
This is how the Unity 5.0 WheelCollider works
(learning vehicles simulation essentials in 7 minutes)

To get a car working in Unity it’s useful to understand how the WheelCollider component works internally. Here
we attempt to explain that in just a few minutes.

WheelCollider in inspector view, with default settings WheelCollider in scene view, with gizmo enabled

max droop

max compression

← rest posewheel
diameter

the point where wheel
forces are applied at

To create this shiny car…
…start with this simple model. Anyway
this is how physics engine sees your car.

➨

We’ll start from the Editor and then dive right into technical details. So let’s say we want to create a regular four
wheel car. We will only care about physics in this post, visuals are left aside.

In the inspector view:

- carRoot has Rigidbody with mass 1500

- Cube represents car body, scale it as you like

- 4 WheelCollider objects with default settings

To get the car moving in Editor check out WheelCollider API:

- set motorTorque to accelerate

- set breakTorque to decelerate
- set steerAngle to corner

- there is no engine nor gearbox, you just set raw values

Unity 5 uses the PhysX 3.3 Vehicles SDK that is raycast based. That means a wheel does not actually have any
shape at all. Instead, there is a raycast done per each wheel along the suspension travel distance (rigidbody
local -Y). This is a tradeoff between performance and accuracy. Raycast cars are known to require a really
smooth collision geometry for a pleasant simulation. Later Unity 5.x will likely add custom casts to raycasts, and
that would allow to describe wheel shape better, but that’s still a direction for future improvement.

Now let’s see what happens under the hood.

PhysX Vehicles simulation is based on a sprung mass model. That
means, PhysX computes the sprung mass for each wheel (=the
portion of the car’s total mass it supports). Obviously all sprung
masses sum up to the total mass of the car.

← Here we see a visualisation of the sprung mass concept for a
typical four wheel car.

⁂

The sprung mass model lets to work out the forces individually for each wheel, ignoring the other wheels for the
moment. This is physically equivalent to dealing with all wheels at once, but allows to avoid unnecessary
complications. Note, this is a sprung mass but not a sprung weight model. There is still a weight redistribution
effect when some of the wheels are in air or overloaded\underloaded.

max compression

rest pose

max droop

sprung mass

current pose
jounce

a/ Each frame we try to put the wheel on the ground. If in air, the spring force is zero.
b/ Then, the suspension force is computed:

F = sprungMass * g + jounce * stiffness - damper * jounceSpeed

(jounce is the offset of the wheel relative to the rest pose, jounceSpeed is the speed the wheel moved
with along the suspension travel direction, stiffness and damper are spring parameters)

sprungMass * g is the force the spring produces at rest on horizontal surface; if not, a raycast would move
the wheel along the suspension travel direction and that would compress or elongate the spring thus
affecting jounce * stiffness and damper * jounceSpeed components.

(In the Editor, the distance between “max compression” and “max droop” is set by “suspensionDistance”.
“rest pose” is set by “targetPosition”.)

PhysX vehicles’ suspension is configured relative to the rest pose. This means we explicitly
set the position of the wheel where the spring force is exactly balanced by the sprung
weight (while the car is resting on a horizontal flat surface).

Tire forces are also calculated each frame after the corresponding spring force is computed.

Tire simulation does not use dynamic and static friction from PhysicMaterial.
The slip based model is used instead. (Ground surface is typically emulated by
changing friction “stiffness”; that would simply scale the friction.)

Why using slips but not regular physics friction? Turns out this way we get
better tire simulation: with a real tire, grip seems to depends on how big the
slip values are.

Increase forward friction to get more grip.

Increase sideways friction to reduce drifting in corners.

“Force” on the picture corresponds to “value” in inspector.
The range for the value is (0, 1]

After all forces have been computed, we simply apply them to the car’s body. One important thing to
remember is that forces are applied at “forceAppPointDistance” up the suspension travel distance relative to
the base of the resting wheel. There is no default value that works for all configurations, but avoid having
forceAppPointDistance = 0, as that can cause unstable simulation.

⁂
One more thing… After you got your car working reasonably well, you might want to make it so that the visual
wheels actually follow physical wheels. Use WheelCollider.GetWorldPose to get the wheel pose the simulation is
using. That includes position as well as rotation in world space, ready to assign to your visual wheel’s transform.

