrium.  Bounded motion is not limited to one generalized 

coordinate in the 2DoF system.  The next section presents a table of the numerical values of potential 

energy for comparison and calculation of the critical initial kinetic energy.  
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Critical Non-Dimensional Initial Kinetic Energy and Simulation 

To directly compare the energy of the equilibria depicted in Figure 44 in order to compute the critical 

initial kinetic energy, Table 15 gives the potential energy values (without the constant of integration C 

added) for each of the equilibria in Table 14.  

Table 15: 2DoF potential energy at each equilibrium in Figure 44 with 𝑇̃𝑡0,𝑐𝑟𝑖𝑡  for statically stable (bolded) equilibria 

- 𝛽 

Equil. ID 𝛾 𝛽 𝑥̃ 𝑃̃2𝐷𝑜𝐹 𝑇̃𝑡0,𝑐𝑟𝑖𝑡 

𝛽1,−  10 - - - - 

𝛽2,−  20 -1.445 2.1243 -1.4065 - 

𝛽3,−  50 - - - - 

+ 𝛽 

Equil. ID 𝛾 𝛽 𝑥̃ 𝑃̃2𝐷𝑜𝐹 𝑇̃𝑡0,𝑐𝑟𝑖𝑡 

𝛽1,+ 10 - - - - 

𝛽2,+  20 1.445 2.1243 -1.4065 - 

𝛽3,+  50 - - - - 

𝛽 = 0 

Equil. ID 𝛾 𝛽 𝑥̃ 𝑃̃2𝐷𝑜𝐹 𝑇̃𝑡0,𝑐𝑟𝑖𝑡 

𝜷𝟏,𝟎 10 0 2.338 -1.6817 0.3367 

𝜷𝟐,𝟎  20 0 2.508 -1.4483 0.0418 

𝜷𝟑,𝟎 50 0 2.809 -0.9211 - 

From Table 15, it can be seen that the critical initial kinetic energy of the  𝛽 = 0 equilibrium decreases as 

𝛾 increases. The 𝑇̃𝑡0,𝑐𝑟𝑖𝑡 values are calculated the same way as in the 1DoF-T and 1DoF-R systems, by taking 

the difference between the potential energy at the stable equilibrium and the nearest unstable 

equilibrium (or when 𝛾 = 10, the lowest energy at the bounds of the system due to the lack of secondary 

unstable equilibria).  In the case of the configurations modeled in Figure 44, the closest (and only) unstable 

equilibria to a stable equilibrium are symmetric about 𝛽 = 0 and thus have the same potential energy as 

each other.  Because they have identical potential energies, the critical initial kinetic energies are 

calculated against the +𝛽 unstable equilibrium for convention.   

For 𝛾 = 10, 𝑇̃𝑡0,𝑐𝑟𝑖𝑡 is 

𝑇̃𝑡0,𝑐𝑟𝑖𝑡(𝛽1,0) = min (𝑃̃2𝐷𝑜𝐹(𝑏𝑜𝑢𝑛𝑑𝑠)) − 𝑃̃2𝐷𝑜𝐹(𝛽1,0) = −1.3449 + 1.6817, 

𝑇̃𝑡0,𝑐𝑟𝑖𝑡(𝛽1,0) = 0.3367; (3.110) 
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and for 𝛾 = 20:  

𝑇̃𝑡0,𝑐𝑟𝑖𝑡(𝛽2,+, 𝛽2,0) = 𝑃̃2𝐷𝑜𝐹(𝛽2,+) − 𝑃̃2𝐷𝑜𝐹(𝛽2,0) =  −1.4065 +  1.4483, 

𝑇̃𝑡0,𝑐𝑟𝑖𝑡(𝛽2,+, 𝛽2,0) = 0.0418. (3.111) 

3.6. Summary 

From the calculations in the previous section and Table 15, 𝑇̃𝑡0,𝑐𝑟𝑖𝑡 decreases with increasing 𝛾, indicating 

that the dynamic stability of a statically stable equilibrium decreases as the magnets get stronger. Though 

the spring strength is fixed in this study, it can be seen that an increase in spring strength would increase 

the range of 𝛾 values which result in a staticallys table equilibrium at 𝛽 = 0.  

This section showed a combination of a translational and a rotational degree of freedom into a 2DoF 

system, and that equilibria could be identified and their static and dynamic stability calculated analytically 

within the assumptions of the model described in Section 3.2.  

This chapter in general provides a thorough exploration of the thesis approach in the context of a simple 

analytical model, with dimensional and non-dimensional analysis and comparison throughout.  The results 

of this chapter also are used to validate the methods introduced in the next chapter for problems of 

escalating complexity, given that analytical solutions are cumbersome or unobtainable for more accurate 

approaches to magneto-elastic stability.  
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4. Chapter 4 

Simple Numerical Stability 

In this chapter, the simple magnetic structure introduced in Chapter 3 is studied using numerical rather 

than analytical techniques.  This chapter is a bridge between the simple structure and the more complex 

structure explored in Chapter 5.  The analysis herein is used to validate numerical methods for calculating 

static and dynamic stability on a system with known, analytical stability formulations before applying it to 

a new structure with more complicated models for the magnetic field, forces, and torques. 

The structure being studied is the same as that which was presented in Section 3.2, using bar magnets 

and the associated dipole model of the magnetic field in order to represent the coils.  The general 

structure is repeated below for reference: 

 

Figure 45: General dipole system with two degrees of freedom 

Because the model for magnetic field (and resultant force and torque) is identical to that in Chapter 3, the 

equilibria in this chapter are the same as those presented in the previous chapter and will be re-copied 

here where appropriate for reference.  The two differences between the previous chapter and this 

chapter are the methods by which the static and the dynamic stability are calculated.  In Chapter 3, 

analytical differentiation of force and torque was used to calculate the stiffness value or matrix in order 

to determine if an equilibrium was statically stable or unstable.  In this chapter, finite differencing is used 

to calculate the stiffness value, validated by the analytical results.  In Chapter 3, analytical integration of 

force and torque was used to calculate the potential energy of magnet configurations in order to 

determine the bounds of dynamic stability for a statically stable equilibrium.  In this chapter, the vector 

potential of a magnetic dipole is instead used to determine potential energy, and then the results of the 

previous chapter are used to validate this approach. 
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Figure 46: Three analytical systems to be studied in this chapter 

Figure 46 shows this chapter in the overall approach framework presented in Section 1.4.  Each of the 

1DoF-T, 1DoF-R, and 2DoF systems will be discussed in this chapter using the new methods discussed 

above.  

Going forward, only repulsive, non-dimensional formulations will be considered, now that the 

relationships between the dimensional and non-dimensional equations for equilibrium, static stability, 

and dynamic stability are well-understood from Chapter 3 and because repulsive systems are those that 

are of primary interest in spacecraft applications. 
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4.1. Translational Single Degree of Freedom 

 

Again, the same system as in Chapter 3 is used in this chapter, so the 1DoF-T magnetic structure from 

Figure 28 is replicated below in Figure 47: 

 

Figure 47: Translational single degree of freedom (1DoF-T) dipole system 

The force balance is the same as that given by Equation (3.24), or  

𝐹̃⃗2,𝑟𝑒𝑝,𝑁𝐷 = 𝑚̃2

𝑑2𝑥̃

𝑑𝑡̃2
= (

𝛾

𝑥̃4
− 𝑘∗(𝑥̃ − 𝑥̃0)) 𝑖.̂ (4.1) 
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4.1.1. Equilibrium Identification 

 

As in Section 3.3.2, equilibrium occurs when the force balance equals zero, or 

𝛾

𝑥̃4
= 𝑘∗(𝑥̃ − 𝑥̃0),  

and 

𝛾

𝑘∗
= 𝑥̃4(𝑥̃ − 𝑥̃0). 

(4.2) 

 

(4.3) 

With an analytical formulation for the force balance, equilibrium points could be found through solving 

for 𝑥̃.  Without an analytical solution, the force will be approximated at each of a discrete number of 

sample points, and the equilibria will either need to be found through graphical observation or by 

interpolation between two points.  In this chapter and the next chapter, the location of an equilibrium is 

found by linearly interpolating between two adjacent points with opposite signs to find the zero crossing.  

In practice, this is done using a custom MATLAB function, crossing.m [50], which locates sets of points 

between which intersections occur and linearly interpolates to return the approximated value of 𝑥̃ (or β, 

in later sections) at the equilibrium as well as the indices between which the crossing occurs.   

Clearly the mesh size (the frequency of samples) affects the accuracy of the approximation, since linear 

interpolation is more accurate over smaller portions of the function, but too small of a grid size requires 

the function to be evaluated at more points than are necessary, increasing the computational cost, 

especially in the next chapter where the calculation of force or torque at each point is more 

computationally intensive than calculating the analytical solution.  In Chapter 3, a mesh size of 0.02 was 

used for the plots from whence equilibria locations were derived, and it will be examined in this chapter 

how that mesh size may have affected the accuracy of equilibrium identification. 

The particular value of the discretization size is now selected by a grid refinement study.  In this chapter, 

the mesh size is progressively decreased until the solution does not change from one grid level to the 

next.  The tolerance for acceptable deviation from the exact solution is taken to be ±0.0001, such that 

the magnitude of the pointwise maximum change in the 𝑥̃ values of equilibria at each equilibrium point is 

≤ 0.0001, selected because that is the smallest level of change detectable within the number of decimal 
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places given for 𝑥̃ in the following table.  The tolerance may be reduced in the next chapter due to the 

Biot-Savart model being very computationally intensive, and a sampling of thousands of points in one or 

two dimensions may be unacceptably time consuming, so the following table will show the 

approximations of some example sample sizes in comparison to the exact equilibrium to observe how the 

predictions change and to inform an initial choice in the next chapter.   

Table 16, replicated from Table 6 in the previous chapter, gives the associated 𝑥̃ values of the 1DoF-T 

equilibria shown in Figure 30: 

Table 16: 𝑥̃ values of equilibria identified in Figure 30b 

Repulsive Approximate 𝑥̃ value 

Equilibrium ID  𝛾/𝑘∗ 𝑥̃ value at equilibrium ∆𝑥̃=0.1 ∆𝑥̃=0.05 ∆𝑥̃=0.01 

𝑥̃1𝑏 1 2.0563 2.0563 2.0560 2.0560 

𝑥̃2𝑏 2 2.1028 2.1024 2.1024 2.1024 

𝑥̃3𝑏 5 2.2098 2.2100 2.2098 2.2097 

It can be seen that the maximum deviation is within the tolerance given between the equilibrium locations 

predicted by ∆𝑥̃=0.05 and ∆𝑥̃=0.01, and therefore ∆𝑥̃=0.05 is an acceptable grid size.  It can also be seen 

that the interpolation method converges to a slightly different solution than the graphical identification 

in Chapter 3, even though the grid size used in those graphs was finer than the one converged to in this 

section.  That’s because in the previous chapter, intersections between two discretized functions 

determined equilibrium, not where one discretized function crossed zero. Since plotting requires 

discretization of the function, and between each sample point the function is linearly interpolated, there’s 

two sources of discretization error in the plots rather than the singular one here.  

Because the stability values in the previous chapter are based off of the equilibria identified therein, the 

rest of this section will use those original equilibria and their static and dynamic stability assessments to 

validate the numerical approaches to be used in the next chapter rather than the new equilibria locations 

converged to in the table above.  This still validates the methods for static and dynamic stability because 

those values were calculated explicitly for the equilibria in Chapter 3, and the numerical methods in this 

chapter can converge to the exact values of stiffness and potential energy, the former because it is just 

approximating the derivative at a point (which doesn’t depend on it being an exact equilibrium, just a 

point with a smooth function), and the latter because the new approach for dynamic stability is described 

purely symbolically in this chapter.  For this reason, in the 1DoF-R and 2DoF cases, the previous 

equilibrium locations are used without doing the above convergence analysis.  
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4.1.2. Static Stability Classification  

 

In the previous chapter, static stability of the 1DoF-T system was determined by examining the sign of the 

analytical derivative of the force at an equilibrium point.  A negative force derivative (or positive stiffness) 

indicates static stability.  In this section, the derivative of force will be taken numerically using finite 

differencing and compared to the analytical derivative to show that the two methods result in similar 

derivatives.  There will be some error because the finite differencing approach (described below) relies 

on a finite number of samples to create a discrete solution of a derivative versus the exact, continuous 

solution as in the analytical case; however, the most important thing to validate is that the sign of the 

derivative is determined correctly each time, since the sign determines stability, not the exact value of 

the stiffness.  

The finite difference approach is based on the “standard definition of the derivative in elementary calculus 

[51],” or  

𝑢′(𝑥) =  lim
∆𝑥→0

𝑢(𝑥 + ∆𝑥) − 𝑢(𝑥)

∆𝑥
. 

In a discrete numerical approximation of a function, the grid size is positive (∆𝑥 > 0), and therefore the 

“definition of the derivative in the continuum can be used to approximate the definition of the derivative 

in the discrete case [51],” using a “finite set of discrete points 𝑥𝑖 where the function is known”: 

𝑢′(𝑥𝑖) ≈  
𝑢(𝑥𝑖 + ∆𝑥) − 𝑢(𝑥𝑖)

∆𝑥
=

𝑢𝑖+1 − 𝑢𝑖

∆𝑥
 .  

The above approximation is “known as a forward Euler approximation since it uses forward differencing.”  

Another approach uses central differencing to bracket the point where the derivative is of interest: 

𝑢′(𝑥𝑖) ≈  
𝑢(𝑥𝑖 + ∆𝑥) − 𝑢(𝑥𝑖 − ∆𝑥)

2∆𝑥
=

𝑢𝑖+1 − 𝑢𝑖−1

2∆𝑥
  . 

The central difference method has a truncation error of 𝑂(∆𝑥2), which is better than the truncation error 

of the forward (or backward) differencing methods (which have a truncation error of 𝑂(∆𝑥) [51]), and 

therefore that method is the one that will be used going forward, dependent on validation.  
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In this section, the function of interest is force at the location of an equilibrium 𝑥̃𝑖 = 𝑥̃𝑒𝑞; and therefore 

the finite difference approximation is given by 

(
𝑑𝐹̃2,𝑟𝑒𝑝,𝑁𝐷

𝑑𝑥̃
)

𝑥̃=𝑥̃𝑒𝑞

≈  
𝐹̃2,𝑟𝑒𝑝,𝑁𝐷(𝑥̃𝑒𝑞 + ∆𝑥̃) − 𝐹̃2,𝑟𝑒𝑝,𝑁𝐷(𝑥̃𝑒𝑞 − ∆𝑥̃)

2∆𝑥̃
 , (4.4) 

and stiffness at a given equilibrium is thus approximated by  

𝜅𝑡𝑜𝑡,𝑁𝐷,𝑛𝑢𝑚,𝑇 = −(
𝑑𝐹̃2,𝑟𝑒𝑝,𝑁𝐷

𝑑𝑥̃
)

𝑥̃=𝑥̃𝑒𝑞

. (4.5) 

Example Stability Calculations 

From Section 3.3.3, the stiffness values of the equilibria in Table 16 as determined from Equation (3.36) 

are replicated below in Table 17, with an extra column for the finite difference calculation of the stiffness 

as given by Equation (4.5).   

Since the derivative is only important around a handful of selected points rather than the full function, a 

very small ∆𝑥̃ can be selected without significantly increasing computational cost, though it is good 

practice to not increase the fidelity more than is necessary for the application.  The particular value of the 

discretization size is selected by a grid refinement study, with a tolerance of ±0.0001, such that the 

magnitude of the pointwise maximum change in the values of stiffness at each equilibrium point is 

≤ 0.0001.  The value of ∆𝑥̃ is selected by this method to be 0.01, and it can be seen from Table 17 that 

this mesh size also adequately approximates the “exact” stiffness 𝜅𝑡𝑜𝑡,𝑁𝐷 within an error tolerance of 

0.0001.  As such, the static stability and stiffness of the 1DoF-T equilibria can be approximated very well 

using a central finite difference approach.     

Table 17: Non-dimensional stiffness values 𝜅𝑡𝑜𝑡,𝑁𝐷 at each equilibrium in Figure 30b, with statically stable equilibria 

bolded 

Repulsive 

Equil. 

ID 

𝛾/𝑘∗ 𝑘∗ 𝛾 𝑥̃ value 𝜅𝑡𝑜𝑡,𝑁𝐷 𝜅𝑡𝑜𝑡,𝑁𝐷,𝑛𝑢𝑚 

𝒙̃𝟏𝒃 1 1 1 2.0563 1.1088 1.1088 

𝒙̃𝟐𝒃 2 1 2 2.1028 1.1946 1.1946 

𝒙̃𝟑𝒃 5 1 5 2.2098 1.3795 1.3796 
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4.1.3. Dynamic Stability  

 

In the previous chapter, dynamic stability of the 1DoF-T equilibria was determined by analytically 

calculating the potential energy as the spatial integral of the force.  Going forward into more complex 

problems, having a formulation that depends less on having a simple analytical expression of force is 

advantageous.  In the next chapter, the coils are no longer approximated as magnetic dipole moments 

but rather as loops of current.  This section investigates a technique for calculating the potential energy 

of a system using the magnetic dipole vector potential and validates it against the analytical integration 

method.  When the coils are no longer being approximated as dipole moments in the next chapter, the 

general magnetic vector potential will be used.  The magnetic vector potential is a quantity that can be 

used to calculate a magnetic field and can be less cumbersome than the magnetic field representation, 

depending on the system. 

Given that the currents in this problem are assumed constant, the laws of magnetostatics apply, including 

Gauss’s law for magnetism, which says that the divergence of 𝐵⃗⃗ is taken to be zero [49], or 

∇⃗⃗⃗ ∙ 𝐵⃗⃗ = 0. (4.6) 

As such, then the magnetic field 𝐵⃗⃗ must be equivalent to the curl of a vector field 𝐴, henceforth known as 

the magnetic vector potential: 

𝐵⃗⃗ = ∇⃗⃗⃗ × 𝐴. (4.7) 

It can be shown, by substituting this identity for 𝐵⃗⃗ into Maxwell’s equations, that “instead of solving 

Maxwell’s equations for the magnetic field intensity and the electric field intensity we can solve for the 

magnetic vector potential and then obtain the magnetic and electric field intensities as well as flux 

densities from the magnetic vector potential [52].” 

The magnetic vector potential 𝐴 for a current carrying loop centered at the origin is calculated as  

𝐴(𝑥⃗) =
𝜇0

4𝜋
∫

𝐽(𝑥⃗′)

|𝑥⃗ − 𝑥⃗′|
 𝑑3𝑥′, (4.8) 
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where 𝑥⃗′ is the coordinates of the current carrying element, and 𝑥⃗ is the coordinates of the point where 

the vector potential is being computed, with  𝐽(𝑥⃗′) the current density of the element at 𝑥⃗′.  This formula, 

relevant simplifications, and its numerical implementation will be discussed in more detail in the next 

chapter when the magnets are modeled more realistically as current-carrying coils. 

The magnetic dipole vector potential is given by Jackson as 

𝐴1(𝑥⃗) =
𝜇0

4𝜋

𝜇1 × 𝑥⃗

|𝑥⃗|3
 , (4.9) 

where 𝑥⃗ is the vector from the center of the magnetic dipole 𝜇1 to the point where the vector potential 

is being calculated. 

 

Figure 48: Magnetic dipole vector potential (a, left) from side and (b, right) from top, in the y-z plane 

It can be seen from Equation (4.9) and the illustration in Figure 48a that the vector potential at point 𝑥⃗ is 

directed azimuthal to the dipole moment if viewed from the top, as in Figure 48b.  The magnitude of the 

vector potential decreases in the x,y, and z directions if the dipole is positioned at the origin, but at all 

places, the direction remains azimuthal to the direction of the magnetic dipole.  The vector potential of a 

current carrying circular coil also is oriented in a direction azimuthal to the normal of the coil.  At any point 

off of the axis of magnet 1, the magnetic dipole vector potential can be calculated from Equation (4.9).  

Since magnet 2 is indeed positioned along the axis of magnet 1, the cross product 𝜇1 × 𝑥⃗ = 0.  However, 

if the objective is to calculate 𝐵⃗⃗1 using 𝐴1, if Equation (4.9) is inserted into Equation (4.7), it can be seen 

that [53]: 

𝐵⃗⃗1 = ∇⃗⃗⃗ × 𝐴1 =
𝜇0

4𝜋
[∇⃗⃗⃗ ×

𝜇1 × 𝑥⃗

|𝑥⃗|3
] (4.10) 
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=
𝜇0

4𝜋
[𝜇1 (∇⃗⃗⃗ ∙

𝑥⃗

|𝑥⃗|3
) − (𝜇1 ∙ ∇⃗⃗⃗) (

𝑥⃗

|𝑥⃗|3
)] =

𝜇0

4𝜋|𝑥⃗|3
[
3(𝜇1 ∙ 𝑥⃗)𝑥⃗

|𝑥⃗|2
− 𝜇1]. 

The above formulation is identical to that of Equation (3.1) and is in fact how the earlier equation was 

derived.  So, as long as the vector potential is used to calculate 𝐵⃗⃗, it can be used for axially aligned dipoles 

such as the system under study.  Along the axis of a dipole, this formula simplifies to  

𝐵⃗⃗1 =
𝜇0𝜇1

2𝜋|𝑥|3
. 

The magnetic energy of a dipole moment in an external magnetic field (in this case taken to be the dipole 

moment of magnet 2 in the magnetic field created by magnet 1) is given by Jackson [49] as 

𝑊1𝐷𝑜𝐹,𝑇 =
1

2
∫ 𝑀2

⃗⃗ ⃗⃗ ⃗⃗ ∙ 𝐵1
⃗⃗⃗⃗⃗

𝑉1

𝑑𝑥𝑑𝑦𝑑𝑧, (4.11) 

where 𝑀⃗⃗⃗2 is the magnetization of the dipole (defined as the dipole per unit volume of the magnet), and 

𝐵⃗⃗1 is the initial magnetic field at the point before the dipole is placed there, which in this case is the 

magnetic field created by magnet 1.  The volume integral of the magnetization of dipole 1 is actually 

equivalent to the magnetic moment 𝜇2: 

𝜇2 = ∫ 𝑀⃗⃗⃗2
𝑉2

𝑑𝑥𝑑𝑦𝑑𝑧, 

such that  

𝑊1𝐷𝑜𝐹,𝑇 =
1

2
∫ 𝑀⃗⃗⃗2 ∙ 𝐵⃗⃗1
𝑉2

𝑑𝑥𝑑𝑦𝑑𝑧 =
𝐵1(𝑥⃗)𝜇2 cos𝜃𝑚

2
=

𝜇0𝜇1𝜇2 cos 𝜃𝑚

4𝜋𝑥3
. (4.12) 

Comparing 𝑊1𝐷𝑜𝐹,𝑇  to the magnetic part of 𝑃𝑟𝑒𝑝,𝑇 from Equation (3.46) and inserting 𝜃𝑚 = 0, where 𝜃𝑚 

is the angle between the magnetic moment and the external field,  

𝑃𝑟𝑒𝑝,𝑚𝑎𝑔,𝑇 =
𝜇0𝜇1𝜇2

2𝜋𝑥3
= 2𝑊1𝐷𝑜𝐹,𝑇 . 

The reason 𝑊1𝐷𝑜𝐹,𝑇 needs to be multiplied by 2 to match the potential energy derived from the integral 

of force is that 𝑊1𝐷𝑜𝐹,𝑇 only calculates the energy associated with magnet 2 in the magnetic field of 
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magnet 1 and not the energy associated with magnet 1 being in the field of magnet 2.  Therefore, 𝑊1𝐷𝑜𝐹,𝑇  

needs to be doubled to account for the total magnetic energy due to the interaction of the magnets.  

In order to obtain the non-dimensional 𝑊̃1𝐷𝑜𝐹,𝑇 formulation, it is noted that 1 Joule is equivalent to 1 𝑁 ∙

𝑚 or 1 
𝑘𝑔∙𝑚2

𝑠2 , and therefore the dimensionless variables in Table 4 can be used to create a scaling term in 

𝑠2

𝑘𝑔∙𝑚2 that will non-dimensionalize 𝑊1𝐷𝑜𝐹,𝑇: 

𝒯2

𝑚2𝑅1
2. 

Multiplying both sides of Equation (4.12) by this scaling term, expanding 𝜇1, 𝜇2 and 𝑚2, and using the non-

dimensional distance and radius definitions 𝑥̃ and 𝑅̃2, gives the following comparison to the magnetic 

portion of 𝑃̃𝑟𝑒𝑝,𝑇  from Equation (3.48) when 𝜃𝑚 = 0:  

𝑊̃1𝐷𝑜𝐹,𝑇 = 𝑊1𝐷𝑜𝐹,𝑇 (
𝒯2

𝑚2𝑅1
2) =

𝜇0𝜇1𝜇2 cos𝜃𝑚 𝒯2

4𝜋𝑥3𝑚2𝑅1
2 =

𝜇0𝑁𝐼2𝑅̃2 cos 𝜃𝑚 𝒯2

8𝑥̃3𝑅1
2𝜌

=  
𝛾 cos 𝜃𝑚

6𝑅̃1
2𝑥̃3

=
𝑃̃𝑟𝑒𝑝,𝑚𝑎𝑔,𝑇

2𝑅̃1
2

. 

(4.13) 

Since 𝑅̃1 = 1, 𝑊̃1𝐷𝑜𝐹,𝑇 = (1/2) 𝑃̃𝑟𝑒𝑝,𝑚𝑎𝑔,𝑇 in the same way that 𝑊1𝐷𝑜𝐹,𝑇 = (1/2) 𝑃𝑟𝑒𝑝,𝑚𝑎𝑔,𝑇.  Therefore, 

the magnetic vector potential approach is a valid way to calculate the magnetic potential energy that 

results from the interaction between two magnets.  The formulas for 𝑊 and 𝐴1(𝑥⃗) change slightly in the 

next chapter with coils instead of dipole moments (and require the vector potential and not just the 

magnetic field, which is why the vector potential has been introduced here), but the general approach is 

physically valid.  The potential energy due to the linear spring force can then be added and does not 

require a different approach to calculate. 

Because this approach analytically agrees with that of the previous chapter, the potential energies and 

critical initial kinetic energies won’t be recalculated here. 

4.1.4. Summary  

In this section, it was shown that for the 1DoF-T case, the stiffness can be determined in a straightforward 

manner via centered finite differencing and that the magnetic vector potential can also be used to 

calculate the magnetic potential energy of two interacting magnets.  In the next section, efforts will be 

made to draw the same conclusions for the 1DoF-R by again validating these approaches with the results 

of Chapter 3. 
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4.2. Rotational Single Degree of Freedom 

 

The 1DoF-R magnetic structure from Figure 34 is replicated below in Figure 49: 

 

Figure 49: Rotational single degree of freedom (1DoF-T) dipole system 

The torque balance is therefore the same as that given by Equation (3.67), or 

𝜏̃2,𝑟𝑒𝑝,𝑁𝐷 = (
𝛾

3𝑥̃0
3 sin𝛽 − 𝑘𝑟

∗ 𝛽) 𝑘̂. (4.14) 
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4.2.1. Equilibrium Identification 

 

As in Section 3.4.2, equilibrium occurs when the torque balance equals zero, or  

𝛾

𝑘𝑟
∗ =

3𝑥̃0
3𝛽

sin𝛽
. 

(4.15) 

Table 18, replicated from Table 10 in the previous chapter, gives the associated 𝛽 values of the ND 1DoF-

R equilibria shown in Figure 37 (and those that occur at 𝛽 = 0): 

Table 18: 𝛽 values for non-dimensional equilibria identified in Figure 37 

Repulsive 

Equilibrium 

ID 

𝛾

𝑘𝑟
∗ 𝛽 value at eq. 

(radians) 

𝛽1𝑏,𝑁𝐷 35 -1.4472 

𝛽2𝑏,𝑁𝐷 30 -1.1311 

𝛽3𝑏,𝑁𝐷 25 -0.4929 

𝛽0𝑏,𝑁𝐷−1 35 0 

𝛽0𝑏,𝑁𝐷−2 30 0 

𝛽0𝑏,𝑁𝐷−3 25 0 

𝛽4𝑏,𝑁𝐷 35 1.4472 

𝛽5𝑏,𝑁𝐷 30 1.1311 

𝛽6𝑏,𝑁𝐷 25 0.4929 

The stability of these identified equilibria, both static and dynamic, will be explored numerically in the rest 

of this section. 
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4.2.2. Static Stability Classification  

 

In this section, static stability will be approached using finite differencing of the torque on magnet 2, 

similar to how finite differencing was performed on the force in the 1DoF-T case in Section 4.1.2.  As such, 

Equation (4.4) with torque as the function being approximated is 

𝑑𝜏̃2,𝑟𝑒𝑝,𝑁𝐷

𝑑𝛽𝑒𝑞
≈ 

𝜏̃2,𝑟𝑒𝑝,𝑁𝐷(𝛽𝑒𝑞 + ∆𝛽) − 𝜏̃2,𝑟𝑒𝑝,𝑁𝐷(𝛽𝑒𝑞 − ∆𝛽)

2∆𝛽
, (4.16) 

and rotational stiffness is thus approximated by  

𝜅𝑡𝑜𝑡,𝑁𝐷,𝑛𝑢𝑚,𝑅 = −
𝑑𝜏̃2,𝑟𝑒𝑝,𝑁𝐷

𝑑𝛽𝑒𝑞
. 

(4.17) 

4.2.2.1. Example Stability Calculations 

The rotational stiffness values of the repulsive equilibria in Table 12 as determined by Equation (3.78) are 

replicated below in Table 19, with an extra column for the finite difference calculation of the stiffness as 

given by Equation (4.17).   

Similar to the selection of ∆𝑥̃, ∆𝛽 can be made very small without seriously increasing computational cost 

because the derivative of torque is only being taken at a handful of points from the exact solution for 

torque.  Using the same approach of a grid refinement study with a maximum pointwise change tolerance 

of ±0.0001, ∆𝛽 is selected to be 0.02.  The selection of step size will be more important computationally 

in the next chapter, wherein the step size is used to discretize the translational or the rotational variable 

over a range and will thus affect the calculation of equilibrium as well as both static and dynamic stability 

(as was already seen in Section 4.1.2.) 
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Table 19: Non-dimensional rotational stiffness values 𝜅𝑡𝑜𝑡,𝑁𝐷 at each ND equilibrium in Figure 37, with statically 

stable equilibria bolded 

Repulsive 

Equil. ID 𝛾

𝑘𝑟
∗ 𝑘𝑟

∗ 𝛾 𝛽 value at eq. 

(radians) 

𝜅𝑡𝑜𝑡,𝑁𝐷 𝜅𝑡𝑜𝑡,𝑛𝑢𝑚 

𝜷𝟏𝒃,𝑵𝑫 35 1 35 -1.4472 0.8202 0.8202 

𝜷𝟐𝒃,𝑵𝑫 30 1 30 -1.1311 0.4679 0.4680 

𝜷𝟑𝒃,𝑵𝑫 25 1 25 -0.4929 0.0823 0.0824 

𝛽0𝑏,𝑁𝐷−1 35 1 35 0 -0.4583 -0.4582 

𝛽0𝑏,𝑁𝐷−2 30 1 30 0 -0.2500 -0.2499 

𝛽0𝑏,𝑁𝐷−3 25 1 25 0 -0.0417 -0.0416 

𝜷𝟒𝒃,𝑵𝑫 35 1 35 1.4472 0.8202 0.8202 

𝜷𝟓𝒃,𝑵𝑫 30 1 30 1.1311 0.4679 0.4680 

𝜷𝟔𝒃,𝑵𝑫 25 1 25 0.4929 0.0823 0.0824 

From Table 19, it can be seen that the numerical stiffness calculation is identical to the exact stiffness 

value, so centered finite differencing continues to be an acceptable numerical approach for calculating 

static stability.   
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4.2.3. Dynamic Stability  

 

It was shown in Section 4.1.3 that the magnetic vector potential can be used to calculate the potential 

energy of the interaction of two magnetic dipoles.  Equation (4.12) and Equation (4.13) for the 

calculation of 𝑊 and 𝑊̃ respectively can be used for the 1DoF-R case as well as the previous 1DoF-T 

case (and the combination of the two in the 2DoF case), except 𝜃𝑚 = 𝛽 rather than 0 and 𝑥 = 𝑥0 in the 

1DoF-R case, such that 

𝑊1𝐷𝑜𝐹,𝑅 =
𝜇0𝜇1𝜇2 cos𝛽

4𝜋𝑥0
3 =

𝑃𝑟𝑒𝑝,𝑚𝑎𝑔,𝑅

2
, 

and 

(4.18) 

𝑊̃1𝐷𝑜𝐹,𝑅 =
𝜇0𝑁𝐼2𝑅̃2 cos 𝜃𝑚 𝒯2

8𝑥̃0
3𝑅1

2𝜌
=  

𝛾 cos𝛽

6𝑅̃1
2𝑥̃0

3 =
𝑃̃𝑟𝑒𝑝,𝑚𝑎𝑔,𝑅

2𝑅̃1
2

, (4.19) 

and the magnetic vector potential approach to potential energy calculation is validated for the 1DoF-R 

case as well, with the note made that, again, 𝑊1𝐷𝑜𝐹,𝑅 and 𝑊̃1𝐷𝑜𝐹,𝑅 are one half their respective P values 

because the vector potential approach only calculates the energy of one magnet in the other’s magnetic 

field and not vice-versa. The potential energy due to the spring torque can then be added and does not 

require a different approach to calculate.  

4.2.4. Summary  

In this section, it was shown that for the 1DoF-R case, the stiffness can also be determined in a 

straightforward manner via centered finite differencing and that the magnetic vector potential is a valid 

means of calculating the magnetic potential energy of two interacting magnets with a single rotational 

degree of freedom.  In the next and final section of this chapter, efforts will be made to draw the same 

conclusions for the 2DoF system by again validating these approaches with the results of Chapter 3. 
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4.3. Two Degrees of Freedom  

 

The 2DoF magnetic structure from Figure 42 is replicated below in Figure 50: 

 

 

Figure 50: 2DoF (translational and rotational) system 

The force and torque balances that need to be fulfilled are therefore the same as that given by Equations 

(3.94), or 

𝐹̃⃗2,𝑟𝑒𝑝,𝑁𝐷 = (
𝛾

𝑥̃4
cos𝛽 − 𝑘∗(𝑥̃ − 𝑥̃0)) 𝑖,̂ 

and 

(4.20a) 

𝜏̃2,𝑟𝑒𝑝,𝑁𝐷 = (
𝛾

3𝑥̃3
sin𝛽 − 𝑘𝑟

∗ 𝛽) 𝑘̂. (4.20b) 
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4.3.1. Equilibrium Identification 

 

As described and explored in Section 3.5.2, equilibrium in both translational and rotational coordinates 

occurs when both the force and torque balance are zero, which occurs when  

𝑥̃3 =
𝛾

3𝑘𝑟
∗

𝑠𝑖𝑛 𝛽

𝛽
, 

and 

𝛾

(
𝛾

3𝑘𝑟
∗
𝑠𝑖𝑛 𝛽

𝛽
 )

4/3
cos𝛽 = 𝑘∗ ((

𝛾

3𝑘𝑟
∗

𝑠𝑖𝑛 𝛽

𝛽
 )

1
3
− 𝑥̃0). (4.21) 

Table 20, replicated from Table 13 in the previous chapter, gives the associated 𝛽 and 𝑥̃ values of the 2DoF 

equilibria shown in Figure 43 (and those that occur at 𝛽 = 0): 

Table 20: 𝛽 and 𝑥̃ values for equilibria in Figure 43 as well as the equilibria at 𝛽 = 0 

- 𝛽 + 𝛽 0 

Equil. 

ID 

γ 

values  

β  𝑥̃ Equil. 

ID 

γ 

values 

𝛽  𝑥̃ Equil. 

ID 

γ values  𝛽  𝑥̃ 

𝛽1,− 10 - - 𝛽1,+ 10 - - 𝛽1,0 10 0 2.338 

𝛽2,− 20 -1.445 2.1243 𝛽2,+ 20 1.445 2.1243 𝛽2,0 20 0 2.508 

𝛽3,− 50 - - 𝛽3,+ 50 - - 𝛽3,0 50 0 2.809 

The stability of these identified equilibria, both static and dynamic, will be explored numerically in the 

rest of this section. 
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4.3.2. Static Stability Classification  

 

In this section, static stability needs to be calculated in two different coordinates, and therefore not one 

but four finite differences need to be taken in order to fill out the stiffness matrix such that the numerical 

approximation of Equation (3.102) becomes 

[𝐾𝑡𝑜𝑡,𝑁𝐷,𝑛𝑢𝑚]

= −

[
 
 
 
 𝐹̃2,𝑟𝑒𝑝,𝑁𝐷(𝑥̃𝑖 + ∆𝑥̃) − 𝐹̃2,𝑟𝑒𝑝,𝑁𝐷(𝑥̃𝑖 − ∆𝑥̃)

2∆𝑥̃

𝐹̃2,𝑟𝑒𝑝,𝑁𝐷(𝛽𝑖 + ∆𝛽) − 𝐹̃2,𝑟𝑒𝑝,𝑁𝐷(𝛽𝑖 − ∆𝛽)

2∆𝛽

𝜏̃2,𝑟𝑒𝑝,𝑁𝐷(𝑥̃𝑖 + ∆𝑥̃) − 𝜏̃2,𝑟𝑒𝑝,𝑁𝐷(𝑥̃𝑖 − ∆𝑥̃)

2∆𝑥̃

𝜏̃2,𝑟𝑒𝑝,𝑁𝐷(𝛽𝑖 + ∆𝛽) − 𝜏̃2,𝑟𝑒𝑝,𝑁𝐷(𝛽𝑖 − ∆𝛽)

2∆𝛽 ]
 
 
 
 

. 

(4.22) 

The eigenvalues of [𝐾𝑡𝑜𝑡,𝑁𝐷,𝑛𝑢𝑚] can then be calculated at each equilibrium 𝛽𝑖, 𝑥̃𝑖 in Table 20 and their 

signs evaluated to determine the static stability.  

4.3.2.1. Example Stability Calculations 

The eigenvalues of the repulsive 2DoF equilibria from Table 14 as determined by Equation (3.104) are 

replicated below in Table 21, with extra columns for the numerical calculations of the eigenvalues via the 

finite difference stiffness matrix as given by Equation (4.22).  From the grid refinement approach discussed 

previously, (keeping ∆𝑥̃ and ∆𝛽 the same size for simplicity), a mesh size of ∆𝑥̃ = ∆𝛽 = 0.001 was 

selected such that the change in eigenvalue solution from the previous mesh size was within the tolerance 

of ±0.0001.  This mesh size is roughly an order of magnitude smaller than the 1DoF mesh sizes, likely 

both because four different derivatives are being approximated instead of just one and because in this 

problem the eigenvalues are the desired solution and not just the individual stiffness values, and 

eigenvalues involve an extra layer of operations on the base derivative approximations that could amplify 

a small error.   
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Table 21: 2DoF stiffness matrix eigenvalues 𝜆1,2 and numerically calculated eigenvalues 𝜆1,2𝑛𝑢𝑚
 at each equilibrium 

in Figure 44, with statically stable equilibria bolded 

- 𝛽 

Equil. ID 𝛾 𝛽 𝑥̃ 𝜆1 𝜆2 𝜆1𝑛𝑢𝑚
 𝜆2𝑛𝑢𝑚

 

𝛽1,− 10 - - - - - - 

𝛽2,− 20 -1.445 2.1243 1.8725 -0.2502 1.8725 -0.2502 

𝛽3,− 50 - - - - - - 

+ 𝛽 

Equil. ID 𝛾 𝛽 𝑥̃ 𝜆1 𝜆2 𝜆1 𝜆2 

𝛽1,+ 10 - - - - - - 

𝛽2,+ 20 1.445 2.1243 1.8725 -0.2502 1.8725 -0.2502 

𝛽3,+ 50 - - - - - - 

𝛽 = 0 

Equil. ID 𝛾 𝛽 𝑥̃ 𝜆1 𝜆2 𝜆1 𝜆2 

𝜷𝟏,𝟎 10 0 2.338 1.5726 0.2167 1.5726 0.2167 

𝜷𝟐,𝟎 20 0 2.508 1.8062 0.0549 1.8062 0.0549 

𝛽3,0 50 0 2.809 2.1436 -0.2745 2.1436 -0.2745 

 

It can be seen from Table 21 that the finite differencing approach also obtains good estimates of the 

exact solution, within an error tolerance of ±0.0001. 
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4.3.3. Dynamic Stability  

 

As shown in Section 3.5, the 2DoF magnetic potential energy can be calculated either from the magnetic 

torque or the magnetic force between dipoles and is thus the most general case of the three studied in 

this and the previous chapter.  The 2DoF magnetic potential energy is identical to the 1DoF-T magnetic 

potential energy when cos 𝛽 hasn’t been cancelled out or the 1DoF-R magnetic potential energy when 𝑥̃0 

is replaced with the more general 𝑥̃, such that 

𝑊2𝐷𝑜𝐹 =
𝜇0𝜇1𝜇2 cos𝛽

4𝜋𝑥3
=

𝑃𝑟𝑒𝑝,𝑚𝑎𝑔,2𝐷𝑜𝐹

2
, 

and 

(4.23) 

𝑊̃2𝐷𝑜𝐹 =
𝜇0𝑁𝐼2𝑅̃2 cos𝜃𝑚 𝒯2

8𝑥̃3𝑅1
2𝜌

=  
𝛾 cos𝛽

6𝑅̃1
2𝑥̃3

=
𝑃̃𝑟𝑒𝑝,𝑚𝑎𝑔,2𝐷𝑜𝐹

2𝑅̃1
2

. (4.24) 

Again, 𝑅̃1 = 1, so the 2DoF magnetic vector potential approach also gives half that of the analytical 

approach, just like for the 1DoF-T and 1DoF-R cases and can thus be used going forward into more complex 

models.  

4.3.4. Summary  

In this chapter, it was shown that the magnetic stiffness can be numerically approximated very well using 

a centered finite difference approach, providing a technique for evaluating static stability in systems 

without analytical solutions, such as that which will be introduced and used in the next chapter.  It was 

also shown that the magnetic potential energy can be calculated by using the magnetic vector potential, 

a useful approach for determining the dynamic stability of equilibria when the magnetic field formulation 

is not as clean and simple as that for the dipole model.  
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5. Chapter 5 

Complex Numerical Stability 

While Chapter 3 provided symbolic context for the concepts of static and dynamic stability in a simple 

magnetic system, Chapter 0 introduced and validated an approach for numerically identifying equilibria 

in three distinct systems as well as for evaluating static and dynamic stability of those equilibria.  The 

numerical approach can be used upon either the simple magnetic system of Chapter 3, against which it 

was validated, or upon the more complex magnetic system that is introduced and explored in this chapter 

that uses current-carrying coils instead of magnetic dipoles.  As in the previous two chapters, the 1DoF-T, 

1DoF-R, and 2DoF systems are each assessed non-dimensionally as per the methods listed for each of 

equilibrium identification, static stability, and dynamic stability in Figure 51. 

 

Figure 51: Three analytical systems to be studied in this chapter 

This chapter’s system and results are more applicable to an actual magneto-elastic structure than 

Chapters 3 and 0, but they involve more approximation and numerical computation.  The previous two 

chapters are intended to support the results of the analyses in this chapter, which in turn will support the 

evaluation of increasingly applicable “real-world problems” with more degrees of freedom or more 

magnetic bodies.    
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5.1. Biot-Savart and Vector Potential Models  

Section 2.1 briefly introduced the Biot-Savart law, which provides a means of calculating the magnetic 

field at any point in space around a current-carrying wire.  The Biot-Savart law is replicated below: 

𝐵⃗⃗⃗(𝑟⃗) =
𝜇

0

4𝜋
∫

𝐼𝑑𝑙⃗⃗⃗⃗ × 𝑟′⃗⃗⃗

|𝑟′⃗⃗⃗|
3

𝑐𝑜𝑖𝑙

,  (5.1) 

where 𝑑𝑙⃗⃗⃗⃗  is the length of the infinitesimally small differential element around the coil in the direction of 

the current 𝐼, and 𝑟′⃗⃗⃗ is the vector from the center of the differential element to the point where 𝐵⃗⃗ is being 

calculated. Coil 1 is assumed to be centered at the origin and lying flat in the x-y plane, whereas coil 2 is 

placed some distance from coil 1 along the x axis, as in Figure 52 in the next section. 

The integration in Equation (5.1) is around the circumference of the coil to sum the contributions to the 

magnetic field from each individual differential element around the coil.  This magnetic field formulation 

can be compared to the dipole magnetic field formulation of Equation (3.1), and it can be seen that while 

the dipole model is a single calculation to achieve the relevant magnetic field value, the Biot-Savart model 

requires integration around the circumference of the coil, which entails as many calculations as there are 

differential elements. 

However, using the knowledge from Section 4.1.3 that the magnetic field is derivable from the magnetic 

vector potential resulting from a magnet or coil, it’s possible to obtain a closed-form solution using the 

complete elliptic integrals 𝐸(𝑘2) and 𝐾(𝑘2) that allows a single calculation of the magnetic field at a point 

resulting from the contributions of the entire coil of radius 𝑎. 

The discussion and calculation of the magnetic vector potential 𝐴 will be saved for the potential energy 

discussion in Section 5.3.4, but Simpson et al. [54] give the magnetic field components in Cartesian 

coordinates as  

𝐵𝑥 =
𝐶0𝑥𝑧

2𝛼2𝜂𝜐2
[(𝑎2 + 𝑟2)𝐸(𝑘2) − 𝛼2𝐾(𝑘2)], 

𝐵𝑦 =
𝐶0𝑦𝑧

2𝛼2𝜂𝜐2
[(𝑎2 + 𝑟2)𝐸(𝑘2) − 𝛼2𝐾(𝑘2)] =

𝑦

𝑥
𝐵𝑥, 

and 

(5.2) 
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𝐵𝑧 =
𝐶0

2𝛼2𝜂
[(𝑎2 − 𝑟2)𝐸(𝑘2) + 𝛼2𝐾(𝑘2)], 

where  

𝜐2 = 𝑥2 + 𝑦2, 

𝑟2 = 𝑥2 + 𝑦2 + 𝑧2, 

𝛼2 = 𝑎2 + 𝑟2 − 2𝑎𝜐, 

𝜂2 = 𝑎2 + 𝑟2 + 2𝑎𝜐, 

𝑘2 = 1 −
𝛼2

𝜂2
, 

and 

𝐶0 =
𝜇0𝑁𝐼

𝜋
. 

The magnetic field at a point of interest at a vector 𝑟 away from the coil can therefore be calculated using 

𝐵⃗⃗ = 𝐵𝑥𝑖̂ + 𝐵𝑦𝑗̂ + 𝐵𝑧𝑘̂. 

Since our system places the coil flat in the y-z plane rather than the x-y plane, some of the definitions 

change, such that  

𝜐2 = 𝑦2 + 𝑧2, 

and Equation (5.2) becomes 

𝐵𝑥 =
𝐶0

2𝛼2𝜂
[(𝑎2 − 𝑟2)𝐸(𝑘2) + 𝛼2𝐾(𝑘2)], 

𝐵𝑦 =
𝐶0𝑥𝑦

2𝛼2𝜂𝜐2
[(𝑎2 + 𝑟2)𝐸(𝑘2) − 𝛼2𝐾(𝑘2)], 

and 

𝐵𝑧 =
𝐶0𝑥𝑧

2𝛼2𝜂𝜐2
[(𝑎2 + 𝑟2)𝐸(𝑘2) − 𝛼2𝐾(𝑘2)] =

𝑧

𝑦
𝐵𝑦. 

(5.3) 

The next step is to determine the forces and torques as a result of the interaction between coil 2 and the 

magnetic field from coil 1.  While the magnetic field formulation has a closed form solution, an integration 

is still required around the circumference of coil 2.  This is because the magnetic force on coil 2 is 

calculated via the Laplace force, or 
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𝐹⃗2,𝑚𝑎𝑔,𝑐𝑜𝑖𝑙 = 𝐼2𝑁2 ∫ 𝑑𝑙2
𝑐𝑜𝑖𝑙 2

× 𝐵⃗⃗1. (5.4) 

The Laplace force is calculated upon every differential element 𝑑𝑙2 and then summed to obtain the 

resultant net force vector on coil 2.  The torque upon coil 2 in the presence of the magnetic field of coil 2 

is also calculated using the individual differential force vectors on each element by taking the cross 

product of the forces with the vector 𝑅⃗⃗2 from the center of the coil to the element in question, or 

𝜏2,𝑚𝑎𝑔,𝑐𝑜𝑖𝑙 = 𝐼2𝑁2 ∫ 𝑅⃗⃗2 ×
𝑐𝑜𝑖𝑙 2

(𝑑𝑙2 × 𝐵⃗⃗1). (5.5) 

As discussed in Section 3.1, the Biot-Savart model as calculated by Equation (5.1) is closely approximated 

by the dipole model in the far-field.  In order to ensure that the dipole model in the far-field also closely 

approximates the closed form solution in Equation (5.3), the two calculations of 𝐵⃗⃗ from Equations (5.1) 

and (5.2) are compared to make sure they agree.  Each of the aforementioned equations are used to 

calculate the resultant force on coil 2 when the coils are parallel (𝛽 = 0), and the results are shown in 

Table 22.  The forces are purely in the x direction when the coils are parallel, so the values in the table are 

the scalar magnitudes of 𝐹⃗2,𝑚𝑎𝑔,𝑐𝑜𝑖𝑙,𝑥. 

Table 22: Magnitude of magnetic force 𝐹⃗2,𝑚𝑎𝑔,𝑐𝑜𝑖𝑙,𝑥  as determined by Equations (5.1) and (5.2) and the difference 

∆𝐹⃗2,𝑚𝑎𝑔,𝑐𝑜𝑖𝑙,𝑥  between the calculations 

𝑥̃ 𝐹⃗2,𝑚𝑎𝑔,𝑐𝑜𝑖𝑙,𝑥  from 

(5.1) 

𝐹⃗2,𝑚𝑎𝑔,𝑐𝑜𝑖𝑙,𝑥  from 

(5.2) 

∆𝐹⃗2,𝑚𝑎𝑔,𝑐𝑜𝑖𝑙,𝑥 

1 51.1928 50.7891 0.4037 

2 12.2087 12.1124 0.0963 

3 3.8852 3.8546 0.0306 

4 1.5232 1.5112 0.0120 

Because the two force calculations agree within a small margin of error that is attributable to the 

discretization in Equation (5.1), the magnetic field equations from (5.1) and (5.3) therefore agree, which 

makes the previous validation against the dipole model extend to the new formulation of magnetic field.  

The error is higher the closer together the coils are, an effect which is described further in Section 5.3.  

Since Equation (5.3) has a smaller computational cost, it will be used going forward in this chapter. 

  



166 

 

5.2. Coil Boom Design and Assumptions 

The largest difference between the system studied in this chapter and the one studied in Chapters 3 and 

0 is that the system in this chapter models the magnets as coils rather than magnetic dipoles or bar 

magnets.  Figure 52 shows the general two-dimensional coil system being analyzed in this chapter.  The 

magnets are connected as in the dipole system by a linear spring of spring constant 𝑘 attached at the 

center of each magnet and a torsional spring of spring constant 𝑘𝑟 that provides resistance around the z 

axis.  𝑅1 and 𝑅2 are the radii of the coils, and 𝐼1 and 𝐼2 are the currents through a single turn of the coil 

(multiplied by 𝑁1 or 𝑁2 respectively gives the effective current in the coil), the associated arrows showing 

the direction of the current.  It can be seen when compared to the general dipole model that the right 

hand rule with the currents shown in Figure 52 gives magnetic moments pointing in the same direction as 

the north pole on the bar magnets.  

 

Figure 52: General coil system with two degrees of freedom 

As in Chapters 3 and 0, Δx and 𝛽 represent displacement in the two degrees of freedom that are permitted 

in this chapter – translation along the x axis and rotation about the z axis.  Translation is studied first, 

followed by rotation and then the combination of translation and rotation.  All of the same assumptions 

as in Section 3.2 apply in this system: coil 1 remains fixed at the origin of the inertial reference frame in 

all degrees of freedom, and no external forces or torques are acting on the system.  The primary difference 

in this chapter is the magnetic forces and torques.  In this chapter, for simplicity, only the repulsive, non-

dimensional case is considered.  
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5.3. Translational Single Degree of Freedom 

 

In this section, the coil-based single translational degree of freedom (or 1DoF-T) system is studied.  The 

system is depicted in Figure 53. 

 

Figure 53: Translational single degree of freedom (1DoF-T) coil system 

The number of segments that the coil perimeter will be discretized into is based on Figure 2-3 in Buck [55], 

which  shows the change in vector norm of the magnetic force and torque as the discretization increases 

from n to n+1 segments, assuming that the number of segments is kept the same across both coils.  From 

those plots, it can be seen that unless the coils are operating in the extreme near-field (<1 radius apart), 

the error decreases very little for segments beyond 50, both when the coils are in an axial configuration 

(𝛽 = 0) and when they are in the shear configuration (𝛽 = ±𝜋/2).  The shear case is more limiting (higher 

change in vector norm for the same number of segments), and the error does not decrease much with 

added segments in the extreme near-field; therefore, 50 segments are selected as a relatively 

conservative discretization.  This is the same number of segments used in the validation in Section 5.1. 
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5.3.1. Force Balance 

The force balance is less simple to write analytically with the more complex coil-based system.  The non-

dimensional force provided by the spring is still  

𝐹̃⃗𝑠𝑝𝑟𝑖𝑛𝑔 = −𝑘∗(𝑥̃ − 𝑥̃0)𝑖,̂ 

but the magnetic force can only effectively be written as a cross product, with Equation (5.3) inserted into 

Equation (5.4), with the assumption that coil 1 and coil 2 have the same number of turns 𝑁 and current 

|𝐼1| = |𝐼2| = 𝐼 and the realization that 𝑎 = 𝑅1, 

𝐹⃗2,𝑚𝑎𝑔,𝑐𝑜𝑖𝑙 = 𝐼2𝑁2 ∫ 𝑑𝑙2 × 𝐵⃗⃗1
𝑐𝑜𝑖𝑙 2

, 

and the same force can be calculated with the vector potential approach as follows: 

𝐹⃗2,𝑚𝑎𝑔,𝑐𝑜𝑖𝑙 = −
𝜇0𝑁

2𝐼2

2𝜋
∫ 𝑑𝑙2
𝑐𝑜𝑖𝑙 2

×
1

𝛼2𝜂𝜐2

[
 
 
 
 𝜐

2 [(𝑅1
2 − 𝑟2)𝐸 (𝑘2

) + 𝛼2𝐾 (𝑘2
)]

𝑥𝑦 [(𝑅1
2 + 𝑟2)𝐸 (𝑘2

) − 𝛼2𝐾 (𝑘2
)]

𝑥𝑧 [(𝑅1
2 + 𝑟2)𝐸 (𝑘2

) − 𝛼2𝐾 (𝑘2
)]]

 
 
 
 

. 

The subscript adds the word coil to reflect that this is the magnetic force as calculated using the magnetic 

field from a coil-based model, not the dipole model.  The force has a negative sign to account for the 

currents being in opposite directions (repulsive). In order to get dimensionless force, the above formula 

is multiplied on both sides by the scaling factor (𝒯2/𝑚2𝑅1), and all of the variables with units of length 

are scaled by 𝑅1, such that the above formula becomes 

𝐹̃⃗2,𝑚𝑎𝑔,𝑐𝑜𝑖𝑙 = −
𝜇0𝑁𝐼2𝒯2

4𝜋2𝑅̃2𝜌𝑅1
2 ∫ 𝑑𝑙2̃

⃗⃗⃗⃗ ⃗⃗⃗

𝑐𝑜𝑖𝑙 2

×
1

𝛼̃2𝜂̃𝜐̃2

[
 
 
 
 𝜐̃

2 [(𝑅̃1
2
− 𝑟̃2)𝐸 (𝑘2

) + 𝛼̃2𝐾 (𝑘2
)]

𝑥̃𝑦̃ [(𝑅̃1
2
+ 𝑟̃2)𝐸 (𝑘2

) − 𝛼̃2𝐾 (𝑘2
)]

𝑥̃𝑧̃ [(𝑅̃1
2
+ 𝑟̃2)𝐸 (𝑘2

) − 𝛼̃2𝐾 (𝑘2
)]]

 
 
 
 

. (5.6) 

To simplify the above formula, the following non-dimensional term is defined: 

𝜒 =
𝜇0𝑁𝐼2𝒯2

4𝜋2𝑅̃2𝜌𝑅1
2. (5.7) 

The force balance therefore occurs when 
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𝐹̃⃗𝑠𝑝𝑟𝑖𝑛𝑔 + 𝐹̃⃗𝑚𝑎𝑔,𝑐𝑜𝑖𝑙 = [0], 

or 

𝐹̃𝑡𝑜𝑡,𝑥 = 𝐹̃𝑠𝑝𝑟𝑖𝑛𝑔 + 𝐹̃2,𝑚𝑎𝑔,𝑐𝑜𝑖𝑙,𝑥 = 0, (5.8) 

since the forces are purely in the x direction.  
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5.3.2. Equilibrium Identification 

 

Finding equilibrium will be done in this section via the interpolation technique discussed in Section 4.1.1, 

by using crossing.m to find where 𝐹̃2,𝑚𝑎𝑔,𝑐𝑜𝑖𝑙,𝑥 + 𝐹̃𝑠𝑝𝑟𝑖𝑛𝑔 crosses zero.  In order to combine non-

dimensional terms into a single term 𝜒/𝑘∗, both sides of Equation (5.8) are divided by 𝑘∗, such that 

𝐹̃𝑡𝑜𝑡𝑎𝑙

𝑘∗
= 0. (5.9) 

Example Equilibrium Identification 

Table 23 gives the interpolated 𝑥̃ value at equilibrium for a range of 𝜒/𝑘∗ based on a ∆𝑥̃ of 0.01.  The 

equilibrium IDs are written with a subscript BS to indicate that they are related to the Biot-Savart 

formulation versus the dipole formulation.  This convention is used through the rest of the chapter.  

Table 23: Equilibrium locations in the 1DoF-T complex case for a range of values of 𝜒/𝑘∗with 𝑅̃2 = 1.2 𝑎𝑛𝑑 𝑥̃0 = 2 

Equilibrium ID  𝜒/𝑘∗ 𝑥̃ value at equilibrium 

𝑥̃𝑐𝑜𝑖𝑙,1 1 2.5114 

𝑥̃𝑐𝑜𝑖𝑙,2 10 3.6322 

𝑥̃𝑐𝑜𝑖𝑙,3 100 5.5959 

𝑥̃𝑐𝑜𝑖𝑙,4 1000 8.7320 

Figure 54 shows the left side of Equation (5.9) plotted against distance 𝑥̃, with the grey lines representing 

the absolute value of negative forces as in Chapter 3 and the equilibria numbered as they are in Table 23.   
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Figure 54: Equilibrium positions in the 1DoF-T coil system with 𝑅̃2 = 1.2 𝑎𝑛𝑑 𝑥̃0 = 2, where the grey lines are the 
absolute values of negative forces 

It can be seen that for larger values of 𝜒/𝑘∗, the equilibrium is farther from the natural length of the linear 

spring (still taken to be 𝑥̃0 = 2), which is as expected for a stronger magnet (large 𝜒) and/or a weaker 

spring (small 𝑘∗).  Compared to the dipole system, the major observable difference is that, whereas the 

dipole force goes to +∞ as 𝑥̃ goes to 0, the coil force goes to 0 as 𝑥̃ goes to 0, which is in agreement with 

Figure 25.  The next section discusses the static stability of these equilibria. 
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5.3.3. Static Stability Classification  

 

In this section, the static stability of the 1DoF-T equilibria identified in the previous section is evaluated. 

As mentioned in Section 4.1.2, the static stability for each of the coil model equilibria will be determined 

using centered finite differencing to approximate the derivative of the total force at each of the equilibria, 

remembering that a negative force derivative or positive stiffness means static stability.   

Example Stability Calculations 

Table 24 gives the stiffnesses of the equilibria identified in the previous section as calculated by finite 

differencing, with the statically stable (positive stiffness) rows bolded. 

Table 24: Stiffness values at equilibria of the 1DoF-T complex case for a range of values of 𝜒/𝑘∗ 

Equilibrium ID  𝜒/𝑘∗ 𝑥̃ value at equilibrium 𝜅𝑡𝑜𝑡,𝑁𝐷,𝑐𝑜𝑖𝑙,𝑇 

𝒙̃𝒄𝒐𝒊𝒍,𝟏 1 2.5114 1.5827 

𝒙̃𝒄𝒐𝒊𝒍,𝟐 10 3.6322 2.4867 

𝒙̃𝒄𝒐𝒊𝒍,𝟑 100 5.5959 3.3514 

𝒙̃𝒄𝒐𝒊𝒍,𝟒 1000 8.7320 3.9673 

All the equilibria in Table 24 are statically stable (similar to the 1DoF-T repulsive equilibria in the dipole 

case), and it can furthermore be seen that the stiffness magnitude increases with larger values of 𝜒/𝑘∗, 

implying that such systems are less deformed by small external perturbations.  

  



173 

 

5.3.4. Dynamic Stability  

 

In this section, the dynamic stability of a 1DoF-T coil system is evaluated, using the magnetic vector 

potential of a single coil in order to calculate the potential energy of a two coil system. 

Effective Potential Energy 

Before diving into the vector potential, it is valuable to discuss the energies in the system that compose 

the overall effective potential energy and how they are combined.  Moon [2] describes the “effective 

potential energy” 𝑃𝑡𝑜𝑡 of a system as being 

𝑃𝑡𝑜𝑡 = 𝑉𝑡𝑜𝑡 + (−𝑊𝑡𝑜𝑡), 

where 𝑉𝑡𝑜𝑡 is the total elastic potential energy, and 𝑊𝑡𝑜𝑡 is the formulation of the total magnetic energy 

of the system based on the currents in the coils (as will be used in this chapter) instead of the flux.  The 

magnetic energy based on the flux would have been added in the positive to obtain the effective potential 

energy, but the switch in sign convention is due to a Legendre transformation from the flux-based 

potential energy formulation [2].  Non-dimensionally, the above formulation becomes 

𝑃̃𝑡𝑜𝑡 = 𝑉̃𝑡𝑜𝑡 − 𝑊̃𝑡𝑜𝑡. (5.10) 

The negative of 𝑊̃𝑚𝑎𝑔 is summed with 𝑉̃ instead of the positive of 𝑊̃𝑚𝑎𝑔 as would typically be expected 

in a simple summation of potential energies because the definition of magnetic energy with respect to 

the current in each coil as will be performed in this chapter is as follows: 

𝐹⃗⃗̃𝑚𝑎𝑔 = (
𝜕𝑊̃𝑡𝑜𝑡

𝜕𝑥⃗̃𝑡
)

0
 [2]. (5.11) 

In contrast, it can be recalled that the calculation of magnetic potential energy via integration of the force 

or torque, as was performed in Chapter 3, obeyed Equation (1.6) copied below and modified for non-

dimensionality, wherein the sign is negative instead of positive as in Equation (5.11): 

𝐹⃗⃗̃𝑡𝑜𝑡 = − [(
𝜕𝑃̃

𝜕𝑥̃𝑡,1

)
0

… (
𝜕𝑃̃

𝜕𝑥̃𝑡,𝑛𝑡

)
0

 ], 
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Hence, maxima in the 𝑊̃𝑡𝑜𝑡 represent static stability rather than minima as in 𝑉̃𝑡𝑜𝑡, and therefore in order 

to be comparing apples to apples, −𝑊̃𝑡𝑜𝑡 needs to be added to 𝑉̃𝑡𝑜𝑡.  In the next subsection wherein the 

inductance formulation for magnetic energy is described, this will be quickly verified. 

Component Energies (Elastic and Magnetic) in 1DoF-T System 

𝑉̃𝑇, the elastic potential energy of the stretched linear spring, is simple to calculate, as the spring force 

formulation hasn’t changed between the dipole system and the coil system:   

𝑉̃𝑇  =
𝑘∗𝑥̃2

2
− 𝑘∗𝑥̃0𝑥̃ +

𝑘∗𝑥̃0
2

2
. (5.12) 

𝑥̃0
2

 was lumped in as part of the +𝐶 integration constant in the previous analysis but is included here 

because the integration constant will be further defined in the discussion of inductance below.  

𝑊̃𝑡𝑜𝑡 is a bit more complex.  In general, the total magnetic energy can be given in terms of self- and mutual 

inductances of the two coils, such that  

𝑊𝑡𝑜𝑡 = 
1

2
∑∑𝐿𝑖𝑗𝐼𝑖𝐼𝑗

2

𝑗=1

2

𝑖=1

=
1

2
𝐿11𝐼1

2 +
1

2
𝐿12𝐼1𝐼2 +

1

2
𝐿21𝐼2𝐼1 +

1

2
𝐿22𝐼2

2, (5.13) 

and 

1

2
𝐿𝑖𝑗𝐼𝑖𝐼𝑗 =

1

2
∫𝐽𝑗 ∙ 𝐴𝑖 𝑑𝑥𝑑𝑦𝑑𝑧 =

𝑁𝑗𝐼𝑗

2
∫𝐴𝑖 ∙ 𝑑𝑙𝑗,  (5.14) 

because  

𝐽𝑗 𝑑𝑥𝑑𝑦𝑑𝑧 = 𝐽𝑗𝑑𝑙𝑗 ∙ 𝐴𝐶𝑆 = 𝑁𝑗𝐼𝑗𝑑𝑙𝑗 , 

where 𝐴𝐶𝑆 is the cross-sectional area of the coil through which current flows, 𝐽𝑗⃗⃗⃗ is the current density 

vector, and 𝐿𝑖𝑗 is the inductance of a coil (self-inductance if 𝑖 = 𝑗, mutual inductance between two coils if  

𝑖 ≠ 𝑗).  The sign of 𝑊𝑡𝑜𝑡 can be verified with the above definitions; inductances are always positive, but 

the mutual inductance decreases as distance between the coils increases (in the direction of the magnetic 

force on a coil being repelled).  The self-energy terms are always positive because the currents are 

squared, but the opposing currents make the mutual energy negative.  So, as the coils get farther apart, 

𝑊𝑡𝑜𝑡 increases, meaning that force acts in the direction of a positive change in magnetic potential energy, 

consistent with Equation (5.11). 
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The self-inductance terms in Equation (5.13) (those that include 𝐿11 and 𝐿22, for coil 1 or coil 2 

respectively) are actually configuration independent and only depend on that coil’s design parameters, 

not on its proximity or orientation with respect to the other coil.  As such, the self-inductance terms 

remain constant even as 𝑥̃ (and/or 𝛽, in the rest of this chapter) changes.  Self-inductance refers to the 

energy inside a current-carrying coil.  These self-inductance energy terms are therefore part of what 

comprise the magnetic energy contribution to the integration constant 𝐶 in Chapter 3’s analytical 

determination of potential energy, Equation (3.48).   

The mutual inductance energy term represents the energy of one coil in the magnetic field of the other, 

multiplied by two to account for the reverse situation (similar to how the magnetic potential energy in 

Chapter 0 needed to be multiplied by 2 as well).  The magnetic potential energy calculated in Chapter 3 is 

thus synonymous with 𝐿12𝐼1𝐼2 and can be calculated as follows: 

1

2
𝐿12𝐼1𝐼2 =

𝐼2𝑁2

2
∫𝐴1 ∙ 𝑑𝑙2, 

where 𝐴1 is purely azimuthal as discussed in Section 4.1.3, such that 

𝐴1(𝑟, 𝜃, 𝜙) = 𝐴𝜙(𝑟, 𝜃) ∗ 𝑑𝑙1(𝜙),  

where 𝑟 and 𝜃 are the magnitude of the distance vector from the center of coil 1 to the point of interest 

𝑃(𝑟, 𝜃, 𝜙) and the angle of that distance vector with respect to the x axis respectively, as per Figure 55.  𝜃 

is the coil analogy to 𝜃𝑚 in the dipole case. 

 

Figure 55: Variables for calculation of the magnetic vector potential of coil 1 at points P around the circumference 
of coil 2 (From Figure 5.5 in Jackson [49]), the solid grey line representing the coil position in the 1DoF-T case, the 

dotted grey line representing a rotation as in the 1DoF-R case 

The magnitude of the vector potential at the point 𝑃(𝑟, 𝜃, 𝜙) is as follows: 
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𝐴𝜙(𝑟, 𝜃) =
𝜇0𝑁𝐼𝑅

𝜋√𝑅2 + 𝑟2 + 2𝑅𝑟 sin𝜃
[
(2 − 𝑘2)𝐾(𝑘2) − 2𝐸(𝑘2)

𝑘2
] =

𝜇0𝑁𝐼𝑅

𝜋√𝑅2 + 𝑟2 + 2𝑅𝑟 sin 𝜃
𝐻, 

where 𝑅 is the radius of the coil in question, 𝐻 represents the non-dimensional term in brackets, and 

𝐾(𝑘2) and 𝐸(𝑘2) are the complete elliptic integrals [56], using as their argument 

𝑘2 =
4𝑅1𝑟 sin 𝜃

𝑅1
2 + 𝑟2 + 2𝑅1𝑟 sin𝜃

. 

The magnitude 𝐴𝜙(𝑟, 𝜃) then must be multiplied by the unit vector 𝑑𝑙1(𝜙) to make the magnetic vector 

potential azimuthal to coil 1.  Then, the dot product of the magnetic vector potential and the differential 

length element 𝑑𝑙2 are taken for each element around coil 2 and summed then multiplied by the effective 

current 𝐼2𝑁2 to get the energy associated with coil 2 in the field of coil 1 and vice versa as per Equation 

(5.14).   

It can be seen that in the 1DoF-T case when coil 2 is parallel to coil 1, the magnetic vector potential is 

always parallel with the differential length elements around coil 2.  As it rotates, the dot product gets 

smaller and smaller until it’s virtually non-existent when 𝛽 = ±
𝜋

2
.  This observation is consistent with the 

physical meaning of the mutual inductance energy term being linked to how much magnetic flux from one 

magnet goes through the enclosed area of the other, which is maximized when 𝛽 = 0 (and increases as 

the coils move closer together) [57].  It can also be noted that when the coils are repelling, 𝐼1 and 𝐼2 have 

opposite signs, and therefore 𝐿12𝐼1𝐼2 is negative, whereas the self-inductance energy terms are positive, 

meaning that a higher mutual inductance results in a lower total magnetic potential energy (but a higher 

effective potential energy). 
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Non-Dimensional Magnetic Energy 

The non-dimensional 𝑊̃𝑡𝑜𝑡 is obtained by multiplying both sides of Equation (5.13) by 𝒯2/𝑚2𝑅1
2, pulling 

the constants out of 𝐴𝜙(𝑟, 𝜃), and assuming 𝑁1 = 𝑁2 = 𝑁 and |𝐼1| = |𝐼2| = 𝐼 (but inserting a negative 

sign where the two are multiplied together): 

𝑊̃𝑡𝑜𝑡 = 𝑊𝑡𝑜𝑡 (
𝒯2

𝑚2𝑅1
2)

= 𝜒

[
 
 
 

∫
𝐻̃11𝑑𝑙1(𝜙) ∙ 𝑑𝑙

̃
1

√1 + 𝑟̃11
2 + 2𝑟̃11 sin𝜃11

− ∫
𝐻̃12𝑑𝑙1(𝜙) ∙ 𝑑𝑙

̃
2

√1 + 𝑟̃12
2 + 2𝑟̃12 sin𝜃12

− 𝑅̃2 ∫
𝐻̃21𝑑𝑙2(𝜙) ∙ 𝑑𝑙

̃
1

√𝑅̃2
2 + 𝑟̃21

2 + 2𝑅̃2𝑟̃21 sin 𝜃21

+ 𝑅̃2 ∫
𝐻̃22𝑑𝑙2(𝜙) ∙ 𝑑𝑙

̃
2

√𝑅̃2
2 + 𝑟̃22

2 + 2𝑅̃2𝑟̃22 sin 𝜃22

 

]
 
 
 

, 

(5.15) 

where 𝐻̃1𝑥 is calculated using  

𝑘̃1𝑥
2

=
4𝑟̃ sin 𝜃

1 + 𝑟̃2 + 2𝑟̃ sin 𝜃
, 

𝐻̃2𝑥 is calculated using 

𝑘̃2𝑥
2

=
4𝑟̃𝑅̃2 sin 𝜃

𝑅̃2
2 + 𝑟̃2 + 2𝑟̃ 𝑅̃2sin𝜃

, 

and all the length terms (𝑟̃, 𝑑𝑙̃⃗⃗⃗⃗ , 𝑅̃2) have been divided by 𝑅1.   

Self-Inductance Terms (
1

2
𝐿11𝐼1

2 and 
1

2
𝐿22𝐼2

2) 

When 𝑘̃2 is found for the self-inductance energy terms, 𝜃 = 0, and thus for coil 1 (and coil 2 when 𝑅2 =

𝑅1), 𝑘̃2 is 1.  When 𝑘̃2 approaches unity, 𝐾(𝑘̃2) → ∞, so the vector potential cannot be directly 

formulated at 𝑟̃ = 𝑅1 or 𝑅2.  In order to avoid this artificial divergence, the modulus 𝑘̃11
2
 is calculated at 

a small distance 𝜖 from 𝑟̃.  In order to approximate the vector potential at the center of the coil bundle 

(𝑟̃ = 𝑅1 or 𝑅2), it is of interest to calculate 𝐻̃11/√1 + 𝑟̃11
2 + 2𝑟̃11 sin𝜃11 or 𝐻̃22/

√𝑅̃2
2 + 𝑟̃22

2 + 2𝑅̃2𝑟̃22 sin 𝜃22 on the outer or inner radius of the coil (𝑟̃ = 𝑅1 𝑜𝑟 2  ± 𝜖), as seen in Figure 

56, and average the two. 
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Figure 56: Representational cross-sectional view of coil 1, with the inner and outer radii indicated, as well as the 
wire bundle's effective cross-sectional radius.  Wire bundle cross section is not circular in reality because the wire 

has a rectangular profile, but this figure represents the effective dimensionality of the coil. 

The size of epsilon only matters in terms of how accurate the estimate at 𝑅1 is, similar to how smaller grid 

sizes result in more accurate solution estimates, since 𝑘̃2 can be calculated at any point that is not exactly 

𝑅1.  𝜖 is thus taken as the non-dimensional effective cross-sectional radius of the coil bundle, 𝑟̃𝐶𝑆, or 4mm 

by 0.1mm, assuming the SuperPower 2G HTS wire [31] times the number of turns of wire 𝑁, divided by 𝑅1. 

For the purposes of this chapter, 𝑁 is assumed to be 100, and 𝑅1 = 1𝑚. Therefore,  

𝜖 = 𝑟̃𝐶𝑆 = 4 × 10−5. 

The average value of the 𝑟̃-dependent self-inductance terms for coil 1 are calculated as follows:  

𝐻̃11

√1 + 𝑟̃11
2 + 2𝑟̃11 sin𝜃11

≈
1

2
[

𝐻̃11+𝜖

√1 + (𝑟̃11 + 𝜖)2 + 2(𝑟̃11 + 𝜖) sin𝜃11

+
𝐻̃11−𝜖

√1 + (𝑟̃11 − 𝜖)2 + 2(𝑟̃11 − 𝜖) sin𝜃11

]. 

For coil 2, 

𝐻22

√𝑅̃2
2 + 𝑟̃22

2 + 2𝑅̃2𝑟̃22 sin 𝜃22

≈
1

2

[
 
 
 

𝐻22+𝜖

√𝑅̃2
2 + (𝑟̃22 + 𝜖)2 + 2𝑅̃2(𝑟̃22 + 𝜖) sin 𝜃22

+
𝐻22−𝜖

√𝑅̃2
2 + (𝑟̃22 − 𝜖)2 + 2𝑅̃2(𝑟̃22 − 𝜖) sin 𝜃22]

 
 
 

. 

Another Method for Estimating Self-Inductance  

In addition to the above vector potential method, Jackson gives an estimation [49] of the self-inductance 

energy values, which can be compared to the values as calculated by the vector potential method to 

ensure that the latter are of the correct order of magnitude: 
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1

2
𝐿11𝐼1

2 ≈
𝜇0𝑅1𝐼1

2𝑁2

4
[ln (

0.373𝜋

𝑟̃𝐶𝑆
2 ) +

1

2
], 

where 𝑟̃𝐶𝑆 is the effective radius of the cross section of the coil bundle.  In order to non-dimensionalize 

the self-inductance energies such that they can be combined with the vector potential calculations for the 

mutual inductance energy terms, the previous equation is multiplied by 𝒯2/𝑚2𝑅1
2 to get 

𝑊̃11 =
1

2
𝐿11𝐼1

2 (
𝒯2

𝑚2𝑅1
2) ≈

𝜇0𝑁𝐼1
2𝒯2

8𝜋𝑅̃2𝑅1
2𝜌

[ln (
0.373𝜋

𝑟̃𝐶𝑆
2 ) +

1

2
] ≈

𝜒𝜋

2
[ln (

0.373𝜋

𝑟̃𝐶𝑆
2 ) +

1

2
]. (5.16) 

Additionally, for coil 2, 

𝑊̃22 =
1

2
𝐿22𝐼2

2 (
𝒯2

𝑚2𝑅1
2) ≈

𝜇0𝑁𝐼2
2𝒯2

8𝜋𝑅1
2𝜌

[ln (
0.373𝜋𝑅̃2

2

𝑟̃𝐶𝑆
2 ) +

1

2
]

≈
𝜒𝜋𝑅̃2

2
[ln (

0.373𝜋𝑅̃2
2

𝑟̃𝐶𝑆
2 ) +

1

2
]. 

(5.17) 

Example Dynamic Stability Calculations 

Equations (5.10), (5.12), and (5.15) can be combined to calculate the non-dimensional formulation for 

1DoF-T effective potential energy that will be used going forward in Equation (5.18). The non-dimensional 

effective potential energy will be calculated using Equation (5.18) for each of the equilibria found in 

Section 5.3.2 to determine their dynamic stability conditions: 

𝑃̃𝑇 = 𝑉̃𝑇 − 𝑊̃𝑡𝑜𝑡 =
𝑘∗𝑥̃2

2
− 𝑘∗𝑥̃0𝑥̃ + 𝑥̃0

2

− 𝜒

[
 
 
 

∫
𝐻̃11𝑑𝑙1(𝜙) ∙ 𝑑𝑙

̃
1

√1 + 𝑟̃11
2 + 2𝑟̃11 sin 𝜃11

− ∫
𝐻̃12𝑑𝑙1(𝜙) ∙ 𝑑𝑙

̃
2

√1 + 𝑟̃12
2 + 2𝑟̃12 sin 𝜃12

− 𝑅̃2 ∫
𝐻̃21𝑑𝑙2(𝜙) ∙ 𝑑𝑙

̃
1

√𝑅̃2
2 + 𝑟̃21

2 + 2𝑅̃2𝑟̃21 sin𝜃21

+ 𝑅̃2 ∫
𝐻̃22𝑑𝑙2(𝜙) ∙ 𝑑𝑙

̃
2

√𝑅̃2
2 + 𝑟̃22

2 + 2𝑅̃2𝑟̃22 sin𝜃22

 

]
 
 
 

 

(5.18) 

It is important to note that the formulation for magnetic potential energy in Equation (5.15) is applicable 

to any of the three systems, 1DoF-T, 1DoF-R, and 2DoF, since the mutual inductance energy terms 

accommodate rotations and displacements within their integrals, and will therefore be referred back to 

throughout this chapter when example dynamic stability calculations are made at identified equilibria.  

Only  𝑉̃ changes between the aforementioned systems, from 𝑉̃𝑇 to 𝑉̃𝑅 , 𝑡𝑜 𝑉̃𝑡𝑜𝑡 respectively. 
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The calculation of Equation (5.18) is done in MATLAB, by defining the positions of the coils in space and 

then calculating the vector potential of one coil at the center of each element around the coil in question.  

Then, the dot product of the potential with the differential length element vector is calculated and then 

summed around the second coil to get the magnetic energy term relating to that particular pair of coils.   

Verification and Validation Steps 

After the four magnetic inductance energy terms have been calculated, there are a few ways to verify that 

the code to calculate the vector potential energy terms is functioning correctly and to validate the results.   

Mutual inductance V&V: The inductance tables in Grover [57] allow calculation of the mutual inductance 

and thus the full energy associated with the interaction of two coils; however, interpolation of the data 

tables is required for the specific coil configuration, which entails some degree of error.  The vector 

potential results can be compared to the Grover results once non-dimensionalized to validate that the 

MATLAB code is coming up with the same or similar value of energy.  Whereas Chapter 0’s specific results 

could be validated by those of Chapter 3, this external validation is necessary because the coil model and 

the dipole model are not comparable in the near-field, and thus the results of this chapter are not directly 

comparable to the results from Chapters 3 and 0.   

It is expected that 𝐿12 = 𝐿21 due to the reciprocity theorem [58], which would then make the two middle 

terms in the brackets in Equation (5.15) equal.  This equality will be verified in this section.  Also expected 

is that the Grover results are the sum of the individual mutual inductance energy terms in Equation (5.18), 

which would make the Grover results twice as large if indeed 𝐿12 = 𝐿21. 

Table 25 shows the mutual inductance energy terms from Equation (5.18) calculated when the coils are 

parallel for a few sample values of 𝑥̃ and 𝜒  and then compared to the Grover calculations.  In order to use 

Grover’s formulas, it is necessary to first pick a value of 𝑅̃2, which was selected as 0.9218, a legacy value 

from early dimensional exploration of Grover’s formulas.   

Table 25: Mutual inductance energy terms when coils are parallel as calculated by vector potential and Grover's 
inductance tables 

𝑥̃ 𝜒 𝑊̃12 𝑊̃21 𝑊̃𝐺𝑟𝑜𝑣𝑒𝑟  

1 1 1.1118 1.1118 2.2241 

2 1 0.3111 0.3111 0.6224 

3 1 0.1190 0.1190 0.2379 

1 10 11.1181 11.1181 22.2411 

2 10 3.1115 3.1115 6.2238 

3 10 1.1895 1.1895 2.3794 

It can be seen from Table 25 that, as expected, 𝑊̃12 = 𝑊̃21 and can therefore be combined into  

2𝑊̃12 from here onward.  Additionally, the calculation of mutual inductance energy with the non-

dimensional Grover mutual inductance energy estimate is equal to 2𝑊̃12, which is as expected. 
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Self-inductance V&V:  The estimates given by Equations (5.16) and (5.17) can be used to validate the self-

energy of the coils as calculated with the vector potential, though both are estimates and therefore aren’t 

expected to be as close in value as the mutual inductance calculations mentioned above.  Luckily, any 

error in calculation here is less important than error in the mutual inductance terms.  This is because 

dynamic stability is determined by the relative potential energy across configurations, and as such, the 

constant self-inductance terms in Equation (5.15) do not contribute to a difference in potential energy 

between different points in 𝑥̃ for the same coils.  That means that the self-inductance terms do not impact 

the critical initial kinetic energy of the system equilibria.  However, it is of interest to include the constant 

terms to study how different design parameters change the energy stored in a coil (expressed in the 1DoF 

problem by 𝜒). 

Table 26 shows the self-inductance energy terms from Equation (5.18) calculated for a few different 𝜒 and 

𝑅̃2 values, compared to the Jackson estimates from Equations (5.16) and (5.17).   

Table 26: Self-inductance energy terms as calculated by vector potential and Jackson estimates 

𝜒 𝑅̃2 𝑊̃11 𝑊̃𝐽𝑎𝑐𝑘𝑠𝑜𝑛,11 𝑊̃22 𝑊̃𝐽𝑎𝑐𝑘𝑠𝑜𝑛,22 % error b/w 
𝑊̃𝐽𝑎𝑐𝑘𝑠𝑜𝑛,22 and 𝑊̃22 

1 .75 32.0630 32.8482 23.3695 23.9583 0.9754 

1 1.5 32.0630 32.8482 50.0050 51.1830 0.9770 

1 3 32.0630 32.8482 106.5412 108.8988 0.9784 

10 .75 320.6301 328.4820 233.6949 239.5831 0.9754 

10 1.5 320.6301 328.4820 500.0497 511.8301 0.9770 

10 3 320.6301 328.4820 1065.4116 1088.9879 0.9784 

It can be seen from Table 26 that the magnetic vector potential approach and the Jackson estimates for 

the self-inductance energy terms are very close and that the percent error between the two decreases as 

the radius of the coil in question gets larger.   

From the previous verification and validation steps, confidence has been established in the vector 

potential method for determining magnetic energy, and it can be used going forward in this work.  Figure 

57 plots the effective potential energy curves as given by Equation (5.18) over the range of distance 0 ≤

𝑥̃ ≤ 10 for each of 𝜒 = [1, 10, 100, 1000] (with 𝑘∗ assumed to be 1) and labels the equilibria from Table 

24 accordingly.  The raw formulation of Equation (5.18) returned purely negative values of effective 

potential energy even with the constant terms included, but any constant can be added to a potential 

field to shift it upwards or downwards, so the minimum potential energy for each curve was added to the 

curve to boost its minima to 𝑃̃ = 0.  Zeroing all of the equilibria allows comparative study of how the 

potential energy slope changes between curves but not direct comparison of values.  
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Figure 57: Effective potential energy curves of the 1DoF-T complex numerical case for 𝜒 = [1, 10, 100, 1000] 

Figure 57 bears strong similarity to Figure 54, except for the behavior near 𝑥̃ = 0, where the total force 

decreases quickly when the coils are in the extreme near-field, but the potential energy is at a maximum.  

In the potential energy case, this is because the effective potential energy subtracts 𝑊̃𝑡𝑜𝑡, and 𝑊̃𝑡𝑜𝑡 is at 

a minimum and 𝑉̃𝑇 a maximum at 𝑥̃ = 0.  All four of the equilibria are clearly at the only minima on their 

curves and are thus incapable of escaping motion or dynamic instability if a constraint is assumed that 

says that coil 2 cannot pass “through” coil 1 into negative 𝑥̃, since the potential energy continues to 

increase infinitely beyond 𝑥̃ = 10.  As such, there is no critical initial kinetic energy to calculate for the 

complex 1DoF-T case.  This figure primarily differs from Figure 33b (besides being entirely positive-valued) 

by the behavior near 𝑥̃ = 0, which goes to +∞ in the 1DoF-T dipole case shown in Figure 33b but not in 

the case studied in this section. 

5.3.5. Summary  

In this section, the techniques for identifying equilibria and determining their static and dynamic stability 

were implemented for the complex numerical coil system.  This process required the derivation, non-

dimensionalization, and verification/validation of several of the formulas that will be used throughout the 

rest of this chapter.  The major difference between the results of the complex numerical 1DoF-T system 

and the analytical and simple numerical 1DoF-T systems is the behavior of the system in the extreme near-

field (𝑥̃ < 1). 
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5.4. Rotational Single Degree of Freedom 

 

In this section, the coil-based single rotational degree of freedom (or 1DoF-R) system is studied.  The 

system is depicted in Figure 58, with the torsional spring providing resistance to motion away from 𝛽 =

0. 

 

Figure 58: Rotational single degree of freedom (1DoF-R) coil system 

5.4.1. Torque Balance 

As in the 1DoF-T case, the torque balance in the coil-based system is less simple to write analytically than 

that of the dipole-based system.  The non-dimensional torque provided by the torsional spring is still 

𝜏̃2,𝑠𝑝𝑟𝑖𝑛𝑔 = −𝑘𝑟
∗ 𝛽𝑘̂, 

but the magnetic torque is expressed instead as a cross product, with Equation (5.3) inserted into Equation 

(5.5) and non-dimensionalized the same way as in Equation (5.6), except with a scaling factor of 

(𝒯2/𝑚2𝑅1
2).  The same assumptions stand about currents and number of turns being the same across the 

two coils, such that  
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𝜏̃2,𝑚𝑎𝑔,𝑐𝑜𝑖𝑙 =
𝜇

0
𝑁𝐼2𝒯2

4𝜋2𝑅̃2𝜌𝑅1
2 ∫ 𝑅̃⃗⃗2 ×

(

 
 

𝑑𝑙2
⃗⃗ ⃗⃗ ⃗⃗ ×

1

𝛼̃2𝜂̃𝜐̃2

[
 
 
 
 𝜐̃

2 [(𝑅̃1

2
− 𝑟̃2)𝐸(𝑘2) + 𝛼̃2𝐾(𝑘2)]

𝑥̃𝑦̃ [(𝑅̃1

2
+ 𝑟̃2)𝐸(𝑘2) − 𝛼̃2𝐾(𝑘2)]

𝑥̃𝑧̃ [(𝑅̃1

2
+ 𝑟̃2)𝐸(𝑘2) − 𝛼̃2𝐾(𝑘2)]]

 
 
 
 

)

 
 

.
𝑐𝑜𝑖𝑙 2

 (5.19) 

It can be seen from the above formula that the non-dimensional term outside the parentheses is indeed 

𝜒. 

The torque balance therefore occurs when  

𝜏̃2,𝑠𝑝𝑟𝑖𝑛𝑔 + 𝜏̃2,𝑚𝑎𝑔,𝑐𝑜𝑖𝑙 = [0], 

or 

𝜏̃2,𝑡𝑜𝑡 = 𝜏̃2,𝑠𝑝𝑟𝑖𝑛𝑔 + 𝜏̃2,𝑚𝑎𝑔,𝑐𝑜𝑖𝑙 = 0, (5.20) 

 since the torques all act about the z axis. 

5.4.2. Equilibrium Identification 

 

Equilibrium identification will be performed for the 1DoF-R case via the interpolation technique 

discussed in the previous chapter and used already in the previous system in this chapter, using 

crossing.m to find where 𝜏̃2,𝑚𝑎𝑔,𝑐𝑜𝑖𝑙 + 𝜏̃𝑠𝑝𝑟𝑖𝑛𝑔 crosses zero.  Combining non-dimensional terms by 

dividing by 𝑘𝑟
∗, the new torque balance formula is  

𝜏̃𝑡𝑜𝑡𝑎𝑙

𝑘𝑟
∗ = 0, 

and the points where the above equation is met are equilibria. 
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Example Equilibrium Identification 

Table 27 gives the interpolated 𝛽 values at equilibrium for a range of 𝜒/𝑘𝑟
∗  selected to show different 

behavior, with the interpolation based on a ∆𝛽 of 0.01.  𝑘𝑟
∗ is assumed to be 1 (which only impacts the 

stability values in the next section, not the location of equilibria),  𝑅̃2 = 1.2, and 𝑥̃ = 𝑥̃0 = 2.5. 

Table 27: Equilibrium locations in the non-dimensional 1DoF-R complex case for a range of values of 
𝜒

𝑘𝑟
∗ , 𝑅̃2 =

1.2, 𝑎𝑛𝑑 𝑥̃ = 𝑥̃0 = 2.5 

- 𝛽 

𝜒/𝑘𝑟
∗ Equil. ID 𝛽 

.1 − - 

10 𝛽𝑁𝐷,𝑐𝑜𝑖𝑙,1 -0.4844 

100 − - 

𝛽 = 0 

𝜒/𝑘𝑟
∗ Equil. ID 𝛽 

.1 𝛽𝑁𝐷,𝑐𝑜𝑖𝑙,2−1 0 

10 𝛽𝑁𝐷,𝑐𝑜𝑖𝑙,2−2 0 

100 𝛽𝑁𝐷,𝑐𝑜𝑖𝑙,2−3 0 

+𝛽 

𝜒/𝑘𝑟
∗ Equil. ID 𝛽 

.1 − - 

10 𝛽𝑁𝐷,𝑐𝑜𝑖𝑙,3 0.4844 

100 − - 

The equilibrium values above can be seen in Figure 59. As always, the grey lines represent the absolute 

value of negative non-dimensional torque, and it can be seen that at every equilibrium, each curve 

switches signs, indicating a crossing at zero or equilibrium.  
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Figure 59: Equilibrium identification for the 1DoF-R coil model for 𝑥̃0 = 2.5 𝑎𝑛𝑑 𝑅̃2 = 1.2, where grey lines 
represent the absolute value of the non-dimensional torque 

It can be seen that every curve has an equilibrium at 𝛽 = 0, and that the lowest 𝜒/𝑘𝑟
∗ curve is dominated 

by the spring restorative spring torque, meaning that the torque is negative for positive 𝛽 and vice versa, 

while the highest 𝜒/𝑘𝑟
∗ curve dominates the spring torque for any 𝛽 ≠ 0 and works in the direction that 

the dipole torques do.  However, the medium 𝜒/𝑘𝑟
∗ curve also has equilibria near 𝛽 = 0.5.  This feature 

in the coil model plot (resulting from what will henceforth be called the “proximity effect”) results from 

the perimeter of coil 2 coming closer to the perimeter of coil 1 when the coil is tilted, which causes for 

positive 𝛽 a strong restorative torque from the top element of coil 1 but an almost-as-strong divergent 

torque from the bottom of coil 1.  The bottom of coil 2 moves farther away when 𝛽 is positive (and its net 

torque is divergent), so it is the torque on the top of coil 2 versus the spring torque that determines the 

secondary equilibrium for the medium 𝜒/𝑘𝑟
∗ case.  For the largest 𝜒/𝑘𝑟

∗ case, the net divergent torque on 

the bottom of coil 2 is large enough to dominate the spring torque on its own.  In the dipole case, there is 

no closer or farther portion of the coil, so the net torque is immediately divergent and secondary equilibria 

do not appear until closer to 𝛽 = ±𝜋/2, where the spring torque is finally large enough to counter the 

magnetic torque.  
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Figure 60: Geometry of proximity effect and the forces from the top element of coil 1 on the top element of coil 2 

for a repulsive 1DoF-R system with 𝑥̃0 = 2.5 𝑎𝑛𝑑 𝑅̃2 = 1.2 

Figure 60 shows the geometry of the system plotted in Figure 59 for a positive rotation in 𝛽, along with 

the direction of the magnetic forces from the top element of coil 1 on the top element of coil 2.  At first, 

the restorative torque on the top of coil 2 dominates the divergent torque on the bottom of coil 2 (not 

shown for simplicity), but the restorative torque on the top of coil 2 reduces as it is redirected into the 

plane of coil 2 as 𝛽 grows.  Once the coil rotates to some equilibrium magnitude of 𝛽 (in the case of Figure 

59 , 𝛽 ≈ ±0.5 radians), then the net divergent torque dominates the restorative torque.  As such, 

𝛽𝑁𝐷,𝑐𝑜𝑖𝑙,2−1 is expected to be stable, since the spring torque dominates at the equilibrium, as well as 

𝛽𝑁𝐷,𝑐𝑜𝑖𝑙,2−2, due to the restorative effect of the proximity effect, while 𝛽𝑁𝐷,𝑐𝑜𝑖𝑙,2−3,  𝛽𝑁𝐷,𝑐𝑜𝑖𝑙,1, and 

𝛽𝑁𝐷,𝑐𝑜𝑖𝑙,3 are expected to be unstable.  It can be noted that with a different selection of 𝑅̃2 and 𝑥̃0, the 𝛽 

at which the proximity effect occurs would change.  In the far-field, as the coil is more closely 

approximated by a point dipole, these proximity effects would disappear.   
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5.4.3. Static Stability Classification  

 

In this section the static stability of the non-dimensional 1DoF-R equilibria identified in the previous 

section is presented, calculated from the coil model via the central finite difference method.  

5.4.3.1. Example Stability Calculations 

Table 28 gives the stiffnesses of the equilibria identified in the previous section as calculated by finite 

differencing, with the statically stable (positive stiffness) rows bolded. 

Table 28: Stiffness values for the non-dimensional 1DoF-R coil model equilibria for 𝑥̃0 = 2.5 𝑎𝑛𝑑 𝑅2 = 1.2,, with the 
statically stable equilibria bolded 

- 𝛽 

𝜒/𝑘𝑟
∗ Equil. ID 𝛽 𝜅𝑡𝑜𝑡,𝑁𝐷,𝑐𝑜𝑖𝑙,𝑅 

.1 − - - 

10 𝛽𝑁𝐷,𝑐𝑜𝑖𝑙,1 -0.4844 -1.7285 

100 − -  

𝛽 = 0 

𝜒/𝑘𝑟
∗ Equil. ID 𝛽 𝜅𝑡𝑜𝑡,𝑁𝐷,𝑐𝑜𝑖𝑙,𝑅 

.1 𝜷𝑵𝑫,𝒄𝒐𝒊𝒍,𝟐−𝟏 0 1.0082 

10 𝜷𝑵𝑫,𝒄𝒐𝒊𝒍,𝟐−𝟐 0 0.8236 

100 𝛽𝑁𝐷,𝑐𝑜𝑖𝑙,2−3 0 -0.8546 

+𝛽 

𝜒/𝑘𝑟
∗ Equil. ID 𝛽 𝜅𝑡𝑜𝑡,𝑁𝐷,𝑐𝑜𝑖𝑙,𝑅 

.1 − - - 

10 𝛽𝑁𝐷,𝑐𝑜𝑖𝑙,3 0.4844 -1.7285 

100 − -  

It can be seen from Table 28 that the expected stabilities from the previous section’s analysis are correct, 

with the smallest 𝜒/𝑘𝑟
∗ exhibiting a single stable equilibrium, the intermediate 𝜒/𝑘𝑟

∗ exhibiting an unstable 

equilibrium at the origin and two unstable secondary equilibria, and the bigger 𝜒/𝑘𝑟
∗ having one unstable 

equilibrium at that origin.    
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5.4.4. Dynamic Stability  

 

In this section, the dynamic stability of a 1DoF-R coil system is evaluated, using the magnetic vector 

potential subtracted from the elastic potential energy of a torsional spring in order to calculate the 

potential energy of a system with one rotational degree of freedom: 

𝑃̃𝑅 = 𝑉̃𝑅 − 𝑊̃𝑡𝑜𝑡 =
𝑘𝑟

∗𝛽2

2
−

1

2
𝐿11𝐼1

2 + 𝐿12𝐼1𝐼2 −
1

2
𝐿22𝐼2

2. (5.21) 

The 𝛽 ≠ 0 magnetic energies have also been validated against the tables in Grover to make sure that 

they get the same values for the more complicated calculations. 
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Figure 61: Effective potential energy for the 1DoF-R case, 𝑥̃0 = 2.5 𝑎𝑛𝑑 𝑅̃2 = 1.2 and (a, left) 
𝜒

𝑘𝑟
∗ = 0.1 (b, right) 

𝜒

𝑘𝑟
∗ = 10 (c, bottom) 

𝜒

𝑘𝑟
∗ = 100, shown for −1 ≤ 𝛽 ≤ 1 to emphasize the behavior around the equilibria 

Figure 61 agrees with the results of Section 5.4.3.1.  Figure 61a has a clear minimum in potential energy 

at 𝛽𝑁𝐷,𝑐𝑜𝑖𝑙,2−1, rendering it stable, while Figure 61c has a clear maximum at 𝛽𝑁𝐷,𝑐𝑜𝑖𝑙,2−3, rendering it 

unstable.  Figure 61b has three equilibria, a stable central one at 𝛽 = 0 and two unstable ones on either 

side of the central one, making  
𝜒

𝑘𝑟
∗ = 10 the only curve for which a critical initial kinetic energy can be 

calculated in the next section.   

It makes intuitive sense that a stronger magnet/weaker spring (small 
𝜒

𝑘𝑟
∗) would result in an unstable 

equilibrium, since a strong enough divergent magnetic torque would dominate even the proximity effect; 

on the other hand, an intermediate 
𝜒

𝑘𝑟
∗ has enough divergent torque to allow equilibria away from 𝛽 = 0, 

but the proximity effect makes the region in between 𝛽 = 0 and the other equilibria stable.  At greater 

distances 𝑥̃0, the curves all have a single stable equilibrium at 𝛽 = 0 because the magnetic torque drops 

off with increased distance, but the spring torque does not.  
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5.4.4.1. Critical Initial Kinetic Energy and Simulation 

Only equilibrium 𝛽𝑁𝐷,𝑐𝑜𝑖𝑙,2−2 has a critical initial kinetic energy beyond which motion can escape.   

𝑇̃𝑡0,𝑐𝑟𝑖𝑡(𝛽𝑁𝐷,𝑐𝑜𝑖𝑙,2−2) = 𝑃̃𝑅(𝛽𝑁𝐷,𝑐𝑜𝑖𝑙,1) − 𝑃̃𝑅(𝛽𝑁𝐷,𝑐𝑜𝑖𝑙,2−2) 

 = −706.4520 + 706.5020, 

𝑇̃𝑡0,𝑐𝑟𝑖𝑡(𝛽𝑁𝐷,𝑐𝑜𝑖𝑙,2−2) = 0.05. (5.22) 

This is a fairly small critical energy, so it would take relatively little to make the system leave the small 

potential well between the unstable equilibria of 𝛽𝑁𝐷,𝑐𝑜𝑖𝑙,1 and 𝛽𝑁𝐷,𝑐𝑜𝑖𝑙,3.  As 𝑥̃0 decreases, the potential 

well (if one exists) around 𝛽 = 0 deepens, and thus the critical initial kinetic energy increases.  For 

example, at 𝑥̃0 = 1.5,  both 
𝜒

𝑘𝑟
∗ = 10 and 100 have the three equilibria, and in that case, 

𝑇̃𝑡0,𝑐𝑟𝑖𝑡 (
𝜒

𝑘𝑟
∗ = 10, 𝛽 = 0) = 2.60 and 𝑇̃𝑡0,𝑐𝑟𝑖𝑡 (

𝜒

𝑘𝑟
∗ = 100, 𝛽 = 0) = 22.80, which shows that when three 

equilibria exist in a system, the initial critical kinetic energy is higher for a higher 
𝜒

𝑘𝑟
∗ value. 

 

5.4.5. Summary 

Every combination of non-dimensional design variables results in an equilibrium at 𝛽 = 0 in the 1DoF-R 

case.  For smaller values of 
𝜒

𝑘𝑟
∗, that zero equilibrium tends to be the only equilibrium and stable because 

the magnet is dominated by the restorative spring torque.  At intermediate values of 
𝜒

𝑘𝑟
∗, the zero 

equilibrium tends to be stable and bracketed symmetrically by two unstable equilibria that result from 

the proximity effect.  At large values of 
𝜒

𝑘𝑟
∗, the zero equilibrium tends to be not only the only equilibrium, 

but also unstable because the magnetic torque dominates.  As 𝑥̃0 increases, the central equilibrium tends 

toward stability.  For two systems with three equilibria each and the same 𝑥̃0, the system with the higher 
𝜒

𝑘𝑟
∗ will have the higher critical kinetic energy. 
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5.5. Two Degrees of Freedom  

 

In this section, the two degree-of-freedom case (one translational, one rotational) will be discussed, with 

equilibria locations identified and classified as statically and dynamically stable and unstable.  Figure 63 

depicts the 2DoF, two coil system: 

 

Figure 62: Two degree of freedom (2DoF) coil system 

5.5.1. Force and Torque Balance 

In the 2DoF case, as discussed in Section 3.4.1, both the force and torque equations as given in Equations 

(5.6), (5.8), (5.19), and (5.20) must sum to zero.  In the 1DoF-T case, 𝛽 was fixed as zero, and therefore 

the torque balance was automatically satisfied.  As such, it is expected that the force balance along 𝛽 = 0 

will be the same in the 2DoF case as in the 1DoF-T case.  The same is not true for the 1DoF-R case; 𝑥̃ in 

that case was fixed and was not selected to satisfy the force balance across the range of 𝛽 values. 
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5.5.2. Equilibrium Identification 

 

Rather than solving for 𝑥̃ in terms of 𝛽 as in the analytical case of Chapter 3, the numerical model will 

individually identify where total torque and force sum to zero and then determine for what values of (𝛽, 𝑥̃) 

there is both a force balance and a torque balance.  The plots in the next section identify where the sum 

of the torques equals zero with green circles, where the sum of the forces is zero with red circles, and 

where both the forces and torques are zero with black circles.  This process is performed by calculating 

the force and torque at every discrete point in the domain and then using crossing.m to identify where 

the force and torque change signs/ cross zero in either 𝛽 or 𝑥̃.  The circles are plotted at the index before 

the crossing, which is why the plots are not perfectly symmetrical even though the system is symmetrical 

in actuality.  
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5.5.2.1. Example Equilibrium Identification 

In this example 2DoF equilibrium identification, 𝑥̃0 = 2 and each of 
𝜒

𝑘𝑟
∗ = [0.1, 1, 10] are studied.  Figure 

63 shows the locations of the force (red) and torque (green) equilibria as well as where they overlap 

(black).  Numbered dots are used for ease of reference to the black mutual equilibria on each diagram, 

either directly atop the mutual equilibrium if there is a clear singular point or next to it if there are a few.  

The numbering is only done on the left half of each diagram because, as has been shown in previous 

sections and chapters, the plots are symmetric, both in equilibrium location as well as stability, so only 

one of the two halves needs to be discussed. 

The locations where a few points occur are due to one of several reasons.  First, there are some portions 

of the graph (near 𝛽4,1 in plot Figure 63b, for instance) where several mutual equilibria occur with close 

proximity to each other.  In the studies of stability going forward, only one of these will be selected, since 

they all have similar stability conditions.   

Second, around 𝑥̃ ≈ 0.6 in the following plots, a large number of force and/or torque equilibria can be 

observed for |𝛽| > 0.5.  The first thing to notice about this trend is that there are force equilibria in a 

repulsive system at 𝑥̃ < 𝑥̃0.  That in itself can only happen when the magnetic force goes from positive 

(repulsive) to negative (attractive).  This switching is a result of the coils actually coinciding at a certain 

angle (an extreme case of the proximity effect), wherein the edge of coil 2 basically touches the edge of 

coil 1 at 𝛽 = 0.5236 when 𝑅̃2 = 1.2 and 𝑥̃ = 0.6.  For 𝛽 > 0.5236, the edge of coil 2 has actually swung 

behind the edge of coil 1, and thus the proximity effect contributes a dominating negative force.  The 

torque due to the proximity effect also switches signs past that overlap point, which can create a torque 

equilibrium if the magnetic torque dominates the spring torque.  

Finally, because the algorithm searches for crossings in both dimensions (𝛽, 𝑥̃), sometimes the same 

equilibrium is identified by a circle before the equilibrium in 𝛽 and a separate circle in 𝑥̃, leading to 

multiple circles representing the same equilibrium.  As such, the discussion in the rest of this section and 

chapter will focus on the general trends of equilibria displayed in Figure 63 rather than analyzing every 

black circle. 
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Figure 63: 2DoF equilibrium locations, red being force equilibria, green being torque equilibria, and black being 
equilibria in both.  Only one of each mirrored pair of secondary equilibria is numbered, since they are symmetric 

and have the same stiffness and energy values. (a, left) 
𝜒

𝑘𝑟
∗ = 0.1, (b, right ) 

𝜒

𝑘𝑟
∗ = 1, and (c, bottom) 

𝜒

𝑘𝑟
∗ = 10 

Figure 63 displays some interesting trends.  In Figure 63a, it can be seen that the 𝛽 = 0 force equilibria 

(and those force equilibria bracketing it on either side) are very close to 𝑥̃0 because of the small 
𝜒

𝑘𝑟
∗ value; 

the spring does not stretch very much.  As such, the curve of red circles is relatively flat.  In Figure 63b and 

Figure 63c, the equivalent curves are more pronounced as the magnetic force falls off as 𝛽 moves away 

from 0.   

The torque curves are also interesting; in each of the three plots in Figure 63, there exist the expected 

𝛽 = 0 torque equilibria, but also a secondary concave up curve of torque equilibria.  For 
𝜒

𝑘𝑟
∗ = 0.1, this 

secondary torque curve does not extend over the full range of 𝑥̃, just over small values of 𝑥̃.  Remembering 

back to the 1DoF-R case, the secondary torque curve corresponds with secondary statically unstable 
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equilibria bracketing a central stable equilibrium.  In the 
𝜒

𝑘𝑟
∗ = 0.1 case, these secondary torque equilibria 

only appear for small values of 𝑥̃, and none of them are mutual equilibria in force as well.  For the 

intermediate 
𝜒

𝑘𝑟
∗ = 1 case, the secondary torque curve extends up to the main force equilibrium curve, 

where two secondary mutual equilibria can be seen.  For the large 
𝜒

𝑘𝑟
∗ = 10 case, the secondary torque 

curve closes in on itself somewhat, drawing the secondary equilibria back towards 𝛽 = 0.  These 

observations indicate that a value of 
𝜒

𝑘𝑟
∗ between 1 and 10 could be selected to result in secondary mutual 

equilibria at an angle anywhere in 0 ≤ |𝛽| ≤ 𝜋/2, though the resultant equilibrium distance 𝑥̃ would 

depend on that desired angle.  It is also very likely from the 1DoF-R analysis that these secondary equilibria 

are statically unstable, a prediction that will be addressed in the next section.  

Another topic of interest is what exactly is going on at the equilibria around 𝑥̃ ≈ 0.6.  

 

 

Figure 64: Cross-sectional view of potential energy curve at the 
𝜒

𝑘𝑟
∗ = 1 equilibria around 𝑥̃ ≈ 0.6, showing how 

equilibria 𝛽2,1 and 𝛽3,1 occur at local maxima in one direction (𝑥̃, bottom two plots) but not in another direction (𝛽, 

top plot). 
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Figure 64 focuses on equilibria 𝛽2,1 and 𝛽3,1 in the 
𝜒

𝑘𝑟
∗ = 1 case by presenting the cross-sectional views of 

the potential energy curve, showing that the equilibria occur at local maxima when viewed in one 

direction (𝑥̃, bottom two plots), but not at a local extrema in another direction (𝛽, top plot).  The peaks in 

the bottom two plots in Figure 64 quickly disappear for points on either side of the equilibria, smoothing 

down to a monotonically decreasing functional.  Figure 64 presents a graphical view of how static stability 

requires stability in all directions, not just one.  
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5.5.3. Static Stability Classification  

 

In this section, the static stability of the equilibria identified in Section 5.5.2, and Figure 63 will be 

calculated.  As in Section 3.5.3, the stiffness is not a scalar but a 2x2 matrix in the 2DoF case, replicated 

below from Equation (3.102): 

[𝐾𝑡𝑜𝑡,𝑁𝐷] = −

[
 
 
 
 
𝜕𝐹̃2

𝜕𝑥̃

𝜕𝐹̃2

𝜕𝛽

𝜕𝜏̃2

𝜕𝑥̃

𝜕𝜏̃2

𝜕𝛽 ]
 
 
 
 

. 

For each of the numbered equilibria in Figure 63 (with a representative value picked from the clusters of 

mutual equilibria, or two if there’s a difference in stability within a cluster), the stiffness matrix is 

constructed using centered finite differencing, and the eigenvalues of the stiffness matrix are calculated 

numerically, using MATLAB’s eig() function.  The eigenvalues are then given in Table 29, with the lines that 

have two positive eigenvalues (and are thus statically stable) bolded. 

Table 29: Stiffness matrix eigenvalues for the 2DoF equilibria shown in Figure 63, with statically stable equilibria 
bolded 

Equil. ID 𝜒

𝑘𝑟
∗ 𝛽 𝑥̃ 𝜆1 𝜆2 

𝛽1,0.1−1 0.1 -1.0661 0.6586 -52.77 54.70 

𝜷𝟏,𝟎.𝟏−𝟐 0.1 -1.0409 0.6426 98.56 9.46 

𝜷𝟐,𝟎.𝟏 0.1 0 2.0606 1.1221 1.0273 

𝛽1,1 1 -1.4756 2.1818 2.89 -1.45 

𝛽2,1 1 -1.4194 0.6265 -93.0 25.0 

𝛽3,1 1 -1.0313 0.6465 -51.39 -366.21 

𝛽4,1 1 -0.5553 0.5657 49.12 -321.13 

𝜷𝟓,𝟏 1 0 2.5051 1.61 0.99 

𝛽1,10 10 -0.2380 3.5960 2.6 -0.1 

𝛽2,10 10 -1.0313 0.6465 -523 -3671.2 

𝛽3,10 10 -0.5553 0.5657 482.1 -3220.4 

𝜷𝟒,𝟏𝟎 10 0 3.6364 2.5 0.1 



199 

 

From Table 29, it can be seen that all of the 𝛽 = 0 equilibria are statically stable, and all other equilibria 

except for one of the secondary ones are statically unstable. These observations are consistent with 

predictions and the results from the 1DoF-T and 1DoF- R cases.  The next section investigates the dynamic 

stability conditions on these statically stable equilibria.  

5.5.4. Dynamic Stability  

 

In this section, the dynamic stability of the statically stable equilibria in the 2DoF complex numerical case 

is investigated, concluding the study of this system and drawing to a close the methodology development 

process.   

The potential energy is once again used to explore the dynamic stability of the statically stable equilibria.  

As in the other dynamic stability analyses in this chapter, the magnetic potential energy is calculated by 

the vector potential method and subtracted from the elastic potential energy to obtain the effective 

potential energy of the system.  In the 2DoF case, the elastic potential energy is given as the combination 

of contributions from both the linear and the torsional spring, or  

𝑉̃𝑡𝑜𝑡 = 𝑉̃𝑅 + 𝑉̃𝑇  =
𝑘𝑟

∗𝛽2

2
+

𝑘∗𝑥̃2

2
− 𝑘∗𝑥̃0𝑥̃ +

𝑘∗𝑥̃0
2

2
. (5.23) 

The magnetic potential energy is the same as calculated in Section 5.3.4, with both the mutual inductance 

energy terms as well as the constant self-inductance energy terms for each configuration in 𝛽 and 𝑥̃.  

Figure 65 shows the potential energy contours overlaid upon the equilibrium points from Figure 63 such 

that it can be seen that the 𝛽 = 0 equilibria are at potential energy minima in each plot, with the statically 

unstable secondary equilibria occurring at saddle points in the potential energy curve.  These conclusions 

are supported by the static stability analysis from the stiffness matrices in the previous section.   
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Figure 65: Potential energy contours for the 2DoF complex numerical case, overlaid upon the 2DoF equilibria in 

force, torque, or both; (a, left) 
𝜒

𝑘𝑟
∗ = 0.1, (b, right) 

𝜒

𝑘𝑟
∗ = 1, and (c, bottom) 

𝜒

𝑘𝑟
∗ = 10 

The next section explores how the value of 
𝜒

𝑘𝑟
∗ affects the critical initial kinetic energy of the system. 

Critical Initial Kinetic Energy and Simulation 

It can be seen from Figure 65 that the critical initial kinetic energies of the 𝛽 = 0 equilibria are determined 

by the relative energies of the secondary equilibria along the upper force equilibrium curve, as motion in 

𝑥̃ tends to increase the potential energy to a much higher level (+∞ in the +𝑥̃ direction and a peak at 

𝑥̃ = 0).  Table 30 gives the critical initial kinetic energy for each of the 𝛽 = 0 equilibria.  In the case of 

Figure 65a or 
𝜒

𝑘𝑟
∗ = 0.1, the lack of a secondary equilibria along the upper force curve means that the 

limiting potential energy is taken as the potential energy at the ends of the upper force curve, at 𝛽 = 𝜋/2, 

𝑥̃ = 2.  It is possible that the potential energy continues to increase beyond 𝛽 = ±𝜋/2 due to the elastic 
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potential energy increasing, but the magnetic potential energy begins to grow beyond 𝛽 = ±𝜋/2  as the 

magnetic torque switches signs, thus reducing the effective potential energy.    

Table 30: Critical initial kinetic energy for the 2DoF statically stable equilibria with the potential energy curves as 
seen in Figure 65 

Equil. ID 𝜒

𝑘𝑟
∗ 𝛽 𝑥̃ 𝜆1 𝜆2 𝑇̃𝑡0,𝑐𝑟𝑖𝑡

 

𝛽1,0.1−1 0.1 -1.0661 0.6586 -52.77 54.70 - 

𝜷𝟏,𝟎.𝟏−𝟐 0.1 -1.0409 0.6426 98.56 9.46 0.0129 

𝜷𝟐,𝟎.𝟏 0.1 0 2.0606 1.1221 1.0273 1.1016 

𝛽1,1 1 -1.4756 2.1818 2.89 -1.45 - 

𝛽2,1 1 -1.4194 0.6265 -93.0 25.0 - 

𝛽3,1 1 -1.0313 0.6465 -51.39 -366.21 - 

𝛽4,1 1 -0.5553 0.5657 49.12 -321.13 - 

𝜷𝟓,𝟏 1 0 2.5051 1.61 0.99 0.5553 

𝛽1,10 10 -0.2380 3.5960 2.6 -0.1 - 

𝛽2,10 10 -1.0313 0.6465 -523 -3671.2 - 

𝛽3,10 10 -0.5553 0.5657 482.1 -3220.4 - 

𝜷𝟒,𝟏𝟎 10 0 3.6364 2.5 0.1 0.0027 

For 
𝜒

𝑘𝑟
∗ = 1, the limiting unstable equilibrium that determines the critical initial kinetic energy ends up 

being 𝛽1,1 (with a potential energy of -69.9699) instead of 𝛽4,1 (with a potential energy of -61.7432). 

5.5.5. Summary  

This chapter was the last step in a tiered and successively validated approach to evaluating the static and 

dynamic stability of a multi-coil constrained electromagnetic structure.  Stable configurations have been 

found within the assumptions and constraints levied on the system, and the approaches for calculating 

static and dynamic stability are valid in any number of degrees of freedom.  Now that it has been validated 

in many ways against a tractable two-coil, 2DoF problem, the approach developed over the last three 

chapters can be expanded to evaluate problems with more degrees of freedom or different assumptions, 

such as the example real-world problems discussed in the next chapter.  
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6. Chapter 6 

Application to Real-World Problems 

The three primary goals of the methodology presented in Chapters 3, 4, and 5 are to be (1) useful, (2) 

scalable, and (3) plausible.  Now that the methodology has been validated and nondimensionalized, 

making it useful to spacecraft designers, it can be expanded to investigate other structures with more 

degrees of freedom (scalability) and how changing the assumptions affects the results of the analysis 

(plausibility).  The numerical methods for finding equilibria, determining their static stability via stiffness, 

and calculating the potential energy functional to examine dynamic stability, are all extensible to models 

with more degrees of freedom or changes in design variables.   

This chapter presents two “real-world problems” that represent scalability and plausibility of the 

methodology respectively: adding a third coil to the previously two-coil system and noting trends or 

features that persist in such systems beyond two coils, as well as exploring how using different elastic 

connecting hardware such as tethers changes the stability of the system.  The former will be investigated 

much like the two-coil system by starting with a single degree of freedom in translation for each of the 

second and third coils then investigating a single degree of freedom in rotation for each of the second and 

third coils, both of which are 2DoF problems.  The equilibria will be identified, and their static and dynamic 

stabilities evaluated.  The analysis of how using tethers instead of springs to connect the coils affects the 

assumptions and results will be performed on the already established two-coil system after the three-coil 

analysis. 
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6.1. Three Coils 

As in the two coil case, the three coil system is modeled as a boom, with each coil centered along the x 

axis.  Each is connected by a linear spring to the one directly adjacent to it, and coils 2 and 3 have torsional 

springs that provide resistance to rotation around the z axis.  In this model, the torsional spring torque is 

proportional to the angle with respect to the x axis, not with respect to the angle of the coil adjacent to 

it.  Figure 66 shows the degrees of freedom of the three coil system featured in this chapter, where β3 is 

the angle of rotation of coil 3 around the z axis, and the distances between adjacent coils are 𝑥2 and 𝑥3.  

Coil 3 is assumed to have the same radius as coil 2 unless otherwise specified in order to reduce the 

number of unique parameters in the problem.  Also, |𝐼1| = |𝐼2| = |𝐼3|, and 𝐼1 and 𝐼3 run in the same 

direction, such that coils 1 and 2 repel, and coils 2 and 3 repel, though there is an attractive force between 

coils 1 and 3.  The natural length of each of the two linear springs are assumed to be equal and equivalent 

to 𝑥̃0 = 2, and the spring constants are considered to all be equal to one another. 

  . 

Figure 66: General four degree of freedom (4DoF) three-coil system 

Two systems will be examined: 2DoF-T (both coils 2 and 3 translating) and 2DoF-R (both coils 2 and 3 

rotating).  It is not particularly worthwhile to examine a three-coil system with one rotational and one 

translational degree of freedom, since one or more of the coils would not be in a force and/or torque 

balance as the other moves. 

  



204 

 

6.1.1. 2DoF Translation 

When both coils 2 and 3 are allowed to translate, a system of two equations must be solved to find the 

equilibrium positions of each of coils 2 and 3 with respect to the origin, one for each of coils 2 and 3.  

Figure 67 shows the non-dimensional 2DoF-T three-coil system being explored in this section. 

. 

Figure 67: 2DoF-T three-coil system 

In a three coil system, there is a magnetic interaction between each discrete pair of coils (1 and 2, 1 and 

3, and 2 and 3) based on the distance apart (𝑥̃2, 𝑥̃2 + 𝑥̃3 and 𝑥̃3 respectively), as well as an elastic force 

between each adjacent pair of coils (1 and 2 or 2 and 3) based on the distances between adjacent coils 

(𝑥2 and 𝑥3 respectively).  The two non-dimensional translational equations that must be satisfied along 

the x axis for equilibrium are 

𝐹̃𝑡𝑜𝑡𝑎𝑙,2 = 𝐹̃𝑠𝑝𝑟𝑖𝑛𝑔,21 + 𝐹̃𝑠𝑝𝑟𝑖𝑛𝑔,23 + 𝐹̃𝑚𝑎𝑔,21 + 𝐹̃𝑚𝑎𝑔,23 = 0, 

and 

(6.1) 

𝐹̃𝑡𝑜𝑡𝑎𝑙,3 = 𝐹̃𝑠𝑝𝑟𝑖𝑛𝑔,32 + 𝐹̃𝑚𝑎𝑔,31 + 𝐹̃𝑚𝑎𝑔,32 = 0. (6.2) 

However, with the spring forces substituted in and reducing the number of magnetic forces by substituting 

in negatives where applicable,  

−𝑘∗(𝑥̃2 − 𝑥̃0) + 𝑘∗(𝑥̃3 − 𝑥̃0) + 𝐹̃𝑚𝑎𝑔,21 − 𝐹̃𝑚𝑎𝑔,32 = 0, 

and 

(6.3) 

−𝑘∗(𝑥̃3 − 𝑥̃0) + 𝐹̃𝑚𝑎𝑔,31 + 𝐹̃𝑚𝑎𝑔,32 = 0, (6.4) 
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since 𝑅̃2 = 𝑅̃3, 𝐹̃𝑚𝑎𝑔,21 and 𝐹̃𝑚𝑎𝑔,31 are calculated as in Equation (5.6).   𝐹̃𝑚𝑎𝑔,32 is calculated slightly 

differently but with similar definitions as in Equation (5.6), because it is based on the magnetic field from 

coil 2 instead of coil 1, such that  

 

𝐹̃⃗𝑚𝑎𝑔,32 = −
𝜇0𝑁𝐼2𝒯2

4𝜋2𝑅̃2𝜌𝑅1
2 ∫ 𝑑𝑙

̃
3

𝑐𝑜𝑖𝑙 3

× 𝐵̃⃗⃗2, (6.5) 

where  

𝐵̃⃗⃗2 =
1

𝛼̃2𝜂̃𝜐̃2

[
 
 
 
 𝜐̃

2 [(𝑅̃2
2
− 𝑟̃2)𝐸(𝑘2) + 𝛼̃2𝐾(𝑘2)]

𝑥̃𝑦̃ [(𝑅̃2
2
+ 𝑟̃2)𝐸(𝑘2) − 𝛼̃2𝐾(𝑘2)]

𝑥̃𝑧̃ [(𝑅̃2
2
+ 𝑟̃2)𝐸(𝑘2) − 𝛼̃2𝐾(𝑘2)]]

 
 
 
 

. 

Before scaling each by 𝑅1 or 𝑅1
2, the other variables appearing in the previous equation are  

𝑎 = 𝑅̃2, 

𝜐2 = 𝑦2 + 𝑧2, 

𝑟2 = 𝑥2 + 𝑦2 + 𝑧2, 

𝛼2 = 𝑎2 + 𝑟2 − 2𝑎𝜐, 

𝜂2 = 𝑎2 + 𝑟2 + 2𝑎𝜐, 

and 

𝑘2 = 1 −
𝛼2

𝜂2
. 

Translational equilibria are identified by finding where both Equations (6.1) and (6.2) are fulfilled in 

(𝑥̃3, 𝑥̃2).   This section finds the translational equilibria and investigates the stability of coils with the same 

radius (𝑅1 = 1, 𝑅̃2 = 1, 𝑅̃3  = 1), then does the same for coils of different radii (𝑅1 = 1, 𝑅̃2 = 1.2, 𝑅̃3  =

1.5). 
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Coils of the Same Radius 

Figure 68 shows the equilibria of a system wherein all coils have a radius of 1 and for each of 
𝜒

k∗ =

[0.1, 1, 10] by plotting red circles for a force balance on coil 2, green circles for a force balance on coil 3, 

and black circles for a mutual force balance.   In order to focus visually on the trends in equilibria as 𝑥̃2, 𝑥̃3 

change (or 𝛽2, 𝛽3 in the next section), rather than going through the full stiffness analysis for every curve 

in this chapter, static stability is instead determined by observing the shape of the potential energy curve 

at each equilibrium point.   

 

Figure 68: 2DoF-T equilibrium locations for three coils all of radius 1, red being force equilibria on coil 2, green being 

force equilibria on coil 3, and black being equilibria in both;  (a, left) 
𝜒

𝑘∗ = 0.1, (b, right ) 
𝜒

𝑘∗ = 1,and (c, bottom) 
𝜒

𝑘∗ =

10 
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It can be seen from Figure 68 that as 
𝜒

k∗ increases, the equilibrium distance in both 𝑥̃2 and 𝑥̃3 increases.  

This behavior is intuitive, as is the fact that 𝑥̃2,𝑒𝑞 = 𝑥̃3,𝑒𝑞, since the coils all have the same radius, meaning 

that coil 2 will always be centered between coils 1 and 3 at equilibrium.  Because of the centering at 

equilibrium, the red circles in Figure 68 are always along the line 𝑥̃2 = 𝑥̃3.  The green circles start out 

almost vertical (constant in 𝑥̃3 at the natural length of the spring, 2) for small 
𝜒

k∗, but as 
𝜒

k∗ increases, the 

green circles increase in 𝑥̃3 as 𝑥̃2 increases.  This curving behavior can be traced back to the initial model 

as presented in Figure 67; the distance between coils 1 and 3 is equal to 𝑥̃2 + 𝑥̃3, so when  𝑥̃2 = 0 (coils 

1 and 2 collocated), the net magnetic force on coil 3 is zero because coils 1 and 2 cancel each other’s force 

contributions out due to their opposing current directions.  As 𝑥̃2 increases, the repulsive force from coil 

2 upon coil 3 dominates the attractive force from coil 1 upon coil 3, increasing the distance 𝑥̃3 at which 

coil 3 is in equilibrium.   

-
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Figure 69: Effective potential energy curves of the 2DoF-T system for three coils all of radius 1, red being force 

equilibria on coil 2, green being force equilibria on coil 3, and black being equilibria in both;  (a, left) 
𝜒

𝑘∗ = 0.1, (b, 

right ) 
𝜒

𝑘∗ = 1, and (c, bottom) 
𝜒

𝑘∗ = 10 

Figure 69 shows the effective potential energy curves for the three-coil identical radius 2DoF-T system, 

indicating that the equilibria from Figure 68 all occur at a global minimum in the potential energy 

functional, making them statically and globally dynamically stable (within the boundary conditions that  

𝑥̃2, 𝑥̃3 ≥ 0).  The next section discusses the rotational equilibria positions and stability of a three coil 

system with different sized coils. 
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Coils of Different Radii 

 

Figure 70: 2DoF-T equilibrium locations for three coils of radius 𝑅1 = 1, 𝑅2̃ = 1.2, 𝑎𝑛𝑑 𝑅3̃  = 1.5, red being force 

equilibria on coil 2, green being force equilibria on coil 3, and black being equilibria in both; (a, left) 
𝜒

𝑘∗ = 0.1, (b, 

right ) 
𝜒

𝑘∗ = 1, and (c, bottom) 
𝜒

𝑘∗ = 10 

When the coils all have different radii (with radius increasing from coil 1 through coil 3), as in Figure 70, 

the equilibria are similar, with a few notable differences.  As 
𝜒

k∗ increases, the red circles no longer follow 

the line 𝑥̃2 = 𝑥̃3 but rather an almost-linear curve with a decreasing slope, such that coil 2 is closer to coil 

1 than coil 3 at equilibrium.  This behavior makes sense because coil 3 exerts a larger repulsive force on 

coil 2 than on coil 1 because coil 3 is bigger than coil 1.   

The equilibria near 𝑥̃2 = 0 occur because when coils 1 and 2 are concentric, they exert no x axis force on 

one another, and the net force on coil 2 is thus negative, from coil 3 only.  As soon as coil 2 moves slightly 

away from coil 1, coil 1 dominates and the force goes from negative to positive.  The same effect occurs 
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when 𝑥̃3 = 0, such that coils 2 and 3 are concentric with a net negative force from coil 1 on coil 3 and a 

net positive force from coil 1 on coil 2, both of which change signs soon after coils 2 and 3 move apart, 

causing the curving behavior of the coil 2 (red) equilibria as 𝑥̃2, 𝑥̃3 → 0.   The curving effect is due to the 

resultant force from coil 3 or coil 1 on two not being immediately parallel to the x axis because of the 

difference in radius between the coils.  The mutual equilibria seen along 𝑥̃3 = 0 (numbered with a 2 in 

Figure 70) are expected to be statically and dynamically unstable as a result of the immediate repulsive 

forces when 𝑥̃3 > 0. 

Figure 71, depicting the effective potential energy of the different-radii system, is very similar to Figure 

69; all of the equilibria occur at the global minimum of the system (which is known to be the minimum 

beyond the bounds depicted, because as the coils all get farther apart, the magnetic potential energy goes 

to zero, and the elastic potential energy grows as the springs continue to stretch beyond the distances 

presented in the above plots).  Therefore, all of the force equilibria when 𝑥̃2, 𝑥̃3 ≥ 𝑥̃0  are statically stable 

and globally dynamically stable.  The equilibria near 𝑥̃3 = 0 occur along the top of a ridge in the potential 

energy functional, making them statically unstable as expected. 

In general, the 2DoF-T results for the three coil system are consistent with the 1DoF-T results for two coils: 

a single statically stable equilibrium in repulsion, with the addition of interesting unstable equilibria in 

locations where 2 or more of the coils are concentric due to the third coil’s influence.  In the next section, 

equilibria in two rotational degrees of freedom (2DoF-R) are discussed, with some less intuitive and more 

interesting results.  
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Figure 71: Effective potential energy curves of the 2DoF-T system for three coils of radius 𝑅1 = 1, 𝑅̃2 = 1.2,

𝑎𝑛𝑑 𝑅̃3  = 1.5, red being force equilibria on coil 2, green being force equilibria on coil 3, and black being equilibria 

in both; (a, left) 
𝜒

𝑘∗ = 0.1, (b, right ) 
𝜒

𝑘∗ = 1, and (c, bottom) 
𝜒

𝑘∗ = 10 
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6.1.2. 2DoF Rotation 

Similar to the 2DoF translation case, the 2DoF rotation case requires solving a system of two equations 

for where both equal zero, except in the rotation case where the equations that are balanced are torques, 

not forces. Figure 72 shows the 2DoF-R three-coil system being explored in this section, in which the coils 

have all been fixed in place along the x axis, and coils 2 and 3 are allowed to rotate around the z axis 

between ±
𝜋

2
. 

 

Figure 72: 2DoF-R three-coil system 

The separation distances between the coils have been set to 3 such that when the different-radii case is 

studied, the coils do not overlap at all, even when 𝛽3 = 𝛽2 = ±
𝜋

2
.  Also, as opposed to the 2DoF 

translation case, each torsional spring just exerts a torque on one coil with respect to the x axis, not both 

coils, such that combined with the magnetic interactions, the two non-dimensional rotational equations 

that must be satisfied around the z axis for equilibrium are 

𝜏̃𝑡𝑜𝑡𝑎𝑙,2 = 𝜏̃𝑠𝑝𝑟𝑖𝑛𝑔,2 + 𝜏̃𝑚𝑎𝑔,21 + 𝜏̃𝑚𝑎𝑔,23 = 0, 

and 

(6.6) 

𝜏̃𝑡𝑜𝑡𝑎𝑙,3 = 𝜏̃𝑠𝑝𝑟𝑖𝑛𝑔,3 + 𝜏̃𝑚𝑎𝑔,31 + 𝜏̃𝑚𝑎𝑔,32 = 0, (6.7) 

or, in which the spring torques are substituted: 

−𝑘𝑟
∗𝛽2 + 𝜏̃𝑚𝑎𝑔,21 + 𝜏̃𝑚𝑎𝑔,23 = 0, 

and 

(6.8) 

−𝑘𝑟
∗𝛽3 + 𝜏̃𝑚𝑎𝑔,31 + 𝜏̃𝑚𝑎𝑔,32 = 0. (6.9) 
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Rotational equilibria are identified by finding where both Equations (6.6) and (6.7) are fulfilled in (𝛽3, 𝛽2).  

This section finds the rotational equilibria and investigates the stability of coils with the same radius (𝑅1 =

1, 𝑅̃2 = 1, and 𝑅̃3  = 1) then proceeds to do the same for coils of different radii (𝑅1 = 1, 𝑅̃2 = 1.2,

and 𝑅̃3  = 1.5). 

 

Coils of the Same Radius 

Figure 73 shows the rotational equilibria of a system wherein all coils have a radius of 1 and for each of 
𝜒

kr
∗ = [1, 2, 3, 4, 5, 10] by plotting red circles for a torque balance on coil 2, green circles for a torque 

balance on coil 3, and black circles for a mutual torque balance.  The 
𝜒

kr
∗ values were selected to display a 

range of interesting behaviors.  

All of the plots in Figure 73 have equilibria at 𝛽3, 𝛽2 = 0, which is expected when all the coils are parallel 

to each other and is reflected in the results of the 1DoF-R case in Chapter 5.  As 
𝜒

kr
∗ increases, the equilibria 

circles in Figure 73 rotate around the central point 𝛽3, 𝛽2 = 0, a general indication that a coil can rotate 

more before the torque from its torsional spring (or the influence of coil 1) is large enough to balance with 

the magnetic torque induced by the other rotating coil.  Because there are so many plots in Figure 73, 

analysis is given for each in order below for clarity.     

When 
𝜒

kr
∗ = 1 (Figure 73a), the net magnetic torque on coil 3 is weak enough from any rotation in 𝛽2 that 

the equilibrium position (green) of coil 3 is barely perturbed from 0, but positive torque is induced from a 

positive rotation in 𝛽2 as expected from the tendency of a coil to align with an external magnetic field, in 

this case the one generated by coil 2.   Coil 2 is equidistant from coils 1 and 3, each of which is aligned in 

the same direction and thus exerts the same direction torque once perturbed so that a positive rotation 

in 𝛽3 induces a positive rotation in 𝛽2 as well.  Because of the equivalent proximity of coils 1 and 3, a larger 

torque is expected on coil 2 than on coil 1 (which would result in the range of red circles in 𝛽2 to be larger), 

but since 
𝜒

kr
∗ is so small, the spring torque dominates at too small an angle for there to be a noticeable 

difference in maximum rotation in this torque plot.   

When 
𝜒

kr
∗ = 2 (Figure 73b), however, the difference in maximum rotation of equilibrium is noticeable, with 

red circles spanning roughly −0.4 ≤ 𝛽2 ≤ 0.4 but green circles spanning roughly −0.25 ≤ 𝛽3 ≤ 0.25.  

Also of interest in this plot are the two elliptical paths of coil 2 equilibria (red) that occur when coil 2 

rotates beyond about 1 radian in either direction (positive 𝛽2 equilibria happen at positive 𝛽3).  Picking 

the 𝛽3 = 0 line to examine for simplicity, it can be seen that these equilibria occur because the magnetic 

torque (coils 1 and 3 exerting torque in the same direction) at a certain angle is strong enough (compared 

to the previous case) to dominate the torsional spring’s resistive torque, causing the region inside the 

elliptical paths to be a region where the torque on coil 2 has switched signs due to the dominance of the 

magnets.  However, while the maximum magnetic torque on coil 2 from coils 1 and 3 occurs at 𝛽2 = ±
𝜋

2
, 

so does the maximum spring torque, and the spring torque increases linearly whereas the magnetic 
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torque increases at a decreasing rate, so there’s a point near 𝛽2 = ±
𝜋

2
 where the spring torque once again 

dominates over the magnetic torque to change the sign of the torque.  The elliptical regions do not extend 

at both the top and the bottom for all 𝛽3; for |𝛽3|>0.6, there only exist these secondary equilibria for coil 

2 in the same direction as 𝛽3.  This is because when coil 3 is significantly rotated away from coil 1, there 

is no point in the other direction for which coil 2’s magnetic torque in that direction dominates the 

restorative spring torque. 

When 
𝜒

kr
∗ = 3 (Figure 73c), the elliptical paths of coil 2 equilibria disappear, replaced by a small region from 

roughly −0.4 ≤ 𝛽3 ≤ 0.4 within which three coil 2 equilibria exist versus just one everywhere else.  These 

secondary equilibria exist because the magnetic torque is stronger in this case than the previous one, 

meaning that a smaller rotation is required to reach a magnetic torque that will dominate the spring 

torque (recalling that the magnetic torque between two coils goes from a minimum when the coils are 

parallel to a maximum when one is perpendicular to the other).   
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Figure 73: 2DoF-R equilibrium locations for three coils of radius 1, where red is torque equilibria on coil 2, green is 

torque equilibria on coil 3, and black is equilibria in both; (a, top left) 
𝜒

𝑘𝑟
∗ = 1, (b, top right ) 

𝜒

𝑘𝑟
∗ = 2, (c, mid left) 

𝜒

𝑘𝑟
∗ =

3, (d, mid right) 
𝜒

𝑘𝑟
∗ = 4, (e, bottom left) 

𝜒

𝑘𝑟
∗ = 5, and (f, bottom right) 

𝜒

𝑘𝑟
∗ = 10 
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When 
𝜒

kr
∗ = 4 (Figure 73d), the secondary equilibria have disappeared, because now the divergent 

magnetic torque is strong enough to dominate the restorative spring at even a small rotation from zero.  

It would therefore be expected that the equilibrium at 𝛽3, 𝛽2 = 0 is now unstable although previously it 

had been stable.  It can be seen that the line of coil 3 (green) equilibria is relatively similar throughout the 

first four plots of Figure 73, albeit rotating clockwise from plot to plot as the magnetic torque increases, 

thus increasing the angle at which the magnetic spring torque on coil 3 finally dominates. 

When 
𝜒

kr
∗ = 5 (Figure 73e), the coil 2 curve of equilibria has not changed significantly, since the magnetic 

torque is already dominating on coil 2; however, the coil 3 curve of equilibria has changed significantly 

from the previous plot, now having three equilibria for some values of 𝛽2.  This is because coil 3 is now 

going through the same phase that coil 2 did earlier (recalling that coil 3 does not experience as strong an 

additional contribution from coil 1 as does coil 2), wherein for the same 𝛽2, there is a region of 𝛽3 values 

for which magnetic torque dominates until the spring torque finally matches it.  Outside of that region, 

the spring torque dominates.  For values of 𝛽2 outside of that three-equilibrium region, roughly 

−0.6 ≤ 𝛽2 ≤ 0.6, the only equilibrium for coil 3 is when it twists significantly in the same direction as coil 

2.  The only reason these equilibria aren’t all at ±
𝜋

2
 (at which point coils 2 and 3 would be in a configuration 

where their magnetic moments are aligned with the external field generated by the other) is that coil 1 

exerts a small restorative magnetic torque on coil 3 because they begin in an aligned state at 𝛽3 = 0. 

When 
𝜒

kr
∗ = 10 (Figure 73f), the two lines of equilibria are far closer together now that the magnetic torque 

on both coils dominates the spring torque no matter the angle of the other coil (except right at 𝛽2 = 0).  

Secondary equilibria appear at roughly (1.25,−1) and (−1.25, 1) and effectively continue out along the 

joining of the two curves to 𝛽3 = ±
𝜋

2
 .  These secondary equilibria are interesting because if this were a 

system consisting of just coils 2 and 3, there would never be equilibria near or at 𝛽3 = −𝛽2 = ±
𝜋

2
, given 

that the configuration makes coils 1 and 2 anti-aligned with the other’s magnetic field and the influence 

of the torsional spring, no matter how small compared to the magnetic torque, would make equilibrium 

impossible.  However, because of the influence of coil 1, there exists a very specific orientation of coils 2 

and 3 such that both coils 2 and 3 have a net torque of zero in this region of the design space.  They are 

expected to be unstable, due to the general anti-alignment of the system, but these equilibria are still 

interesting features specific to a three coil system.  

Figure 74 shows the potential energy curves of the systems and equilibria depicted in Figure 73. 
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Figure 74: 2DoF-R effective potential energy curves for three coils of radius 1, where red is torque equil. on coil 2, 

green is torque equil. on coil 3, and black is equil. in both;  (a, top left) 
𝜒

𝑘𝑟
∗ = 1, (b, top right ) 

𝜒

𝑘𝑟
∗ = 2, (c, mid left) 

𝜒

𝑘𝑟
∗ =

3, (d, mid right) 
𝜒

𝑘𝑟
∗ = 4, (e, bottom left) 

𝜒

𝑘𝑟
∗ = 5, and (f, bottom right) 

𝜒

𝑘𝑟
∗ = 10 
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When 
𝜒

kr
∗ = 1 (Figure 74a), equilibrium 1 clearly occurs at the potential energy minimum within the bounds 

plotted, making it statically stable.  It’s possible that there are other minima outside of these bounds (if a 

coil should rotate beyond ±
𝜋

2
, for instance), so it cannot be said to be globally stable, though there are no 

other visible minima for equilibrium 1 with which to share metastability.  Given the relative weakness of 

the magnetic torques in this system, the basin-shaped elastic potential energy functional of the torsional 

springs dominates.  The critical initial kinetic energy of this system within the bounds given is therefore 

determined by the minimum energy along the bounds, which occurs at the top and bottom of the plot 

where the green curve meets the bounds.  𝑇̃𝑡0,𝑐𝑟𝑖𝑡,𝑎1= 0.6797. 

When 
𝜒

kr
∗ = 2 (Figure 74b), equilibrium 1 still occurs at the potential energy minimum, making it statically 

and dynamically stable.  Equilibria 2/3 occur at saddle points and thus are statically and dynamically 

unstable.  Interestingly, equilibria 4/5 occur at local minima in the potential energy functional as well, 

making them statically stable.  Equilibria 2/3 dictate the critical initial kinetic energy for equilibrium 1.  The 

value of the potential energy at the bounds determines the critical initial kinetic energy for equilibria 4/5.  

𝑇̃𝑡0,𝑐𝑟𝑖𝑡,𝑏1 = 0.1285, and 𝑇̃𝑡0,𝑐𝑟𝑖𝑡,𝑏45 = 0.0010. 

When 
𝜒

kr
∗ = 3 (Figure 74c), equilibrium 1 occurs at a local potential energy minimum, while equilibria 2/3 

occur at saddle points.  Equilibrium 1 is therefore statically stable and (barely) dynamically stable while 

equilibria 2/3 are statically unstable and are used to calculate the critical initial kinetic energy of 

equilibrium 1. 𝑇̃𝑡0,𝑐𝑟𝑖𝑡,𝑐1 = 0.0123. 

When 
𝜒

kr
∗ = 4, 5 or 10 (Figure 74d, e, or f), equilibrium 1 occurs at a saddle point and is thus statically and 

dynamically unstable. For 
𝜒

kr
∗ = 10, equilibria 2 and 3 occur at the potential energy maxima in the system 

and are thus statically and dynamically unstable as well. 
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Coils of Different Radii 

Figure 75 shows the equilibrium curves of three different sized coils (𝑅1 = 1, 𝑅̃2 = 1.2, and 𝑅̃3  = 1.5) for 

each of 
𝜒

kr
∗ = [1, 2, 3, 10].  The overall trends are similar to those of the same radius coils in Figure 73, but 

the larger coils tend to accelerate the convergence of the equilibrium curves to the general shape shown 

in Figure 73f and Figure 75d, because the larger radius increases the proximity of coil perimeters when 

one or both of coils 2 and 3 is tilted, increasing the resultant torques as compared to the same size system 

with the same value of 
𝜒

kr
∗.  Also, in this asymmetric system, the contributions of coils 1 and 3 on coil 2 are 

no longer equal.  As a result, the rotational symmetry exhibited in Figure 73 persists (because it is rooted 

in the symmetry of rotation in either direction about the y axis), but some of the general shapes have 

been skewed or differ in Figure 75 from the general shapes seen in Figure 73.  

 

 

Figure 75: 2DoF-R equilibrium locations for three coils of radius 𝑅1 = 1, 𝑅̃2 = 1.2, 𝑎𝑛𝑑 𝑅̃3  = 1.5, where red is 

torque equilibria on coil 2, green is torque equilibria on coil 3, and black is equilibria in both; (a, top left) 
𝜒

𝑘𝑟
∗ = 1, (b, 

top right ) 
𝜒

𝑘𝑟
∗ = 2, (c, bottom left) 

𝜒

𝑘𝑟
∗ = 3, and (d, bottom right) 

𝜒

𝑘𝑟
∗ = 10 
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When 
𝜒

kr
∗ = 1 (Figure 75a), secondary equilibria can already be seen in this system as compared to the 

same radius system.  The most interesting thing about this plot is the regions of green equilibria in the 

corners.  Given that both coils 2 and 3 are bigger than coil 1, and thus their interaction dominates these 

plots, equilibria near the lowest potential energy configuration of coils 2 and 3 (𝛽3 = 𝛽2 = ±
𝜋

2
 ) actually 

appear in this plot and Figure 75b.  There are not mutual equilibria at these points because coil 1 and the 

springs still exist and contribute torque.  The green and red equilibria in the opposing corners will converge 

as 
𝜒

kr
∗ increases to the secondary mutual equilibria seen in the 

𝜒

kr
∗ = 10 plots. 

When 
𝜒

kr
∗ = 2 (Figure 75b), the plot looks very similar to Figure 73c except that for every value of 𝛽2, there 

exist three equilibria for coil 3.  The three equilibria exist because for each 𝛽2, there is a region in which 

the magnetic torque on coil 3 dominates and is then matched at the outer equilibria by the restorative 

spring torque.  

When 
𝜒

kr
∗ = 5 or 10 (Figure 75c or d), the shape of the equilibria curves is familiar, converging to the same 

winding pattern. It can be seen that coil 3 has equilibria at 𝛽3 = 𝛽2 = ±
𝜋

2
 instead of slightly removed from 

that point as in Figure 73f, due to the reduced influence of coil 1 on coil 3 as compared to the influence of 

coil 2 on coil 3.  

Figure 76 shows the potential energy curves of the systems and equilibria depicted in Figure 75.  The plots 

in Figure 76 are discussed below. 

When 
𝜒

kr
∗ = 1 (Figure 76a), equilibrium 1 occurs at a local potential energy minimum, while equilibria 2/3 

occur at saddle points.  Equilibrium 1 is therefore statically stable while equilibria 2/3 are statically 

unstable and are used to calculate the critical initial kinetic energy of equilibrium 1.  𝑇̃𝑡0,𝑐𝑟𝑖𝑡,𝑎1 = 0.1685. 

When 
𝜒

kr
∗ = 2 (Figure 76b), equilibrium 1 occurs at a local potential energy minimum, making it statically 

and dynamically stable.  It is barely stable, though, as equilibria 2/3 occur at saddle points and have a very 

small amount more potential energy than equilibrium 1, making the critical initial kinetic energy of 

equilibrium 1 very small.  𝑇̃𝑡0,𝑐𝑟𝑖𝑡,𝑏1 = 0.005.  

When 
𝜒

kr
∗ = 3 or 10 (Figure 76c or d), equilibrium 1 occurs at a saddle point and is thus statically and 

dynamically unstable.  For 
𝜒

kr
∗ = 10, equilibria 2 and 3 occur at the potential energy maxima in the system 

and are thus statically and dynamically unstable as well.  
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Figure 76: 2DoF-R equilibrium locations for three coils of radius 𝑅1 = 1, 𝑅2̃ = 1.2, 𝑎𝑛𝑑 𝑅3̃  = 1.5, where red is 

torque equilibria on coil 2, green is torque equilibria on coil 3, and black is equilibria in both; (a, top left) 
𝜒

𝑘𝑟
∗ = 1, (b, 

top right ) 
𝜒

𝑘𝑟
∗ = 2, (c, bottom left) 

𝜒

𝑘𝑟
∗ = 3, and (d, bottom right) 

𝜒

𝑘𝑟
∗ = 10 

The analysis done in this section shows that it is possible to have a stable three coil system when two coils 

are allowed to rotate, but that if the nondimensional coefficient 
χ

k∗ or 
χ

kr
∗ is too large (indicating a strong 

magnetic field), then the system becomes fundamentally unstable.  It also proves the extensibility of the 

approach and model developed in this thesis to more intricate problems than just the two coil interaction.  

Future work includes a full 4DoF three-coil system with both of the translational and both of the rotational 

degrees of freedom studied in this chapter, though effective visualization of that system would be 

understandably challenging.  Additionally, experimentation with the types of connective hardware 

(various arrays of tethers instead of springs, or torsional springs that act on two coils at once instead of 

just one coil, as in this chapter) would provide insight to spacecraft designers on how stability is affected 

by the types of hardware selected.  The next section discusses how the type of conductor used for the 

electromagnetic coils affects stability and the assumptions made thus far in this work.  
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6.2. Replacing Springs With Tethers 

One of the fundamental assumptions made in this work so far is that the electromagnetic coils are 

connected by elastic hardware capable of exerting forces when compressed; namely, springs.  While it is 

not impossible to have linear springs several coil radii long, at those lengths, buckling of the springs 

becomes a concern, as well as how the structure still be stowed in a launch vehicle fairing.  More likely, 

coils will be connected by flexible tethers, which exert forces in tension but go slack under compression.  

Such tethers could be easily coiled when the structure is stowed.  This section will explore how changing 

the elastic hardware assumptions affects the equilibrium and stability conclusions. 

6.2.1. Tether Model 

In the tether model of a magneto-elastic structure as shown by Figure 77, the single torsional spring and 

single linear spring have been replaced by two flexible tethers positioned at either side of the two coils 

(in the positive and negative y extrema of each coil when 𝛽 = 0) such that rotation around the z axis 

causes them to stretch or go slack.  As such, the tethers, when stretched, exert torques around the z axis 

and forces along the x axis in the same way that the spring-based system does.  However, when the tethers 

are less than their natural length, they exert no force or torque at all.  The natural length of the spring or 

tether is x̃0= 2.5 and 𝑅̃2 = 1.2. 

 

Figure 77: General 2DoF two-coil tether model 

Each tether is modeled with the same spring constant as the linear spring in the spring system, meaning 

that when the coils are parallel to one another and the tethers are stretched, the restorative spring force 

is double what it was in Section 5.3 because there are two tethers.  Therefore, when the 1DoF-T case is 

considered with tethers, different equilibria are expected as a result.  As coil 2 rotates, only one tether 

exerts a restorative torque (the other going slack), which means that the magnitudes of the spring and 

tether torques are comparable (and not double as in the force case).  However, the magnitude of the 

torque exerted by a torsional spring and the torque generated by a stretching tether attached at the 

perimeter of a coil are slightly different, and therefore some differences are expected in torques and 

potential energy in the 1DoF case with tethers.  Finally, the 2DoF case is expected to be more different 
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with tethers than either of the single degree of freedom cases, given that the tether force is dependent 

on the angle of the coil, whereas the spring force was not.   

Equations (6.10)-(6.12) give the general equations for the spring force and total force on coil 2: 

𝐹̃⃗2,𝑡𝑒𝑡ℎ1 = {
0, 𝐿̃𝑡𝑒𝑡ℎ1 − 𝑥̃0 ≤ 0

−𝑘∗[𝐿̃⃗⃗𝑡𝑒𝑡ℎ1 − 𝑥̃0𝐿̂𝑡𝑒𝑡ℎ1], 𝐿̃𝑡𝑒𝑡ℎ1 − 𝑥̃0 > 0
 (6.10) 

𝐹̃⃗2,𝑡𝑒𝑡ℎ2 = {
0, 𝐿̃𝑡𝑒𝑡ℎ2 − 𝑥̃0 ≤ 0

−𝑘∗[𝐿̃⃗⃗𝑡𝑒𝑡ℎ2 − 𝑥̃0𝐿̂𝑡𝑒𝑡ℎ2], 𝐿̃𝑡𝑒𝑡ℎ2 − 𝑥̃0 > 0
 

and 

(6.11) 

𝐹̃⃗𝑡𝑜𝑡𝑎𝑙,2 = 𝐹̃⃗𝑚𝑎𝑔,12 + 𝐹̃⃗2,𝑡𝑒𝑡ℎ1 + 𝐹̃⃗2,𝑡𝑒𝑡ℎ2, 
(6.12) 

where 

𝐿̃⃗⃗𝑡𝑒𝑡ℎ1 = 𝑥̃⃗2,𝑡𝑒𝑡ℎ1 − 𝑥̃⃗1,𝑡𝑒𝑡ℎ1, 

and 

(6.13) 

𝐿̃⃗⃗𝑡𝑒𝑡ℎ2 = 𝑥̃⃗2,𝑡𝑒𝑡ℎ2 − 𝑥̃⃗1,𝑡𝑒𝑡ℎ2. 
(6.14) 

𝑥̃⃗2,𝑡𝑒𝑡ℎ1 and 𝑥̃⃗2,𝑡𝑒𝑡ℎ2 are the vector locations with respect to the system origin of the attachment points 

of tethers 1 and 2 on coil 2, and 𝑥̃⃗1,𝑡𝑒𝑡ℎ1 and 𝑥̃⃗1,𝑡𝑒𝑡ℎ2 are the attachment points of the tethers to coil 1.  

𝐿̃⃗⃗𝑡𝑒𝑡ℎ1 and 𝐿̃⃗⃗𝑡𝑒𝑡ℎ2 are thus the vectors along tethers 1 and 2 respectively from where they attach on coil 2 

to where they attach on coil 1.  As throughout the rest of the thesis, the forces when plotted and balanced 

are just those in the x direction, but they have been left in vector form here because the torques will be 

calculated from the force vectors. 

Equations (6.15)-(6.17) give the general equations for the spring torque and total torque on coil 2, using 

the above definitions, and noting that the torque is zero when the force is zero: 

𝜏̃2,𝑡𝑒𝑡ℎ1 = [𝑥̃⃗2,𝑡𝑒𝑡ℎ1 − 𝑥̃⃗2,0] × 𝐹̃⃗2,𝑡𝑒𝑡ℎ1, (6.15) 

𝜏̃2,𝑡𝑒𝑡ℎ2 = [𝑥̃⃗2,𝑡𝑒𝑡ℎ2 − 𝑥̃⃗2,0] × 𝐹̃⃗2,𝑡𝑒𝑡ℎ2, (6.16) 
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and 

𝜏̃𝑡𝑜𝑡𝑎𝑙,2 = 𝜏̃𝑚𝑎𝑔,12 + 𝜏̃2,𝑡𝑒𝑡ℎ1 + 𝜏̃2,𝑡𝑒𝑡ℎ2. (6.17) 

All three of these cases will be studied with tethers and compared to their respective spring-based 

systems in the following sections. 

6.2.2. 1DoF-T Tether System 

In the 1DoF-T case, coil 2 is not rotated at all, so the tethers remain parallel to and exert forces only along 

the x axis.  Since the coils are in repulsion, all equilibria are at distances greater than the natural length of 

the tether except the new equilibria which occur when the coils are concentric at 𝑥̃=0, since there is no 

magnetic force or elastic force in the tether system at 𝑥̃=0 (the spring force is nonzero in the spring model 

at 𝑥̃=0).  Figure 78 shows the tether system forces and equilibria in magenta (and green for the negative 

values of force) plotted over the spring system forces and equilibria in black and grey (for negative values).  
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Figure 78: 1DoF-T non-dimensional absolute force versus distance for the spring system (black positive, grey 
negative) and the tether system (magenta positive, green negative) when 𝑥̃0 = 2.5 

It can be seen from Figure 78 that for 𝑥̃ ≤ x̃0, the spring system force is greater than the tether system 

force because the latter falls slack and has no elastic force.  When 𝑥̃ > x̃0, the tether system’s elastic force 

is twice that of the spring system and therefore the non-zero equilibrium points for each 𝜒/𝑘∗ occur at 

smaller 𝑥̃ than in the spring system.  This is as expected from the tether 1DoF-T system.  The difference in 

the spring and tether force curves is most pronounced for smaller 𝜒/𝑘∗, wherein the elastic force makes 

up a larger portion of the total force. 

Figure 79 shows the potential energy curves of the 1DoF-T tether system (magenta) overlaid with the 

spring system (black).  The tether system potential energy is slightly less than the spring system potential 

energy, though this difference becomes less pronounced as the total magnitude of potential energy 

increases (since the magnetic potential energy dominates), and the minima are where they are expected 

to be given the new equilibria.  Because there is now an equilibrium point in each curve at 𝑥̃=0, the 

potential energy curves are at a maximum at 𝑥̃=0, their rates of change zero. 
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Figure 79: 1DoF-T non-dimensional potential energy versus distance for the spring system (black) and the tether 
system (magenta) when 𝑥̃0 = 2.5 

As is the norm throughout this work, the minimum value of potential energy for each curve has been 

added to it to place the minimum in potential energy at zero.  The non-zero equilibria are all statically 

stable because they occur at local minima, whereas the zero equilibria are statically unstable because they 

occur at maxima.  Previously, the spring system was defined as globally stable assuming a constraint that 

did not allow the system to pass through to negative values of 𝑥̃.  For the sake of comparison, however, 

that constraint is being relaxed. The critical initial kinetic energies for the spring and tether systems are 

both determined by the difference in potential energy with respect to 𝑥̃=0, since the potential energy 

increases to infinity as 𝑥̃ → ∞.  The difference between the spring and tether system potential energies 

at the origin is just the spring potential energy at that position (3.125); however, the minima occur at 

different X and thus the minimum in potential energy is of different magnitudes.  Table 31 gives the 

difference in 𝑇̃𝑡0,𝑐𝑟𝑖𝑡 for each of the statically stable equilibria in Figure 79, which happens to be equal to 

the elastic potential energy in the spring at zero.   

Table 31: Critical initial kinetic energies for the 1DoF-T tether and spring systems 

Equilibrium 

ID 

 𝜒/𝑘∗ 𝑥̃ value at 

spring eq 

𝑥̃ value at 

tether eq 
𝑇̃𝑡0,𝑐𝑟𝑖𝑡,𝑠𝑝𝑟𝑖𝑛𝑔 𝑇̃𝑡0,𝑐𝑟𝑖𝑡,𝑡𝑒𝑡ℎ𝑒𝑟 ∆𝑇̃𝑡0,𝑐𝑟𝑖𝑡 

𝑥̃𝑐𝑜𝑖𝑙,1 1 2.864 2.714 15.04 11.89 3.15 

𝑥̃𝑐𝑜𝑖𝑙,2 10 3.859 3.467 124.2 120.4 3.8 

𝑥̃𝑐𝑜𝑖𝑙,3 100 5.759 5.065 1231 1224 7 
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6.2.3. 1DoF-R Tether System 

The 1DoF-R case assumes x̃0= 2.5 and 𝑅̃2 = 1.2 as well.  Since coil 2’s distance from coil 1 is fixed at the 

natural length of the tethers in the rotational case, one tether is always slack, depending on the sign of 𝛽.  

Figure 80 shows the difference between the torsional spring and the tethers in both torque (Figure 80a) 

and potential energy (Figure 80b).  The spring torque is a linear function of 𝛽 and its potential energy is 

simply a quadratic function, but the tether torque is nonlinear and decreases in magnitude as 𝛽 → ±𝜋/2.  

 

Figure 80: (a, left) Tether versus spring torque over 𝛽; (b, right) Elastic potential energy of spring system versus 
tether system over 𝛽 

Figure 81a shows all of the tether system torques and equilibria in magenta (and green for the negative 

values of torque) plotted over all of the spring system torques and equilibria in black and grey (for negative 

values).  Figure 81b-d show the tether and spring systems for each individual value of 𝜒/𝑘∗, for easier 

observation of the differences between the systems.  Because the spring case used 𝜒/𝑘𝑟
∗, that term is 

used in the legend and titles of these plots instead, but given that 𝑘𝑟
∗ was taken to be 1, the spring and 

tether cases are still comparable and 𝜒/𝑘∗ and 𝜒/𝑘𝑟
∗ are interchangeable in this section.  

When 
𝜒

𝑘∗ = 0.1, the most significant impact of the use of tethers on the torques in the system is to 

decrease the magnitude of total torque as 𝛽 → ±𝜋/2 because the elastic torques dominate the magnetic 

torque for a small 
𝜒

𝑘∗. 

When 
𝜒

𝑘∗ = 10, the magnitude of total force is actually increased via the use of tethers as 𝛽 → ±
𝜋

2
 because 

the magnetic torque dominates the elastic torque in those regions.  The secondary equilibria are slightly 

shifted to higher magnitude 𝛽s because the magnitude of the elastic torque is increased in that middle 

region (also evidenced by the larger magnitude of the total tether torque in between the secondary 

equilibria, where the elastic torque dominates). 

When 
𝜒

𝑘∗ = 100, the most significant impact of the use of tethers instead of springs is that two secondary 

equilibria are created on either side of a central equilibrium (the 𝑥̃ = 0 equilibrium is evidenced by the 

change in colour; the lack of downward spike at 𝑥̃ = 0 is due to the resolution of the plot).  The increase 

in magnitude of the elastic torque in the regions between 𝛽~ ± 0.75 as shown in Figure 80a is enough to 
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create secondary equilibria in 
𝜒

𝑘∗ = 100, which is consistent with the shifting outward of the secondary 

equilibria in Figure 81c; in systems where the secondary equilibria fall within the range 𝛽~ ± 0.75, the 

use of tethers instead of springs slightly increases the amount the coil has to rotate before reaching a 

secondary equilibrium (or potentially introduce secondary equilibria from a single zero equilibrium, as in 

Figure 81d). 

 

Figure 81: 1DoF-R non-dimensional absolute torque versus distance for the spring system (black positive, grey 

negative) and the tether system (magenta positive, green negative) when 𝑥̃0 = 2.5; (a, top left) all 
𝜒

𝑘∗, (b, top right) 
𝜒

𝑘∗ = 0.1, (c, bottom left) 
𝜒

𝑘∗ = 10, (d, bottom right) 
𝜒

𝑘∗ = 100 

Figure 82 shows the potential energy curves of the 1DoF-R tether system (magenta) overlaid with the 

spring system (black).  As expected, the smallest 
𝜒

𝑘∗ sees the largest impact of the change in elastic 

hardware, given that the elastic potential energy is of comparable magnitude to the magnetic potential 

energy.  When 
𝜒

𝑘∗ = 0.1, the potential energy drops as 𝛽 → ±𝜋/2 compared to the spring case.  The 

medium 
𝜒

𝑘∗ sees a small amount of change; the potential energy at each of the secondary equilibria sees 

a slight increase from that of the spring system.  Interestingly, the use of the tethers lowers the critical 

initial kinetic energy of the statically stable zero equilibrium when 
𝜒

𝑘∗ = 0.1 but raises the critical initial 
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kinetic energy of the statically stable zero equilibrium when 
𝜒

𝑘∗ = 10 because of the way that the tether 

torque is stronger in the central region but weaker at the boundaries as compared to the spring torque.  

The  
𝜒

𝑘∗ = 100 system now has a statically stable central equilibrium due to the introduction of the 

secondary equilibria, but its critical initial kinetic energy is very small.  

 

Figure 82: 1DoF-R non-dimensional potential energy versus distance for the spring system (black) and the tether 

system (magenta) when 𝑥̃0 = 2.5; (a, top left) 
𝜒

𝑘∗ = 0.1, (b, top right) 
𝜒

𝑘∗ = 10, (c, bottom) 
𝜒

𝑘∗ = 100 

The critical initial kinetic energy of each of these systems is listed in Table 32 for the tether system and 

for the spring system.  For 
𝜒

𝑘∗ = 0.1, the critical initial kinetic energy is taken with respect to the values at 

𝛽 = ±
𝜋

2
, even though rotation past those bounds may result in a different critical initial kinetic energy; 

this is because in a tethered system, once coil 2 rotates a small amount past 𝛽 = ±
𝜋

2
, the tethers cannot 

exert a restorative torque anymore.  This can be seen in the way the tether torque approaches zero as 

𝛽 → ±
𝜋

2
 in Figure 80a. 
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Table 32: Critical initial kinetic energies for the 1DoF-R tether and spring systems 

Equilibrium ID  𝜒/𝑘∗ 𝑇̃𝑡0,𝑐𝑟𝑖𝑡,𝑠𝑝𝑟𝑖𝑛𝑔 𝑇̃𝑡0,𝑐𝑟𝑖𝑡,𝑡𝑒𝑡ℎ𝑒𝑟 ∆𝑇̃𝑡0,𝑐𝑟𝑖𝑡 

𝛽𝑐𝑜𝑖𝑙,1 0.1 1.176 0.831 0.345 

𝛽𝑐𝑜𝑖𝑙,2 10 0.05 0.09 -0.04 

𝛽𝑐𝑜𝑖𝑙,3 100 0 0.0001 -0.0001 
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6.2.4. 2DoF Tether System 

The 2DoF tether system combines the single rotational and single translational degrees of freedom for 

x̃0= 2.5 and 𝑅̃2 = 1.2.  This system is expected to have some interesting results compared to the spring 

system because force changes with angle in the tether system unlike in the spring system.  Figure 83 shows 

the equilibrium positions in 𝛽 and 𝑥̃ for the spring system (the plots on the left) and the tether system 

(the plots on the right) for each of 
𝜒

𝑘∗ = [0.1, 1, 10]. 

The general features of the 2DoF equilibrium plots have been discussed in previous chapters, so this 

discussion will focus on the differences between the spring and tether equilibrium plots for the same 

values of 
𝜒

𝑘∗. 

The lack of symmetry in force equilibria at the very edges of some of the plots are, as noted in previous 

chapters, due to the fact that the numerical algorithm for finding equilibria picks the index before the 

change in sign, and so depending on the search direction, some equilibria are not plotted.  The equilibria 

are in fact symmetric about 𝛽 = 0, and if equilibrium occurs on one side, there is also an equilibrium on 

the other as well.  No mutual equilibria are excluded as a result of this effect, so it is of marginal 

consequence.   

For 
𝜒

𝑘∗ = 0.1, there exists a distinct difference between the spring and tether cases, mostly because the 

elastic forces and torques are of comparable magnitude to the magnetic forces and torques.  Because 

there are no compressive forces to counter magnetic forces for x̃ < x̃0, the proximity effect line of 

equilibria around x̃~0.6 appear in the tether case for smaller 
𝜒

𝑘∗ than in the spring case.  Also, the red 

(force) line of equilibria that is relatively flat in the spring case is swept back towards the origin significantly 

as 𝛽 → ±
𝜋

2
.  This difference is because the tether forces now depend on 𝛽 and drastically reduce as the 

coil rotates one way or the other.  The magnetic forces are so small in this case, especially when the coil 

is rotated, that the force equilibrium curve is very similar to the boundary of the values of x̃ for which 

there is first a nonzero tether force.  So, the tether force kicks in at smaller x̃ when 𝛽 → ±
𝜋

2
 because that 

is where the maximum extension of one of the two tethers occurs.  Also, it can be seen that the torque 

equilibria curve (green) is more established in the tether case than in the spring case, such that equilibria 

2 and 3 along the primary red curve appear even for such a small 
𝜒

𝑘∗. This is because of the nonlinearity of 

the torque as seen in Figure 80a; in the spring case, the magnetic torque is small enough that it only 

balances with the spring torque when x̃ is small, but in the tether case, the torque decreases in magnitude 

as  𝛽 → ±
𝜋

2
, thus allowing the magnetic torque to balance with it at larger values of x̃. 

The trends described above persist throughout the 
𝜒

𝑘∗ = 1 and 10 cases, though the differences between 

the two cases are less evident as the magnetic effects increase in magnitude.  Another interesting note is 

that equilibria 2 and 3 in the 
𝜒

𝑘∗ = 10 case occur at larger 𝛽 values in the tether case.  This is again because 

of the nonlinearity in the spring torque that makes it larger between 𝛽 ≈ ±
𝜋

2
. 

Figure 84 shows the potential energy contours around the equilibria from Figure 83.  
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Figure 83: 2DoF equilibria for spring (left, a, c, e) versus tether (right, b, d, f) cases; (a, b, top) 
𝜒

𝑘∗ = 0.1, (c, d, middle) 
𝜒

𝑘∗ = 1, (e,f, bottom) 
𝜒

𝑘∗ = 10 
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The potential energy contours and the indicated static stability of the spring and tether systems are much 

as expected; if there is one equilibrium at 𝛽 = 0 and no others along the primary red curve, then it is 

globally stable within the bounds being studied, and if there are statically unstable secondary equilibria 

at saddle points along the primary red curve, then the 𝛽 = 0 equilibrium is not globally stable and thus 

has a critical initial kinetic energy which could make it dynamically unstable.  The energy levels are rather 

similar between the spring and tether cases, largely because the elastic potential energy is not a large 

contributor to the effective potential energy at larger 
𝜒

𝑘∗.  What is interesting to note is that whereas the 

first two spring cases have globally stable 𝛽 = 0 equilibria, all of the tether cases have unstable secondary 

equilibria, which indicates that even for weak magnets, there still exist unstable modes in the tether case.  

As a result, one could make the case that the tether system is “less stable” on the whole than the spring 

case, which is not surprising given the nonlinearity of its elastic torques.  

Also of interest is the difference in shape of the potential energy curve; the low 
𝜒

𝑘∗ tether case has a 

triangular potential energy well as compared to the oval well in the spring case.  This observation suggests 

that different tether designs (potentially crossing from one side to the other, or tied to one another, or 

asymmetric) could create different potential energy curves which may create statically stable equilibria 

elsewhere in the x̃ − 𝛽 space. 

6.2.5. Conclusions 

Using different connective hardware results in different elastic forces, torques, and potential energy 

curves, and the methodology presented in this thesis provides a way to visualize the effects of different 

hardware options or hardware configurations on the equilibrium and static and dynamic stability of a 

system.     
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Figure 84: 2DoF effective potential energy curves for spring (left, a, c, e) versus tether (right, b, d, f) cases; (a, b, 

top) 
𝜒

𝑘∗ = 0.1, (c, d, middle) 
𝜒

𝑘∗ = 1, (e,f, bottom) 
𝜒

𝑘∗ = 10 
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6.3. Other Assumptions 

Some other assumptions that have been made about the system include the use of superconducting wire 

and constant currents through the coils.  This section briefly discusses how changing these assumptions 

may affect the stability results. 

6.3.1. Type of Conductor 

The non-dimensional magnetic coefficients in this thesis have not been limited in range, allowing for any 

combination of current, number of turns, and radius of coil.  However, in a real-world system of 

electromagnetic coils, the magnetic coefficients are limited to what is physically possible with the 

conductor used in the coils.  As discussed in Chapter 2, a coil wound with copper is capable of carrying 

roughly two orders of magnitude less current for a given cross-sectional area of wire than a modern 

second generation HTS-wound coil [31] because of the resistivity of copper.  In order to achieve the same 

current-carrying capacity as an HTS wire, many more turns or larger cross-sections of copper wire are 

required, which increases the mass of the coil for the same current delivery.  The highest values of the 

nondimensional magnetic coefficients are only obtainable with very high currents or low mass coils, 

meaning that only superconducting coils can reach those values.  This difference in critical current density 

is the primary difference between regular conductors and superconductors, followed by the necessity to 

design and implement a cooling system for the superconductors that will add mass and risk to the system 

over the mission lifetime.   

Because a coil wound with superconducting wire has virtually zero resistivity when it is superconducting, 

it can be operated with a current source or without (called persistent mode) for a long period of time.  

Persistent mode can be induced in a copper coil, but the current will die off quickly due to the non-zero 

resistivity of the wire.  For both a copper coil and an HTS coil, operating with a constant source results in 

no difference in current at steady state between a perturbed configuration and its initial configuration (as 

modeled in this paper so far).   

6.3.2. Constant Versus Changing Currents 

In terms of how conductor choice affects stability other than in coefficient value, system assumptions 

must be examined.  The current through the coils is assumed to be constant in the thesis up to this point, 

changing not at all between configurations.  This assumption is consistent with a current source that 

changes to keep the current constant.  However, in a system wherein the current sources are not changing 

to keep the current constant, changing the position of a coil in a multi-coil system would change the 

magnetic flux through each coil and induce an electromotive force (EMF, 𝔈) around each coil in a direction 

to oppose the change in flux [49].  The EMF, which in essence is a change in voltage, and the current it 

thus induces according to Ohm’s law (𝑉𝑜𝑙𝑡 = 𝐼𝑅𝑒𝑠) will either flow in the same direction as the existing 

current in the coil, increasing the current and magnetic moment, or in the opposite direction, serving to 

decrease the current and magnetic moment, depending on the direction of the change in flux.   
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While this different approach for current in the two coil system doesn’t impact the location of equilibria, 

it would affect the stiffness of the system at equilibria as well as the shape of the potential energy curve 

around the equilibria, since both stability metrics are intended to describe the behavior of a system as it 

is displaced from equilibrium.  Such a displacement would necessarily alter the stiffness and potential 

energy functional because of the resultant change in current and thus magnetic force, torque and 

potential energy. 

Faraday’s law as given by Jackson [49] states that “the induced electromotive force (EMF) around [a] 

circuit is proportional to the time rate of change of magnetic flux linking the circuit.  The sign is specified 

by Lenz’s law, which states that the induced current (and accompanying magnetic flux) is in such a 

direction as to oppose the change of flux (𝐹𝑙𝑢𝑥) through the circuit,” where the induced EMF is 𝔈 and 𝑘𝑝 

is a constant of proportionality that is equivalent to 1 in SI units: 

𝔈 = −𝑘𝑝

𝑑𝐹𝑙𝑢𝑥

𝑑𝑡
. 

Magnetic flux through an electromagnet is generated by two sources: an external magnetic field such as 

that created by another coil and/or the internal magnetic field created by current in the magnet itself, 

such that 

𝐹𝑙𝑢𝑥 = 𝐹𝑙𝑢𝑥𝑒𝑥𝑡
+ 𝐹𝑙𝑢𝑥𝑖𝑛𝑡

, 

A change in 𝐹𝑙𝑢𝑥𝑒𝑥𝑡
 resulting from a changing current in the other coil induces an EMF in the coil being 

studied to resist that change in flux.  

The inductive definition of flux [58] says that flux from a given coil is the product of the inductance (self if 

internal flux, mutual inductance if external flux) and the current (self current if internal, other coil’s 

current if external), such that a time change of flux through a coil establishes a time change of current in 

that, which in turn establishes a time change of flux through the other coil.  Mathematically, for each of 

coils 1 and 2 respectively, 

𝑑

𝑑𝑡
(𝐿12𝐼2) = −

𝑑

𝑑𝑡
(𝐿11𝐼1) 

𝑑

𝑑𝑡
(𝐿12𝐼1) = −

𝑑

𝑑𝑡
(𝐿22𝐼2) 

In the system considered here, the current is not the initial thing being changed; the mutual inductance 

term 𝐿12 changes when the coil is perturbed from equilibrium, which results in a change in flux and 

induced changes in current as described in the equations above.  The initial currents before displacement 

through both coils are known, and the final currents after displacement are the unknown values of 
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interest.  The initial conditions and constraints on the system, such as conservation of energy, will be 

important for determining the change in currents for a given initial injection of kinetic energy.  Also of 

interest is whether or not the change in currents becomes time independent in a superconducting system 

with no energy loss due to resistivity.    

Generally speaking, it is expected that with two repelling coils with opposite current directions, the coils 

being placed closer together (resulting in a larger 𝐿12) will result in an increase in magnitude of current in 

the existing direction of flow, while the coils being moved farther apart will result in a decrease in 

magnitude of current in each coil.  This is because the external magnetic flux is always in the opposite 

direction in a repelling system from the internal magnetic flux of a coil, so when they are being moved 

apart, for instance, the external magnetic flux decreases and the internal magnetic flux must also decrease 

in an effort to keep the same flux.  This problem is a very interesting one for future study.  

6.4. Conclusions 

Addition of a third coil to the validated two coil system exemplifies the extensibility of the methodology 

to systems with more potential degrees of freedom and more complex interactions.  The three coil 

equilibria and their respective stabilities are in some ways similar to the two coil systems in translation 

and rotation, but the influence of a third coil results in some new equilibria that do not exist in the two 

coil system.   The use of tethers instead of springs exemplifies the flexibility of the methodology to 

changing assumptions as well as the plausibility of the system, given that tethers are a more realistic 

choice of connective hardware than meters-long linear springs or torsional springs.   
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7. Chapter 7 

Final Words 

The fundamental instability of repelling magnets as expressed by Earnshaw’s theorem has presented one 

of the most severe risks to the concept of magneto-elastic space structures since its conception.  By 

focusing not only on identifying statically stable structures but also on how to evaluate their dynamic 

stability and how much energy the system can handle before becoming dynamically unstable, the work 

presented in this thesis provides a trustworthy means by which spacecraft designers can investigate the 

impact of different configurations and connective hardware on stability of systems of the desired size and 

configuration for their mission concept, thus reducing the risk associated with instability.   

7.1. Thesis Summary 

This thesis motivated the use of magneto-elastic space structures by first describing the structural and 

ancillary capabilities that magneto-elastic structures can provide to a spacecraft and then by presenting a 

pathway to a mature electromagnetic structural technology anchored by several selected example 

missions.  Chapter 2 includes some preliminary analysis of four such missions: superconducting 

magnetorquers at GEO; an EMIC wave antenna in LEO; a large, fractionated, electromagnetically 

formation flying observatory at an Earth-Sun Lagrange point, and a magnetic asteroid tug.  All were shown 

to have challenges and risks associated with both the mission in general as well as the technology being 

used, but the potential for enabling such missions or enhancing the performance of such spacecraft merit 

further research.   Stability was selected as the focus of this thesis due to the likelihood and consequence 

of instability in an electromagnetic structure. 

Chapter 3 introduced a magneto-elastic model using magnetic dipoles such that it could be evaluated 

using closed-form solutions.  Three different combinations of degrees of freedom were studied in this 

chapter and in the subsequent two chapters: a single translational degree of freedom, a single rotational 

degree of freedom, and a combination of the two.  The equations of motion were nondimensionalized in 

order to reduce the variable space.  It was shown that every system studied had an equilibrium point 

when 𝛽 = 0, its stability in the 1DoF-R and 2DoF cases determined by the non-dimensional ratio of 

magnetic strength to torsional spring strength, 
𝛾

𝑘𝑟
∗.  As 

𝛾

𝑘𝑟
∗ increased from low to high, the 𝛽 = 0 equilibrium 

went from statically stable to statically unstable, an intuitive result, since the magnets create divergent 

torques and forces and springs create restorative torques and forces.  For some intermediate values of 
𝛾

𝑘𝑟
∗ 

mirrored secondary equilibria appeared at other values of 𝛽 around a 𝛽 = 0 equilibrium, where the 

secondary equilibria were statically stable compared to a statically unstable  𝛽 = 0 equilibrium (as in the 

1DoF-R case) or vice versa (as in the 2DoF case). 

Chapter 4 used the same dipole model as Chapter 3, but instead of analytical, closed-form solutions, 

numerical methods were shown to return the same results, thus validating the methods.  Also in Chapter 
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4, the vector potential approach for calculating magnetic potential energy was validated against the 

analytical magnetic energy formulation from Chapter 3.   

Chapter 5 introduced a new, more accurate magnetic coil model to replace the less-accurate but simpler 

dipole model.  Using the now-validated numerical methods, Chapter 5 explored the difference in 

equilibrium locations and their stabilities between coils and magnetic dipole moments.  One of the major 

findings was the so-called proximity effect, wherein the perimeters of two coils come close together due 

to rotation, and the high-magnitude forces resulting from that reduced distance dominate the overall 

trend of magnetic force and torque between two repelling magnets.  One of the most interesting 

consequences of the proximity effect is that in the dipole 1DoF-R case, the central equilibrium for 

intermediary values of 
𝛾

𝑘𝑟
∗ was unstable with stable secondary equilibria, due to the magnetic torque 

dominating near 𝛽 = 0.  In the coil case, however, the central equilibrium is statically stable because the 

proximity effect actually results in restorative magnetic torques up to a certain rotation angle, at which 

the magnetic torque becomes divergent, resulting in statically unstable secondary equilibria at those 

angles.  The end result of Chapter 5 was a well-validated model and approach for determining the static 

and dynamic stability of equilibria in a two-coil spring-based system.   

Chapter 6 expanded the applicability of the model to more realistic systems and showed that it was 

scalable and plausible respectively by investigating the stability of a three-coil system and by replacing the 

springs with tethers that could go flat and create elastic forces and torques that depend on both of the 

generalized coordinates of motion rather than one each.  The three-coil system, especially the 2DoF-R 

case, revealed some interesting potential energy curves and coupling between three repelling coils of 

either identical or different radii, and concurred with the general intuitive finding that stronger magnets 

as compared to springs result in less stable equilibria.  The tether system’s coupling of force to angle and 

torque to distance resulted in the potential energy curve being more interestingly shaped than the 

analogous spring system and the locations of secondary equilibria changing radically for the same strength 

magnets and springs or tethers.  Both the three-coil and tether systems improved the model in addition 

to increasing the realism and applicability of the model and approach to real-world systems.  

 

7.2. Contributions 

This work has introduced and implemented a validated general methodology for determining the static 

and dynamic stability of nonlinear magneto-elastic structures in space.  In doing so, this thesis has 

1. Identified conditions under which elastically connected electromagnetic structures are stable, 

2. Located specific passively stable geometries, 

3. Defined equilibrium conditions on magneto-elastic structures, 

4. Determined the static and dynamic stability of equilibria, 



240 

 

5. Described and depicted how the use of different elastic hardware and different numbers of 

coils shift stable geometries, and 

6. Developed a validated nonlinear, generalizable magneto-elastic dynamics model. 

This methodology is intended for use by spacecraft and structural designers to explore the stability of a 

wide variety of magneto-elastic space structures for use in a number of applications that can benefit from 

the unique capabilities of electromagnetically-supported structures, many of which have been identified 

and explored in Chapter 2 of this thesis.  This thesis has 

1. Enumerated the structural and ancillary capabilities of electromagnets in space, 

2. Conducted system trades to quantify electromagnet benefits to spacecraft components and 

missions, 

3. Identified key enabling technologies and feasibility risks for an electromagnetic spacecraft 

subsystem,  

4. Reduced the risk associated with system instability, and 

5. Developed a technology maturation pathway for electromagnetic technologies in space, 

specifically high-temperature superconducting electromagnets. 

7.3. Generalization of MAGESTIC 

The MAGESTIC methodology and model presented in this work are designed to be broadly applicable and 

allow for changing of coil orientations and elastic forces and torques, as shown with the addition of a third 

coil in Chapter 6.  However, the model in its current state is still intrinsically limited; for example, it only 

accepts rigid, circular coils and assumes constant currents and no interaction between individual turns of 

wire.  There are no dynamic effects or energy dissipation mechanisms incorporated yet.  To be most useful 

to system designers, the MAGESTIC model needs to mesh with other engineering tools already designed 

to analyze structural and dynamic behavior and to allow users to specify material properties and higher-

fidelity geometries and systems than the circular electromagnets with uniform current densities studied 

in this thesis. 

There are two primary vectors for improving the MAGESTIC model as it currently stands.  The first and 

most immediate approach is the modification and broadening of the existing quasi-static model to 

accommodate any arbitrary geometry, material properties, and boundary conditions that a user would 

like to specify, such as a finite element mesh, rather than just the number and radii of coils and the natural 

length of the elastic hardware.  The model would calculate the magnetic forces, torques, equilibria, and 

static and dynamic stability for each point within a given configuration space the same as in this thesis but 

would offload the structural analysis to a solver like NASTRAN that is capable of high-fidelity deformation, 
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stress, and stiffness calculations.  The model would therefore be capable of allowing electromagnets to 

deform rather than remaining rigid bodies.  Figure 85 shows a block model of what such a generalization 

of the MAGESTIC model would look like. 

 

Figure 85: Generalized MAGESTIC model with user-defined inputs and a separate structural analysis tool 

The grouped block on the left side of Figure 85 contains the user-defined inputs, both the configuration 

space (the ranges of the generalized coordinates selected for study) and the model properties, likely in 

the form of a finite element mesh of the magnetic and elastic hardware for which the user would like to 

evaluate stability.  Both the MAGESTIC magnetic force and torque model and the structural analysis tool 

take these inputs and use them to calculate the magnetic and elastic forces and torques for each point in 

the configuration space through an iterative process.  The iteration is necessary because structural 

deformations are caused by magnetic and elastic effects, which in turn are influenced by the deformation 

of the structure.  The stiffness matrix [K] with the forces and torques are then used by the MAGESTIC 

stability model to locate equilibria in the configuration space and classify their static stability along with 

the critical initial kinetic energy for dynamic instability.  The stability model uses the approach as 

presented in this thesis but will need to be expanded to find equilibria in more than two degrees of 

freedom.   

This generalization step expands the MAGESTIC model to as many degrees of freedom as are desired in 

the system and allows users to prescribe whatever configuration of elastic hardware they like.  The 

addition of other degrees of freedom adds to the realism of the simulation.  In particular, a shear degree 

of freedom (translation in the y-z plane) in the systems studied in this thesis would not meet any 

restorative forces, meaning that different elastic hardware would need to be considered to prevent 

motion in that plane.  Tethers that cross from one side of the x axis to the other diagonally are one such 

option for resisting motion in the y-z plane.   This step also permits the analysis of alternative 

configurations besides a linear boom, such as configurations with three or more coils where not all coils 

are aligned along the same axis. 
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The second step for improving the MAGESTIC model is to position the now-generalized quasi-static model 

within a broader, multiphysics framework for use in concurrent engineering and optimization.  Figure 86 

shows the addition of a dynamic timestepper module to the generalized model presented in Figure 85 

which takes in a specific set of initial conditions of a user-defined system and models the motion of the 

system over time as a result of force and torque imbalances.  In the diagram, [M] is the mass matrix, and 

𝑋⃗(𝑡),  𝑋̇⃗(𝑡),  𝑋̈⃗(𝑡) are the positions, velocities, and accelerations of the system in the chosen generalixed 

coordinates of motion.   

At this point in the model expansion, currents are still modeled as constant, but energy dissipation 

mechanisms and external disturbances and perturbations are now included in the analysis.  Adding 

dynamic simulation to the model allows a system designer to study deployment dynamics, similar to those 

examined in Gettliffe 2013 [16] but with added insight into stability and equilibrium positions as well as 

how added energy impacts dynamic stability.  Simulating the dynamic response of a specific system with 

specific initial conditions and disturbances allows the system to present a conclusive determination of 

dynamic stability versus just bounds and conditions on dynamic stability.  The dynamic response also 

allows a system designer to test how tweaking initial conditions and model properties affects dynamic 

stability. 

 

Figure 86: Generalized MAGESTIC model in a dynamic wrapper 
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Figure 86 represents the structural subsystem mechanics and dynamics.  A step beyond the dynamic 

wrapper is the addition of other multiphysics modules to either add to the realism of the simulation, 

integrate other closely-coupled subsystems, or both.  Figure 87 adds an induced current module to the 

model.  The induced current module changes the currents through the electromagnets in the system in 

response to changing fluxes through the coils as per the discussion in Section 6.3.2.  Other potentially 

useful modules that can be tied in are thermal and power modules, due to the strong relationship 

between magnet performance and temperature and the cryogenic requirements for superconductivity, 

as well as the relatively significant mass and power requirements of cryocoolers.   An appendix in the 

MAGESTIC NIAC Phase II final report [59] presents a multidisciplinary optimization of power, mass, and 

length in electromagnetic masts like those studied in this thesis.  The optimization includes power and 

thermal modules and also identifies the need for stability conditions for electromagnetic structures as 

well as a stiffness analog that can be used as a metric to trade against traditional structural technologies.   

 

Figure 87: Generalized MAGESTIC model in dynamics wrapper with added induced current module 

Once the MAGESTIC electromagnetic structural subsystem model is generalized as discussed above, 

several other interesting modifications or uses of the model are worth further investigation.  These ideas 

are discussed in more detail as future work in the next section. 
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7.4. Future Work 

There are a number of additional directions in which this work could be taken going forward, depending 

on the needs of the end user.  For instance, an engineer who is interested in how stability changes across 

a broad range of design variables and choices may want a fast way to explore how stability changes with 

certain variables.  A machine learning approach such as support vector machines could be used to classify 

equilibria (such as the rotational equilibria at 𝛽 = 0) as stable or unstable, train the machine with test 

data, giving it the ability to estimate the stability of other systems based on the stability of the test points, 

and then explore how changing different design variables affects stability without having to actually 

calculate torques and/or forces at every single design point.       

A specific mission may present either specific constraints or requirements (or both) on a magneto-elastic 

structure.  There are two main directions in which the generalized module presented in Figure 87 can be 

used: the system designer can provide budget constraints and objectives, such as achieving the longest 

mass possible with certain amounts of mass or power, or the system designer can provide requirements 

on the performance or geometry of the structure.  The first direction just requires an optimization 

wrapper around the methodology presented in this thesis.  The second direction requires running the 

methodology in reverse, starting with positions and required critical initial kinetic energies and stiffnesses, 

then having to back out the elastic and magnetic strengths that fulfill the requirements.  The latter 

direction will therefore take some effort to develop, but it is worthwhile for designers presented with 

specific requirements.   

The stability results of this thesis have some interesting features, some of which could be exploited by a 

particularly creative engineer.  For instance, the sometimes multiple statically and dynamically stable 

(metastable) equilibria in a system present the concept of reconfigurability, where an injection of energy 

in one or more of the generalized coordinates (or a change in current) could induce a switching from one 

stable configuration to another.  Such reconfigurability could be used for applications that require 

actuation beyond initial deployment of the structure, such as pointing a telescope or an antenna.   
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7.5. Conclusions 

A major takeaway from the analyses presented in this thesis is that there are not so much regions of 

stability within the degrees of freedom being studied as there are individual stable points and then a 

region surrounding them within which a system may oscillate if the critical initial kinetic energy of that 

stable point is not exceeded.  For a given design vector, the position or positions in the generalized 

coordinates in which the system is free to move also function as a sort of design variable that determines 

whether that design vector is stable or unstable.   

The concepts of magnetic stiffness and the potential energy functionals used in this work also provide a 

basis of comparison to other structural technologies besides just the mass of the structure, making trade 

studies more quantitative and allowing magneto-elastic structures to be considered for those applications 

which may have strict stiffness requirements.  Interestingly,  stiffness increases with increasing magnetic 

strength (larger 𝜒 or 𝛾) values, while critical initial kinetic energy (and static stability in general) increases 

with decreasing magnetic strength, so there is clearly a trade that can be done between stiffness and 

critical initial kinetic energy, depending on the requirements of an application.    

This work presents motivation, maturation and generalization pathways, and a fundamental foundation 

and lexicon for future studies of electromagnetic space structures.  It is the author’s sincere hope that 

such systems will eventually enable new spacecraft missions and one day see flight. 
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Appendix A: Nomenclature 

 

Variable 
Section 
Defined Definition 

𝐴𝑟𝑒𝑎 2.5.1. Area of coil (𝑚2) 

𝑎𝑥, 𝑎𝑦, 𝑎𝑧 2.5.1. Accelerations in x, y, and z directions respectively (subscript p or s referring 

to primary or secondary mirrors) (
𝑚

𝑠2) 

𝛼 3.1. Angle of dipole 1 around the z axis with respect to the x axis (rad) 

𝐴(𝑥⃗) 4.1.3. Magnetic vector potential for a current carrying loop at a position 𝑥⃗ from the 

center of a magnet (
𝑉𝑠

𝑚
) 

𝐴1(𝑥⃗) 4.1.3. Magnetic dipole vector potential of magnetic dipole moment 𝜇1 (
𝑉𝑠

𝑚
) 

𝐴𝐶𝑆 5.3.4. Cross-sectional area of the coil through which current flows (𝑚2) 

𝐴𝜙(𝑟, 𝜃) 5.3.4. The azimuthal component of the magnetic vector potential as a function of 

distance and angle from coil axis (
𝑉𝑠

𝑚
) 

𝐵⃗⃗, 𝐵⃗⃗𝑖 2.1. Magnetic field in general and from the 𝑖th (𝑖 = 1: 3) current-carrying wire,  
(T) 

𝐵⃗⃗0 2.5.1. Earth’s magnetic field (T) 

Bsurf 2.5.1. Mean strength of Earth’s magnetic field at surface (T) 

𝐵⃗⃗(𝑟) 3.1. Magnetic field at 𝑃𝑜𝑖𝑛𝑡 (T) 

𝛽 3.1. Angle of dipole 2 around the z axis with respect to the x axis (rad) 

𝛽#𝑎 , 𝛽#𝑎−# 3.4.2. Equilibrium angle, attractive case, first # indicates changing 𝛽 position, 
second # (if present) indicates which equilibrium at a given 𝛽 is being 
referred to 

𝛽#𝑏 , 𝛽#𝑏−# 3.4.2. Equilibrium angle, repulsive case, first # indicates changing 𝛽 position, 
second # (if present)  indicates which equilibrium at a given 𝛽 is being 
referred to 

𝛽#𝑎,𝑁𝐷 , 

𝛽#𝑎,𝑁𝐷−# 

3.4.2. Non-dimensional equilibrium angle, attractive case, first # indicates changing 
𝛽 position, second # (if present) indicates which equilibrium at a given 𝛽 is 
being referred to 

𝛽#𝑏,𝑁𝐷, 

𝛽#𝑏,𝑁𝐷−# 

3.4.2. Non-dimensional equilibrium angle, repulsive case, first # indicates changing 
𝛽 position, second # (if present) indicates which equilibrium at a given 𝛽 is 
being referred to 

𝛽𝑒𝑞 3.4.3. Value of 𝛽 at a particular equilibrium (rad) 

𝛽#,− 3.5.2. Equilibrium ID, 2DoF, negative beta 

𝛽#,+ 3.5.2. Equilibrium ID, 2DoF, positive beta 

𝛽#,0 3.5.2. Equilibrium ID, 2DoF, 𝛽 = 0 
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𝐵𝑥, 𝐵𝑦, 𝐵𝑧 5.1. Cartesian components of the magnetic field as calculated with the magnetic 
vector potential 

𝛽𝑁𝐷,𝑐𝑜𝑖𝑙,#−# 5.4.2. Non-dimensional equilibrium angle in coil moderl, 1DoF-R, first # indicates 
changing 𝛽 position, second # (if present) indicates which equilibrium at a 
given 𝛽 is being referred to 

𝛽#,#−# 5.5.4.1. Non-dimensional 2DoF equilibrium angles, first # is the numbered dot in 

figure, second # is the 
𝜒

𝑘𝑟
∗ value, third # (if present) differentiates between 

equilibra occurring at same 𝛽 position 

β2, β3 6.1. Angle of coil 2 and coil 3 around z axis respectively in three coil system 

𝛽𝑐𝑜𝑖𝑙,# 6.2.3. Equilibrium angle of coil 2 in tether system 1DoF-R, # referring to which 
statically stable equilibrium it is 

𝐶𝑆𝐴 2.5.2. Cross-sectional area (𝑚2) 

𝐶 3.3.4. Constant of integration 

𝑑 2.5.1. Distance between primary and secondary mirror (or two coils) or distance 
between spacecraft and asteroid (m)  

𝛿 3.1. Angle of dipole 2 about the x axis with respect to the y axis (rad) 

𝐸 1.2.2. Total energy of the system (J) 

𝐸𝑡0
 1.2.2. Total energy at t=0 (J) 

𝜖 5.3.4. Small displacement from exact radius of coil, equal to 𝑟̃𝐶𝑆 

𝔈, EMF 6.3.1. Electromotive force (V) 

𝐹⃗𝑖 1.2.1. Force, where 𝑖 = 1: 𝑛, 𝑛 being the total number of forces (N) 

𝐹𝑡𝑜𝑡,𝑗 1.2.1. The total force acting in the direction of 𝑥𝑡,𝑗, where 𝑗 = 1: 𝑛𝑡 (N) 

𝐹⃗𝑖𝑗  2.1. Magnetic force from the 𝑖th wire on the 𝑗th wire (N) 

𝐹𝑥,𝑝, 𝐹𝑦,𝑝, 𝐹𝑧,𝑝 2.5.1. Forces on primary mirror req’d to maintain distance in x, y, z directions (N) 

𝐹𝑥,𝑠, 𝐹𝑦,𝑠, 𝐹𝑧,𝑠 2.5.1. Forces on secondary mirror req’d to maintain distance in x, y, z directions (N) 

𝐹𝑆𝑃 2.5.1. Magnetic force of a coil using SuperPower HTS wire (N) 

𝐹𝑔 2.5.2. Gravitational force between an asteroid and a spacecraft (N) 

𝐹𝑚 2.5.2. Magnetic force between two aligned magnetic dipoles (N) 

𝐹𝑡𝑜𝑡,𝐴 2.5.2. Total force of spacecraft on asteroid (N) 

𝐹⃗𝑚𝑎𝑔,1 3.1. Magnetic force on dipole 1 from dipole 2 (N) 

𝐹⃗𝑚𝑎𝑔,2 3.1. Magnetic force on dipole 2 from dipole 1 (N) 

𝐹⃗𝑠𝑝𝑟,2 3.2. Spring force on dipole 2 (N) 

𝐹⃗2,𝑟𝑒𝑝 3.3.1. Total force on magnet 2 (repulsive case) (N) 

𝐹⃗2,𝑎𝑡𝑡 3.3.1. Total force on magnet 2 (attractive case) (N) 
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𝐹̃⃗2,𝑟𝑒𝑝,𝑁𝐷 3.3.1. Total non-dimensional force on magnet 2 (repulsive case)  

𝐹̃⃗2,𝑎𝑡𝑡,𝑁𝐷 3.3.1. Total non-dimensional force on magnet 2 (attractive case) 

𝐹𝑠𝑝𝑟𝑖𝑛𝑔,𝑥 3.3.3. X component of spring force (N) 

𝐹𝑚𝑎𝑔,𝑥 3.3.3. X component of magnetic force (N) 

𝐹𝑡𝑜𝑡,𝑥, 𝐹̃𝑡𝑜𝑡,𝑥 3.3.3. X component of total force (N), non-dimensional x component of total force 

𝐹𝑡𝑜𝑡, 𝐹̃𝑡𝑜𝑡 3.3.3. Total force (N) and non-dimensional force 

𝐹2,𝑟𝑒𝑝,𝑥 3.3.3. Magnitude of x component of force on magnet 2 (repulsive case) (N) 

𝐹2,𝑎𝑡𝑡,𝑥 3.3.3. Magnitude of x component of force on magnet 2 (attractive case) (N) 

𝐹̃2,𝑟𝑒𝑝,𝑁𝐷,𝑥 3.3.3. Magnitude of x component of non-dim. force on magnet 2 (repulsive case)  

𝐹̃2,𝑎𝑡𝑡,𝑁𝐷,𝑥 3.3.3. Magnitude of x component of non-dim. force on magnet 2 (attractive case) 

𝑓𝑟𝑒𝑝, 𝑓𝑎𝑡𝑡 3.3.3. Dummy function name in state-space representation 

𝐹̃⃗2,𝑟𝑒𝑝,𝑚𝑎𝑔,𝑥 3.5.4. X component of non-dimensional magnetic force, repulsive case  

𝐹⃗⃗2,𝑚𝑎𝑔,𝑐𝑜𝑖𝑙, 

𝐹⃗⃗2,𝑚𝑎𝑔,𝑐𝑜𝑖𝑙,𝑥 

5.3.1. Magnetic force on coil 2 from coil 1 and the x component thereof (N) 

𝐹̃⃗⃗2,𝑚𝑎𝑔,𝑐𝑜𝑖𝑙 
5.3.1. Non-dimensional magnetic force on coil 2 from coil 1 

𝐹̃𝑡𝑜𝑡𝑎𝑙,2 6.1.1. Non-dimensional total force on coil 2 in three coil system 

𝐹̃𝑡𝑜𝑡𝑎𝑙,3 6.1.1. Non-dimensional total force on coil 3 in three coil system 

𝐹̃𝑠𝑝𝑟𝑖𝑛𝑔,21 6.1.1. Non-dimensional force of spring attached to coil 1 on coil 2  

𝐹̃𝑠𝑝𝑟𝑖𝑛𝑔,23 6.1.1. Non-dimensional force of spring attached to coil 3 on coil 2 

𝐹̃𝑚𝑎𝑔,21 6.1.1. Non-dimensional magnetic force of coil 1 on coil 2 

𝐹̃𝑚𝑎𝑔,23 6.1.1. Non-dimensional magnetic force of coil 3 on coil 2, equal and opp. to 𝐹̃𝑚𝑎𝑔,32 

𝐹̃⃗2,𝑡𝑒𝑡ℎ1 6.2.1. Non-dimensional force on coil 2 as a result of tether 1 (top tether) 

𝐹̃⃗2,𝑡𝑒𝑡ℎ2 6.2.1. Non-dimensional force on coil 2 as a result of tether 2 (bottom tether) 

𝐹(𝑋⃗𝑎𝑙𝑙) 7.3. Forces of each position in configuration space (N orND) 

 𝐹𝑙𝑢𝑥 6.3.1. Total flux through a coil (Wb) 

𝐹𝑙𝑢𝑥𝑒𝑥𝑡
 6.3.1. Flux through a coil from an external magnetic field (Wb) 

𝐹𝑙𝑢𝑥𝑖𝑛𝑡
 6.3.1. Flux through a coil from the coil’s own field (Wb) 

𝐺 2.5.2. Gravitational constant (
𝑚3

𝑘𝑔−𝑠2) 

𝑔𝑟𝑒𝑝, 𝑔𝑎𝑡𝑡 3.3.3. Dummy function name in state-space representation 

𝐻̃1𝑥, 𝐻̃2𝑥 5.3.4. Non-dimensional grouped terms for vector potential calulations 
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𝐻̃#±𝜖 5.3.4. Non-dimensional grouped terms for vector potential calculated at 𝑟̃ ± 𝜖 

𝐼𝑖, 𝐼𝑗 2.1. Current through the 𝑖th wire, 𝑗th wire (A) 

𝐼𝑒𝑓𝑓 2.5.2. Effective current (current times number of turns) (A) 

𝐼𝑡𝑢𝑟𝑛 2.5.2. Current per turn of wire in spacecraft magnet (A) 

[𝐼𝑛] 3.3.3. Identity matrix of dimension n 

𝐼𝑧 3.4.1. Mass moment of inertia (𝑘𝑔−𝑚2) 

J 2.1.1. Current density (
𝐴

𝑚3) 

𝐽𝑟𝑒𝑝 3.3.3. Jacobian of state-space representation (repulsive case) 

𝐽(𝑥⃗′) 4.1.3. The current density of the element at 𝑥⃗′ (
𝐴

𝑚2) 

𝐽𝑗⃗⃗⃗ 5.3.4. Current density vector in 𝑗th 𝑐𝑜𝑖𝑙 (𝐴/𝑚2) 

𝑘 3.2. Linear spring constant (N/m) 

𝑘𝑟 3.2. Torsional spring constant (
𝑁𝑚

𝑟𝑎𝑑
) 

𝑘∗ 3.3.1. Non-dimensional linear spring force coefficient 

𝑘𝑠𝑝𝑟𝑖𝑛𝑔 3.3.3. Spring stiffness (N/m) 

𝑘𝑚𝑎𝑔 3.3.3. Magnetic stiffness (Ns/m) 

𝜅𝑡𝑜𝑡 3.3.3. Total stiffness (N/m) 

𝜅𝑡𝑜𝑡,𝑁𝐷 3.3.3. Non-dimensional total stiffness  

𝑘𝑟
∗ 3.4.1. Non-dimensional spring torque coefficient 

𝜅𝑡𝑜𝑡,𝑅 3.4.3. Total rotational stiffness (
𝑁𝑚

𝑟𝑎𝑑
) 

[𝐾𝑁𝐷] 3.5.3. Non-dimensional stiffness matrix 

𝜅𝑡𝑜𝑡,𝑛𝑢𝑚 4.1.2. Numerical estimation of total translational stiffness (N/m) 

𝜅𝑡𝑜𝑡,𝑁𝐷 4.1.2. Non-dimensional total translational stiffness  

𝜅𝑡𝑜𝑡,𝑁𝐷,𝑛𝑢𝑚,𝑇 4.1.2. Non-dimensional numerical estimation of total translational stiffness  

𝜅𝑡𝑜𝑡,𝑁𝐷,𝑛𝑢𝑚,𝑅 4.2.2. Non-dimensional numerical estimation of total rotational stiffness in dipole 
case 

[𝐾𝑡𝑜𝑡,𝑁𝐷,𝑛𝑢𝑚], 

[𝐾𝑡𝑜𝑡,𝑁𝐷] 

4.3.2. Numerically estimated non-dimentional total stiffness matrix in 2D0F 

𝐾(𝑘2), 𝐸(𝑘2) 5.1. Complete elliptic integrals of the first and second kind, 𝑘2 being the 
argument 

𝜅𝑡𝑜𝑡,𝑁𝐷,𝑐𝑜𝑖𝑙,𝑇 5.3.3. Non-dimensional total translational stiffness in the coil model 

𝑘̃1𝑥, 𝑘̃2𝑥 5.3.4. Arguments for complete elliptic integrals in 𝐻̃1𝑥, 𝐻̃2𝑥 respectively 

𝜅𝑡𝑜𝑡,𝑁𝐷,𝑐𝑜𝑖𝑙,𝑅 5.4.3. Non-dimensional total rotational stiffness in the coil model 
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𝑘𝑝 6.3.1. Constant of proportionality for units in EMF 

[K] 7.3. Stiffness matrix from structural analysis software 

𝑑𝑙, 𝑑𝑙𝑖 2.1. Differential length element along/around a wire in general and around the 
𝑖th (𝑖 = 1: 3) current-carrying wire (m) 

𝜆𝑟𝑒𝑝 3.3.3. Eigenvalues of state-space representation (repulsive case) 

𝜆# 4.3.2. Analytically calculated eigenvalues of [𝐾𝑡𝑜𝑡,𝑁𝐷,𝑛𝑢𝑚] 

𝜆#,𝑛𝑢𝑚 4.3.2. Numerically estimated eigenvalues of [𝐾𝑡𝑜𝑡,𝑁𝐷,𝑛𝑢𝑚] 

𝐿𝑖𝑗 5.3.4. Inductance between 𝑖th and 𝑗th coils (H); if 𝑖 = 𝑗, self inductance, if 𝑖 ≠ 𝑗, 
mutual inductance 

𝐿̃𝑡𝑒𝑡ℎ1,  

𝐿̃𝑡𝑒𝑡ℎ2 

6.2.1. Non-dimensional length of tether 1,2 

𝜇0 2.1. The magnetic constant (vacuum permeability, 
𝑘𝑔𝑚

𝑠2𝐴2) 

𝜇, 𝜇𝑖  2.5.1. Magnetic moment in general and of the 𝑖th current carrying coil (𝐴𝑚2) 

𝜇𝐴 2.5.2. Vesta’s magnetic dipole moment (𝐴𝑚2) 

𝜇1, 𝜇2 3.1. Magnetic dipole moments of magnets 1 and 2 (𝐴𝑚2) 

𝑚𝑝 2.5.1. Mass of primary mirror (kg) 

𝑚𝑠 2.5.1. Mass of secondary mirror (kg) 

𝑚 2.5.1. Mass of single coil (kg) 

𝑀𝐴 2.5.2. Mass of asteroid (Vesta) (kg) 

𝑀𝑠𝑐 2.5.2. Mass of spacecraft (kg) 

𝑚2 3.3.1. Mass of magnet 2 (kg) 

𝑚̃2 3.3.1. Non-dimensional mass of coil/magnet 2  

𝑚̃3 3.3.1. Non-dimensional mass of coil/magnet 3  

𝑀⃗⃗⃗2 4.1.3. Magnetization of the second dipole (
𝐴

𝑚
) 

[M] 7.3. Mass matrix from structural analysis software 

𝑛𝑡 1.2.1. Number of translational generalized coordinates in the system 

𝑛𝑟 1.2.1. Number of rotational generalized coordinates in the system 

𝑛 1.2.1. Total number of generalized coordinates in the system. 

𝑁,𝑁𝑖  2.5.1. Number of turns in coil in general and of the 𝑖th (𝑖 = 1: 3) current carrying 
coil 

𝑛𝑜𝑟𝑏 2.5.1. Orbital rate (rad/s) 

𝑛̂ 3.1. Unit normal vector to coil, dictated by direction of current/right hand rule 

𝜂 3.1. Angle of dipole 1 about the x axis with respect to the y axis (rad) 
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P, 𝑃̃ 1.2.1. Effective potential energy of the system (J) and non-dimensional version 

(𝑑𝑃)𝑥𝑡,𝑗
 1.2.2. Decrease of the system’s potential energy in the direction of 𝑥𝑡,𝑗 (J) 

𝑃𝑒𝑞 1.2.2. Potential energy at a specified equilibrium (J) 

𝑃𝐶  1.2.2. Potential energy at point C in ex. problem; the closest unstable equil. (J) 

𝜌𝐻𝑇𝑆 2.5.2. Density of HTS wire (𝑘𝑔/𝑚3)  

𝑃𝑜𝑖𝑛𝑡 3.1. Point in space where magnetic field is being calculated 

𝜌 3.3.1. Mass per unit length of wire (linear density, kg/m) 

𝜑 3.4.2. Non-dimensional combination of variables, 
𝜇0𝜇1𝜇2

2𝜋𝑘𝑟𝑥0
3  

𝑃𝑟𝑒𝑝,𝑇 3.3.4. Potential energy as calculated from 𝐹2,𝑟𝑒𝑝,𝑥 (J) 

𝑃𝑎𝑡𝑡,𝑇 3.3.4. Potential energy as calculated from 𝐹2,𝑎𝑡𝑡,𝑥 (J) 

𝑃̃𝑟𝑒𝑝,𝑇 3.3.4. Non-dimensional potential energy as calculated from 𝐹̃2,𝑟𝑒𝑝,𝑁𝐷,𝑥   

𝑃̃𝑎𝑡𝑡,𝑇 3.3.4. Non-dimensional potential energy as calculated from 𝐹̃2,𝑎𝑡𝑡,𝑁𝐷,𝑥 

𝑃𝑟𝑒𝑝,𝑅 3.4.4. Potential energy as calculated from 𝜏2,𝑟𝑒𝑝,𝑧 (J) 

𝑃𝑎𝑡𝑡,𝑅 3.4.4. Potential energy as calculated from 𝜏2,𝑎𝑡𝑡,𝑧 (J) 

𝑃̃𝑟𝑒𝑝,𝑅 3.4.4. Non-dimensional potential energy, as calculated from 𝜏̃2,𝑟𝑒𝑝,𝑁𝐷,𝑧 

𝑃̃𝑎𝑡𝑡,𝑅 3.4.4. Non-dimensional potential energy, as calculated from 𝜏̃2,𝑎𝑡𝑡,𝑁𝐷,𝑧 

𝑃̃𝑚𝑎𝑔,𝑇 3.5.4. Non-dimensional magnetic potential energy as calculated analytically from 

𝐹̃⃗2,𝑟𝑒𝑝,𝑚𝑎𝑔,𝑥 

𝑃̃𝑚𝑎𝑔,𝑅 3.5.4. Non-dimensional magnetic potential energy as calculated analytically from 

𝜏̃2,𝑟𝑒𝑝,𝑚𝑎𝑔,𝑧 

𝑃̃2𝐷𝑜𝐹 3.5.4. Total non-dimensional repulsive potential energy in the 2DoF system as 
calculated analytically 

𝑃𝑟𝑒𝑝,𝑚𝑎𝑔,𝑇 4.1.3. Magnetic potential energy calculated analytically, 1DoF-T (repulsive case) (J) 

𝑃̃𝑟𝑒𝑝,𝑚𝑎𝑔,2𝐷𝑜𝐹 4.3.3. Non-dimensional magnetic potential energy calculated analytically, 2DoF 
(repulsive case) 

𝑃̃𝑡𝑜𝑡 5.3.4. Total non-dimensional potential energy in coil system including both 
translational and rotational degrees of freedom, such as 2DoF 

𝑃̃𝑇 5.3.4. Total non-dimensional potential energy in translational-only coil system 

𝑃̃𝑅 5.3.4. Total non-dimensional potential energy in rotational-only coil system 

𝜙 5.3.4. Azimuthal angle (rad) 

𝑟𝑖𝑗 2.1. Vector from each differential length element 𝑑𝑙𝑖 to the point where the field 
is being calculated (m) 

RE 2.5.1. Radius of Earth (km) 
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𝑟 2.5.1. Distance where Earth’s magnetic field is being measured (km) 

𝑅, 𝑅𝑖 2.5.1. Radius of coil in general and of the 𝑖th (𝑖 = 1: 3) current carrying coil (m) 

𝑟𝑎𝑠𝑡 2.5.2. Radius of asteroid (km, but equation uses m) 

𝑟 3.1. Vector from the center of a dipole moment to 𝑃𝑜𝑖𝑛𝑡 (m) 

𝑅̃1, 𝑅̃2, 𝑅̃3 3.3.1. Non-dimensional radius of coil/magnet 1, 2, or 3 

𝑟, 𝑟̃ 5.3.4. Magnitude of the distance vector  𝑟 from the center of coil 1 to the point of 

interest 𝑃(𝑟, 𝜃, 𝜙) (m) and non-dimensional version 

𝑅 5.3.4. Radius of coil for which magnetic vector potential is being calculated 

𝑟̃𝐶𝑆 5.3.4. Non-dimensional effective cross-sectional radius of the coil bundle 

𝑅𝑒𝑠 6.3.1. Resistance (Ohms) 

𝑇 1.2.2. Kinetic energy of the system (J) 

𝑇𝑡0
 1.2.2. Kinetic energy at equilibrium when t=0 (J) 

𝑇𝑡0,𝑐𝑟𝑖𝑡 1.2.2. Critical initial kinetic energy (J) 

𝑇𝑐 2.1.1. Superconductor critical temperature (K) 

𝒯 3.3.1. Characteristic time variable 

𝑡 3.3.1. Time (s) 

𝑡̃ 3.3.1. Non-dimensional time 

𝑇̃𝑡0,𝑐𝑟𝑖𝑡 3.3.4. Non-dimensional critical initial kinetic energy 

𝑇̃𝑡0,𝑐𝑟𝑖𝑡,## 6.1.2. Non-dimensional critical initial kinetic energy for 2DoF-R equilibria, first # is 
the letter of the plot, and second # is the numbered equilibrium in that plot 

𝑇̃𝑡0,𝑐𝑟𝑖𝑡,𝑠𝑝𝑟𝑖𝑛𝑔 6.2.2. Non-dimensional critical initial kinetic energy of the spring system 

𝑇̃𝑡0,𝑐𝑟𝑖𝑡,𝑡𝑒𝑡ℎ𝑒𝑟 6.2.2. Non-dimensional critical initial kinetic energy of the tether system 

∆𝑇̃𝑡0,𝑐𝑟𝑖𝑡 6.2.2. Difference in 𝑇̃𝑡0,𝑐𝑟𝑖𝑡 between the spring and tether systems 

𝜃 2.5.1. Co-latitude measured from the Earth’s north magnetic pole (rad) 

Θ 3.1. Angle subtended by a coil with respect to a point in space (rad) 

𝜃𝑚, 𝜃 4.1.3. Angle between magnetic moment and external field (rad) 

τ⃗⃗𝑖 1.2.1. Torque, where 𝑖 = 1:𝑚, 𝑚 being the total number of forces (N-m) 

𝜏𝑡𝑜𝑡,𝑘 1.2.1. The total torque acting in the direction of 𝑥𝑟,𝑘, where 𝑘 = 1: 𝑛𝑟 (N-m) 

𝜏𝑚𝑎𝑔,𝑖 2.5.1. Magnetic torque on the 𝑖th (𝑖 = 1: 3) current carrying coil (N-m) 

𝜏𝑚𝑎𝑔,1 3.1. Magnetic torque on dipole 1 from dipole 2 (N-m) 

𝜏𝑚𝑎𝑔,2 3.1. Magnetic torque on dipole 1 from dipole 2 (N-m) 

𝜏𝑠𝑝𝑟,2 3.2. Spring torque on dipole 2 (N-m) 

𝜏2,𝑟𝑒𝑝 3.4.1. Total torque on magnet 2, repulsive case (N-m) 
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𝜏2,𝑎𝑡𝑡 3.4.1. Total torque on magnet 2, attractive case (N-m) 

 𝜏̃2,𝑟𝑒𝑝,𝑁𝐷 3.4.1. Total non-dimensional torque on magnet 2, repulsive case 

 𝜏̃2,𝑎𝑡𝑡,𝑁𝐷 3.4.1. Total non-dimensional torque on magnet 2, attractive case 

𝜏2,𝑟𝑒𝑝,𝑧 3.4.4. Component of total torque around the z axis, repulsive case (N-m) 

𝜏2,𝑎𝑡𝑡,𝑧 3.4.4. Component of total torque around the z axis, attractive case (N-m) 

𝜏̃2,𝑟𝑒𝑝,𝑁𝐷,𝑧 3.4.4. Component of total non-dimensional torque around the z axis, repulsive case  

𝜏̃2,𝑎𝑡𝑡,𝑁𝐷,𝑧 3.4.4. Component of total non-dimensional torque around the z axis, attractive 
case  

𝜏̃2,𝑟𝑒𝑝,𝑚𝑎𝑔,𝑧 3.5.4. Component of non-dimensional magnetic torque around the z axis, repulsive 
case 

𝜏⃗2,𝑚𝑎𝑔,𝑐𝑜𝑖𝑙 5.3.1. Magnetic torque on coil 2 from coil 1 (N-m) 

𝜏̃⃗2,𝑚𝑎𝑔,𝑐𝑜𝑖𝑙 5.3.1. Non-dimensional magnetic torque on coil 2 from coil 1 

𝜏̃2,𝑠𝑝𝑟𝑖𝑛𝑔 5.4.1. Non-dimensional elastic torque induced by spring around the z axis on coil 2 

𝜏̃2,𝑡𝑜𝑡 5.4.1. Non-dimensional total torque on coil 2 around the z axis 

𝜏̃𝑡𝑜𝑡𝑎𝑙,2 6.1.2. Non-dimensional total torque on coil 2 around z axis in three coil system 

𝜏̃𝑠𝑝𝑟𝑖𝑛𝑔,2 6.1.2. Non-dimensional spring torque on coil 2 around z axis in three coil system 

𝜏̃𝑠𝑝𝑟𝑖𝑛𝑔,3 6.1.2. Non-dimensional spring torque on coil 3 around z axis in three coil system 

𝜏̃𝑚𝑎𝑔,21 6.1.2. Non-dimensional magnetic torque of coil 1 on coil 2 

𝜏̃𝑚𝑎𝑔,23 6.1.2. Non-dimensional magnetic torque of coil 3 on coil 2 

𝜏̃𝑚𝑎𝑔,31 6.1.2. Non-dimensional magnetic torque of coil 1 on coil 3 

𝜏̃𝑚𝑎𝑔,32 6.1.2. Non-dimensional magnetic torque of coil 2 on coil 3 

𝜏̃2,𝑡𝑒𝑡ℎ1 6.2.1. Torque from tether 1 on coil 2, non-dimensional 

𝜏̃2,𝑡𝑒𝑡ℎ2 6.2.1. Torque from tether 2 on coil 2, non-dimensional 

𝜏̃𝑡𝑜𝑡𝑎𝑙,2 6.2.1. Total torque on coil 2 in tether case 

𝜏(𝑋⃗𝑎𝑙𝑙) 7.3. Torques of each position in configuration space (N-m or ND) 

𝑉𝑅 3.4.4. Elastic potential energy of a torsional spring (J) 

𝑉𝑇 3.5.4. Non-dimensional elastic potential energy, linear spring 

𝑉𝑅 3.5.4. Non-dimensional elastic potential energy, torsional spring 

𝑉𝑡𝑜𝑡,𝑉𝑡𝑜𝑡
 5.3.4. Dimensional (J) and non-dimensional total elastic potential energy 

𝑉𝑜𝑙𝑡 6.3.1. Voltage (V) 

𝑊𝑡,𝑗 1.2.1. Work done by a component of force 𝐹𝑡𝑜𝑡,𝑗 (J) 

𝑊𝑟,𝑘 1.2.1. Work done by a component of torque 𝜏𝑡𝑜𝑡,𝑘 (J) 
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𝜔 3.3.1. Natural frequency of magnet 2 on the linear spring (1/s) 

𝑊𝑟  3.4.4. Work done by the moment due to twisting through a very small angle 𝑑𝛽 
about the +𝑧 axis (J) 

𝑊𝑟𝑒𝑝 3.4.4. Magnetic potential energy, repulsive case (J) 

𝑊1𝐷𝑜𝐹,𝑇 4.1.3. The energy associated with magnet 2 in the magnetic field of magnet 1 (or 
vice versa) in the 1DoF-T case (J) 

𝑊̃1𝐷𝑜𝐹,𝑇 4.1.3. Non-dimensional magnetic potential energy of one magnet in the field of the 
other in the 1DoF-T case 

𝑊1𝐷𝑜𝐹,𝑅 4.2.3. The energy associated with magnet 2 in the magnetic field of magnet 1 (or 
vice versa) in the 1DoF-R case (J) 

𝑊̃1𝐷𝑜𝐹,𝑅 4.2.3. Non-dimensional magnetic potential energy of one magnet in the field of the 
other in the 1DoF-R case 

𝑊2𝐷𝑜𝐹 4.3.3. The energy associated with magnet 2 in the magnetic field of magnet 1 (or 
vice versa) in the 2DoF case (J) 

𝑊̃2𝐷𝑜𝐹 4.3.3. Non-dimensional magnetic potential energy of one magnet in the field of the 
other in the 2DoF case 

𝑊𝑡𝑜𝑡, 𝑊̃𝑡𝑜𝑡 5.3.4. Dimensional (J) and non-dimensional total magnetic energy (general 
formulation w/out specifying DoF) 

𝑊̃11, 𝑊̃22 5.3.4. Non-dimensional magnetic potential energy due to self inductance term for 
coils 1 and 2 respectively 

𝑊̃12, 𝑊̃21 5.3.4. Non-dimensional magnetic potential energy due to mutual inductance, 
equivalent 

𝑊̃𝐺𝑟𝑜𝑣𝑒𝑟 5.3.4. Non-dimensional magnetic potential energy due to mutual inductance as per 
published inductance tables in Grover 

𝑊̃𝐽𝑎𝑐𝑘𝑠𝑜𝑛,11, 

𝑊̃𝐽𝑎𝑐𝑘𝑠𝑜𝑛,22 

5.3.4. Non-dimensional magnetic potential energy due to self inductance term for 
coils 1 and 2 respectively, calculated via estimates in Jackson 

𝑋 1.2.1. Set of generalized coordinates describing system 

𝑥𝑖 1.2.1. A single generalized coordinate, part of set 𝑋 

𝑥𝑡,𝑗 1.2.1. A single translational generalized coordinate, where 𝑗 = 1: 𝑛𝑡 

𝑥𝑟,𝑘 1.2.1. A single translational generalized coordinate, where 𝑘 = 1: 𝑛𝑟 

𝑋⃗ 1.2.1. The position vector of a system in its generalized coordinates 

𝑥𝐼, 𝑥𝐼𝐼 1.2.2. Oscillation bounds around equilibrium resulting from 𝑇𝑡0
 (m) 

𝑥𝐼(𝑃𝑐), 
𝑥𝐼𝐼(𝑃𝑐) 

1.2.2. Maximum allowable bounds of motion beyond which motion becomes 
unbounded (m) 

𝑥𝑐𝑚 2.5.1. Position of center of mass  

𝑥𝑝 2.5.1. Position of primary mirror w.r.t. center of mass (m) 
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𝑥𝑠 2.5.1. Position of secondary mirror w.r.t. center of mass (m) 

𝑥𝑓 2.5.2. Ratio between magnetic and gravitational forces 

𝑥, 𝑥⃗ 3.1. Distance and vector between the magnets along the x axis (m) 

Δ𝑥 3.2. Translational displacement along x axis from natural length (m) 

𝑥0 3.2. Natural length of linear spring (m) 

𝑥̃ 3.3.1. Non-dimensional distance from the center of coil 1 to the center of coil 2 

𝑥̃0 3.3.1. Non-dimensional natural length of the linear spring 

𝑥#𝑎 3.3.2. Attractive equilibrium point (m) 

𝑥#𝑏 3.3.2. Repulsive equilibrium point (m) 

𝑥̃𝑚𝑎𝑥 3.3.2. Maximum absolute value of 𝑥̃4(𝑥̃ − 𝑥̃0) in Figure 30 

𝑥̃#𝑎 3.3.2. Non-dimensional attractive equilibrium point (m) 

𝑥̃#𝑏 3.3.2. Non-dimensional repulsive equilibrium point (m) 

𝑥𝑒𝑞 3.3.3. Equilibrium point (m) 

𝜉 3.4.1. Non-dimensional magnetic torque coefficient 

∆𝑥̃ 4.1.1. Non-dimensional displacement along x axis from natural length (m) 

𝑥⃗′ 4.1.3. Coordinates of the current carrying element (m) 

𝜒 5.3.1. Non-dimensional magnetic coil force coefficient  

𝑥̃𝑐𝑜𝑖𝑙,# 5.3.2 Equilibrium locations in the 1DoF-T non-dimensional coil model 

𝑥̃2, 𝑥̃3 6.1.1. Non-dimensional x locations of coils 2 and 3 

𝑥̃2,𝑒𝑞 6.1.1. Non-dimensional x locations of coil 2 equilibria 

𝑥̃3,𝑒𝑞 6.1.1. Non-dimensional x locations of coil 3 equilibria 

𝑥̃⃗2,𝑡𝑒𝑡ℎ1 6.2.1. Attachment point of tether 1 to coil 2, non-dimensional 

𝑥̃⃗2,𝑡𝑒𝑡ℎ2 6.2.1. Attachment point of tether 2 to coil 2, non-dimensional 

𝑥̃⃗1,𝑡𝑒𝑡ℎ1 6.2.1. Attachment point of tether 1 to coil 1, non-dimensional 

𝑥̃⃗1,𝑡𝑒𝑡ℎ2 6.2.1. Attachment point of tether 2 to coil 1, non-dimensional 

𝑥̃⃗⃗2,0 6.2.2. Non-dimensional position of center of coil 2 on x axis 

𝑥̃𝑐𝑜𝑖𝑙,# 6.2.2. Equilibrium position in x of coil 2 in tether system 1DoF-T, # referring to 
which statically stable equilibrium it is 

𝑋⃗(𝑡), 

𝑋̇⃗(𝑡), 𝑋̈⃗(𝑡) 

7.3. Position, velocities, and accelerations of coil system over time (ND) 

𝑋⃗𝑎𝑙𝑙 7.3. Vector location of every configuration in the configuration space of 
generalized coordinates (ND) 

𝛾 3.3.1. Non-dimensional magnetic force coefficient 
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𝑦 3.3.3. Dummy variable in state-space representation 

𝑍 2.5.2. Combination of variables, 
3𝜇0𝐼𝑡𝑢𝑟𝑛

80𝐶𝑆𝐴𝜌𝐻𝑇𝑆𝜋𝐺
, (

𝑘𝑔

𝐴𝑚
) 

 

 


