

A optimization of A* algorithm to make it close to human pathfinding
behavior

ZhenGuo Zhao1, a, RunTao Liu2,b
1 College of Applied Sciences ,Harbin University of Science and Technology, Harbin 150080, China

2 Institute of Information and Scientific Computing Technology, Harbin University of Science and
Technology, Harbin 150080, China

a zhaozhenguoxyz@163.com, b johnlee@comp.polyu.edu.hk

Keywords: A* algorithm, Pathfinding optimization, Space vector operations, Common sense illation

Abstract. A* algorithm is considered to be the optimal heuristic search algorithm over time. But the
biggest drawback is the consumption of resources as the growth risk of the processing scale is a
exponential level. This article based on common sense reasoning of artificial intelligence and the
vector calculation of mathematics put forward three strategies to optimize the number of intermediate
nodes and the calculation times of heuristic function. These strategies make the computer in the
process of pathfinding closer to human thinking. By comparison with the experimental data with the
traditional algorithm, the result show that runtime is generally reduced by 40%~70% and count of
intermediate node is reduced by 30%~60%. And exponential growth risk is also effectively reduced.

Introduction
A Star algorithm is a heuristic search algorithm, which widely used in the field of pathfinding and

traveling in graph, especially in the game development and GIS. Its accessibility and efficiency has
been widely recognized[1].It combines the pieces of information that Dijkstra’s algorithm uses which
expected choice is close to the starting point and information that Best-First-Search uses which
choice is close to the goal[2].But with the enlargement of the search space, because of the need to
implement a breadth-first search, the calculation times of heuristic function ,which affects the time
complexity of algorithm ,is greatly increased and finally tending to exponential growth[3].Therefore,
the optimization of breadth-first can reduce the intermediate node number of visits and the number of
valuation function calculation and this will greatly reduce resource consumption and time
consumption of the algorithm. This paper based on common sense illation of artificial intelligence
and mathematics algebra calculation presents an efficient optimization algorithm, and will give a
satisfactory experimental results in the algorithm comparison.

Introduction of A * algorithm
Peter Hart, Nils Nilsson and Bertram Raphael of Stanford Research Institute first described the

algorithm in 1968[1].It’s like Dijkstra’s algorithm in that it can be used to find a shortest path. It’s like
Greedy Best-First-Search in that it can use a heuristic to guide itself. Eq. 1 is widely used as a
heuristic function ,where ng is the exact cost of the path from the starting point to any vertex n, nh is
the heuristic estimated cost from vertex n to the goal. When nh ≤ *nh ,where *nh is the exact cost
from vertex n to the goal, an accessible path will be found[4].In this paper, Manhattan distance is
selected for calculating nh and is has been proved it is accessible[5].The main steps of A * algorithm
description[6]:

nnn hgf += (1)
The main steps of A * algorithm description[6]:
 1. Start node is pushed into the OPEN List, which is a priority queue;

2nd International Conference on Electrical, Computer Engineering and Electronics (ICECEE 2015)

© 2015. The authors - Published by Atlantis Press 708

http://en.wikipedia.org/wiki/Admissible_heuristic

2. Pick the first node from the open list and keep it as the current node, which is the lowest rank
by nf from OPEN and is not the GOAL;

3. Get the neighboring nodes of this current node, which are not obstacle types and not in
CLOSED List. Calculate nf and Store it in the neighbor node object. Set neighbor's parent to current
node and add neighbor to OPEN List;

4. Remove current node from OPENList and add it to CLOSED List, then go to step 2 .

The introduction of A * optimization algorithm
Calculation the nf of the current’s all neighbor nodes result in the growth of the processing scale

is a exponential level. In this paper ,4-neighborhood is used to pick current’s neighbors. According to
the human experience，which called common sense illation of artificial intelligence, not all the
direction of the current’s neighbor needs to be accessed, and the neighbor between Start and Goal
may be accessed, and the neighbor, which is a key position from Start to Goal, such as corner or the
only neighbor node, must be accessed. So some unnecessary neighbors can be pruned and the number
of intermediate nodes and the calculation times of heuristic function are reduced. But in order to
record the abandoned intermediate nodes, extra storage space is necessary. Based on space vector
operations of mathematics algebra calculation, computer can have a sense of direction. And two list
called Negative Direction List and Reverse Move List is used to store the abandoned intermediate
nodes. Therefore, our optimization mainly includes three strategies:

Strategy 1: Exploration in the direction from Start node to Goal node.

Let collection NS be collection of all the neighbor nodes of current node S and collection VNS be
collection of vectors in the composition of nodes S and every neighbor node. While the dot product
between every vector of VNS, which called iVNS 0,1,2,3)(i = ,and SG is greater than zero or the

count of NS is one, the neighbor node which related with iVNS is in the goal direction ,e.g. In Fig. 1,
S’will be added into Negative Direction List which contains not in the goal direction and S” will be
processed later.

GS

S’ S”

Fig. 1 Decision Node which between S and G

Strategy 2: Move toward the Goal node.

Some nodes, which not in the goal direction, are pruned by Strategy 1. However ,not all the nodes
in the goal direction must be calculated the heuristic function, e.g. in Fig. 3，although SU’,SL’ ,SD’
and SR’ are both in the goal direction, SD’ and SR’ are expected based on the common sense illation
of artificial intelligence, which showed.

Let collection NS’ be collection of all the neighbor nodes of current node S’, which
4-neighborhood nodes are in the goal direction, and collection VNS’ be collection of vectors in the
composition of nodes Sand every neighbor node. While the dot product between every vector of

VNS’, which called iVNS' 0,1,2,3)(i = ,and 'SG is greater than zero or the count of NS’ is one, the

neighbor node which related with iVNS' is in the expected moving direction.

709

http://en.wikipedia.org/wiki/Admissible_heuristic

G

S

S’
SR’

SD’

SU’

SL’

G

S

S’
SR’

SD’

SU’

SL’

Fig. 2 Node in horz moving target direction Fig. 3 Node in not horz moving target direction
Deduction 1 :
According to Strategy 2,at least 50 fifty percent of neighborhood nodes are reduced when

calculation nodes heuristic function.
Proof ：While G in S’ horizontal or vertical position, three times of calculation node’s heuristic

function are reduced, e.g.SU’, SL’ and SD’ (75% neighborhood nodes)will be added into Reverse
Move List which contains not in the expected moving direction and SR’ will be added into OPEN
List, which showed in Figure 2 ;Other situations two times of calculation node’s heuristic function
are reduced, e.g.SL’ and SD’ (50% neighborhood nodes)will be added into Reverse Move List and
SD’ and SR’ will be added into OPEN List, which showed in Fig 3.

Strategy 3: When encounter a dead-end, return the nearest position which in

Deduction 2 :
According to Strategy 1 and Strategy 2，the worst case is that encountering a dead-end, if there is

a way to goal, we need to return the recent node position which in Negative Direction List and
Reverse Move List and continue to search. Finally, the shortest path will be found. In this case,
although a few nodes are pruned, it is better than traditional A* algorithm.

Proof: Negative Direction List and Reverse Move List contains the nodes which has been
pruned ,these nodes and those nodes which has been push in OPEN List are the same as the OPEN
List which used in traditional A* algorithm. Therefore ,optimized A* algorithm has the same nature
with traditional A* algorithm ,such as accessibility and term inability. So the shortest path will be
found finally.

The pseudo-code of optimized A* algorithm is outlined in Algorithm A Star Optimize.
Algorithm A Star Optimize (Start, Goal)
Input: A Grid MAP, Start node and Goal node
Output : The shortest path from Start to Goal
1： CLOSED List, Right Out List, Reverse Move List:=empty set, OPEN List := {start}
2： While OPEN List is not empty set
3： current := OPEN List’s first node ,which having the lowest heuristic function value
4： if current = Goal then
5： return reconstruct_ path(current)
6： Start To Goal Vector := the vector from start to goal
7： Current To Goal Vector := the vector from current to goal
8： for each neighbor which not in CLOSED List of current
9： start To Neighbor Vector :=the vector from start to neighbor
10： Current To Neighbor Vector :=the vector from current to neighbor
11： if (neighbor_ nodes. length>1 and Dot(start To Neighbor Vector, start To Goal Vector)<0)
12： add neighbor to Right Out List
13： else
14： if(Dot(current To Neighbor Vector, current To Goal Vector)>0 or neighbors. Count==1)
15： Calculate neighbor’s heuristic function
16： neighbor. parent := current
17： add neighbor to OPEN List
18： else

710

19： add neighbor to Reverse Move List
20： remove current from OPEN List
21： add current to CLOSED List
22： if(OPEN List is empty)
23： if (current is not Goal)
24： Add Right Out List and Reverse Move List to OPEN List
25： Reconstruct reverse path from goal to start.

Complexity Analysis
The time complexity of A* algorithm depends on the heuristic function. In the worst case,it is

exponential. And when the search space is a tree, it is polynomial. The time complexity of optimized
A* algorithm is the same with traditional A* algorithm, because it lower down the growth rate by
reducing the times of calculation node’s heuristic function. Therefore, optimized A* algorithm lower
down the factor of exponential or polynomial formula and does not change the time complexity.

Experimental evaluation
We refer to the experimental analysis section of DEC - A * [7] . we compare two measures between

A* algorithmand optimized A* algorithm.One is runtime ,another one is total times of accessing
nodes in grid map. We create a platform which could generate a grid map with two parameters:

Grid size: the size of maps,e.g.20*20
Probability of obstacle (Prob): during generating grid cells, a random number is given. If it is

less than the probability,the grid cell is a obstacle
One experimental result is showed in Figure 4.The number of red node which is accessed by

optimized A* algorithm is 88 less than the number of green node which is accessed by A*
algorithm.The runtime of optimized A* algorithm is 5.194 ms and A* algorithm is 11.714 ms.
Runtime is reduced by 55.6%.So optimized A* algorithm is effective. More sets of test data are given
in Table 1 and Table 2.In each experiment, the start is at center location on the map and the goal is at
lower right corner. All experiments are performed on an Intel(R) Core(TM) 2 Duo CPU and 2GB
memory.

Fig. 4 One experimental result while size=20

711

app:ds:algorithm
app:ds:algorithm
app:ds:algorithm
app:ds:algorithm
app:ds:algorithm
app:ds:algorithm
app:ds:algorithm
app:ds:effective

Table 1 The results of runtime comparison
 Prob

Size
 0 0.1 0.2 0.3

optimized A* A* optimized A* A* optimized A* A* optimized A* A*
20 0.0081 0.0137 0.0046 0.0082 0.0032 0.0078 0.0027 0.0069
30 0.0311 0.0736 0.016 0.0487 0.0108 0.0487 0.0039 0.008
40 0.0817 0.1689 0.0537 0.1184 0.0264 0.0721 0.0164 0.0414
50 0.2041 0.3959 0.1101 0.2723 0.0319 0.1683 0.0503 0.1083
60 0.4116 0.7861 0.2875 0.6163 0.1007 0.3911 0.0454 0.187
70 0.7876 1.5152 0.5806 1.5112 0.2613 0.7233 0.0639 0.4918
80 1.3394 2.688 0.7482 1.962 0.2987 1.2739 0.0394 0.4587
90 2.2313 4.3637 1.3392 3.229 0.3504 1.9554 0.4571 1.339

100 3.444 6.7301 1.947 4.9354 1.0407 3.2114 0.2007 1.7105
120 7.0134 14.1236 4.0787 10.6219 0.8211 6.4374 0.2963 3.6539
140 13.319 26.69 8.0425 20.0936 2.0423 13.3212 0.2232 6.7863

Table 2 The results of accessed node’s count comparison

 Prob
Size

 0 0.1 0.2 0.3
optimized A* A* optimized A* A* optimized A* A* optimized A* A*

20 120 180 77 139 64 118 61 111
30 255 379 195 324 161 270 66 176
40 419 610 348 532 257 426 205 341
50 649 948 493 818 289 677 296 546
60 929 1349 760 1198 496 991 310 700
70 1259 1822 1073 1609 770 1307 353 1109
80 1639 2374 1256 2070 842 1741 314 1101
90 2069 2997 1671 2657 902 2127 813 1773

100 2549 3676 2020 3249 1520 2703 571 2034
120 3659 5286 2872 4678 1375 3788 863 2918
140 4969 7164 3995 6347 2101 5309 712 3925

Table 3 show percentage of relative optimization which calculated by (parameter of A*－
parameter of optimized A*)/parameter of A*.Parameter time acts as runtime and Parameter count
acts as accessed node’s count. The result show that runtime is generally reduced by 40%~70% and
count of accessed node is reduced by 30%~60%.

Table 3 Percentage of relative optimization
 Prob

Size

0 0.1 0.2 0.3

time count time count time count time count

20 40.9% 33.30% 43.9% 44.60% 59.0% 45.80% 60.9% 45.00%
30 57.7% 32.70% 67.1% 39.80% 77.8% 40.40% 51.3% 62.50%
40 51.6% 31.30% 54.6% 34.60% 63.4% 39.70% 60.4% 39.90%
50 48.4% 31.50% 59.6% 39.70% 81.0% 57.30% 53.6% 45.80%
60 47.6% 31.10% 53.4% 36.60% 74.3% 49.90% 75.7% 55.70%
70 48.0% 30.90% 61.6% 33.30% 63.9% 41.10% 87.0% 68.20%
80 50.2% 31.00% 61.9% 39.30% 76.6% 51.60% 91.4% 71.50%
90 48.9% 31.00% 58.5% 37.10% 82.1% 57.60% 65.9% 54.10%

100 48.8% 30.70% 60.6% 37.80% 67.6% 43.80% 88.3% 71.90%
120 50.3% 30.80% 61.6% 38.60% 87.2% 63.70% 91.9% 70.40%
140 50.1% 30.60% 60.0% 37.10% 84.7% 60.40% 96.7% 81.90%

We analysis the case that probability of obstacle equal 0.1, both runtime and count of accessed
nodes which generated by A* are greatly increased and finally tending to exponential growth, but

712

optimized A* are increased slowly and the velocity of increasing is below exponential level, which
showed in Fig 5 and Fig 6.

20 40 60 80 100 120 140

0

1000

2000

3000

4000

5000

6000

7000

Co
un

t O
f A

cc
es

se
d

No
de

s

Map Size (N*N)

 Optimized A*
 A*

20 40 60 80 100 120 140
-2
0
2
4
6
8

10
12
14
16
18
20
22

Ru
nt

im
e(

se
c)

Map Size (N*N)

 Optimized A*
 A*

 Fig 5 Runtime while prop=0.1 Fig 6 Count of accessed nodes while prop=0.1
The strategies that prune intermediate node and experimental results prove the ability of reducing

the risk of exponential growth and the efficiency and of optimized A*.

Summary

A* algorithm is widely used in the field of network game and GIS, because it is optimal about time
in theory. The less time algorithm consumed, the higher quality improved for customer
experience(CEIP).This paper based on common sense illation of artificial intelligence and space
vector operations of mathematics algebra calculation, put forward three optimization strategies.
According to three optimization strategies and simulation experiment results, optimized A* is proved
that it will reduce the consumption of time and the number of accessed nodes. So, optimized A* is a
effectively improved algorithm.

References

[1] P. E. Hart, N. J.Nilsson, B. Raphael, A Formal Basis for the Heuristic Determination of
Minimum Cost Paths. IEEE Transactions on Systems Science and Cybernetics SSC4 4(2):
100–107 (1968).

[2] S. Anthony : Optimal and Efficient Path Planning for Partially-Known Environments[A]. The
Robotics Institute; Cmegie Mellon University; Pittsburgh, PA 15213

[3] M. Nosrati, R. Karimi, and H. A. Hasanvand. Investigation of the * (star)search algorithms:
Characteristics, methods and approaches. World Applied Programming 2, 4 (2012), 251-256

[4] Junfeng Yao, Chao Lin, Xiaobiao Xie, Andy JuAn Wang, and Chih-Cheng Hung. 2010. Path
Planning for Virtual Human Motion Using Improved A* Star Algorithm. In Proceedings of the
2010 Seventh International Conference on Information Technology: New Generations (ITNG
'10). IEEE Computer Society, Washington, DC, USA, 1154-1158.

[5] Miao Wang; Hanyu Lu, "Research on Algorithm of Intelligent 3D Path Finding in Game
Development," Industrial Control and Electronics Engineering (ICICEE), 2012 International
Conference on , vol., no., pp.1738,1742, 23-25 Aug. 2012.

[6] A. Patel.Introduction to A* From Amit’s Thoughts on Pathfinding Retrieved
from http://theory.stanford.edu/~amitp/GameProgramming/ImplementationNotes.html.

[7] Mohamad El Falou, Maroua Bouzid, and Abdel Illah Mouaddib.. DEC-A*: A Decentralized
Multiagent Pathfinding Algorithm. In Proceedings of the 2012 IEEE 24th International

713

app:ds:simulation
app:ds:experiment
http://en.wikipedia.org/wiki/Institute_of_Electrical_and_Electronics_Engineers
http://twitter.com/redblobgames
http://theory.stanford.edu/%7Eamitp/GameProgramming/
http://theory.stanford.edu/%7Eamitp/GameProgramming/ImplementationNotes.html

Conference on Tools with Artificial Intelligence - Volume 01 (ICTAI '12), Vol. 1(2012). IEEE
Computer Society, Washington, DC, USA, 516-523.

714

