1.13 © COULOMB'S LAW OF ELECTRIC FORCE

21. State Coulomb’s law in electrostatics. Express the
same in SI units. Name and define the units of electric
charge.

Coulomb’s law. In 1785, the French physicist
Charles Augustin Coulomb (1736-1806) experimentally
measured the electric forces between small charged
spheres by using a torsion balance. He formulated his
observations in the form of Coulomb’s law which is
electrical analogue of Newton's law of Universal
Gravitation in mechanics.

Coulomb’s law states that the force of attraction or
repulsion between two stationary point charges is (i) directly
proportional to the product of the magnitudes of the two
charges and (ii) inversely proportional to the square of the
distance between them. This force acts along the line joining
the two charges.
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Fig. 1.7 Coulomb’s law.

If two point charges g, and g, are separated by

distance 7, then the force F of attraction or repulsion

between them is such that

1
F < 4,4, and Fcc ?
J19> : 119>
Eoc === Of F=k —=
2 7

where k is a constant of proportionality, called electro-
static force constant. The value of k depends on the
nature of the medium between the two charges and the
system of units chosen to measure F, 4;, 4, and .

For the two charges located in free space and in SI
units, we have

k:1

411_80

—9x10° Nm? C 2

LV 5



where ¢ is called permittivity of free space. So we can
express Coulomb’s law in SI units as

1 4%

F =
4ft80 7




1.14 © COULOMB’S LAW IN VECTOR FORM
22. Write Coulomb’s law in vector form. What is the

importance. of expressing it in vector form ?

. / Coulomb’s law in vector form. As shown in

.laig. 1.8, consider two positive point charges g, and 4,
placed in vacuum at distance r from each other. They

repel each other.
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Fig. 1.8 Repulsive coulombian forces for g, q, >0.

In vector form, Coulomb’s law may be expressed as

?;1 = Force on charge g, due to g,
= L. by
dm g, 2
_)

~ o . : : : :
where 1, = 12 g a unit vector in the direction from g,
r

to g,.
Similarly,  F,, =Force on charge ¢; due to 4,
e
ine, 1 21
—¥
5 I . ; -
where 1,; = 21 g a unit vector in the direction from g,
i
to g,

The coulombian forces between unlike charges
(9,9, <0) are attractive, as shown in Fig. 1.9.
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Fig. 1.9 Attractive coulombian forces for g, g, <0.
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1.17 ~ FORCES BETWEEN MULTIPLE CHARGES :
THE SUPERPOSITION PRINCIPLE

27. State the principle of superposition  of
electrostatic forces. Hence write an expression for the
force on a point charge due to a distribution of N —1
point charges in terms of their position vectors.

'\ / Principle of superposition of electrostatic forces.
Coulomb’s law gives force between two point charges.
The principle of superposition enables us to find the

. force on a point charge due to a group of point charges.

, This principle is based on the property that the forces
with which two charges attract or repel each other are
not affected by the presence of other charges.



The principle of superposition states that when a
number of charges are interacting, the total force on a Siven
charge is the vector sum of the forces exerted on it due to all
other charges. The force between fwo charges is not affected
by the presence of other charges.

As shown in Fig. 1.24, consider N point charges
i+ 92: 3.+, Gy placed in vacuum at points whose
=+ -3 = -
Mo B By ey By
respectively. According to the principle of super-
Pposition, the total force on charge g, is given by

position vectors w.r.t, origin O are

-2 - - o 3
F = E,+ F13+‘.... + Ry
where f;z, E;s,...., fw are the forces exerted on charge

4, by the individual chargesg,, g, ....., 4y Tespectively.
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Fig. 1.24 Superposition principle : Force on
charge g, exerted by & and g,.

According to Coulomb’s
charge g, due to q, is

law, the force exerted on
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g, and 1, =| ;;—- 1, | = distance of g, from q;-

Hence the total force on charge g, is
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In general, force 1%: onath charge g, located at r;’ due
to all other (N -1) charges may be written as

-3
F, = Total force on ath charge

N N P g

- 2: qb; L Z =%
_41'!‘.8 2 I"IJ-‘IJ'I:(-: % = -
0 b=1 13 0 E=1 P28

bea b=a @ ==h

wherea=1,2,3, ., N.

It may be noticed that for each choice of g, the
summation on b omits the value a. This is because
summation must be taken only over other charges. The
above expression can be written in a simpler way as
follows :

e Total force on charge g due to many point
charges ¢

Examples based on
Principle of Superposition
of Electric Forces
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Forces are in newton, charges in coulomb and
distances in metre. |
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1.19 = ELECTRIC FIELD DUE

31. Obtain an expression for the electric field
intensity at a point at a distance T from a charge q.
What is the nature of this field ?

Electric field due to a point charge. A single point
charge has the simplest electric field. As shown in
Fig. 1.41, consider a point charge 4 placed at the origin
" O. We wish to determine its electric field at a point Pat

o - P =
qe— —p-& - [
Source o
charge Test
charge
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Fig. 1.41 Electric field of a point charge.

a distance r from it. For this, imagine a test charge 4,
placed at point P. According to Coulomb’s law, the

force on charge 4, 1S
dme r

where 7 is a unit vector in the direction from 4 to ;.

Electric field at point P is

S
e

i
— —Ei[i ¥
gy 4mey 7

The magnitude of the field E is
A

. 4me, ?2_
Clearly, Eoxc1/ 2. This means that at all points on
the spherical surface drawn around the point charge,
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the magnitude of F is same and does not depend on

the direction of 7. Such a field is called spherically

symmetric or radial field, i.e., a field which looks the
same in all directions when seen from the point charge.
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1.20~ ELECTRIC FIELD DUE TO A SYSTEM
OF POINT CHARGES

32. Deduce an expression for the electric field at a
. A L]

point due to a system of N point charges. :
E

lectric field due to a system of point charges.
Consider a system of N point charges gy, fy, .-

having position vectors #;, 1, s Iy with respect to the

Ay

R R R SR R
Fig. 1.42 Notations used in the determination of
electric field at a point due to two point charges.

origin O. We wish to determine the electric field at
point P whose position vector is 7. According to

Coulomb’s law the force on charge ¢, due to charge g,
is

- il 44 ~
SRR U5
1 : 1P
dne, 15
where ;] p is a unit vector in the direction from g, to P

and 7, is the distance between g, and P. Hence the
electric field at point P due to charge ¢, is

_.)
= & 1 Gy »
E=-1= L
1P
1ogqy 4mgg 'izp

Similarly, electric field at P due to charge ¢, is
- 1 q A
E=——."2r

= 4me, 2, %

According to principle of superposition of electric
fields, the electric field at any point due to a group of charges
is equal to the vector sum of the electric fields produced by
each charge individually at that point, when all other charges
are assumed to be absent.



Hence, the electric field at point P due to the system
of N charges is

Fig. 1. 43 Electrlc field at a point due to a system of
charges is the vector sum of the electric
fields at the point due to individual charges.

In terms of position vectors, we can write

N - =
o 41 e e F
3 = A Tl e
P sy =P |
N
= 1 - >
or E= Z (=)
i >
dngy, [ |r—r{3
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1.24 ¥ ELECTRIC FIELD AT AN AXIAL POINT
OF A DIPOLE
37. Derive an expression for the electric field at any
point on the axial line of an electric dipole.
.~ Electric field at an axial point of an electric dipole.
“As shown in Fig. 1.63, consider an electric dipole

consisting of charges + gand — 4, separated by distance
24 and placed in vacuum. Let P be a point on the axial
line at distance 7 from the centre O of the dipole on the

side of the charge + 4. ;
P
E

_q _O. +q E-&] P +q
& + @- - - - & + —=-
— 2 —H

I -r »

Fig. 1.63 Electric field at an axial point of dipole.

Electric field due to charge — q at point Pis
— q A
=— towards left
1 4mey(r+ ay? - ( )
where ﬁ is a unit vector along the dipole axis from — ¢
to+4q ’
Electric field due to charge + g at point P is
q 2 :
= towards right
1 4me, (r—a) F ; e

Hence the resultant electric field at point P is

Eaxf:r.‘:f"-kq'*'E--r,*
= Pl o
dme, | (r—a)® (r+ a)*
= 4ar ~
47:30'(1'2—(122?
: o] 2pr ~
or axia!_4n80'(r2_a2)2p

Here p = g x 2a = dipole moment.
For r >> 4, a* can be neglected compared to i

_ e dnia !
E:xia{ 2= .Im—o i p (towards right)

Clearly, electric field at any axial point of the dipole :
acts along the dipole axis from negative to positive
-

charge i.e., in the direction of dipole moment p..



1.25 ¥ ELECTRIC FIELD AT AN EQUATORIAL
POINT OF A DIPOLE

38. Derive an expression for the electric field at any
point on the equatorial line of an electric dipole.

.~ Electric field at an equatorial point of a dipole. As
shown in Fig. 1.64, consider an electric dipole consis-
ting of charges —q and + g, separated by distance 24
and placed in vacuum. Let P be a point on the equa-
torial line of the dipole at distance r from it.

ie., OP=r

Fig. 1.64 Electric field at an equatorial
point of a dipole.
Electric field at point P due to + g charge is
E———— B
i dngy r*+a
Electric field at point P due to — g charge is

r - q directed along PA

_‘f_4:r|:80'r2+a2’

directed along BP

Thus the magnitudes of E_ ; and E: g are equalie.,

= o q
E, = 5 Sh

*9 4me, P +a

—>
Clearly, the components of E_ gand E . normal to

the dipole axis will cancel out. The compohents
parallel to the dipole axis add up. The total electric

— —+

field E,,, is opposite to p.
— A
EBqua =—(E_, cos 0 + EH? cos 0) p

E

=-2E  cosBp [E gl

—qI:
1 q a pes
==27 :
“Amey 1* +a* J72+a2 e

"+ cos 0= - .
i: : 12+a2:)
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where p=24a, is the electric dip |
ay from the dipole,

If the point P is located far aw

r >> a,; then
S 1 ap s
E = =
fques - 4, r3_p

the direction of electric field at any .point

Clearly,
the dipole will be antiparallel

on the equatorial line of
' —

to the dipole moment P .
~ . S T e ﬂlﬂf’frir_’
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1.26 ¥ TORQUE ON A DIPOLE IN A UNIFORM
ELECTRIC FIELD :

40. Derive an expression for the torque on an electric
dipole placed in @ uniform electric field. Hence define
dipole moment. : '

Torque on a dipole in a uniform electric field. As
shown in Fig. 1.65(a), consider an electric dipole
consisting of charges + ¢ and —g and of length 24

placed in a uniform electric field E making an angle 0
with it. It has a dipole moment of magnitude,
p=qx2a

Force exerted on charge + 4 by field E = E
—
(along E)
Force exerted on charge —q by field E =—¢ E
(opposite to E)

- =

=t
Erotal ~+qgE —qE =0.

or
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Fig. 1.65 (a) Torque on a dipole in a2 uniform
electric field. (b) Direction of torque as
given by right hand screw rule.

Hence the net translating force on a dipole in 2
uniform electric field is zero. But the two equal and
opposite forces act at different points of the dipole.
They form a couple which exerts a torque.

Torque = Either force x Perpendicular distance
between the two forces

= qEx2asin0=(4%24) Esin 6

| or t= pEsin® (p=q%24)
As ._.the direction of torque 7 is perpendicular to

€ “poth p and E , so we can write :

i - "’f
T=pX*

le The direction of vector < is that in which a right
2q¢ handed screw would advance when rotated from ? to

: 0 E. As shown in Fig. 1.65(b), the direction of vector 7 is
perpendicular to, and points into the plane of paper.

When the dipole is released, the torque ? tends to
align the dipole with the field E ie., tends to reduce
E) angle © _t’o 0. When the dipole gets aligned with E, the
torque T becomes Z€ro.
i Clearly, the torque on the dipole will bfi,maximum
'E) hen the dipole is held perpendicular to E. Thus ¢
Toax = PE sin90° = pE.



Dipole moment. We know that the torque,
t = pE sin 0
If E=1unit, 6 =90° thent=p

Hence dipole moment may be defined as the torque
acting on an electric dipole, placed perpendicular to a uniform
electric field of unit strength.



GAUSS'S THEOREM

8. State and prove Gauss's theorem.

Gauss's theorem. This theorem gives 2 relationship
sween the total flux passing through any closed
face and the net charge enclosed within the surface.
Gauss theorem states that the total flux through a
e swerface is 1/ ) times the net charge enclosed by the

find surface.
Mathematically, it can be expressed as |

- Proof. For the sake of SIIIIE licity, we prove Gauss's
" for an isolated positive point charge g. As

Fig. 1.82 Flux through a sphere enclosing

a point charge.
= 1 % n



shown in Fig. 1.82, suppose the surface S is a sphere of
radius r centred on g. Then surface S is a_Gaussian
surface.

Electric field at any point on 5is
e

—

_4411:8[]-?‘2

This field points radially outward at all points on S.

Also, any area element points radially outwards, so it

__>
is parallel to E, i.e., 8=0°%

H

-, Flux through area d5is

- =
dgy = E.dS=EdSc050°=EdS

Total flux through surface Sis

| ¢E=§ad¢5=§EdSsE§>dS
e 0 S S

— E x Total area of spher

e

= _-_,_,4-;:,2
411280 2
q

or G- =—
)

This proves Gauss's theorem.
R




1.36 ¥ ELECTRIC FIELD DUE TO A UNIFORMLY
CHARGED INFINITE PLANE SHEET

53. Apply Gauss’s theorem to calculate the electric
field due to an infinite plane sheet of charge.

" Electric field due to a uniformly charged infinite -

" plane sheet. As shown in Fig. 1.94, consider a thin,
infinite plane sheet of charge with uniform surface
charge density . We wish to calculate its electric field
at a point P at distance r from it.

= Plane sheet,
++ 4
+ + %7 + #| charge density ¢
+ ++ ++ =
+ ++++ + +++
< b
=§ \ +
E ol ;
SR e
’F
'!
Cross-sectional
area A

Fig. 1.94 Gaussian surface for a uniformly
charged infinite plane sheet.

By symmetry, electric field E points outwards
normal to the sheet, Also, it must have same magni-
tude and opposite direction at two points Pand P
equidistant from the sheet and on opposite sides. We
choose cylindrical Gaussian surface of Cross- sectional
area A and length 2r with its axis perpendicular to the
sheet.

As the lines of force are parallel to the curved
surface of the cylinder, the flux through the curved
surface is zero. The flux through the plane-end faces of
the cylinder is

4% =EA+EA=2EA
Charge enclosed by the Gaussian surface,

4=0A
According to_Gauss'’s theorem,
' q
g =+
€
2EA=S4 ,, 0
€y 2g,

Clearly, Eis independent of 7, the distance from the
plane sheet. : :

(?) If the sheet is positively charged (o > 0), the field

is directed away from it.

(ii) If the sheet is negatively charged (o <0), the field

isdirected towards it.

For a finite large planar sheet, the above formula
will be approximately valid in the middle regions of
the sheet, away from its edges.
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54. Two infinite parallel planes have uniform charge
densities of o, and c,. Determine the electric field at
points (i) to the left of the sheets, (ii) between them,
and (1it) to the right of the sheets.

Electric field of two positively charged parallel
plates. Fig. 1.95 shows two thin plane parallel sheets of
charge having uniform charge densities o, and o,
with o, >, >0. Suppose F is a unit vector pointing
from left to right.

; 0 T,
5 B o5 BooE
+ +
% 4
I % I o m
& +
Ey il Bes S g
¢
+ +
+ +
e . B

—
Sheet 1 Sheet 2

In the region I : Fields due to the two sheets are
S LR e
=9 & i 2¢,
From the principle of superposition, the total
electric field at any point of region [ is 4

- r
E;:El*'g:_ (o) +0,)

2¢
0
In the region II ; Fields due to the two sheets are
E; =t E=-227;
2¢, 2¢,
: =
- .. Total field, E, =:2—£— (0, -0,)
0
In the region III : Fields due to the two sheets are
P g A G A
sl o p - 200 8
1 Z 2
2. 2¢,
: r
Fotdl field, Em =P (o) +5,)
0



densities of + o. Suppose 7 be a unit vector. pointing |
from left to right.

+O —tF rs
E, =7 E, = E,
e ] e ] ———
o+ =
I 5 IT = o
+ -—

E, = E; = E;
— | — || —
+ <2
obi =
+ % =
Sheet 1 Sheet 2

P S

Fig. 1.96
In the region I : Fields due to the two sheets are

A

N L]
e

2_80 25‘0
Total field, E, =E. + E,=——— 06+ —0c=0
= T E E 2306 2800

In the region II : Fields due to the two sheets are

A A
r r
Elzu——(j’ E2=-_—~0'
2—:-;0 280
A - A
S r t A
Total field, B =—o+—o=—7
280 2&0 £

In the region III : Fields due to the two sheets are

N A

r r

E1=——-0', =——gC
280 280

= =
Total field, Ej; =0.

Thus the electric field between two oppositely
charged plates of equal charge density is uniform
which is equal to SE and is directed from the positive to

0
the negative plate, while the field is zero on the outside
of the two sheets. This arrangement is used for
producing uniform electric field.
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1.37 ¥ FIELD DUE TO A UNIFORMLY
Afﬁx CHARGED THIN SPHERICAL SHELL

56. Apply Gauss’s theorem to show that for a °
spherical shell, the electric field inside the shell
vanishes, whereas outside it, the field is as if all the
charge had been concentrated at the centre.

S



Blectric field due to a uniformly charged thin '
‘spherical shell. Consider a thin spherical shell of
charge of radius R with uniform surface charge density

o. Fram symmetry, we see that the electric field E at

any point is radial and has same magnitude at points
equidistant from the centre of the shell i.e., the field is
spherically symmetric. To determine electric field at any
point P at a distance r from O, we choose a concentric
sphere of radius r as the Gaussian surface. .

A

Gaussian
===~ surface
.
~

H‘m]"'a

/

/__ Spherical shell,
rs -
& = charge density = o

Iy -

T

Fig. 1.97 Gaussian surface for outside points of
a thin spherical shell of charge.

(a) When point P lies outside the spherical shell. The
total charge g inside the Gaussian surface is the charge
on the shell of radius R and area 4nR>.

g=4nR*c
Flux through the Gaussian surface,
¢ = Ex 4nr’
By Gauss’s theorem,
q
4=
&
Exdn? =1
€
or ' ] S L b { [For r> R]
4n g, o

This field is the same as that produced by a charge g
placed at the centré O. Hence for points outside the shell,
the field due to a uniformly charged shell is as if the entire
charge of the shell is concentrated at its centre.

(b) When point P lies on the spherical shell. The Gaussian
surface just encloses the charged spherical shell.

Applying Gauss’s theorem,

E x 4nR? = 4
€



q
or b= [Forr=R
47 R :

or E==Z [- g=4nR? o]
€

(c) When point P lies inside the spherical shell. As is

clear from Fig. 1.98, the charge enclosed by the
Gaussian surface is zero, i.e.,

q=0

Gaussian
surface

Spherical shell,
charge density = ¢

Fig. 1.98 Gaussian surface for inside points
of a thin spherical shell of charge.

Flux through the Gaussian surface,
d;E = Ex 4nr?
Applying Gauss’s theorem,

or E=0 : [For r< R]
Hence electric field due to o uniformly charged spherical
shell is zero at all points inside the shel],

‘Fig. 1.99 shows how E varies with distance r from
the centre of the shell of radius . Eis zero from r =0 to
r=R; and beyond r = R, we have

1
Eoc— .
1’2
cv e
/‘ 4 g R?
Eoc—q?
r
o
—
O R r

Fig. 1.99 Variation of £ with r for a
spherical shell of charge.
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Solution. Electric field of a line charge from
Coulomb’s law. Consider an infinite line of charge with
uniform line charge density A, as shown in Fig. 1.60.
We wish to calculate its electric field at any point Pat a
distance y from it. The charge on small element dx of
the line charge will be :

~ dg=\dx

The electric field at the point P due to the charge

element dg will be

del dg- -1 Adx

411:80 2 _41*.;50 : y2+ x2




Fig. 1.60 A section of an infinite line of charge.

The field dE has two components :
dE =—dEsin®
and dE =dE cos
The negatwe sign in x-component indicates that

b

d E acts in the negative x-direction. Every charge ele-

ment on the right has a corresponding charge element
on the left. The x-components of two such charge
elements will be equal and opposite and hence cancel

out. The resultant field E gets contributions only from
y —components and is given by

x=+00
E=Ey=j.d£y= Jcos(—)dE
x=—00
X =00
dx
=2_[ cos 0. L ; 3 5
o 41rao U x
x =0
= A I cos 0 2_dx2
27580 =5 Yo+
Now x:ytan;:i)
dx=y_,sec29d9
0=m/2 2
E= A J- — g/sec deB
2mey 4o y~ (1 + tan” 0)
O=mn/2
£k I cos 0d0 = A [smﬁ]’”rz
2me, Y i, 2mey Y
= (sinit——sin()]
2ne, Y 2
or E= _.-k e
ey
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