External Fixation for Distal Radius Fractures

I Make Plates and \$

I Would Likely Have a Well Done Frame

One Thing

One Thing

Operative Indications?

- Age
- Initial films

- Dorsal comminution
- Intraarticular involvement
- Postreduction films
 - Carpal Alignment
- Loss of reduction

Carpal Malalignment...

REDISPLACED UNSTABLE FRACTURES OF THE DISTAL RADIUS
A PROSPECTIVE KANDOMISED COMPARISON OF FOUR METHODS OF TREATMENT.

M. M. MCQUEEN, C. HAJDUCKA, C. M. COURT-BROWN From the Royal Infirmary of Edinburgh, Scotland

- Mass grip strength
- Key grip
- Chuck grip

SCIENTIFIC ARTICLE

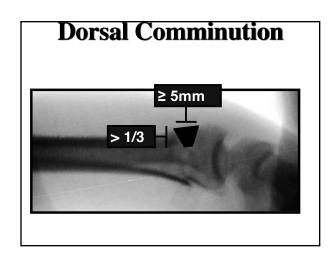
Predicting Alignment After Closed Reduction and Casting of Distal Radius Fractures

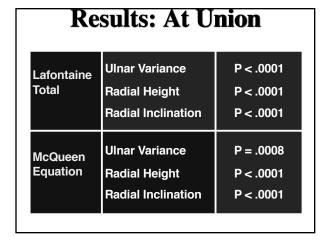
Joey LaMartina, MD, Andrew Jawa, MD, Charlton Stucken, MD, Gabriel Merlin, MD, Paul Tornetta III, MD

Distal Radius Fractures

Lafontaine, et al

- 1. Age > 60 years
- 2. Dorsal Angulation > 20°
- 3. Dorsal Comminution
- 4. Intra-articular fracture
- 5. Associated ulnar fracture
- ≥ 3 criteria = loss of reduction


Prediction of Instability in Distal Radial Fractures


By P.J. MACKENNEY, FRCS, M.M. MCQUEEN, MD, FRCSED(ORTH), AND R. ELTON, PHD

- Malunion formula risk factors
 - Age*
 - Comminution
 - Ulnar variance > 3mm
 - Does own shopping

Loss of Radial Height

Results: Multivariate					
	Dorsal Tilt	Ulnar Variance	Radial Height	Radial Inclination	
Final Position	Volar Hook Dorsal Comminution	Age of Patient	Age of Patient Intraarticular Fracture	Age of Patient	
Δ During Treatment	Volar Hook Dorsal Comminution	Dorsal Comminution	Age of Patient	Age of Patient	

Results: Multivariate						
	Dorsal Tilt	Ulnar Variance	Radial Height	Radial Inclination		
Final Position	Volar Hook Dorsal Comminution	A le of Patient	Age of Patient Intraarticular Fracture	Age of Patient		
Δ Durin Treatmer \	Volar Hook Dorsal Comminution	Dorsal Comminution	Age of Patient	Age of Patient		

Results

- Carpal alignment
- Predicted by:

- Volar hook (P = .001)
- Age of patient (P = .03).

Volar Hook

If Operative...

- CRPP
- Spanning ex fix \pm K-wires
- Nonspanning ex fix
- Plating
 - Dorsal
 - Volar (locked)

If Operative...

- CRPP
- Spanning ex fix \pm K-wires
- Nonspanning ex fix
- Plating
 - Dorsal
 - Volar (locked)

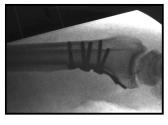
Algorithm

- Extraarticular? YES
- Intraarticular?
 - Reduced in cast...YES
 - Translation ok in cast
 - With pins...YES
 - Impacted joint in cast
 - With open reduction + pins..YES
 - Fracture dislocation...NO!

Intraarticular?

- YES!
- Can control fragments with pinning
- Critical
 - K-wires
 - Volar shift maneuver
 - Immobilize in extension!

TOP				
A				
YES				
163				


Rim Fractures

Plate(s)

Tips

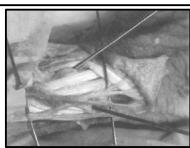
- Distract initially
- Metaphyseal alignment
 - Volar shift
 - Kapandji or other levers
- Joint impaction
 - Perc elevation or open and graft
- Pin (radial and others)
- Neutral frame in extension

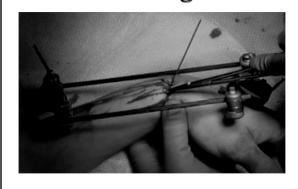
Percutaneous Cannula

Reduction

Radiographs

Motion


Spanning + K-Wire


The Risks of Kirschner Wire Placement in the Distal Radius: A Comparison of Techniques

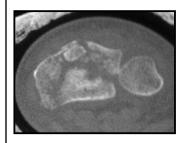
A Comparison of Techniques

Neal L. Hochwald, MD, Brooklyn, NY,
Richard Levine, MD, Newark, NJ, Paul Tornetta III, MD, Brooklyn, NY

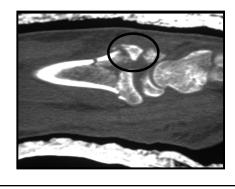
Pinning

Spanning + K-Wire

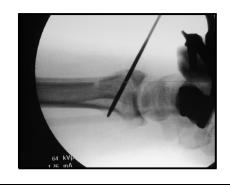
Spanning + K-Wire



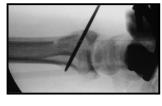
Complex



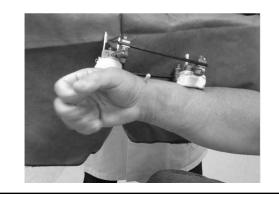
Rarely CT, but ...



Lateral is Key


Kapandji Technique

Kapandji Technique



Intraop

Two Weeks

4 Weeks

Removal in Clinic

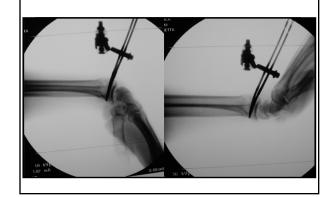
Impaction!

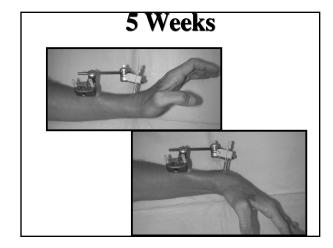
Casted

Ex Fix + OR+ Graft

Healed

Other Options..

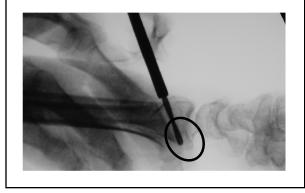

Redisplaced unstable fractures of the distal radius

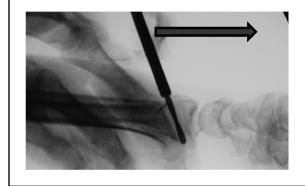

A RANDOMISED, PROSPECTIVE STUDY OF BRIDGING $\ensuremath{\textit{VERSUS}}$ NON-BRIDGING EXTERNAL FIXATION

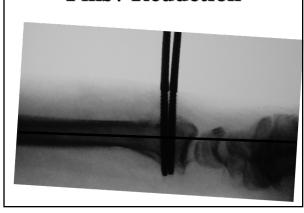
M. M. McQueen
From the Royal Infirmary of Edinburgh, Scotland

	Group I	Group II	p value
Six weeks	3 (±6)	14 (±16)	< 0.01
Three months	30 (±16)	54 (±27)	< 0.001
One year	69 (±21)	87 (±16)	< 0.001

Other Options..

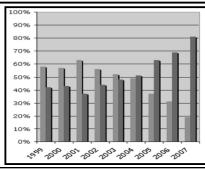





Pins / Reduction

Pins / Reduction

Pins / Reduction

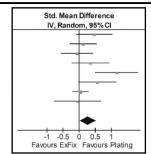


Fractures of the Distal Part of the Radius

The Evolution of Practice Over Time. Where's the Evidence?

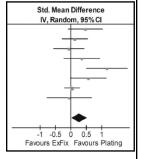
By Kenneth J. Koval, M.D. John J. Harrast, M.S. Jeffrey O. Anglen, M.D. and James N. Weinstein, D.O. M.S.

Investigation performed at Durtmouth-Hitchcock Medical Center, Lebanon, New Hampshire



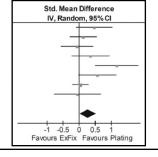
Why Would I Have a Frame??

- Decreased complications that matter to me
- Can effectively treat anything except a fracture dislocation


External Fixation Versus Internal Fixation for Unstable Distal Radius Fractures: A Systematic Review and Meta-Analysis of Comparative Clinical Trials

David H. Wei, MD, MS,* Rudolf W. Poolman, MD, PhD,† Mohit Bhandari, MD, MSc,‡ Valerie M. Wolfe, MD,* and Melvin P. Rosenwasser, MD*

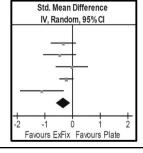
But...Important?


- No report of the actual difference
- Only statistical
- Need the real #'s to decide importance

External Fixation Versus Internal Fixation for Unstable Distal Radius Fractures: A Systematic Review and Meta-Analysis of Comparative Clinical Trials

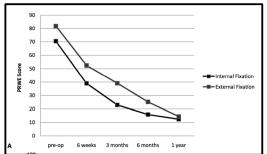
David H. Wei, MD, MS.* Rudolf W. Poolman, MD, PhD,† Mohit Bhandari, MD, MSc.‡ Valerie M. Wolfe, MD,* and Melvin P. Rosenwasser, MD*

14.8



12.1

External Fixation Versus Internal Fixation for Unstable Distal Radius Fractures: A Systematic Review and Meta-Analysis of Comparative Clinical Trials


David H. Wei, MD, MS,* Rudolf W. Poolman, MD, PhD,† Mohit Bhandari, MD, MSc,‡ Valerie M. Wolfe, MD,* and Melvin P. Rosenwasser, MD*

92%

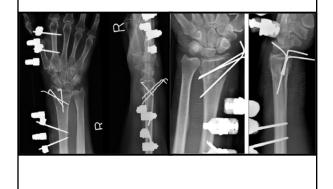
82%

Open Reduction Internal Fixation Versus Percutaneous
Pinning With External Fixation of Distal Radius
Fractures: A Prospective, Randomized Clinical Trial
Ruby Grewal, MD, MSc, Joy C. MacDermid, MSc, PhD, Graham J. W. King, MD, MSc,
Kenneth J. Faber, MD

...And Not Fair Chance!

Treatment of complex fractures of the distal radius: A prospective randomised comparison of external fixation 'versus' locked volar plating

J. Jeudy ^a, V. Steiger ^b, P. Boyer ^a, P. Cronier ^b, P. Bizot ^b, P. Massin ^{a, e}


-*Department of Orthopoedic Surper, Bished Claude Bermand Teaching, Height, Darks Diblered University, 46 rue Henri Huchard, 75877 Puris cedex 18, Prance

-*Department of Orthopoedic Surper, Americ Teachine Heimide (SSR) Americ red for Miss.

-*The Company of the Company of

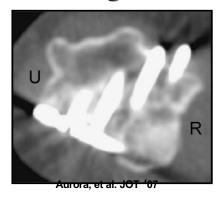
Other Studies

Plate Complications

Locked volar plating for	unstable	distal	radial	fractures:	Clinical	and
radiological outcomes						

Dominique Knight, Carol Hajducka, Elizabeth Will, Margaret McQueen*

- 48% Complication rate
- 25% Malunion
- 25% Intraarticular screws
 - From collapse
- 12.5% EPL rupture
- 5% CTS

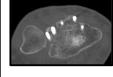

Complications

- Lack of reduction
 - Neutral volar tilt
- Loss of reduction
 - +1.9°, 10%
- Intraarticular screws
 - Initial 3%
 - Collapse 3% 5%???

Complications

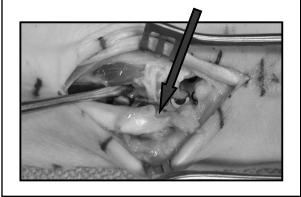
- Extensor tendons
 - Rupture 2%, Irritation 5%
- Flexor tendons
 - Rupture 3%, Irritation 8%
- Median nerve (CTS)
 - **4%**

Loooong Screws



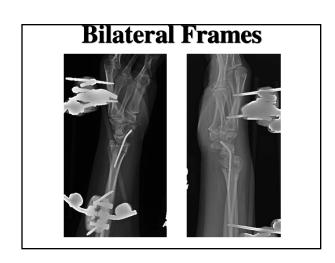
Screws in DRUJ

38 year old trauma


Humerus + Elbow

FPL

FPL Rupture


Summary

- Operative treatment NOT required for many fractures!
- If operative
 - Do what you are good at
 - Be able to perform all techniques
 - Don't throw away your frames!

Summary

- Operative treatment NOT required for many fractures!
- If prative state of the state o
 - Don't throw away your frames!

Bilateral Bad Injuries

