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Abstract: Vacuum tube amplifiers present sonic characteristics frequently coveted by musicians, that
are often due to the distinct nonlinearities of their circuits, and accurately modelling such effects can
be a challenging task. A recent rise in machine learning methods has lead to the ubiquity of neural
networks in all fields of study including virtual analog modelling. This has lead to the appearance of
a variety of architectures tailored to this task. This article aims to provide an overview of the current
state of the research in neural emulation of analog distortion circuits by first presenting preceding
methods in the field and then focusing on a complete review of the deep learning landscape that has
appeared in recent years, detailing each subclass of available architectures. This is done in order to
bring to light future possible avenues of work in this field.

Keywords: audio signal processing; nonlinear modelling; deep learning; audio effects modelling;
virtual analog modelling; neural network; modelling nonlinear audio effects; distortion effects;
electric musical instruments

1. Introduction

The use of vacuum tubes in electronics has largely diminished since the advent of
semiconductor technologies, leading to their replacement in almost all fields except that
of music technology, where a return to and rise of vacuum tubes can be observed [1].
Musicians tend to prefer the sonic characteristics of vacuum tube amplifiers over those of
solid-state ones. Nevertheless, the shortcomings of vacuum tubes in the realm of guitar
amplification are numerous and include elevated cost and weight, poor durability, and
high power consumption. Their solid-state counterparts remedy some of the disadvantages
of vacuum tube amplifiers but remain less popular among musicians who often seek the
particular tone of the tube amplifiers used in iconic albums and guitar rigs.

Researchers have turned to Digital Signal Processing (DSP) methods for the emulation
of vacuum tube amplifiers in order to circumvent some of the downsides of this technology.
These DSP methods are not limited to guitar amplification or distortion and can consist of a
wide range of audio effects such as reverberation, delay, and pitch-shifting [2]. The existing
DSP methods for tube amplifier emulation can be divided into three categories depending
on the degree of prior knowledge of the target device used. The “white-box” approach is
historically the first and emulates each electronic component. The “black-box” approach
tries to match the output of the target device given a specific input using mathematical
functions uncorrelated with the internal components. Gray-box methods are similar to
black-box but utilize some information about the target device in order to fine-tune the
model. They comprise a block-oriented structure inspired by internal information of the
device but the simulation disregards the behaviour of each of the individual components.
These three modelling approaches will be discussed in further detail in Section 2.
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These three “traditional” methods do, however, present some drawbacks. On one end
of the spectrum, obtaining the internal knowledge of the target device needed for white-box
approaches is both a costly and labour-intensive task and can provide inaccuracies in the
emulation. They can also be computationally expensive. On the other side of the spectrum,
black-box methods can also be computationally costly or cannot accurately approximate
the nonlinear mapping of the amplifier. These methods will be discussed further in a future
section. The computational cost of these methods is also prohibitive for real-time use,
which is a fundamental factor to be considered in Virtual Analog (VA) modelling. Amplifier
emulations need to be fast enough to run in real-time in order to be used by musicians. If
the latency of an emulation exceeds around 10 ms, it can be perceived by the musician and
hinder their playing [3].

The use of machine learning, in particular neural networks, has seen a significant
increase in all data-related fields in recent years due to, in part, the increased computational
capabilities of modern-day computers and the possibility of parallelizing computations
on their GPU. The field of audio processing is no exception and the application of neural
networks to the task of tube amplifier emulation seems to be appropriate. Indeed, neural
networks are made up of the basic building blocks necessary for this type of problem
including the presence of nonlinear activation functions which are well suited to model the
nonlinearities created by vacuum tubes. Moreover, certain neural network architectures are
able to capture and replicate the dynamic nature of a system. For example, autoregressive
models retain information from previous time steps for their computations. Thus, the
memory effect of amplifiers can be modeled using the appropriate type of neural net-
work. Additionally, neural networks reduce the time necessary to create the emulation
of a given analog device. Whereas for white- and gray-box methods it is necessary to
repeat the modelling process for each circuit, only the training data needs to be modified
for a new emulation via neural networks. The architecture remains unchanged. Parallels
have also been made between typical DSP filters and certain neural networks [4]. There-
fore, neural networks appear to be an appropriate candidate for the task of vacuum tube
amplifier emulation.

The goal of this paper is to present an overview of the current state-of-the-art methods
in vacuum tube amplifier emulation, with a focus on the newly emerging deep learning
(DL) approaches. The structure of this paper is as follows: Firstly, a brief overview of the
traditional white-, gray-, and black-box approaches mentioned above will be presented in
Section 2; Then, an extensive review of the current neural network architectures used for
amplifier emulation will be presented along with an evaluation of the approaches as well
as their limitations in Section 3. Finally, a summary and discussion of the architectures will
be given with the intent of providing a global view of the state-of-the-art in Section 4.

2. Traditional Methods
2.1. White-Box

The first class of methods used for the emulation of vacuum-tube distortion aims to
create a model of the physical device using internal information of the amplifier to establish
a system of differential equations. The main methods of this approach are state-space
models, Modified Nodal Analysis (MNA), Port-Hamiltonian formalism, and the use of
Wave Digital Filters (WDF). Here we present a non-exhaustive list of white-box methods in
order to illustrate the limitations that can occur. More detail on the landscape of white-box
methods can be found, for example, in the works of Pakarinen and Yeh [5,6].

Nodal analysis is a method used in circuit simulation techniques in order to establish
the system of equations in matrix form to be solved. This is accomplished using the Kirch-
hoff Circuit Laws (KCL) at each node. Modified Nodal Analysis extends this to incorporate
auxiliary equations into the system using the circuit’s Branch Constitutive Equations (BCE)
in order to solve the resulting system, which has the following form: MV = I where M is
the matrix of conductance coefficients for KCL, I is a vector of independent current sources
in the circuit, and V is the vector of unknowns (which are typically voltages). The most
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well-known electronic circuit simulator is SPICE (Simulation Program with Integrated
Circuit Emphasis), which uses a combination of component-wise discretization of the
circuit and MNA to create the system to be solved. This approach, while accurate, is
computationally heavy and therefore poses a problem for real-time use [6]. Moreover, if an
element within the circuit is changed, the MNA process needs to be repeated to take into
account this change.

The WDF approach constructs digital filters based on the traveling-wave formulation
of the physical elements of the device, obtained via a change of variables from the Kirchhoff
to the wave domain which describes circuit dynamics in terms of incident waves a = v + Ri
and reflected waves b = v−Ri. Unlike nodal analysis, this formalism allows for modularity
without delay-free loops (i.e., loops that cannot be computed as the input and resulting
output are needed at the same time step in order to accomplish this). Discrete-time models
of each of the individual components (resistors, capacitors, and inductors) are connected
to construct the filter. An interesting benefit of this approach is that the finite difference
scheme resulting from the use of the bilinear transform for the discretization remains
explicit for any number of models. WDF was used to model a number of distortion effects
including a triode amplifier in [7].

State-space models rely on the principle that the equations of motion for any physical
system may be formulated in terms of the state of the system: x′(t) = ft[x(t), u(t)] where
x(t) is the state of the system at time t, u(t) is a vector of external inputs, and the general
vector function ft specifies how the current state x(t) and inputs u(t) cause a change in the
state at time t. ft may be time-varying itself. All past states and the entire input history
are “summarized” by the current state x(t). Thus, x(t) must include all the “memory” of
the system.

To solve the nonlinear state space system, two notable approaches are the K-method
and the Discrete K-method (DK-method). The K-method was originally proposed to avoid
noncomputable delay-free loops in the system. It does this by transforming the system to
highlight all loops involving nonlinear maps. The delay-free paths are isolated in order to
be eliminated via geometrical transformations [8].

The DK-method establishes a system of Ordinary Differential Equations (ODE) based
on MNA which is then solved to find the state transition matrix and the nonlinear rela-
tionships between variables in order to produce a nonlinear filter similar to that of the
K-method. However, in the K-method, the ODE are discretized after derivation whereas
in the DK-method, discretization is applied first [9]. David Yeh applies the DK-method to
model a Bipolar-Junction Transistor (BJT) and a triode amplifier in a real-time plugin and
evaluates this against a reference SPICE model [9].

The final method that will be described consists of a state-space representation that is
structured based on the various energies of a system and their dynamics. This represen-
tation is structured into its energy-storing parts, dissipative parts, and then the external
sources of energy [10]. This structure falls under the Port-Hamiltonian (PH) formalism.
Like for the K-method family of approaches and WDF, the PH structures are derived from
the circuit schematic by use of its reigning Kirchhoff laws. However, unlike the other two
methods, the passivity property is conserved which ensures stability of the model [10].
This approach has been successfully used for the simulation of such analog effects as a BJT
amplifier and a wah pedal in [10].

Each of these methods translates the circuit diagram of a given amplifier into a set of
equations that completely describes the system which is then discretized, usually using a
finite-difference or integration scheme, to then be solved iteratively. In order to establish
these equations, access to the circuit diagram or study of the internal structure of the
amplifier is necessary and results in a labour-intensive task. Moreover, the resolution
of these differential equations relies on computationally expensive iterative methods or
storing lookup tables and the component values measured can also introduce inaccuracies
into the emulation or fail to faithfully emulate the particularities of a given amplifier.
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2.2. Gray-Box

Gray-box methods seek to alleviate some of the labour required for the modelling
task using white-box approaches. They do this by incorporating internal knowledge of
the device in the form of blocks in order to simplify the model. Indeed, modelling each of
the individual circuit components is not necessary in gray-box; only the behaviour of the
device as a whole needs to be modelled.

Block-Oriented structures are a subclass of Volterra series [11] that aim to separate the
Device-Under-Test’s (DUT) effect on the input signal into “blocks”: one set dealing with
the dynamic, linear behaviour of the system, and one to introduce the nonlinearity. The
common configurations of these structures are the following:

• Hammerstein (and their subclass cascade Hammerstein) models: Static nonlinearity
followed by linear filter.

• Wiener models: Linear filter followed by static nonlinearity.
• Wiener-Hammerstein models: Static nonlinearity between two linear filters.

Block-Oriented structures can be considered as gray-box methods as they can take
into account the high-level structure of the DUT for their configuration and most examples
of block-oriented structures applied to distortion approximation fall under the realm of
gray-box modelling.

One of these configurations (Wiener–Hammerstein) has even been described as the
“fundamental paradigm of electric guitar tone” in [12] and this family of methods is used in
commercial products and patents such as Fractal Audio’s Axe-Fx [12] and a 2008 patent
from Kemper [13]. This patent describes a Wiener–Hammerstein topology and Frac-
tal’s white paper extends this model to include extra linear and nonlinear blocks in their
MIMIC technology. Most notable in the field of gray-box guitar amplifier modelling using
block-oriented structures are the works of Felix Eichas and Udo Zölzer, in which system
identification using input–output signals and optimization of the block topology using
iterative methods to minimize the error between model output and the measured target are
used. These approaches will be detailed in this section.

In [14], a parametric Wiener–Hammerstein model for distortion effects is presented
along with the iterative algorithm used for the optimization portion of the problem. The
Levenberg–Marquardt algorithm was chosen for the minimization and the DUT was a
Hughes and Kettner Tube Factor amplifier. This method produced satisfying results that
were nearly indistinguishable from the target, but the model becomes more inaccurate for
frequencies outside of the range [60 Hz, 18 kHz].

In a following work, an extended Wiener model was tested for the emulation of three
different distortion devices: a diode clipper with pre-amplification of the input signal,
a BJT distortion stage of an Electro-Harmonix Big Muff Pi, and the op-amp stage of an
Ibanez Tube Screamer (all simulated using a SPICE circuit simulator). This simple topology
had a harder time modelling the desired effects and only the diode clipper circuit was
modeled successfully.

Eichas and Zölzer [15] presented a gray-box approach in which the modelling process
is automatic using input–output measurements and iterative optimization. Its structure is
the following: three linear filters inter-spaced with nonlinear blocks, the first consisting
of a polynomial waveshaping function and the second consisting of a concatenation of
hyperbolic tangents. An Exponential Sine Sweep (ESS) is used for the system identification
process along with the Levenberg–Marquardt algorithm for the optimization problem. This
method was used to model a Fender Bassman 100 and an Ampeg VT-22 but struggled at
modelling distortion.

Finally, in [16], analog amplifiers including a Bassman 100 and a JCM 900 were mod-
eled with an automated procedure and an extended Wiener–Hammerstein configuration
consisting of a nonlinear mapping between two Linear Time-Invariant (LTI) blocks con-
nected in series. Again the Levenberg–Marquardt was used for the optimization and the
model performed well even for strong nonlinearities and has a low computational load
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compared to white-box methods but is not able to incorporate certain subtle effects such as
power sagging or crossover distortion.

Block-oriented, gray-box methods present a lower computational cost than white-
box methods but struggle with emulating the target devices more so than the latter class
of methods.

In addition to the block-oriented structures presented here, the use of machine learning
and Artificial Neural Networks (ANN) has started to see a rise in the gray-box approaches
and will be detailed further in a later section.

2.3. Black-Box

Black-box approaches are system identification methods that seek to remedy some
of the problems of gray- and white-box approaches by relying on only input–output
measurements to describe the overall behaviour of the amplifier. These methods enable
emulation without the need for prior knowledge of the internal circuitry of the amplifier.
They also tend to be more computationally efficient than white-box models and allow for
the replication of idiosyncrasies that can exist in the analogue devices (due to imperfect
electrical components for example). The main methods in this category are Volterra series,
dynamic convolution, block-oriented structures (which are a subclass of Volterra series),
and kernel regression.

Dynamic convolution, proposed in [17], is a variant of the system identification method
used for linear systems in which instead of a single impulse response used to derive the
transfer function of the DUT, multiple impulses are used as input at different amplitudes in
order to obtain an approximation of the nonlinear behaviour. In this work, the standard
convolution operation y(n) = ∑L−1

k=0 x(n− k)·h(k) where h is the impulse response of length
L, y is the output signal, and x the input, is replaced with so-called dynamic convolution
operation defined as follows:

y(n) =
L−1

∑
k=0

x(n− k)·hS(x(n−k))(k) (1)

where S(x(n)) is a selector function that determines which impulse response should be
used for the input sample x(n). This method was used in the Sintefex FX8000 Audio
Effects Replicator.

Certain Machine Learning (ML) methods have also been proposed for the emulation
of guitar distortion circuits. A Support Vector Machine (SVM), which is a class of linear ML
algorithm, was used to emulate a common-cathode tube amplifier via kernel regression [18].
In the article, the authors linearize the nonlinear system in order to be able to apply
the SVM to the regression task and suggest methods for choosing the proper kernel to
linearize the system. The linearization is accomplished by mapping the data into a higher-
dimensional vector space in which the nonlinear functions of the system can be replaced
by linear operators. Kernel methods are used to avoid the computationally intensive task
of representing these functions in the higher-dimension space, requiring instead only the
computation of the inner products between the vectors in this new space. While this
method is theoretically solid, the choice of the necessary mappings and kernel function can
be a difficult task.

ANN are a class of machine learning, black-box methods that use neurons and nonlin-
ear activation functions such as sigmoid or hyperbolic tangent, functions frequently used in
VA modelling to model various nonlinearities. This enables ANN to approximate complex
mappings and recent technological improvements have enabled their wide-spread, leading
to a rise of artificial intelligence in almost all fields in recent years. Similarities between
a number of ANN architectures and certain black-box modelling methods can be drawn
and suggest that they would appear to be well suited to the task of vacuum tube amplifier
emulation as we shall discuss in further detail in a future section.



Appl. Sci. 2022, 12, 5894 6 of 26

The Volterra series [19] is a functional expansion of multidimensional convolution
kernels that enables the emulation of the “memory” effect of an amplifier as the output of
the nonlinear system is dependent on the input at previous time steps. It is an extension
of the common model of a linear system: y(t) = Hx(t) =

∫
R h(1)(τ)x(t− τ)dτ, where H

is the transfer function of the system and x(t) the input. It expands this model to include
nonlinearities by adding convolution integrals that take into account the interactions
between the previous inputs thereby retaining the “memory” effect of the causal system:

y(t) = h(0) +
∫
R

h(1)(τ1)x(t− τ1)dτ1 +
∫
R

h(1)(τ1, τ2)x(t− τ1)x(t− τ2)dτ1dτ2

+
∫
R

h(1)(τ1, τ2, τ3)x(t− τ1)x(t− τ2)x(t− τ3)dτ1dτ2dτ3 + . . . (2)

The functionals of this expansion, called Volterra kernels, can be estimated using
various methods (e.g., cross-correlation or least-squares) but is a computationally intensive
task. Moreover, Volterra series work well for relatively linear systems but struggle when the
system being modeled exhibits very strong nonlinear behaviour. An example of Volterra
series applied to the simulation of analog audio devices is presented in [20] where this
method is used to emulate the weakly nonlinear behaviour of the Moog ladder filter. This
filter is a key contributing factor to the Moog synthesizer’s sound and is named so because
of its schematic that resembles a ladder.

The block-oriented structures presented previously can also fall under the scope of
black-box methods. Indeed, Eichas and Zölzer [21] used a Wiener model to emulate three
distortion effects including a diode clipper with pre-amplification of the input signal, a
BJT distortion stage of an Electro-Harmonix Big Muff Pi, and the operational amplifier
(op-amp) based distortion stage of an Ibanez Tube Screamer.

Overall, the black-box methods presented here remain computationally expensive
and/or tend to struggle when simulating the complex behaviour of vacuum tube amplifiers,
particularly for very high levels of nonlinearity. Neural networks are another class of black-
box approach that have started to be applied to VA modelling and could remedy some of
the downsides of the other methods detailed here.

3. Neural Network-Based Methods

The use of neural networks has seen a rise in practically all scientific fields since the
start of the 21st century thanks to increased computational resources and the availability of
larger data sets. These ANN have subsequently been able to achieve a level of accuracy
that far surpasses that of other methods used previously. This is the case in a number of
fields, particularly in computer vision with the use of Convolutional Neural Networks
(CNN) and in speech recognition and machine translation with the use of Recurrent Neural
Networks (RNN). CNN are networks specialized in processing grids of values such as
images through convolution operations that serve to extract salient features in the pixels.
RNN are tailored to processing sequences of values and are particularly suited for time-
dependent or sequence-based tasks such as language translation or natural language
processing [22].

A neural network is a class of machine learning algorithm whose basic structure is
made up of inter-linked neurons and often nonlinear activation functions. These neurons
are organized into layers and are made up of a set of mathematical operations wherein the
input to the layer is multiplied by a set of learnt weights, bias is optionally added, and the
activation function is applied to the output which is sent to the next layer. The value of
the weights are learnt by the network via an optimization task in which a given distance
between the target and the network output is minimized. This enables the network to
learn complex nonlinear mappings between the inputs and outputs which would make
this method suited to the task of distortion modelling.

We can see similarities between this process and certain methods described previously
in the black- and gray-box categories of methods. For example, an architecture comprising
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a 1D convolutional layer followed by a nonlinear activation can be considered as a Wiener
model (linear filter followed by a nonlinearity) [23]. Certain nonlinear activation functions
present in neural networks, such as the sigmoid or hyperbolic tangent, appear frequently
in the literature of VA modelling [6]. Additionally, certain architectures that exist, designed
for times series and sequence modelling, are well suited to the amplifier emulation task
and also bear similarities with classic DSP elements. For example, Kuznetsov et al. [4]
show an equivalence between infinite impulse response (IIR) filters and RNN. Taking into
account such similarities between traditional VA modelling and neural networks, it seems
natural to extend the use of ANN to this simulation task.

However, amplifier modelling via neural networks is not a straightforward task. The
deep, convolutional, and data-hungry methods used in imaging for example can pose a
problem for real-time use. In addition, processing raw waveforms in the time-domain
means that we have to deal with extremely high temporal dimensionality because of
the sampling rates needed in order to achieve high-quality audio. Indeed, a minimum
sampling rate of 44.1 kHz is required [24]. Moreover, the sampling rate used in this type
of application is often a constraint imposed by the hardware. This is a less detrimental
factor in speech processing where sampling rates of around 16 kHz, or even 8 kHz, can
be sufficient. These factors increase both the computational cost and the complexity of the
task and render music deep learning challenging.

A number of DL architectures have appeared in the state-of-the-art of distortion circuit
modelling techniques in recent years including various configurations of both convolutional
and recurrent layers. Here, we study the recent works that have appeared in this state-of-
the-art. Each aspect of the neural modelling problem will be discussed with recapitulative
tables that aim to summarize and clarify the situation. The different aspects that will be
detailed here are the architectures used, the different modelling approaches, the various
data sets, the loss functions, the evaluation techniques, and finally the real-time capabilities
of each body of work.

3.1. Architectures

We detail here the three main categories of architectures that have populated the
state-of-the-art: convolutional networks, recurrent networks, and hybrid configurations.

The first instance of CNN being used for the task of amplifier and distortion effects
modelling was presented in [25] for the emulation of tube amplifiers and their follow-up
article [26] for the emulation of distortion pedals, where the authors use a feed-forward
variant of the WaveNet architecture from [27]. This autoregressive architecture from Deep
Mind was originally designed for the generation of raw audio waveforms for speech
synthesis. The feedforward variant presented by Damskägg et al. [25] contains a stack of
dilated causal convolution layers, which enable for a large field of view without increasing
the computational cost of the processing. The dilation is done by only using certain outputs
from the previous layers for the convolution operation as illustrated in Figure 1. The larger
field of view means that the network can be exposed to more past information and is thus
able to better model long-term dependencies of the signal.

In the first article from Damskägg et al. [25], two models of different sizes are presented
and compared, both with 10 convolutional layers with a filter size of 3 and a dilation
pattern of {1, 2, 4, . . . , 512}. Both networks have a post-processing block comprising a
three-layer fully connected network and the smallest network has two channels in the
convolutional and post-processing layers for a total of around 600 parameters, while the
largest one has 16 channels in both the convolutional and post-processing layers for around
30,000 parameters. The network was used to model a Fender Bassman 56F-A preamplifier.
The WaveNet models were compared to a block-oriented model from [21] and a Multi-
Layer Perceptron (MLP). The larger WaveNet model outperformed the others in both the
objective and subjective evaluation.
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Figure 1. The general WaveNet architecture comprising various layers of dilated convolutions,
illustrated here with a receptive field of size 8. Figure adapted from [26].

In their follow-up article [26], Damskägg et al. focus more on the real-time possibilities
of their WaveNet architecture applied to distortion pedal emulation. The feedforward
WaveNet is slightly modified in this work, for instance the three-layer post-processing
block from their previous work is replaced with a single 1x1 convolutional layer. They aim
to find a trade-off between accuracy of their method and computational load as well as
the minimum amount of data required for training. For this, three different configurations
were studied, see Table 1.

Table 1. Feedforward WaveNet configuration summary. The nomenclature for these configurations
is not generalized, and the names used here are taken from [26].

Model WaveNet 1 WaveNet 2 WaveNet 3

Layers 10 18 18
Channels 16 8 16

This new WaveNet variant was tested on three effects pedals: Ibanez Tube Screamer,
Boss DS-1, and an Electro-Harmonix Big Muff Pi.

A modified version of the feedforward WaveNet architecture, also known as Temporal
Convolutional Network (TCN), was used in [28] in order to achieve more efficient compu-
tation for real-time use of models with more complex nonlinear behaviour. The authors
show that by using shallower networks with very large dilation factors (in order to retain a
large enough receptive field with this shallower configuration), they were able to achieve
comparable performance with greater efficiency. In order to have a large enough receptive
field for the input of the shallow network, large dilation factors are necessary. In [26], a
dilation factor of dl = 2l−1 where l is the lth layer of the network was used, whereas, here,
10l−1 was used for the dilation growth. Batch normalization was also used in this work
and the original gated activation from [27] is instead replaced with the Feature-wise Linear
Modulation (FiLM) activation from [29]. This activation consists of a feature-wise affine
transformation conditioned on scaling and bias parameters obtained via an embedding of
the device’s control parameters. Both causal and non-causal versions of this modified archi-
tecture were tested and compared for the emulation of a LA-2A dynamic range compressor.
They achieved comparable performance but the noncausal variants performed slightly
better in the time-domain. The results of listening tests indicated that a small difference
was perceived among the models in comparison to the reference.

The first article presenting the use of recurrent neural networks for vacuum tube am-
plifier modelling dates back to 2013 where a Nonlinear AutoRegressive eXogenous (NARX)
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network was applied to the task in [30]. A NARX network is similar to a traditional RNN
(i.e., a fully-connected network incorporating recurrence) but with limited connectivity to
remedy the training problems usually present in RNN which are linked to vanishing and
exploding gradients due to their recursive nature. The architecture used was a two-layer,
feedforward network with sigmoid activation functions in the hidden layer and a single
linear neuron in the output layer. The audio quality of this method was reported to be
low when modelling a 4W Vox AC4TV tube amplifier either due to insufficient training or
limited model capacity.

Zhang et al. [31] follow up the work on the NARX network with a study using Long
Short Term Memory (LSTM), first proposed in [32], for the task of amplifier modelling.
Again, a 4W Vox AC4TV was chosen for this work. LSTM is a RNN variant that incorporates
the use of various gates to control information flow through each recurrent layer in order to
avoid the vanishing and exploding gradients of regular RNN. These gates are the following:

Input gate: i(t) = σ(Wixx(t) + Wihh(t−1) + bi) (3)

Forget gate: f(t) = σ(W f xx(t) + W f hh(t−1) + b f ) (4)

Input node: g(t) = tanh(Wcxx(t) + Wchh(t−1) + bc) (5)

Output gate: o(t) = σ(Woxx(t) + Wohh(t−1) + bo) (6)

Cell state: c(t) = g(t) � i(t) + c(t−1) � f(t) (7)

Hidden state: h(t) = tanh(c(t))� o(t) (8)

where σ is the sigmoid activation function, the Ws represent the weights of the layer, the bs
represent the biases, and � is the Hadamard product. The x and the h refer to the input of
the cell and the hidden state, respectively.

The models used were configured as three or four-layer networks with a structure
comprising a variable length input, followed by LSTM with a variable number of units
(including either linear or tanh activation) and a linear output unit. The number of units
used in the LSTM layers varied from 5 to 20, with a number of hidden units varying in
the same range and a sequence length in the range of [1, 5]. During subjective listening
tests, the audio quality of the network output, when compared to the target device, was
not deemed satisfactory by semiprofessional guitarists.

Wright et al. tested a new LSTM architecture along with another variant on the
traditional RNN, the Gated Recurrent Unit (GRU) [33] and both were compared to the
WaveNet architecture from [26]. The GRU, like LSTM, aims to remedy exploding and
vanishing gradient problems by controlling information flow through using an update
gate instead of the four gates of LSTM, leading to improved computational efficiency. The
computations carried out in a GRU are the following [34]:

Reset gate: r(t) = σ(Wrxx(t) + Wrhh(t−1) + br) (9)

Update gate: z(t) = σ(Wzxx(t) + Wzhh(t−1) + bz) (10)

New gate: n(t) = tanh(Wnxx(t) + Wnhh(t−1) + bn) (11)

Hidden gate: o(t) = (1− z(t))� n(t) + z(t) � h(t−1) (12)

The architecture used is comprised of a single recurrent layer followed by a fully
connected one. Preliminary experiments showed that adding extra recurrent layers had
little effect on the audio quality of the output. This method was used to model a pedal (Big
Muff) and a combo amplifier (Blackstar HT-1) in [33]. In terms of objective quality, the most
accurate RNN outperformed the WaveNet for the pedal and the most accurate WaveNet
outperformed the RNN for the amplifier, with LSTM outperforming the GRU in terms of
accuracy with roughly the same processing time.
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In a follow-up article [23], further comparisons between the recurrent networks
from [33] and various WaveNet configurations were carried out for the modelling of two
vacuum tube amplifiers: a Blackstar HT-5 Metal and a Mesa Boogie 5:50 Plus. This study
includes the results from previous articles on the feedforward WaveNet and the LSTM
network for distortion pedal emulation, and extends this with the inclusion of the vacuum
tube amplifier models.

Various configurations of each architecture were trained and compared in order to
gauge both the real-time capabilities (using C++ implementations) and the audio quality.
The largest configurations were WaveNet3 with gated activation from [27], 18 layers,
and 16 channels, and LSTM96 with 96 recurrent units. The smallest configurations were
WaveNet1 with gated activation, 10 layers, and 16 channels, and LSTM32 with 32 recurrent
units. The LSTM provides better processing speeds than the WaveNet models; however,
the largest WaveNet can better model the highly nonlinear HT5M amplifier.

Analog distortion effects can be emulated by various configurations of neural network
architectures [35]. In this work, eight architectures are tested and compared, one of which
is the subject of a 2018 article [36]. These architectures include four LSTM networks, one
hybrid convolutional LSTM, one plain Deep Neural Network (DNN) in the form of a
MLP, one CNN, and one hybrid convolutional RNN. The most notable architectures of this
work are:

• The parametric LSTM in which the input dimensions are extended in order to taken
into account the amplifier parameters.

• The convolutional LSTM in which two stacked 2D convolution layers are used to
redimension the input signals in order to parallelize the computations on GPU for
accelerated processing.

• The sequence-to-sequence LSTM which outputs a buffer instead of a single sample,
again to accelerate processing.

All architectures presented vary in terms of accuracy and real-time performance but
the hybrid convolutional LSTM presented the best Computation Time (CT) and accuracy
trade-off.

Another category of hybrid method includes autoencoder architectures such as those
presented in the works of Martinez-Ramirez et al. [37–39]. The general structure of an
autoencoder comprises three stages, namely, an encoding front-end, a latent space con-
taining the new representation of the input data, and a decoding back-end. This structure
enables the model to learn an approximate copy of the input, forcing it to prioritize useful
properties of the data [22].

In their preliminary article focused on modelling nonlinear audio effects [39], a con-
volutional autoencoder with fully connected latent space (dubbed CAFx) was proposed
with the following structure: an adaptive front-end consisting of two 1D convolutional
layers (the first with 128 filters of size 64 and the second with 128 filters of size 128), a max
pooling layer, batch normalization before this pooling and a residual connection; as well
as a latent-space of two dense layers with 64 units and a decoder consisting of four fully
connected layers (of sizes 128, 64, 64, 128) whose last layer includes a Smooth Adaptive
Activation Function (SAAF). This architecture was used to model three of the audio effects
in the IDMT-SMT-Audio-Effects data set [40]: distortion, overdrive, and equalization (EQ).

Their follow-up article [37] modifies the latent space of this structure by replacing the
fully connected layers with Bidirectional LSTM (Bi-LSTM) which are LSTM containing for-
ward and backward information at every time step to create a convolutional and recurrent
autoencoder (CRAFx) to model more complex, time-varying audio effects, again from the
IDMT-SMT-Audio-Effects data set.

Another variant of this architecture that uses the feedforward WaveNet in the latent
space (CWAFx) is introduced in [37] and the three autoencoders are compared with the
original feedforward WaveNet architecure introduced in [26] on various modelling tasks,
including that of a vacuum tube amplifier, sampled from a 6176 Vintage Channel Strip
unit. The results of this comparison showed that both the feedforward WaveNet and CAFx,
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the original DNN autoencoder, performed similarly and that they are both outperformed
by CRAFx and CWAFx with CRAFx performing slightly better than CWAFx. It was
reported that the vacuum tube preamplifier was able to be successfully modeled on the
two-second samples.

The last two architectures presented in Table 2 fall under the scope of gray-box neural
methods which, along with newly emerging white-box methods, aim to improve inter-
pretability of neural-network based approaches.

Table 2. Summary of the architectures for distortion circuit modelling comprising recurrent, convolu-
tional, and hybrid approaches.

Architectures Details Type

NARX
RNN modified for limited

connectivity to avoid gradient
problems. Used in [30]

Recurrent

Multi-layer LSTM Used in [31] Recurrent

1 layer LSTM (150 units) + FC Used in [35] Recurrent

2 layers LSTM (150 units) Used in [35] Recurrent

Sequence-to-sequence LSTM Used in [35] Recurrent

Parametric LSTM Used in [35] Recurrent

Convolutional LSTM Used in [35] Hybrid

3-layer MLP Used in [35] DNN

CNN with pooling Used in [35] Convolutional

Convolutional RNN Used in [35] Hybrid

CAFx DNN latent space [37] Autoencoder

FeedForward WaveNet Dilated convolutions used
in [23,25,26] Convolutional

CRAFx Bi-LSTM latent space [39] Autoencoder

Single-layer LSTM & GRU Followed by FC layer [33] Recurrent

CWAFx WaveNet latent space [38] Autoencoder

Shallow TCN Used in [28] Convolutional

STN Gray-box MLP used in [41] DNN

State-Space GRU Gray-box RNN used in [42] Recurrent

3.2. Approaches

Neural networks are black-box by nature but in recent years they have started to be
integrated into both gray- and even white-box modelling methods. Indeed, the recent
works of Parker et al. [41], Nercessian et al. [43], Kuznetsov et al. [4], and Aleksi Peussa [42]
fall into the category of gray-box approaches.

Parker et al. present the State Trajectory Network (STN) in their gray-box approach [41],
which is a method of integrating neural networks, namely, a MLP here, into a State-Space
model. This method aims to augment the black-box neural network approach by integrat-
ing the internal values into the training data for a more accurate simulation. A number of
distortion circuits are tested, namely a simplified version of the main distortion stage in the
Boss DS-1 pedal was used in the form of a second-order diode clipper. Results show that
this method is viable as all the circuits modeled were said to be indistinguishable from the
targets in informal listening tests however the network training can be unstable [41,42].

Aleksi Peussa augments the STN in his Masters thesis [42] to include recurrence using
a GRU and compares this to both the original STN and a black-box network using only the
GRU trained on input-output recordings. This work confirms the instability in training
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for the STN as it was unable to model a Boss SD-1 pedal. Although the State-Space GRU
was able to emulate this pedal, it was outperformed by its black-box equivalent. However
the state-space model managed to outperform the black-box one when applied to a Moog
ladder filter due to its self-oscillatory nature.

Some of the gray- and white-box approaches making an appearance in the neural
network landscape result from the introduction of the Differentiable Digital Signal Pro-
cessing (DDSP) library from Magenta [44]. DDSP enables the integration of classic signal
processing elements, such as filters or oscillators which are typically non-differentiable
and thus cannot be dealt with via gradient-based optimization techniques, into the deep
learning pipeline in Tensorflow.

Kuznetsov et al. [4] explore the idea of differentiable IIR filters using the DDSP
library. The authors present the link between IIR filters and RNN and present a Wiener–
Hammerstein model using differentiable IIR filters. This model is used to emulate a Boss
DS-1 distortion pedal and compared with a simple convolutional layer as a baseline. None
of the models were able to fit the target data perfectly using this method.

Differentiable IIR filters are explored further in [43] by proposing a cascade of dif-
ferentiable biquads to model a distortion effect. A digital biquad filter is a second order
recursive linear filter containing two poles and two zeros, and higher order IIR filters
can be created by cascading biquads in series [45]. The proposed model is said to have
significantly fewer parameters and reduced complexity when compared to more traditional
black-box architectures. This method was used to model a Boss MT-2 distortion pedal and
comparison with WaveNet showed that the parametric EQ representation of the cascaded
biquad outperformed the other three representations as well as the WaveNet.

Finally, white-box approaches have started to appear also in the landscape of neural
methods. Esqueda et al. [46] implement a white-box model in differentiable form which
allows approximate component values to be learned, thus remedying the accuracy problems
that can arise in white-box modelling due to lack of access of the exact component values
of the DUT’s circuit. This method was tested on a Fender, Marshall, Vox (FMV) tone stack
as well as on an Ibanez TS-808 Overdrive stage in order to validate the proposed model.
The advantages and downsides of each approach is presented in Table 3.

Table 3. Summary of the modelling approaches that utilize deep learning as well as their advantages
and downsides.

Approach Pros Cons

Black-Box - Proven Real-Time
Capabilities e.g., [23]

- Non interpretable
- Difficulty of

parametric models

Gray-Box - More interpretable

- Possible unstable
training [41]

- No Proven Real-Time
Capabilities

White-Box

- More interpretable
- Parametric
- Improved accuracy over

traditional white-box

- Same difficulties with
Real-Time as traditional
white-box [46]

3.3. Data Sets

The performance of any of the networks, no matter what category of approach they
may fall under, is directly determined by a number of choices made regarding the training
process. Notably, the choice of data set is critical.

The performance of neural networks for any given task depends heavily on the data
set they are given during the training phase. Indeed, the network needs to be exposed to a
wide range input–output pairings in order to learn an accurate mapping for the majority of
cases it will encounter during its use.
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There exists a number of data sets used for the task of amplifier modelling, all bearing
certain similarities. Almost all of the data used throughout the state-of-the-art comprises
clean guitar Direct Input (DI) sent through either the analog device or a SPICE simulation
of the device. However, the data used depends on the approach.

In black-box approaches, only input–output guitar recordings are necessary for the
neural network training, whereas for gray- or white-box different or additional data is re-
quired. In the gray-box approaches presented in [4,41–43], component values of the internal
circuit are also used in the training data. In the white-box approach of Esqueda et al. [46],
only the circuit component values are used.

In the black- and gray-box approaches, certain aspects of the training data have a
significant impact on the resulting model. These aspects are, namely, the sampling rate, the
length, and type of the data. The sampling rate dictates the audio quality of the simulation
and impacts its real-time processing capabilities.

The data used to train the WaveNet from [25] was obtained from a SPICE simulation
of a Fender Bassman 56F-A preamplifier applied to DI from a Freesound data set for audio
tagging [47]. A total of 4 h of data was used for the train set and 20 min for validation
split into 100 ms segments and a random gain value in the range of [−15 dB, 15 dB] was
applied to the inputs for more dynamic range. All data were recorded with a sampling rate
of 44.1 kHz.

In their follow-up article [26], Damskägg et al. show that as little as three minutes
of data is sufficient for the training of the convolutional networks, although final results
presented were obtained with five minutes of data (50% guitar and 50% bass) from the
IDMT-SMT-Guitar/Bass data sets from [48,49]. The sampling rate for all recordings was
44.1 kHz. These data sets contain a variety of single note recordings of various different
playing styles with varying pickups. The raw inputs from this data set were sent through
three effects pedals: Ibanez Tube Screamer, Boss DS-1, and an Electro-Harmonix Big Muff
Pi. This data set was also used to train the recurrent networks from [33].

The amplifier models of [23] used a different training set than the pedal emulation,
taken from a pre-existing data set. This data set was tailor-made for this modelling task
and was published in [50]. It includes five different styles of guitar sounds sent through
various guitar amplifiers with their gain parameters set to ten different levels. The audio
used in [23] consists of around three minutes of guitar audio recorded at 44.1 kHz with the
training set consisting of 2 min 43 s of audio. This data was used to train both the WaveNet
style model and the LSTM.

The SignalTrain data set from [51] was used for training, testing, and validation of the
shallower TCN architectures. This data set contains input–output recordings (at 44.1 kHz)
of various instruments from a LA-2A dynamic range compressor.

The training data used for the NARX network of [30] was comprised of both signals
from a function generator (with frequencies in the range [100 Hz, 500 Hz]) and an electric
guitar fed to a vacuum tube amplifier, a 4W Vox AC4TV. All training data was recorded
at a sampling frequency of 96 kHz and saved to 24-bit stereo wav files with one channel
containing the raw input signal and the other containing the tube amplifier signal. The
guitar recordings from this data set were used for the LSTM training in [31].

A summary of these data sets is presented in Table 4.

Table 4. Summary of the data sets used for training and their different characteristics.

Data Set Details

Custom

Function generator with frequencies ∈ [100 Hz;
500 Hz] + electric guitar fed to a vacuum tube
amp; 96 kHz; stereo (1 channel input, 1 channel

output) at 96 kHz used in [30]

Custom Guitar into tube amplifier; 96 kHz; stereo used
in [31]
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Table 4. Cont.

Data Set Details

Data set from [50]
Five different playing styles of guitar sounds

passing through different amplifiers Used
in [23,35,36] at 44.1 kHz

IDMT-SMT-Audio Effects [40] 44.1 kHz used in [28] and downsampled to
16 kHz in [37–39]

Freesound [47] Input signal sent through SPICE simulations at
44.1 kHz. Used in [25]

IDMT-SMT-Guitar/Bass [48,49] Used in [23,26,33]. 44.1 kHz input signals sent
through the analog target devices

SignalTrain [51] Used in [28] at 44.1 kHz

Custom Guitar signals sent through SPICE model of the
analog circuit at 44.1 kHz used in [43]

Custom

90-s logarithmic sine sweep ranging from
20 Hz to 20 kHz with constant amplitude
followed by 90 s of white noise at 48 kHz

used in [4]

Custom

10-s logarithmic sine-sweeps combined with
low-level white noise. This combined signal

was increased in amplitude linearly from 0 to
1 over 1/2 the length of the signal.

Min freq = 20 Hz and max = 10 kHz at
192 kHz [41]

As the choice of training data has a decisive impact on the performance of a neural
network, so does the choice of cost function used in the optimization process.

3.4. Loss Functions

Training neural networks is an optimization problem in which we often aim to mini-
mize a given loss function. This loss represents the distance between the prediction and the
target and must therefore accurately depict the perceptual difference between signals. This
is often not the case with objective losses such as the Mean-Squared Error (MSE) defined as:

LMSE =
1
N

N−1

∑
i=0

(y[i]− ŷ[i])2. (13)

The models used for amplifier modelling process raw audio in the time domain and
the losses used are computed directly with the signal’s waveform whose shape does not
perfectly correspond to human perception. For example, different frequencies are not
perceived in the same way to the human ear, with certain frequencies appearing louder
than others [52]. This difference in loudness is represented by equal-loudness contours.

To improve the accuracy of a given network, spectral information can also be included
into the loss computations but this approach presents its own problems and most of the
loss functions used remain time domain-based.

The most widely known loss for training neural networks is the MSE described
previously. This loss is one of the most used for training networks in distortion circuit
simulation. It was used in one of the first articles presenting recurrent networks for amplifier
simulation [31] as well as in all of the gray-box methods presented previously, including a
normalized variant used in [41] in order to stabilize the initial training of the network.
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Similar losses include the Root Mean Squared Error (RMSE) used in [30]:

LRMSE =

√
∑N−1

i=0 (y[i]− ŷ[i])2

N
(14)

and the Normalized Root Mean Squared Error (NRMSE) used in [35]:

LNRMSE =

√√√√∑N−1
i=0 (y[i]− ŷ[i])2

∑N−1
i=0 y[i]2

. (15)

Despite having relatively widespread use, the MSE-based losses lack perceptual
accuracy. Another loss function frequently encountered in the state-of-the-art of amplifier
simulation methods using neural networks is the Error-to-Signal Ratio (ESR) defined as:

LESR =
∑N−1

i=0 (y[i]− ŷ[i])2

∑N−1
i=0 y[i]2

. (16)

Variants of this loss have been used in the works of Damskägg et al. [25,26] and
Wright et al. [23,33] with pre-emphasis filtering for better perceptual accuracy. In both
Damskägg et al. papers, the high-pass pre-emphasis filter with the transfer function
H(z) = 1− 0.95z−1 was used to train their WaveNet architecture as without this filtering it
was found that the model struggled at higher frequencies.

In order to train the recurrent networks presented in the works of Wright et al., a differ-
ent pre-emphasis filter was applied to the ESR with the transfer function H(z) = 1− 0.85z−1

along with a term to compensate for a DC offset present in the prediction:

LDC =

( 1
N ∑N−1

i=0 (y[i]− ŷ[i])
)2

1
N ∑N−1

i=0 y[i]2
. (17)

In a further work [53], various pre-emphasis filters are studied and compared, along
with weighting functions in order to gauge which combination better reflects perceptual
accuracy. The filters with the following transfer functions were tested:

First-Order High-Pass: HHP(z) = 1− 0.85z−1 (18)

Folded Differentiator: HFD(z) = 1− 0.85z−2 (19)

First-Order Low-Pass: HLP(z) = 1 + 0.85z−1 (20)

The low-pass filter is preceded by A-weighting in order to decrease emphasis in
regions where little energy is present as this weighting aims to mimic the equal loudness
curves of the human ear. Listening tests carried out in this study showed that pre-emphasis
filtering enabled better accuracy during the modelling task, with the A-weighted low-pass
filtering achieving the best performance.

The Mean Absolute Error (MAE) is also present in the state-of-the-art in both a purely
time-domain formulation and a variant in which spectral content is also taken into account.
The MAE is defined as

LMAE =
1
N

N−1

∑
i=0
|ŷ[i]− y[i]| (21)

and was used to train all of the autoencoders presented in a previous section [37–39].
Steinmetz and Reiss [28] use a combination loss comprising both time-domain and spectral
features. For the time-domain, the MAE was used, and for the spectral magnitude, the
Short-Term Fourier Transform (STFT) loss from [54] is used, leading to the following cost
function: MAE + STFT where:
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LSTFT = LSC + LSM where (22)

LSC =
‖|STFT(y)| − |STFT(ŷ)|‖F

‖STFT(y)‖F
(23)

LSM =
1
N
‖log(|STFT(y)|)− log(|STFT(ŷ)|)‖1 (24)

‖.‖F is the Frobenius norm.
An overview of the loss functions used in this field is presented in Table 5.

Table 5. Summary of the loss functions and their perceptual relevance.

Objective Function Details

MSE Non-perceptual, used in [31,41,43]

RMS MSE based loss, non-perceptual, used in [30]

NRMSE MSE based loss, non-perceptual

ESR + H(z) = 1− 0.95z−1 Pre-emphasis for better high-frequency content
in [25,26].

ESR + HFD(z)
Studied for perceptual relevance in [53].

Includes DC offset.

ESR + HHP(z)
Studied for perceptual relevance in [53].

Includes DC offset.

ESR + HLP(z)
Studied for perceptual relevance in [53].

Includes DC offset and A-weighting.

MAE Non-perceptual, used in [37–39]

STFT + MAE Time-Frequency content, used in [28]

The loss functions used for training can also be applied to the evaluation process for
an objective measure of performance during testing. However, other methods also exist to
provide a more comprehensive assessment of the overall quality.

3.5. Evaluation Methods

The metrics presented in the previous section must be differentiable in order to be
used within the optimization problem of the training phase. These metrics can also be used
for the evaluation of the network after training and validation, as well as non-differentiable
functions and subjective listening tests.

While objective metrics struggle to properly reflect the perceptual aspects of the output
audio, listening tests take time to implement and hinder continuous integration of ML
systems. Therefore, there is a real need for objective evaluation metrics that do not rely on
human participation.

Most of the evaluation methods used for this modelling task rely on reuse of the loss
functions used during training or a variation thereof. For example, Damskägg et al. [26]
used pre-emphasized ESR for training and plain ESR for evaluation. While simple to
implement, a single objective metric cannot replace subjective listening tests.

The listening tests that are mainly used for this task rely on MUltiple Stimuli with
Hidden Reference and Anchor (MUSHRA) testing. In a MUSHRA test, the participants are
presented with a labeled reference, various test samples, an unlabeled reference, and an
anchor. This method is detailled in the Recommendation ITU-R BS.1534-3 [55].

A similar framework used to carried out listening tests with human participants is
the Web Audio Evaluation Tool [56] which is based on the HTML5 Web Audio API for
perceptual audio evaluation.
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For the objective evaluation of the models compared in [28], three metrics were used:
the MAE and the STFT loss described above and a perceptually informed loudness metric
that uses the loudness algorithm from the ITU-R BS. 1770 Recommendation [57]. Both the
causal and noncausal versions of the network achieved comparable performance but the
noncausal variants performed slightly better in the time-domain. A listening test similar to
MUSHRA was also carried out using the WebMUSHRA interface [58] to further validate
the accuracy of the models. The results of this test indicated that a small difference was
perceived among the models in comparison to the reference.

Subjective evaluation was provided in [23] in the form of a MUSHRA test, carried out
using the WebMUSHRA interface [58]. These tests showed the WaveNet3 to be the most
perceptually accurate model of the HT5M amplifier, although this prediction could still
be distinguished from the original amplifier, whereas the LSTM96 proved to be closest to
the Mesa 5:50 in terms of subjective quality and most people could not tell the difference
between the model and the target.

For the work established in Thomas Schmitz’s PhD thesis [35], a number of objective
metrics as well as listening tests were presented. One listening test studies the number of
parameters that can be reduced without loss of accuracy and the other is used to determine
the threshold of a given metric above which the accuracy is no longer improved. An
overview of the evaluation methods is presented in Table 6.

Table 6. Summary of the evaluation methods for network validation after training.

Objective Subjective

MSE [31], RMSE [30,35] , NRMSE [35],
Spectrogram [35,39], Power Spectrum [35],

Harmonic Analysis using ESS [35],
Waveform plot [23,33,35,39], SNR [35],

Difference in harmonic content [35],
MAE [37–39], FFT magnitude [39],

Input-output waveshaping curves [39],
ESR [23,25,26,33], MSED [37], Frequency

spectrum [25,26], MS_MSE [38],
MFCC_COSINE [38], Spectra of 1245-Hz
sinusoid to study aliasing [26], AME [42],
CT [23,25,26,35], Custom metric that takes

into account RMSE + CT [35]

Aural comparison of prediction and target [31],
2 listening tests [35], MUSHRA [23,25], Web
audio evaluation tool [38], pre-emphasized

ESR [53]

3.6. Real-Time Capabilities

The audio quality of the prediction is not the only aspect that requires evaluation. The
real-time capabilities are a crucial aspect to take into account when studying any VA model
and can also be presented as an objective metric of the quality of the emulation. This is
illustrated in the last two methods cited in Table 6 that take into account the computation
times of the methods.

A major factor to take into account when modelling analog audio devices is the real-
time constraint. If the solution implemented cannot be used in real-time then it is of little
use to the end-users. The real-time constraint for this type of application is approximately
10 ms [3]. Any latency above this value is likely to be perceived by the musician and hinder
their playing.

The latency produced in digital audio processing is known as round-trip latency that
is not limited to only the computation time (CT) of the DSP algorithm used [3]. Analog-to-
Digital and then Digital-to-Analog conversion can add up to a 1 ms to the round-trip latency.
Additionally, there is a latency inherent to the processing in buffers used in audio interfaces
and Digital Audio Workstations (DAW). In order to process a buffer of audio, a delay of
that buffer size is added to the round-trip latency which can quickly exceed the real-time
constraint. For example, when processing buffers of 256 samples at 44.1 kHz, the time
necessary to fill this buffer is around 5.8 ms, which significantly decreases the time left for
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the DSP computations. This means that using DL architectures with a lot of computations
and layers is complicated as it either entails too high a latency or excessive CPU usage
which prohibits its use. A number of the architectures present in the state-of-the-art are
capable of being used in real-time to varying degrees but caveats also exist.

The architectures presented here although often capable of real-time processing, some
of which are light-weight enough to work in real-time on CPU, are still computationally
heavy and have not been demonstrated to be able to achieve real-time speeds for sampling
rates over 44.1 kHz. Indeed, the hybrid convolutional and recurrent architecture from [35]
utilizes parallelization on GPU in order to process the data in real-time which poses a
problem for use in a practical setting in which CPU processing is required. The autoencoder
architectures from [38] have been demonstrated using a sampling rate of 16 kHz, which is
insufficient for high-quality audio applications. The shallow TCN from [28] are capable of
real-time use only for input buffer sizes over 1024 samples, which, at 44.1 kHz, incurs a
latency of approximately 23.2 ms, which is double the latency required for real-time use of
around 10 ms. Finally, the architectures presented in [23], although capable of real-time
processing, remain computationally heavy, even for a sampling rate of 44.1 kHz, which is
the lower bound for high quality audio in music applications.

Moreover, digital implementations of analog audio effects usually introduce aliasing
into the signal, and to remedy this, anti-aliasing techniques are used which often require
upsampling the signals by a factor of eight [6]. This means that eight times the amount
of samples need to be processed in the same amount of time required for a real-time (RT)
implementation, further restraining the allowed CT of the chosen DSP algorithm. This also
applies to neural networks, although formal study of the aliasing introduced by neural
networks in this field is lacking.

A number of architectures are capable of real-time use, even on CPU. However, the RT
measures presented in Table 7 vary in a number of ways including:

• The sample rate used for processing;
• The processing unit;
• The implementation language;
• The method of measuring the RTF (number of operations, timing the inference, etc.).

This makes formal comparison challenging. We provide the RTF of a number of
illustrative models of the state-of-the-art, from each of the architecture classes of Section 3.1
in the following section.

Table 7. Summary of the real-time capabilities of each architecture in the state-of-the-art. We define the
Real-Time factor here to be RTF =

Processing Time
RT constraint . RTF lower than 1 is required for real-time operation.

Architecture RTF Sampling Rate (kHz)

NARX [30] No mention 96

Multi-layer LSTM [31] No mention 96

1 layer LSTM (150 units) + FC [35] 0.78 (GPU) 44.1

2 layers LSTM (150 units) [35] 1.39 (GPU) 44.1

Sequence-to-sequence LSTM [35] 0.70 (GPU) 44.1

Parametric LSTM [35] 0.71 (GPU) 44.1

Convolutional LSTM [35] 0.45 (GPU) 44.1

3-layer MLP [35] 0.24 (GPU) 44.1

CNN with pooling [35] 0.32 (GPU) 44.1

Convolutional RNN [35] 0.45 (GPU) 44.1

CAFx [39] No mention 16
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Table 7. Cont.

Architecture RTF Sampling Rate (kHz)

FeedForward WaveNet amps [25] 0.16 (WaveNet1) &
0.33 (WaveNet3) (Python) 44.1

FeedForward WaveNet pedals [26] 0.53 (WaveNet1) &
0.91 (WaveNet3) (C++) 44.1

CRAFx [37,38] 1.44 (Python-CPU) 16

Single-layer LSTM & GRU [33] 0.097 for fastest RNN & 0.41 for
slowest (estimated on CPU) 44.1

CWAFx [38] 1.48 (Python-CPU) 16

Shallow TCN [28]

Capable of RT with a frame size
of over 1024 for TCN-300-C &

4096 for TCN-324-N
(Python-CPU)

STN [41]

Estimated in terms of floating
point operations and appears to

be within the bounds of
real-time

192

State-Space GRU [42] No mention 48

Nercessian et al. [43] No mention 44.1

Kuznetsov et al. [4] Computed in terms of floating
point operations 48

Esqueda et al. [46]
No mention but same RT
capabilities as traditional

White-Box
96

4. Discussion
4.1. Architecture Comparison

Overall, the wide range of parameters used in the state-of-the-art in neural modelling
of distortion effects make a formal comparison of the architectures complicated. To remedy
this, we chose at least one model from each class of networks and trained them using
the same data and loss function. This allows for a clearer comparison of each class of
architecture. The data set used for training is the data from [50], using 80% for the training
data and 20% for testing. The sampling rate of the data used is 44.1 kHz and the comparison
is limited to black-box approaches. The loss function used is the ESR without pre-emphasis
filtering. We chose to omit the pre-emphasis as the predictions diverge from the target in
different frequency ranges depending on the network architecture. A DC term was added
to the ESR when training the recurrent network as the predictions from this type of model
are known to have an amplitude offset.

The training parameters for each of the networks are the following:

• LSTM: Sequence-to-sequence LSTM with 32 recurrent units.
• WaveNet: Number of channels = 12; dilation depth = 10; kernel size = 3.
• Convolution LSTM: Number of channels = 35; stride = 4; kernel size = 3. These

parameters hold for both convolution layers.
• Shallow TCN: Number of channels = 32; number of blocks = 4; stack size = 10; dilation

growth = 10.

The Shallow TCN network was trained for 150 epochs as opposed to the original
maximum number of epochs, which was equal to 60 to account for the difference in
training data and loss function, and all the other networks were trained until an early
stopping condition was met. For each model tested, we present a number of objective
evaluation metrics as well as the inference speeds of the Python implementations on an
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AMD Ryzen 7 3750H CPU at 2.3GHz presented in Table 8. The objective ESR and STFT
metrics are plain ESR and the Aggregate STFT from [54] computed using the Auraloss
PyTorch library [59].

Table 8. Black-box architecture comparison. We define the Real-Time factor here to be
RTF =

Processing Time
RT constraint . RTF lower than 1 is required for real-time operation. All results reported

were recorded in Python on CPU (AMD Ryzen 7 3750H CPU at 2.3 GHz).

Architecture RTF MSE ESR MAE STFT

RNN (LSTM-32) [33] 0.51 0.0040 0.0244 0.0378 0.5952

CNN (WaveNet) [25] 0.35 0.0703 0.4337 0.1359 0.6542

Hybrid (Conv-LSTM) [35] 3.25 0.0069 0.0423 0.0530 0.6937

CNN (Shallow TCN) [28] 0.14 0.3190 2.1371 0.4510 1.2348

Table 8 shows that the Shallow TCN outperforms the other architectures in terms of
processing speed but for significantly lower objective quality. The lower audio quality could
be due to insufficient training as this network was trained for a fixed number of epochs.
The LSTM with 32 recurrent units outperforms all other models in terms of objective quality
measures but is outperformed by the fully convolutional networks in terms of processing
speeds. However, this is contradictory to the results presented in Wright et al.’s WaveNet
and RNN comparison [23] which showed that most LSTM models were able to outperform
the WaveNet models in terms of computation time. This difference could be due to the
evaluation method, as Wright et al. report CT of an optimized C++ implementation of both
network types and the results presented here were all obtained using Python. The hybrid
conv-LSTM network from Schmitz [35] ranks highly in terms of objective quality but is
incapable of real-time use without GPU parallelization. Overall, all models except for the
Shallow-TCN were reported to have acceptable subjective quality, judged through informal
listening tests, even though their objective time-domain metrics vary. This highlights the
divergence between the objective values and actual perceptual quality. The STFT loss
produces values closer to the perceptual quality of the outputs, showing that taking into
account spectral features can improve the perceptual accuracy. However time-frequency
metrics such as these can cause spectral leakage [44], which can affect training when being
used as loss functions.

All the audio results presented here are available at https://www.math.u-bordeaux.fr
/~plegra100p/NNA_AMPLI_EMU.php (accessed on 23 April 2022).

4.2. Proposed Further Explorations

The architectures presented here vary from convolutional methods to recurrent struc-
tures, including hybrid methods and autoencoders. Despite being a black-box approach,
researchers have started to utilize this technology in both white- and gray-box modelling as
well, further demonstrating the wide range of ways in which deep learning can be applied
to this field. However, some aspects warrant further study.

These architectures are often capable of real-time processing, some of which are light-
weight enough to work in real-time on CPU. However, they remain computationally heavy
and have not been demonstrated to be able to achieve real-time speeds for sampling rates
over 44.1 kHz. Indeed, some models either require parallelization of their operations
on GPU, low sampling rates or large buffer sizes in order to achieve close to real-time
performance. Furthermore, the architectures currently present in the state-of-the-art that
are capable of real-time use have only been shown to work with sampling rates of 44.1 kHz
which is the lower bound for high quality audio in music applications.

Moreover, digital implementations of analog audio effects usually introduce aliasing
into the signal, and to remedy this, anti-aliasing techniques are used which often require
upsampling of the signals by a factor of 8 [6]. This also applies to neural networks although

https://www.math.u-bordeaux.fr/~plegra100p/NNA_AMPLI_EMU.php
https://www.math.u-bordeaux.fr/~plegra100p/NNA_AMPLI_EMU.php
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formal study of the aliasing introduced by neural networks in this field is lacking. In [26],
Damskägg et al. studied the effect of aliasing in the prediction of their feedforward
WaveNet and claimed that aliasing was indeed present in the output even though the
models were trained on non-aliased data but that this aliasing could not clearly be heard in
the predictions. Therefore, anti-aliasing techniques might be required for neural models,
and further work on both potentially lighter models and the possible impact of aliasing
should be explored.

A variety of methods presented here allow for input parameters to be taken into
account in the network for a parametric model. LSTM and other similar recurrent models
allow for these parameters in the form of input features (i.e., an extra dimension of data
pertaining to these parameters). Similarly, convolutional networks can allow for a paramet-
ric approach by use of extra input channels for the conditioning of the network. However,
these methods could slow down training significantly and greatly increase the amount of
necessary data. Moreover, all mentions of these parametric approaches in the literature
have been hypothetical or implemented with marginal success and no clear demonstration
of the methods have been presented that we know of.

The cost functions used for training and evaluation of the networks have been studied
in recent years. Wright & Välimäki [53] present a study on various functions for pre-
emphasis filtering of the signal before loss computations in order to better capture the
perceptual features. In this work, three pre-emphasis filters were tested and compared:
a high-pass filter, a low-pass filter and a folded differentiator, all applied to the ESR of
the signals. Different weightings were also compared. It was shown that the loss that
best improved audio results was the ESR with A-weighting pre-emphasis, a weighting
that seeks to describe the frequency response of the human ear. A number of losses are
also presented in [59], but a more formal comparison of these various cost functions for
amplifier modelling would be desirable.

Another aspect to take into account is the interpretability of such models. Neural
networks are notoriously lacking in interpretability. Although methods of increasing
interpretability and explainability in DL are being studied, a range of methods are presented
in [60] for example, and the advent of both gray- and white-box methods also bring along
more knowledge of the model. However, this lack of explainability is undesirable, and
further work on increasing interpretability of the models should be explored.

5. Conclusions

In this work, we present an overview of the current state-of-the-art methods in neural
network-based vacuum tube amplifier modelling, covering the preceding methods in the
state-of-the-art and the recent advances in deep learning in this field under black-box, gray-
box, and white-box approaches. We highlight the results of each method, including the
audio quality and real-time capabilities. Moreover, we include the evaluation methods used
and the limitations of each method, exploring avenues for further work. Notably the real-
time capabilities of such approaches warrant further investigation as the current methods,
although some of which are capable of real-time use, are limited to a sampling rate of
44.1 kHz which is the lower bound for acceptable audio quality in music and is insufficient
for anti-aliasing techniques based on upsampling the signals. Moreover, the presence
of aliasing produced by the networks requires further study. Evaluation methods with
perceptual relevance often rely on listening tests with user input and are time-intensive to
carry out. Therefore, there is a need for perceptually relevant, objective metrics to facilitate
and automate evaluation. Additionally, differentiable objective metrics are also required to
improve training towards a minimum that better reflects human audition. Two remaining
points of focus in this field of study are the exploration into parametric models, that have
only been alluded to in the current state-of-the-art without explicit demonstration, and the
interpretability of the models used, as this is an issue with neural networks in general.
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Abbreviations

The following abbreviations are used in this manuscript:
AME Average Magnitude Error
ANN Artificial Neural Networks
BCE Branch Constitutive Equations
Bi-LSTM Bidirectional LSTM
BJT Bipolar-Junction Transistor
CAFx Convolutional Audio Effects modelling Network
CNN Convolutional Neural Network
CPU Central Processing Unit
CRAFx Convolutional Recurrent Audio Effects modelling Network
CT Computation Time
CWAFx Convolutional and WaveNet Audio Effects modelling Network
DAW Digital Audio Workstation
DC Direct Current
DDSP Differentiable Digital Signal Processing
DI Direct Input
DL Deep Learning
DNN Deep Neural Network
DSP Digital Signal Processing
DUT Device-Under-Test
ESR Error-to-Signal Ratio
ESS Exponential Sine Sweep
FFT Fast Fourier Transform
FiLM Feature-wise Linear Modulation
FMV Fender, Marshall, Vox
GPU Graphics Processing Unit
GRU Gated Recurrent Unit
IIR Infinite Impulse Response
KCL Kirchhoff Circuit Laws
LSTM Long Short Term Memory
LTI Linear Time-Invariant
MAE Mean Absolute Error
MFCC_COSINE Mean Cosine distance of the Mel-Frequency Cepstral Coefficients
ML Machine Learning
MLP Multi-Layer Perceptron
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MNA Modified Nodal Analysis
MSE Mean-Squared Error
MSED Modulation Spectrum Euclidean Distance
MS_MSE Modulation Spectrum Mean Squared Error
MUSHRA MUltiple Stimuli with Hidden Reference and Anchor
NARX Nonlinear AutoRegressive eXogenous
NRMSE Normalized Root Mean Squared Error
ODE Ordinary Differential Equation
op-amp Operational Amplifier
PH Port-Hamiltonian
RMSE Root Mean Squared Error
RNN Recurrent Neural Network
RTF Real-Time Factor
SAAF Smooth Adaptive Activation Function
SNR Signal-to-Noise Ratio
SPICE Simulation Program with Integrated Circuit Emphasis
STFT Short-Term Fourier Transform
STN State Trajectory Network
SVM Support Vector Machine
TCN Temporal Convolutional Network
VA Virtual Analog
WDF Wave Digital Filter
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