ResearchGate

See discussions, stats, and author profiles for this publication at:

Combining displacement mapping methods on
the GPU for real-time terrain visualization

Article /1 The Journal of Supercomputing - September 2016

DOI: 10.1007/s11227-016-1869-6

CITATIONS READS
0 14

3 authors, including:

‘ University of Valencia e University of Valencia

23 PUBLICATIONS 97 CITATIONS 127 PUBLICATIONS 743 CITATIONS
SEE PROFILE SEE PROFILE
Allin-text references are linked to publications on ResearchGate, Available from: Juan M. Ordufa

letting you access and read them immediately. Retrieved on: 15 November 2016


https://www.researchgate.net/publication/307994449_Combining_displacement_mapping_methods_on_the_GPU_for_real-time_terrain_visualization?enrichId=rgreq-baccdeb8d5dfc0bc2745cf914217f49a-XXX&enrichSource=Y292ZXJQYWdlOzMwNzk5NDQ0OTtBUzo0MDU0MzgwNTE5NjI4ODJAMTQ3MzY3NTM3Mzk2Mg%3D%3D&el=1_x_2
https://www.researchgate.net/publication/307994449_Combining_displacement_mapping_methods_on_the_GPU_for_real-time_terrain_visualization?enrichId=rgreq-baccdeb8d5dfc0bc2745cf914217f49a-XXX&enrichSource=Y292ZXJQYWdlOzMwNzk5NDQ0OTtBUzo0MDU0MzgwNTE5NjI4ODJAMTQ3MzY3NTM3Mzk2Mg%3D%3D&el=1_x_3
https://www.researchgate.net/?enrichId=rgreq-baccdeb8d5dfc0bc2745cf914217f49a-XXX&enrichSource=Y292ZXJQYWdlOzMwNzk5NDQ0OTtBUzo0MDU0MzgwNTE5NjI4ODJAMTQ3MzY3NTM3Mzk2Mg%3D%3D&el=1_x_1
https://www.researchgate.net/profile/Mariano_Perez3?enrichId=rgreq-baccdeb8d5dfc0bc2745cf914217f49a-XXX&enrichSource=Y292ZXJQYWdlOzMwNzk5NDQ0OTtBUzo0MDU0MzgwNTE5NjI4ODJAMTQ3MzY3NTM3Mzk2Mg%3D%3D&el=1_x_4
https://www.researchgate.net/profile/Mariano_Perez3?enrichId=rgreq-baccdeb8d5dfc0bc2745cf914217f49a-XXX&enrichSource=Y292ZXJQYWdlOzMwNzk5NDQ0OTtBUzo0MDU0MzgwNTE5NjI4ODJAMTQ3MzY3NTM3Mzk2Mg%3D%3D&el=1_x_5
https://www.researchgate.net/institution/University_of_Valencia?enrichId=rgreq-baccdeb8d5dfc0bc2745cf914217f49a-XXX&enrichSource=Y292ZXJQYWdlOzMwNzk5NDQ0OTtBUzo0MDU0MzgwNTE5NjI4ODJAMTQ3MzY3NTM3Mzk2Mg%3D%3D&el=1_x_6
https://www.researchgate.net/profile/Mariano_Perez3?enrichId=rgreq-baccdeb8d5dfc0bc2745cf914217f49a-XXX&enrichSource=Y292ZXJQYWdlOzMwNzk5NDQ0OTtBUzo0MDU0MzgwNTE5NjI4ODJAMTQ3MzY3NTM3Mzk2Mg%3D%3D&el=1_x_7
https://www.researchgate.net/profile/Juan_Orduna?enrichId=rgreq-baccdeb8d5dfc0bc2745cf914217f49a-XXX&enrichSource=Y292ZXJQYWdlOzMwNzk5NDQ0OTtBUzo0MDU0MzgwNTE5NjI4ODJAMTQ3MzY3NTM3Mzk2Mg%3D%3D&el=1_x_4
https://www.researchgate.net/profile/Juan_Orduna?enrichId=rgreq-baccdeb8d5dfc0bc2745cf914217f49a-XXX&enrichSource=Y292ZXJQYWdlOzMwNzk5NDQ0OTtBUzo0MDU0MzgwNTE5NjI4ODJAMTQ3MzY3NTM3Mzk2Mg%3D%3D&el=1_x_5
https://www.researchgate.net/institution/University_of_Valencia?enrichId=rgreq-baccdeb8d5dfc0bc2745cf914217f49a-XXX&enrichSource=Y292ZXJQYWdlOzMwNzk5NDQ0OTtBUzo0MDU0MzgwNTE5NjI4ODJAMTQ3MzY3NTM3Mzk2Mg%3D%3D&el=1_x_6
https://www.researchgate.net/profile/Juan_Orduna?enrichId=rgreq-baccdeb8d5dfc0bc2745cf914217f49a-XXX&enrichSource=Y292ZXJQYWdlOzMwNzk5NDQ0OTtBUzo0MDU0MzgwNTE5NjI4ODJAMTQ3MzY3NTM3Mzk2Mg%3D%3D&el=1_x_7

Noname manuscript No.
(will be inserted by the editor)

Combining Displacement Mapping Methods on the
GPU for Real-Time Terrain Visualization

Cesar Gonzdlez - Mariano Pérez - Juan
M. Orduna

Received: date / Accepted: date

Abstract Real-Time terrain visualization plays an important rule in multiple
popular applications. In these applications, displacement mapping algorithms
(both per-vertex and per-pixel methods) can be used to improve the accu-
racy and performance of terrain rendering. Per-vertex methods are usually
implemented by means of hardware tessellation, and per-pixel techniques like
parallax mapping apply changes at the pixel level using the fragment shader.
However, parallax mapping has not still been used in real-time terrain visual-
ization applications due to different reasons.

In this paper, we propose a comparison study of different combinations
of per-vertex and per-pixel methods. The performance evaluation results re-
veal that any of the implemented schemes improve the performance of terrain
rendering, with respect to the performance yielded by the exclusive use of
hardware tessellation. These results validate the proposed schemes as efficient
alternatives for real-time terrain visualization applications.

Keywords Terrain visualization - Real-Time rendering - GPU shaders

1 Introduction

Real-Time terrain visualization is a very active research field in the area of
computer graphics, and it plays an important role in multiple applications like
Geographic Information Systems (GIS) [9,10], computer games [13] or civil or
military simulators [8,15,7]. Figure 1 shows an example of an image displayed
by a GIS application.

This work has been supported by Spanish MINECO and EU FEDER funds under grant
TIN2015-66972-C5-5-R.

Cesar Gonzélez, Mariano Pérez - Juan M. Orduna at Departamento de Informatica - Uni-
versidad de Valencia - SPAIN

Tel.: 4349644489

E-mail: {mariano.perez,juan.orduna}@uv.es


https://www.researchgate.net/publication/259842743_Direct_volume_rendering_of_unstructured_tetrahedral_meshes_using_CUDA_and_OpenMP?el=1_x_8&enrichId=rgreq-baccdeb8d5dfc0bc2745cf914217f49a-XXX&enrichSource=Y292ZXJQYWdlOzMwNzk5NDQ0OTtBUzo0MDU0MzgwNTE5NjI4ODJAMTQ3MzY3NTM3Mzk2Mg==
https://www.researchgate.net/publication/259248483_Terrain_data_compression_using_wavelet-tiled_pyramids_for_online_3D_terrain_visualization?el=1_x_8&enrichId=rgreq-baccdeb8d5dfc0bc2745cf914217f49a-XXX&enrichSource=Y292ZXJQYWdlOzMwNzk5NDQ0OTtBUzo0MDU0MzgwNTE5NjI4ODJAMTQ3MzY3NTM3Mzk2Mg==
https://www.researchgate.net/publication/287150797_Easy-to-use_virtual_brick_manipulation_techniques_using_hand_gestures?el=1_x_8&enrichId=rgreq-baccdeb8d5dfc0bc2745cf914217f49a-XXX&enrichSource=Y292ZXJQYWdlOzMwNzk5NDQ0OTtBUzo0MDU0MzgwNTE5NjI4ODJAMTQ3MzY3NTM3Mzk2Mg==
https://www.researchgate.net/publication/273946746_Flight_Simulator_X?el=1_x_8&enrichId=rgreq-baccdeb8d5dfc0bc2745cf914217f49a-XXX&enrichSource=Y292ZXJQYWdlOzMwNzk5NDQ0OTtBUzo0MDU0MzgwNTE5NjI4ODJAMTQ3MzY3NTM3Mzk2Mg==
https://www.researchgate.net/publication/286480090_Improving_hybrid_distributed_architectures_for_interactive_terrain_visualization?el=1_x_8&enrichId=rgreq-baccdeb8d5dfc0bc2745cf914217f49a-XXX&enrichSource=Y292ZXJQYWdlOzMwNzk5NDQ0OTtBUzo0MDU0MzgwNTE5NjI4ODJAMTQ3MzY3NTM3Mzk2Mg==

2 Cesar Gonzélez et al.

Fig. 1 Example image displayed by a Geographic Information System application

These applications should display a high visual quality terrain model at
interactive frame rates. Terrain datasets used in these applications usually ex-
ceed the rendering capabilities of currently available hardware graphics, and
their interactive rendering requires that applications adjust their geometry
complexity in a view-dependent manner. Traditionally, most of the techniques
used managed the level-of-detail required at every point of the terrain surface
by executing CPU-based algorithms [11]. However, modern GPU features pro-
vide a more efficient way to carry out this task using GPU-based algorithms
[12,6,5,2].

One way to reduce geometry complexity is implementing displacement
mapping algorithms on the GPU [14], using per-vertex methods and/or per-
pixel methods. Both methods use displacement maps (or height maps) to dis-
place vertices of a tessellated mesh (per-vertex methods) or to displace texture
coordinates of pixels (per-pixel methods) on a base mesh. Per-vertex displace-
ment algorithms are closely related to tessellation and subdivision algorithms.
They are used in real-time terrain rendering applications to generate a detailed
geometry from a coarse mesh in a view-dependent manner. They tessellate a
base mesh depending on the camera distance and moving the generated ver-
tices along their normal according to the value stored in a height map. They
are actually implemented on the GPU using hardware tessellation [17], which
has become a de-facto standard nowadays due to its high fidelity interactive
terrain rendering [1]. Per-pixel displacement algorithms, like parallax mapping
[14], enhance the appearance of the rendered image by applying changes at the
pixel level using the fragment shader, without increasing the number of poly-
gons. They use information included in a displacement map with small height
variations of the base surface to modify the texture coordinates of the color
texture applied to the model. In an intuitive way, parallax mapping corrects
the coordinates of the color texture mapped on the base mesh, approximating
them to its coordinates as if the full resolution surface had been rendered as a
polygonal mesh instead. However, these algorithms are rarely used in real-time
terrain rendering. The main reason is that parallax mapping was originally de-
signed for real surfaces with small variations on the base surface (such as stone
walls or floors), but a real terrain surface can show great height variability,
since terrains typically have a fractal structure. This issue can become a se-


https://www.researchgate.net/publication/228340999_GPU-friendly_high-quality_terrain_rendering?el=1_x_8&enrichId=rgreq-baccdeb8d5dfc0bc2745cf914217f49a-XXX&enrichSource=Y292ZXJQYWdlOzMwNzk5NDQ0OTtBUzo0MDU0MzgwNTE5NjI4ODJAMTQ3MzY3NTM3Mzk2Mg==
https://www.researchgate.net/publication/268349060_GPU_Ray-Casting_for_Scalable_Terrain_Rendering?el=1_x_8&enrichId=rgreq-baccdeb8d5dfc0bc2745cf914217f49a-XXX&enrichSource=Y292ZXJQYWdlOzMwNzk5NDQ0OTtBUzo0MDU0MzgwNTE5NjI4ODJAMTQ3MzY3NTM3Mzk2Mg==
https://www.researchgate.net/publication/220067148_A_GPU_persistent_grid_mapping_for_terrain_rendering?el=1_x_8&enrichId=rgreq-baccdeb8d5dfc0bc2745cf914217f49a-XXX&enrichSource=Y292ZXJQYWdlOzMwNzk5NDQ0OTtBUzo0MDU0MzgwNTE5NjI4ODJAMTQ3MzY3NTM3Mzk2Mg==
https://www.researchgate.net/publication/220068163_Survey_of_semi-regular_multiresolution_models_for_interactive_terrain_rendering?el=1_x_8&enrichId=rgreq-baccdeb8d5dfc0bc2745cf914217f49a-XXX&enrichSource=Y292ZXJQYWdlOzMwNzk5NDQ0OTtBUzo0MDU0MzgwNTE5NjI4ODJAMTQ3MzY3NTM3Mzk2Mg==
https://www.researchgate.net/publication/220506016_Displacement_Mapping_on_the_GPU_-_State_of_the_Art?el=1_x_8&enrichId=rgreq-baccdeb8d5dfc0bc2745cf914217f49a-XXX&enrichSource=Y292ZXJQYWdlOzMwNzk5NDQ0OTtBUzo0MDU0MzgwNTE5NjI4ODJAMTQ3MzY3NTM3Mzk2Mg==
https://www.researchgate.net/publication/220506016_Displacement_Mapping_on_the_GPU_-_State_of_the_Art?el=1_x_8&enrichId=rgreq-baccdeb8d5dfc0bc2745cf914217f49a-XXX&enrichSource=Y292ZXJQYWdlOzMwNzk5NDQ0OTtBUzo0MDU0MzgwNTE5NjI4ODJAMTQ3MzY3NTM3Mzk2Mg==
https://www.researchgate.net/publication/265060336_DirectX_11_Terrain_Tessellation?el=1_x_8&enrichId=rgreq-baccdeb8d5dfc0bc2745cf914217f49a-XXX&enrichSource=Y292ZXJQYWdlOzMwNzk5NDQ0OTtBUzo0MDU0MzgwNTE5NjI4ODJAMTQ3MzY3NTM3Mzk2Mg==
https://www.researchgate.net/publication/220068290_Seamless_patches_for_GPU-based_terrain_rendering?el=1_x_8&enrichId=rgreq-baccdeb8d5dfc0bc2745cf914217f49a-XXX&enrichSource=Y292ZXJQYWdlOzMwNzk5NDQ0OTtBUzo0MDU0MzgwNTE5NjI4ODJAMTQ3MzY3NTM3Mzk2Mg==

Combining displacement mapping methods for terrain visualization 3

rious problem, obtaining a wrong estimation, specially when the the virtual
camera is placed near the ground surface.

In a previous work [3], we proposed a primary combination of hardware
tessellation and a modified version of basic parallax mapping, making possible
the use of the de-facto standard of hardware tessellation in real-time terrain
rendering applications. In this paper, we propose a comparative study of three
possible versions of parallax mapping [14] combined with hardware tessellation,
in order to find the best strategy for real-time terrain rendering applications.
The performance evaluation results show that the proposed schemes improves
the performance of real-time terrain rendering applications in regard to the
performance yielded when using hardware tessellation only.

The rest of the paper is organized as follows: section 2 describes the pro-
posed approach for real-time terrain rendering. Next, section 3 shows the per-
formance evaluation of the proposed models. Finally, section 4 shows some
conclusion remarks.

2 Displacement mapping Implementations

We propose an approach combining per-vertex displacement mapping using
hardware tessellation with per-pixel displacement mapping using parallax map-
ping techniques. The parallax mapping method described in [3] corresponds
to a basic parallax mapping method with offset limiting [14]. In this section,
we describe other possible versions of the parallax mapping method. In order
to make this paper self-contained, we also describe the hardware tessellation
procedure which takes place in shader model version 5.

2.1 Tessellation

Hardware tessellation requires that the base mesh of the tile is defined as a set
of patch primitives. The tessellation technique uses height maps (textures with
elevation information), in addition to color texture, in order to add geometry
from a coarse mesh according to the distance to the virtual camera, performing
a smooth view-dependent level-of-detail representation. Following the OpenGL
nomenclature, the Tessellation Control Shader (TCS) should determine how
many times the patch must be subdivided on the basis of the camera distance.
It is also responsible for ensuring continuity across boundaries patches, forcing
the shared edges between the patches to use the same level of tessellation.
Figure 2 shows part of our code (using GLSL language) for this shader. The
control points and texture coordinates are passed unaltered to the next stage.

The Tessellation Primitive Generator (TPG) subdivides the patch based on
the tessellation level values computed by the TCS, and the Tessellation Eval-
uation Shader (TES) computes the vertex values for each generated vertex.
The vertices position are updated by vertically moving the generated vertices
according to the values stored in the height map. It must be noted that the dis-
placement must be done in the normal direction to the reference surface where


https://www.researchgate.net/publication/220506016_Displacement_Mapping_on_the_GPU_-_State_of_the_Art?el=1_x_8&enrichId=rgreq-baccdeb8d5dfc0bc2745cf914217f49a-XXX&enrichSource=Y292ZXJQYWdlOzMwNzk5NDQ0OTtBUzo0MDU0MzgwNTE5NjI4ODJAMTQ3MzY3NTM3Mzk2Mg==
https://www.researchgate.net/publication/220506016_Displacement_Mapping_on_the_GPU_-_State_of_the_Art?el=1_x_8&enrichId=rgreq-baccdeb8d5dfc0bc2745cf914217f49a-XXX&enrichSource=Y292ZXJQYWdlOzMwNzk5NDQ0OTtBUzo0MDU0MzgwNTE5NjI4ODJAMTQ3MzY3NTM3Mzk2Mg==
https://www.researchgate.net/publication/304786186_A_Hybrid_GPU_Technique_for_Real-Time_Terrain_Visualization?el=1_x_8&enrichId=rgreq-baccdeb8d5dfc0bc2745cf914217f49a-XXX&enrichSource=Y292ZXJQYWdlOzMwNzk5NDQ0OTtBUzo0MDU0MzgwNTE5NjI4ODJAMTQ3MzY3NTM3Mzk2Mg==
https://www.researchgate.net/publication/304786186_A_Hybrid_GPU_Technique_for_Real-Time_Terrain_Visualization?el=1_x_8&enrichId=rgreq-baccdeb8d5dfc0bc2745cf914217f49a-XXX&enrichSource=Y292ZXJQYWdlOzMwNzk5NDQ0OTtBUzo0MDU0MzgwNTE5NjI4ODJAMTQ3MzY3NTM3Mzk2Mg==

4 Cesar Gonzélez et al.

if (frustrumTest = true) {
gl_-TessLevelOuter [0] = getTessLevel (distEdgeOtoCamera);
gl_TessLevelOuter [1] = getTessLevel (distEdgeltoCamera);
gl_-TessLevelOuter [2] = getTessLevel (distEdge2toCamera);
gl_TessLevelOuter [3] = getTessLevel (distEdge3toCamera);
gl_-TessLevellnner [0] = getTessLevel (distCentertoCamera );
gl_TessLevellnner [1] = getTessLevel (distCentertoCamera);

}

tcTexCoords|[gl-InvocationID ] = vTexCoords[gl-InvocationID ];

gl_out [gl_-InvocationID |. gl_Position =
gl_in[gl_-InvocationID]. gl_Position;

Fig. 2 Tessellation Control Shader code

the texture values are coded. However, the earth surface is locally planar, and
the geographical information (composed of color textures and height maps)
is provided as an orthographic projection of the raw data gathered by the
measurement devices; therefore, the reference surface is an horizontal plane (a
flat surface) and the normal vector is a vertical vector at every point. Figure 3
shows part of the code for this shader in our implementation.

vertexPos = computeVertexPosition (gl-TessCoord );

vecd heightNormal = texture (uHeightNormalmap ,tcTexCoords);
vertexPos.z = uHeightScale % heightNormal.r;

teEyeVector = normalize (uEyeWorldPos—vec3 (uModelMatrix*vertexPos));
teNormal = normalize (heightNormal.gba x 2f — 1f);

teHBase = heightNormal.r;

teTexCoords = tcTexCoords;

gl_Position = uModelViewProjectionMatrix * vertexPos;

Fig. 3 Tessellation Evaluation Shader code

In this implementation we combine the height map and the normal map
in only one texture, as shown in the above code (second line). The shader
outputs the camera position and the normal vector in the worlds coordinate
system, as well as the height of the base mesh. Our implementations of the
parallax mapping algorithms will use this information in the fragment shader
code, as explained in the next subsections.

2.2 Parallax mapping using a tessellated mesh as base surface

Simple parallax mapping [4] obtains the target texture coordinates uvy by the
projection on the base surface of the intersection point of the real surface (high
resolution surface) with the eye vector, assuming that the height field h(uv) is
near constant everywhere in the neighborhood of uvg. Figure 4 illustrates this
process. As described in subsection 2.1, the base surface is usually flat in the



https://www.researchgate.net/publication/228583097_Detailed_shape_representation_with_parallax_mapping?el=1_x_8&enrichId=rgreq-baccdeb8d5dfc0bc2745cf914217f49a-XXX&enrichSource=Y292ZXJQYWdlOzMwNzk5NDQ0OTtBUzo0MDU0MzgwNTE5NjI4ODJAMTQ3MzY3NTM3Mzk2Mg==

Combining displacement mapping methods for terrain visualization 5

case of terrain rendering. Therefore, the intersection point can be calculated
simply from the direction of eye vector v and the height value h(uvp). Figure 5
shows the implementation for this flat base surface.

ZTh

Real surface W

Constant height

surface

uvy uv, Base‘sur*.ace

Fig. 4 Finding the intersection point between the eye and the base surface (flat mesh)

float h = texture (uHeightNormalmap, teTexCoords).r;
vec3 v = normalize(teEyeVector);
newTexCoords = teTexCoords + h * v.xy / v.y;

Fig. 5 Implementation of the parallax mapping method for a flat base surface

However, parallax mapping is not well-suited for terrain rendering when a
flat base surface is used. The great variability of terrain data results in a wrong
estimation of the corrected texture coordinates, specially when the camera is
near to the terrain surface and the distance to this surface is similar or smaller
to the height values stored in the height map. In that case, the new texture
coordinates obtained (uwv;1) can be far from the original texture coordinates
(uvg) or even they may be infinite, so the assumption of the height field being
near constant is not satisfied in practice.

Nevertheless, this problem can be avoided using a base surface closer to
the real surface, greatly reducing the displacement distance h, and in turn the
difference between uv, and uvg values. Therefore, we use the mesh generated in
the tessellation stages of the graphic pipeline, which is a lower resolution model
of the terrain model than the real surface (full resolution model), as the base
surface in the parallax mapping algorithm. Figure 6 illustrates the process
when using this new base surface. This Figure shows how the new texture
coordinates uv; are now obtained from the intersection of the eye vector and
a parallel plane to the base surface shifted to h(uvg). The intersection point
is calculated from the eye vector v, the normal vector of the base mesh n and
the difference between the height map value h(uvg) and the base mesh height
H(uvo).




6 Cesar Gonzélez et al.

Parallel plane ﬁ
to base surface
e
Real surface |Base surface

uv, uv, uv

Fig. 6 Finding the intersection point between the eye and the base surface (tessellated
mesh)

Figure 7 shows the parallax algorithm implementation for this new base
surface. It must be noted that the height map is defined in a planar domain,
but we now need to compute height variations of the real surface from every
planar triangle of the new base surface in its normal direction. This is the
reason why the tessellation evaluation shader must output the height H and
the normal vector direction n at every vertex of the base surface, as it can be
shown in figure 3.

float h = texture (uHeightNormalmap, teTexCoords).r;

vec3 v = normalize (teEyeVector);

vec3 n = normalize(teNormal);

newTexCoords = teTexCoords+(h—teHBase)*n.z*v.xy/max(dot(v,n),0.5);

Fig. 7 Implementation of the parallax mapping method for a flat base surface

This process does not change the geometry of the surface rendered, which
still remains the mesh created by the tessellation shaders, but the results
obtained are quite similar to the full resolution surface rendered as a polygonal
surface instead. However, this algorithm has a significant flaw. As the eye
vector becomes parallel to any triangle of the base mesh, the new texture
coordinates become very large. This problem is reduced by limiting the offset
so that it never becomes larger than a certain threshold value. This is why the
implementation shown in Figure 7 includes the offset limiting with threshold
0.5 (last line). However, if the Welsh approximation [16] is used and a threshold
of value 1 is adopted, then the division by dot(v,n) is eliminated and the
resulting code, shown in Figure 8, is simplified.

‘newTexCoords = teTexCoords + (h — teHBase) * n.z * v.xy;

Fig. 8 Implementation of the parallax mapping with offset limited to 1


https://www.researchgate.net/publication/238732609_Parallax_Mapping_with_Offset_Limiting_A_Per-Pixel_Approximation_of_Uneven_Surfaces?el=1_x_8&enrichId=rgreq-baccdeb8d5dfc0bc2745cf914217f49a-XXX&enrichSource=Y292ZXJQYWdlOzMwNzk5NDQ0OTtBUzo0MDU0MzgwNTE5NjI4ODJAMTQ3MzY3NTM3Mzk2Mg==

Combining displacement mapping methods for terrain visualization 7

2.3 ITterative Parallax mapping

Parallax mapping tries to offset the texture coordinates towards the corre-
sponding full resolution surface point. It is unlikely that this target point is
reached in a single attempt. The accuracy of the solution, however, can be
improved repeating the process a few times [14]. The implementation of this
version of the parallax mapping algorithm using a tessellated base mesh is
shown in figure 9.

vecd3 v = normalize(teEyeVector);

vec3 n = normalize (teNormal);

vec2 uv = teTexCoords;

for ( int i = 0; i < PARITER; i ++ ) {
float h = texture(uHeightNormalmap, uv).r;
uv + = (h — teHBase) * n.z % v.xy;

}

newTexCoords = uv;

Fig. 9 Implementation of the iterative parallax mapping method

It must be noted that the eye vector v, the normal vector n and the
height of the base surface H are not updated at every iteration, since the pixel
position is always the same and it always belongs to the same fragment of the
base mesh.

2.4 Binary search

The binary search method [14] consists of performing a binary search to find
the real intersection point between the height field and the line in the direction
of the view ray. The search starts assuming two initial endpoints, one below
and the other one above the height field. The search halves the interval between
the two points in each iteration step, putting the next point at the middle of
the current interval, and keeping the half interval where one endpoint is above
and the other one below the height field. The original binary search algorithm
takes as initial points the minimum and the maximum possible values stored
in the height map. However, these endpoints are usually far from each other,
and therefore it is necessary to iterate many times for obtaining good results
and avoiding aliasing problems. This issue obviously reduces the algorithm
performance. However, we use the mesh generated by the tessellation shaders
as base surface, as described above. This surface is close to the real surface
and their vertices are points belonging to the real surface. Thus, the fragments
inside the triangles of the base mesh must have texture coordinates limited
by their vertices texture coordinates. Therefore, our implementation of the
binary search method starts at the intersection point of the view ray with this
base surface, and we displace endpoints left and right a proportional distance



https://www.researchgate.net/publication/220506016_Displacement_Mapping_on_the_GPU_-_State_of_the_Art?el=1_x_8&enrichId=rgreq-baccdeb8d5dfc0bc2745cf914217f49a-XXX&enrichSource=Y292ZXJQYWdlOzMwNzk5NDQ0OTtBUzo0MDU0MzgwNTE5NjI4ODJAMTQ3MzY3NTM3Mzk2Mg==
https://www.researchgate.net/publication/220506016_Displacement_Mapping_on_the_GPU_-_State_of_the_Art?el=1_x_8&enrichId=rgreq-baccdeb8d5dfc0bc2745cf914217f49a-XXX&enrichSource=Y292ZXJQYWdlOzMwNzk5NDQ0OTtBUzo0MDU0MzgwNTE5NjI4ODJAMTQ3MzY3NTM3Mzk2Mg==

8 Cesar Gonzélez et al.

to the size of the mesh triangles tsize in the direction of the view ray. These
two endpoints are close to the real surface, and this implementation yields
better results than the original binary search method. Figure 10 shows our
implementation of the binary search method, in which the last step applies
the secant method [14] to reduce the aliasing effect.

vec3 v = normalize(teEyeVector);
vec3 UVH1 = vec3(teTexCoords, teHBase) + tsize = v;
vec3 UVH2 = vec3(teTexCoords, teHBase) — tsize x vj
for ( int i = 0; i < PARITER; i ++ ) {

vec3 UVHm = (STH1 + STH2) * 0.5;

float h = texture(uHeightNormalmap, UVHm).r;

if (h < UVHm.z) { d1 = h — UVHm.z; UVHI = UVHm; }

else { d2 = h — UVHm.z; UVH2 = UVHm; }
}
newTexCoords = vec2(UVH2 + (UVHL — UVH2) % d2 / (d2 — d1));

Fig. 10 Implementation of the binary search method

3 Performance Evaluation

For evaluation purposes, we have implemented a generic terrain visualization
application which performs a real-time fly over the terrain model using differ-
ent visual quality parameters, and it allows taking and storing screen captures
of the rendered terrain from the user point-of-view. The terrain database cor-
responds to an area located at the mountain range of Spanish Pyrenees. This
dataset has been split in 3x5 regular tiles, each one of them being a heightmap
image of 1024x1024 pixels with a sample spacing resolution of 5 meters. This
involves a total surface of 15360 meters wide by 25600 meters long. The color
textures have a resolution of 2048x2048 pixels. The total size of the test data
is about 400 MB in its decompressed form. Tests were run on a PC-platform
based on an Intel Core i7-4790 CPU processor and 12 GB of RAM, and we
have performed the tests with three different NVidia graphic cards: GeForce
GTX 590, GeForce GTX 650 and GeForce GTX 970.

We have analyzed five different techniques: only tessellation, tessellation +
parallax mapping with offset limited to 0.5, tessellation + parallax mapping
with offset limited to 1 (Welsh approximation), tessellation + iterative parallax
mapping (with 2 iterations) and tessellation + binary search parallax mapping
(with 3 iterations). The considered methods have been tested using different
levels of detail (tessellation factors), in order to study how they scale with
the number of triangles. The terrain data set has 3x5 tiles and the underlying
geometry of every tile has been set to 16 subdivisions, which translates into a
mesh of 7681 triangles with the minimum tessellation factor (1). The number
of triangles linearly scales as the tessellation factor increases, until it reaches
a total of 31457280 triangles at the maximum tessellation factor (64).



https://www.researchgate.net/publication/220506016_Displacement_Mapping_on_the_GPU_-_State_of_the_Art?el=1_x_8&enrichId=rgreq-baccdeb8d5dfc0bc2745cf914217f49a-XXX&enrichSource=Y292ZXJQYWdlOzMwNzk5NDQ0OTtBUzo0MDU0MzgwNTE5NjI4ODJAMTQ3MzY3NTM3Mzk2Mg==

Combining displacement mapping methods for terrain visualization 9

We have obtained the Mean Square Error (MSE) produced by the five
considered techniques as a function of the number of triangles drawn in the
scene, which in turn depends on the tessellation level, that is, the level of detail
used by the tessellation algorithm for generating the mesh. Figure 11 a) show
these results. This Figure shows that any of the proposed techniques yield
a higher accuracy (a lower MSE) than tessellation when exclusively applied,
particularly for low levels of detail.

20 >
+ Taswm aton i @ MSEPar Gllsa1lmes vs MSE Tass + -
@ Tess . PaOitseilincs TEIF | o MSEPar OfketLm. 1 ve MSETes 1
+ Tesz i PaiOtiatlin @ MSE Par. betve 2 vi. MSE Tess
o Tes.Paileanez 1 180 f *  MSE Far. B nary 3 vs. MSE Tess +
+ TesssPaiBragd
140
. +
El + °
ERES + =
& + -
; 100 + 5
ki +
g =
a -
H a® M
al + ae
4t .
* ar + 0 .
a .
e fre, .
s t o..... ol nu._...f-ﬂ‘
- ,,a ! h 'ﬁﬁm; ot
L L L h ‘.4 S48 o ! I . L L L . L .
5 5 7 & k] 10 100 150 200 250 300 38 400 450 50D
s w107 MSE Tess

a) b)

Fig. 11 a) MSE as a function of the number of triangles in the mesh b) Proportion between
the MSE yielded by each technique.

Figure 11 b) shows a quantitative measurement of the improvements achieved
by the proposed techniques, in regard to the performance obtained by tessella-
tion. In this figure, each point represents a fixed number of triangles. For that
number of triangles, the X-axis value is the MSE yielded by the tessellation
technique, and the value in the Y-axis is the MSE yielded by every proposed
technique (tessellation + parallax mapping with offset limiting, tessellation +
iterative parallax mapping and tessellation + binary search parallax mapping).
The inverse of the slope of every plot is around 2,4 in the case of parallax with
offset limited to 1, around 2.5 in the case of parallax with offset limited to 1,
around 3.6 in the case of iterative parallax mapping, and around 7.1 in the
case of binary search parallax mapping. These results mean that the proposed
techniques yield an improvement of the qualitative results of around 140%,
150%, 250% and 610% better (in terms of MSE), respectively, with respect to
the ones yielded by tessellation. That is, the Binary Search method (combined
with tessellation) provides the best results, followed by the Iterative method
and the Offset method. The threshold limit used in the latter one does not
add significant differences in the performance of that method.

We have also measured the frame rates (the inverse of the time required
for rendering each frame) obtained with the three considered graphic cards.
However, due to space limitations we only show here the results for the NVidia
GTX 970 card. The results for the other two cards were (proportionally) very
similar, showing the robustness of the evaluation. It must be noted that the



10 Cesar Gonzélez et al.

frame rate value shown by this metric is not the real frame rate as seen by the
user, since the application code running in the CPU is the actual bottleneck.
If we had considered the real frame rate, we would have not been able to ap-
preciate significant differences between the five considered methods, specially
when the number of triangles being drawn is relatively small. Additionally, the
results would have been dependent on the application.

o FPSPar. Oifest L. 0.5 va. FPS Teax
+ FPSParGibellm 1 v FPS Tass
o FPEPar. feive 2 va. FPS Tess

4 FRSPar.Buay 3 vs FRETess

FPS Tess + Parallax

4000

te,

a)

7 & 2 i

3000

2000

[

04

FPS Tass

b)

Fig. 12 Results using NVidia GTX 970 GPU: a) FPS yielded by each method b) Compar-
ative frame rates

Figure 12 a) shows the frame rates yielded by each of the considered
method. This Figure shows that the binary search method yields the low-
est frame rate, followed again by the iterative method and the offset method.
Figure 12 b) shows a comparative measurement of the frame rate decreasing
in every proposed technique, in regard to the performance obtained by tessel-
lation. Analyzing the numeric values in detail, we have seen that in the case
of parallax mapping with offset limiting (regardless the limit is set to 0.5 or
1) the frame rate decreases around 80% when the number of triangles is small
(high FPS) and around 25% when it is large (low FPS), in regard to using
only tessellation. In the case of iterative parallax mapping, the frame rate de-
creases around 125% when the number of triangles is small and around 40%
when it is large. Finally, for the case of binary search parallax mapping the
FPS decreases around 200% for a small number of triangles, and around a 50%
for a large one. If we compare these results with the ones shown in Figure 11
a), we can see a great improvement in the qualitative results (MSE) obtained
by each of the implemented methods and a limited worsening of the frame
rate yielded by the GPU. Since the displayed frame rate is usually limited by
the CPU time, the practical effects of the worsening are negligible. Comparing
the results for the considered parallax mapping methods among them, and
taking into account that current graphics cards can render a large number of
triangles, we can conclude that the binary search method is currently (and
specially in the future) the most recommended method to be used in real-time
terrain rendering.



Combining displacement mapping methods for terrain visualization 11

Finally, Figure 13 shows the visual effects of the proposed methods. The
image on the downright corner shows a screenshot of the terrain visualization
application at its maximum resolution, using around 130000 triangles. The
image on the upleft corner shows the same image at a much lower resolution,
using around 2000 triangles (a factor of reduction of 64x) when exclusively
tessellation is used. The image on the upright corner shows an image at the
same low resolution when using parallax mapping with offset limiting. Finally
the image on the downleft corner shows the image at the same low resolution
when using the binary search method with 3 iterations. These images show how
parallax mapping (particularly the binary search method) improve the visual
results in regard to the exclusive use of tessellation, yielding visual results very
similar to the full resolution mesh (see for example the road in the images).

Fig. 13 Visual effects of the proposed methods



12 Cesar Gonzélez et al.

4 Conclusions

In this paper, we have proposed a comparative study of different real-time ter-
rain rendering methods which efficiently combines hardware tessellation and
parallax mapping, making parallax mapping compatible with hardware tessel-
lation and terrain rendering. The performance evaluation results show that any
of the parallax mapping method implemented are well-suited to terrain ren-
dering applications, improving the visual results at the same frame rate with
respect to the exclusive use of tessellation. Nevertheless, the binary search
method seems the most appropriate method for current graphic cards, since
it yields the best relationship between visual quality and frame rate.

References

1. Cantlay, I.: Directx 11 terrain tessellation. Nvidia whitepaper, 8 (2011)

2. Dick, C., Kriiger, J., Westermann, R.: GPU Ray-Casting for Scalable Terrain Rendering.
In: Proceedings of Eurographics 2009 (2009)

3. Gonzalez, C., Pérez, M., Orduna, J.M.: A hybrid gpu technique for real-time terrain
visualization. In: Proceedings of Computational and Mathematical Methods in Science
and Engineering (2016)

4. Kaneko, T., Takahei, T., Inami, M., Kawakami, N., Yanagida, Y., Maeda, T., Tachi, S.:
Detailed Shape Representation with Parallax Mapping. In: Proceedings of ICAT 2001,
pp- 205-208 (2001

5. Livny, Y., Kogan, Z., El-Sana, J.: Seamless patches for gpu-based terrain rendering.
The Visual Computer 25(3), 197-208 (2009). DOI 10.1007/s00371-008-0214-3

6. Livny, Y., Sokolovsky, N., Grinshpoun, T., El-Sana, J.: A gpu persistent grid mapping
for terrain rendering. The Visual Computer 24(2), 139-153 (2008)

7. Microsoft, I.: Flight simulator home page. Retrieved April 27, 2016 from
http://www.microsoft.com/games/fsinsider (2016)

8. Okuyan, E., Giidiikbay, U.: Direct volume rendering of unstructured tetrahedral meshes
using cuda and openmp. The Journal of Supercomputing 67(2), 324-344 (2014). DOI
10.1007/s11227-013-1004-x

9. Olanda, R., Pérez, M., Orduna, J.M., Rueda, S.: Terrain data compression using wavelet-
tiled pyramids for online 3d terrain visualization. International Journal of Geographical
Information Science 28(2), 407—-425 (2014). DOI 10.1080/13658816.2013.829920

10. Olanda, R., Pérez, M., Orduna, J.M., Rueda, S.: Improving hybrid distributed archi-
tectures for interactive terrain visualization. The Journal of Supercomputing pp. 1-12
(2015). DOI 10.1007/s11227-015-1593-7

11. Pajarola, R., Gobbetti, E.: Survey of semi-regular multiresolution models for interactive
terrain rendering. The Visual Computer 23(8), 583-605 (2007)

12. Schneider, J., Westermann, R.: Gpu-friendly high-quality terrain rendering. Journal of
WSCG 14(1-3), 49-56 (2006)

13. Square_Enix, C.: Final fantasy XIV home page. Retrieved May 1, 2015 from
http://www.finalfantasyxiv.com/ (2015)

14. Szirmay-Kalos, L., Umenhoffer, T.: Displacement mapping on the GPU - state of the
art. Comput. Graph. Forum 27(6), 1567-1592 (2008)

15. Tran, V.T., Lee, J., Kim, D., Jeong, Y.S.: Easy-to-use virtual brick manipulation tech-
niques using hand gestures. The Journal of Supercomputing pp. 1-15 (2015). DOI
10.1007/s11227-015-1588-4

16. Welsh, T.: Parallax mapping with offset limiting: A  perpixel ap-
proximation of uneven surfaces. Retrieved  April 22, 2016 from
http://pdsl.egloos.com/pds/1/200603/10/62/parallax_mapping.pdf, Jan 2004. (2004)

17. Zink, J., Pettineo, M., Hoxley, J.: Practical rendering and computation with Direct3D
11. CRC Press, Boca Raton (2011). URL http://opac.inria.fr/record=b1134711. An
A K. Peters book.



https://www.researchgate.net/publication/259842743_Direct_volume_rendering_of_unstructured_tetrahedral_meshes_using_CUDA_and_OpenMP?el=1_x_8&enrichId=rgreq-baccdeb8d5dfc0bc2745cf914217f49a-XXX&enrichSource=Y292ZXJQYWdlOzMwNzk5NDQ0OTtBUzo0MDU0MzgwNTE5NjI4ODJAMTQ3MzY3NTM3Mzk2Mg==
https://www.researchgate.net/publication/259842743_Direct_volume_rendering_of_unstructured_tetrahedral_meshes_using_CUDA_and_OpenMP?el=1_x_8&enrichId=rgreq-baccdeb8d5dfc0bc2745cf914217f49a-XXX&enrichSource=Y292ZXJQYWdlOzMwNzk5NDQ0OTtBUzo0MDU0MzgwNTE5NjI4ODJAMTQ3MzY3NTM3Mzk2Mg==
https://www.researchgate.net/publication/259842743_Direct_volume_rendering_of_unstructured_tetrahedral_meshes_using_CUDA_and_OpenMP?el=1_x_8&enrichId=rgreq-baccdeb8d5dfc0bc2745cf914217f49a-XXX&enrichSource=Y292ZXJQYWdlOzMwNzk5NDQ0OTtBUzo0MDU0MzgwNTE5NjI4ODJAMTQ3MzY3NTM3Mzk2Mg==
https://www.researchgate.net/publication/228340999_GPU-friendly_high-quality_terrain_rendering?el=1_x_8&enrichId=rgreq-baccdeb8d5dfc0bc2745cf914217f49a-XXX&enrichSource=Y292ZXJQYWdlOzMwNzk5NDQ0OTtBUzo0MDU0MzgwNTE5NjI4ODJAMTQ3MzY3NTM3Mzk2Mg==
https://www.researchgate.net/publication/228340999_GPU-friendly_high-quality_terrain_rendering?el=1_x_8&enrichId=rgreq-baccdeb8d5dfc0bc2745cf914217f49a-XXX&enrichSource=Y292ZXJQYWdlOzMwNzk5NDQ0OTtBUzo0MDU0MzgwNTE5NjI4ODJAMTQ3MzY3NTM3Mzk2Mg==
https://www.researchgate.net/publication/259248483_Terrain_data_compression_using_wavelet-tiled_pyramids_for_online_3D_terrain_visualization?el=1_x_8&enrichId=rgreq-baccdeb8d5dfc0bc2745cf914217f49a-XXX&enrichSource=Y292ZXJQYWdlOzMwNzk5NDQ0OTtBUzo0MDU0MzgwNTE5NjI4ODJAMTQ3MzY3NTM3Mzk2Mg==
https://www.researchgate.net/publication/259248483_Terrain_data_compression_using_wavelet-tiled_pyramids_for_online_3D_terrain_visualization?el=1_x_8&enrichId=rgreq-baccdeb8d5dfc0bc2745cf914217f49a-XXX&enrichSource=Y292ZXJQYWdlOzMwNzk5NDQ0OTtBUzo0MDU0MzgwNTE5NjI4ODJAMTQ3MzY3NTM3Mzk2Mg==
https://www.researchgate.net/publication/259248483_Terrain_data_compression_using_wavelet-tiled_pyramids_for_online_3D_terrain_visualization?el=1_x_8&enrichId=rgreq-baccdeb8d5dfc0bc2745cf914217f49a-XXX&enrichSource=Y292ZXJQYWdlOzMwNzk5NDQ0OTtBUzo0MDU0MzgwNTE5NjI4ODJAMTQ3MzY3NTM3Mzk2Mg==
https://www.researchgate.net/publication/268349060_GPU_Ray-Casting_for_Scalable_Terrain_Rendering?el=1_x_8&enrichId=rgreq-baccdeb8d5dfc0bc2745cf914217f49a-XXX&enrichSource=Y292ZXJQYWdlOzMwNzk5NDQ0OTtBUzo0MDU0MzgwNTE5NjI4ODJAMTQ3MzY3NTM3Mzk2Mg==
https://www.researchgate.net/publication/268349060_GPU_Ray-Casting_for_Scalable_Terrain_Rendering?el=1_x_8&enrichId=rgreq-baccdeb8d5dfc0bc2745cf914217f49a-XXX&enrichSource=Y292ZXJQYWdlOzMwNzk5NDQ0OTtBUzo0MDU0MzgwNTE5NjI4ODJAMTQ3MzY3NTM3Mzk2Mg==
https://www.researchgate.net/publication/220067148_A_GPU_persistent_grid_mapping_for_terrain_rendering?el=1_x_8&enrichId=rgreq-baccdeb8d5dfc0bc2745cf914217f49a-XXX&enrichSource=Y292ZXJQYWdlOzMwNzk5NDQ0OTtBUzo0MDU0MzgwNTE5NjI4ODJAMTQ3MzY3NTM3Mzk2Mg==
https://www.researchgate.net/publication/220067148_A_GPU_persistent_grid_mapping_for_terrain_rendering?el=1_x_8&enrichId=rgreq-baccdeb8d5dfc0bc2745cf914217f49a-XXX&enrichSource=Y292ZXJQYWdlOzMwNzk5NDQ0OTtBUzo0MDU0MzgwNTE5NjI4ODJAMTQ3MzY3NTM3Mzk2Mg==
https://www.researchgate.net/publication/220068163_Survey_of_semi-regular_multiresolution_models_for_interactive_terrain_rendering?el=1_x_8&enrichId=rgreq-baccdeb8d5dfc0bc2745cf914217f49a-XXX&enrichSource=Y292ZXJQYWdlOzMwNzk5NDQ0OTtBUzo0MDU0MzgwNTE5NjI4ODJAMTQ3MzY3NTM3Mzk2Mg==
https://www.researchgate.net/publication/220068163_Survey_of_semi-regular_multiresolution_models_for_interactive_terrain_rendering?el=1_x_8&enrichId=rgreq-baccdeb8d5dfc0bc2745cf914217f49a-XXX&enrichSource=Y292ZXJQYWdlOzMwNzk5NDQ0OTtBUzo0MDU0MzgwNTE5NjI4ODJAMTQ3MzY3NTM3Mzk2Mg==
https://www.researchgate.net/publication/220506016_Displacement_Mapping_on_the_GPU_-_State_of_the_Art?el=1_x_8&enrichId=rgreq-baccdeb8d5dfc0bc2745cf914217f49a-XXX&enrichSource=Y292ZXJQYWdlOzMwNzk5NDQ0OTtBUzo0MDU0MzgwNTE5NjI4ODJAMTQ3MzY3NTM3Mzk2Mg==
https://www.researchgate.net/publication/220506016_Displacement_Mapping_on_the_GPU_-_State_of_the_Art?el=1_x_8&enrichId=rgreq-baccdeb8d5dfc0bc2745cf914217f49a-XXX&enrichSource=Y292ZXJQYWdlOzMwNzk5NDQ0OTtBUzo0MDU0MzgwNTE5NjI4ODJAMTQ3MzY3NTM3Mzk2Mg==
https://www.researchgate.net/publication/304786186_A_Hybrid_GPU_Technique_for_Real-Time_Terrain_Visualization?el=1_x_8&enrichId=rgreq-baccdeb8d5dfc0bc2745cf914217f49a-XXX&enrichSource=Y292ZXJQYWdlOzMwNzk5NDQ0OTtBUzo0MDU0MzgwNTE5NjI4ODJAMTQ3MzY3NTM3Mzk2Mg==
https://www.researchgate.net/publication/304786186_A_Hybrid_GPU_Technique_for_Real-Time_Terrain_Visualization?el=1_x_8&enrichId=rgreq-baccdeb8d5dfc0bc2745cf914217f49a-XXX&enrichSource=Y292ZXJQYWdlOzMwNzk5NDQ0OTtBUzo0MDU0MzgwNTE5NjI4ODJAMTQ3MzY3NTM3Mzk2Mg==
https://www.researchgate.net/publication/304786186_A_Hybrid_GPU_Technique_for_Real-Time_Terrain_Visualization?el=1_x_8&enrichId=rgreq-baccdeb8d5dfc0bc2745cf914217f49a-XXX&enrichSource=Y292ZXJQYWdlOzMwNzk5NDQ0OTtBUzo0MDU0MzgwNTE5NjI4ODJAMTQ3MzY3NTM3Mzk2Mg==
https://www.researchgate.net/publication/287150797_Easy-to-use_virtual_brick_manipulation_techniques_using_hand_gestures?el=1_x_8&enrichId=rgreq-baccdeb8d5dfc0bc2745cf914217f49a-XXX&enrichSource=Y292ZXJQYWdlOzMwNzk5NDQ0OTtBUzo0MDU0MzgwNTE5NjI4ODJAMTQ3MzY3NTM3Mzk2Mg==
https://www.researchgate.net/publication/287150797_Easy-to-use_virtual_brick_manipulation_techniques_using_hand_gestures?el=1_x_8&enrichId=rgreq-baccdeb8d5dfc0bc2745cf914217f49a-XXX&enrichSource=Y292ZXJQYWdlOzMwNzk5NDQ0OTtBUzo0MDU0MzgwNTE5NjI4ODJAMTQ3MzY3NTM3Mzk2Mg==
https://www.researchgate.net/publication/287150797_Easy-to-use_virtual_brick_manipulation_techniques_using_hand_gestures?el=1_x_8&enrichId=rgreq-baccdeb8d5dfc0bc2745cf914217f49a-XXX&enrichSource=Y292ZXJQYWdlOzMwNzk5NDQ0OTtBUzo0MDU0MzgwNTE5NjI4ODJAMTQ3MzY3NTM3Mzk2Mg==
https://www.researchgate.net/publication/265060336_DirectX_11_Terrain_Tessellation?el=1_x_8&enrichId=rgreq-baccdeb8d5dfc0bc2745cf914217f49a-XXX&enrichSource=Y292ZXJQYWdlOzMwNzk5NDQ0OTtBUzo0MDU0MzgwNTE5NjI4ODJAMTQ3MzY3NTM3Mzk2Mg==
https://www.researchgate.net/publication/228583097_Detailed_shape_representation_with_parallax_mapping?el=1_x_8&enrichId=rgreq-baccdeb8d5dfc0bc2745cf914217f49a-XXX&enrichSource=Y292ZXJQYWdlOzMwNzk5NDQ0OTtBUzo0MDU0MzgwNTE5NjI4ODJAMTQ3MzY3NTM3Mzk2Mg==
https://www.researchgate.net/publication/228583097_Detailed_shape_representation_with_parallax_mapping?el=1_x_8&enrichId=rgreq-baccdeb8d5dfc0bc2745cf914217f49a-XXX&enrichSource=Y292ZXJQYWdlOzMwNzk5NDQ0OTtBUzo0MDU0MzgwNTE5NjI4ODJAMTQ3MzY3NTM3Mzk2Mg==
https://www.researchgate.net/publication/228583097_Detailed_shape_representation_with_parallax_mapping?el=1_x_8&enrichId=rgreq-baccdeb8d5dfc0bc2745cf914217f49a-XXX&enrichSource=Y292ZXJQYWdlOzMwNzk5NDQ0OTtBUzo0MDU0MzgwNTE5NjI4ODJAMTQ3MzY3NTM3Mzk2Mg==
https://www.researchgate.net/publication/273946746_Flight_Simulator_X?el=1_x_8&enrichId=rgreq-baccdeb8d5dfc0bc2745cf914217f49a-XXX&enrichSource=Y292ZXJQYWdlOzMwNzk5NDQ0OTtBUzo0MDU0MzgwNTE5NjI4ODJAMTQ3MzY3NTM3Mzk2Mg==
https://www.researchgate.net/publication/273946746_Flight_Simulator_X?el=1_x_8&enrichId=rgreq-baccdeb8d5dfc0bc2745cf914217f49a-XXX&enrichSource=Y292ZXJQYWdlOzMwNzk5NDQ0OTtBUzo0MDU0MzgwNTE5NjI4ODJAMTQ3MzY3NTM3Mzk2Mg==
https://www.researchgate.net/publication/273946746_Flight_Simulator_X?el=1_x_8&enrichId=rgreq-baccdeb8d5dfc0bc2745cf914217f49a-XXX&enrichSource=Y292ZXJQYWdlOzMwNzk5NDQ0OTtBUzo0MDU0MzgwNTE5NjI4ODJAMTQ3MzY3NTM3Mzk2Mg==
https://www.researchgate.net/publication/286480090_Improving_hybrid_distributed_architectures_for_interactive_terrain_visualization?el=1_x_8&enrichId=rgreq-baccdeb8d5dfc0bc2745cf914217f49a-XXX&enrichSource=Y292ZXJQYWdlOzMwNzk5NDQ0OTtBUzo0MDU0MzgwNTE5NjI4ODJAMTQ3MzY3NTM3Mzk2Mg==
https://www.researchgate.net/publication/286480090_Improving_hybrid_distributed_architectures_for_interactive_terrain_visualization?el=1_x_8&enrichId=rgreq-baccdeb8d5dfc0bc2745cf914217f49a-XXX&enrichSource=Y292ZXJQYWdlOzMwNzk5NDQ0OTtBUzo0MDU0MzgwNTE5NjI4ODJAMTQ3MzY3NTM3Mzk2Mg==
https://www.researchgate.net/publication/286480090_Improving_hybrid_distributed_architectures_for_interactive_terrain_visualization?el=1_x_8&enrichId=rgreq-baccdeb8d5dfc0bc2745cf914217f49a-XXX&enrichSource=Y292ZXJQYWdlOzMwNzk5NDQ0OTtBUzo0MDU0MzgwNTE5NjI4ODJAMTQ3MzY3NTM3Mzk2Mg==
https://www.researchgate.net/publication/238732609_Parallax_Mapping_with_Offset_Limiting_A_Per-Pixel_Approximation_of_Uneven_Surfaces?el=1_x_8&enrichId=rgreq-baccdeb8d5dfc0bc2745cf914217f49a-XXX&enrichSource=Y292ZXJQYWdlOzMwNzk5NDQ0OTtBUzo0MDU0MzgwNTE5NjI4ODJAMTQ3MzY3NTM3Mzk2Mg==
https://www.researchgate.net/publication/238732609_Parallax_Mapping_with_Offset_Limiting_A_Per-Pixel_Approximation_of_Uneven_Surfaces?el=1_x_8&enrichId=rgreq-baccdeb8d5dfc0bc2745cf914217f49a-XXX&enrichSource=Y292ZXJQYWdlOzMwNzk5NDQ0OTtBUzo0MDU0MzgwNTE5NjI4ODJAMTQ3MzY3NTM3Mzk2Mg==
https://www.researchgate.net/publication/238732609_Parallax_Mapping_with_Offset_Limiting_A_Per-Pixel_Approximation_of_Uneven_Surfaces?el=1_x_8&enrichId=rgreq-baccdeb8d5dfc0bc2745cf914217f49a-XXX&enrichSource=Y292ZXJQYWdlOzMwNzk5NDQ0OTtBUzo0MDU0MzgwNTE5NjI4ODJAMTQ3MzY3NTM3Mzk2Mg==
https://www.researchgate.net/publication/238732609_Parallax_Mapping_with_Offset_Limiting_A_Per-Pixel_Approximation_of_Uneven_Surfaces?el=1_x_8&enrichId=rgreq-baccdeb8d5dfc0bc2745cf914217f49a-XXX&enrichSource=Y292ZXJQYWdlOzMwNzk5NDQ0OTtBUzo0MDU0MzgwNTE5NjI4ODJAMTQ3MzY3NTM3Mzk2Mg==
https://www.researchgate.net/publication/220068290_Seamless_patches_for_GPU-based_terrain_rendering?el=1_x_8&enrichId=rgreq-baccdeb8d5dfc0bc2745cf914217f49a-XXX&enrichSource=Y292ZXJQYWdlOzMwNzk5NDQ0OTtBUzo0MDU0MzgwNTE5NjI4ODJAMTQ3MzY3NTM3Mzk2Mg==
https://www.researchgate.net/publication/220068290_Seamless_patches_for_GPU-based_terrain_rendering?el=1_x_8&enrichId=rgreq-baccdeb8d5dfc0bc2745cf914217f49a-XXX&enrichSource=Y292ZXJQYWdlOzMwNzk5NDQ0OTtBUzo0MDU0MzgwNTE5NjI4ODJAMTQ3MzY3NTM3Mzk2Mg==

