
198 5 Numerics

5.1 Tensor Representation

This section introduces the idea that geometric-algebra operations are essen-
tially bilinear functions and makes this notion explicit. In later chapters, this
representation forms the foundation for the description of random multivector
variables and statistical optimizations. Using this form, di↵erentiation and
integration in geometric algebra can be related right away to these operations
in linear algebra.

Recall that the geometric algebra Gp,q has dimension 2n. Let {Ei} := Gp,q

denote the canonical algebraic basis, whereby E
1

⌘ 1. For example, the
algebraic basis of G

3

is given in Table 5.1.

Table 5.1 Algebra basis of G
3

, where the geometric product of basis vectors is
denoted by combining their indices, i.e. e

1

e
2

⌘ e
12

Type No. Basis Elements

Scalar 1 1

Vector 3 e
1

, e
2

, e
3

2-Vector 3 e
23

, e
31

, e
12

3-Vector 1 e
123

A multivector A 2 Gp,q can then be written as A = ai Ei, where ai

denotes the ith component of a vector a 2 R2

n

and a sum over the repeated
index i is implied. Since the {Ei} form an algebraic basis, it follows that the
geometric product of two basis blades has to result in a basis blade, i.e.

Ei Ej = � k
ij Ek, 8 i, j 2 {1, . . . , 22}, (5.1)

where � k
ij 2 R2

n⇥2

n⇥2

n

is a tensor encoding the geometric product. Here,
the following notation is being used. The expression � k

ij denotes either the
element of the tensor at the location (k, i, j) or the ordered set of all elements
of the tensor. Which form is meant should be clear from the context in which
the symbol is used. All indices in an expression that appear only once and are
also not otherwise defined to take on a particular value indicate the ordered
set over all values of this index. If an element has one undefined index, it
denotes a column vector, and if it has two undefined indices it denotes a
matrix, where the first index gives the row and the second index the column.

For example, the expression bj � k
ij has two undefined indices k and i and

thus represents a matrix with indices k and i. Since k is the first index, it
denotes the row and i denotes the column of the resultant matrix. Similarly,
ai bj � k

ij denotes a column vector with the index k.
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Table 5.2 Tensor symbols for algebraic operations, and the corresponding Jacobi
matrices. For tensors with two indices (i.e. matrices), the first index denotes the
matrix row and the second index the matrix column

Operation Tensor symbol Jacobi matrices

Geometric Product �

k

ij

�

R

(a) := a

i

�

k

ij

�

L

(b) := b

j

�

k

ij

Outer Product ⇤

k

ij

⇤

R

(a) := a

i

⇤

k

ij

⇤

L

(b) := b

j

⇤

k

ij

Inner Product ⇥

k

ij

⇥

R

(a) := a

i

⇥

k

ij

⇥

L

(b) := b

j

⇥

k

ij

Reverse R

j

i

R := R

j

i

Dual D

j

i

D := D

j

i

5.1.1 Component Vectors

If A, B,C 2 Gp,q are defined as A := ai Ei, B := bi Ei, and C := ci Ei,
then it follows from (5.1) that the components of C in the algebraic equation
C = A B can be evaluated via

ck = ai bj � k
ij , (5.2)

where a summation over i and j is again implied. Such a summation of tensor
indices is called contraction. Equation (5.2) shows that the geometric product
is simply a bilinear function. In fact, all products in geometric algebra that
are of interest in this text can be expressed in this form, as will be discussed
later on.

The geometric product can also be written purely in matrix notation, by
defining the matrices

�R (a) := ai � k
ij and �L (b) := bj � k

ij . (5.3)

The geometric product A B can now be written as

ai bj � k
ij = �R (a) b = �L (b) a. (5.4)

Note that the matrices �R (a) and �L (b) are the two Jacobi matrices of
the expression ck := ai bj � k

ij . That is,

@ ck

@ ai
= bj � k

ij = �L (b) and
@ ck

@ bj
= ai � k

ij = �R (a) . (5.5)
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At this point it is useful to introduce a notation that describes the mapping
between multivectors and their corresponding component vectors. For this
purpose, the operator K is introduced. For the algebra Gp,q, K is the bijective
mapping

K : Gp,q �! R2

p+q

and K�1 : R2

p+q �! Gp,q. (5.6)

For a multivector A 2 Gp,q with A := ai Ei, the operator is defined as

K : A 7! a and K�1 : a 7! A. (5.7)

It follows that

K(A B) = �R (K(A)) K(B) = �L (K(B)) K(A) (5.8)

and
K�1

�

�R (a) b
�

= K�1

�

�L (b) a
�

= K�1(a)K�1(b). (5.9)

The mapping K is therefore an isomorphism between Gp,q and R2

(p+q)

.
In addition to the geometric product, the inner and outer products and

the reverse and dual are important operations in geometric algebra. The
corresponding operation tensors are therefore given specific symbols, which
are listed in Table 5.2.

5.1.2 Example: Geometric Product in G2

A simple example of a product tensor is the geometric-product tensor of G
2

.
The algebraic basis may be defined as

E
1

:= 1, E
2

:= e
1

, E
3

:= e
2

, E
4

:= e
12

. (5.10)

The geometric-product tensor � k
ij 2 R4⇥4⇥4 of G

2

then takes on the form

� 1

ij =

2

6

4

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 �1

3

7

5

, � 2

ij =

2

6

4

0 1 0 0

1 0 0 0

0 0 0 �1

0 0 1 0

3

7

5

,

� 3

ij =

2

6

4

0 0 1 0

0 0 0 1

1 0 0 0

0 �1 0 0

3

7

5

, � 4

ij =

2

6

4

0 0 0 1

0 0 1 0

0 �1 0 0

1 0 0 0

3

7

5

,

(5.11)

where i is the row index and j is the column index. Let A = e
1

and B = e
2

;
then a = [ 0 , 1 , 0 , 0 ]T and b = [ 0 , 0 , 1 , 0 ]T. Thus
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bj � 1

ij = [ 0 , 0 , 1 , 0 ]T

bj � 2

ij = [ 0 , 0 , 0 , 1 ]T

bj � 3

ij = [ 1 , 0 , 0 , 0 ]T

bj � 4

ij = [ 0 , 1 , 0 , 0 ]T

9

>

>

>

>

=

>

>

>

>

;

=) bj � k
ij =

2

6

6

6

6

4

0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0

3

7

7

7

7

5

. (5.12)

In the resultant matrix, k is the row index and i is the column index. It
follows from (5.12) that

ai bj � k
ij = [ 0 , 0 , 0 , 1 ]T ⇠= e

12

= E
4

, (5.13)

where ⇠= denotes isomorphism.

5.1.3 Subspace Projection

Depending on the particular algebra, the corresponding product tensor can
become very large. For example, in the algebra G

4,1 of conformal space, the
geometric-product tensor � k

ij 2 R32⇥32⇥32 has 32 768 components, most of
which are zero. When one is performing actual computations with such a ten-
sor on a computer, it can reduce the computational load considerably if the
tensor is reduced to only those components that are actually needed. Further-
more, such a projection process can also be used to implement constraints,
as will be seen later.

Let m 2 {1, . . . , 2(p+q)}r denote a vector of r indices that index those basis
elements {Ei} ⇢ Gp,q which are needed in a calculation. Also, let us define
eu := K(Eu) such that ei

u = �i
u, where �i

u denotes the Kronecker delta,
defined as

�i
u :=

(

1 : i = u ,

0 : i 6= u .

A corresponding projection matrix M is then defined as

M j
i := K�

E
m

j

�i = ei
m

j , M j
i 2 Rr⇥2

(p+q)

, (5.14)

where mj denotes the jth element of m. A multivector A 2 Gp,q with a =
K(A) may be mapped to an r-dimensional component vector aM 2 Rr related
to those basis blades which are indexed by m, via

aj
M = ai M j

i. (5.15)

The reduced vector aj
M can be mapped back to a component vector on the

full basis through
aj = ai

M M̃ j
i, (5.16)
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where M̃ j
i denotes the transpose of M j

i.
Suppose A, B,C 2 Gp,q are related by C = A B. In terms of component

vectors a = K(A), b = K(B), and c = K(C), this can be written as ck =
ai bj � k

ij . If it can be assumed that only a subset of the elements of ai and
bj are non-zero, the evaluation of this operation can be reduced as follows.
Let M j

a i and M j
b i denote the projection matrices for a and b that map only

the non-zero components to the reduced component vectors aM and bM ,
respectively. Clearly, only a subset of the components of the resultant vector
c will be non-zero. The appropriate projection matrix and reduced component
vector are denoted by M j

c i and cM . The geometric-product operation for the
reduced component vectors then becomes

cw
M = au

M bv
M M w

c k M̃ i
au M̃ j

b v � k
ij . (5.17)

This can be written equivalently as

cw
M = au

M bv
M �w

M uv, �w
M uv := M w

c k M̃ i
au M̃ j

b v � k
ij . (5.18)

That is, �w
M uv encodes the geometric product for the reduced component

vectors. In applications, it is usually known which components of the con-
stituent multivectors in an equation are non-zero. Therefore, reduced product
tensors can be precalculated.

5.1.4 Example: Reduced Geometric Product

Consider again the algebra G
2

with basis

E
1

:= 1, E
2

:= e
1

, E
3

:= e
2

, E
4

:= e
12

.

The geometric-product tensor � k
ij 2 R4⇥4⇥4 of G

2

is given by (5.11). Sup-
pose A, B 2 G1

2

; that is, they are linear combinations of E
2

and E
3

. It is clear
that the result of the geometric product of A and B is a linear combination
of E

1

and E
4

, i.e. C = A B 2 G+

2

. Therefore,

M j
a i = M j

b i =

"

0 1 0 0
0 0 1 0

#

, M j
c i =

"

1 0 0 0
0 0 0 1

#

. (5.19)

The reduced geometric-product tensor is thus given by

�w
M uv := M w

c k M̃ i
au M̃ j

b v � k
ij , (5.20)

where

� 1

M uv =

"

1 0
0 1

#

, � 2

M uv =

"

0 1
�1 0

#

. (5.21)
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If A = e
2

= E
3

and B = e
1

= E
2

, the reduced component vectors are
aM = [ 0 , 1 ]T and bM = [ 1 , 0 ]T. Thus

bv
M � 1

M uv = [ 1 , 0 ]T

bv
M � 2

M uv = [ 0 , �1 ]T

)

=) bv
M �w

M uv =

"

1 0
0 �1

#

. (5.22)

It follows from this that

cw
M = au

M bv
M �w

M uv = [ 0 , �1 ]T . (5.23)

Mapping cw
M back to the non-reduced form gives

ck = cw
M M̃ k

c w = [ 0 , 0 , 0 , �1 ]T ⇠= �e
12

= �E
4

. (5.24)

5.1.5 Change of Basis

Let {Fi} ⇢ Gp,q denote an algebraic basis of Gp,q which is di↵erent from
the canonical algebraic basis {Ei} of Gp,q. Given a multivector A 2 Gp,q, its
component vectors in the E-basis and F -basis are denoted by aE = KE(A)
and aF = KF (A), respectively. The tensor that transforms aE into aF is
given by

T j
i := KE(Fj)i ) aj

F = ai
E T j

i. (5.25)

The inverse of T j
i is denoted by T̄ j

i, i.e. aj
E = ai

F T̄ j
i. If the geometric-

product tensor in the E-basis is given by � k
E ij , the corresponding product

tensor in the F -basis can be evaluated via

�w
F uv = Tw

k T̄ i
u T̄ j

v � k
E ij . (5.26)

Such a change of basis finds an application, for example, if an implementation
of G

4,1 is given where the canonical basis blades are geometric products of
the Minkowski basis {e

1

,e
2

,e
3

,e
+

,e�}. Here e
1

, e
2

, e
3

, and e
+

square to
+1 and e� squares to �1. In many problem settings, however, it is essential

to express constraints that involve e1 = e
+

+ e� and eo =
1
2
(e� � e

+

).
Therefore, component vectors and the product tensors have to be transformed
into the algebraic basis constructed from {e

1

,e
2

,e
3

,e1,eo}.

5.2 Solving Linear Geometric Algebra Equations

In this section, it is shown how geometric-algebra equations of the form
A �X = B can be solved for X numerically, where � stands for any bilinear


