
~ 1 ~

Faculty of Technology, Design and Environment

Department of Computing & Communication Technologies

 BSc (Single Honours) Degree Project

Title:

Sentiment Analysis on

Real-Time

Social Media Data

Surname: Sykes

First Name: Alicia

Student Number: 12011471

Number Module: U08096

Supervisor: David Lightfoot

Second Supervisor: Clare Martin

Date Submitted: 14th April 2016

~ 2 ~

~ 3 ~

Sentiment Analysis on Real-Time Social Media Data

The research and development of a sentiment analysis module, and the implementation
of it on real-time social media data, to generate a series of live visual representations

of sentiment towards a specific topic or by location in order to find trends.

Live Demo of Final Application: http://sentiment-sweep.com

Documented Code, Published Opensource: https://git.io/vVhGy

Alicia Sykes
April 2016

http://sentiment-sweep.com/
https://git.io/vVhGy

~ 4 ~

ABSTRACT
The research and development of an artificial intelligent, sentiment analysis module, which detects

average moods and attitudes from a string of text. It is then applied to a continuous stream of real-

time Twitter data. A web application renders these live sentiment results in the form of a series of

data visualisations that allow trends to be plotted between people’s attitudes and other factors,

such as location or time.

The solution is primarily written in CoffeeScript, with a Node.js backend, and an Isomorphic

frontend. It is unit tested and all modules developed are documented and published to the

opensource community.

ACKNOWLEDGEMENTS
I would like to thank my supervisor David Lightfoot, and my module leader Chris Cox for their helpful
resources and feedback during the duration of the project.

I would also like to thank everyone who has ever tweeted, this project wouldn’t have been possible
without the data made available by the general public on Twitter.

Nor would it have been possible for me to develop anything near this scale without the tremendous
amount of open source resources, made freely available online by other developers in the JavaScript
community.

I would like to thank the good people on Stack Overflow for posting and maintaining an extensive
bank of programming related questions and answers, without which I might not have got much
further than a Hello World JavaScript application.

Thank you to all the participants who took part in the research surveys as part of this application.

Accenture very kindly gave me time and resources to make a start on this project while I was on an
extended placement with them.

Thank you to Jesus, for the miracle that this quite ambitious project was completed within the time
frame and works as expected, producing correct results.

Finally, I’d like to thank my friends for putting up with me talking about nothing except how cool
sentiment analysis is, over the past couple of months. Sentiment Analysis really is awesome, as I
hope this project demonstrates.

~ 5 ~

TABLE OF CONTENTS

Table of Contents ... 5

1 Introduction ... 7

1.1 The Problem ... 7

1.2 Project Aims .. 7

1.3 Brief Description of Proposed Deliverable .. 8

1.4 Relevance to Computer Science BSc Degree Program ... 8

1.5 Report Structure ... 8

2 Background Research ... 9

2.1 Sentiment Analysis: An executive assessment of representing trends in opinions

expressed on social media .. 9

2.2 Sentiment Analysis: Comparing Technical Approaches ... 11

3 Methodology ... 15

3.1 Development Plan ... 15

3.2 Development Tools ... 21

3.3 Testing .. 24

3.4 Code Style and In-Code Documentation ... 27

3.5 Front-end Plan .. 28

3.6 Backend Plan .. 36

4 Implementation ... 41

4.1 Sprint 0 – Project setup ... 41

4.2 Sprint 1 – Create base application and database schema .. 49

4.3 Sprint 2 – All tweet handling backend modules .. 51

4.4 Sprint 3 – All location and utility backend modules .. 54

4.5 Sprint 4 – Sentiment Analysis module .. 55

4.6 Sprint 5 – Integrate backend modules into application ... 56

4.7 Sprint 6 – Geo sentiment data visualisations .. 57

4.8 Sprint 7 – Keyword sentiment data visualisations ... 61

4.9 Sprint 8 – Timeline, trending and comparison charts .. 65

4.10 Sprint 9 – Real-time Functionality .. 71

4.11 Sprint 10 – Advanced Data Visualisations ... 72

4.12 Sprint 11 – Home page and search page ... 74

4.13 Sprint 12 – Finishing, UX Testing and Launching ... 80

~ 6 ~

5 Evaluation .. 84

5.1 Evaluation of Requirements Met ... 84

5.2 User Experience Evaluation ... 90

5.3 Time Management and Scheduling .. 90

5.4 Evaluation of Technical Testing .. 91

5.5 Evaluation of Code Quality .. 91

5.6 Evaluation of Addressing Legal, Social and Ethical Issues .. 92

5.7 Self-Evaluation .. 93

5.8 Limitations of Existing Solution .. 94

5.9 Further Work and Future Enhancements .. 94

5.10 Example Findings using the Final Application ... 95

6 Conclusion ... 96

6.1 Aim ... 96

6.2 Final Stats ... 96

6.3 Link to Final Solution ... 96

7 References ... 97

7.1 Research References ... 97

7.2 Methodology References ... 98

Appendix

1 Appendix One - User Stories .. 102

2 Appendix Two - Style Guides .. 130

3 Appendix Three - VCS History ... 132

4 Appendix Four - Test Result Examples .. 150

5 Appendix Five - User Experience Survey ... 161

6 Appendix Six - Code Listing .. 165

7 Appendix Seven - Tech Stack .. 296

~ 7 ~

1 INTRODUCTION

1.1 THE PROBLEM
Too much data, no way to clearly visualise overall trend

There is a deluge of social media data available every day. Too much data for swift accurate processing by

people to determine the overall message conveyed.

Brands need to understand the overall feeling towards their new products. They could read 2,000 tweets -

but it would not be a good use of time. Instead a better solution would be to use a sentiment analysis AI

module to analyse and show overall feelings towards their product.

Alternatibley if you’re in a theme park and you would see which rides or parts of the park are having

positive reactions. Reading through thousands of tweets relating for each ride or area would take a while.

Instead a visualisation could show where positive conversations or tweets are happening as opposed to

less positive reactions.

There are many other times you may want to quickly gauge overall sentiment towards a topic, such as

comparing opinions on two politicians running in an election, or what particular trends of time and topic

relate to each other.

1.2 PROJECT AIM
The aim of this project is to develop and publish an open source sentiment analysis package. In

conjunction to this, a web platform will be created, which uses the package to make the opinions

conveyed on social media quantifiable and represented in a clear visual format. It will allow for

trends to be found between sentiment and other factors.

1.3 PROJECT OBJECTIVES
The objective of this project are:

- Fetch relevant results from the mass amount of social media data available
- Automatically calculate opinions on this data set, to allow for users to gauge overall attitude

towards a given topic without having to read each tweet or post
- Plot a series of visual analytics, to find and display trends between the sentiment data and

other factors such as time, location, keywords or other topics
- To have a single centralised dashboard providing all useful data to the user in real-time and

with links to further break down the results

A secondary objective of the application is to research into the area of sentiment analysis, and to
develop and publish an open sauce sentiment analysis module.

All objectives will be measured based on meeting acceptance criteria, unit testing and user
experience testing. This is outlined in the methodology.

~ 8 ~

1.4 BRIEF DESCRIPTION OF PROPOSED DELIVERABLE
The proposed deliverable will be in two parts:

- A web application, publicly accessible through any modern browser. It will contain links to
each of the dynamic real-time sentiment visualisations, as well as a search page where the
user can enter a custom topic, and fresh tweets will be fetched, analysed and rendered.

- A series of open source packages to do specific tasks (including the sentiment-analysis
module, a fetch-tweets module, geo-lookup etc.…) Each of these will be tested, documented
and then publicly published for other developers to make use of.

1.5 RELEVANCE TO COMPUTER SCIENCE BSC DEGREE PROGRAM

This project is based around five main topics within the field of computer science.

- Visual analytics - The final solution will need to present data in the form of a series of
dynamic and interactive data visualisations. This will include researching the most
appropriate charts and graphs to be utilised as well as which technologies to use

- Big data – The solution will be required to work with very large datasets, in order to portray
accurate overall results. This use of big data, will, of course, mean the algorithms are
efficient and the application is thoroughly tested

- Social Media – All the data will come from social media sources (primarily Twitter). A knowledge

of social media and how best to extract, analyse and display results will be necessary

- Artificial Intelligence – In order to implement some of the most advanced functionality, an AI

engine (IBM Watson) will be utilised. A simplified machine learning algorithm will also be

developed, and used to improve the accuracy of results over time

- User Experience (UX) – It will be essential that the final results are presented in a clean and

concise way, to allow users to quickly interpret the data with little prior knowledge

1.6 REPORT STRUCTURE

1.6.1 Final Report
1. Introduction (this section) – contains a brief outline to the project that will be developed,

and an insight into the market, and the current solutions already available
2. Background Research – background research in the form of literature reviews, surveys and

several experiments, carried out to gain a better insight into the solutions requirements and
proposed technical approaches

3. Methodology – detailed plan outlining exactly how the all aspects of the solution will be
developed and launched from a technical point of view

4. Implementation – how the system was developed, including annotated screenshots and
code snippets from the final version, and next steps

5. Evaluation – review of the final solution, including findings, user survey results, and a write
up of degree of success

6. References – Information sources used in the research and development of the final solution

1.6.2 Appendix
1. Appendix 1 – User stories

2. Appendix 2 – Style guides

3. Appendix 3 – Version Control

4. Appendix 4 – Set of test results

5. Appendix 6 – User Experience Survey

6. Appendix 6 – Code Listing Sample

7. Appendix 7 – Tech Stack Summary

~ 9 ~

2 BACKGROUND RESEARCH

2.1 SENTIMENT ANALYSIS:
AN EXECUTIVE ASSESSMENT OF REPRESENTING TRENDS IN OPINIONS EXPRESSED ON SOCIAL MEDIA

2.1.1 Abstract
The purpose of this literature review is to explore how sentiment analysis can be used to visually

represent people’s opinions, and more specifically how theses visual representations can illustrate

trends of sentiment mapped against factors such as time, location or topic. It will also touch on the

different methods of analysing sentiment as this dictates what type of trends can be mapped.

2.1.2 Introduction
Despite the mass amounts of data uploaded every day to public social media networks (500 million

Tweets per day), and the advances in sentiment analysis and natural language understanding.

Research into applying sentiment analysis to social media data to find trends has been limited. The

purpose of this review is to explore the potential of gaining an insight into an overall attitude

towards specific topics from analysing social media channels, and how the trends from these

attitudes can have practical applications.

2.1.3 Related Work and Current Applications for Twitter Data
Twitter data can be used to show trends and then make predictions for the future based on

historical events. Meesad (2014) outlines how trends from past events can be mapped to stock

prices, and this, in turn, can be used to reasonably accurately predict future stock prices, aiding

investors to make better trading decisions.

The social Web is also being commercially exploited for purposes such as automatically extracting

customer opinions about products or brands (Bansal et. Al 2004). This gleaning of Twitter data can

then be used to gain a deeper understanding of people’s behaviour and actions (Wenbo Wang et. al

2012). One key use for this insight into people opinions would be to aid marketing campaigns, as

companies will have a better understanding of what techniques were effective in successfully

marketing a product or service.

Dr. Tariq Mahmood et. Al (2013) describes how in the 2013 Pakistani Elections, they were able to

use a large set of Twitter data from Pakistan, to accurately predict the winners of the election. The

algorithm worked by applying a series of predictive rules to the data and categorising Tweets based

on which rules they followed. This again provides a valuable insight into the country’s political future

before any official results have been released, and information like this couldn’t possibly be

collected on this scale with any conventional data collection method.

2.1.4 Comparing the different methods of sentiment analysis
There are several different ways of calculating the sentiment from a string of text, but two key

underlying approaches. The first is a dictionary based method, this is where there is a database of

words each with a score of how positive or negative the word is. An algorithm then calculates the

overall aggregated score for a given string based on the database. The second method uses natural

language understanding and machine language to return much more detailed and accurate results.

~ 10 ~

However, this is not readily available without large amounts of computing power nor is it easily

possible on large sets of data.

Within the machine language method, there are a number of different algorithms that can be used.

Dr. Tariq Mahmood et. Al (2013) shows a good comparison between three of them on page 4 of his

paper. The CHAID algorithm was slightly more accurate than the Naïve Bayes and Support Vector

Machine but the results were close. These algorithms are used as the base for the data structure

which in turn dictates what order it gets sorted, which will directly affect results as the system learns

as it goes along. This works in a similar way to the semantic text plagiarism detection technique

outlined by Osman (2013) which looks at semantic allocations of each sentence to gain an

understanding of what the underlying message is.

Vu Dung Nguyen (2013) quantivley compares both the dictionary-based and the machine learning

approach to sentiment analysis. In this paper, they were studying reactions to the Royal birth.

A key difference between the efficiency of the two approaches is that the machine learning method

requires each Tweet to be analysed individually and then the results are aggregated, however the

dictionary-based approach can analyse all Tweets at once, as it is simply assigning a score by each

word. The following diagram illustrates this concept.

Fig 1 Dictionary Vs Machine learning SA

When comparing the results of dictionary-based methods and machine language methods, there are

some differences. The dictionary-based results seem to be consistently lower (more negative) than

the natural language results, however, the overall sentiment trend that is plotted is very consistent

between the two methods. This is the difference in sentiment value is likely to be caused by there

being significantly more negative words in the English language than positive words.

~ 11 ~

2.2 SENTIMENT ANALYSIS: COMPARING TECHNICAL APPROACHES

2.2.1 What is Sentiment Analysis?
Sentiment analysis is the process of computationally identifying opinions expressed in a piece of

text, to determine the overall attitude conveyed. At its most basic level, this could be resolving the

string into an integer score that represents positivity. It can, however, go a lot further, and identify

keywords in the text and then compute what the authors feelings and attitudes are towards that

topic. The results are of course just subjective impressions and not facts, but with large sets of data

can build up a very accurate representation of people’s opinions.

There is a growing demand for SA to make sense of a large amount of data representing people’s

opinions. It can be used to understand attitudes conveyed in mass amounts of Twitter data, or to

analyse product reviews or to categorise customer emails, to name just a few of its applications.

The purpose of this paper is to carry out some quantitative and qualitative research compares

different readily-available methods of SA. The two most common SA methods are dictionary based

and natural language understanding based model. As a benchmark the results from both of these

will also be compared with human computed values, which are likely to be much more accurate

although considerably slower to compute.

2.2.2 Dictionary-Based Sentiment Analysis
The lexicon-based approach involves calculating orientation for a document from the semantic

orientation of words or phrases in the document (Turney 2002). This is usually done with a

predefined dataset of words annotated with their semantic values, and a simple algorithm can then

calculate an overall semantic score for a given string. Dictionaries for this approach can either be

created manually (see also Stone et al. 1966; Tong 2001), or automatically, using seed words to

expand the list of words (Hatzivassiloglou and McKeown 1997; Turney 2002; Turney and Littman

2003).

2.2.3 Natural Language Understanding Approach
The natural language understanding (NLU) or text classification approach involves building classifiers

from labelled instances of texts or sentences (Pang, Lee, and Vaithyanathan 2002), essentially a

supervised classification task. There are various NLU algorithms, the two main branches are

supervised and unsupervised machine learning. A supervised learning algorithm generally builds a

classification model on a large annotated corpus. Its accuracy is mainly based on the quality of the

annotation, and usually the training process will take a long time. Unsupervised uses a sentiment

dictionary, rather like the lexicon-based approach, with the addition that builds up a database of

common phrases and their aggregated sentiment as well.

~ 12 ~

2.2.4 Research Plan Methodology
As part of the research, I am going to conduct a research experiment to compare the results

produced by natural language understanding (NLU) SA methods to the dictionary based SA

approach. There will also be a set of results computed by a human to be used as a benchmark.

The natural language understanding component
The HP Haven OnDemand API is a powerful natural language understanding engine, and will be used

for the NLU component. It is free to use for a limited number of requests and provides more details

that just an aggregate sentiment score. I have developed a custom wrapper module for this

experiment, and the source code and documentation for it can be viewed at https://goo.gl/NTXfyp

The dictionary-based component
I have developed a simple dictionary-based algorithm, and have packaged it up as a standalone

module, this will be used for the dictionary-based component. For the dataset, it will make use of

the AFINN-111-word list, which is a comprehensive list of English words annotated with an integer

for valence. The source code and documentation can be viewed at https://goo.gl/gU4f9A

The human component
To provide a basic benchmark for results, a survey including a sample of Tweets that will be analysed

by the two systems will be drawn up. Participants of the research will be asked to rate each Tweet

with a score between 0 (very negative) and 10 (very positive) with 5 being neutral. Since the survey

will be considerably more time-consuming than the other two methods, only a sample of the data

will be analysed by the five participants.

Data source
The data source will be Tweets regarding the Edward Snowden case in 2013. The Twitter API will be

used to supply the Tweets. I have written and published a custom module to facilitate the easy

fetching of relevant Tweets, see https://goo.gl/WQy7gI for source code and documentation.

Rendering and Displaying Results
Since the results will be dynamic (able to change if a different query is passed in), the charts must be

flexible. A combination of Google Charts JavaScript library and a custom module written in D3.js will

be used.

To view the final solution online, and check out the comparison tool for yourself, visit:

http://sentiment-sweep.com/sa-comparison

There are also links to the documentation from here, and a brief explanation of how it works.

https://goo.gl/NTXfyp
https://goo.gl/gU4f9A
https://goo.gl/WQy7gI
http://sentiment-sweep.com/sa-comparison

~ 13 ~

2.2.5 The Result

Description of Graph

Each connected point (three or fewer dots, connected with a single vertical line) represents a Tweet.

Where each dot is calculated sentiment analysis result, the light blue is dictionary based results, mid-

blue is NLU-based results and the dark blue are the benchmark results calculated by humans in the

survey. The lines between the points indicate that they were generated from the same Tweet. Some

points do not have lines because the dictionary result was exactly the same as the NLU result. The x-

axis shows Tweet length (i.e. string length between 0 - 160). The y-axis a measure of overall

sentiment, between -1 and +1, where -1 is the lowest possible value, and +1 is the highest possible

value.

Generating the Graph
This graph was rendered using Google Charts and then dynamically modified with a script written in

D3.js. Because this graph is dynamic, it is possible for the user to enter any search term, and the

system will fetch relevant Tweets, then run the sentiment scripts on those Tweets and generate a

similar looking graph. This process is fully automated, and typically takes 5 – 8 seconds.

Results
There are several findings from this research.

Firstly, there is a clear relationship between the length of the input string (in this case a Tweet) and

the accuracy of the results. The longer the input text, the closer together the NLU, dictionary and

human results, in most cases. This is because a better understanding of what it being conveyed can

be grasped in longer sentences.

The dictionary-based results tended to produce more neutral values, whereas the NLU method was

able to distinguish positivity and negativity in most tweets. This is because it is able to interpret

actual semantic meaning from the sentence as opposed to just looking and the positivity of words.

The overall average sentiment produced by the NLU dataset for the Edward Snowden dataset was

0.028 (very close to neutral as a lot of very positive and very negative tweets cancelled each other

Fig 2 Scatter chart showing accuracy of various SA methods

~ 14 ~

out), and the average for the dictionary based approach was 0.019 (again very neutral). This

difference of 0.009 show’s that the two methods, despite being very different overall produced

results not that far out.

Finally, there were some cases (on other datasets), where the sentence was using very positive

sounding words to convey a sarcastic message. In some cases, the NLU method was able to

distinguish this, and gave an appropriate sentiment score, however, the dictionary-based approach

failed miserably.

2.2.6 Summary of comparison between different SA approaches
The following radar chart illustrates how dictionary-based method compares with the NLU approach.

The data was calculated based on the custom written dictionary approach mentioned above, and

the HP Haven NLU sentiment analysis engine.

The radar chart illustrates how although NLU SA is significantly more accurate and returns very
detailed results, it is certainly not scalable for larger solutions, nor is it fast (hence not suitable for
real-time data), and is not cheap to implement and maintain either.

In conclusion, although the natural language understanding approach is able to deliver more
accurate results and distinguish a wider variety of emotions, it takes a lot longer to complete each
request, and also requires considerably more computing power, both of which means that it is less
cost effective and scalable for larger solutions.

Fig 3 Radar chart showing conclusion of different SA methods

~ 15 ~

3 METHODOLOGY
The methodology section is split into five parts; development plan, development tools, code

documentation, testing, front-end and back-end.

3.1 DEVELOPMENT PLAN

3.1.1 System Development Life Cycle Process
The system development life cycle is the process of splitting of the software development into

distinct phases, to better the planning and management of the overall project. Following a system

development life process strictly greatly increases the likelihood that all the intended deliverables

will be completed on time, and meeting requirements.

The methodology used in this project followed the principles of agile, more specifically personal-

SCRUM (one-man agile). This is an iterative approach, where the project will be divided into a set of

phases, called sprints. Each sprint had a set of requirements presented in the form of user stories

and acceptance criteria. The sprint was only marked as complete once each story has been

developed, implemented and tested (or descoped). User stories were prioritised and given a

complexity estimate before each sprint, to ensure the best use of time and resources.

Several other options were considered, before agile was chosen. Another common approach is

waterfall. Waterfall is much more rigid and better used when all requirements are known

beforehand, and a single phase of planning, development, implementation and testing takes place. It

can be easier to predict and plan for, however considerably less adaptable. Since a key component

of this project is research and user experience testing, flexibility is key. The final deliverable may

have slight differences from the proposed deliverable, but will still meet all requirements, and will

probably be better than the original plan.

The development phase of the project comprised of twelve, two-week sprints. During each sprint,

the code was tested against each of the acceptance criteria specified for the user stories. The

iterative fashion of this approach ensured that the most important requirements were prioritised,

and this in turn made it possible to finish the project on time.

Personal-SCRUM is a type of agile development used in one-person teams. Ravikant explains how

agile can be applied to a single person team in the paper: Extreme programming for a single person

team. He explains how it is based around simplicity, communication, feedback, and courage. There

are several key parts of agile that it is essential to stick to while working in a one-man team.

- Test Driven Development (TDD)

- Refactoring

- Continuous Integration

- Doing the simplest possible to make the solution work, then refactoring

- Automated deployment

~ 16 ~

3.1.2 Risk Analysis
A risk is categorised as an unknown that cannot be predated or prevented but whose likelihood may

be estimated. This section identifies the potential risks that could have had an effect on either

development or the final solution, and the plans that were taken to minimise their impact on the

project. Identifying risks before development allowed for better control over the project hence

made it easier to manage uncertain evets.

The following is based on Boehm’s (1991) categorisation of software risks, and puts into practice

some of the principles from the ISO 31000:2009. Boehm describes how important risk management

is to avoid project disasters, rework and overkill.

Risk Identification
The following risks were identified relating both specifically to this project and more broadly from
Boehm’s top ten project risk factors.

 Change in Twitter API T&C's – The whole project was dependent on Twitter data. Twitter have
very strict and comprehensive T&C’s which do change quite regularly in accordance with law.

 Reaching data limits (Google Places, Twitter, HP HavenOnDemand) – In order for the system
to use live or real-time data, API’s will be required, and they all have data limits which cannot
be exceeded without paying a fee.

 Running out of budgeted computing resources – cloud computing was used, for this there is a
limited amount of computing resources that can be used to stay within budget.

 Lack of specialist skills – the project used a lot of brand-new and cutting edge technologies
some of which have limited information available on the net which could have posed as a
problem, while upskilling for development, and for future maintenance.

 Change in UK law and regulations relating to data privacy – a lot of user data from social media
streams is being utilised in the system. This data being made public requires law not to change
drastically over the time frame of the coming few years.

 Management of bugs and unexpected glitches – as with any project there are bound to be
some unexpected bugs, which can take a variable amount of time to fix.

 Poor time estimations – the project schedule put forward in the proposal was ambitious, and
there potentially could have be problems sticking to it in the face of unexpected events.

Risk Assessment
Risks were calculated using Bernstein’s (2005) method. Risk exposure = likelihood * impact. Where

the likelihood is between 0 and 1, and the impact between 1 and 5. Quantifying the risks allowed the

project risks to be prioritised.

Risk Likelihood Impact Risk

Exposure

1.Change in Twitter API T&C's 0.2 2.5 0.5

2. Reaching data limits 0.8 4.5 3.6

3. Running out of budgeted computing resources 0.5 3.5 1.75

4. Lack of specialist skills 0.6 4 2.4

5. Change in UK law and regulations 0.2 2 0.4

6. Management of bugs 0.4 2 0.8

7. Poor time estimations 0.3 2 0.6

Table 1 Table showing the likelihood, impact and risk exposure of each identified risk

~ 17 ~

P
ro

b
ab

ili
ty

Impact

 Risk Severity Matrix

The risk severity matrix highlights which risks

should be prioritised based on their likelihood

to occur and the potential impact they could

have had on development or the final project.

Risk Response
The risk assessment highlighted three risks which attention should be paid to.

1. Reaching data limits on the utilised API’s

2. Running out of computing resources

3. Lack of specialist skills

Reaching the data limits for Google places, Twitter and any other API’s utilised could have had a

major impact on the final project. A risk reduction approach was taken, where possible data was

cached to minimise requesting similar data. Data requests were only sent when necessary, and

background tasks are stopped when the application is idle. In the future it may be necessary to limit

the amount of requests from each user, to avoid a single user sending off 1000’s of requests to drain

resources.

The risk for running out of computing resources can be transferred if necessary. A cloud computing

server with much higher specs can be utilised, or a plan with unlimited bandwidth can be selected.

At present that hasn’t been necessary, and nor will it be in the short-run.

The lack of specialist skills was a risk that just had to be accepted. I upskilled as much as possible and

used available resources to gain the knowledge needed.

The majority of the other lower priority risks were reduced by allowing for contingency time. The

amount of contingency allowed for each stage has been highlighted in the GANNT chart.

Approximately 10% or one week extra for each separate phase of the project.

3.1.3 Project Schedule
Development was started on the Saturday 20th of June 2015. The following table gives a brief outline

of tasks carried out. Each section was followed by a 10% contingency time. The three development

sections (e), (f) and (g) were broken down further into sprints. About 5 – 8 hours work was done per

day (30-40 hrs a week) during development.

Work Break-down

1

0.8 2

0.6 3 4

0.4 6

0.2

 1, 5, 7

0 1 2 3 4 5

Table 2 Table showing probability against impact of each risk

~ 18 ~

ID Duration Section Tasks

(a) 4 weeks Investigation and Research

Investigation of the Problem

Investigation of Previous Approaches

Literature Review

Research different sentiment analysis techniques

Research into development technologies

Research into server side technologies

Research into client side technologies

(b) 1 week Write Project Proposal

(c) 3 weeks
Project setup and

configuration

Determine and create file structure

Create git repo

Set up test environment and CI testing

Set up automated code reviews and dependency checking

Write gulp configuration for file compilation

(d) 1 week Write interim report -

(e) 6 weeks Develop backend modules

Following the agile process with TDD and publishing for each

sentiment-analysis

fetch-tweets

stream-tweets

remove-words

place-lookup

hp-haven-sentiment-analysis

tweet-location

find-region-from-location

(f) 2 weeks Develop Express app Create the main application from above node modules

(g) 6 weeks Develop front end

Page structure

Heat map

Region map

Raw tweets

Word cloud and scatter plot

Comparison

Trending

Timeline

3D globe

Entity extraction

Tone identification

Search

Homepage

(i) 2 weeks Publish

 Put all final components together

Ensure all documentation is up-to-date

Upload and publish to public web server

(j) 4 weeks Write final report -

(k)
 2 weeks Contingency

Ensure server application is running smoothly

Fix any reported bugs or issues
Table 3 Table showing a breakdown of all work to be completed in each timeframe

https://www.npmjs.com/package/sentiment-analysis
https://www.npmjs.com/package/fetch-tweets
https://www.npmjs.com/package/stream-tweets
https://www.npmjs.com/package/remove-words
https://github.com/Lissy93/place-lookup
https://github.com/Lissy93/haven-sentiment-analysis
https://www.npmjs.com/package/tweet-location
https://github.com/Lissy93/find-region-from-location

~ 19 ~

Gantt Chart
The chart below shows the time schedule that the project followed. Dark orange represents planned time, where the contingency was sometimes used when

ahead or behind schedule.

Table 4 Gannt Chart showing time allocated to each development task

~ 20 ~

Sprints
Sprint 0 – Project setup
Sprint 1 – Create base application and empty database
Sprint 2 – All tweet handling backend modules
Sprint 3 – All location and utility backend modules
Sprint 4 – Sentiment Analysis module
Sprint 5 – Integrate backend modules into application
Sprint 6 – Link blank frontend to backend to make twitter sentiment results
Sprint 7 – All geographically based sentiment data visualisations
Sprint 8 – All keyword based sentiment data visualisations
Sprint 9 – Timeline, trending and comparison data visualisations
Sprint 10 – Implement real-time functionality into data visualisations and create txt page
Sprint 11 – Home page and search page
Sprint 12 – Final testing, code quality, UX review – then publish to public cloud server

The final sprint will run from 15th of February into mid-March 2016, and will cover all not yet

complete user stories, as well as UX testing and further refactoring and finalising documentation.

Sprint 0

Project Set up

10th - 23rd August 15

TSV-T075, TSV-T076,
TSV-T077, TSV-T078,
TSV-T079, TSV-T080,
TSV-T081, TSV-T082,
TSV-T083, TSV-T084,
TSV-U085, TSV-U086

Sprint 1

Base Application

24th Aug - 6th Sept 15

TSV-A001, TSV-A002,
TSV-A003, TSV-A004,
TSV-U087, TSV-U088,
TSV-U089, TSV-U090,
TSV-U091, TSV-U092

Sprint 2

Twitter

7th - 20th September 15

TSV-E021, TSV-E022,
TSV-E023, TSV-E024,
TSV-E025, TSV-V094,

TSV-V095

Sprint 3

Backed Geo + Utilities

21st Sep - 4th Oct 15

TSV-X097, TSV-X098,
TSV-X099, TSV-Z100,
TSV-E025, TSV-V094

Sprint 4

Sentiment Analysis

5th - 18th October 15

TSV-D015, TSV-D016,
TSV-D017, TSV-D018,
TSV-D019, TSV-D020

Sprint 5

Backend Integration

19th - 31st October 15

TSV-F026, TSV-F027,
TSV-F028, TSV-F029,
TSV-F030, TSV-G031

Sprint 6

Connect back + front

2nd - 15th November 15

TSV-G032, TSV-G033,
TSV-G034, TSV-G034,
TSV-G036, TSV-Z100

Sprint 7

Frontend Geo Vis

16th - 29th November 15

TSV-B005, TSV-B006,
TSV-B007, TSV-B008,
TSV-C009, TSV-C010,
TSV-C011, TSV-C010,
TSV-C011, TSV-C012,
TSV-C013, TSV-C014

Sprint 8

Keyword Data Vis

1st - 13th December 15

TSV-L050, TSV-L051,
TSV-M052, TSV-M053,
TSV-W095, TSV-W096,
TSV-H037, TSV-H038,

TSV-H039

Sprint 9

Time, Trending, Comp

4th - 17th January 16

TSV-J043, TSV-J044,
TSV-J045, TSV-J046,

TSV-O057, TSV-O058,
TSV-P059, TSV-P060,
TSV-P061, TSV-P062

Sprint 10

Real-time Functionality

18th - 31st January 16

TSV-V093, TSV-V094,
TSV-Z100, TSV-K047,
TSV-K048, TSV-K049

Sprint 11

Home + Search Page

1st - 14th Febuary 16

TSV-S067, TSV-S068,
TSV-S069, TSV-S070,
TSV-S071, TSV-S072,
TSV-S073, TSV-S074

Table 5 Table showing which user stories will be completed in each sprint

~ 21 ~

3.2 DEVELOPMENT TOOLS

3.2.1 Developing

Version Control
Version control is a system that records the changes made to a file or set of files over time, allowing
the developers to recall specific versions later (Linus Torvalds 2016). Large projects can get
complicated, and it is very useful to be able to track changes, and create branches and development
versions of the current code base. As the name suggests it allows the developer to have ‘versions’ of
their code, which can make backtracking possible if necessary.

Git is a distributed version control system; it works by taking snapshots of the changes in files,
meaning if something is unchanged, the previous version can be referenced. This makes it incredibly
lightweight and fast. Several VC systems were considered including SVN, CVS, TFS and Merciful. But
for the reasons listed above Git was selected for this project.

Git can be run either on a server or locally. GitHub is a remote server running an instance of Git. It
also acts as a community for developers and has a public GUI. GitHub is the most commonly used
platform for developing and publishing open source code. Since one of the aims of this project was to
develop and publish a series of cutting edge open source modules, GitHub was an ideal choice. All
open source code from this project is therefore hosted on GitHub.

IDE
An integrated development environment (or IDE) is an application that facilitates the fast writing of
quality code, through a set of features beyond those of a plain text editor. Several tools were
considered including a variety of cloud-based and local software packages. JetBrains’s Web Storm (
the equivalent of InteliJ, but for the web) was selected. It has a range of features that will aid the
developer in writing good quality code. Including inbuilt debugger, local server integration, intelligent
autocomplete and syntax highlighting, VCS features and a very customizable UI. It was important to
select a good IDE here, as about 1000 hours was spent developing.

Development Server
A local offline development server was utilised for fast development, without the need to push to a
remote server to preview. It was then published on a CentOS VPS (see more in implementation
section)

~ 22 ~

3.2.2 Building
A requirement of the proposed deliverable is that the application must be efficient, as it handles a
large amount of data and graphics. In order to achieve this the source code written by the developer
will have to go through a process to streamline and compile it into its lightest form. A number of
tasks have to be run on the original code base to get it in its deployable form. A task runner will be
configured to automatically execute these tasks during development. This section briefly outlines
how the task runner and build tools utilised were configured, and why they were selected.

The build tool
A build tool is a utility program to automate the creation of an executable application from source
code. For node applications, there are several large players in the market; Grunt, Gulp, Brunch and
Broccoli. Before starting the project these build tool were compared on ease of configuring,
community support, available plugins, setup speed and most importantly speed and efficiency of
building. The final choice for this project was Gulp.

The primary reason for selecting Gulp is that it is a streaming build system, which means that unlike
the others it deals with streams as opposed to creating temporary files – that, of course, can have a
major improvement on speed. Gulp also has a very large community and many plugins available to
cover a range of build tasks.

Compiling Server-side Scripts
The server side code is Node.js. This was written in CoffeeScript, so one task of the build system was
to watch, check and compile CoffeeScript into efficient JavaScript. The build system was configured
to carry out a number of other tasks regarding the server side scripts, which are outlined in the
acceptance criteria of user story TSV-T075.

Compiling Client-side Scripts
The client-side scripts were also written in CoffeeScript. For maximum code reuse, everything was
written in a very modular fashion and object-oriented where possible. For this reason, it was
necessary to bundle client-side scripts for each page up together into a set of single minified files.
Browserify was utilised to achieve this. This also made it possible to use external JS libraries on the
client-side and share client-side and server-side code. The Browserify configuration also covered all
the acceptance criteria listed for TSV-T080

Compiling Styles
All styles were written in Less and SASS. The build process then checked, streamlined and compiled
this into minified CSS. It also removed obsolete styles (that were not specified in the HTML, Jade, JS),
and if there were any lint results they were logged. This related to user story TSV-T076.

Images
As specified in TSV-T078, all images were streamlined and piped to the public folder. It is important
that graphics are no larger than they need to be, as they can greatly slow down load speeds.

Test Running
As TSV-T084 outlined, the build environment also runs the test scripts when that particular file

changes. More on this is specified in the test strategy.

~ 23 ~

Cleaning Workspace
All obsolete files are removed following the acceptance criteria in TSV-T079.

Watch
The build setup is configured to build every time a file changes. It only runs the tasks relevant to that

file, so is very fast. This follows the acceptance criteria in story TSV-T082.

Logging
After a build, if there are any code errors, efficiency suggestions or quality guidelines not met, then it

shall be printed the run log, or on the console. During development this ensured the developer was

made aware immediately if something was not perfect. The size of each bundle is also outputted, as

this needs to be monitored for efficiency. This is in accordance with story TSV-T081.

Syncing Browsers and Automatic Server Restarts
For ease of developing across many browsers, screen sizes and platforms all instances of the

application during development were kept in sync. When the developer scrolls down in Internet

Explorer, it should also scroll on Chrome, the Android device and any instances in real-time. The

same should apply if the developer clicks a button, all interactions should be fully synced live across

many devices during development. When a change the backend is made, the server should

automatically restart. After restart, all browsers should automatically refresh. This follows user story

TSV-T083.

Provide an easy interface for running the above tasks
The developer can run any of the following commands during development:

Specific Tasks

- gulp generate-config - before first-time running of the project, run this command to
generate configuration files for API keys and environmental variables

- gulp scripts – compiles all scripts
- gulp browserify – generates all server side Browserify bundles
- gulp styles – compiles all styles into CSS
- gulp images – streamlines and pipes all images to the public directory
- gulp watch – watches all development files and runs appropriate tasks when they change
- gulp clean – wipes the output directory and removes obsolete files

General Tasks

- gulp build - This builds the project fully, this includes cleaning the working directory and
then all tasks that must happen for CoffeeScript, JavaScript, CSS, images, HTML and
Browserify tasks.

- gulp nodemon - Runs the application on development server on the default port
- gulp test - This runs all unit and coverage tests, printing a summary of the results to the

console and generating more detailed reports into the reports directory.
- gulp - this is the default task, it checks the project is configured correctly, build ALL the files,

run the server, watch for changes, recompile relevant files and reload browsers on change,
and keep all browsers in sync, when a test condition changes it will also re-run tests - a lot
going on!

~ 24 ~

3.3 TESTING
A series of open source node modules were developed and published as part of the intended
deliverables. A requirement for these was that they must be working, stable and efficient. This was
achieved through testing. Following a test strategy is essential for producing high quality code, for
this reason a lot of planning went into the test plan and environment.

3.3.1 Test Driven Development
Test driven development (or TDD) is a process where the tests are written before the code is
developed. The test cases are written based on the user stories, and most the logic on the
application is developed in the tests, so when it comes to writing the code it should be a very quick
process.

TDD was chosen as the testing methodology, as it has several key advantages. Firstly, it will ensure
the code that is written is structured, as the structure must be determined before the code can be
written. Secondly it helps the code fit with the user stories, since the tests will be based from the
user stories. It also creates a detailed specification. Most importantly less time is spent debugging
and fixing bugs, as code is written to pass tests.

3.3.2 Unit Testing
Unit testing involves writing a series of very thorough tests to cover each module, function or
method independently as a unit. Each function should be checked that it produces the expected
output with a variety of hardcoded inputs. This included testing error handling, and borderline and
unexpected inputs. After the unit tests were written the UT process was automated, so every time a
method is changed, the tests are rerun to check that it still produces the correct output with various
inputs.

Unit testing has a lot of benefits to software development, firstly any potential bugs or failures will
be identified before that function gets integrated with the larger application. Developers can verify
their code still works as expected as they refractor and change parts, in the same way, unit testing
can prevent future changes from breaking functionality. It also helps the developer understand the
code, and gives instant feedback when something is not working as it should be. It was for these
reasons that unit testing was thoroughly implemented in the modules for this project.

3.3.3 Behaviour Driven Development
This is the same principle as TDD, but involves writing tests with a more functional point of view. The

syntax used to write the tests tends to be more like English, and the tests follow very closely to the

user stories. Following BDD ensured that the code was written followed the user stories and

acceptance criteria.

~ 25 ~

3.3.4 Pass / Fail Criteria
Before each sprint could be marked as complete, it had to have met the following test criteria.

Test Type Pass Condition

Functional Testing All acceptance criteria must be met, checked
and documented

Unit Tests All acceptance criteria must be met, checked
and documented

Integration Tests 100% pass rate after every commit

Coverage Tests 80% or greater

Code Reviews B grade/ Level 4 or higher. Ideally A grade/
Level 5 if possible.

Dependency Checks Mostly up-to-date dependencies except in
justified circumstances.

Table 6 Table showing the pass fail criteria for each sprint

3.3.5 Documenting Results
A status of all unit tests, coverage tests, dependency checks and code review will id displayed in the

form of badges on the repository readme. Each will be linked with the appropriate service, so will

update live. This will indicate immediately as soon as a test is failing or a dependency becomes

outdated, and will be very useful for other developers.

Detailed test reports for each testing method are generated and saved to the reports directory.

These reports have been configured to show very detailed test results that were analysed towards

the end of each sprint. A breakdown of these results can be found in the appendix.

During development, as a piece of code is changed, the relevant unit tests are run and the results are

outputted onto the console. This gives the developer instant feedback of the stability of the

application in its current state.

3.3.6 Automated Continuous Integration Testing
Integration testing is the phase of development where the individual modules are combined and

tested as a whole. The purpose of this, is to verify the program still works reliably and as it should as

a whole. For this project every module is unit tested, and so automated continuous integration

testing was utilised to ensure everything continued to work as a whole during development.

Travis-CI is a free open source continuous integration service that builds and tests software packages

that are hosted on GitHub. A configuration file was written in YAML and this specified how the

environment should be set up. Travis also has the benefit of running the project across multiple

different server setups, to ensure it will work within any environment.

3.3.7 Coverage Testing
Coverage testing is the process of determining what proportion of the source code is covered by the

unit tests. Coverage tests can ensure that limited code is missed out from the test plan, in turn

increasing the stability of the application. For this project the threshold was set to 80%, so each

module must have at least 80% coverage in order to meet requirements. Istanbul is a utility program

which analyses unit tests and source code to produce a detailed coverage report. It is open source

and has been integrated into the build configuration to run whenever tests are updated.

~ 26 ~

3.3.8 Dependency Checking
Since there are quite a few external dependencies that came together to make each component of

the project possible, it was important to ensure that all the current dependencies are stable and

have no bugs that could affect the running of the service. For this automated dependency checking

was implemented with David-DM. When a dependency was no longer in date a notification was

triggered.

3.3.9 Automated Code Reviews
Code reviews can pick up on bad practices and inefficient code, such as including dependencies and

not using them, variables in the wrong scope, poor identifiers, not following convention etc. All of

this information can help write better quality code. Code Climate is an open source utility that checks

complexity, duplication, security, style and many other important aspects to ensure code follows a

specified style guide. This tool was utilised to monitor the quality throughout the duration of the

projects development.

3.3.10 Assertions
An assertion is an expression which encapsulates some testable logic. An assertion library, in node is

a software package which provides functionality such as quickly testing if a condition is true, or if a

value is in an array, or if length is greater than a value and many more features. As part of the unit

testing requirement, assertions must be made (where possible) to express each user stories. Several

options were considered, but the Chai TDD/BDD library was selected for this project, as it is very

lightweight and flexible.

3.3.11 Test Framework
A test framework provides a structure for which the tests can be based on, and run. Several options

were considered for this project, and Mocha was chosen. It is a feature-rich and well established

JavaScript testing framework. And required in order to store, write and run the tests in a structured

way. Using a framework will also make using various testing plugins easier to use neatly.

3.3.12 Stubs, Spies and Mocking
For the tests, it would not have been good practice to have any network calls, so Sinon.js was used to

stub the data that would have been returned for each network call. Spies will also be used to test the

functionality of methods.

3.3.13 Headless Testing
For running functional frontend tests without having to use a browser, it was automated in the same

way as the other tests and can test the integration with other frontend libraries. PhantomJS was used

for this, as it also provides network monitoring utilities that can help cut down page load times.

3.3.14 Testing HTTP services
SuperTest is an agent driven library for testing node.js HTTP servers using a fluent API. It was used for
testing HTTP servers and checking the routing for the Express web service, to ensure with a given URL
and parameters returns the expected output.

~ 27 ~

3.4 CODE STYLE AND IN-CODE DOCUMENTATION

3.4.1 Documentation
Good documentation is essential to ensure other developers can read, understand and modify the
code.

All code has in-code documentation in the form of comments where appropriate.

For every module that was produced and published publicly, a detailed readme was written up and
packaged. It outlined how to use the module, an API description of that module, how to run the tests
and how to develop or modify for the module.

Unit tests can also be used as a form of documentation, and so detailed test cases were written for
each published module.

If code is written following good style, then the code itself can act as a form of documentation.
Therefore, many measures were taken to ensure the code was the best possible quality. These are
outlined in the next section.

3.4.2 Code Style
The majority of the logic for this application was written in CoffeeScript. It is important that all code
follows best practices, but more important that it remains consistent throughout the project.

For this reason, a style guide was followed very strictly. Furthermore, an automated task (coffee-lint)
was incorporated into the gulp build setup, to automatically check (where possible) that code does
not break any of the specified rules.

A summary of the style guide can be found in the appendix.

~ 28 ~

3.5 FRONT-END PLAN
This section will briefly outline the screens that will be included in the application, and link to which

user stories and acceptance criteria apply to each.

3.5.1 Data source for each page
All pages (with the exception of that start screen) will follow the same format in terms of data

source. Upon landing on the page, results will be calculated on tweets that are cashed from the

backend streaming engine, and up to 60 minutes’ old. The user can then make a search (or add

/[search-query] onto the URL). This will fetch a fresh set of tweets, and render the data visualisation

based on this new data. This is explained more in the backend section of the methodology.

3.5.2 Frontend Technologies

Google Maps
The sentiment heat map, will make use of the Google Maps and Google Places API.

Socket.io
Socket.IO enables real-time bidirectional event-based communication, it will take care of aspects like

web sockets, and ensure maximum browser support. Socket.io will be implemented in all data

visualizations and charts that require live data to be displayed and updated in real-time. Socket.io

will signal to all subscribed listeners, whenever there is a change in the backend data. The frontend

subscribers will then be able to calculate what changed, and re-render the appropriate component.

It is a good choice since it handles graceful degradation to numerous technical alternatives for real-

time functionally, and it also handles browser inconsistencies.

Materialize
Materialize is a modern responsive frontend framework, which implements many of the design

standards of material design (released by Google at IO/14)

D3
The majority of the charts and data visualizations will be coded in D3.js (but written in CoffeeScript).

D3 (or Data Driven Documents) is an advanced JavaScript library for manipulating documents based

on data. It allows for web elements (such as SVG and HTML) to be bound to data. (See more at

https://d3js.org/).

D3 was chosen, because it is focused on binding DOM elements to the data, and is a bare-bones

language, meaning the highly customizable documents can be created. Furthermore D3.js is written

in JavaScript, and uses a functional style meaning code reuse is seamless. For this project

CoffeeScript will be used as opposed to JavaScript, but the same applies.

https://d3js.org/

~ 29 ~

3.5.3 The Home Screen

This will be the initial landing page for the

application.

As the wireframes show, it was split into two parts,

and there was a parallax scrolling animation

between the two. The upper section of the home

screen will give a brief introduction to the

application and provide an input field for the user

to enter a search term. The lower section of the

screen has a link to each of the data visualisations

across the site.

Aims
- To give a brief overview of what the

application is, does and can be used for

- To provide navigation to every other page

on the site

- To load quickly and present interesting

information to the user to decrease bounce

rate

User Stores
The home screen must meet the acceptance

criteria laid out in TSV-H036, TSV-H037 and TSV-

H038 (see appendix for user stories)

Fig 4 Wireframe for home screen

~ 30 ~

3.5.4 The Heat Map Screen
A real-time and interactive geographical map, with a dynamic heat map overlay varying in colour to

indicate which areas are more positive or negative

Aims
- To give an overview of which parts

of the world, a country or a city are

more or less positive about a

certain topic, or overall

- To allow the user to zoom in, and

drill down to analyses a more

specific area and read actual

tweets

- To illustrate real-time regional

events, either positive or negative

User Stories
TSV-C009, TSV-C010, TSV-C011, TSV-C012,

TSV-C013, TSV-C014.

3.5.5 The Regional Sentiment Map
Very similar to the heat map (above), but show’s overall sentiment for each region. This can be very

useful for getting a quick overview, rather than analysing every heat patch

Aims
- Provide a geographical snapshot

of sentiment towards a given
keyword

- Simple to look at
- List most and least positive

regions
- Links for drilling down to gain

more details, but not actually
displaying details on this screen

User Stories
TSV-I039, TSV-I040, TSV-I041

Fig 5 Wireframe for the heat map screen

Fig 6 Wireframe for the region map screen

~ 31 ~

3.5.6 Time Line
An interactive area chart displaying average

positive and negative sentiment (y-axis)

against time of day (x-axis) either overall or

towards a topic

Aim
To show what times of day people are most

positive or negative

User Stories
TSV-O055, TSV-O056

3.5.7 Raw Tweets
Often after viewing the various data visualizations around a topic, a user may want to just view the

original plain-text tweets, so they can read exactly what people are saying. Each tweet will be

displayed in real-time, with location, time and sentiment. Keywords will be in bold to allow the user

to scan read quickly

Aims
- To allow the user to view the text of

tweets, as opposed to a data
visualisation

- To allow for users to monitor in real-
time what people are saying about
their chosen topic

- To make it possible for the user to
skim read relevant twitter data

User Stories
TSV-H046, TSV-H047, TSV-H048

3.5.8 3D Globe
A real-time 3D globe showing both sentiment

and volume for geographical nations across

the planet, and updating live.

Aim
To visually illustrate how both sentiments

with magnitude, and volume of data varies

across the planet

User Stories
TSV-N052, TSV-N053, TSV-N054

Fig 7 Wireframe for the timeline screen

Fig 8 Wireframe for the raw tweets screen

Fig 9 Wireframe for the globe screen

~ 32 ~

3.5.9 Word Cloud
The word cloud will be a collection of the most commonly used words in a set of tweets. The size of

the word will represent volume of use, and the colour will show average sentiment of the tweet the

word came from

Aims
The aim of the word cloud is to

illustrate which key words with a

strong sentiment value are

commonly used in a set of tweets,

relating to a topic. This will enable

the user to better understand why

the overall sentiment is what it is.

User Stories
TSV-L049, TSV-L050

3.5.10 Word Scatter Chart
Represents similar data to the word cloud, but in the form of a scatter plot, which can allow for much

higher volumes of data, and can be more practical for inferring trends. Sentiment will be on the y-

axis, while frequency of use on the x-axis. The user can hover over a point to view associated word.

Aim
To visually illustrate trends

between commonly used words

and sentiment of tweets in a

dataset

User Stories
TSV-M050, TSV-M051

Fig 10 Wireframe for the word cloud screen

Fig 11 Wireframe for the word scatter plot screen

~ 33 ~

3.5.11 Trending
This screen shows the keywords, hashtags and users that are currently trending on Twitter at that

time. It also shows the volume of tweets for each trend, and calculates and displays the overall

sentiment.

Aims
- To provide the user with

the most up-to-date topical

sentiment information from

their local area

- To show an overview of
what’s currently trending
both worldwide and at a
custom location

- To show which topics are
positive and which are
negative, as well as volume

- To provide links to the

search screen for each

trend

User Stories
TSV-J042, TSV-J043, TSV-J044, TSV-J045

3.5.12 Comparison
Often users will want to benchmark the results from their query against other similar topics, or

competing brands. The comparison page allows up to four topics to be compared on a single screen.

Aims
- To allow the user to

compare similar topics in
one place

- To get a snapshot of how
each topic is currently
doing

- To provide links for further
details for each topic

User Stories
TSV-P057, TSV-P058, TSV-P059,

TSV-P060

Fig 12 Wireframe for the trending screen

Fig 13 Wireframe for the comparison screen

~ 34 ~

3.5.13 Entity Extraction
The entity extraction screen shows the results of the key label sequences recognised in a set of

tweets about a certain topic. Results will be summarised in the form of a dynamic Sankey diagram.

Below that will be more detailed textual results. Entities can be anything fitting into the defined

categories e.g. places, people,

languages, objects, companies,

films…

Aims
- To clearly show which

entities are commonly
referred to when people
are talking about a topic

- To provide visual
representation of the
proportion of tweets
talking about each entity

User Stories
TSV-R065, TSV-R066

3.5.14 Tone Identification
This screen will visually present the results from the tones of speech conveyed in a set of tweets.

Aim
To visually display the tones of
speech from a set of tweets

User Stories
TSV-Q063, TSV-Q064

Fig 14 Wireframe for the entity extraction screen

Fig 15 Wireframe for the tone identification screen

~ 35 ~

3.5.15 The Search Results Screen
Displays the results for a search made from

the home page.

Aims
- To provide an overview and

summary of the different sections of

the application on one page

- To act as a starting point, with links

to other parts of the application

customized specifically to the topic

searched for by the user

User Stories
TSV-S067, TSV-S068, TSV-S069, TSV-S070,

TSV-S071, TSV-S072, TSV-S073, TSV-S074

Short Description of Wireframe
The wireframe on the right shows each of the

eight sections. The first is a summary of the

sentiment results, including a gauge showing

average sentiment, and a list of most

commonly used keywords and their

sentiment.

The second section is a summary of the tones

of speech identified in the set of tweets, with

a link to show more detailed results.

Similarly, the third section is a summary of

the key entities extracted from the set of

tweets, each entity will be clickable, and

there will be a see more link.

The fourth section will show how the current

topic compares to the averages on the rest of

twitter, with the option to compare the

current topic with up to three other topics.

Proceeding that is a small set of the raw

tweets with some additional information,

and a load more tweets button to show

more.

Finally, there is a customized link to each

other part of the site, specific to that

particular topic, followed by an input field to

make a new search.

Fig 16 Wireframe for the search page

~ 36 ~

Backend Plan

This section briefly outlines how the backend was developed, and how it integrates with the project

as a whole.

3.5.16 Data Cache
As specified in the prosed deliverables, the application must be capable of showing cached tweets

from the past 60 or so minutes. This will enable a data visualisation to be loaded from local data on

initial request, and then pipe new data to it after load. The reason this is required, is it will drastically

decrease page load times, and increase usability of data.

Several database solutions were considered during project planning, but the decision to use

MongoDB was made due to its scalability and document-oriented structure. It’s very flexible to

deploy, and allows for high access rates, which will be required while cashing streamed twitter

results.

The database will be capped to a given size. Before data insertion a quick check will be made, and if it

is over the specified size, then the oldest record(s) will be popped from the database to make room

for the new data.

3.5.17 High Level Data Flow
The whole application uses the same backend; the only difference is that each route (page) has

different adapter code to convert data returned from the backend into the format that the frontend

requires for rendering the data visualisation.

The data flow diagram on the next page is a simplified illustration, of at a very high level how data

will flow through the program. In short, a streaming connection will be established with Twitter, and

there will be a constant high-volume flow of tweets coming in 24/7, in real-time.

Each of these tweets will then go through the following processes:

1. Data is chunked, formatted and made safe

2. Sentiment and keywords are calculated and attached to the tweet

3. The data visualisations that display ‘all-tweets’ (real-time, NOT geo) will be updated

4. All non-geo-tagged tweets will be filtered out and not got any further

5. All geo-based data visualisations will be updated with the live tweet

6. Accuracy assessment will be carried out on the sentiment value. All tweets with low accuracy

will be filtered out and not go any further

7. All high-accuracy geo-tagged tweets are then formatted further and inserted into the data

cache

When the user makes a request for a certain topic, the process is very slightly different, as data is

also fetched from the Twitter REST API, and merged with the streamed data for better results.

Some data visualisations will also require data, or processing from an additional source. This will be

included in the adapter code, and hence not in the high level plan.

~ 37 ~

Fig 17 Data flow
diagram for the
backend as a whole

~ 38 ~

3.5.18 Node.js
The backend system was primarily written in Node.js. A lot of research went into choosing this, and

the following section briefly summarises the findings.

Introduction to Node.js
“Node.js is a JavaScript runtime built on Chrome's V8 JavaScript engine. Node.js uses an event-

driven, non-blocking I/O model that makes it lightweight and efficient” (Node.js, 2016). Non-blocking

means that that while one line of code is executing, the rest is not blocked waiting for it to finish. In

traditional blocking web languages (such as Python, PHP, Ruby and Java), multiple threads of

execution are used to overcome concurrency. However, in JavaScript handles it using a non-blocking

event loop in a single thread. Adrian Mejia illustrates this concept clearly with a diagram similar to

the one below.

Comparison of Node.js with other popular web languages
In the journal article “Performance Comparison and Evaluation of Web Development Technologies in

PHP, Python, and Node.js” (Kai Lei 2014), Node.js is compared with PHP and Python which are two of

the largest players in the web industry. The experimental results in the article yield some valuable

performance data, showing that PHP and Python-Web handle much less requests than that of

Node.js in a certain time. Since this project shall be a very I/O intensive application, those are the

results that are most relevant, and they clearly show that Node.js is up to ten times faster than

traditional technologies at I/O intensive activities, and can execute many more requests per second.

Node.js for high performance web applications
Node.js is great for developing high-performance, concurrent programs that don't rely on the

mainstream multithreading approach but use asynchronous I/O with an event-driven programming

model (Stefan Tilkov 2010). Tilkov gives a details comparison between multithreading and events, the

conclusion for which was that multithreading network applications can get unnecessarily complex

and deadlocks can occur, as can memory leaks. However, event-driven alternatives (like Node.js)

take a different approach, using callbacks to notify the system when one task has finished. Due to the

large number of network, I/O and processing requests that were required for this project, Node.js

was an ideal choice in terms of efficiency, speed and scalability.

Fig 19 Node server (compared to traditional approach) Fig 18 Traditional server (compared to Node approach)

~ 39 ~

Real-time data streaming in Node.js
For this project, a key requirement was that the backend could stream data live from Twitter. This is

a very high volume data stream, that would need to run continuously while also carrying out other

I/O intensive tasks, so the choice of technology is crucial.

The event loop used in Node.js (as opposed to threading) makes it an ideal choice for high-

performance real-time server

applications. Node.js runs on V8, for

more information on just how much of a

significant performance difference this

platform has over others see the Google

I/O 2012 video: “Breaking the JavaScript

Speed Limit with V8”. Further to this,

another reason why Node.js can cope

with high volume heavy data streams is

because if it’s event loop model (outlined

above). Xiao-Feng 2014 explains this very

clearly with the aid of the diagram to the

right.

Furthermore Node.js can cope very well with both basic byte chunk streams and object streams. This

is outlined further in Xiao-Feng 2014’s paper on “A real-time stream system based on node.js”.

The security of Node.js
Although Node.js is by far the most scalable and efficient solution for I/O intensive applications,

there are several minor security pitfalls which the developer needs to be made aware of. Firstly, the

single threaded event loop in Node based architectures is a key strength in achieving scalability,

although as Ojamaa 2014 pointed out, an unexpected exception will break the loop and terminate

the whole program. In the same way the processing of an unexpectedly large data set can block all

other connections to the application until processing is complete. Secondly, JavaScript traditionally

was a basic client-side scripting language with limited functionality, for this reason many of the

resources available for JavaScript are more focused on the client-side, which takes on a completely

different style for the server-side. The poor quality code produced as a result of following client-side

paradigms on the server-side can pose as a security risk. Furthermore Node.js is still developing very

fast, and if not regularly updated then the application will be exposed to security vulnerabilities.

Overcoming the potential security pitfalls of Node.js
Several measures were taken during development to ensure this application wouldn’t be caught out

by any of the vulnerabilities outlined above.

- The application will be thoroughly tested, to minimise the risk of unexpected exceptions

- A package called forever was utilised, if the application crashed for any reason (which it

shouldn’t), it will be restarted automatically, and the error details written to a log

- Extensive research and upskilling will be undertaken to ensure quality server-side code is

developed

- The application will be tested across many versions of the Node.js environment, and the

production app will always run on the latest version of Node

Fig 20 The Node.js processing model

~ 40 ~

3.5.19 Express.js
Express.js is a fast, un-opinionated, minimalist web framework for Node.js. Poulter (December 2015)

summarises it very succinctly saying, Express.js builds on the underlying capability of Node, by

providing a web application server framework. This framework provides a wrapper around a lower-

level Node interface: giving the developer, a convenient means to handle routing and HTTP

operations (such as GET and POST). Express.js facilitates a simplified and more elegant solution than

(re-)implementing these services directly using Node.

Express.js was selected for this project, as it handles tasks such as routing in a very elegant manor, it

is thoroughly tested, widely used and has a strong community behind it. Express is generally looked

at as industry standard for Node web applications. With is being so lightweight and barebones, it will

not have a noticeable impact of efficiency, nor will it take away from the technical challenge of this

project. It will however facilitate the neat layout of server and application configuration code, which

previously could become unmanageable.

3.5.20 Socket.io
Socket.io is an essential part of this application. It allows for seamless real-time bidirectional

communication between client and server. Socket.io will signal to all subscribed listeners, whenever

there is a change in the backend data. Socket.io comes into both the backend and frontend plans.

3.5.21 The Server
The final application will be hosted on a Linux VPS.

Server Specs
The 64-bit server is running CentOS 6.7, with a 75GB HDD, 4TB bandwidth allowance and 4GB RAM.

SSH will be used to configure the server to run the application. Multiple other apps are already

running on this instance, so efficient management of resources was essential.

NGINX
Is a free open source web server,

that for this project is used for

the DNS management. It features

very high concurrency, which is

why it was selected, and also is

able to run alongside an Apache

instance. The diagram to the

right illustrates the worker model

or NGIX.

Fig 21 NGINX architecture

~ 41 ~

4 IMPLEMENTATION

4.1 SPRINT 0 – PROJECT SETUP

4.1.1 Aims of Sprint 0
Sprint 0 covered the following user stories: TSV-T075, TSV-T076, TSV-T077, TSV-T078, TSV-T079, TSV-

T080, TSV-T081, TSV-T082, TSV-T083, TSV-T084, TSV-U085, TSV-U086. (See appendix 1 for full user

story’s, acceptance criteria and complexity scoring).

The primary aim of sprint 0 was to set up the development environment for the project. This

included the build configuration, test environment, git repository, IDE settings and creating a base

directory structure – as outlined in the methodology.

4.1.2 Application meta and project configuration

NPM and app meta config
The ./package.json file contains all npm meta data for the application, including all backend
dependencies, dev dependencies, initial entry point, links to test scripts, author info etc…
The following code snippet is an extract from the file:

{

 "name": "twitter-sentiment-visualisation",

 "description": "A series of data visualisations showing overall sentiment from

Tweets by location and/or topic",

 "author": "Alicia Sykes <alicia@aliciasykes.com>",

 "version": "0.0.1",

 "private": true,

 "scripts": {

 "start": "node ./bin/www",

 "test": "gulp test",

 "build": "gulp build",

 "config": "gulp generate-config && start notepad 'config\\src\\keys.coffee'",

 "cover": "istanbul cover node_modules/mocha/bin/_mocha --dir

./reports/coverage-reports"

 },

 "main": "app.js",

 "repository": {

 "type": "git",

 "url": "https://github.com/Lissy93/twitter-sentiment-visualisation"

 },

 "bugs": {

 "url": "https://github.com/Lissy93/twitter-sentiment-visualisation/issues"

 },

 "dependencies": {

 "body-parser": "^1.14.0",

 "coffee-script": "^1.9.3",

 "cookie-parser": "^1.4.0",

……..
[see appendix for full file]

https://github.com/Lissy93/twitter-sentiment-visualisation/blob/dev/package.json

~ 42 ~

Bower configuration
In a similar way, a meta file was configured to keep track of all frontend dependencies. The
./bower.json stores the identifier, URL and version number of each library, package or external
resource required for the frontend, this allows for easy and reliable deployments, as outlined in the
methodology.

Git configuration
The application used all global default settings for Git, so the only notable file to include it the
./.gitignore which contains the globs of directories or files that should not be pushed to git. This
includes backend and frontend dependencies, private keys/ passwords, debug logs, test reports and
all built/compiled files. The following is the contents of the .gitignore file.

Packages and libraries

node_modules

bower_components

IDE files and logs

.idea

*log

npm-debug.log.*

Test reports and results

reports

coverage

API keys

*/**/keys.*

Built files

models/*.js

utils/*.js

config/*.js

routes/*.js

public/javascripts

public/stylesheets

Test Options
The majority of the test configuration is done either externally where a third party is utilised, or
within the gulp build setup (covered later). The continuous integration test options are covered in
the following Yamel file (./travis.yml). This basically just outlines which versions of Node.js and which
platforms the application will be automatically tested on, as well as any pre-scripts.
language: node_js

node_js:

 - "0.12"

 - "0.10"

before_script:

 - "npm i -g mocha"

notifications:

 slack:

 on_success: change

 Mocha also required a file that specifies any configurations that weren’t the default. This is included
in the ./test/mocha.opts file:
--compilers coffee:coffee-script/register

--reporter mochawesome

--reporter-options reportDir=./reports/awesome-reports

--recursive

https://github.com/Lissy93/twitter-sentiment-visualisation/blob/dev/bower.json
https://github.com/Lissy93/twitter-sentiment-visualisation/blob/dev/.gitignore
https://github.com/Lissy93/twitter-sentiment-visualisation/blob/dev/.travis.yml
https://github.com/Lissy93/twitter-sentiment-visualisation/tree/dev/test/mocha.opts

~ 43 ~

4.1.3 Completed Gulp Build Setup
The methodology outlined how the automated build setup would be developed and configured, as
well as the technologies utilised.

Initial entry point
Each task was put in a separate file within the ./tasks directory. The initial file that calls the include
method, was the ./gulpfile.js, the following is its contents (not including the extensive in-code
documentation):
// Include gulp and require directory module

var gulp = require('gulp');

var reqdir = require('require-dir');

reqdir('./tasks'); // Include the folders containing ALL gulp tasks

gulp.task('default', ['start']); // Default task

Task list
The following files each contain a single Gulp task. (underlined paths are hyperlinks)

./tasks/browser-sync.js Keeps multiple browsers/devices in sync during dev
./tasks/browserify.js Includes all frontend dependencies in single bundle
./tasks/build.js Initiate full project build
./tasks/clean.js Cleans workspace/ deletes obsolete files etc..
./tasks/config.js Contains JSON of various file paths
./tasks/generate-config.js Generates a blank config file, for first time use
./tasks/images.js Translates images into their necessary format
./tasks/nodemon.js Starts a Nodemon (auto-restart) server for development
./tasks/quick-coffeescript.js Very quickly compiles all CoffeeScript to JavaScript
./tasks/scripts.js Compiles, lints, minifies, pipes etc... all scripts
./tasks/styles.js Compiles, lint, minifies all SASS, Less, CSS to CSS
./tasks/test.js Runs all unit coverage, browser etc... tests
./tasks/watch.js Watches all files for changes and runs appropriate tasks

Example task 1 – Build
This task initiates all other tasks required to build the project

var gulp = require('gulp');

var runSequence = require('run-sequence');

/* Clean the work space */

gulp.task('build', function (cb) {

 runSequence('clean',

 ['scripts', 'browserify', 'styles', 'images'],

 cb);

});

https://github.com/Lissy93/twitter-sentiment-visualisation/blob/dev/tasks/config.js
https://github.com/Lissy93/twitter-sentiment-visualisation/tree/dev/gulpfile.js
https://github.com/Lissy93/twitter-sentiment-visualisation/blob/dev/tasks/browser-sync.js
https://github.com/Lissy93/twitter-sentiment-visualisation/blob/dev/tasks/browserify.js
https://github.com/Lissy93/twitter-sentiment-visualisation/blob/dev/tasks/build.js
https://github.com/Lissy93/twitter-sentiment-visualisation/blob/dev/tasks/clean.js
https://github.com/Lissy93/twitter-sentiment-visualisation/blob/dev/tasks/config.js
https://github.com/Lissy93/twitter-sentiment-visualisation/blob/dev/tasks/generate-config.js
https://github.com/Lissy93/twitter-sentiment-visualisation/blob/dev/tasks/images.js
https://github.com/Lissy93/twitter-sentiment-visualisation/blob/dev/tasks/nodemon.js
https://github.com/Lissy93/twitter-sentiment-visualisation/blob/dev/tasks/quick-coffeescript.js
https://github.com/Lissy93/twitter-sentiment-visualisation/blob/dev/tasks/scripts.js
https://github.com/Lissy93/twitter-sentiment-visualisation/blob/dev/tasks/styles.js
https://github.com/Lissy93/twitter-sentiment-visualisation/blob/dev/tasks/test.js
https://github.com/Lissy93/twitter-sentiment-visualisation/blob/dev/tasks/watch.js

~ 44 ~

Config file
All variables, such as file source and destination paths, were put into a single config file. This made
the code easier to maintain, modify and reuse. The following file contains the file paths necessary to
map the source project to the destination project, and all other build variables.

/* Define constants */

var footerText = "\n\/* (C) Alicia Sykes <alicia@aliciasykes.com> 2015 "

+ "*\\\r\n* MIT License. Read full license at: https:\/\/goo.gl\/IL4lQJ *\/"

module.exports = {

 SOURCE_ROOT : "client-side-source", // Dir name for all js & css src

 DEST_ROOT : "public", // Folder name for the results root

 CSS_DEST_DIR_NAME : "stylesheets",// Name of CSS directory

 CSS_SRC_DIR_NAME : "styles", // Name of CSS directory

 JS_FILE_NAME : "all.min.js", // Name of output JavaScript file

 CSS_FILE_NAME : "all.min.css",// Name of output CSS file

 FOOTER_TEXT : footerText, // Optional footer text for output files

 SCRIPT_PATHS : [// Paths for JavaScript files

 { src: 'client-side-source/scripts/**/*.{js,coffee}',

 dest: 'public/javascripts' },

 { src: 'client-side-source/scripts/visualisations/*.coffee',

 dest: 'public/javascripts/charts' },

 { src: 'server-side-source/models/*.coffee',

 dest: 'models' },

 { src: 'server-side-source/utils/*.coffee',

 dest: 'utils' },

 { src: 'server-side-source/config/*.coffee',

 dest: 'config' },

 { src: 'server-side-source/routes/*.coffee',

 dest: 'routes' },

 { src: 'server-side-source/api-routes/*.coffee',

 dest: 'routes' }

],

 SHOW_OUTPUT: true

};

Example task 2 – Watch
This task watches files (in an array of globs from config file above) for changes, and calls the
necessary task (in separate file) when there is a change to the source.

var gulp = require('gulp');

var CONFIG = require('../tasks/config');

/* Configure files to watch for changes - NOT USED BY DEFAULT TASK */

gulp.task('watch', function() {

 /* For each CoffeeScript directory, watch, compile and reload */

 CONFIG.SCRIPT_PATHS.forEach(function(path) {

 gulp.watch(path.src, ['scripts']);

 });

 /* Watch build and re-bundle browserify files */

 gulp.watch(CONFIG.SOURCE_ROOT+'/**/*-{main,module}.{js,coffee}',

['browserify']);

 /* Watch compile and reload LESS, SASS and CSS */

 gulp.watch(CONFIG.SOURCE_ROOT+'/**/*.{css,less}', ['styles']);

});

~ 45 ~

Example task 3 – styles
This task handles all frontend styles

/* Include the necessary modules */

var gulp = require('gulp');

var gutil = require('gulp-util');

var gsize = require('gulp-filesize');

var concat = require('gulp-concat');

var less = require('gulp-less');

var minCss = require('gulp-minify-css');

//var cssLint = require('gulp-csslint'); // Uncomment to lint CSS

var changed = require('gulp-changed');

var footer = require('gulp-footer');

var es = require('event-stream');

var gulpIf = require('gulp-if');

var argv = require('yargs').argv;

var CONFIG = require('../tasks/config');

var devMode = argv.dev ? true : CONFIG.SHOW_OUTPUT;

/* CSS and Less Tasks */

gulp.task('styles', function(){

 // Paths

 var cssSrcPath = CONFIG.SOURCE_ROOT + '/'+CONFIG.CSS_SRC_DIR_NAME;

 var cssResPath = CONFIG.DEST_ROOT + '/'+CONFIG.CSS_DEST_DIR_NAME;

 // Streams

 var cssFromLess = gulp.src([cssSrcPath+'/*.less']).pipe(less());

 var cssFromVanilla = gulp.src([cssSrcPath+'/*.css']);

 var excludedCss = gulp.src(cssSrcPath+'/*/*.css');

 var excludedLess = gulp.src(cssSrcPath+'/*/*.less').pipe(less());

 var concatinatedCss = es.merge(cssFromLess, cssFromVanilla)

 .pipe(concat(CONFIG.CSS_FILE_NAME));

 return es.merge(concatinatedCss, excludedCss, excludedLess)

 .pipe(changed(cssResPath))

 //.pipe(cssLint()) // Uncomment to lint CSS

 .pipe(minCss({compatibility: 'ie8'}))

 .pipe(gulpIf(devMode, gsize()))

 .pipe(footer(CONFIG.FOOTER_TEXT))

 .pipe(gulp.dest(cssResPath))

 .on('error', gutil.log);

});

Example Task 5 – Browserify
This script pulls all the client-side dependencies in a script together and compiles everything into a

single JavaScript file, ready to be run on a browser.

var gulp = require('gulp');

var browserify = require('browserify');

var source = require('vinyl-source-stream');

var coffeeify = require('coffeeify');

var reactify = require('reactify');

var buffer = require('vinyl-buffer');

//var sourcemaps = require('gulp-sourcemaps'); // Uncomment to use sourcemaps

var glob = require('glob');

var es = require('event-stream');

var rename = require('gulp-rename');

var footer = require('gulp-footer');

var gutil = require('gulp-util');

var gsize = require('gulp-filesize');

var debowerify = require('debowerify');

~ 46 ~

var CONFIG = require('../tasks/config');

gulp.task('browserify', function () {

 glob('./'+CONFIG.SOURCE_ROOT+'/scripts/**/**-main.{js,coffee,jsx}',

function(err, files) {

 var tasks = files.map(function(entry) {

 return browserify({ entries: [entry], debug: true })

 .transform(coffeeify)

 .transform(reactify)

 .transform(debowerify)

 .bundle()

 .pipe(source(entry))

 .pipe(rename(function(filepath) {

 filepath.basename = filepath.basename.replace("-main","");

 filepath.dirname = "";

 filepath.extname = ".bundle.js";

 }))

 .pipe(buffer())

 /* Uncomment the next two lines for source maps for debugging */

 //.pipe(sourcemaps.init({loadMaps: true}))

 //.pipe(sourcemaps.write('./'))

 .pipe(footer(CONFIG.FOOTER_TEXT))

 .pipe(gsize())

 .pipe(gulp.dest('./public/javascripts'))

 .on('error', gutil.log);

 });

 es.merge(tasks);

 });

 return gulp.src('*');

});

Example Task 6 – Quick CoffeeScript
This script very quickly, simply just compiles all CoffeeScript files in the source directories into
JavaScript files, and pipes them to the result directory, bypassing any formal checking

var gulp = require('gulp');

var coffee = require('gulp-coffee');

var CONFIG = require('../tasks/config');

gulp.task('quick-coffeescript-watch', function(){

 gulp.watch('./**/*.coffee', ['quick-coffeescript']);

});

gulp.task('quick-coffeescript', function(){

 /* A list of file sources and destinations */

 var paths = CONFIG.SCRIPT_PATHS;

 /* For each file path, run all script tasks */

 var tasks = [];

 paths.forEach(function(path) { tasks.push(coffeeify(path.src, path.dest))});

 return (tasks); // Return all results as array of multiple streams

 /* Function applies all the tasks on the script files and returns a pipe dest

*/

 function coffeeify(srcPath, resPath){

 return gulp.src(srcPath).pipe(coffee()).pipe(gulp.dest(resPath));

 }

});

~ 47 ~

4.1.4 The Test Setup
The test setup matches that of the project methodology. A full example of a set of tests can be found
in Appendix 4.

In short, the project has unit tests following the Mocha framework, and using the Chai assertion
library, Travis CI was used to implement the automated continuous integration testing (see above,
configuration section 4.1.1). The tests were primarily run using Gulp, and a summary of results were
printed to the console, as well as a detailed visual report generated. Coverage results were calculated
too, which showed what percentage of the code was covered by detailed unit tests, using Istanbul.
Automated code reviews (using Codeacy and CodeClimate) and dependency checking (using David
DM) was configured and implemented too.

Structure of the unit tests
- Every class has its own test script, made up of a series of describe blocks
- Every function/method from the class, has its own describe block within the test file, which

very briefly describes what that function should do. A good quality function should only do
one simple action, so describing what it does is easy.

- Every describe block is made up of a series of it blocks, each of which specifies a condition
that must always be true for the function to be valid.

- Every it block, is made up of a series of assertion statements which actually test the
condition specified in the it block, with various different valid, borderline and invalid values.

Every unit test file starts by: importing the desired assertion library, importing the module to test
(and its private methods) and setting the current environment to test mode (if it isn’t already). For
example:

expect = require('chai').expect

process.env.NODE_ENV = 'test'

removeWords = require('../index')._private

Example describe block:
Note: this file will be made up of many describe blocks (one for each function), and each ‘it’ block will
actually have many assertion statements, but this is a summarised example.
See Appendix 4 for full example

describe 'Check that arrayifySentence() correctly transforms a string into a valid array',()->

 it 'Should correctly turn a sentence into an array', ()->

 expect(removeWords.arrayifySentence('hello world')).eql(['hello', 'world'])

 expect(removeWords.arrayifySentence('this is a longer sentence'))

 .eql(['this', 'is', 'a', 'longer', 'sentence'])

 it 'Should normalise case', ()->

 expect(removeWords.arrayifySentence('HeLlO wOrLd')).eql(['hello', 'world'])

 expect(removeWords.arrayifySentence('JAVASCRIPT')).eql(['javascript'])

 it 'Should remove dupplicates', ()->

 expect(removeWords.arrayifySentence('foo foo bar foo'))

 .eql(['foo', 'foo', 'bar', 'foo'])

 expect(removeWords.arrayifySentence('foo foo BAR Foo bAr foO bar foo'))

 .eql(['foo', 'foo', 'bar', 'foo', 'bar', 'foo', 'bar', 'foo'])

 it 'Should remove blanks', ()->

 expect(removeWords.arrayifySentence('space blank '))

 .eql(['space', 'blank'])

 it 'Should remove special characters', ()->

 expect(removeWords.arrayifySentence('foo ! ^&*^&^%^%&^^&%%^bar$$%^'))

 .eql(['foo', 'bar'])

~ 48 ~

4.1.5 Sprint 0 Summary

Sprint 0 Progress
The development environment is now configured as per the requirements. The following user stories
were completed: TSV-T075, TSV-T076, TSV-T077, TSV-T078, TSV-T079, TSV-T080, TSV-T081, TSV-
T082, TSV-T083, TSV-T084, TSV-U085, TSV-U086. The next stage from here will be to develop the
base application.

Sprint 0 Review
This sprint was considerably more work than estimated in the sprint planning. Configuring Gulp to do
such a wide variety of tasks required researching the most efficient way to manage data streams, as
well as a lot of upskilling in various technologies that are needed to bring everything together.
Setting up the basic unit test environment meant that some dummy tests had to be written, again
this was not factored into the time plan. Despite the large workload, all requirements were
completed on time, and the development environment features a very high quality build setup.

Sprint 0 Retrospective

Start Doing

- More realistic time estimates

Stop Doing

- Spending too much time on stories which have been underestimated

Continue Doing

- In-code documentation
- Well-structured files
- Following user stories and acceptance criteria closely
- Unit testing
- Completing all tasks on schedule

~ 49 ~

4.2 SPRINT 1 – CREATE BASE APPLICATION AND DATABASE SCHEMA
The bulk of the work for sprint 1, was setting up the basic frontend layout, navigation structure,
configuration of routing engine, and integrating the build setup in sprint 0 with the new application.

As well as this the source and final directory structure was determined, and is as follows:

4.2.1 Directory Structure

Source Application:
client-side-sauce
 /graphics
 /scripts
 /styles
server-side-sauce
 /api-routes
 /config
 /models
 /routes
 /utils
views
 /components
 /pages
 /sections
dev-tasks

Production Application:
config
 /app-config.js
 /keys.js
models
 /Tweet.js
public
 /data
 /images
 /javascripts
 /stylesheets
 /favicon.ico
routes
utils
views

~ 50 ~

4.2.2 Database Schema
The following code shows that the Tweet object, contains the actual Tweet (body), timestamp
(dateTime), sentiment and location object

schema = new mongoose.Schema

 body : String

 dateTime : String

 sentiment : Number

 location : type : Object , "default" : {},

capped: { size: 491520, max: 1500, autoIndexId: true

4.2.3 Sprint 1 Summary

Sprint 1 Progress
The base application is now created, this included the file structure, database schema and

implementing the build environment from sprint 0. The following user stories were completed: TSV-

A001, TSV-A002, TSV-A003, TSV-A004, TSV-U088, TSV-U089, TSV-U090, TSV-U091. However, TSV-

U087 which involved setting up data stubs was not completed. This was descoped since it is no

longer necessary to be included in the main application, as all the modules should have their own

data stub tests.

Sprint 1 Review
Sprint 1 had much more realistic time estimates than sprint 0. However, there may need to be a lot

of changes as the application develops. One story was descoped, however everything else was

completed.

Sprint 1 Retrospective

Start Doing

- Thinking ahead, to reduce the amount of changes required later
- Following an ordered structure

Stop Doing

n/a

Continue Doing

- Documentation

~ 51 ~

4.3 SPRINT 2 – ALL TWEET HANDLING BACKEND MODULES

Following the methodology, two tweet handling node modules were developed, tested, documented
and published. One streams tweets in real-time, the other fetches a set of tweets based on given
parameters. Links to these modules can be found below:

4.3.1 Twitter Handling Modules Developed and Published

Name of Module Fetch-tweets

Short Description A simple to use, feature-rich, tested node module that fetches tweets
from Twitter based on topic, location, timeframe or combination

Aims - To pull Tweets from Twitter containing a given word of hash tag
- To have the option to fetch Tweets also by location or time frame

or a combination
- To return a clean well formatted result

Download Page https://www.npmjs.com/package/fetch-tweets

Source Code https://github.com/Lissy93/fetch-tweets

CI Tests https://travis-ci.org/Lissy93/fetch-tweets

Status Complete and published with all tests passing
Table 7 Summary of fetch-tweets module

Name of Module Stream-tweets

Short Description A Node module that uses the Twitter API to stream live Tweets from a
specific topic or location in real-time

Aims - Pull real-time Tweets from Twitter
- Return only fully formed Tweet objects, not chunks
- Format results nicely
- Provide optional parameters to stream by keyword, location and

more

Download Page https://www.npmjs.com/package/stream-tweets

Source Code https://github.com/Lissy93/stream-tweets

CI Tests https://travis-ci.org/Lissy93/stream-tweets

Status Complete and published with all tests passing
Table 8 Summary of stream-tweets module

Once the base modules were complete, a few further scripts were written using these modules,

within the application (as opposed to separate published modules) to do more specific actions

regarding the fetching of tweets.

Below are two scripts as an example; the first, fetches tweets and assigns a sentiment value to each

tweet, before returning the results. The second script extends this functionality, and also asyncrously

fetches a series of tweets based on many search terms, and then initiates a call back once all results

are returned. Both use the fetch-tweets module (see above).

https://www.npmjs.com/package/fetch-tweets
https://github.com/Lissy93/fetch-tweets
https://travis-ci.org/Lissy93/fetch-tweets
https://www.npmjs.com/package/stream-tweets
https://github.com/Lissy93/stream-tweets
https://travis-ci.org/Lissy93/stream-tweets

~ 52 ~

4.3.2 In-project further twitter actions

server-side-scripts/utils/fetch-sentiment-tweets.coffee
Include relevant node modules

FetchTweets = require 'fetch-tweets'

sentiment = require 'sentiment-analysis'

removeWords = require 'remove-words'

twitterKey = require('../config/keys').twitter

Tweet = require '../models/Tweet'

module.exports = (searchTerm, callback) ->

 if searchTerm == '' then Tweet.getAllTweets (results) ->

 format results, callback

 else (new FetchTweets twitterKey).byTopic searchTerm, (results) ->

 format results, callback

 format = (results, callback) ->

 # Assign Sentiments

 for tweet in results then tweet.sentiment = sentiment tweet.body

 # Assign keywords

 for tweet in results then tweet.keywords = removeWords tweet.body

 # Find average sentiment

 total = 0

 for tweet in results then total += tweet.sentiment

 averageSentiment = total / results.length

 averageSentiment = Math.round(averageSentiment*100)/100

 # Done, call callback with results and sentiment average

 callback results, averageSentiment

server-side-scripts/utils/async-tweets.coffee

fetchSentimentTweets = require '../utils/fetch-sentiment-tweets'

q = require 'q'

makeTweetPromiseArr = (searchTerm) ->

 deferredTweetResults = q.defer()

 fetchSentimentTweets searchTerm, (results) -> # Fetch all data for one Tweet

 deferredTweetResults.resolve(results)

 deferredTweetResults.promise

makeRequests = (searchTerms, completeAction) ->

 results = []

 promises = []

 for term in searchTerms then promises.push makeTweetPromiseArr term

 q.all(promises).spread -> # When all the twitter promises have returned

 for argument, index in arguments

 results.push searchTerm: searchTerms[index], tweets: argument

 completeAction results # Done!

module.exports = makeRequests

~ 53 ~

4.3.3 Sprint 2 Summary

Sprint 2 Progress
The aim of sprint 2, was to complete all Twitter handling operations. The following user stories were

completed during this sprint: TSV-E021, TSV-E022, TSV-E023, TSV-E024, TSV-E025, TSV-V093, TSV-

V094. This included developing two open-source modules for fetching and streaming tweets, and

also several scripts to do more advanced or specific operations (like multiple async requests) with

tweets.

Sprint 2 Review
Everything was completed within time, and the estimates proved very accurate. No additional

unplanned functionality was added. A lot of documentation was written and published.

Sprint 2 Retrospective

Start Doing

- Better unit tests

- More planning ahead

- Better CoffeeScript style

Stop Doing

n/a

Continue Doing

- Modularising code
- Realistic time and complexity estimates

~ 54 ~

4.4 SPRINT 3 – ALL LOCATION AND UTILITY BACKEND MODULES
As outlined in the methodology, each utility script would be developed and published as a node

module. Below are the three location-based modules that were coded and then implemented into

the application.

Name of Module Find-region-from-location

Short Description A lightweight node module that, given a latitude and longitude calculates
which region that point belongs in, without any external requests

Aims - To return valid place name, region code and ISO format for any
given valid latitude and longitude

- To return the closest region if latitude and longitude falls outside
any region (e.g. on coast of Scotland)

- To be fast, light-weight and efficient

Source Code https://github.com/Lissy93/find-region-from-location

Status Complete and published
Table 9 Summary of find-region-from-location module

Name of Module Place-lookup

Short Description A lightweight Node.js module to get the latitude and longitude for any
fuzzy place name using the Google Places API

Aims - To return valid latitude and longitude data for any place
- To find closest match of a place if type of no exact matches
- To find most likely place if multiple results returned
- To be fast, light-weight and efficient

Download Page http://npmjs.com/package/place-lookup

Source Code https://github.com/Lissy93/place-lookup

Status Complete and published
Table 10 Summary of place-lookup module

Name of Module Tweet-location

Short Description Calculates the location from geo-tagged Tweets using the Twitter Geo API

Aims - To return a latitude and longitude object capable of being plotted
on a Google Map for a given Tweet

- Additionally optionally return an object of place information for
other services

Download Page https://www.npmjs.com/package/tweet-location

Source Code https://github.com/Lissy93/tweet-location

Status Complete and published with all tests passing
Table 11 Summary of tweet-location module

4.4.1 Sprint 3 Summary

Sprint 3 Progress
Other than the sentiment analysis module, all other standalone modules are now completely
finished, tested, documented and published. They are ready to be integrated into the application in
sprint 5. User stories TSV-X097, TSV-X098, TSV-X099, TSV-Z100, TSV-E025 and TSV-V094 were all
completed fully.

https://github.com/Lissy93/find-region-from-location
http://npmjs.com/package/place-lookup
https://github.com/Lissy93/place-lookup
https://www.npmjs.com/package/tweet-location
https://github.com/Lissy93/tweet-location

~ 55 ~

4.5 SPRINT 4 – SENTIMENT ANALYSIS MODULE

This quite possibility, is the most important component of the project, so a lot of attention was paid
to getting it as accurate, stable and as fully tested as possible.

Name of Module Sentiment-analysis

Short Description Uses the AFINN-111 word list to calculate overall sentiment of a sentence

Aims - To very quickly calculate the overall sentiment of a sentence or
string of text

- No additional network requests required
- Efficient algorithm
- Thorough testing

Download Page https://www.npmjs.com/package/sentiment-analysis

Source Code https://github.com/Lissy93/sentiment-analysis

CI Tests https://travis-ci.org/Lissy93/sentiment-analysis

Status Complete and published with all tests passing
Table 12 Summary of sentiment-analysis module

Since the sentiment-analysis module was published, 6 months ago – it has had over 1000 individual
downloads, and rising. It’s thorough test strategy means so far there have been zero bugs reported,
and the clear documentation makes it an attractive choice for developers.

Another, smaller module was also developed and published during this sprint. The remove-words
node module extracts keywords for a given string and returns them in the form of an array. It uses no
external resources, and is self-learning. It will have many uses in this application, both on the
backend and frontend.

Name of Module Remove-words

Short Description Removes all non-keywords from a string

Aims - To allow an array of words to be removed from a string
- By default all pronouns, conjunctions,

Download Page https://www.npmjs.com/package/remove-words

Source Code https://github.com/Lissy93/remove-words

CI Tests https://travis-ci.org/Lissy93/remove-words

Status Complete and published with all tests passing
Table 13 Summary of remove-words module

4.5.1 Sprint 4 Summary

Sprint 4 Progress
The sentiment analysis component of the application obviously is very important, and now that the

sprint is complete I am confident that this module is developed to a suitably high quality. User

stories: TSV-D015, TSV-D016, TSV-D017, TSV-D018, TSV-D019 and TSV-D020 were all completed fully.

Sprint 4 Retrospective
Start Doing

- More content could be covered in this sprint. Story points were over-estimated.

Continue Doing

- Very thoroughly tested module, if the whole app was tested like this, it would be close to
bug-free!

https://www.npmjs.com/package/sentiment-analysis
https://github.com/Lissy93/sentiment-analysis
https://travis-ci.org/Lissy93/sentiment-analysis
https://www.npmjs.com/package/remove-words
https://github.com/Lissy93/remove-words
https://travis-ci.org/Lissy93/remove-words

~ 56 ~

4.6 SPRINT 5 – INTEGRATE BACKEND MODULES INTO APPLICATION

Once all the key backend modules were developed they could be integrated into the application.

This was done, first by running each of their installation commands (e.g. npm install sentiment-
analysis --save) which downloads the files into the ./node_modules directory, and the --save flag,
adds a dependency for each module into the ./package.json file. Next the module is imported into
the script(s) that need it (e.g. var sentimentAnalysis = require(‘sentiment-analysis’);).
Once it is imported the module can be used as indented
(e.g console.log(sentimentAnalysis(‘Have a great day!’)); will output +0.2 as the positive
sentiment value)

Several backend utility scripts were developed to do specific tasks within the application.
The following class is an example of one of these utility scripts, it was reused in the backend for all
geo-based data visualisations (heat map, 3d globe and regional map). It combines the Twitter API
(using fetch-tweets module, above) with the Google Places API (using the place-lookup module,
above) and then calculates sentiment and extracts keywords for each tweet (using the sentiment-
analysis and remove-words modules, above).

Include relevant node modules

FetchTweets = require 'fetch-tweets'

placeLookup = require 'place-lookup'

sentiment = require 'sentiment-analysis'

removeWords = require 'remove-words'

q = require 'q'

class GetGeoSentimentTweets

 constructor: (@twitterApiKeys, @placesApiKey) ->

Function fetches Tweets from Twitter API, returning a deferred promise

 fetchFromTwitter = (query, twitterApiKeys) ->

 fetchTweets = new FetchTweets(twitterApiKeys)

 deferredTweets = q.defer()

 fetchTweets.byTopic query, (results) ->

 deferredTweets.resolve(results)

 deferredTweets.promise

 # Fetches place data (lat and long) from Google places api, return promise

 findPlaceInfo = (locationObject, placesApiKey) ->

 deferredLocation = q.defer()

 if locationObject.place_name!=""

 placeLookup locationObject.place_name, placesApiKey, (placeData)->

 deferredLocation.resolve(placeData)

 else deferredLocation.resolve({error:'no place available'})

 deferredLocation.promise

 # Main

 go: (searchQuery, completeAction) ->

 placesApiKey = @placesApiKey

 fetchFromTwitter(searchQuery, @twitterApiKeys).then (twitterResults) ->

 promises = [] # array of google places promises

 for tweet in twitterResults

 promises.push findPlaceInfo tweet.location, placesApiKey

 q.all(promises).spread -> # When all the places promises have returned

 for tweet, index in twitterResults

 tweet.location = arguments[index] # Attach new location to Tweet

 tweet.sentiment = sentiment tweet.body # Attach sentiment to Tweet

 tweet.keywords = removeWords tweet.body # Attach keywords to Tweet

 completeAction twitterResults # Done!

module.exports = GetGeoSentimentTweets

~ 57 ~

4.7 SPRINT 6 – GEO SENTIMENT DATA VISUALISATIONS
This sprint involved developing the three location-based sentiment data visualisations; the heat map,
3d globe and regional map. The backend of all these visualisations used the script above as part of
the data flow.

4.7.1 The Heat Map

Number of tweets and average sentiment
This is displayed in the lower-right corner. It quickly
shows the user how many tweets are on the map.

Colour key
This indicates to the user, what the different colours
represent. (green= very positive, blue = slightly positive, grey
= neutral, orange = slightly negative, red = very negative).

Fig 22 Screenshot of heat map

~ 58 ~

Zooming
The user can zoom to an area, either by using the on-screen
buttons, mouse wheal or double tapping. The amount of data
displayed per area increases on zoom.
If the user clicks a dense heat area, the map will automatically
zoom to that area.

Reading individual tweets
Once the user has zoomed to or clicked an area, they
can click a location to read the tweet. Keywords will
be highlighted in bold, and are clickable. The
sentiment score (percentage and positive or
negative) is displayed in the bottom left. This dialog
disappears once the user clicks another part of the
map.

Searching by topic
The user can search by topic, using the top left input box. They press enter to submit the search term
and the map will re-render.

Search by location
As specified in the requirements, the
user can also search the sentiment heat
map by location. There is an input field,
with a dropdown that uses Google’s
places API, very similar to that on Google
maps.

Satellite view
The map also has a satellite view option, which makes use of Google
Earths satellite tiles. The user can enable this mode with the toggle
button in the top left corner. The rest of the maps functionality will
continue to work as before, and all data will be preserved.

Hide old heat map data
There is also the option to toggle the heat
map data, this will hide the old data, and
show only real-time results as they come in.
This functionality demonstrates just how
many location based tweets there are every
second.

~ 59 ~

4.7.2 3D Sentiment Globe

About the globe
Each line represents a sentiment area. Green represents positive, red negative and grey neutral. The
height of the bar illustrates both volume of tweets and strength of sentiment (e.g. 2 x 80% positive
tweets will have a greater height than 3 x 10% positive. Although the numbers are obviously much
larger).

The user can interact with the globe, rotating it and zooming in with their pointing device (mouse) or
touch screen.

The globe is real-time, and when a new tweet comes in it is displayed
immediately. This makes it very cool to watch.

Viewing more information about the data on the globe
The user can click or tap “See More” to read about what the globe is
showing, as well as the latest sentiment stats and links to other geo data
visualisations.

Entering a custom search term
In the same way as on the map, the user can enter a search term. This
can be a topic, location, person, political party, sports team or anything.
Fresh twitter data will be fetched, and the globe will be re-rendered.

Fig 23 Screen shot of 3D globe

~ 60 ~

4.7.3 Regional Map
Often it is useful to get a clear snapshot of which regions are positive or negative about a specific
topic, and for this the heat map and globe are too detailed. The aim of the regional map was to show
the top positive and negative regions (both national and international) for a specific search term (or
overall).

Fig 24 Screen shot of regional map

As the above print screen shows, each region has a colour based on sentiment. The user can hover
over a region to view exact sentiment score, and click a region to zoom to sub-regions. The user can
enter either a custom search term, or a region name. At the bottom of the page there is a list of most
positive and negative regions for the users search term.

~ 61 ~

4.8 SPRINT 7 – KEYWORD SENTIMENT DATA VISUALISATIONS
The aim of sprint 7 was to develop the data visualisations that used keywords. The first of which was

the word cloud, and then the scatter-plot. The main use for these charts are to allow users to

understand which keywords are making their brand or topic positive or negative, and then target

their further research accordingly.

4.8.1 Sentiment Word Cloud
The word cloud shows
keywords used in recent
tweets with strong
sentiment. The size of
the word represents its
frequency of use, and
colour indicates
sentiment (very green =
very positive, very red =
very negative, and all
colours in-between
represent corresponding
sentiment). Words are
clickable.

As with many of the
other data
visualisations, the user
can choose to enter a search term, to fetch fresh custom twitter data.

4.8.2 Sentiment Word Scatter Plot
This visualisation
displays the same data
as the word cloud, but
in a different format. It
makes it easier to break
down a much larger set
of word data, and
show’s trends more
clearly.

The user can
hover over
each point,
to view the
associated
word.

Fig 25 Screen shot of word cloud

Fig 26 Screen shot of word scatter plot

~ 62 ~

CoffeeScript D3.js Source Code for Scatter Plot

d3 = require 'd3/d3.min.js'

tipsy = require 'tipsy/index.js'

mainPage = 'word-scatter-plot'

pageControls = require '../page-controls-module.coffee'

pageControls.setMainPage mainPage

set the stage

margin = {t: 30, r: 20, b: 20, l: 40}

w = 600 - (margin.l) - (margin.r)

h = 500 - (margin.t) - (margin.b)

biggestFreq = 10

for e, i in wordData

 if e.freq > biggestFreq then biggestFreq = e.freq

 ran = Math.round(Math.random()*10)/100

 wordData[i].sentiment = wordData[i].sentiment + ran

x = d3.scale.linear().range([0, w/4, w/2, (w/4)*3, w])

y = d3.scale.linear().range([h - 60, 0])

scaleColors = ["#a50026","#d73027","#fdae61" ,"#B4B4B4",

 "#a6d96a","#1a9850","#006837"]

color = d3.scale.linear()

 .domain([-0.6, -0.4, -0.2, 0, 0.2, 0.4, 0.6])

 .range(scaleColors)

svg = d3.select('#scatter-words')

 .append('svg')

 .attr('width', w + margin.l + margin.r)

 .attr('height', h + margin.t + margin.b)

set axes, as well as details on their ticks

xAxis = d3.svg.axis().scale(x)

 .ticks(20).tickSubdivide(true).tickSize(6, 3, 0).orient('bottom')

yAxis = d3.svg.axis().scale(y)

 .ticks(20).tickSubdivide(true).tickSize(6, 3, 0).orient('left')

group that will contain all of the plots

groups = svg.append('g')

 .attr('transform', 'translate(' + margin.l + ',' + margin.t + ')')

array of the sentiments, used for the legend

sentiments = ['Positive', 'Neutral', 'Negative']

x0 =Math.max(-d3.min(wordData, (d) -> d.freq), d3.max(wordData, (d) -> d.freq))

x.domain [0, 10, 20, 50, biggestFreq]

y.domain [-0.6, 0.6]

style the circles, set their locations based on data

circles = groups.selectAll('circle')

 .data(wordData)

 .enter()

 .append('circle')

 .attr('class', 'circles')

 .attr(

 cx: (d) -> x +d.freq

 cy: (d) -> y +d.sentiment

 r: 8

 id: (d) -> d.text

)

 .style('fill', (d) -> color d.sentiment)

 .style('opacity','0.6')

what to do when we mouse over a bubble

mouseOn = ->

 circle = d3.select(this)

 # transition to increase size/opacity of bubble

 circle.transition()

 .duration(800)

 .style('opacity', 1)

 .attr('r', 16).ease 'elastic'

 # append lines to bubbles that will be used to show the precise data points.

 # translate their location based on margins

 svg.append('g')

 .attr('class', 'guide')

 .append('line')

 .attr('x1', circle.attr('cx'))

 .attr('x2', circle.attr('cx'))

 .attr('y1', +circle.attr('cy') + 26)

 .attr('y2', h - (margin.t) - (margin.b))

 .attr('transform', 'translate(40,20)')

 .style('stroke', circle.style('fill'))

 .transition()

~ 63 ~

 .delay(200)

 .duration(400)

 .styleTween 'opacity', -> d3.interpolate 0, .5

 svg.append('g')

 .attr('class', 'guide')

 .append('line')

 .attr('x1', +circle.attr('cx') - 16)

 .attr('x2', 0)

 .attr('y1', circle.attr('cy'))

 .attr('y2', circle.attr('cy'))

 .attr('transform', 'translate(40,30)')

 .style('stroke', circle.style('fill'))

 .transition().delay(200).duration(400)

 .styleTween 'opacity', -> d3.interpolate 0, .5

 # func to move mouseover item to front of SVG stage, if another dot overlaps

 d3.selection::moveToFront = -> @each -> @parentNode.appendChild this

 circle.moveToFront()

what happens when we leave a bubble?

mouseOff = -> circle = d3.select(this)

 # go back to original size and opacity

 circle.transition()

 .duration(800)

 .style('opacity', .4)

 .attr('r', 8)

 .ease 'elastic'

 # fade out guide lines, then remove them

 d3.selectAll('.guide').transition().duration(100).styleTween('opacity', ->

 d3.interpolate .5, 0

).remove()

run the mouseon/out functions

circles.on 'mouseover', mouseOn

circles.on 'mouseout', mouseOff

tooltips (using jQuery plugin tipsy)

circles.append('title').text (d) -> d.text

$('.circles').tipsy gravity: 's'

circles

 .attr('class', 'tooltipped')

 .attr('data-position', 'bottom')

 .attr('data-delay', '50')

 .attr('data-tooltip', (d) -> d.text)

the legend color guide

legend = svg.selectAll('rect')

 .data(sentiments)

 .enter()

 .append('rect')

 .attr(

 x: (d, i) -> 40 + i * 80

 y: h

 width: 25

 height: 12)

 .style('fill', (d) ->

 if d == 'Positive' then return color 0.5

 if d == 'Negative' then return color -0.5

 else return color 0)

legend labels

svg.selectAll('text').data(sentiments).enter().append('text').attr(

 x: (d, i) -> 40 + i * 80

 y: h + 24).text (d) -> d

draw axes and axis labels

svg.append('g')

 .attr('class', 'x axis')

 .attr('transform', "translate(#{margin.l}, #{(h - 60 + margin.t)})")

 .call xAxis

svg.append('g')

 .attr('class', 'y axis')

 .attr('transform', "translate(#{margin.l},#{margin.t})")

 .call yAxis

svg.append('text')

 .attr('class', 'x label')

 .attr('text-anchor', 'end')

 .attr('x', w + 50)

 .attr('y', h - (margin.t) - 5)

 .text 'Frequency'

$(document).ready -> $('.tooltipped').tooltip delay: 50

~ 64 ~

Server Side code for preparing the keyword data for both data visualisations
Tweet = require '../models/Tweet' # The Tweet model

MakeSummarySentences = require '../utils/make-summary-sentences'

removeWords = require 'remove-words'

sentimentAnalysis = require 'sentiment-analysis'

FetchTweets = require 'fetch-tweets'

API keys

twitterKey = require('../config/keys').twitter

fetchTweets = new FetchTweets twitterKey

class FormatWordsForCloud

 # Converts ordinary Tweet array to suitable form for word cloud

 formatResultsForCloud= (twitterResults, allWords = false) ->

 results = []

 tweetWords = makeTweetWords twitterResults

 for word in tweetWords

 sent = sentimentAnalysis word

 if allWords or sent != 0

 f = results.filter((item) -> item.text == word)

 if f.length == 0 then results.push(text: word, sentiment: sent, freq: 1)

 else for res in results then if res.text == word then res.freq++

 results

 findTopWords= (cloudWords) ->

 posData = cloudWords.filter (cw) -> cw.sentiment > 0

 negData = cloudWords.filter (cw) -> cw.sentiment < 0

 neutData = cloudWords.filter (cw) -> cw.sentiment == 0

 posData.sort (a, b) -> parseFloat(a.freq) - parseFloat(b.freq)

 posData = posData.reverse().slice(0,5)

 negData.sort (a, b) -> parseFloat(a.freq) - parseFloat(b.freq)

 negData = negData.reverse().slice(0,5)

 neutData.sort (a, b) -> parseFloat(a.freq) - parseFloat(b.freq)

 neutData = neutData.reverse().slice(0,5)

 {topPositive: posData, topNegative: negData, topNeutral: neutData}

 findTrendingWords = (cloudWords) ->

 cloudWords.sort (a, b) -> parseFloat(a.freq) - parseFloat(b.freq)

 cloudWords = cloudWords.reverse().slice(0,10)

 # Make a paragraph of keywords

 makeTweetWords = (twitterResults) ->

 para = ''

 for tweet in twitterResults then para += tweet.body + ' '

 removeWords para, false

 # Merge two sets of results

 mergeResults = (res1, res2) -> res1.concat res2

 # Make sentence description for map

 makeSentence = (data, searchTerm) ->

 (new MakeSummarySentences data, searchTerm).makeMapSentences()

 # Calls methods to fetch and format Tweets from the database

 renderWithDatabaseResults: (cb) ->

 Tweet.getAllTweets (tweets) ->

 cloudData = formatResultsForCloud(tweets)

 sentence = makeSentence(tweets, null)

 sentence.topWords = findTopWords cloudData

 cb cloudData, sentence

Calls methods to fetch fresh Twitter, sentiment, and place data

 renderWithFreshData: (searchTerm, cb) ->

 fetchTweets.byTopic searchTerm, (webTweets) ->

 Tweet.searchTweets searchTerm, (dbTweets) -> # Fetch matching db results

 data = mergeResults webTweets, dbTweets

 cloudData = formatResultsForCloud(data, true)

 sentence = makeSentence(data, searchTerm)

 sentence.topWords = findTopWords cloudData

 sentence.trending = findTrendingWords cloudData

 cb cloudData, sentence

 findTrends: (tweets) ->

 findTopWords formatResultsForCloud tweets, true

fwfc = new FormatWordsForCloud()

module.exports.getFreshData = fwfc.renderWithFreshData

module.exports.getDbData = fwfc.renderWithDatabaseResults

~ 65 ~

4.9 SPRINT 8 – TIMELINE, TRENDING AND COMPARISON CHARTS
The aim of this sprint was to use the existing backend to create a series of data visualisations

comparing sentiment against other factors (time, other topics, local trends). It covered user stories:

TSV-J043, TSV-J044, TSV-J045, TSV-J046, TSV-O057, TSV-O058, TSV-P059, TSV-P060, TSV-P061, TSV-

P062.

During this sprint everything went smoothly, mainly because the backend was already created and

tested at this point, and the infrastructure for creating similar frontend charts was already in place

after sprint 7.

4.9.1 Sentiment Timeline
The timeline shows sentiment (y-axis) over time(x-axis), either overall or for a specific search term. It
aims to give users an overview of what times of day the nation is more or less positive about a given
topic. The user can also hover over a specific point in time to view exact values, and more data.

A decision was made to use nvD3.js for this chart as opposed to developing it from scratch in D3. This
was because it’s quite a generic area line chart, and there seemed little point in rewriting something
that already existed. The chart of course, still needed to be configured, but it was possible to do this
in just 40 lines of CoffeeScript.

Another advantage of NVD3 is that it’s fully responsive, out-of-the-box. Whereas in plain D3 it is a lot
of work to implement this functionality. NVD3 can’t cope with large amounts of data practically well,
though this isn’t an issue here, as there are a maximum of (just) 48 data points on this graph at any
given time.

Fig 27 Screen shot of time line

~ 66 ~

4.9.2 Trending
The aim of this screen was to show the sentiments of the topics currently trending on Twitter
worldwide, and in the user’s local area.

Screenshot of Worldwide trending screen
The trending screen is made up of three key
areas. Firstly, an input field where the user can
enter a location (country, region, postcode, street
address – anything!).

The second part of the page shows a list of the
topics that are currently trending in that area (in
this screenshot, it is the whole world). Each topic
is colour coded according to sentiment (green,
grey or red). Topic are also clickable and will take
the user to the search screen giving them more
information.

Finally, there is a bubble chart. It show’s each
trend as a bubble, where the size indicates
volume of tweets, and the colour shade indicates
sentiment. Again this chart is interactive, and the
user can click a bubble.

Fig 28 Screen shot of trending 1

~ 67 ~

Screenshot of the Local Trending Screen
The layout of this screen, visually is very
similar. The backend however is very
different (see next page).

Where the user enters their location, the
place-lookup module (developed in sprint 2),
finds the closest match and its latitude and
longitude.

In this example, the user has entered
“ox37qa” which is their home post code. The
place-lookup module has updated it to
“Grays Road, Oxford, UK”. This reassures the
user, that trends are from the correct place.

Fig 29 Screen shot of trending 2

~ 68 ~

Data flow behind the trending page
The following flow chart shows the flow of
data in the backend of the trending page.

Because there is quite a lot of data requests
done, where possible these are all
asynchronous, and everything is initiated
with an AJAX call, which means the page
can render while the request is still taking
place. A loading spinner is displayed while
the system waits for data to be returned.

The following code snippet initiates the AJAX request from the client side.
$(document).ready ->

 urlPage = window.location.href. split('/').pop() .toLowerCase()

 urlEnd = if urlPage != 'trending' then urlPage else ''

 $.post('/api/trending/'+urlEnd, {}, (results) -> renderResults results)

Once the data has been returned, the renderResults(results) function is called. This checks the
format of the results, hides the spinners and initiates the function to draw the bubble chart and
trend list.

Fig 30 Data flow diagram for trending page

~ 69 ~

Rendering the bubble chart with D3
The following CoffeeScript code snippet draws the bubble chart, and binds it to the data.

drawBubbleChart = (results) ->

 diameter = 450

 format = d3.format(',d')

 scaleColors = ["#C80000", "#EB3443","#B1B1B1","#42F735","#4AF43E"]

 color = d3.scale.linear()

 .domain([-0.8, -0.2, 0, 0.2, 0.8])

 .range(scaleColors)

 bubble = d3.layout.pack().sort(null).size([diameter, diameter]).padding(1.5)

 svg = d3.select('#bubble-trends')

 .append('svg')

 .attr('width', diameter)

 .attr('height', diameter)

 .attr('class', 'bubble')

 classes = (root) ->

 classes = []

 recurse = (name, node) ->

 if node.children

 node.children.forEach (child) ->

 recurse node.name, child

 else

 classes.push

 packageName: name

 className: node.name

 value: node.size

 col: node.col

 recurse null, root

 { children: classes }

 root = {name: 'trending', children:[

 {name: 'positive', children: []}

 {name: 'negative', children: []}

]}

 for trend in results

 if trend.sentiment > 0

 root.children[0].children.push {

 name: trend.topic, size: trend.volume, col: trend.sentiment }

 else if trend.sentiment < 0

 root.children[1].children.push {

 name: trend.topic, size: trend.volume, col: trend.sentiment }

 node = svg.selectAll('.node')

 .data(bubble.nodes(classes(root))

 .filter((d) -> !d.children))

 .enter()

 .append('g')

 .attr('class', 'node')

 .attr('transform', (d) -> 'translate(' + d.x + ',' + d.y + ')')

 node.append('title').text (d) -> d.className + ': ' + format(d.value)

 node.append('circle')

 .attr('r', (d) -> d.r)

 .style 'fill', (d) -> color d.col

 node.append('text')

 .attr('dy', '.3em')

 .style('text-anchor', 'middle')

 .text (d) -> d.className.substring 0, d.r / 3

 d3.select(self.frameElement).style 'height', diameter + 'px'

~ 70 ~

4.9.3 Comparison Chart
The aim of this page was to let the user compare different topics (e.g. comparing political leaders
before an election, or sports teams, or competing brands, or locations…).

Again this paged used the asynchronous tweets script as its primary backend module (since between
2 and 4 sets of tweets were fetched). The frontend was a fairly simple donut chart and word list.

The user has the choice to enter between 2 and 4 different topics to compare. The page is responsive
and will adjust accordingly.

Fig 31 Screen shot for comparison

~ 71 ~

4.10 SPRINT 9 – REAL-TIME FUNCTIONALITY

4.10.1 Implementing the real-time system
During this sprint the infrastructure for real-time data updating was developed. Existing charts were
updated to become real-time, and a new page (The World Now) was developed to show off the real-
time efficiency.

Socket.io was the obvious choice of technologies to use, as it manages all the complexities of web
sockets and data handling very nicely, and has exceptional browser support. In the methodology
other options were considered.

A server-side instance of socket.io runs on the
node app, and listens for an event. When it
receives such an evet, it notifies its
subscribers (the client browsers). They then
look at the data check what’s new, and re-
render the appropriate component of a given
chart.

4.10.2 Real-time Dashboard
The real-time dashboard or “World Now” aims to give the user an overview of how the world is
feeling at that point in time. Everything is live, so as soon as a new tweet comes in, it is plotted to the
map, and added to the statistics.

Fig 32 Diagram of node socket real-time

Fig 33 Screen shot of the Now page

~ 72 ~

4.11 SPRINT 10 – ADVANCED DATA VISUALISATIONS
The aim of sprint 10, was to use other API’s which generate similar data, to create a series of data

visualisations allowing the user to gain a more advanced insight into their topic. This included tone

analysis, entity extraction and topic breakdown.

4.11.1 Tone Analysis
This section used HP Idol OnDemand, to try and determine the tone of speech conveyed in Tweets

for a given topic. D3 was then used to render these results accordingly.

In the following example, the user has searched for “National Rail”. The strongest tone conveyed for

this topic is anger, there is very little joy, and a small amount of fear and sadness.

Fig 34 Screen shot of the tone identification page

~ 73 ~

4.11.2 Entity Extraction

Entity extraction is the process of automatically determining document metadata from an
unstructured body of text. For this section IBM Watson was utilised along with Wikipedia (as the
dataset).

A Sankey chart was developed in D3 to display the results.

As well as the Sankey chart, a list (with graphics, pulled from
Wikipedia) was used to display the results.

The snippet on the right show’s a small set of entities pulled
from the term “Computer Science”. Other entities included
languages, professions, companies, teams, films etc.…

Fig 35 Screen shot of the entity extraction page

~ 74 ~

4.12 SPRINT 11 – HOME PAGE AND SEARCH PAGE

Sprint 11 was the final development sprint, it was dedicated to developing the homepage, search

page and polishing of the site structure (navigation bar, footer, about page etc.…).

4.12.1 The Home Page
The homepage aimed to quickly inform the user of what the application is and can be used for, as
well as pointing them in the direction for getting started (either making a search, or scrolling down
and clicking a data visualisation link). It is essential that the homepage is clear, but also interesting
enough to engage the user. From a more practical point of view, it must also load quickly and run
smoothly.

The home page is in two parts, each filling 100% of the screen, and connected by a paralax scrolling
animation.

The upper section of the homepage
The first section, gives a quick introduction to what Sentiment Sweep is (with a read more button, for
more detail), and also has the two entry routes – make a search, or scroll down.

The background is made up of a series of dynamic
hexagons, each represents a tweet from the past 60
seconds, the hexagons are constantly updating, as
new tweets come in, in real-time. The colour of the
hexagon shows the sentiment of the tweet. The user
can hover over a hexagon to read a tweet. This is all
explained the user briefly in the bottom right corner.

Fig 36 Screen shot of the home page

~ 75 ~

The lower section of the homepage
Once the user either scrolls down, or taps the arrow, they are directed to this screen.
This page aims to give the user quick access to every main page on the application.

The twelve tiles with thumbnails represents the twelve
data visualisations. Each tile is a hyperlink/ button that
the user can click/ tap to be directed to the relevant page. The user can scroll back up at any time to
get back to the upper section of the homepage.

Using traditional HTML, this page would have required a lot of mark-up code and repetition (a div,
image, text and hyperlink [at least] for each tile!). However, since Jade was used as the primary
templating engine, this whole section was written (using a for loop) with the following code:

.section#part-2

 .container

 h2 Sentiment Data Visualisations

 p.flow-text.grey-text.darken-4 Click one of the links below to generate the chart

 .row

 each page in pages

 .col.s10.offset-s1.m4.l3

 a(href='/#{page.page}')

 .card.home-card

 .card-image.waves-effect.waves-block.waves-light

 img(src='/images/thumbnails/thumb_#{page.index}.png')

 .card-content

 span.card-title.grey-text.text-darken-4= page.title

In the layout.jade file (which this inherits from), there is a JSON object with reference to each of the
twelve visualisations, that is used numerously throughout the application.

If the user instead, makes a search in the upper section, they will be redirected to the search results
page, the next section outlines the key functionality of this page.

Fig 37 Screen shot of second part of home page

~ 76 ~

4.12.2 The Search Page
This page allows the user to make
a search, for any topic and view a
summary of sentiment results
and links for further results. The
user is directed to this page
either from the homepage, by
clicking a keyword in any of the
data visualisations/ charts or by
clicking a link directly to the
search page.

The following pages show screen shots. There was too much content to fit on a single page, so it has
been broken down into several images across the next three pages.

Screen shot – part 1

Fig 38 Screen shot of the search page

~ 77 ~

Screenshot – part 2

~ 78 ~

Screenshot – part 3

~ 79 ~

Components of the Search Page

Sentiment Summary

The first section of the search results page has a dial, hexagon shape and a list of keywords. The aim
of this is to give the user a super quick overview of what the overall sentiment and distribution of
sentiment is.

The dial quickly shows average – a single number between -100 and +100.

However, some topics may be very controversial, where a lot of people hold strong positive opinions
and others hold strong negative opinions (e.g. a politician). The purpose of the hexagon area is to
show sentiment across a set of tweets. Like the homepage, each hexagon represents a tweet, colour
indicates sentiment and the hexagons can be hovered over to find out more.

The words list shows the top words used in tweets relating to the searched topic. Positive words are
in green, negative in red and the rest in grey. Words are clickable.

Tone Identification Summary

An AJAX request is made to the tone identification API route, and the results are displayed in a series
of mini bar charts, illustrating tones such as anger and joy. There is a see more button which takes
the user to the main tone identification page, which shows much more detail.

Entity Extraction Summary

This is a quick summary of the key entities extracted from the search results, it only shows the six top
categories. Again there is a see more button, taking the user to the entity extraction page where they
can see more details.

Comparison Summary

A quick summary of how the search results compare to the average sentiment on twitter over the
past 60 minutes. There is also the option for the user to enter up to four search terms to compare
sentiment with (so they can compare different baseball teams for example). This redirects the user to
the comparison page.

Raw Tweets Summary

This gives a small snippet of the top most positive and most negative tweets from the set of tweets
used in the search results. Keywords are highlighted in bold to make it easier for the user to skim
read (and they are clickable). The time/date, location and sentiment of each tweet is also displayed.
There again is a see more button, which shows the user a larger set of relevant positive and negative
tweets.

Links to further data visualisations

The final section provides a series of link to the data visualisations on the rest of the site, but with
accustom hyperlink for the users search term. For example the heat map will show only results
relevant to what the user searched for, as will the timeline and all other charts.

~ 80 ~

4.13 SPRINT 12 – FINISHING, UX TESTING AND LAUNCHING

4.13.1 The Icon Graphic
The icon to the below is the small logo and favicon used. It show’s a Twitter-bird (because the data

source is Twitter), and a green-red background (because most of the application categorised data as

green or red).

4.13.2 Launching
The app was packaged and published as described in the methodology. The gulp build command was

used to create the compiled version of the code. NGINX was used as a DNS proxy on an Apache

server. Forever was used to start the final node app, and keep it running, it is initiated and monitored

vis SSH. The files were uploaded via FTP onto a VPS. And the following domain points to the node app

which is running on port 3000 of 109.73.175.184 (http://109.73.175.184:3000/).

http://sentiment-sweep.com/

4.13.3 UX Testing
At various points during this spring, a set of users tested out the application. They were asked to fill
in a survey that covered aspects such as ease of use, clarity of results, expected accuracy etc. They
rated each criterion (quantitatively) between 0 and 5 on each of these points, and if the score was
under 5 they also briefly gave a sentence or two on how it could be improved (qualitatively). Once
these improvements were implemented the user completed the survey again. This process was
repeated three times during this final sprint.

The full survey can be viewed in the appendix.
Below is a summary of the quantitative results for each iteration.

Fig 39 Logo

http://sentiment-sweep.com/

~ 81 ~

4.13.4 User Experience Survey Iteration 1 (initial increment)

User Experience Review 1

Page/ Section Criteria Joe George Fiona Jen Rosie Ollie Average

About User
Age Range > 18 18 - 25 18 - 25 25 - 65 18 - 25 18 - 25 -

Technical Ability 4 5 3 2 3 5 -

Search Page

Clarity of Results 5 4 4 5 5 5 4.67

Usefulness of Results 5 5 5 5 4 5 4.83

Accuracy of Results 4 5 3 4 4 5 4.17

Ease of interpretation 3 5 5 3 5 5 4.33

Tone
Identification

Clarity of Results 5 5 5 5 5 5 5.00

Usefulness of Results 5 5 4 5 5 5 4.83

Accuracy of Results 5 3 2 5 5 3 3.83

Ease of interpretation 5 5 5 5 5 5 5.00

Entity Extraction

Clarity of Results 5 5 4 5 5 5 4.83

Usefulness of Results 4 5 5 4 5 4 4.50

Accuracy of Results 5 5 5 5 5 5 5.00

Ease of interpretation 5 5 5 5 5 5 5.00

Topic
Comparison

Clarity of Results 5 5 4 5 5 5 4.83

Usefulness of Results 5 5 5 5 5 5 5.00

Accuracy of Results 5 4 5 5 5 4 4.67

Ease of interpretation 5 5 5 5 5 5 5.00

Raw Tweets
Usefulness of Results 5 5 3 5 5 4 4.50

Ease of interpretation 5 5 5 5 5 5 5.00

Heat Map
Ease of interpretation 4 5 4 4 4 5 4.33

Clarity of Results 4 5 4 4 5 5 4.50

Regional Map
Ease of interpretation 5 5 5 5 5 5 5.00

Clarity of Results 5 5 5 5 5 5 5.00

Word Cloud/
Scatter Plot

Clarity of Results 4 4 5 4 4 5 4.33

Usefulness of Results 4 4 3 5 5 5 4.33

Accuracy of Results 5 5 5 5 5 5 5.00

Ease of interpretation 5 5 5 5 5 5 5.00

3D Globe Overall Rating 5 5 5 5 4 5 4.83

Trending Overall Rating 5 5 5 5 5 5 5.00

Time Line Overall Rating 2 3 2 2 3 4 2.67

Home Page
Clarity of app definition 5 5 4 5 3 5 4.50

Clarity of initial routes 4 5 4 4 5 5 4.50

Overall Average 4.61 4.74 4.35 4.65 4.71 4.81 4.65
Table 14 User experience survey 1

~ 82 ~

4.13.5 User Experience Survey Iteration 2

User Experience Review 2
Page/ Section Criteria Joe George Fiona Jen Rosie Ollie Average

About User Age Range > 18 18 - 25
18 -
25

25 -
65

18 -
25

18 -
25 -

Technical Ability 4 5 3 2 3 5 -

Search Page

Clarity of Results 5 5 5 5 5 5 5.00

Usefulness of Results 5 5 5 5 4 5 4.83

Accuracy of Results 4 5 4 5 5 5 4.67

Ease of interpretation 3 5 5 3 5 5 4.33

Tone
Identification

Clarity of Results 5 5 5 5 5 5 5.00

Usefulness of Results 5 5 4 5 5 5 4.83

Accuracy of Results 5 5 3 5 5 4 4.50

Ease of interpretation 5 5 5 5 5 5 5.00

Entity Extraction

Clarity of Results 5 5 5 5 5 5 5.00

Usefulness of Results 4 5 5 4 5 5 4.67

Accuracy of Results 5 5 5 5 5 5 5.00

Ease of interpretation 5 5 5 5 5 5 5.00

Topic
Comparison

Clarity of Results 5 5 5 5 5 5 5.00

Usefulness of Results 5 5 5 5 5 5 5.00

Accuracy of Results 5 5 5 5 5 4 4.83

Ease of interpretation 5 5 5 5 5 5 5.00

Raw Tweets
Usefulness of Results 5 5 3 5 5 5 4.67

Ease of interpretation 5 5 5 5 5 5 5.00

Heat Map
Ease of interpretation 5 5 5 5 5 5 5.00

Clarity of Results 5 5 5 5 5 5 5.00

Regional Map
Ease of interpretation 5 5 5 5 5 5 5.00

Clarity of Results 5 5 5 5 5 5 5.00

Word Cloud/
Scatter Plot

Clarity of Results 4 4 5 4 4 5 4.33

Usefulness of Results 4 4 3 5 5 5 4.33

Accuracy of Results 5 5 5 5 5 5 5.00

Ease of interpretation 5 5 5 5 5 5 5.00

3D Globe Overall Rating 5 5 5 5 4 5 4.83

Trending Overall Rating 5 5 5 5 5 5 5.00

Time Line Overall Rating 2 3 2 2 3 4 2.67

Home Page
Clarity of app definition 5 5 4 5 3 5 4.50

Clarity of initial routes 4 5 4 4 5 5 4.50

Overall Average 4.68 4.87 4.58 4.74 4.77 4.90 4.76

Table 15 User Experience survey 2

~ 83 ~

4.13.6 User Experience Survey Iteration 3 (final solution)

User Experience Review 3
Page/ Section Criteria Joe George Fiona Jen Rosie Ollie Average

About User Age Range > 18 18 - 25
18 -
25

25 -
65

18 -
25

18 -
25 -

Technical Ability 4 5 3 2 3 5 -

Search Page

Clarity of Results 5 5 5 5 5 5 5.00

Usefulness of Results 5 5 5 5 5 5 5.00

Accuracy of Results 5 5 5 5 5 5 5.00

Ease of interpretation 5 5 5 5 5 5 5.00

Tone
Identification

Clarity of Results 5 5 5 5 5 5 5.00

Usefulness of Results 5 5 5 5 5 5 5.00

Accuracy of Results 5 5 4 5 5 5 4.83

Ease of interpretation 5 5 5 5 5 5 5.00

Entity Extraction

Clarity of Results 5 5 5 5 5 5 5.00

Usefulness of Results 5 5 5 5 5 5 5.00

Accuracy of Results 5 5 5 5 5 5 5.00

Ease of interpretation 5 5 5 5 5 5 5.00

Topic
Comparison

Clarity of Results 5 5 5 5 5 5 5.00

Usefulness of Results 5 5 5 5 5 5 5.00

Accuracy of Results 5 5 5 5 5 4 4.83

Ease of interpretation 5 5 5 5 5 5 5.00

Raw Tweets
Usefulness of Results 5 5 5 5 5 5 5.00

Ease of interpretation 5 5 5 5 5 5 5.00

Heat Map
Ease of interpretation 5 5 5 5 5 5 5.00

Clarity of Results 5 5 5 5 5 5 5.00

Regional Map
Ease of interpretation 5 5 5 5 5 5 5.00

Clarity of Results 5 5 5 5 5 5 5.00

Word Cloud/
Scatter Plot

Clarity of Results 5 5 5 5 5 5 5.00

Usefulness of Results 5 5 5 5 5 5 5.00

Accuracy of Results 5 5 5 5 5 5 5.00

Ease of interpretation 5 5 5 5 5 5 5.00

3D Globe Overall Rating 5 5 5 5 5 5 5.00

Trending Overall Rating 5 5 5 5 5 5 5.00

Time Line Overall Rating 5 5 5 5 5 5 5.00

Home Page
Clarity of app definition 5 5 5 5 5 5 5.00

Clarity of initial routes 5 5 5 5 5 5 5.00

Overall Average 5.00 5.00 4.97 5.00 5.00 4.97 4.99

Table 16 User experience survey 3

~ 84 ~

5 EVALUATION
This chapter evaluates the final solution that was implemented, and how well it solves the problem

outlined in the introduction. The aim of the evaluation is to allow

The system will be evaluated based on the following criteria:

- Meeting requirements – The degree of compliance with the user stories and acceptance

criteria specified in the methodology

- User experience – How useful, clear and enjoyable the users found using the application

- Time management and scheduling – How closely the proposed schedule was followed

- Technical testing– Summary of unit test results

- Code quality - Quality and style of code and project structure

- Self-evaluation - Discussion of how well I thought the project went compared to the plan

5.1 EVALUATION OF REQUIREMENTS MET
This section reviews each of the system and functional requirements, that were specified in the form

of user stories in the methodology. The table shows whether or not the system meets each point. If it

does not, and explanation is given. Only the user stories for the main application are listed. To read

the acceptance criteria for each story, see Appendix 1.

Sprint Story ID User Story Complete Notes

Sprint
0

TSV-T075
 As a development environment I should
compile CoffeeScript into JavaScript 

TSV-T076
 As a development environment I should
compile LESS/ SASS into CSS 

TSV-T077
 As a development environment I should
check HTML/ Jade for missing entities 

TSV-T078
 As a development environment I should
prepare graphics from source to their
web form



TSV-T079
 As a development environment I should
remove obsolete files 

TSV-T080
 As a development environment I should
bundle browser scripts 

TSV-T081
 As a development environment I should
check code (where possible) for errors
/bad style



TSV-T082
 As a development environment I should
watch for changes in source files and
then recompile the appropriate files



TSV-T083

As a development environment I should
keep multiple development browsers
across various devices in sync for
seamless compatibility testing 

Only happens
when the
default gulp
process or
browser-sync
task is run

~ 85 ~

TSV-T084

 As a development environment I should
run unit tests and output results



Runs
automatically
when a test
file changes,
or when the
test command
is run

TSV-U085
 As a test environment I should run unit
tests 

TSV-U086
 As a test environment I should have
integration tests 

Sprint
1

TSV-A001
As a user I should be able to view the
solution in my browser simply by visiting
a URL

 http://sentime
nt-sweep.com

TSV-A002

As a user I should have fast loading times
or be displayed with a loading graphic



Usually, yes -
but depends
on user factors
(such as
internet
speeds and
browser) as
well

TSV-A003
As a user I should be able to easily switch
between different parts of the
application

 Using
navigation bar

TSV-A004
As a user I should find the user interface
clear and simple to look at 

TSV-U087

 As a test environment I should be able to
stub data as to not make external data
requests



Wasn't
necessary for
the main
application,
since all
modules had
data stubbed
tests

TSV-U088
 As a test environment I should use
assertions for the unit tests 

TSV-U089
 As a test environment I should show
coverage test results 

TSV-U090
 As a test environment I should check
dependencies are up-to-date 

TSV-U091
 As a test environment I should check
code quality with automated code
reviews



TSV-U092

 As a test environment I should do
headless browser testing and HTTP
service testing



HTTP service
testing was
implemented,
but it wasn't
necessary to
use it to test
all parts of the
application

http://sentiment-sweep.com/
http://sentiment-sweep.com/

~ 86 ~

Sprint
2

TSV-E021
As a system I should be able to fetch a
specified number of Tweets from around
a given location from the Twitter API



TSV-E022

As a system I should be able to fetch a
specified number of Tweets talking about
a specific topic, hashtag or keyword from
the Twitter API



TSV-E023
As a system I should have reasonable
response times in fetching Tweets from
the Twitter API



TSV-E024
As a system I should respond with a
suitable error if there is a problem
fetching Tweets from the Twitter API



TSV-E025
As a system I should be able to create a
series of Tweet objects ready for the next
stage



TSV-V093
 As a developer I should be able to get a
continuous stream of chunked tweets 

TSV-V094
 As a developer, the streamed tweets
should be formatted and safe 

Sprint
3

TSV-X097
As A developer I can get A valid latitude
and longitude for any fuzzy place name 

TSV-X098
As a developer I can get the country code
in multiple forms from latitude and
longitude



TSV-X099
As a developer I can get location of geo-
tagged tweets from their ID’s 

TSV-Z100
As a system I am super-efficient (and
totally awesome) 

TSV-E025
As a system I should be able to create a
series of Tweet objects ready for the next
stage



TSV-V094
As a developer, the streamed tweets
should be formatted and safe 

Sprint
4

TSV-D015
As a system I should be able to identify
weather a string is positive, neutral or
negative overall



TSV-D016

As a system I should be able to identify
weather the attitude towards a certain
specified topic is positive, neutral or
negative



TSV-D017

As a system I should be able to give a
confidence estimate showing how likely it
is that the sentiment value is accurate



This works if
used in
conjunction
with another
service, such
as IBM
Watson, but
not alone.

TSV-D018
As a system I should be able to return
emotion analysis results for a given string 

~ 87 ~

TSV-D019
As a system the load time for fetching
results should be sufficiently fast 

TSV-D020

As a system I should give a suitable
response and error code if no result is
available



Just returns
empty array,
wasn't
possible or
necessary to
generate error
codes

Sprint
5

TSV-F026
As a user I should be able to see the heat
map bound to data to display results 

TSV-F027
As a user I should be able to see search
for a keyword and location to see the
heat map for just that topic



TSV-F028

As a user I should be able to hover over
specific areas of interest and see what is
trending or causing that particular heat
patch



The user can
click a heat
patch and
read tweets,
but not hover
to read trends
- as there was
just too much
data for this to
be efficient

TSV-F029
As a system I should be displaying data
both from the database and live from
Tweets



TSV-F030
As a system I should be able to load fast
and display suitable loading graphic when
loading times are more than 1 second



TSV-G031
As a system I should be able to write to
the database asyncrously 

TSV-G032
As a system I should be able to read from
the database asyncrously 

Sprint
6

TSV-G032
As a system I should be able to read from
the database asyncrously 

TSV-G033
As a system I should be able to query the
database for just relevant Tweets 

TSV-G034
As a system I should delete the oldest
entries when there reaches a certain
number of records



TSV-G035
As a system I should be able to check and
make safe data before inserting 

TSV-G036
As a system I should use both the cached
and live data in conjunction or depending
on user selection



TSV-Z100
 As a system I am super-efficient (and
totally awesome) 

Sprint
7

TSV-B005
As a user I should be able to view the
map 

~ 88 ~

TSV-B006

As a user I should be able to pan (move
the map with pointing device) and zoom
(with both control buttons and hardware
such as mouse wheel)



TSV-B007
As a user I should be able to search for a
specific location 

TSV-B008
As a user I should find the map clear and
neat to look at. 

TSV-C009
As a user I should be able to see the heat
map over the top of the standard map 

TSV-C010
As a user I should be able to toggle the
display of the heat map to show and hide
it



TSV-C011
As a user I should be able to adjust the
opacity of the heat map with a simple
slider



TSV-C012
As a system I should bind data to the heat
map 

TSV-C013

As a system I should be able to bind
additional data to the map to update it
after the initial heat map has already
been rendered



TSV-C014
As a user I should find the colors of the
heat map clearly represent the data it is
displaying



Sprint
8

TSV-L050
 As a user I can see a word cloud after
entering my search term 

TSV-L051
 As a user I can see a text list of the top
words used in positive and negative
tweets



TSV-M052
 As a user I can view the scatter plot for a
given search term/ keyword 

TSV-M053
 As a user I can hover over a point to view
the associated key word 

TSV-W095
 As a developer I should be able to extract
an array of keywords from a string 

TSV-W096
 As a developer, I should be able to
customise the deletion word set 

TSV-H037
As a user I should find the start page clear
and concise 

TSV-H038
As a user I can make a search directly
from the home page 

TSV-H039
As a user I can navigate to any other part
of the application directly from the home
screen



Sprint
9

TSV-J043
As A user I should be able see what is
currently trending worldwide 

TSV-J044
 As a user I should be able to enter a
custom location to view local trends 

TSV-J045
 As a user I can click a trend to find out
more 

~ 89 ~

TSV-J046
 As a user I can view trends visually, to
get an overview of volume and sentiment 

TSV-O057
 As a user I can see both positive and
negative sentiment over the past 24
hours



TSV-O058
 As a user I can interact with the map and
the axis 

TSV-P059
 As a user I can enter between one and
four search terms 

TSV-P060
 As a user I can see the overall sentiment
for each of my search terms 

TSV-P061
 As a user I can see most commonly used
words and their sentiment for each topic 

TSV-P062
 As a user I can view links to the other
data visualisations for each of the topics 

Sprint
10

TSV-V093
 As a developer I should be able to get a
continuous stream of chunked tweets 

TSV-V094
 As a developer, the streamed tweets
should be formatted and safe 

TSV-Z100
 As a system I am super-efficient (and
totally awesome) 

TSV-K047
 As a user I should be able to read the
plain text tweets relating to a chosen
topic/ word



TSV-K048
 As a user I should be able to quickly pick
out the key information while reading 

TSV-K049
 As a user I should see new tweets come
in in real-time 

Sprint
11

TSV-S067 As a user I can make a search 

TSV-S068
 As a user I can get a quick overview of
the average sentiment of my topic 

TSV-S069
 As a user I can see which keywords are
most commonly used in the twitter
results



TSV-S070
 As a user I can see a summary of the
tones identified 

TSV-S071
 As a user I can see a summary of the
entities extracted 

TSV-S072
 As a user I can see how my topic
compares to the rest of Twitter 

TSV-S073
 As a user I can read a set of tweets
relating to my topic 

TSV-S074
 As a user I can view more results for my
search term on each data visualisation 

TSV-S074
 As a user I can view more results for my
search term on each data visualisation 

Table 17 Final evaluation of user stories

~ 90 ~

5.2 USER EXPERIENCE EVALUATION
During sprint 12, a user experience survey was conducted with a set of users, their feedback was

gathered, the application was amended accordingly, and then the survey was repeated. This was

repeated until the final application was close to perfect.

A summary of the results can be found in the sprint 12 section of implementation, and the full survey

is included in the appendix.

The following line chart summarises the increase in user satisfaction from the results.

The findings from the user experience survey conclude that, although at first there were some minor
usability issues, by the end of the final sprint, the average user satisfaction score was 4.99/ 5.
Meaning overall users found using the application, to be a 99.8% positive experience.

5.3 TIME MANAGEMENT AND SCHEDULING

The schedule outlined in the

methodology was followed very

closely.

The following burndown charts

shows the remaining story points

(y-axis) against sprint (x-axis).

When the actual (orange) is

below the planned (blue) line,

that indicates the project being

ahead of schedule.

3.60

3.80

4.00

4.20

4.40

4.60

4.80

5.00

U
se

r
Sc

o
re

Time

Average User Satisfaction Against Time

Joe George Fiona Jen Rosie Ollie

0

50

100

150

200

250

300

350

400

R
em

ai
n

in
g

St
o

ry
 P

o
in

ts

Sprint

Burn Down Chart

Planned Actual

~ 91 ~

5.4 EVALUATION OF TECHNICAL TESTING
As the methodology explained, all appropriate aspects of the final solution should be thoroughly unit

tested. This helps guard against regression bugs, and ensures a much higher quality of software.

By the end of the final sprint, all unit tests were fully passing. The projects status on the continuous

integration platform, also shows the apps build is passing.

A full breakdown of each aspect of the tests can be found in appendix 4.

5.5 EVALUATION OF CODE QUALITY
Another factor that helps ensure a high quality and stable final solution is code quality. Good code

quality can be achieved though following standard practices and/or a language-specific style guide,

getting other developers to review your code, using automated code review tools, deleting obsolete

lines, functions and files and regularly refactoring.

All of the above were utilised in this project. Below is the final metrics for the automated code

quality checks. (See appendix 4 for full results.)

~ 92 ~

5.6 EVALUATION OF ADDRESSING LEGAL, SOCIAL AND ETHICAL ISSUES
Throughout the research, planning, development, implementation and reviews of the final
application several potential legal, social and ethical issues came up. Each was addressed accordingly,
and significant research was done to ensure that the final solution does not cause any further issues.

5.6.1 Handling people’s personal data
The only personal data that the application handles are tweets. In order to protect the creator of
each tweet used, the following precautions were made:

- Only tweets that the author has explicitly made public will be fetched from twitter
- The user handle (there username), will be eradicated from the tweet before it is displayed
- If the tweet is geo-tagged, the location will be blurred by up to +/- 100m.
- No tweet will ever be stored in the system for more than 24 hours. (Usually less than 60

minutes.)
- Some tweets that contain particularly aggressive/offensive will be filtered by the clean data

algorithm. However, this is quite primitive and many will get though.
- Users are warned in the T&C’s that they use the application at their own risk

5.6.2 User experience surveys
During the research (sentiment analysis computer vs human), sprint 12 (initial UX review) and the
evaluation (final user reviews). Several volunteers were asked to fill in surveys or attend an informal
interview. To protect these user’s identity, the following steps were taken:

- The participant was either assigned an identifier (such as user 1, user 2) or only ever
addressed by their first name – their full name was never used

- For personal questions (such as age, home town…) the participant just had to select a range
(e.g. 18-15 or South East England) no specifics which could be used to identify the
participant’s identity were published

5.6.3 Offensive content
Since data is pulled directly from Twitter, there is sometimes a chance that text which may cause
offence to some users may be present. To minimise this the following steps were taken:

- A simple algorithm checks and filters out some aggressive/racist or inappropriate content
- Plans for this algorithm to be expanded further, to be more complete are underway
- In the terms and conditions the users are warned that the content on the application is

pulled strait from twitter, and to use at their own will, as they would with twitter

5.6.4 Accessibility
It is a legal requirement that all computer applications addressed to the general public must meet a
minimum level of accessibility, so as to not exclude some user (e.g. partially sighted using screen
readers etc.). To make the application accessible the following steps were taken:

- The base application is compatible with screen readers. However, for obvious reasons some
of the data visualisations will not work. This is outlined in the T&C’s.

- The core colour scheme for the app is red and green, this would exclude those users with
colour blindness, so the program was tested with Spectrum (a Chrome extension that colour
blind users use in order to adjust the red green levels on the screen). The app works fine with
the extension

Further accessibility issues were discussed in the T&C’s

~ 93 ~

5.7 SELF-EVALUATION
In the introduction, the problem of having too much data available, and the proposed solution was
outlined. It is fair to say that the planned application was quite ambitious as it combined many new
technologies together to create a complex solution with a simple interface, very different from
anything else that currently exists. It also needed to be able to cope with a huge amount of data and
hence the code written needed to be efficient and stable.

In the methodology the plan was outlined, and included how everything would be developed,
configured and published in order to get to the final outcome. A lot of research needed to be
undertaken in order to write this project plan. User surveys, experiments and literature reviews were
conducted to determine the most efficient and accurate approach to the sentiment analysis
algorithm. Research and upskilling was also undertaken to select the most appropriate languages,
technologies and infrastructure.

The implementation section described the progress made at the end of each of the twelve sprints. It
clearly demonstrated that each of the requirements had either been met, or explained why they had
not been fulfilled.

5.7.1 Points that went well
- A lot of research was undertaken before the methodology, meaning the best option could be

chosen before development started, and there was less that needed to be changed mid-way

through.

- The methodology was detailed enough to follow closely when it came to development

- Maximum use of available coding tools was made, this had a big impact on time and

efficiency as well as the quality of the final solution

- Significant time was spent upskilling before development of the project started

5.7.2 Points to improve on next time
- It would have helped to test the application out with a panel of industry experts as well as

just everyday average users

- Some resources were not available which could have made the final project significantly

better, such as access to the full Twitter history API and access to a very powerful server

- The web design, (despite having a lot of time and thought put into it), is not to a very high

quality and takes away from the overall experience of the final solution

- Many other features were included in the application that wasn't even mentioned in the user

stories. This kind of scope-creep could have hindered the quality of the vital components of

the application (although in this case it didn’t, it is something to be aware of next time).

- The VCS commit history started out very detailed and regular but gradually slipped. This can

make rollbacks harder, so it is important to keep commits consistent.

- In-code documentation was included, and thorough, but it was not always consistent. Some

subroutines were over-commented, some under-commented. Some files followed the

correct structure for in-code documentation, others just had English comments.

~ 94 ~

5.8 LIMITATIONS OF EXISTING SOLUTION
Although the base application is complete (as per requirements) it could be improved by giving it

access to a large data set. The current set of data is real-time user tweets from Twitter. However,

Twitter limit this to a rate of 3000 tweets per second, which is only a tiny proportion of tweets. This

obviously reduces the accuracy of the results.

Secondly, although the application works with a small number of users simultaneously, the server it

is hosted on is unlikely to be able to cope with much more than 100 requests per second (about 1000

simultaneous users) for any long period of time. To overcome this, it will need to be migrated onto a

more powerful VPS.

Finally, although a huge amount of work went into getting accurate sentiment data, there was a

trade-off between accuracy and efficiency. The final sentiment analysis algorithm has an accuracy of

about 85%, but it makes up for the lost accuracy in speed, it is 4000 times faster the HP Haven

OnDemand (which has an accuracy of 97%). This limitation could be worked on as a further project to

explore other techniques of increasing accuracy without affecting time.

5.9 FURTHER WORK AND FUTURE ENHANCEMENTS
The base application is complete, the next steps in improving and developing it further will include:

- Gaining access to a larger set of real-time social media data

- Improving filters to reduce chance of offensive content being displayed

- Migrating the application onto a larger and faster server

- Developing further data visualisations to draw additional trends in the existing data

- More complete documentation, targeted at a wider range of users

- Implementing a more intelligent machine learning algorithm into the backend

- Improving the accuracy of the sentiment analysis algorithm, without impacting on efficiency

- Improving the user interface and site navigation, as well as making it fully mobile compatible

- Marketing the completed solution so it can be found by potential users

~ 95 ~

5.10 EXAMPLE FINDINGS USING THE FINAL APPLICATION
A set of search terms were made using some random keywords that are relevant to now. It gives an
example of how the application can be used to draw trends from search terms, and identify what is
causing those trends.

The following trends were found in early April 2016, and are just an example of a small set of use
cases that the application can be applied to. Opions represented here are from Twitter only.

1. London, Manchester and Leeds are the most negative areas of the UK overall

2. Plymouth, Southampton, Bournemouth and Glasgow are the most positive areas of the UK
overall

3. People are very positive about ‘EasyJet’ at Newcastle, Glasgow and Gatwick airports,
however they seem to have had a much more negative experience at Bristol, Liverpool and
Birmingham airports

4. The keywords that make tweets about ‘Cadbury’s’ positive are ‘win’, ‘heroes’ and ‘fun’, and a
trending word in positive tweets is ‘#CremeEgg’. The keywords in negative tweets include
‘sick’, ‘ill’ and ‘expensive’

5. The entity extraction page shows that for the search term ‘Oxford Brookes’ the key places
are ‘Oxford’ and ‘London’, key professions are ‘engineer’, ‘nurse’ and ‘architect’ and the top
TV show/ movie is ‘The Night Manager’

6. A top trend in the world right now is ‘#NationalSiblingsDay’ which is 85% positive worldwide,
yet only 52% positive in Brazil

7. The highest trend in London right now is ‘Cameron’ which is negative due to a current news
story

8. After a match this morning, ‘Liverpool’ is 35% more positive than ‘Stoke’ (Liverpool won)

9. The most positive time of day overall is between 4 and 7pm

10. The most negative time of day for the topic ‘tfl’ is between 7:30 and 9:30 AM

11. The overall tone analysed for the term ‘Trump’ is anger (86%) and joy (5%) with 0% of fear

12. The most positive part of the world for the term ‘Starbucks’ is New York, and the least
positive is San Francisco.

13. Currently the most positive British supermarket is ‘Tesco’ (58%) with the trending words of
‘save’, ‘thanks’ and ‘tasty’. The least positive supermarket currently is ‘Asda’ (-12%) with
trending words of ‘embarrassed’, ‘limited’, `queue’ and ‘pay’

14. The parts of the world with the highest volume of tweets in the past 60 minutes is the UK,
and the South East cost of America

~ 96 ~

6 CONCLUSION

6.1 AIM
The main aim of this project was to turn an unworkable mass amount, of personal opinions

expressed on Twitter, into useful insights towards the overall feelings and attitudes conveyed for a

specific topic or keyword. Further to that it should extract trends between the sentiment data

calculated and other factors, such as time or location. All this should be made publically available in

real-time, displayed on a clean and simple interface.

This aim was deconstructed further, and a set of requirements in the form of user stories and

detailed acceptance criteria. The final solution met 98.5% of these criteria, as well as many extras

which were developed during later sprints.

The final application pulls both real-time (general) and semi-historic (for specific topic or search

term) data from twitter, calculates the sentiment for each tweet, and displays the results in a series

of dynamic and live data visualisations, clearly illustrating trends in the data.

The application solves the problem outlined in the introduction, and meets all its aims.

6.2 FINAL STATS

98.5% of acceptance criteria were met. (1.2% descoped, and 0.3% remaining)

The final user survey showed that using the application was a 99.8% positive experience

The sentiment analysis module developed has an 85% accuracy (compared to human calculation)

The sentiment analysis module is 4000 times faster than existing solutions

100% of unit test are passing, and 89% of the code base is covered by tests

All code has a quality and style score of at least 80%, and the majority of files are 100%

All dependencies and dev-dependencies are at the latest version (at the time of writing this)

Since the live version of the app was launched (3 weeks ago) it has had 99.5% up-time

6.3 LINK TO FINAL SOLUTION
The completed fully working published application can be accessed with the following URL:
http://sentiment-sweep.com/

The documentation and source code for the application can be found in the Git repo at:
https://github.com/Lissy93/twitter-sentiment-visualisation

http://sentiment-sweep.com/
https://github.com/Lissy93/twitter-sentiment-visualisation

~ 97 ~

7 REFERENCES

7.1 RESEARCH REFERENCES
Meesad, P. (2014). Stock trend prediction relying on text mining and sentiment analysis with
tweets. Information and Communication Technologies (WICT), 2014 Fourth World Congress on. 11
(3), 257 - 262.

Mahmood, T. Iqbal, T. ; Amin, F. ; Lohanna, W. ; Mustafa, A.. (Dec. 2013). Mining Twitter big data to
predict 2013 Pakistan election winner. Multi Topic Conference (INMIC) International. 16 (5), p49 - 54.

Cheng, D. Oculus Inf. Inc., Toronto, ON, Canada Schretlen, P. ; Kronenfeld, N. ; Bozowsky, N. ; Wright,
W.. (2013). Tile based visual analytics for Twitter big data exploratory analysis. Big Data, IEEE
International Conference on. 8 (3), p2 - 4.

Wenbo Wang Kno.e.sis Center, Wright State Univ., Dayton, OH, USA Lu Chen ; Thirunarayan, K. ;
Sheth, A.P.. (2012). Harnessing Twitter "Big Data" for Automatic Emotion Identification. Privacy,
Security, Risk and Trust (PASSAT), 2012 International Conference on and 2012 International
Confernece on Social Computing (SocialCom). p587 - 592.

Rahnama, A.H.A. Dept. of Math. Inf. Technol., Univ. of Jyvaskyla, Jyvaskyla, Finland . (2014).
Distributed real-time sentiment analysis for big data social streams. Control, Decision and
Information Technologies (CoDIT), 2014 International Conference on. p789 - 794.

Wickramaarachchi, C. Kumbhare, A. ; Frincu, M. ; Chelmis, C. ; Prasanna, V.K.. (4-7 May 2015).
Browse Conference Publications > Cluster, Cloud and Grid Compu ... Help Working with Abstracts
Back to Results Real-Time Analytics for Fast Evolving Social Graphs. Cluster, Cloud and Grid
Computing (CCGrid), 2015 15th IEEE/ACM International Symposium on. 1 (1), p829 - 834.

Hamed, A.A. ; Dept. of Comput. Sci., Univ. of Vermont, Burlington, VT, USA ; Xindong Wu. (June 27
2014-July 2 2014). Does Social Media Big Data Make the World Smaller? An Exploratory Analysis of
Keyword-Hashtag Networks. Big Data (BigData Congress), 2014 IEEE International Congress on. 1 (1),
454 - 461.

Vu Dung Nguyen ; Big Data Lab., Univ. of St Andrews, St. Andrews, UK ; Varghese, B. ; Barker, A.. (6-9
Oct. 2013). The royal birth of 2013: Analysing and visualising public sentiment in the UK using
Twitter. Big Data, 2013 IEEE International Conference on. 1 (1), p46 - 54.

Osman, A.H. ; Fac. of Comput. Sci. & Inf. Syst., Univ. Teknol. Malaysia, Skudai, Malaysia ; Salim, N..
(26-28 Aug. 2013). An improved semantic plagiarism detection scheme based on Chi-squared
automatic interaction detection. Computing, Electrical and Electronics Engineering (ICCEEE), 2013
International Conference on. 1 (1), p640 - 647.

~ 98 ~

7.2 METHODOLOGY REFERENCES
Office of Information Services. (2008). Selecting a Development Approach. Centre for Technology in
Government. - 3-4.
Linus Torvalds. (2016). Git. Available: https://git-scm.com/. Last accessed March 1st.

expressjs. (2014). body-parser. Available: https://github.com/expressjs/body-parser. Last accessed
August 2015.

jashkenas. (2011). coffee-script. Available: https://github.com/jashkenas/coffeescript. Last accessed
August 2015.

expressjs/cookie-parser · GitHub. 2015. expressjs/cookie-parser · GitHub. [ONLINE] Available
at: https://github.com/expressjs/cookie-parser. [Accessed 12 October 2015].

visionmedia/debug · GitHub. 2015. visionmedia/debug · GitHub. [ONLINE] Available
at: https://github.com/visionmedia/debug. [Accessed 12 October 2015].

strongloop/express · GitHub. 2015. strongloop/express · GitHub. [ONLINE] Available
at: https://github.com/strongloop/express. [Accessed 12 October 2015].

jadejs/jade · GitHub. 2015. jadejs/jade · GitHub. [ONLINE] Available
at:https://github.com/jadejs/jade. [Accessed 12 October 2015].

Automattic/mongoose · GitHub. 2015. Automattic/mongoose · GitHub. [ONLINE] Available
at: https://github.com/Automattic/mongoose. [Accessed 12 October 2015].

expressjs/morgan · GitHub. 2015. expressjs/morgan · GitHub. [ONLINE] Available
at: https://github.com/expressjs/morgan. [Accessed 12 October 2015].

petehunt/node-jsx · GitHub. 2015. petehunt/node-jsx · GitHub. [ONLINE] Available
at: https://github.com/petehunt/node-jsx. [Accessed 12 October 2015].

facebook/react · GitHub. 2015. facebook/react · GitHub. [ONLINE] Available
at: https://github.com/facebook/react. [Accessed 12 October 2015].

Socket.IO. 2015. Socket.IO. [ONLINE] Available at: http://socket.io/. [Accessed 12 October 2015].

Node.js. (2016). Node.js Website. Available: https://nodejs.org/en/. Last accessed February 2016.

Adrian Mejia. (2014). MEAN Stack - MongoDB ExpressJS AngularJS NodeJS (Part III). Available:
http://adrianmejia.com/blog/2014/10/03/mean-stack-tutorial-mongodb-expressjs-angularjs-nodejs/.
Last accessed 4th January 2016.

Kai Lei ; Yining Ma ; Zhi Tan. (19-21 Dec. 2014). Performance Comparison and Evaluation of Web
Development Technologies in PHP, Python, and Node.js. Computational Science and Engineering
(CSE), 2014 IEEE 17th International Conference on. 1 (2), 2-5.

Stefan Tilkov ; Steve Vinoski. (Nov.-Dec. 2010). Node.js: Using JavaScript to Build High-Performance
Network Programs. IEEE Internet Computing . 14 (6), 80 - 83.

Andres Ojamaa ; Karl Düüna. (2014). Assessing the security of Node.js platform. Internet Technology
And Secured Transactions, 2012 International Conference for. 2 (1), p348 - 355.

https://github.com/expressjs/cookie-parser
https://github.com/visionmedia/debug
https://github.com/strongloop/express
https://github.com/jadejs/jade
https://github.com/Automattic/mongoose
https://github.com/expressjs/morgan
https://github.com/petehunt/node-jsx
https://github.com/facebook/react
http://socket.io/

~ 99 ~

Xiao-Feng Gu ; Int. Centre for Wavelet Anal. & Its Applic., Univ. of Electron. Sci. & Technol. of China,
Chengdu, China ; Le Yang ; Shaoquan Wu. (2014). A real-time stream system based on
node.js.Wavelet Active Media Technology and Information Processing (ICCWAMTIP), 2014 11th
International . 11 (1), 479 - 482.

Andrew John Poulter ; Fac. of Eng. & the Environ., Univ. of Southampton, Southampton, UK ; Steven
J. Johnston ; Simon J. Cox. (14-16 Dec. 2015). Using the MEAN stack to implement a RESTful service
for an Internet of Things application. Internet of Things (WF-IoT), 2015 IEEE 2nd World Forum on. x
(x), 280 - 285.

TJ Holowaychuk. (2016). Express. Available: http://expressjs.com/. Last accessed March 2016.

gotwarlost. 2014. Istanbul. [ONLINE] Available at: https://github.com/gotwarlost/istanbul. [Accessed
01 March 16].

TJ Holowaychuk. 2011. Mocha JS. [ONLINE] Available at: https://mochajs.org/. [Accessed 01 March
16].

The Chai Assertion Library. 2015. Chai JS. [ONLINE] Available at: http://chaijs.com/. [Accessed 01
March 16].

Core Less Team. 2015. Less CSS. [ONLINE] Available at: http://lesscss.org/. [Accessed 01 March 16].

CoffeeScript. 2015. CoffeeScript. [ONLINE] Available at: http://coffeescript.org/. [Accessed 01 March
16].

gulp. 2015. gulp. [ONLINE] Available at: http://gulpjs.com/. [Accessed 01 March 16].

NGINX Inc. 2015. NGINX. [ONLINE] Available at: https://www.nginx.com/. [Accessed 01 March 16].

The CentOS Project. 2015. CentOS. [ONLINE] Available at: https://www.centos.org/. [Accessed 01
March 16].

JetBrains. 2015. WebStorm. [ONLINE] Available at: https://www.jetbrains.com/webstorm/.
[Accessed 01 March 16].

GitHub. 2015. GitHub. [ONLINE] Available at: https://github.com/. [Accessed 01 March 16].

git. 2015. Git. [ONLINE] Available at: https://git-scm.com/. [Accessed 01 March 16].

CONTRIBUTORS. 2015. Socket.io. [ONLINE] Available at: http://socket.io/. [Accessed 01 March 16].

Node.js Foundation. 2015. Express.js . [ONLINE] Available at: http://expressjs.com/. [Accessed 01
March 16].

Node.js Foundation. 2015. Node.js. [ONLINE] Available at: https://nodejs.org/en/. [Accessed 01
March 16].

IBM. 2015. IBM Watson. [ONLINE] Available at:
http://www.ibm.com/smarterplanet/us/en/ibmwatson/. [Accessed 01 March 16].

~ 100 ~

HP. 2015. Haven OnDemand. [ONLINE] Available at: https://www.havenondemand.com/. [Accessed
01 March 16].

Twitter. 2015. Twitter API. [ONLINE] Available at: https://dev.twitter.com/rest/public. [Accessed 01
March 16].

Google. 2015. Google Places API. [ONLINE] Available at: https://developers.google.com/places/.
[Accessed 01 March 16].

7.3 LIST OF TABLES
Table 1 Table showing the likelihood, impact and risk exposure of each identified risk 16

Table 2 Table showing probability against impact of each risk ... 17

Table 3 Table showing a breakdown of all work to be completed in each timeframe 18

Table 4 Gannt Chart showing time allocated to each development task .. 19

Table 5 Table showing which user stories will be completed in each sprint 20

Table 6 Table showing the pass fail criteria for each sprint .. 25

Table 7 Summary of fetch-tweets module .. 51

Table 8 Summary of stream-tweets module ... 51

Table 9 Summary of find-region-from-location module .. 54

Table 10 Summary of place-lookup module .. 54

Table 11 Summary of tweet-location module ... 54

Table 12 Summary of sentiment-analysis module ... 55

Table 13 Summary of remove-words module ... 55

Table 14 User experience survey 1 .. 81

Table 15 User Experience survey 2 .. 82

Table 16 User experience survey 3 .. 83

Table 17 Final evaluation of user stories ... 89

file:///C:/Users/Alicia/Dropbox/Computer%20Science%20BSc/Disertation/final_report_asykes_12011471.docx%23_Toc448091636
file:///C:/Users/Alicia/Dropbox/Computer%20Science%20BSc/Disertation/final_report_asykes_12011471.docx%23_Toc448091637

~ 101 ~

7.4 LIST OF FIGURES
Fig 1 Dictionary Vs Machine learning SA ... 10

Fig 2 Scatter chart showing accuracy of various SA methods ... 13

Fig 3 Radar chart showing conclusion of different SA methods .. 14

Fig 4 Wireframe for home screen .. 29

Fig 5 Wireframe for the heat map screen ... 30

Fig 6 Wireframe for the region map screen .. 30

Fig 7 Wireframe for the timeline screen ... 31

Fig 8 Wireframe for the raw tweets screen ... 31

Fig 9 Wireframe for the globe screen .. 31

Fig 10 Wireframe for the word cloud screen ... 32

Fig 11 Wireframe for the word scatter plot screen ... 32

Fig 12 Wireframe for the trending screen ... 33

Fig 13 Wireframe for the comparison screen .. 33

Fig 14 Wireframe for the entity extraction screen .. 34

Fig 15 Wireframe for the tone identification screen ... 34

Fig 16 Wireframe for the search page ... 35

Fig 17 Data flow diagram for the backend as a whole .. 37

Fig 18 Traditional server (compared to Node approach) .. 38

Fig 19 Node server (compared to traditional approach) ... 38

Fig 20 The Node.js processing model .. 39

Fig 21 NGINX architecture ... 40

Fig 22 Screenshot of heat map .. 57

Fig 23 Screen shot of 3D globe .. 59

Fig 24 Screen shot of regional map ... 60

Fig 25 Screen shot of word cloud .. 61

Fig 26 Screen shot of word scatter plot ... 61

Fig 27 Screen shot of time line .. 65

Fig 28 Screen shot of trending 1 .. 66

Fig 29 Screen shot of trending 2 .. 67

Fig 30 Data flow diagram for trending page .. 68

Fig 31 Screen shot for comparison .. 70

Fig 32 Diagram of node socket real-time ... 71

Fig 33 Screen shot of the Now page .. 71

Fig 34 Screen shot of the tone identification page .. 72

Fig 35 Screen shot of the entity extraction page ... 73

Fig 36 Screen shot of the home page .. 74

Fig 37 Screen shot of second part of home page .. 75

Fig 38 Screen shot of the search page ... 76

Fig 39 Logo ... 80

file:///C:/Users/Alicia/Dropbox/Computer%20Science%20BSc/Disertation/final_report_asykes_12011471.docx%23_Toc448091651
file:///C:/Users/Alicia/Dropbox/Computer%20Science%20BSc/Disertation/final_report_asykes_12011471.docx%23_Toc448091652
file:///C:/Users/Alicia/Dropbox/Computer%20Science%20BSc/Disertation/final_report_asykes_12011471.docx%23_Toc448091653
file:///C:/Users/Alicia/Dropbox/Computer%20Science%20BSc/Disertation/final_report_asykes_12011471.docx%23_Toc448091654
file:///C:/Users/Alicia/Dropbox/Computer%20Science%20BSc/Disertation/final_report_asykes_12011471.docx%23_Toc448091655
file:///C:/Users/Alicia/Dropbox/Computer%20Science%20BSc/Disertation/final_report_asykes_12011471.docx%23_Toc448091656
file:///C:/Users/Alicia/Dropbox/Computer%20Science%20BSc/Disertation/final_report_asykes_12011471.docx%23_Toc448091657
file:///C:/Users/Alicia/Dropbox/Computer%20Science%20BSc/Disertation/final_report_asykes_12011471.docx%23_Toc448091658
file:///C:/Users/Alicia/Dropbox/Computer%20Science%20BSc/Disertation/final_report_asykes_12011471.docx%23_Toc448091659
file:///C:/Users/Alicia/Dropbox/Computer%20Science%20BSc/Disertation/final_report_asykes_12011471.docx%23_Toc448091660
file:///C:/Users/Alicia/Dropbox/Computer%20Science%20BSc/Disertation/final_report_asykes_12011471.docx%23_Toc448091661
file:///C:/Users/Alicia/Dropbox/Computer%20Science%20BSc/Disertation/final_report_asykes_12011471.docx%23_Toc448091662
file:///C:/Users/Alicia/Dropbox/Computer%20Science%20BSc/Disertation/final_report_asykes_12011471.docx%23_Toc448091663
file:///C:/Users/Alicia/Dropbox/Computer%20Science%20BSc/Disertation/final_report_asykes_12011471.docx%23_Toc448091664
file:///C:/Users/Alicia/Dropbox/Computer%20Science%20BSc/Disertation/final_report_asykes_12011471.docx%23_Toc448091665
file:///C:/Users/Alicia/Dropbox/Computer%20Science%20BSc/Disertation/final_report_asykes_12011471.docx%23_Toc448091666
file:///C:/Users/Alicia/Dropbox/Computer%20Science%20BSc/Disertation/final_report_asykes_12011471.docx%23_Toc448091667
file:///C:/Users/Alicia/Dropbox/Computer%20Science%20BSc/Disertation/final_report_asykes_12011471.docx%23_Toc448091668
file:///C:/Users/Alicia/Dropbox/Computer%20Science%20BSc/Disertation/final_report_asykes_12011471.docx%23_Toc448091669
file:///C:/Users/Alicia/Dropbox/Computer%20Science%20BSc/Disertation/final_report_asykes_12011471.docx%23_Toc448091670
file:///C:/Users/Alicia/Dropbox/Computer%20Science%20BSc/Disertation/final_report_asykes_12011471.docx%23_Toc448091671
file:///C:/Users/Alicia/Dropbox/Computer%20Science%20BSc/Disertation/final_report_asykes_12011471.docx%23_Toc448091672
file:///C:/Users/Alicia/Dropbox/Computer%20Science%20BSc/Disertation/final_report_asykes_12011471.docx%23_Toc448091674
file:///C:/Users/Alicia/Dropbox/Computer%20Science%20BSc/Disertation/final_report_asykes_12011471.docx%23_Toc448091675
file:///C:/Users/Alicia/Dropbox/Computer%20Science%20BSc/Disertation/final_report_asykes_12011471.docx%23_Toc448091676
file:///C:/Users/Alicia/Dropbox/Computer%20Science%20BSc/Disertation/final_report_asykes_12011471.docx%23_Toc448091677
file:///C:/Users/Alicia/Dropbox/Computer%20Science%20BSc/Disertation/final_report_asykes_12011471.docx%23_Toc448091678
file:///C:/Users/Alicia/Dropbox/Computer%20Science%20BSc/Disertation/final_report_asykes_12011471.docx%23_Toc448091679
file:///C:/Users/Alicia/Dropbox/Computer%20Science%20BSc/Disertation/final_report_asykes_12011471.docx%23_Toc448091680
file:///C:/Users/Alicia/Dropbox/Computer%20Science%20BSc/Disertation/final_report_asykes_12011471.docx%23_Toc448091681
file:///C:/Users/Alicia/Dropbox/Computer%20Science%20BSc/Disertation/final_report_asykes_12011471.docx%23_Toc448091682
file:///C:/Users/Alicia/Dropbox/Computer%20Science%20BSc/Disertation/final_report_asykes_12011471.docx%23_Toc448091683
file:///C:/Users/Alicia/Dropbox/Computer%20Science%20BSc/Disertation/final_report_asykes_12011471.docx%23_Toc448091684
file:///C:/Users/Alicia/Dropbox/Computer%20Science%20BSc/Disertation/final_report_asykes_12011471.docx%23_Toc448091685
file:///C:/Users/Alicia/Dropbox/Computer%20Science%20BSc/Disertation/final_report_asykes_12011471.docx%23_Toc448091686
file:///C:/Users/Alicia/Dropbox/Computer%20Science%20BSc/Disertation/final_report_asykes_12011471.docx%23_Toc448091687
file:///C:/Users/Alicia/Dropbox/Computer%20Science%20BSc/Disertation/final_report_asykes_12011471.docx%23_Toc448091688

~ 102 ~

1 APPENDIX ONE

USER STORIES

This appendix document describes the solutions functional requirements in the form

of user stories, along with acceptance criteria and complexity estimates.

Twitter Sentiment Visualisations

The research and development of a sentiment analysis module, and the

implementation of it on real-time social media data, to generate a series of live

visual representations of sentiment towards a specific topic or by location in

order to find trends.

1.1 CONTENTS
1 Appendix One User Stories ... 102

1.1 Contents .. 102

1.2 Overview of User Stories .. 103

1.3 Acceptance Criteria .. 109

1.4 Story Points ... 122

1.5 Summary ... 129

Alicia Sykes 12011471

Oxford Brookes University

~ 103 ~

1.2 OVERVIEW OF USER STORIES

1.2.1 Main Programme
USER STORIES RELATING TO THE WHOLE PROGRAMME IN GENERAL

TSV-A001 As a user I should be able to view the solution in my browser simply by visiting a URL

TSV-A002 As a user I should have fast loading times or be displayed with a loading graphic

TSV-A003 As a user I should be able to easily switch between different parts of the application

TSV-A004 As a user I should find the user interface clear and simple to look at

1.2.2 Map
USER STORIES RELATING TO THE DISPLAYING AND FUNCTIONALITY OF THE MAP

TSV-B005 As a user I should be able to view the map

TSV-B006 As a user I should be able to pan (move the map with pointing device) and zoom (with both
control buttons and hardware such as mouse wheel)

TSV-B007 As a user I should be able to search for a specific location

TSV-B008 As a user I should find the map clear and neat to look at.

1.2.3 Heat Map
USER STORIES RELATING TO THE DISPLAYING OF THE HEAT MAP OVERLAY

TSV-C009 As a user I should be able to see the heat map over the top of the standard map

TSV-C010 As a user I should be able to toggle the display of the heat map to show and hide it

TSV-C011 As a user I should be able to adjust the opacity of the heat map with a simple slider

TSV-C012 As a system I should bind data to the heat map

TSV-C013 As a system I should be able to bind additional data to the map to update it after the initial

heat map has already been rendered

TSV-C014 As a user I should find the colors of the heat map clearly represent the data it is displaying

1.2.4 Sentiment Analysis
USER STORIES RELATING TO THE DETECTION OF SENTIMENT IN TWEETS

TSV-D015 As a system I should be able to identify weather a string is positive, neutral or negative

overall

TSV-D016 As a system I should be able to identify weather the attitude towards a certain specified

topic is positive, neutral or negative

~ 104 ~

TSV-D017 As a system I should be able to give a confidence estimate showing how likely it is that the

sentiment value is accurate

TSV-D018 As a system I should be able to return emotion analysis results for a given string

TSV-D019 As a system the load time for fetching results should be sufficiently fast

TSV-D020 As a system I should give a suitable response and error code if no result is available

1.2.5 Fetching Tweets
USER STORIES RELATING TO THE PULLING OF TWEETS FROM THE TWITTER API

TSV-E021 As a system I should be able to fetch a specified number of Tweets from around a given

location from the Twitter API

TSV-E022 As a system I should be able to fetch a specified number of Tweets talking about a specific

topic, hashtag or keyword from the Twitter API

TSV-E023 As a system I should have reasonable response times in fetching Tweets from the Twitter

API

TSV-E024 As a system I should respond with a suitable error if there is a problem fetching Tweets

from the Twitter API

TSV-E025 As a system I should be able to create a series of Tweet objects ready for the next stage

1.2.6 Displaying Results
BRINGING TOGETHER THE MAP, HEAT MAP, SENTIMENT ANALYSIS AND TWEETS

TSV-F026 As a user I should be able to see the heat map bound to data to display results

TSV-F027 As a user I should be able to see search for a keyword and location to see the heat map for

just that topic

TSV-F028 As a user I should be able to hover over specific areas of interest and see what is trending

or causing that particular heat patch

TSV-F029 As a system I should be displaying data both from the database and live from Tweets

TSV-F030 As a system I should be able to load fast and display suitable loading graphic when loading

times are more than 1 second

1.2.7 Caching
Stories relating to the data caching and database

TSV-G031 As a system I should be able to write to the database asyncrously

TSV-G032 As a system I should be able to read from the database asyncrously

TSV-G033 As a system I should be able to query the database for just relevant Tweets

~ 105 ~

TSV-G034 As a system I should delete the oldest entries when there reaches a certain number of

records

TSV-G035 As a system I should be able to check and make safe data before inserting

TSV-G036 As a system I should use both the cached and live data in conjunction or depending on

user selection

1.2.8 Home Screen
Stories relating to the initial landing page of the application

TSV-H037 As a user I should find the start page clear and concise
TSV-H038 As a user I can make a search directly from the home page

TSV-H039 As a user I can navigate to any other part of the application directly from the home screen

1.2.9 Regional Map Screen
Stories relating to the regional map front-end

TSV-I040 - As a user I should be able to get an immediate overview of results
TSV-I041 – As a user I should be able search for a specific search term

TSV-I042 – As a user I should be able to see a list of most positive and negative regions

1.2.10 Trending Screen
Stories relating to the trending topics front-end

TSV-J043 - As a user I should be able see what is currently trending worldwide
TSV-J044 – As a user I should be able to enter a custom location to view local trends

TSV-J045 – As a user I can click a trend to find out more

TSV-J046 – As a user I can view trends visually, to get an overview of volume and sentiment

1.2.11 Text Tweets Screen
Stories for the front-end of the text tweets screen, which shows displays raw tweets

TSV-K047 – As a user I should be able to read the plain text tweets relating to a chosen topic/ word

TSV-K048 – As a user I should be able to quickly pick out the key information while reading

TSV-K049 – As a user I should see new tweets come in in real-time

1.2.12 Word Cloud
Stories for the front-end of the word cloud screen

~ 106 ~

TSV-L050 – As a user I can see a word cloud after entering my search term

TSV-L051 – As a user I can see a text list of the top words used in positive and negative tweets

1.2.13 Word Scatter Plot
Stories for the front-end of the word scatter plot screen

TSV-M052 – As a user I can view the scatter plot for a given search term/ keyword

TSV-M053 – As a user I can hover over a point to view the associated key word

1.2.14 3D Sentiment Globe
Stories for the front-end of the 3D sentiment globe

TSV-N054 – As a user I can interact with the globe

TSV-N055 – As a user I can see sentiment for each location (that has Twitter) on the globe

TSV-N056 – As a user I can view statistics of the data shown on the globe

1.2.15 Timeline
User stories relating to the sentiment over time-of-day visualisation

TSV-O057 – As a user I can see both positive and negative sentiment over the past 24 hours

TSV-O058 – As a user I can interact with the map and the axis

1.2.16 Comparison
User stories relating to the topic comparison page

TSV-P059 – As a user I can enter between one and four search terms

TSV-P060 – As a user I can see the overall sentiment for each of my search terms

TSV-P061 – As a user I can see most commonly used words and their sentiment for each topic

TSV-P062 – As a user I can view links to the other data visualisations for each of the topics

1.2.17 Tone Identification
User stories relating to screen that identifies tone of language of tweets

TSV-Q063 – As a user I can view a summary of the key tones identified for a topic

TSV-Q64 – As a user I can see a more detailed breakdown in the form of a segmented radar chart

~ 107 ~

1.2.18 Entity Extraction
User stories relating to the screen that displays the entity extraction results

TSV-R065 – As a user I can view the key entities extracted from a set of tweets

TSV-R066 – As a user I can see what volume of each entity and category visually on a Sankey chart

1.2.19 Search Screen
User stories relating the search results screen

TSV-S067 – As a user I can make a search

TSV-S068 – As a user I can get a quick overview of the average sentiment of my topic

TSV-S069 – As a user I can see which keywords are most commonly used in the twitter results

TSV-S070 – As a user I can see a summary of the tones identified

TSV-S071 – As a user I can see a summary of the entities extracted

TSV-S072 – As a user I can see how my topic compares to the rest of Twitter

TSV-S073 – As a user I can read a set of tweets relating to my topic

TSV-S074 – As a user I can view more results for my search term on each data visualisation

1.2.20 Development Environment
User stories relating to how code is managed in the dev environment

TSV-T075 – As a development environment I should compile CoffeeScript into JavaScript

TSV-T076 – As a development environment I should compile LESS/ SASS into CSS

TSV-T077 – As a development environment I should check HTML/ Jade for missing entities

TSV-T078 – As a development environment I should prepare graphics from source to their web form

TSV-T079 – As a development environment I should remove obsolete files

TSV-T080 – As a development environment I should bundle browser scripts

TSV-T081 – As a development environment I should check code (where possible) for errors /bad style

TSV-T082 – As a development environment I should watch for changes in source files and then

recompile the appropriate files

TSV-T083 – As a development environment I should keep multiple development browsers across

various devices in sync for seamless compatibility testing

TSV-T084 – As a development environment I should run unit tests and output results

1.2.21 Testing
User stories relating to the test environment

~ 108 ~

TSV-U085 – As a test environment I should run unit tests

TSV-U086 – As a test environment I should have integration tests

TSV-U087 – As a test environment I should be able to stub data as to not make external data

requests

TSV-U088 – As a test environment I should use assertions for the unit tests

TSV-U089 – As a test environment I should show coverage test results

TSV-U090 – As a test environment I should check dependencies are up-to-date

TSV-U091 – As a test environment I should check code quality with automated code reviews

TSV-U092 – As a test environment I should do headless browser testing and HTTP service testing

1.2.22 Real-time data streaming
User stories relating to the Twitter streaming module

TSV-V093 – As a developer I should be able to get a continuous stream of chunked tweets

TSV-V094 – As a developer, the streamed tweets should be formatted and safe

1.2.23 Keyword Analysis
User stories relating to the extraction of keywords

TSV-W095 – As a developer I should be able to extract an array of keywords from a string

TSV-W096 – As a developer, I should be able to customise the deletion word set

1.2.24 Geographical Place Lookup
User stories relating to the geographical place modules

TSV-X097- As a developer I can get a valid latitude and longitude for any fuzzy place name

TSV-X098 – As a developer I can get the country code in multiple forms from latitude and longitude

TSV-X099 – As a developer I can get location of geo-tagged tweets from their ID’s

1.2.25 Efficiency
User stories relating to system efficiency

TSV-Z100 – As a system I am super-efficient (and totally awesome)

~ 109 ~

1.3 ACCEPTANCE CRITERIA

1.3.1 Main Programme
USER STORIES RELATING TO THE WHOLE PROGRAMME IN GENERAL

TSV-A001 As a user I should be able to view the solution in my browser simply by visiting a URL

- AC1 There will be no login, start screen or any other pages to navigate through before being
presented with the solution

- AC2 The URL will use the http protocol
- AC3 The web page must be compatible with modern browsers including Chrome, Firefox and

Safari
- AC4 The web page must be indexed and crawlable by search engines

TSV-A002 As a user I should have fast loading times or be displayed with a loading graphic
- AC1 The initial page should load in under 1 second
- AC2 A loading animation should be displayed for anything that takes more than 1 second
- AC3 Where possible loading status should be displayed
- AC4 The visualisation should be displayed as soon as there is sufficient data loaded

TSV-A003 As a user I should be able to easily switch between different parts of the application

- AC1 There should be several clear buttons visible at the top of the page
- AC2 The user should only have to click once to change view
- AC3 If data needs to be loaded then a suitable loading graphic should be displayed

TSV-A004 As a user I should find the user interface clear and simple to look at
- AC1 The visualisation should be full screen with the only other component on the screen

being the navigation bar at the top
- AC2 There should be no unnecessary information displayed by default

1.3.2 Map
USER STORIES RELATING TO THE DISPLAYING AND FUNCTIONALITY OF THE MAP

TSV-B005 As a user I should be able to view the map
- AC1 The map will be shown by default
- AC2 The map will display consistently in all modern browsers

TSV-B006 As a user I should be able to pan (move the map with pointing device) and zoom

(with both control buttons and hardware such as mouse wheel)
- AC1 There will be a maximum and minimum field of view defined for zoom
- AC2 The user will be able to use their default pointing device to navigate the map

TSV-B007 As a user I should be able to search for a specific location
- AC1 The search box will be clear and located at the top of the screen
- AC2 The search box will have a placeholder text clearly indicating what should be entered

~ 110 ~

- AC3 The search box will have autocomplete using Google Places. When the user starts typing
a dropdown of matching places will be displayed similar to that on the Google.com map

- AC4 The user should be able to search by postcode, address, place name, area, district or
latitude & longitude

TSV-B008 As a user I should find the map clear and neat to look at.
- AC1 The map should be pale-greyscale colour
- AC2 The map should only have labels for significant place names
- AC3 More places should be displayed as the user zooms in, and the detail decreased when

the user zooms out

1.3.3 Heat Map
USER STORIES RELATING TO THE DISPLAYING OF THE HEAT MAP OVERLAY

TSV-C009 As a user I should be able to see the heat map over the top of the standard map
- AC1 The heat map should not affect the functionality of the underlying map

- AC2 The heat map overlay should be semi-transparent to show the map underneath

TSV-C010 As a user I should be able to toggle the display of the heat map to show and hide

it
- AC1 The toggle button should display as a simple switch

- AC2 The overlay should disappear and reappear instantly

TSV-C011 As a user I should be able to adjust the opacity of the heat map with a simple

slider
- AC1 The opacity should range from 0 to 1

- AC2 There should be no lag

TSV-C012 As a system I should bind data to the heat map
- AC1 The data source the heat map reads from should be what is outputted by the backend

system

TSV-C013 As a system I should be able to bind additional data to the map to update it after

the initial heat map has already been rendered
- AC1 The system should be constantly looking for changes in the database

- AC2 The system should be constantly waiting for new updates from the Twitter module

- AC3 The updates should be seamless with no visible loading or lag

TSV-C014 As a user I should find the colors of the heat map clearly represent the data it is

displaying
- AC1 There should be a legend indicating what color is what

~ 111 ~

1.3.4 Sentiment Analysis
USER STORIES RELATING TO THE DETECTION OF SENTIMENT IN TWEETS

TSV-D015 As a system I should be able to identify weather a string is positive, neutral or

negative overall
- AC1 A request should be sent containing a string

- AC2 The string will be sent to relevant API

- AC3 A response will be returned from the API and processed by the module

TSV-D016 As a system I should be able to identify weather the attitude towards a certain

specified topic is positive, neutral or negative
- AC1 An additional parameter containing the keyword needs to be passed in

- AC2 The response must be relevant to that keyword

TSV-D017 As a system I should be able to give a confidence estimate showing how likely it

is that the sentiment value is accurate
- AC1 This should be expressed as a decimal between 0 and 1

- AC2 This is generated by the API

TSV-D018 As a system I should be able to return emotion analysis results for a given string
- AC1 The system should return the list of emotions, each with a decimal value between 0 and

1 indicating how much of that emotion was detected

- AC2 If none of an emotion is found it will return 0

TSV-D019 As a system the load time for fetching results should be sufficiently fast
- AC1 Load time must be under 1 second

- AC2 On the frontend suitable load animations should be displayed

TSV-D020 As a system I should give a suitable response and error code if no result is

available
- AC1 The right error code should be returned

- AC2 All result fields should be returned just with empty values

1.3.5 Fetching Tweets
USER STORIES RELATING TO THE PULLING OF TWEETS FROM THE TWITTER API

TSV-E021 As a system I should be able to fetch a specified number of Tweets from around

a given location from the Twitter API
- AC1 The given location must be converted to a suitable unit

- AC2 Only tweets from around that location should be displayed

- AC3 Results must be in JSON format

- AC4 Calls must be made asyncrously

TSV-E022 As a system I should be able to fetch a specified number of Tweets talking about

a specific topic, hashtag or keyword from the Twitter API
- AC1 The keyword should be between 2 and 25 characters long and stripped of all special

characters

- AC2 Only Tweets containing the given keyword should be returned

~ 112 ~

- AC3 Results must be in JSON format

- AC4 Calls must be made asyncrously

TSV-E023 As a system I should have reasonable response times in fetching Tweets from the

Twitter API
- AC1 – There should be as few requests as physically possible

- AC2 – Only data that is going to be uses should be requested where possible

- AC3 – If a data request takes more than 4 seconds it should time out and a backup data

source used or show appropriate error message

TSV-E024 As a system I should respond with a suitable error if there is a problem fetching

Tweets from the Twitter API
- AC1 An error code and clear message should be displayed

- AC2 There should be a troubleshooting section with a brief description and possible

resolution of each error message and code

TSV-E025 As a system I should be able to create a series of Tweet objects for the next stage
- AC1 Each Tweet object should follow the data structure outlined in the data structures

section

- AC2 The sentiment value should be left blank at this stage

1.3.6 Displaying Results
BRINGING TOGETHER THE MAP, HEAT MAP, SENTIMENT ANALYSIS AND TWEETS

TSV-F026 As a user I should be able to see the heat map bound to data to display results
- AC1 The heat map created will use the data fetched from the sentiment analysis module

TSV-F027 As a user I should be able to search for a keyword and location to see the heat

map for just that topic
- AC1 The map view must update if a location is searched for

- AC2 If a specific location is searched for fresh tweets will be fetched

- AC3 Twitter results will be added to the map as they come on, rather than waiting for the

whole batch to finish first

- AC4 If a keyword is searched, only tweets resulting to that keyword will be displayed

TSV-F028 As a user I should be able to hover over specific areas of interest and see what is

trending or causing that particular heat patch
- AC1 Once the users mouse has been still for more than 0.4 seconds a tooltip will display

- AC2 The tooltip can be clicked for further details

- AC3 The expanded tooltip will show a list of trending hashtags around the place of interest

- AC4 If a hashtag is clicked then the map will update to show just the attitudes towards that

hashtag

TSV-F029 As a system I should be displaying data both from the database and live Tweets
- AC1 The system must be able to watch for changes on Twitter

- AC2 The system must be able to trigger a call when there is a change

- AC3 The call must fetch the tweet and process it

- AC4 The UI must be updated without a complete re-render

~ 113 ~

TSV-F030 As a system I should be able to load fast and display suitable loading graphic

when loading times are more than 1 second
- AC1 A turning animation will be displayed for any loads more than 1 second

- AC2 Where possible the load status will be displayed

- AC3 The loading will time out if any one task takes more than 4 seconds to complete. A

suitable error will be shown.

1.3.7 Caching
Stories relating to the data caching and database

TSV-G031 As a system I should be able to write to the database asyncrously
- AC1 The system will be able to write JSON data following a schema to the database

- AC2 The system will be able to write data while it is doing other tasks

- AC3 The writing to the database will not hold up or block any other threads

TSV-G032 As a system I should be able to read from the database asyncrously
- AC1 The system will be able to read JSON data following a schema from the database

- AC2 The system will be able to read data while it is doing other tasks

- AC3 The reading from the database will not hold up or block any other threads

TSV-G033 As a system I should be able to query the database for just relevant Tweets
- AC1 Parameters including keywords, handle, location, time should all be able to be queried

TSV-G034 As a system I should delete the oldest entries when there reaches a certain

number of records
- AC1 research the optimum number of Tweets to store in the database based on efficient

rendering of the map and enough detail to make the basic visualisation effective

- AC2 When the number of Tweets reaches this number start to delete older Tweets whenever

a new one is inserted

TSV-G035 As a system I should be able to check and make safe data before inserting
- AC1 All unnecessary data, such as URL’s, pictures and additional handles will be removed

- AC2 All special characters will be escaped

- AC3 The maximum length per Tweet will be cut to 145 characters

TSV-G036 As a system I should use both the cached and live data in conjunction or

depending on user selection
- AC1 If the user has searches for a location or hashtag, while it is loading database data will be

displayed, and the map will then update according to new Tweets

~ 114 ~

1.3.8 Home Screen
Stories relating to the initial landing page of the application

TSV-H037 As a user I should find the start page clear and concise
- AC1 It will not contain more information than necessary

- AC2 It will give a very brief overview about what the application is, and what it can be used

for

TSV-H038 As a user I can make a search directly from the home page

- AC1 There will be a search field to enter a keyword or topic

- AC2 The user will be redirected to the search results page to display the findings

- AC3 It should be clear to the user where to search and what to enter

TSV-H039 As a user I can navigate to any other part of the application directly from the home screen

- AC1 There will be a link to each section of the website, including all 10 data visualisations

- AC2 There will also be a link to the `about` page and the source code and documentation

1.3.9 Regional Map Screen
Stories relating to the regional map front-end

TSV-I040 - As a user I should be able to get an immediate overview of results
- AC1 Should show geographical sentiment towards a specified topic

- AC2 Each region should be a single colour, with no gradients

- AC3 A region should be clickable

- AC4 When user hovers or clicks a region, they should be able to view numeric results

TSV-I041 – As a user I should be able search for a specific search term

- AC1 There must be an input box

- AC2 Results must then be rendered according to the value of the search field

TSV-I042 – As a user I should be able to see a list of most positive and negative regions

- AC1 After the user has entered their topic and the map has been rendered, a bullet point list

of the most positive regions, and most negative regions towards the specified topic.

- AC2 Items in the list must display a sentiment value in percentage form

- AC3 Items in the list should be clickable

~ 115 ~

1.3.10 Trending Screen
Stories relating to the trending topics front-end

TSV-J043 - As a user I should be able see what is currently trending worldwide
- AC1 A list of the top ten trends worldwide will be shown

- AC2 The sentiment of each will be indicated by colour

- AC3 The list will be sorted by volume of tweets, with the most popular trends at the top

TSV-J044 – As a user I should be able to enter a custom location to view local trends

- AC1 - An input filed will be provided for the user to enter a location

- AC2 The user should be able to enter any place e.g. ‘OX3 0BP’, ’14 Greys Road’, ‘California’,

‘Europe’. The Google Places API will then be used to find the latitude and longitude of the

given string.

- AC3 The trends displayed should be specific to the users location

TSV-J045 – As a user I can click a trend to find out more

- AC1 The user should be able to click any trend and be redirected to the search page

- AC2 It should be clear to the user the trends are clickable

- AC3 Trends in the bubble chart (see below) will also be clickable

TSV-J046 – As a user I can view trends visually, to get an overview of volume and sentiment

- AC1 There will be a bubble diagram below the list of trends

- AC2 The diagram will show one bubble for each trend

- AC3 The size of the bubble will represent the volume of tweets for that trend

- AC4 The colour of each bubble will indicate sentiment

- AC5 The bubble will be clickable to gain more information about a given trend

1.3.11 Text Tweets Screen
Stories for the front-end of the text tweets screen, which shows displays raw tweets

TSV-K047 – As a user I should be able to read the plain text tweets relating to a chosen topic/ word

- AC1 There must be a search field for the user to enter their topic or keyword into

- AC2 Once they press enter fresh data should be fetched and rendered

- AC3 Tweets should be laid out in a clear and concise manor

TSV-K048 – As a user I should be able to quickly pick out the key information while reading

- AC1 Positive and negative tweets should be in separate columns

- AC2 Each tweet should have their keywords in bold, to make scan reading easier

- AC3 The sentiment, date/time and location of each tweet should be displayed

TSV-K049 – As a user I should see new tweets come in in real-time

- AC1 – The user shouldn’t have to refresh page to see new data

~ 116 ~

1.3.12 Word Cloud
Stories for the front-end of the word cloud screen

TSV-L050 – As a user I can see a word cloud after entering my search term

- AC1 Words should vary in size depending on number of times used

- AC2 Sentiment should be represented by the shade of colour, red = negative, green =

positive, grey = neutral and all colours in between show sentiment in between

TSV-L051 – As a user I can see a text list of the top words used in positive and negative tweets

- AC1 There should be two lists, one for top words used in positive tweets, the other negative

- AC2 Each word should have an average sentiment value for associated tweets, in percentage

- AC3 Each word should be followed by a number, of how many times it occurred in that set

- AC4 The words should be clickable to view more

1.3.13 Word Scatter Plot
Stories for the front-end of the word scatter plot screen

TSV-M052 – As a user I can view the scatter plot for a given search term/ keyword

- AC1 Sentiment should be displayed along the y-axis

- AC2 Frequency along the x-axis

- AC3 The colour of the points should also be relative to the sentiment

TSV-M053 – As a user I can hover over a point to view the associated key word

- AC1 The word should be displayed as a tooltip

- AC2 The current point should slightly change colour/ size to make clear which one it is

- AC3 The user should also be able to click a point to search for that word

1.3.14 3D Sentiment Globe
Stories for the front-end of the 3D sentiment globe

TSV-N054 – As a user I can interact with the globe

- AC1 The user should be able to rotate the globe

- AC2 The user should be able to zoom in and out of the globe

TSV-N055 – As a user I can see sentiment for each location (that has Twitter) on the globe

- AC1 There should be vertical bars for each settlement with Twitter

- AC2 The colour of the bar will represent sentiment

- AC3 The height of the bar will represent scale of sentiment and volume of tweets

TSV-N056 – As a user I can view statistics of the data shown on the globe

- AC1 Including number of tweets displayed and average sentiment

- AC2 There will also be links to view the same data in other forms

1.3.15 Timeline
User stories relating to the sentiment over time-of-day visualisation

TSV-O057 – As a user I can see both positive and negative sentiment over the past 24 hours

~ 117 ~

- AC1 The positive sentiment will be represented by a green line and shaded area

- AC2 The negative sentiment will be represented by a red line and shaded area

TSV-O058 – As a user I can interact with the map and the axis

- AC1 The user should be able to hover over the line to see the sentiment at a given time

- AC2 The user should be able to hover over the line to see time for a given sentiment value

1.3.16 Comparison
User stories relating to the topic comparison page

TSV-P059 – As a user I can enter between one and four search terms

- AC1 The screen will be divided into the number of search terms entered

- AC2 The user should not be able to enter over four topics, or zero topics

TSV-P060 – As a user I can see the overall sentiment for each of my search terms

- AC1 this should be displayed in the form of a donut chart for each topic

- AC2 the chart should be labelled, and the user can hover over it to get more details

TSV-P061 – As a user I can see most commonly used words and their sentiment for each topic

- AC1 the top ten words will be displayed

- AC2 the words will be coloured according to sentiment

- AC3 the words will be clickable

TSV-P062 – As a user I can view links to the other data visualisations for each of the topics

1.3.17 Tone Identification
User stories relating to screen that identifies tone of language of tweets

TSV-Q063 – As a user I can view a summary of the key tones identified for a topic

- AC1 these should be displayed in the form of no more than 12 mini bars on a chart

- AC2 the user should be able to hover over a bar to get a more accurate percentage value

TSV-Q64 – As a user I can see a more detailed breakdown in the form of a segmented radar chart

1.3.18 Entity Extraction
User stories relating to the screen that displays the entity extraction results

TSV-R065 – As a user I can view the key entities extracted from a set of tweets

- AC1 Entities should be grouped into categories

- AC2 The first few matches for each entity should be displayed

- AC3 Where possible an image should be shown for each entity, pulled from Wikipedia

TSV-R066 – As a user I can see what volume of each entity and category visually on a Sankey chart

~ 118 ~

1.3.19 Search Screen
User stories relating the search results screen

TSV-S067 – As a user I can make a search

- AC1 Either from the homepage, initial search page or search results page

TSV-S068 – As a user I can get a quick overview of the average sentiment of my topic

- AC1 A gauge should show average sentiment

- AC2 A hexagon mesh should give a quick overview of sentiment of individual tweets

TSV-S069 – As a user I can see which keywords are most commonly used in the twitter results

- AC1 Should be listed in order of volume of use

- AC2 Should be highlighted according to sentiment

- AC3 Should be clickable

TSV-S070 – As a user I can see a summary of the tones identified

- AC1 Each tone identified and the percentage certainty should be displayed

- AC2 Displayed in the form of bars

- AC3 User should be able to hover to see exact percent

- AC4 There should be a see more button, directing the user to the tone identification page

TSV-S071 – As a user I can see a summary of the entities extracted

- AC1 the top six categories for that topic should be displayed

- AC2 the entities in each six categories should be shown

- AC3 if the user hovers over an entity they should be able to see number of occurrences

- AC4 the entities should be clickable

- AC5 if the system has found an associated Wikipedia image for the entity, it should be

displayed

- AC6 there should be a read more button to find and display more entities on the entity

screen

TSV-S072 – As a user I can see how my topic compares to the rest of Twitter

- AC1 Should be displayed as a donut chart

- AC2 There should be three input fields to enter more topics to compare with search term

- AC3 Should provide a link to the comparison screen

TSV-S073 – As a user I can read a set of tweets relating to my topic

- AC1 The top five positive tweets should be shown in one column

- AC2 The top five negative tweets should be shown in another column

- AC3 There should be a load more button, to show more tweets from topic

- AC4 The sentiment for each tweet should be shown

- AC5 The location (if applicable) for each tweet should be shown as small grey text

- AC6 The time tweets should be displayed in a readable form in small grey text

- AC7 The keywords of each tweet should be highlighted in bold, and clickable

TSV-S074 – As a user I can view more results for my search term on each data visualisation

- AC1 A thumbnail with image for each applicable data visualisation should be shown

- AC2 Each page will show relevant results to that search term

~ 119 ~

1.3.20 Development Environment
User stories relating to how code is managed in the dev environment

TSV-T075 – As a development environment I should compile CoffeeScript into JavaScript

- AC1 Should only accept valid CoffeeScript

- AC2 If there’s an error in the source code, a suitable message should be outputted

- AC3 Suggestions on how to improve code quality, efficiency and readability should be printed

to the console

- AC4 Should only compile code that has changed

TSV-T076 – As a development environment I should compile LESS/ SASS into CSS

- AC1 Should only accept valid LESS/SASS

- AC2 Should give a suitable error message if there’s an error in LESS/SASS

- AC3 Should output code quality improvements to the console

- AC4 Should only compile code that has changed since last compile

TSV-T077 – As a development environment I should check HTML/ Jade for missing entities

TSV-T078 – As a development environment I should prepare graphics from source to their web form

- AC1 Graphics should be an optimum size

- AC2 Graphics should be in a suitable format

TSV-T079 – As a development environment I should remove obsolete files

- AC1 Any file which are not referenced anywhere, and hence not being used

TSV-T080 – As a development environment I should bundle browser scripts

- AC1 All read in files (like text, csv, json…) should be bundled

- AC2 All code should be lint-free

- AC3 Output code should be minified

- AC4 Bundles should be size checked

TSV-T081 – As a development environment I should check code (where possible) for errors /bad style

- AC1 Use appropriate plugins to check for each factor

- AC2 Check good code style

- AC3 Check line length is not over 80 chars

- AC4 Print warnings and code quality tips to console

- AC5 Find unused variables and imports

- AC6 Reject errored code

TSV-T082 – As a development environment I should watch for changes in source files and then

recompile the appropriate files

TSV-T083 – As a development environment I should keep multiple development browsers across

various devices in sync for seamless compatibility testing

- AC1 Both local browsers and external devices such as mobiles and tablets

- AC2 When the developer scrolls down on one device, all should scroll accordingly

- AC3 When the developer clicks a link/ or interacts with one device, should happen on all

~ 120 ~

TSV-T084 – As a development environment I should run unit tests and output results

1.3.21 Testing
User stories relating to the test environment

TSV-U085 – As a test environment I should run unit tests

- AC1 This should include automated test running

- AC2 Tests should be able to be run locally or remotely

- AC3 Tests should be able to be run with the npm test command

TSV-U086 – As a test environment I should have integration tests

- AC1 These should be fully automated

- AC2 Should be run on every commit

- AC3 Should be run remotely

- AC4 Should run on many different Node.js versions

TSV-U087 – As a test environment I should be able to stub data as to not make external data

requests

- AC1 Using Sinon.js

- AC2There should be no external requests what so ever

TSV-U088 – As a test environment I should use assertions for the unit tests

- AC1 Clean and neat assertions should be written

- AC2 Datatype, size, value…. Should be asserted

TSV-U089 – As a test environment I should show coverage test results

- AC1 An overall coverage percentage should be outputted after tests have run

- AC2 There should also be a much more detailed coverage breakdown

- AC3 A report should be generated and saved to the reports directory

- AC4 Istanbul will be used

TSV-U090 – As a test environment I should check dependencies are up-to-date

- AC1 On every commit

- AC2 Both production dependencies and dev dependencies

- AC3A badge should be displayed on the readme.md

TSV-U091 – As a test environment I should check code quality with automated code reviews

- AC1 On every commit

- AC2 Should assign a grade

- AC3 Should display a badge on the readme.md

TSV-U092 – As a test environment I should do headless browser testing and HTTP service testing

1.3.22 Real-time data streaming
User stories relating to the Twitter streaming module

~ 121 ~

TSV-V093 – As a developer I should be able to get a continuous stream of chunked tweets

- AC1 Sanitised data

- AC2 Non-stop

TSV-V094 – As a developer, the streamed tweets should be formatted and safe

1.3.23 Keyword Analysis
User stories relating to the extraction of keywords

TSV-W095 – As a developer I should be able to extract an array of keywords from a string

- AC1 Should return an array

- AC2 Array should include all words in original string EXCEPT words in the remove list

- AC3 By default the remove list will include every generic word

TSV-W096 – As a developer, I should be able to customise the deletion word set

- AC1 By passing in a custom array of words as the second paramater

1.3.24 Geographical Place Lookup
User stories relating to the geographical place modules

TSV-X097- As a developer I can get a valid latitude and longitude for any fuzzy place name

- AC1 Should return the most likely choice for every string passed in

TSV-X098 – As a developer I can get the country code in multiple forms from latitude and longitude

- AC1 Should return ISO2, ISO3 and country code for every country

TSV-X099 – As a developer I can get location of geo-tagged tweets from their ID’s

- AC1 Should take the ID as a parameter, and return a valid place object

1.3.25 Efficiency
User stories relating to system efficiency

TSV-Z100 – As a system I am super-efficient (and totally awesome)

~ 122 ~

1.4 STORY POINTS

Story
Number

Story Story Point
Estimate

Reasoning

TSV-A001 As a user I should be able to
view the solution in my
browser simply by visiting a
URL

1 A hosting solution and URL
will be set up in sprint zero.
After which files will just
need to be updated via ftp.

TSV-A002 As a user I should have fast
loading times or be displayed
with a loading graphic

3 For each load there needs to
be a label with the type, if it
less than 1 second there is
no need for a loading
graphic, anything longer
there will need to be a
suitable screen developed.

TSV-A003 As a user I should be able to
easily switch between
different parts of the
application

3 The application will be set up
as a single page application,
but only load data when
requested.

TSV-A004 As a user I should find the
user interface clear and
simple to look at

2 The material design standard
will be followed throughout.

TSV-B005 As a user I should be able to
view the map

2 The application should allow
for the map to meet all the
points outlined in the
acceptance criteria

TSV-B006 As a user I should be able to
pan (move the map with
pointing device) and zoom
(with both control buttons
and hardware such as mouse
wheel)

1 This functionality should be
built into Google Maps, so
will just need to be
configured.

TSV-B007 As a user I should be able to
search for a specific location

5 The will require integration
with the Places API, and an
AJAX search as well as the
creation and implementation
of a suitable autocomplete.
A further challenge would be
to get this running so fast it
appears instant.

TSV-B008 As a user I should find the
map clear and neat to look at

2 A custom theme will be
written and applied to the
map.

TSV-C009 As a user I should be able to
see the heat map over the top
of the standard map

13 The heat map will need to be
created and then configured
and displayed.

TSV-C010 As a user I should be able to
toggle the display of the heat
map to show and hide it

3 A suitable switch will need to
be developed and
implemented and then
bound to the map.

~ 123 ~

TSV-C011 As a user I should be able to
adjust the opacity of the heat
map with a simple slider

3 Again a suitable slider
control will need to ne
implemented and should
affect the configuration of
the heat map

TSV-C012 As a system I should bind data
to the heat map

5 The data will need to be in
the right structure, and the
heat map will need to be
expecting that structure.

TSV-C013 As a system I should be able
to bind additional data to the
map to update it after the
initial heat map has already
been rendered

5 A potential challenge here
will be updating the UI after

TSV-C014 As a user I should find the
colors of the heat map clearly
represent the data it is
displaying

2 Suitable colors will be
applied following the
acceptance criteria. One
potential challenge is
defining the colors between,
as they may look less clear

TSV-D015 As a system I should be able
to identify weather a string is
positive, neutral or negative
overall

5 An AI API will be used so it
will need to be configured,
tested and integrated.

TSV-D016 As a system I should be able
to identify weather the
attitude towards a certain
specified topic is positive,
neutral or negative

5 This will most likely be a
different API, and will also
need to be configured,
tested and integrated in a
similar way.

TSV-D017 As a system I should be able
to give a confidence estimate
showing how likely it is that
the sentiment value is
accurate

2 Once the API is configured
this should be reasonably
strait forward to calculate.

TSV-D018 As a system I should be able
to return emotion analysis
results for a given string

5 This will involve another call
to a API with certain
parameters in order to
determine which emotions
are conveyed

TSV-D019 As a system the load time for
fetching results should be
sufficiently fast

3 This will require efficient
algorithms, async tasks and a
minimum amount of
network calls.

TSV-D020 As a system I should give a
suitable response and error
code if no result is available

2 This will involve checking
numerous conditions, so is
not a simple if statement,
that is why the point
estimate is 2 rather than 1.

TSV-E021 As a system I should be able
to fetch a specified number of
Tweets from around a given
location from the Twitter API

5 Work will also need to be
done to process the location
data into the correct format.

~ 124 ~

TSV-E022 As a system I should be able
to fetch a specified number of
Tweets talking about a
specific topic, hashtag or
keyword from the Twitter API

3 This will be done in a similar
way to fetching the location
Tweets, but with keyword
rather than location.

TSV-E023 As a system I should have
reasonable response times in
fetching Tweets from the
Twitter API

2 If all the algorithms are
efficient, and minimum
number of network calls
then this will be quite strait
forward or determined by
the Twitter API.

TSV-E024 As a system I should respond
with a suitable error if there is
a problem fetching Tweets
from the Twitter API

2 There are several different
types of error, all conditions
will need to be tested and
appropriate display to the
user.

TSV-E025 As a system I should be able
to create a series of Tweet
objects ready for the next
stage

1 This should be a fairly
straight-forward task.

TSV-F026 As a user I should be able to
see the heat map bound to
data to display results

3 Providing the heat map was
correctly set up, and the
data is in the right structure
there shouldn’t be anything
too complex here, however
data will be coming in after
the initial UI has rendered so
this needs to be considered.

TSV-F027 As a user I should be able to
see search for a keyword and
location to see the heat map
for just that topic

13 There are several challenges
this story may give. Firstly a
new bunch of network
requests will need to be sent
off and be processed, and
then the rendered map will
need to be re-rendered
without page load. If the
map is for a specific location
zoom will need to be set as
well.

TSV-F028 As a user I should be able to
hover over specific areas of
interest and see what is
trending or causing that
particular heat patch

13 A hover listener will need to
be configured. Also suitable
UI components developed
and implemented. Most
importantly an algorithm
determining what is actually
causing those heat patches
needs to be developed.

TSV-F029 As a system I should be
displaying data both from the
database and live from
Tweets

5 This sounds simple enough,
although it does mean the UI
will need to update when
more data is available on the

~ 125 ~

network without a page
refresh.

TSV-F030 As a system I should be able
to load fast and display
suitable loading graphic when
loading times are more than 1
second

2 Algorithms must be efficient,
with minimum network calls,
and fully asyncrynous where
possible. The loading graphic
can just be a simple gif or a
css animation.

TSV-G031 As a system I should be able
to write to the database
asyncrously

3 The best solution may be to
use a pre-written package
such as Q as it facilitate the 4
main type of async call
required for this story.

TSV-G032 As a system I should be able
to read from the database
asyncrously

2 This should be slightly less
complex as the previous
story as it is just reading and
the data can be pulled down
in any order.

TSV-G033 As a system I should be able
to query the database for just
relevant Tweets

2 In MongoDb this is very easy,
just pass in the query in the
form of JSON parameters. It
does however mean that all
data must be in the correct
structure.

TSV-G034 As a system I should delete
the oldest entries when there
reaches a certain number of
records

2 Each record will also have a
timestamp, and it is simple
to count records, so will not
be complex to sort by
timestamp then remove the
appropriate number.

TSV-G035 As a system I should be able
to check and make safe data
before inserting

1 A function will be written
which does everything
outlined in the acceptance
criteria, it will then just be
called to for every record
that is going to be inserted.

TSV-G036 As a system I should use both
the cached and live data in
conjunction or depending on
user selection

2 All the challenges faced in
this story will have been
covered on previous stories.

TSV-H037 As a user I should find the
start page clear and concise

2 This will need to be worked
on across several sprints, but
shouldn’t pose as too much
of a problem technically

TSV-H038 As a user I can make a search
directly from the home page

1 Just a simple form

TSV-H039 As a user I can navigate to any
other part of the application
directly from the home screen

1 These will just be links.
However they will need to
be clear and contain a
graphic. They should also be
generated dynamically for
code reuse.

~ 126 ~

TSV-I040 As a user I should be able to
get an immediate overview of
results of sentiment by
location

3 A D3 regional map will need
to be developed. This
shouldn’t be too challenging
given the available resources

TSV-I041 As a user I should be able
search for a specific search
term, on the regional map
screen

1 Simple form redirecting to
the sub-route which fetches
tweets from a different
source, but all frontend code
will remain the same

TSV-I042 As a user I should be able to
see a list of most positive and
negative regions

2 The algorithm which
calculates this will need to
be very efficient, and results
should be displayed clearly

TSV-J043 As a user I should be able see
what is currently trending
worldwide

8 Several steps, to this, must
be async

TSV-J044 As a user I should be able to
enter a custom location to
view local trends

5 Again, many steps, including
a place-lookup. Must be
asyncronus

TSV-J045 As a user I can click a trend to
find out more

1 Reasonable straitforward to
make an SVG component
clickable

TSV-J046 As a user I can view trends
visually, to get an overview of
volume and sentiment

3 D3 bubble chart will need to
be developed from scratch

TSV-K047 As a user I should be able to
read the plain text tweets
relating to a chosen topic/
word

3 Nothing particularly complex
here, except managing high
volumes of textual data

TSV-K048 As a user I should be able to
quickly pick out the key
information while reading

2 A script will be written using
the remove-words module
to highlight keywords in bold

TSV-K049 As a user I should see new
tweets come in in real-time

3 Real-time functionality for
high volumes of data will
need to be efficient

TSV-L050 As a user I can see a word
cloud after entering my
search term

5 Rendering of word cloud
positioning may pose as a
challenge

TSV-L051 As a user I can see a text list of
the top words used in positive
and negative tweets

5 Algorithm will need to sort
words from a very large set
of tweets

TSV-M052 As a user I can view the
scatter plot for a given search
term/ keyword

3 Same backend as word cloud

TSV-M053 As a user I can hover over a
point to view the associated
key word

1 Simple D3 function

TSV-N054 As a user I can interact with
the globe

2 Following the globe guide,
this shouldn’t be too
complex

~ 127 ~

TSV-N055 As a user I can see sentiment
for each location (that has
Twitter) on the globe

5 Will need to render bars
onto globe after initial lode

TSV-N056 As a user I can view statistics
of the data shown on the
globe

2 Should be similar to that of
the map

TSV-O057 As a user I can see both
positive and negative
sentiment over the past 24
hours on the timeline

3 Once timeline is rendered
this should be simple

TSV-NO58 As a user I can interact with
the timeline and the axis

2 Since only simple interaction
is required it should be fine

TSV-P059 As a user I can enter between
one and four search terms to
compare

1 Simple form, with
dynamically adding fields

TSV-P060 As a user I can see the overall
sentiment for each of my
search terms

2 Straightforward to calculate
and display. Will need to be
done for each topic

TSV-P061 As a user I can see most
commonly used words and
their sentiment for each topic

3 Similar to that of the word
cloud, but for each topic,
and in a linear way

TSV-P062 As a user I can view links to
the other data visualisations
for each of the topics

2 Similar to that of the
homepage

TSV-Q063 As a user I can view a
summary of the key tones
identified for a topic

8 High level of complexity
compared with sentiment
results

TSV-Q064 As a user I can see a more
detailed breakdown in the
form of a segmented radar
chart

5 Radar chart will need to be
interactive, and nested
circles may get complex

TSV-R065 As a user I can view the key
entities extracted from a set
of tweets

13 Again much more complex
than sentiment results. Also
additional resources (like
Wikipedia needs to be
requested)

TSV-R066 As a user I can see what
volume of each entity and
category visually on a Sankey
chart

5 Sankey chart will need to be
interactive and correctly
scaled

TSV-S067 As a user I can make a search 2 Simple but crucial so various
potential complexities will
be considered

TSV-S068 As a user I can get a quick
overview of the average
sentiment of my topic

3 Simple summary

TSV-S069 As a user I can see which
keywords are most commonly
used in the twitter results

3 Needs to be calculated
efficiently and displayed
clearly

TSV-S070 As a user I can see a summary
of the tones identified

2 Just summary from tone
route

~ 128 ~

TSV-S071 As a user I can see a summary
of the entities extracted

2 Just summary from the
entity route

TSV-S072 As a user I can see how my
topic compares to the rest of
Twitter

8 Will need to quickly calculate
sample for the rest of
Twitter

TSV-S073 As a user I can read a set of
tweets relating to my topic

2 Just a sub extract from the
raw tweet page

TSV-S074 As a user I can view more
results for my search term on
each data visualisation

1 Just links, with custom
search term

TSV-T075 As a development
environment I should compile
CoffeeScript into JavaScript

2 Gulp task

TSV-T076 As a development
environment I should compile
LESS/ SASS into CSS

2 Gulp task

TSV-T077 As a development
environment I should check
HTML/ Jade for missing
entities

2 Gulp task

TSV-T078 As a development
environment I should prepare
graphics from source to their
web form

2 Gulp task

TSV-T079 As a development
environment I should remove
obsolete files

2 Gulp task

TSV-T080 As a development
environment I should bundle
browser scripts

3 Gulp task using Browserify

TSV-T081 As a development
environment I should check
code (where possible) for
errors /bad style

2 Gulp task

TSV-T082 As a development
environment I should watch
for changes in source files and
then recompile the
appropriate files

2 Gulp watch task

TSV-T083 As a development
environment I should keep
multiple development
browsers across various
devices in sync for seamless
compatibility testing

2 Gulp task with Browser-Sync

TSV-T084 As a development
environment I should run unit
tests and output results

3 Should also include all other
tests

TSV-U085 As a test environment I should
run unit tests

2 Can be done through the
Gulp test task above

TSV-U086 As a test environment I should
have integration tests

2 Once configured, very simple
and fully automated

~ 129 ~

TSV-U087 As a test environment I should
be able to stub data as to not
make external data requests

3 Using Sinnon.js which will
require upskilling

TSV-U088 As a test environment I should
use assertions for the unit
tests

2 With Chai. Goes without
saying that assertions are
required

TSV-U089 As a test environment I should
show coverage test results

2 And needs to generate HTML
report. Will use Istanbul

TSV-U090 As a test environment I should
check dependencies are up-
to-date

1 Very simple with once David-
DM is configured

TSV-U091 As a test environment I should
check code quality with
automated code reviews

1 Again, easy with Codeacy

TSV-U092 As a test environment I should
do headless browser testing
and HTTP service testing

3 SuperTest is less
straightforward

TSV-V093 As a developer I should be
able to get a continuous
stream of chunked tweets

21 A large backend task

TSV-V094 As a developer, the streamed
tweets should be formatted
and safe

5 Needs to be efficient as large
volume of data

TSV-W095 As a developer I should be
able to extract an array of
keywords from a string

13 Efficiency again is key

TSV-W096 As a developer, I should be
able to customise the deletion
word set

3 Reasonably simple, but will
need verifying

TSV-X097 As a developer I can get a
valid latitude and longitude
for any fuzzy place name

13 Will use Google API’s and
own scripts

TSV-X098 As a developer I can get the
country code in multiple
forms from latitude and
longitude

13 Trigonometry

TSV-X099 As a developer I can get
location of geo-tagged tweets
from their ID’s

8 Uses Twitter API

TSV-Z100 As a system I am super-
efficient (and totally
awesome)

1.5 SUMMARY
The user stories laid out in this document specify the minimum requirements for the viable project.

Many additional requirements were also covered, but weren’t specified in this document.

There was a total of 372 story points, these are a measure of complexity rather than time, but usually

each story point took about 3 hours.

~ 130 ~

2 APPENDIX TWO

STYLE GUIDES

This appendix document briefly outlines the good programming practices that

should be followed throughout the development of the project. The purpose of it is

to ensure consistency and increase clarity of the code.

Twitter Sentiment Visualisations

The research and development of a sentiment analysis module, and the

implementation of it on real-time social media data, to generate a series of live

visual representations of sentiment towards a specific topic or by location in

order to find trends.

Alicia Sykes 12011471

Oxford Brookes University

~ 131 ~

2.1 COFFEESCRIPT

Tabs or Spaces
Use spaces only, with 2 spaces per indentation level. Never mix tabs and spaces.

Maximum Line Length
Limit all lines to a maximum of 79 characters.

Blank Lines
Separate top-level function and class definitions with a single blank line.
Separate method definitions inside of a class with a single blank line.
Use a single blank line within the bodies of methods or functions in cases where this improves
readability (e.g., for the purpose of delineating logical sections).

Trailing Whitespace
Do not include trailing whitespace on any lines.

Optional Commas
Avoid the use of commas before newlines when properties or elements of an Object or Array are
listed on separate lines.

Whitespace in Expressions and Statements
Avoid extraneous whitespace in the following situations: immediately inside parentheses, brackets or
braces or immediately before a comma

Naming Conventions
Use camelCase (with a leading lowercase character) to name all variables, methods, and object
properties. Use CamelCase (with a leading uppercase character) to name all classes.
For constants, use all uppercase with underscores: (CONSTANT_LIKE_THIS)
Methods and variables that are intended to be "private" should begin with a leading underscore:
(_privateMethod: ->)

Extending Native Objects
Do not modify native objects.

Exceptions
Do not suppress exceptions.

Miscellaneous
and is preferred over &&.
or is preferred over ||.
is is preferred over ==.
isnt is preferred over !=.
not is preferred over !.
Prefer shorthand notation (::) for accessing an object's prototype:
Prefer @property over this.property.
However, avoid the use of standalone @:
Avoid return where not required, unless the explicit return increases clarity.
Use splats (...) when working with functions that accept variable numbers of arguments:

~ 132 ~

3 APPENDIX THREE

VCS HISTORY

A requirement for the projects development was that a version control system (VCS) would be
implemented to track changes. Git was used, and this document contains a summary of the Git
commit history as proof of the successful implementation of a VCS.

Twitter Sentiment Visualisations

The research and development of a sentiment analysis module, and the implementation of it

on real-time social media data, to generate a series of live visual representations of

sentiment towards a specific topic or by location in order to find trends.

Alicia Sykes 12011471

Oxford Brookes University

~ 133 ~

3.1 COMMIT GRAPHS

3.1.1 Contributions
The following chart shows the volume of contributions to the repo (y-axis) against time (x-axis)

between August 2015 and March 2016.

3.1.2 Commits
The commit column chart illustrates the number of commits (y-axis) against time (x-axis).

3.1.3 Punch Card
The punch card chart below shows a summary of the times of day that the most commits were made

(if over 15 commits per hour).

~ 134 ~

3.2 LOGS

3.2.1 How to print
The following command was put together to print out all git commits for the current repository.

To use, you must first have git installed globally on your system, then navigate into the project root,

where the .git file is, then simply paste the below command, and the results should be generated.

Output will be neatly formatted, and colour coded to make reading easy. Output will be ordered by

newest commit first.

git log --pretty=format:%Cgreen"%h

%Creset%Cblue[%aD%x08%x08%x08%x08%x08%x08%x08%x08%x08]%Creset %s

%Cred(author: %cn)" –all

Example output (from the find-region-from-position module)

3.2.2 Git logs for main program

0a9c124 [Wed, 16 Mar 2016 12:25] New thumbnail for World Now page

(author: Alicia Sykes)

5958246 [Wed, 16 Mar 2016 12:24] updated placeholder text for search (author: Alicia Sykes)

8c1942c [Wed, 16 Mar 2016 12:23] Finished World Now page

(author: Alicia Sykes)

8c43b8b [Wed, 16 Mar 2016 12:23] Changed which pages show in the navbar (author: Alicia Sykes)

bd8dec0 [Wed, 16 Mar 2016 12:23] New thumbnail for World Now

(author: Alicia Sykes)

200551b [Wed, 16 Mar 2016 12:22] Added sentance and link about Twitter Now (author: Alicia

Sykes)

91025e4 [Wed, 16 Mar 2016 12:21] Updated conditions for saving tweets (author: Alicia Sykes)

6e6eb59 [Wed, 16 Mar 2016 12:21] Removed coverage badge, added link to hp entity-extraction

module (author: Alicia Sykes)

d12bbe [Wed, 16 Mar 2016 12:20] Fixed not showing older tweets, and rereshes automatically

(author: Alicia Sykes)

~ 135 ~

f7ccf95 [Wed, 16 Mar 2016 12:19] Remove oldest point when more that 400 reached, to stop

browser crash (author: Alicia Sykes)

43929c5 [Wed, 16 Mar 2016 12:18] Implemented final changes to now main (author: Alicia Sykes)

68c96d1 [Wed, 16 Mar 2016 12:18] Open all external links in a new tab (author: Alicia Sykes)

c65a4b2 [Wed, 16 Mar 2016 10:12] Details about the MIT License (author: Alicia Sykes)

0dba42b [Sun, 13 Mar 2016 19:21] Finished displaying tweets live raw (author: Alicia Sykes)

6c7e984 [Sun, 13 Mar 2016 18:36] show loader while waiting for the map and other changes to

now page (author: Alicia Sykes)

3bd863e [Sun, 13 Mar 2016 10:11] Real time tweet samples now work (author: Alicia Sykes)

360978a [Sun, 13 Mar 2016 09:30] Styles and layout for live bullet chart (author: Alicia

Sykes)

4d213f6 [Sun, 13 Mar 2016 09:29] Finished real-time bullet chart

(author: Alicia Sykes)

e1c8478 [Sun, 13 Mar 2016 09:28] Bullet.js dependency

(author: Alicia Sykes)

05268d0 [Sun, 13 Mar 2016 07:58] now

(author: Alicia Sykes)

3d3e092 [Sun, 13 Mar 2016 04:09] Browserified the now page

(author: Alicia Sykes)

265178c [Sun, 13 Mar 2016 02:42] Now page has live map

(author: Alicia Sykes)

400f4d3 [Sun, 13 Mar 2016 02:41] Modified stream handler to not save junk tweets with URLs

(author: Alicia Sykes)

d90efa6 [Sun, 13 Mar 2016 01:49] Map is now reall time too - cool

(author: Alicia Sykes)

3412cb6 [Sun, 13 Mar 2016 00:10] got static region map working (author: Alicia Sykes)

97dca3f [Sat, 12 Mar 2016 23:09] Implemened socket.io real-tim functionality into now page

(author: Alicia Sykes)

293b6bf [Sat, 12 Mar 2016 22:20] Made static vertical bar chart

(author: Alicia Sykes)

24fe3f5 [Sat, 12 Mar 2016 21:13] Setup Jade template for now page

(author: Alicia Sykes)

871b58b [Sat, 12 Mar 2016 21:12] Modified save criteria

(author: Alicia Sykes)

960472a [Sat, 12 Mar 2016 21:12] badges

(author: Alicia Sykes)

91b0cc9 [Sat, 12 Mar 2016 20:23] badges

(author: Alicia Sykes)

1c2388b [Sat, 12 Mar 2016 19:40] Created page and blank script for now page (author: Alicia

Sykes)

679ce27 [Sat, 12 Mar 2016 19:40] Created new route for Now page

(author: Alicia Sykes)

449461e [Sat, 12 Mar 2016 16:03] Badge (author: Alicia Sykes)

08681d1 [Sat, 12 Mar 2016 15:47] Added stackshare badge

(author: Alicia Sykes)

2e4f784 [Sat, 12 Mar 2016 15:46] Updated rules for saving tweets

(author: Alicia Sykes)

cf2900d [Sat, 12 Mar 2016 15:45] Now streams from the whole world

(author: Alicia Sykes)

~ 136 ~

205a58e [Mon, 29 Feb 2016 15:38] New lines under title

(author: Alicia Sykes)

2bc43df [Mon, 29 Feb 2016 15:35] Added user stories for the frontend of screens (author:

Alicia Sykes)

0397475 [Mon, 29 Feb 2016 15:06] Wireframe page (author: Alicia Sykes)

7ff9207 [Mon, 29 Feb 2016 14:58] Frontend methodology

(author: Alicia Sykes)

e0780fd [Mon, 29 Feb 2016 14:48] Added wireframes images

(author: Alicia Sykes)

b65679a [Thu, 25 Feb 2016 18:13] Fixed minor typo in image path of screenshot documentation

(author: Alicia Sykes)

b139144 [Thu, 25 Feb 2016 18:11] Added screenshots (author: Alicia Sykes)

18e4aa1 [Wed, 24 Feb 2016 18:42] Increased the efficiency of real-time scatter (author: Alicia

Sykes)

24719c9 [Wed, 24 Feb 2016 18:42] Added mobile redirect (author: Alicia Sykes)

934e00e [Wed, 24 Feb 2016 18:41] Added mobile redirect (author: Alicia Sykes)

f6a8b46 [Wed, 24 Feb 2016 10:41] Fixed region map read url (author: Alicia Sykes)

c8670e4 [Wed, 24 Feb 2016 10:41] Fixed autocomplete url (author: Alicia Sykes)

f76baee [Wed, 24 Feb 2016 08:37] Modified socket.io to look on default port (author: Alicia

Sykes)

d053c11 [Tue, 23 Feb 2016 16:53] Updated bower components (author: Alicia Sykes)

93f3122 [Tue, 23 Feb 2016 16:44] Commented out the real-time-dashboard route, which breaks

everything (author: Alicia Sykes)

3f699d9 [Tue, 23 Feb 2016 16:43] So the real-time dashbaord works.... but, it crashes your

whole computer and

s4f63dff [Tue, 23 Feb 2016 16:27] Improved colors, finished script

(author: Alicia Sykes)

2ec2644 [Tue, 23 Feb 2016 15:33] Client side scatter working (author: Alicia Sykes)

824a760 [Mon, 22 Feb 2016 16:53] Created empty route for real-time dashboard (author: Alicia

Sykes)

60bde46 [Mon, 22 Feb 2016 16:53] Improved styling and layout on home and search pages, and

fixed search on sea7857576 [Mon, 22 Feb 2016 16:51] Show loading when navbar clicked (author:

Alicia Sykes)

834b0fa [Mon, 22 Feb 2016 16:50] Added new thumbnails for latest data visualisations (author:

Alicia Sykes)

1187f53 [Mon, 22 Feb 2016 14:22] Finished tone analysis front and backend (author: Alicia

Sykes)

2469bad [Mon, 22 Feb 2016 14:22] Updated to work with the new tone analysis module (author:

Alicia Sykes)

6507d74 [Mon, 22 Feb 2016 11:59] Browserified tones analyzer (author: Alicia Sykes)

6747ead [Mon, 22 Feb 2016 11:17] Error text (author: Alicia Sykes)

27c19a8 [Mon, 22 Feb 2016 10:29] Made tone pages (author: Alicia Sykes)

80db4b5 [Mon, 22 Feb 2016 09:18] Finished Trending sentiment page (author: Alicia Sykes)

cac5fed [Mon, 22 Feb 2016 09:18] Fixed missing D3 error (author: Alicia Sykes)

ee8ffa5 [Sun, 21 Feb 2016 13:07] Trending now full working with list of trends (author: Alicia

Sykes)

ac9e59d [Sun, 21 Feb 2016 13:07] Updated fetch-tweets (author: Alicia Sykes)

db7e32d [Sun, 21 Feb 2016 10:58] Shows text trends from world-wide (author: Alicia Sykes)

~ 137 ~

d76333d [Sun, 21 Feb 2016 10:58] CSS loading spinner (author: Alicia Sykes)

0a15758 [Sun, 21 Feb 2016 10:21] Trending API done (author: Alicia Sykes)

15a9ddf [Sat, 20 Feb 2016 15:33] Added the trending route and files (author: Alicia Sykes)

30ad4b3 [Sat, 20 Feb 2016 14:55] Moved api routes into api folder (author: Alicia Sykes)

eefc87b [Fri, 19 Feb 2016 13:43] Implemented in page comparison to search (author: Alicia

Sykes)

d18f823 [Fri, 19 Feb 2016 13:42] Added API route for db Tweets (author: Alicia Sykes)

338f232 [Fri, 19 Feb 2016 11:58] Finished implamenting entity analysis summary on search page

(author: Alicia Sykes)

S527ab57 [Fri, 19 Feb 2016 11:58] Updated Materialize to latest version (author: Alicia Sykes)

91ef669 [Fri, 19 Feb 2016 10:58] Changed data structure and sorted numerically (author: Alicia

Sykes)

9cf2c12 [Fri, 19 Feb 2016 10:26] Made a faster watch for coffeescript for dev (author: Alicia

Sykes)

dc91aec [Fri, 19 Feb 2016 10:00] Backend working for entity extraction (author: Alicia Sykes)

c83e068 [Fri, 19 Feb 2016 09:59] Added route and code for entity-extraction api files (author:

Alicia Sykes)

6210dc5 [Thu, 18 Feb 2016 12:00] Tooltips on bars (author: Alicia Sykes)

66dcd7b [Thu, 18 Feb 2016 11:47] Tone analysis using real data (author: Alicia Sykes)

68cea54 [Thu, 18 Feb 2016 11:40] Show loader while tones are loading (author: Alicia Sykes)

858753f [Thu, 18 Feb 2016 11:34] Front end for tone analysis done, changed layout of search

page (author: Alicia Sykes)

7f4c420 [Wed, 17 Feb 2016 17:19] Files for tone analyzer (author: Alicia Sykes)

37d1258 [Wed, 17 Feb 2016 17:19] Added raw Tweets to search page and implemented radar

(author: Alicia Sykes)

d38a319 [Wed, 17 Feb 2016 17:18] Basic styles for radar chart (author: Alicia Sykes)

d91cafe [Wed, 17 Feb 2016 17:14] Added new routes for tone analyzer (author: Alicia Sykes)

05d6ce0 [Wed, 17 Feb 2016 12:22] Implemented server side fetching tones from watson (author:

Alicia Sykes)

048dfcb [Wed, 17 Feb 2016 11:36] Added buttons to globe (author: Alicia Sykes)

a0c1d83 [Wed, 17 Feb 2016 11:36] Show's top words used, into the search page (author: Alicia

Sykes)

36a5fb2 [Mon, 15 Feb 2016 20:46] Fixed font size bug on word cloud (author: Alicia Sykes)

1c3371f [Mon, 15 Feb 2016 20:41] Round off percentages (author: Alicia Sykes)

51d7d6f [Mon, 15 Feb 2016 20:29] Ipdated fetch-tweets to fetch trends too (author: Alicia

Sykes)

6faff0d [Mon, 15 Feb 2016 16:02] Not compatible with mobile message (author: Alicia Sykes)

d5dde51 [Mon, 15 Feb 2016 15:33] Increased font size (author: Alicia Sykes)

6be7464 [Mon, 15 Feb 2016 15:22] Updated the footer (author: Alicia Sykes)

5435314 [Mon, 15 Feb 2016 14:57] Created a side navbar for smaller screens, and made navbar

responsive (author: Alicia Sykes)

db9d58f [Mon, 15 Feb 2016 13:30] Improved navbar styling (author: Alicia Sykes)

3cd71dd [Mon, 15 Feb 2016 12:53] Wrote about page (author: Alicia Sykes)

c4c83b7 [Mon, 15 Feb 2016 10:45] Updated phantom dev dependency (author: Alicia Sykes)

6ba7701 [Mon, 15 Feb 2016 10:41] Started the CSS refactoring marathon (author: Alicia Sykes)

~ 138 ~

2e0ce83 [Mon, 15 Feb 2016 10:41] Multipid size in bytes by 10 (author: Alicia Sykes)

b820da5 [Mon, 15 Feb 2016 09:51] Browserified bower components of scatter plot (author: Alicia

Sykes)

b227b18 [Mon, 15 Feb 2016 09:45] Browsrified timelines bower components (author: Alicia Sykes)

8ae4830 [Mon, 15 Feb 2016 09:18] Made a custom error page (author: Alicia Sykes)

ec4a271 [Sun, 14 Feb 2016 16:51] Moved server-side sauce files (author: Alicia Sykes)

d710dee [Sun, 14 Feb 2016 16:19] Renamed source to client-side-souce (author: Alicia Sykes)

9524772 [Sun, 14 Feb 2016 11:47] Move url to seperate file (author: Alicia Sykes)

a5618da [Sun, 14 Feb 2016 11:34] Shortened app.js (author: Alicia Sykes)

9ad7cec [Sun, 14 Feb 2016 11:27] Removed keywords coloumn from db, and capped collection at

1500 (author: Alicia Sykes)

cbb8b2 [Sun, 14 Feb 2016 10:43] Added entry and thumbnail linhk for comparer into layout

(author: Alicia Sykes)

1f9e57f [Sat, 13 Feb 2016 16:23] Slightly improved the search for brand comparison (author:

Alicia Sykes)

bbd77dc [Sat, 13 Feb 2016 16:06] BASIC search form works for comparison page (author: Alicia

Sykes)

c1d5f5f [Sat, 13 Feb 2016 15:24] Fix minor importing bug (author: Alicia Sykes)

b3a6a16 [Sat, 13 Feb 2016 15:20] Added links to tweet comparison (author: Alicia Sykes)

081fb75 [Sat, 13 Feb 2016 15:10] Shows list of top words used in Tweets (author: Alicia Sykes)

01d8efb [Sat, 13 Feb 2016 14:42] Shows overall sentiment (author: Alicia Sykes)

2501d83 [Sat, 13 Feb 2016 14:41] Get trending words (author: Alicia Sykes)

459908c [Sat, 13 Feb 2016 14:41] Modified to make code more reusable (author: Alicia Sykes)

bb87d6b [Sat, 13 Feb 2016 13:04] Working comparing Tweets (author: Alicia Sykes)

0a8bafd [Sat, 13 Feb 2016 10:47] Wrote server side code for fetching comparison Tweets

(author: Alicia Sykes)

0847d7b [Sat, 13 Feb 2016 10:21] Created view, route and app.js entry for comparer (author:

Alicia Sykes)

c94ae5a [Sat, 13 Feb 2016 10:20] Wrote script for asyncrously fetching tweets (author: Alicia

Sykes)

ef17296 [Sat, 13 Feb 2016 08:25] Removed unused code from homepage (author: Alicia Sykes)

89860ab [Sat, 13 Feb 2016 07:50] Adjusted spacings and layout on home and search page (author:

Alicia Sykes)

58f80f1 [Sat, 13 Feb 2016 07:26] Styled hexagons (author: Alicia Sykes)

b151869 [Sat, 13 Feb 2016 07:26] Database now succesfully capped at 1500 records (author:

Alicia Sykes)

4db2a53 [Sat, 13 Feb 2016 07:25] Added GitHub and Read more button to home page (author:

Alicia Sykes)

b5f6ede [Sat, 13 Feb 2016 05:47] REAL TIME HEXAGON TWEET BACKGROUND IS WORKING :) (author:

Alicia Sykes)

a5fa8fb [Sat, 13 Feb 2016 00:23] Refractored js out of jade (author: Alicia Sykes)

1d94f05 [Fri, 12 Feb 2016 14:11] Modified home page layout and hexagons (author: Alicia Sykes)

94eaf44 [Fri, 12 Feb 2016 12:02] Modified homepage to display hexagons as background (author:

Alicia Sykes)

f9d58d3 [Fri, 12 Feb 2016 12:01] Modified hexagon module to have different settings fo

rhomepage (author: Alici4c49d73 [Fri, 12 Feb 2016 08:51] Update dependencies and fix build

issue (author: Alicia Sykes)

~ 139 ~

18e494a [Wed, 10 Feb 2016 14:43] Modified fetch sentiment tweet object, made bigger hexagon

diagram and added

2014388 [Wed, 10 Feb 2016 14:18] Added ripple effect to navbar, and tweeked search modules

(author: Alicia Sykes)

1102dfb [Wed, 10 Feb 2016 13:40] Implemented enter to search on the homepage (author: Alicia

Sykes)

8f9488e [Wed, 10 Feb 2016 12:06] Updated home page styles (author: Alicia Sykes)

43f05f9 [Wed, 10 Feb 2016 11:36] Created thumbnails for each vis (author: Alicia Sykes)

06a70fe [Wed, 10 Feb 2016 11:36] Modified image task to look in sub-directories (author:

Alicia Sykes)

dec906d [Wed, 10 Feb 2016 10:32] Fixed height on time chart (author: Alicia Sykes)

ab53ec4 [Wed, 10 Feb 2016 10:30] Implemented gauge chart in search page (author: Alicia Sykes)

95bb2b3 [Wed, 10 Feb 2016 09:05] Changed search scripts to browserify bundle (author: Alicia

Sykes)

6452efe [Wed, 10 Feb 2016 09:04] C3 dependency (author: Alicia Sykes)

42f10ee [Wed, 10 Feb 2016 08:49] Implemented tooltip functionality (author: Alicia Sykes)

9996670 [Wed, 10 Feb 2016 08:39] Basic hexbin vis working with real data (author: Alicia

Sykes)

888f019 [Wed, 10 Feb 2016 08:39] Added dependency for d3 tip (author: Alicia Sykes)

61a8478 [Tue, 9 Feb 2016 15:35] Static hexbin working (author: Alicia Sykes)

65585c7 [Tue, 9 Feb 2016 15:12] Set up blank template for search page (author: Alicia Sykes)

57216ef [Tue, 9 Feb 2016 15:01] Little sript to fetch Tweets and assign sentiment and keyword

values (author: Alicia Sykes)

f7522b4 [Tue, 9 Feb 2016 14:41] Added new route, viwe and entry in app.js for the search page

(author: Alicia Sykes)

3d40799 [Tue, 9 Feb 2016 14:26] Fixed moment depreication and refractored make-click-words

into seperate file (author: Alicia Sykes)

678e528 [Tue, 9 Feb 2016 14:14] Added some blank tiles to the home page (author: Alicia Sykes)

e86762f [Tue, 9 Feb 2016 13:38] Deleted sample data (author: Alicia Sykes)

4c86004 [Tue, 9 Feb 2016 13:16] Finished entity extraction sankey chart (author: Alicia Sykes)

f8f8e10 [Tue, 9 Feb 2016 11:27] Implemented sample sankey chart with js and css (author:

Alicia Sykes)

286357b [Tue, 9 Feb 2016 11:27] Added dependency for sankey d3 plugin (author: Alicia Sykes)

3ab6191 [Tue, 9 Feb 2016 10:48] Decorated the search box a bit (author: Alicia Sykes)

c61bd06 [Tue, 9 Feb 2016 10:39] Implemented press enter to search (author: Alicia Sykes)

f7c071a [Tue, 9 Feb 2016 10:28] Entity extraction frontend working, lots of jade loops

(author: Alicia Sykes)

abd1066 [Tue, 9 Feb 2016 10:27] Entity extraction backend working (author: Alicia Sykes)

50d1679 [Tue, 9 Feb 2016 10:27] Styles for entity extraction objects (author: Alicia Sykes)

87e7a16 [Tue, 9 Feb 2016 10:27] Modified the card shape to have margin and no padding (author:

Alicia Sykes)

4860916 [Mon, 8 Feb 2016 17:25] Created route, fetch tweets and extract etities then calls

Jade layout (author: Alicia Sykes)

f31db7e [Mon, 8 Feb 2016 17:25] Set up view and script for entity-extraction (author: Alicia

Sykes)

50d95e0 [Mon, 8 Feb 2016 17:24] Installed HP entity extraction module (author: Alicia Sykes)

~ 140 ~

ea6931c [Mon, 8 Feb 2016 17:24] Created route for entity-extraction (author: Alicia Sykes)

2a74150 [Mon, 8 Feb 2016 14:20] Got rid of break-down tweets from the navbar, cos it's rubbish

- relaced it (author: Alicia Sykes)

295a6f1 [Mon, 8 Feb 2016 14:16] Tried (and mostly failed) to fix that large font size bug

(author: Alicia Sykes)

dea6116 [Mon, 8 Feb 2016 14:05] Finished Tweet break-down chart, implemented functionality and

styled (author: Alicia Sykes)

772f552 [Mon, 8 Feb 2016 12:57] Now works for database results too (author: Alicia Sykes)

73e9991 [Mon, 8 Feb 2016 12:27] Break down workingfor fresh Tweets basic first version

(author: Alicia Sykes)

05496e6 [Sun, 7 Feb 2016 17:36] Styled and modified layout ready for real data in a minute

(author: Alicia Sykes)

0db01e7 [Sun, 7 Feb 2016 12:09] Created route, view and script for tweet tree map (author:

Alicia Sykes)

35e85af [Sun, 7 Feb 2016 12:09] New styles for the break-down tree map (author: Alicia Sykes)

3115362 [Sun, 7 Feb 2016 12:08] Added new entry for Tweet-break-down (author: Alicia Sykes)

180aeca [Sun, 7 Feb 2016 12:08] Added new route for Tweet break-down (author: Alicia Sykes)

b7116be [Sat, 6 Feb 2016 16:44] Show moment.js time for each incoming Tweet (author: Alicia

Sykes)

6b4a065 [Sat, 6 Feb 2016 15:56] Press enter to search (author: Alicia Sykes)

34eafef [Sat, 6 Feb 2016 15:48] Filter live tweets LIVE, very cool (author: Alicia Sykes)

58ec391 [Sat, 6 Feb 2016 15:48] Implemented search term feature (author: Alicia Sykes)

7953046 [Sat, 6 Feb 2016 15:08] Went back to non-browserified script (author: Alicia Sykes)

d9f8f62 [Sat, 6 Feb 2016 14:53] Added switch to turn real-time on and off and changed script

path to bundle (author: Alicia Sykes)

54bb68c [Sat, 6 Feb 2016 14:30] Displays real-time Tweets in real-time, awesome (author:

Alicia Sykes)

c801d08 [Sat, 6 Feb 2016 14:30] Modified stram handler to also emit anyTweet without location

(author: Alicia Sykes)

602449c [Sat, 6 Feb 2016 13:24] Moified sorting of Tweets, and added search box (author:

Alicia Sykes)

5fc3c12 [Sat, 6 Feb 2016 12:33] Showing database tweets (author: Alicia Sykes)

0e337f3 [Sat, 6 Feb 2016 12:33] Added additional text styles (author: Alicia Sykes)

9e243ca [Sat, 6 Feb 2016 10:49] Added new route, page and navbar entry for the raw tweets

section (author: Alicia Sykes)

7b60ca6 [Fri, 5 Feb 2016 15:26] Now shows statistics on region map, finished (author: Alicia

Sykes)

c11ea68 [Fri, 5 Feb 2016 15:26] Finished region map backend, better sorted data (author:

Alicia Sykes)

ac3ec1d [Fri, 5 Feb 2016 15:25] Added font colours into percentages (author: Alicia Sykes)

ce965e3 [Fri, 5 Feb 2016 12:24] Places autocomplete now uses live data (author: Alicia Sykes)

159c905 [Fri, 5 Feb 2016 11:50] Static autocomplete implemented (author: Alicia Sykes)

ae06338 [Fri, 5 Feb 2016 11:35] Now results are better (author: Alicia Sykes)

6083f2e [Wed, 3 Feb 2016 12:25] Modified map colours (author: Alicia Sykes)

0779eb7 [Wed, 3 Feb 2016 11:53] Calculates region from lat and long for map, and sends live

data (author: Alicia Sykes)

~ 141 ~

f689eb6 [Wed, 3 Feb 2016 11:52] Reversed the sentiment color, and now uses live data (author:

Alicia Sykes)

ceb764f [Wed, 3 Feb 2016 11:52] Added dependency for my new region finding module (author:

Alicia Sykes)

401c3b7 [Wed, 3 Feb 2016 11:16] Added module links to radme (author: Alicia Sykes)

b9d8cf9 [Mon, 1 Feb 2016 14:55] Created and configured reoutes and files for region map

(author: Alicia Sykes)

e0f62ea [Mon, 1 Feb 2016 14:54] Added region map to nav bar (author: Alicia Sykes)

b17318e [Mon, 1 Feb 2016 14:15] Searching on the timeline now works, finished (author: Alicia

Sykes)

b272d51 [Mon, 1 Feb 2016 14:15] Fixed forceX bug (author: Alicia Sykes)

de9edfb [Sat, 30 Jan 2016 15:58] Display first version of sentiment timeline working (author:

Alicia Sykes)

b31a582 [Sat, 30 Jan 2016 15:57] Timeline route and query working (author: Alicia Sykes)

0c31ef9 [Sat, 30 Jan 2016 15:56] D3 code for sentiment timeline done (author: Alicia Sykes)

e4373c6 [Sat, 30 Jan 2016 15:55] Script to fetch and format sentiment data for the timeline,

working nicley (aua3f7e41 [Fri, 29 Jan 2016 16:55] Set up basics for area line chart (author:

Alicia Sykes)

f767d71 [Fri, 29 Jan 2016 16:54] Full width adjustment (author: Alicia Sykes)

fa128c7 [Fri, 29 Jan 2016 16:54] Added dependency for NVD3 (author: Alicia Sykes)

b9f81d8 [Fri, 29 Jan 2016 13:12] Retains search term when switching between word cloud and

scatter plot (authorb550e59 [Fri, 29 Jan 2016 13:11] Scatter plot now uses real data (author:

Alicia Sykes)

bc12c4e [Fri, 29 Jan 2016 13:10] Show loader when search or enter is pressed (author: Alicia

Sykes)

7b04711 [Fri, 29 Jan 2016 13:10] Finished scatter plot (author: Alicia Sykes)

06fe13a [Fri, 29 Jan 2016 12:03] Almost finished D3 scatter (author: Alicia Sykes)

405fb69 [Fri, 29 Jan 2016 10:54] git (author: Alicia Sykes)

3820150 [Fri, 29 Jan 2016 10:49] Positioned Scatter (author: Alicia Sykes)

751d862 [Fri, 29 Jan 2016 10:23] Updated scattr plot position (author: Alicia Sykes)

da074b8 [Fri, 29 Jan 2016 10:17] Removed obsolete CSS and positioned Scattre Plot (author:

Alicia Sykes)

e97e1cd [Fri, 29 Jan 2016 10:16] Refractored the D3 CoffeeScript (author: Alicia Sykes)

c3ab03a [Thu, 28 Jan 2016 09:00] Basic Scatter Plot (author: Alicia Sykes)

7d92447 [Thu, 28 Jan 2016 09:00] Basic Scatter Plot (author: Alicia Sykes)

df73349 [Thu, 28 Jan 2016 16:20] Added route to word plot (author: Alicia Sykes)

4b958c4 [Thu, 28 Jan 2016 16:19] Fixed link to word plot (author: Alicia Sykes)

4c13d2f [Thu, 28 Jan 2016 16:01] Removed that cheeky console.log which snuck through (author:

Alicia Sykes)

bea94e6 [Thu, 28 Jan 2016 16:01] Word cloud done (author: Alicia Sykes)

5313eaf [Thu, 28 Jan 2016 16:00] Tabs and links on completed word cloud page (author: Alicia

Sykes)

1a86cc9 [Thu, 28 Jan 2016 15:04] Calculates and displays trending keywords in latest Tweets

(author: Alicia Syk69fcf75 [Thu, 28 Jan 2016 14:47] Now shows top positive and negative words

with REAL data (author: Alicia Sykes2982d94 [Thu, 28 Jan 2016 14:03] Formated the top words on

word cloud (author: Alicia Sykes)

fddeab4 [Thu, 28 Jan 2016 13:39] Path to pass top positive and negative words (author: Alicia

Sykes)

~ 142 ~

21f449a [Thu, 28 Jan 2016 09:13] Can now search word cloud from page controlls (author: Alicia

Sykes)

e63d48e [Thu, 28 Jan 2016 09:13] Made page controlls generic and reusable (author: Alicia

Sykes)

fb21038 [Thu, 28 Jan 2016 08:46] Adjusted size of words (author: Alicia Sykes)

017cf48 [Wed, 27 Jan 2016 13:30] Started making controlls for word cloud (author: Alicia

Sykes)

67a9591 [Wed, 27 Jan 2016 13:30] Modified CSS for controlls (author: Alicia Sykes)

3412065 [Wed, 27 Jan 2016 11:30] User can now click on a word in word cloud (author: Alicia

Sykes)

a340a88 [Wed, 27 Jan 2016 11:21] Added a route for custom words (author: Alicia Sykes)

fb38527 [Wed, 27 Jan 2016 10:39] Sizing and positioning of word cloud (author: Alicia Sykes)

14437e4 [Tue, 26 Jan 2016 16:55] Sizing of text now works (author: Alicia Sykes)

650233c [Tue, 26 Jan 2016 16:54] Updated to the latest version of remove-words (author: Alicia

Sykes)

7f36ec3 [Tue, 26 Jan 2016 14:22] Basic word cloud now reads from db (author: Alicia Sykes)

b23808a [Tue, 26 Jan 2016 13:49] Set word cloud to get data from server side (author: Alicia

Sykes)

b564c6d [Mon, 25 Jan 2016 17:32] Modified chart size and opacity (author: Alicia Sykes)

3d7d47d [Mon, 25 Jan 2016 17:20] Rotated text by random multiple of 45 (author: Alicia Sykes)

726e83c [Mon, 25 Jan 2016 17:06] Defines SVG in Jade template and kind of sorted that size

issue (author: Alicibba257e [Mon, 25 Jan 2016 16:24] Implemented size scale (author: Alicia

Sykes)

02fe524 [Mon, 25 Jan 2016 14:02] Fixed error in scale colors (author: Alicia Sykes)

0b9e615 [Mon, 25 Jan 2016 13:29] Red - Green scale for words (author: Alicia Sykes)

36ba39b [Mon, 25 Jan 2016 13:29] Added simple D3 static word cloud in (author: Alicia Sykes)

b03489f [Mon, 25 Jan 2016 10:23] Added word cloud into navbar (author: Alicia Sykes)

1288656 [Mon, 25 Jan 2016 10:22] Created route for word cloud page (author: Alicia Sykes)

bc973fb [Wed, 20 Jan 2016 11:01] Toggle heat map implemented (author: Alicia Sykes)

942bfd8 [Wed, 20 Jan 2016 10:53] Styles for clear map btn (author: Alicia Sykes)

93b4a45 [Wed, 20 Jan 2016 10:48] Filter positive and negative maps (author: Alicia Sykes)

b82a2df [Mon, 18 Jan 2016 16:00] Aplied opacity value to heatmap layer (author: Alicia Sykes)

af1807e [Mon, 18 Jan 2016 15:47] Number of Tweets counter increments in real-time (author:

Alicia Sykes)

eec16d6 [Mon, 18 Jan 2016 15:27] Made summary text for globe (author: Alicia Sykes)

de7bed2 [Mon, 18 Jan 2016 12:51] Implemented Coffee Lint code quality suggestions (author:

Alicia Sykes)

039eb34 [Mon, 18 Jan 2016 12:38] All dependencies up to date and removed JSX (author: Alicia

Sykes)

6ff00bd [Mon, 18 Jan 2016 12:37] Removed JSX reference (author: Alicia Sykes)

315b0f5 [Mon, 18 Jan 2016 12:37] Updated to work with latest version of del (author: Alicia

Sykes)

050a5dd [Mon, 18 Jan 2016 11:51] Updated dev dependencies (author: Alicia Sykes)

c0de153 [Sun, 17 Jan 2016 16:25] Globe is now realtime (author: Alicia Sykes)

4fdb1aa [Sun, 17 Jan 2016 16:20] Added add data method in globe bundle (author: Alicia Sykes)

1d5a4fb [Sun, 17 Jan 2016 11:01] Only show live rsults on full map (author: Alicia Sykes)

~ 143 ~

f72b206 [Sun, 17 Jan 2016 10:50] Refractored socket into map bundle (author: Alicia Sykes)

fa7f507 [Sun, 17 Jan 2016 10:41] If searched then show search term and hide clear btn (author:

Alicia Sykes)

8be7369 [Sat, 16 Jan 2016 12:22] Deleted the old live-map page and made the non-live map live

(author: Alicia S90e35fb [Sat, 16 Jan 2016 12:10] Fixed incorrect method name err (author:

Alicia Sykes)

c726fe2 [Sat, 16 Jan 2016 11:53] Refractored live interactions into seperate file (author:

Alicia Sykes)

86a83c5 [Sat, 16 Jan 2016 11:26] Improved real-time map and added clear btn (author: Alicia

Sykes)

1186f4f [Fri, 15 Jan 2016 13:35] Real time map working (author: Alicia Sykes)

7c51835 [Fri, 15 Jan 2016 13:35] GOT LIVE MAP WORKING (author: Alicia Sykes)

48ffb05 [Fri, 15 Jan 2016 13:34] Remove unecissary code (author: Alicia Sykes)

20e804c [Fri, 15 Jan 2016 13:34] Added new frontend dependency for socket.io (author: Alicia

Sykes)

c9c842b [Fri, 15 Jan 2016 13:33] Now streams A LOT of Tweets FAST (author: Alicia Sykes)

3014147 [Wed, 13 Jan 2016 13:06] Removed commented out code (author: Alicia Sykes)

c421d6d [Wed, 13 Jan 2016 13:04] Moved streaming into app.js and fixed dupp bug (author:

Alicia Sykes)

8a358bd [Wed, 13 Jan 2016 12:03] Refractored globe bundle into seperate files (author: Alicia

Sykes)

bee44ad [Wed, 13 Jan 2016 12:03] Added debrowserify to scripts gulp task to bundle

bower_components (author: Al259084e [Wed, 13 Jan 2016 10:59] Shows search term in textbox

(author: Alicia Sykes)

3367767 [Tue, 12 Jan 2016 18:00] Show and hide space (author: Alicia Sykes)

b423c6e [Tue, 12 Jan 2016 17:38] Smallened the info window on globe (author: Alicia Sykes)

71ee6ea [Tue, 12 Jan 2016 16:27] Show and hide details (author: Alicia Sykes)

aaa2165 [Tue, 12 Jan 2016 15:03] Made search box and summary for globe page (author: Alicia

Sykes)

109545e [Tue, 12 Jan 2016 12:59] Modified colors of world image for the globe (author: Alicia

Sykes)

798d9d3 [Tue, 12 Jan 2016 12:59] Added globe link to the navbar (author: Alicia Sykes)

5082c7f [Tue, 12 Jan 2016 12:36] Option to hide nav (author: Alicia Sykes)

d80a9fd [Mon, 11 Jan 2016 15:41] Refractored and all working (author: Alicia Sykes)

aab1e68 [Mon, 11 Jan 2016 14:59] Showing real lat + lng on globe (author: Alicia Sykes)

56029a9 [Mon, 11 Jan 2016 14:23] Globe fetches real data (but does nothing with it yet)

(author: Alicia Sykes) e816340 [Mon, 11 Jan 2016 14:17] Uses correct colours for positive and

negative sentiment (author: Alicia Sykesaed68bb [Sun, 10 Jan 2016 18:09] Nice picture of the

world for the webgl globe (author: Alicia Sykes)

69dae4b [Sun, 10 Jan 2016 18:09] Changed globe scripts to be a browserify bundle (author:

Alicia Sykes)

a53b733 [Sun, 10 Jan 2016 18:07] Modified images task to accept jpegs too (author: Alicia

Sykes)

ad2210e [Sat, 9 Jan 2016 22:08] Created skeleton for sentiment globe (author: Alicia Sykes)

27e5838 [Fri, 8 Jan 2016 18:00] Added formatting to the map summary text (author: Alicia

Sykes)

ca672df [Fri, 8 Jan 2016 15:42] Added a neutral gradient for results with zero sentiment

(author: Alicia Sykes)b8fffa0 [Fri, 8 Jan 2016 15:07] Submit search term when the user presses

enter (author: Alicia Sykes)

~ 144 ~

01c0176 [Fri, 8 Jan 2016 14:29] Refractored the summary sentences into seperate class (author:

Alicia Sykes)

887ad6a [Fri, 8 Jan 2016 13:57] Show basic stats for map in footer (author: Alicia Sykes)

4a6f57e [Thu, 7 Jan 2016 13:59] Made params for sending summary data to map (author: Alicia

Sykes)

f9de133 [Thu, 7 Jan 2016 12:11] Updated remove-words to latest version, better words list

(author: Alicia Sykes89b52ce [Thu, 7 Jan 2016 12:01] Template footer for bottom of map page

(author: Alicia Sykes)

c4a0999 [Thu, 7 Jan 2016 12:00] Made a key for the sentiment heat map (author: Alicia Sykes)

2bbc8cf [Wed, 6 Jan 2016 15:26] Developed new style theme for map (author: Alicia Sykes)

5677125 [Wed, 6 Jan 2016 14:40] Improved and finalised detailed heatmap gradient (author:

Alicia Sykes)

816e9e1 [Wed, 6 Jan 2016 13:18] Refractored and neatened heatmap module slightly (author:

Alicia Sykes)

b96bfa6 [Wed, 6 Jan 2016 13:02] Improved heatmap colours (author: Alicia Sykes)

eb29f29 [Wed, 6 Jan 2016 11:57] hmm not sure why this file is untracked.... (author: Alicia

Sykes)

9c2c030 [Wed, 6 Jan 2016 11:57] Finished popup box for markers (author: Alicia Sykes)

004173b [Tue, 5 Jan 2016 14:28] Nicer custom content window for the markers on the map shows

the sentiment (author: Alicia Sykes)

5bfcc15 [Tue, 5 Jan 2016 09:33] Modified max and default zoom to show whole map by default

(author: Alicia Sykes)

6291ad1 [Mon, 4 Jan 2016 12:28] Database is now capped to 100 mb (author: Alicia Sykes)

b22f6fe [Mon, 4 Jan 2016 12:07] Only insert Tweet if it doesnt yet exist (author: Alicia

Sykes)

c125e67 [Mon, 4 Jan 2016 10:45] Refractored map route into more testable code (author: Alicia

Sykes)

91288fe [Mon, 4 Jan 2016 10:33] Refractor the map logic out of the map route (author: Alicia

Sykes)

08912cc [Mon, 4 Jan 2016 09:51] Now includes database results on heatmap (author: Alicia

Sykes)

a9f0255 [Sun, 3 Jan 2016 11:17] Update place-lookup, to fix not loading error (author: Alicia

Sykes)

a5116be [Thu, 31 Dec 2015 14:11] Slightly blur location data, as to not reveal users exact

position (author: Alca644af [Wed, 30 Dec 2015 16:52] Refractored the marker cluster down into

seperate class (author: Alicia Sykes)5824c40 [Wed, 30 Dec 2015 15:20] Removed google places

from map (author: Alicia Sykes)

2015425 [Wed, 30 Dec 2015 15:16] Hide cluster text (author: Alicia Sykes)

0ea22c5 [Wed, 30 Dec 2015 14:47] Transparent cluster map V0.1 (author: Alicia Sykes)

389a1b0 [Wed, 30 Dec 2015 14:47] Nice picture of nothing for transparent marker (author:

Alicia Sykes)

7d32a72 [Wed, 30 Dec 2015 14:46] Package for Google cluster markers (author: Alicia Sykes)

bb5fd13 [Tue, 29 Dec 2015 16:35] Loading (author: Alicia Sykes)

f382cb4 [Tue, 29 Dec 2015 16:35] comparison of dffernt sa methods jade (author: Alicia Sykes)

936fc50 [Tue, 29 Dec 2015 16:34] Bit closer to real-time (author: Alicia Sykes)

d24b8b2 [Tue, 29 Dec 2015 16:28] Changed gradiets for heatmap (author: Alicia Sykes)

5266eec [Sun, 27 Dec 2015 21:21] Documented the SA Comparison script (author: Alicia Sykes)

0dd11ff [Fri, 25 Dec 2015 20:44] Attaches keywords from tweets to oject (author: Alicia Sykes)

~ 145 ~

a4ba3c9 [Fri, 25 Dec 2015 20:43] Displays sentiment data from db (author: Alicia Sykes)

bf2e718 [Fri, 25 Dec 2015 20:41] Modified Tweet object to return all data (author: Alicia

Sykes)

aaf6f60 [Sun, 20 Dec 2015 21:25] Fixed google places api key bug, working (author: Alicia

Sykes)

5815d5f [Sun, 20 Dec 2015 21:24] Now working shows actual real sentiment data (author: Alicia

Sykes)

3ecc62c [Sun, 20 Dec 2015 21:24] Updates place-lookup to latest (author: Alicia Sykes)

137cfe9 [Mon, 14 Dec 2015 19:15] Wrote a very nice class to handle the asyncronus fetching of

Tweets, locations048f960 [Tue, 24 Nov 2015 18:53] Heat map data now passed from server side to

client (author: Alicia Sykes)

649c6b1 [Tue, 24 Nov 2015 17:17] Neatened code (author: Alicia Sykes)

64f6d5f [Sun, 22 Nov 2015 17:18] bigger font, better labels (author: Alicia Sykes)

d0a19f1 [Sun, 22 Nov 2015 17:17] Override butotn colours (author: Alicia Sykes)

bfeba18 [Sun, 22 Nov 2015 17:15] Added spacing to page diivider (author: Alicia Sykes)

565472f [Sun, 22 Nov 2015 17:15] Modified zindex of loading graphic (author: Alicia Sykes)

7243efc [Sun, 22 Nov 2015 17:14] Fixed footer padding and added white bg class (author: Alicia

Sykes)

c4be84a [Sun, 22 Nov 2015 17:10] Changed base colours (author: Alicia Sykes)

ed36cae [Sun, 22 Nov 2015 17:09] Create html table manually instead of Google Charts (author:

Alicia Sykes)

f1c5e6a [Sun, 22 Nov 2015 17:09] Added function to display loading graphic (author: Alicia

Sykes)

f4e27ab [Sun, 22 Nov 2015 17:08] Increased font size in radar chart graphic (author: Alicia

Sykes)

0522326 [Sun, 22 Nov 2015 17:07] Removed redundant bower dependencies (author: Alicia Sykes)

b75dc49 [Sun, 22 Nov 2015 12:42] Better range for summary chart (author: Alicia Sykes)

4253367 [Fri, 20 Nov 2015 08:57] Added summary chart and radar diagram (author: Alicia Sykes)

dd83487 [Thu, 12 Nov 2015 14:33] Shows detailed sentiment comparison visualisations for any

query (author: Alicb8735a5 [Wed, 11 Nov 2015 15:10] Set new gulp scripts location (author:

Alicia Sykes)

af77f11 [Wed, 11 Nov 2015 15:09] Now shows simple scatter graph with results (author: Alicia

Sykes)

9b8f519 [Tue, 10 Nov 2015 13:47] Wrote base code for calculating and comparing SA methods

(author: Alicia Sykes)

fc5cf76 [Tue, 10 Nov 2015 13:46] part of public dir unignored and removed from clean task

(author: Alicia Sykes)

4ad5faf [Mon, 19 Oct 2015 10:33] Now successfullly gets place data for nearly all Tweets and

emmits (author: Alicia Sykes)

06827d6 [Thu, 15 Oct 2015 13:30] Included AFINN-1111 sentiment analysis and remove-words for

streamed Tweet model (author: Alicia Sykes)

9eed8d8 [Wed, 14 Oct 2015 21:44] Link to new hp-sentiment module (author: Alicia Sykes)

6624965 [Thu, 1 Oct 2015 13:14] Added module links (author: Alicia Sykes)

0012798 [Thu, 24 Sep 2015 20:33] Added test command (author: Alicia Sykes)

a4ea6e5 [Thu, 24 Sep 2015 20:19] Corrected url for test-stretegy in contents (author: Alicia

Sykes)

de5ce0b [Thu, 24 Sep 2015 20:16] Contents page for documentation (author: Alicia Sykes)

ba418ce [Thu, 24 Sep 2015 20:10] Added Phantomjs into the test strategy (author: Alicia Sykes)

~ 146 ~

299cef5 [Thu, 24 Sep 2015 20:06] Added summary of test strategy to readme (author: Alicia

Sykes)

e72b8ad [Thu, 24 Sep 2015 19:41] Wrote test strategy (author: Alicia Sykes)

2f76d26 [Tue, 22 Sep 2015 20:20] Created a config file to avoid strings in app.js (author:

Alicia Sykes)

e57504d [Tue, 22 Sep 2015 20:00] Commented out temporarily not needed line (author: Alicia

Sykes)

585e492 [Tue, 22 Sep 2015 19:59] Remove redundant return statment (author: Alicia Sykes)

e1f0448 [Tue, 22 Sep 2015 19:58] Changed a few words (author: Alicia Sykes)

4656392 [Tue, 22 Sep 2015 19:58] Added gulp-recess (author: Alicia Sykes)

bb7900e [Tue, 22 Sep 2015 19:21] Wrote documentation for build process (author: Alicia Sykes)

f620ba5 [Tue, 22 Sep 2015 19:20] Wrote documentation for build process (author: Alicia Sykes)

620390c [Tue, 22 Sep 2015 14:18] Added user stories, yaay user stories (author: Alicia Sykes)

b740d3d [Tue, 22 Sep 2015 13:56] Removed Socket integration from app.js (author: Alicia Sykes)

dcc2d0e [Tue, 22 Sep 2015 12:59] Added link to Trello board (author: Alicia Sykes)

50c0939 [Mon, 21 Sep 2015 22:56] Updated badges (author: Alicia Sykes)

113465c [Mon, 21 Sep 2015 22:54] Removed unused vars (author: Alicia Sykes)

792b1c4 [Mon, 21 Sep 2015 22:51] Applied the advice from the linter to the CSS and Less files

(author: Alicia Sykes)

a32820e [Mon, 21 Sep 2015 22:01] Removed unused variables and requires (author: Alicia Sykes)

fbecfb9 [Mon, 21 Sep 2015 21:54] Changed dev mode flag to true by default (author: Alicia

Sykes)

b05d335 [Mon, 21 Sep 2015 21:53] Fixed issues picked up by CoffeeLint (author: Alicia Sykes)

3348860 [Mon, 21 Sep 2015 21:37] Removed unused require (author: Alicia Sykes)

7b4efad [Mon, 21 Sep 2015 21:34] Updated dependncies (author: Alicia Sykes)

13e2dc0 [Mon, 21 Sep 2015 20:32] Chnaged test script (author: Alicia Sykes)

58917eb [Mon, 21 Sep 2015 20:28] Updated Ttavis config so he will stop emailing me everytime I

make a commit (a7034998 [Mon, 21 Sep 2015 20:10] Coreected small typo in installation

instrucitons (author: Alicia Sykes)

82eaa5f [Mon, 21 Sep 2015 20:05] Wrote guide on running locally and moved out of readme

(author: Alicia Sykes)

e600ccf [Mon, 21 Sep 2015 13:30] Put some nice badges on the reame, which seem to be

indicating that my project

a955a5 [Mon, 21 Sep 2015 13:29] Added Travis configuration file, for CI testing (author:

Alicia Sykes)

563f50b [Sun, 20 Sep 2015 19:48] Added --dev flag option for all gulp tasks to increase

awesomness (author: Alicia Sykes)

29a8075 [Sun, 20 Sep 2015 14:17] Don't include public directory as it is generated (author:

Alicia Sykes)

09adfcd [Sun, 20 Sep 2015 14:15] Actually nothing changed here - git your stupid (author:

Alicia Sykes)

80e1680 [Sun, 20 Sep 2015 14:14] Improved the logic flow of the gulp process for speed

(author: Alicia Sykes)

0432192 [Sun, 20 Sep 2015 07:43] Corrected typo in install instructions (author: Alicia Sykes)

588d8b6 [Sun, 20 Sep 2015 07:39] Now uses stream-tweets node module, rather than depricated

nTwitter (author: Alicia Sykes)

73a5bbc [Sun, 20 Sep 2015 07:38] Wrote how to run locally instructions (author: Alicia Sykes)

~ 147 ~

ef47632 [Sun, 20 Sep 2015 07:36] Code for generating new twitter keys file if not exist

(author: Alicia Sykes) 68f645f [Sat, 19 Sep 2015 17:03] Wrote installation instructions

(author: Alicia Sykes)

cf85450 [Sat, 19 Sep 2015 15:14] Added loading gif to source (author: Alicia Sykes)

3e45ea2 [Sat, 19 Sep 2015 15:14] Ignore npm debug logs if they're there (author: Alicia Sykes)

b42b3be [Sat, 19 Sep 2015 15:13] Change autocomplete colours (author: Alicia Sykes)

11bd99c [Sat, 19 Sep 2015 15:10] Added new dependencies for full gulp build process (author:

Alicia Sykes)

967330b [Sat, 19 Sep 2015 15:10] Gulp tasks to build all source files now included (author:

Alicia Sykes)

68b8136 [Sat, 19 Sep 2015 15:08] Ignore built files (author: Alicia Sykes)

30ff5b0 [Sat, 19 Sep 2015 15:06] Added CoffeeScript routes (author: Alicia Sykes)

efe18bc [Sat, 19 Sep 2015 15:02] Removed all built files (author: Alicia Sykes)

833e49c [Fri, 18 Sep 2015 19:40] Implemented live streaming Tweets with realtime awesomness

(author: Alicia Sykes)

7ad386f [Fri, 18 Sep 2015 19:39] Mongoose code for handling the Tweets (author: Alicia Sykes)

070f80f [Fri, 18 Sep 2015 19:37] Wrote react.js code for updating Tweets live (author: Alicia

Sykes)

2f86a17 [Fri, 18 Sep 2015 19:33] Connect to Mongodb and Socket.io TODO: refractor (author:

Alicia Sykes)

8777c53 [Fri, 18 Sep 2015 19:07] Installed react.js dependencies (author: Alicia Sykes)

1f5b8f6 [Fri, 18 Sep 2015 19:06] Don't push API keys to git (author: Alicia Sykes)

e526510 [Fri, 18 Sep 2015 19:04] Added more script paths, no longer uglifys js (author: Alicia

Sykes)

e212e89 [Fri, 18 Sep 2015 19:03] Modified b-sync task to be less annoying (author: Alicia

Sykes)

37c555b [Fri, 18 Sep 2015 19:02] Now includes reactify for jsx browserifying as well (author:

Alicia Sykes)

506ebfa [Wed, 9 Sep 2015 12:29] Modified gulp scripts to run on multiple sources (author:

Alicia Sykes)

9d1d76e [Wed, 9 Sep 2015 11:04] Refractored app.js and connected to MongoDB (author: Alicia

Sykes)

98a776e [Wed, 9 Sep 2015 10:06] Added route and page for new live map (author: Alicia Sykes)

efba2ad [Tue, 1 Sep 2015 21:27] Added missing dependencies (author: Alicia Sykes)

d02f91e [Tue, 25 Aug 2015 17:48] Coverage reports now save to reports directory (author:

alicia.sykes)

a396aae [Thu, 20 Aug 2015 17:56] Implemented basic autocomplete for map keywords (author:

alicia.sykes)

39e276d [Sun, 16 Aug 2015 19:56] Neatened up the new map code (author: Alicia Sykes)

ccedb21 [Sun, 16 Aug 2015 19:39] Refractored the map script into modules for Browserify

(author: Alicia Sykes)

9a05977 [Sat, 15 Aug 2015 19:47] Pushing compiled JavaScipt, from new Gulp process (author:

Alicia Sykes)

b5e7544 [Sat, 15 Aug 2015 19:43] Split browserify and script watch tasks for speed (author:

Alicia Sykes)

fcc924d [Sat, 15 Aug 2015 19:22] Implemented the browserify task into gulp default process

(author: Alicia Sykes)

6bf1eea [Sat, 15 Aug 2015 18:30] Improved scripts task, now using gulp-filter instead of

event-stream (author: Alicia Sykes)

~ 148 ~

71f088e [Sat, 15 Aug 2015 16:49] Created browserify gulp task (author: Alicia Sykes)

03c14fb [Sun, 9 Aug 2015 14:06] Multiple heat map layers displayed on map (author: Alicia

Sykes)

f4a6fa0 [Sat, 8 Aug 2015 18:26] Modified the Google configuration of the map (author: Alicia

Sykes)

fa338ff [Fri, 7 Aug 2015 20:59] Slightly neatened the map code and made a start on the heat

map (author: Alicia Sykes)

d655bb3 [Fri, 7 Aug 2015 06:30] Converted map scripts to CoffeScript (author: Alicia Sykes)

1e299a0 [Fri, 7 Aug 2015 06:18] Fiexed bsync is not defined in timeout errorr (author: Alicia

Sykes)

69e87f6 [Thu, 6 Aug 2015 21:28] Styles the map with basic params

(author: Alicia Sykes)

9b6da84 [Thu, 6 Aug 2015 19:12] Implemented places autocomplete search and integrated with map

(author: Alicia 2cf5075 [Thu, 6 Aug 2015 14:56] Added menu bar to map screen (author: Alicia

Sykes)

9597f4b [Thu, 6 Aug 2015 14:51] JS is now configured to automatically minify in gulp (author:

Alicia Sykes)

c9f201a [Wed, 5 Aug 2015 14:28] Added mocha tests and coverage into gulp process (author:

Alicia Sykes)

18459d7 [Tue, 4 Aug 2015 14:26] Refractored the gulpfile down into individual task files

(author: Alicia Sykes)

7dbc763 [Tue, 4 Aug 2015 07:09] Added a test method into gulp file (author: Alicia Sykes)

21b29fd [Mon, 3 Aug 2015 20:04] Added mochaawesome to create reports - thanks adamgruber

(author: Alicia Sykes)

fb63881 [Mon, 3 Aug 2015 17:35] Started implementing test structure (author: Alicia Sykes)

8edcebd [Sun, 2 Aug 2015 08:44] Created readme (author: Alicia Sykes)

0af4e0f [Sat, 1 Aug 2015 19:31] Added empty about page for later (author: Alicia Sykes)

7b7ea77 [Sat, 1 Aug 2015 13:16] Applied new UI changes (author: Alicia Sykes)

fb3f2b4 [Fri, 31 Jul 2015 22:27] Added dependancy for browser-sync (author: Alicia Sykes)

4f19faf [Fri, 31 Jul 2015 21:57] Created initial project structure (author: Alicia Sykes)

4bef537 [Fri, 31 Jul 2015 21:54] Created initial project config and dependencies files

(author: Alicia Sykes)

f3c042e [Fri, 31 Jul 2015 19:23] updated gulpfile to not concatenate files in sub dirs

(author: Alicia Sykes)

5d7a2d2 [Sat, 25 Jul 2015 14:40] Developed initial Gulpfile (author: Alicia Sykes)

(END)

~ 149 ~

3.2.3 git logs for ‘find-region-from-position’ module

8a981c1 [Wed, 3 Feb 2016 11:07] Wrote some documentation (author: Alicia Sykes)

36b0f54 [Wed, 3 Feb 2016 10:01] Finds and returns closest region, done and working (author: Alicia

Sykes)

df79c8b [Wed, 3 Feb 2016 10:00] Wrote some unit tests (author: Alicia Sykes)

f9d604d [Tue, 2 Feb 2016 13:24] Finds a list of closest single directions lat or longs (author:

Alicia Sykes)

81633d3 [Tue, 2 Feb 2016 12:46] Wrote convertCsvToJson function (author: Alicia Sykes)

fcaeaa1 [Tue, 2 Feb 2016 12:46] Minify JS (author: Alicia Sykes)

0701398 [Mon, 1 Feb 2016 20:34] Set up blank module (author: Alicia Sykes)

7a8af49 [Mon, 1 Feb 2016 20:33] Added initial regions lat lng dataset (author: Alicia Sykes)

7e06f93 [Mon, 1 Feb 2016 20:33] Initial project setup NPM init (author: Alicia Sykes)

bb19c08 [Mon, 1 Feb 2016 20:32] Configured Gulp build environment (author: Alicia Sykes)

f49d0c9 [Mon, 1 Feb 2016 20:32] Added MIT License (author: Alicia Sykes)

41f3803 [Mon, 1 Feb 2016 20:31] Configured test environment, with Mocha, Travis, Chai and Istanbul

(author: Alicia Sykes)

2aa273b [Mon, 1 Feb 2016 20:28] Project setup, gitignore and blank readme (author: Alicia Sykes)

3.2.4 Further logs
Further git logs are available for the other 8 modules developed and published as part of this project,
however it would not have been feasible to include them all in this document (since there are over
1000 more commits!).

To generate additional logs, navigate into the appropriate directory, and run the command which is
at the top of this document. Alternatively view the package on GitHub.

All git commits correspond to the time frame outlined in the methodology section.

~ 150 ~

4 APPENDIX FOUR

TEST RESULT EXAMPLES

This appendix document contains an example of a set of tests, and the results that prove

this project followed the test strategy set out in the methodology.

Twitter Sentiment Visualisations

The research and development of a sentiment analysis module, and the implementation of it

on real-time social media data, to generate a series of live visual representations of

sentiment towards a specific topic or by location in order to find trends.

Alicia Sykes 12011471

Oxford Brookes University

~ 151 ~

4.1 CONTENTS
Introduction ... 151

Example Unit Tests ... 152

test/utils.test.coffee ... 152

test/main.test.coffee .. 154

Test Configuration .. 155

test/mocha.opts ... 155

.travis.yml .. 155

Running the tests .. 155

Exporting appropriate methods ... 155

Test Results .. 156

Example console output printed after tests are run.. 156

Example of the visual report generated for unit test results ... 157

Example of the visual report generated for coverage results .. 158

Example of the report generated for automated continuous integration testing 158

Example of summary of build status .. 159

Example of automated code review reports... 159

Example of automated dependency checking report .. 160

4.2 INTRODUCTION
The purpose of this document is to show evidence that the final solution meets the following user

stories relating to the test environment.

TSV-U085 – As a test environment I should run unit tests

TSV-U086 – As a test environment I should have integration tests

TSV-U087 – As a test environment I should be able to stub data as to not make external data

requests

TSV-U088 – As a test environment I should use assertions for the unit tests

TSV-U089 – As a test environment I should show coverage test results

TSV-U090 – As a test environment I should check dependencies are up-to-date

TSV-U091 – As a test environment I should check code quality with automated code reviews

TSV-U092 – As a test environment I should do headless browser testing and HTTP service testing

~ 152 ~

4.3 EXAMPLE UNIT TESTS
The following unit tests are taken from the sentiment-analysis module

4.3.1 test/utils.test.coffee
expect = require('chai').expect

process.env.NODE_ENV = 'test'

sentimentAnalysis = require('../index')._private

describe 'doesWordExist will return boolean weather word exists', ()->

 doesWordExist = sentimentAnalysis.doesWordExist

 it 'should return a boolean value', ()->

 expect(doesWordExist('coffee')).to.be.a('boolean')

 expect(doesWordExist('mocha')).to.be.a('boolean')

 expect(doesWordExist('java')).to.be.a('boolean')

 it 'should return true for words that exist', () ->

 expect(doesWordExist('woo')).to.be.true

 expect(doesWordExist('alive')).to.be.true

 expect(doesWordExist('awesome')).to.be.true

 expect(doesWordExist('anger')).to.be.true

 expect(doesWordExist('bright')).to.be.true

 expect(doesWordExist('love')).to.be.true

 expect(doesWordExist('easy')).to.be.true

 expect(doesWordExist('drunk')).to.be.true

 expect(doesWordExist('dumb')).to.be.true

 expect(doesWordExist('hacked')).to.be.true

 expect(doesWordExist('important')).to.be.true

 expect(doesWordExist('hug')).to.be.true

 expect(doesWordExist('itchy')).to.be.true

 expect(doesWordExist('laugh')).to.be.true

 expect(doesWordExist('stupid')).to.be.true

 expect(doesWordExist('bomb')).to.be.true

 it 'should return false for words that do not exist', () ->

 expect(doesWordExist('hello')).to.be.false

 expect(doesWordExist('world')).to.be.false

 expect(doesWordExist('everything')).to.be.false

 expect(doesWordExist('is')).to.be.false

 expect(doesWordExist('stupidness')).to.be.false

 expect(doesWordExist('acid')).to.be.false

 expect(doesWordExist('dinosaurs')).to.be.false

 expect(doesWordExist('laptop')).to.be.false

 expect(doesWordExist('pepsi')).to.be.false

 expect(doesWordExist('lorem')).to.be.false

 expect(doesWordExist('ipsum')).to.be.false

 expect(doesWordExist('squashed')).to.be.false

 expect(doesWordExist('watson')).to.be.false

 expect(doesWordExist('brain')).to.be.false

 it 'should not throw an error with funny values', ()->

 expect(doesWordExist(1)).to.be.a('boolean')

 expect(doesWordExist([])).to.be.a('boolean')

 expect(doesWordExist(true)).to.be.a('boolean')

 expect(doesWordExist(undefined)).to.be.a('boolean')

 expect(doesWordExist(1)).to.be.false

 expect(doesWordExist([])).to.be.false

 expect(doesWordExist(undefined)).to.be.false

describe 'getScoreOfWord method return a sentiment score for that word', ()->

 getScoreOfWord = sentimentAnalysis.getScoreOfWord

~ 153 ~

 it 'should return an integer', ()->

 expect(getScoreOfWord('amazing')).to.be.a('number')

 expect(getScoreOfWord('warm')).to.be.a('number')

 expect(getScoreOfWord('yummy')).to.be.a('number')

 it 'should be in a range of -5 to + 5', () ->

 expect(getScoreOfWord('nice')).to.be.above(-5).to.be.below(5)

 expect(getScoreOfWord('good')).to.be.below(5).to.be.below(5)

 expect(getScoreOfWord('great')).to.be.above(-5).to.be.below(5)

 expect(getScoreOfWord('awesome')).to.be.above(-5).to.be.below(5)

 it 'should return 0 if word doesn\'t exist, rather than crashing', ()->

 expect(getScoreOfWord('batman')).equal(0)

 expect(getScoreOfWord('superman')).equal(0)

 expect(getScoreOfWord('spiderman')).equal(0)

 expect(getScoreOfWord('pepperpig')).equal(0)

 it 'should return 0 if passed multiple words at a time that don\'t exist', ()->

 expect(getScoreOfWord('type error')).equal(0)

 expect(getScoreOfWord('everything is stupid')).equal(0)

 expect(getScoreOfWord('dinosaurs are awesome')).equal(0)

 it 'should return actual positive score for positive words that exist', ()->

 expect(getScoreOfWord('united')).equal(1)

 expect(getScoreOfWord('unstoppable')).equal(2)

 expect(getScoreOfWord('excited')).equal(3)

 expect(getScoreOfWord('win')).equal(4)

 expect(getScoreOfWord('outstanding')).equal(5)

 it 'should return actual negative score for negative words that exist', ()->

 expect(getScoreOfWord('fight')).equal(-1)

 expect(getScoreOfWord('fails')).equal(-2)

 expect(getScoreOfWord('evil')).equal(-3)

 expect(getScoreOfWord('fraud')).equal(-4)

 expect(getScoreOfWord('twat')).equal(-5)

 it 'should return 0 for neutral words that exist', ()->

 expect(getScoreOfWord('some kind')).equal(0)

 # There is only 1 neutral result in the AFINN word list!

describe 'getWordsInSentence will transform a sentence into a clean array', ()->

 getWordsInSentence = sentimentAnalysis.getWordsInSentence

 it 'Should correctly turn a sentence into an array', ()->

 expect(getWordsInSentence('hello world')).eql(['hello', 'world'])

 expect(getWordsInSentence('this is a longer sentence'))

 .eql(['this', 'is', 'a', 'longer', 'sentence'])

 it 'Should normalise case', ()->

 expect(getWordsInSentence('HeLlO wOrLd')).eql(['hello', 'world'])

 expect(getWordsInSentence('JAVASCRIPT')).eql(['javascript'])

 it 'Should remove dupplicates', ()->

 expect(getWordsInSentence('foo foo bar foo'))

 .eql(['foo', 'bar'])

 expect(getWordsInSentence('foo foo BAR Foo bAr foO bar foo'))

 .eql(['foo', 'bar',])

 it 'Should remove blanks', ()->

 expect(getWordsInSentence('space blank '))

 .eql(['space', 'blank'])

 it 'Should remove special characters', ()->

 expect(getWordsInSentence('foo ! ^&*^&^%^%&^^&%%^bar$$%^'))

 .eql(['foo', 'bar'])

describe 'removeDupplicates should remove dupplicates from an array', () ->

 removeDupplicates = sentimentAnalysis.removeDuplicates

~ 154 ~

 it 'should remove duplicates', () ->

 expect(removeDupplicates(['hello', 'world', 'hello', 'hello']))

 .eql(['hello', 'world'])

describe 'scaleScore should ensure the score is within the valid range', () ->

 scaleScore = sentimentAnalysis.scaleScore

 it 'should not be below -1', () ->

 expect(scaleScore(-1.2)).to.be.above(-1.01)

 expect(scaleScore(-38.8)).to.be.above(-1.01)

 expect(scaleScore(1.2)).to.be.above(-1.01)

 it 'should not be above +1', () ->

 expect(scaleScore(4.5)).to.be.below(1.01)

 expect(scaleScore(42)).to.be.below(1.01)

 expect(scaleScore(-1.2)).to.be.below(1.01)

 it 'should have 1 or 2 decimal places', () ->

 expect(scaleScore(1)).to.be.within(-1,+1);

 expect(scaleScore(-1)).to.be.within(-1,+1);

 expect(scaleScore(0)).to.be.within(-1,+1);

 expect(scaleScore(10)).to.be.within(-1,+1);

 expect(scaleScore(-1)).to.be.within(-1,+1);

 expect(scaleScore(-1.01)).to.be.within(-1,+1);

 expect(scaleScore(+1.0001)).to.be.within(-1,+1);

 expect(scaleScore(999999)).to.be.within(-1,+1);

 expect(scaleScore(-999999)).to.be.within(-1,+1);

 expect(scaleScore(-0)).to.be.within(-1,+1);

 expect(scaleScore(+0)).to.be.within(-1,+1);

 expect(scaleScore(42)).to.be.within(-1,+1);

 expect(scaleScore(3.1415926535897932)).to.be.within(-1,+1);

 expect(scaleScore(-273.15)).to.be.within(-1,+1);

4.3.2 test/main.test.coffee
expect = require('chai').expect

process.env.NODE_ENV = 'test'

sentimentAnalysis = require('../index').main

describe 'Check the modules basic functionality', ()->

 it 'should return an integer', () ->

 expect(sentimentAnalysis('lorem ipsum dolor seit amet'))

 .to.be.a('number')

 expect(sentimentAnalysis('foo bar')).to.not.be.undefined;

 it 'Should return the correct sentiment value for negative sentences', () ->

 expect(sentimentAnalysis('I hate everything, everything is stupid')).equal(-

0.5)

 expect(sentimentAnalysis('London is gloomy today because of all the

smog')).equal(-0.4)

 expect(sentimentAnalysis('He was captured and put into slavery')).equal(-0.3)

 expect(sentimentAnalysis('Windows is very unstable')).equal(-0.2)

 expect(sentimentAnalysis('The slug was tired, he felt slugish')).equal(-0.2)

 it 'Should return the correct sentiment value for positive sentences', () ->

 expect(sentimentAnalysis('Today is a wonderful amazing awesome day')).equal(1)

 expect(sentimentAnalysis('I am so grateful for all the presents, thank

you!')).equal(0.5)

 it 'Should not return a score greater than 1 of smaller than -1', () ->

 expect(sentimentAnalysis('happy happy amazing awesome cool'))

 .to.be.above(-1.1).to.be.below(1.1)

 expect(sentimentAnalysis('crap crap crap crap'))

 .to.be.above(-1.1).to.be.below(1.1)

 it 'Should be able to cope with weird inputs and never crash', ()->

~ 155 ~

4.4 TEST CONFIGURATION

4.4.1 test/mocha.opts
--compilers coffee:coffee-script/register

--reporter spec

4.4.2 .travis.yml
language: node_js

node_js:

 - "0.12"

 - "0.10"

before_script:

 - "npm i -g mocha"

4.4.3 Running the tests
All tests can be run by running the command ‘npm test’ or ‘gulp test’

The gulp task which runs all tests is as follows:

/* Run unit tests and generate coverage report */

gulp.task('test', function (cb) {

 gulp.src(['./index.js'])

 .pipe(istanbul())

 .pipe(istanbul.hookRequire())

 .on('finish', function () {

 gulp.src('./test/**/*.coffee', {read: false})

 .pipe(mocha({ reporter: 'spec' }))

 .pipe(istanbul.writeReports({reporters: ['text-summary', 'lcov']}))

 //.pipe(istanbul.enforceThresholds({ thresholds: { global: 90 } }))

 .on('end', cb);

 });

});

4.4.4 Exporting appropriate methods
If developing in the test environment (as opposed to production), we also export private methods,

which allows them to be unit tested. For example:

if process.env.NODE_ENV == 'test'

 module.exports =

 main: analyseSentence

 _private:

 scaleScore: scaleScore

 doesWordExist: doesWordExist

 getScoreOfWord: getScoreOfWord

 removeDuplicates: removeDuplicates

 getWordsInSentence: getWordsInSentence

~ 156 ~

4.5 TEST RESULTS

4.5.1 Example console output printed after tests are run

~ 157 ~

4.5.2 Example of the visual report generated for unit test results

~ 158 ~

4.5.3 Example of the visual report generated for coverage results

4.5.4 Example of the report generated for automated continuous integration

testing

~ 159 ~

4.5.5 Example of summary of build status

4.5.6 Example of automated code review reports

~ 160 ~

4.5.7 Example of automated dependency checking report

~ 161 ~

5 APPENDIX FIVE - USER

EXPERIENCE SURVEY

Which of the following best describe your use for sentiment sweep?

a) Reviewing marketing campaign effectiveness

b) Predicting upcoming changes in stock prices for investment

c) Comparing consumer opinions on brands and products

d) Predicting future political leaders

e) Checking and analysing major disruptions or disputes

f) Looking at general geographical positive: negative ratios

g) Following the success/failure of a sports team or person in real-time through an event

h) Other: ___

Age Range: >18 18 – 25 25 – 65 65+

Technical Ability (0 = know nothing, 5 = expert): 0 1 2 3 4 5

Search Page: Overall Sentiment

Is it clear what overall result is conveyed? 1 2 3 4 5 -

How useful is it for you to see these results? 1 2 3 4 5 -

How accurate do you think these results are? 1 2 3 4 5 -

Is the data visualization/ chart easy to interpret? 1 2 3 4 5 -

Comments:

Tone Identification

Is it clear what overall result is conveyed? 1 2 3 4 5 -

How useful is it for you to see these results? 1 2 3 4 5 -

How accurate do you think these results are? 1 2 3 4 5 -

Is the data visualization/ chart easy to interpret? 1 2 3 4 5 -

~ 162 ~

Comments:

Entity Extraction

Is it clear what overall result is conveyed? 1 2 3 4 5 -

How useful is it for you to see these results? 1 2 3 4 5 -

How accurate do you think these results are? 1 2 3 4 5 -

Is the data visualization/ chart easy to interpret? 1 2 3 4 5 -

Comments:

Topic Comparison

Is it clear what overall result is conveyed? 1 2 3 4 5 -

How useful is it for you to see these results? 1 2 3 4 5 -

How accurate do you think these results are? 1 2 3 4 5 -

Is the data visualization/ chart easy to interpret? 1 2 3 4 5 -

Comments:

Raw Tweets

How useful is it for you to see Tweets in this form? 1 2 3 4 5 -

Is the layout and use of the page easy to understand? 1 2 3 4 5 -

Comments:

Heat Map

Is it clear the heat map clear to understand? 1 2 3 4 5 -

Can you interpret which areas are more/less positive? 1 2 3 4 5 -

Comments:

Regional Map

~ 163 ~

Is it clear to see which regions are more/ less positive? 1 2 3 4 5 -

Comments:

3D Globe

Overall rating: 1 2 3 4 5 -

Comments:

Word Cloud and Scatter Plot

Is it clear what overall result is conveyed? 1 2 3 4 5 -

How useful is it for you to see these results? 1 2 3 4 5 -

How accurate do you think these results are? 1 2 3 4 5 -

Is the data visualization/ chart easy to interpret? 1 2 3 4 5 -

Comments:

Trending

Overall Rating: 1 2 3 4 5 -

Comments:

Timeline

Overall Rating: 1 2 3 4 5 -

Comments:

~ 164 ~

Home page

What does the application do? (how well did they grasp the concept?)

 0 1 2 3 4 5 -

How clear are the two entry routes (search or scroll) on the homepage?

 0 1 2 3 4 5 -

What do you think of the home background? (select all that apply)

- It shows an interesting snapshot of the overall sentiment on twitter right now

- It’s cool, but kind of useless

- I have no idea what it is

- I like how it is updating in real-time, showing live tweets

- I hate how it keeps changing, it’s so distracting!

- I have no opinion on it’s real time coolness

- The colours are terrible

- It’s nice and colourful

- I have no opinion on the colours

Any Final Comments?

~ 165 ~

6 APPENDIX SIX

CODE LISTING

Twitter Sentiment Visualisations

The research and development of a sentiment analysis module, and the implementation of it

on real-time social media data, to generate a series of live visual representations of

sentiment towards a specific topic or by location in order to find trends.

Alicia Sykes 12011471

Oxford Brookes University

~ 166 ~

6.1 DIRECTORY STRUCTURE OF THE SOURCE APPLICATION
client-side-sauce
 /graphics
 /scripts
 /styles
server-side-sauce
 /api-routes
 /config
 /models
 /routes
 /utils
views
 /components
 /pages
 /sections
dev-tasks

6.2 DIRECTORY STRUCTURE OF THE PRODUCTION APPLICATION
config
 /app-config.js
 /keys.js
models
 /Tweet.js
public
 /data
 /images
 /javascripts
 /stylesheets
 /favicon.ico
routes
utils
views

The following sections contains the code from just the source application.

~ 167 ~

6.3 TABLE OF CONTENTS
Application root, main and config files ... 172

./app.js (main entry point to application) .. 172

./.gitignore ... 174

./.travis.yml .. 174

./gulpfile.js ... 174

./package.json .. 175

./bower.json ... 177

Server Side scripts – utility code ... 178

utils/async-tweets.coffee .. 178

utils/fetch-sentiment-tweets.coffee .. 178

utils/make-complete-tweets.coffee... 179

utils/stream-handler.coffee .. 180

utils/format-for-keyword-vis.coffee .. 181

utils/format-tweets-for-map.coffee .. 182

utils/make-click-words.coffee ... 184

utils/Watson-tone-analyser.coffee .. 184

utils/make-summary-sentence.coffee ... 185

utils/make-timeline-data.coffee .. 186

Models ... 188

models/Tweet.coffee .. 188

api-routes ... 189

api-routes/db-api.coffee ... 189

api-routes/antity-api.coffee .. 189

api-routes/tone-api.coffee .. 190

api-routes/trending-api.coffee .. 191

Routes .. 192

routes/about.coffee .. 192

routes/index.coffee .. 192

routes/now.coffee .. 192

routes/real-time-dash.coffee .. 192

routes/break-down.coffee .. 193

routes/timeline.coffee .. 194

~ 168 ~

routes/region-map.coffee ... 195

routes/tone-analyzer.coffee .. 196

routes/trending.coffee .. 196

routes/sa-comparison.coffee .. 197

routes/search.coffee ... 198

routes/word-cloud.coffee ... 199

routes/text-tweets.coffee ... 200

routes/word-plot.coffee ... 201

config ... 202

config/app-config.coffee ... 202

config/api-keys.coffee... 202

Client Side Scripts ... 203

map/map-main.coffee .. 203

map/heatmap-module.coffee ... 204

map/live-interactions-module.coffee .. 206

Map/marker-cluster-module.coffee .. 207

map/options-module.coffee ... 209

map/socket-module.coffee ... 209

map/autocomplete-module.coffee.. 209

map/search-module.coffee ... 210

map/theme-module.coffee ... 210

globe/globe-main.coffee ... 212

globe/socket-module.coffee ... 212

globe/configure-globe.coffee .. 212

now/now-main.coffee .. 214

now/now-count-module.coffee .. 215

now/now-bars-module.coffee ... 216

now/now-map-modue.coffee ... 217

now/now-top-tweets-module.coffee .. 218

visualisations/break-down.coffee ... 219

visualisations/comparer.coffee ... 220

visualisations/comparison.coffee .. 220

visualisations/comparison-for-search.coffee ... 223

visualisations/entity-extraction.coffee .. 223

visualisations/entity-summary.coffee.. 225

visualisations/gauge-module.coffee .. 225

~ 169 ~

visualisations/hexagons-module.coffee ... 226

visualisations/homepage.coffee .. 228

visualisations/radar-module.coffee ... 229

visualisations/real-time-dash.coffee .. 230

visualisations/regions-main.coffee .. 231

visualisations/render-tone-bars.coffee .. 232

visualisations/search-summary-main.coffee .. 232

visualisations/scatter-words-main.coffee .. 233

visualisations/earch-summary-main.coffee ... 236

visualisations/text-tweets.coffee .. 236

visualisations/timeline-main.coffee .. 237

visualisations/tone-analysis-main.coffee ... 238

visualisations/trending.coffee ... 239

visualisations/word-cloud-main.coffee .. 241

/loading.coffee ... 242

/page-controlls-module.coffee .. 242

Styles (client-side) .. 243

styles/constants.less ... 243

styles/general.less .. 243

styles/loading.css.. 244

styles/charts.less .. 245

styles/components.less ... 249

styles/map.less ... 252

styles/materialize.less ... 253

Views (run on server-side, rendered on client-side) 254

views/layout.jade ... 254

views/error.jade ... 254

views/component-divider.jade ... 254

views/component-spinner.jade ... 255

views/footer.jade ... 255

views/footer-scripts.jade .. 256

views/head.jade ... 256

views/side-nav.jade .. 256

views/navbar.jade .. 256

index.jade ... 257

views/page-about.jade ... 259

~ 170 ~

views/page-breakdown.jade ... 262

views/page-cloud.jade .. 263

views/page-comparer.jade ... 264

views/page-sa-comparison.jade .. 266

views/page-entity-extraction.jade... 267

views/page-word-plot.jade ... 268

views/page-globe.jade .. 269

views/page-hexagons.jade .. 269

views/page-realtime.jade ... 270

views/page-realtime.jade ... 270

views/page-trending.jade ... 271

Development and Build Files .. 272

./gulpfile.js ... 272

tasks/browser-sync.js ... 272

tasks/browserify.js ... 273

tasks/generate-config.js .. 273

tasks/scripts.js .. 274

tasks/styles.js ... 275

tasks/test.js .. 276

tasks/watch.js .. 276

tasks/nodemon.js ... 277

tasks/quick-coffeescript.js ... 277

tasks/images.js ... 277

tasks/clean.js .. 278

tasks/build.js .. 278

tasks/config.js .. 278

Module 1 – Sentiment Analysis .. 279

index.coffee .. 279

.gitignore .. 280

.travis.yml .. 280

dev.js 280

index.js (compiled) .. 280

package.json ... 281

gulpfile.js .. 282

readme.md ... 283

test/mocha.opts ... 284

~ 171 ~

test/utils.test.coffee ... 284

test/main.test.coffee .. 286

module 2- fetch tweets .. 287

module 3 – stream tweets .. 289

module 4 – remove words .. 291

module 5 - place lookup .. 292

module 6 – tweet location .. 293

module 7 – hp haven SA ... 293

module 8 – HP Haven Extract Entities ... 294

module 9 – find region from location ... 295

~ 172 ~

6.4 APPLICATION ROOT, MAIN AND CONFIG FILES

6.4.1 ./app.js (main entry point to application)

/* Include necessary node modules */

var express = require('express');

var path = require('path');

var favicon = require('serve-favicon');

var logger = require('morgan');

var cookieParser = require('cookie-parser');

var bodyParser = require('body-parser');

var mongoose = require('mongoose');

var http = require('http');

var mdirect = require('mobile-redirect');

var streamTweets = require('stream-tweets');

var config = require('./config/app-config');

var streamHandler = require('./utils/stream-handler');

/* Create Express server and configure socket.io */

var app = express();

var server = http.createServer(app);

var io = require('socket.io').listen(server);

server.listen(config.server.port, function(){

 console.log('Express server listening on port ' + config.server.port);

});

/* view engine setup */

app.set('views', path.join(__dirname, 'views'));

app.set('view engine', 'jade');

/* Set up other Express bits and bobs */

app.use(favicon(__dirname + '/public/favicon.ico'));

app.use(logger('dev'));

app.use(bodyParser.json());

app.use(bodyParser.urlencoded({ extended: false }));

app.use(cookieParser());

app.use(express.static(path.join(__dirname, 'public')));

app.use('/bower_components', express.static(__dirname + '/bower_components'));

app.use(mdirect({redirectPath: '/mobile' }));

/* Connect to MongoDB */

mongoose.connect(config.db.URL);

/* Specify which route files to use */

app.use('/', require('./routes/index'));

app.use('/search', require('./routes/search'));

app.use('/map', require('./routes/map'));

app.use('/region-map', require('./routes/region-map'));

app.use('/globe', require('./routes/globe'));

app.use('/timeline', require('./routes/timeline'));

app.use('/about', require('./routes/about'));

app.use('/text-tweets', require('./routes/text-tweets'));

app.use('/break-down', require('./routes/break-down'));

app.use('/hexagons', require('./routes/hexagons'));

app.use('/comparer', require('./routes/comparer'));

app.use('/word-cloud', require('./routes/word-cloud'));

app.use('/trending', require('./routes/trending'));

app.use('/tone-analyzer', require('./routes/tone-analyzer'));

app.use('/sa-comparison', require('./routes/sa-comparison'));

app.use('/word-scatter-plot', require('./routes/word-plot'));

app.use('/entity-extraction', require('./routes/entity-extraction'));

//app.use('/real-time-dashboard', require('./routes/real-time'));

~ 173 ~

app.use('/now', require('./routes/now'));

app.use('/api/tone', require('./routes/tone-api'));

app.use('/api/entity', require('./routes/entity-api'));

app.use('/api/db', require('./routes/db-api'));

app.use('/api/trending',require('./routes/trending-api'));

mobileRoute = express.Router();

mobileRoute.get('/', function(req, res, next) {

 return res.render('error', {

 message: 'Not compatible with your device :\'(',

 error: {}

 });

});

app.use('/mobile', mobileRoute);

/* Set a stream listener for tweets matching tracking keywords */

var credentials = require('./config/keys').twitter;

var twit = new streamTweets(credentials);

var world = [-180,-90,180,90];

stream =twit.stream({ locations: world}, function(stream){

streamHandler(stream,io); });

/* catch 404 and forward to error handler */

app.use(function(req, res, next) {

 var err = new Error('Not Found');

 err.status = 404;

 next(err);

});

/*-- error handlers -- */

/* development error handler (will print stacktrace) */

if (app.get('env') === 'development') {

 app.use(function(err, req, res, next) {

 res.status(err.status || 500);

 res.render('error', {

 message: err.message,

 error: err

 });

 });

}

/* production error handler (no stacktraces leaked to user) */

app.use(function(err, req, res) {

 res.status(err.status || 500);

 res.render('error', {

 message: err.message,

 error: {}

 });

});

module.exports = app;

~ 174 ~

6.4.2 ./.gitignore
Packages and libraries

node_modules

bower_components

IDE files and logs

.idea

*log

npm-debug.log.*

Test reports and results

reports

coverage

API keys

*/**/keys.*

Built files

models/*.js

utils/*.js

config/*.js

routes/*.js

public/javascripts

public/stylesheets

6.4.3 ./.travis.yml
language: node_js

node_js:

 - "0.12"

 - "0.10"

before_script:

 - "npm i -g mocha"

notifications:

 slack:

 on_success: change

6.4.4 ./gulpfile.js
/**

 * @author Alicia Sykes <alicia@aliciasykes.com> June 2015

 * To run script run "gulp" in the command line

 * My super amazing gulp setup, does EVERYTHING cool

 * possible to do to turns already awesome code into

 * even more awesomely efficient code

 *

 * The Gulp tasks are divided into the files in the './tasks/' directory

 * Read the build documentation at './docs/building.md'

 */

// Include gulp and require directory module

var gulp = require('gulp');

var reqdir = require('require-dir');

reqdir('./tasks'); // Include the folders containing ALL gulp tasks

gulp.task('default', ['start']); // Default task

~ 175 ~

6.4.5 ./package.json
{

 "name": "twitter-sentiment-visualisation",

 "description":

 "A series of data visualisations showing overall sentiment

 from Tweets by location and/or topic",

 "author": "Alicia Sykes <alicia@aliciasykes.com>",

 "version": "0.0.1",

 "private": true,

"scripts": {

 "start": "node ./bin/www",

 "test": "gulp test",

 "build": "gulp build",

 "config": "gulp generate-config && start notepad 'config\\src\\keys.coffee'",

 "cover":

 "istanbul cover node_modules/mocha/bin/_mocha

 --dir ./reports/coverage-reports"

 },

"main": "app.js",

 "repository": {

 "type": "git",

 "url": "https://github.com/Lissy93/twitter-sentiment-visualisation"

 },

"bugs": {

 "url": "https://github.com/Lissy93/twitter-sentiment-visualisation/issues"

 },

"license": "MIT",

"dependencies": {

 "body-parser": "^1.14.0",

 "coffee-script": "^1.9.3",

 "cookie-parser": "^1.4.0",

 "debug": "^2.2.0",

 "express": "^4.13.3",

 "fetch-tweets": "^0.1.7",

 "find-region-from-location":

 "git+https://github.com/Lissy93/find-region-from-location.git",

 "haven-entity-extraction":

 "git://github.com/Lissy93/haven-entity-extraction.git",

 "haven-sentiment-analysis":

 "git://github.com/Lissy93/haven-sentiment-analysis.git",

 "jade": "^1.11.0",

 "mobile-redirect": "0.0.1",

 "moment": "^2.11.2",

 "mongoose": "^4.1.6",

 "morgan": "^1.6.1",

 "place-lookup": "0.0.2",

 "q": "^1.4.1",

 "remove-words": "^0.2.0",

 "sentiment-analysis": "^0.1.1",

 "serve-favicon": "^2.3.0",

 "socket.io": "^1.3.6",

 "stream-tweets": "^1.1.0",

 "watson-developer-cloud": "^1.2.3"

 },

~ 176 ~

"devDependencies": {

 "browser-sync": "^2.8.2",

 "browserify": "^13.0.0",

 "chai": "^3.2.0",

 "coffeeify": "^2.0.1",

 "debowerify": "^1.3.1",

 "del": "^2.2.0",

 "event-stream": "^3.3.1",

 "glob": "^7.0.0",

 "gulp": "^3.9.0",

 "gulp-changed": "^1.2.1",

 "gulp-coffee": "^2.3.1",

 "gulp-coffeelint": "^0.6.0",

 "gulp-concat": "^2.6.0",

 "gulp-csslint": "^0.2.0",

 "gulp-filesize": "0.0.6",

 "gulp-filter": "^3.0.0",

 "gulp-footer": "^1.0.5",

 "gulp-if": "^2.0.0",

 "gulp-istanbul": "^0.10.0",

 "gulp-jshint": "^2.0.0",

 "gulp-less": "^3.0.3",

 "gulp-minify-css": "^1.2.0",

 "gulp-mocha": "^2.1.3",

 "gulp-nodemon": "^2.0.3",

 "gulp-recess": "^1.1.2",

 "gulp-rename": "^1.2.2",

 "gulp-sourcemaps": "^1.5.2",

 "gulp-uglify": "^1.2.0",

 "gulp-uncss": "^1.0.2",

 "gulp-util": "^3.0.6",

 "istanbul": "^0.4.2",

 "jshint-stylish": "^2.0.1",

 "lodash": "^4.3.0",

 "mocha": "^2.2.5",

 "mochawesome": "^1.2.0",

 "phantom": "^1.0.0",

 "reactify": "^1.1.1",

 "require-dir": "^0.3.0",

 "run-sequence": "^1.1.3",

 "sinon": "^1.15.4",

 "supertest": "^1.0.1",

 "vinyl-buffer": "^1.0.0",

 "vinyl-source-stream": "^1.1.0",

 "yargs": "^3.25.0"

 }

}

~ 177 ~

6.4.6 ./bower.json
{

 "name": "twitter-sentiment-visualisation",

 "version": "0.0.0",

 "authors": [

 "alicia@aliciasykes.com"

],

 "description": "A series of data visualisations showing overall sentiment from

Tweets by location and/or topic",

 "main": "app.js",

 "moduleType": [

 "node"

],

 "keywords": [

 "awesome",

 "twitter",

 "sentiment-analysis",

 "d3",

 "visualisation",

 "data"

],

 "license": "MIT",

 "homepage": "http://twitter-sentiment-visualisation.as93.net",

 "ignore": [

 "**/.*",

 "node_modules",

 "bower_components",

 "test",

 "tests"

],

 "dependencies": {

 "d3": "~3.5.16",

 "google-chart": "GoogleWebComponents/google-chart#~1.0.4",

 "google-map": "GoogleWebComponents/google-map#~1.0.3",

 "jquery": "~2.1.4",

 "markerclusterer_compiled": "https://raw.githubusercontent.com/googlemaps/js-

marker-clusterer/gh-pages/src/markerclusterer_compiled.js",

 "materialize": "~0.97.5",

 "Detector": "https://raw.githubusercontent.com/dataarts/webgl-

globe/master/globe/third-party/Detector.js",

 "three.min": "https://raw.githubusercontent.com/dataarts/webgl-

globe/master/globe/third-party/three.min.js",

 "Tween": "https://raw.githubusercontent.com/dataarts/webgl-

globe/master/globe/third-party/Tween.js",

 "globe": "https://raw.githubusercontent.com/dataarts/webgl-

globe/master/globe/globe.js",

 "socket.io": "https://raw.githubusercontent.com/socketio/socket.io-

client/master/socket.io.js",

 "d3-word-cloud": "https://jardindesconnaissances.googlecode.com/svn-

history/r82/trunk/public/js/d3.layout.cloud.js",

 "tipsy":

"https://cdnjs.cloudflare.com/ajax/libs/jquery.tipsy/1.0.2/jquery.tipsy.js",

 "nvd3": "~1.8.2",

 "sankey.js": "https://raw.githubusercontent.com/d3/d3-

plugins/master/sankey/sankey.js",

 "hexbin": "http://d3js.org/d3.hexbin.v0.min.js",

 "d3tip": "https://raw.githubusercontent.com/Caged/d3-tip/master/index.js",

 "c3": "~0.4.10",

 "radar-chart-d3": "https://github.com/alangrafu/radar-chart-d3.git#~1.2.1",

 "Materialize": "materialize#~0.97.5",

 "jquery-autocompleter": "Autocompleter#~0.1.9",

 "bullet.js":

"https://gist.githubusercontent.com/mbostock/4061961/raw/6eb742223b9795260ba6215019

6ed0ae4a461e39/bullet.js"

 }

}

~ 178 ~

6.5 SERVER SIDE SCRIPTS – UTILITY CODE

6.5.1 utils/async-tweets.coffee

fetchSentimentTweets = require '../utils/fetch-sentiment-tweets'

q = require 'q'

makeTweetPromiseArr = (searchTerm) ->

 deferredTweetResults = q.defer()

 fetchSentimentTweets searchTerm, (results) -> # Fetch all data for one Tweet

 deferredTweetResults.resolve(results)

 deferredTweetResults.promise

makeRequests = (searchTerms, completeAction) ->

 results = []

 promises = []

 for term in searchTerms then promises.push makeTweetPromiseArr term

 q.all(promises).spread -> # When all the twitter promises have returned

 for argument, index in arguments

 results.push searchTerm: searchTerms[index], tweets: argument

 completeAction results # Done!

module.exports = makeRequests

6.5.2 utils/fetch-sentiment-tweets.coffee
Include relevant node modules

FetchTweets = require 'fetch-tweets'

sentiment = require 'sentiment-analysis'

removeWords = require 'remove-words'

twitterKey = require('../config/keys').twitter

Tweet = require '../models/Tweet'

module.exports = (searchTerm, callback) ->

 if searchTerm == '' then Tweet.getAllTweets (results) ->

 format results, callback

 else (new FetchTweets twitterKey).byTopic searchTerm, (results) ->

 format results, callback

 format = (results, callback) ->

 # Assign Sentiments

 for tweet in results then tweet.sentiment = sentiment tweet.body

 # Assign keywords

 for tweet in results then tweet.keywords = removeWords tweet.body

 # Find average sentiment

 total = 0

 for tweet in results then total += tweet.sentiment

 averageSentiment = total / results.length

 averageSentiment = Math.round(averageSentiment*100)/100

 # Done, call callback with results and sentiment average

 callback results, averageSentiment

~ 179 ~

6.5.3 utils/make-complete-tweets.coffee

Include relevant node modules

FetchTweets = require 'fetch-tweets'

placeLookup = require 'place-lookup'

sentiment = require 'sentiment-analysis'

removeWords = require 'remove-words'

q = require 'q'

class GetGeoSentimentTweets

 constructor: (@twitterApiKeys, @placesApiKey) ->

Function fetches Tweets from Twitter API, returning a deferred promise

 fetchFromTwitter = (query, twitterApiKeys) ->

 fetchTweets = new FetchTweets(twitterApiKeys)

 deferredTweets = q.defer()

 fetchTweets.byTopic query, (results) ->

 deferredTweets.resolve(results)

 deferredTweets.promise

 # Fetches place data (lat and long) from Google places api, return promise

 findPlaceInfo = (locationObject, placesApiKey) ->

 deferredLocation = q.defer()

 if locationObject.place_name!=""

 placeLookup locationObject.place_name, placesApiKey, (placeData)->

 deferredLocation.resolve(placeData)

 else deferredLocation.resolve({error:'no place available'})

 deferredLocation.promise

 # Main

 go: (searchQuery, completeAction) ->

 placesApiKey = @placesApiKey

 fetchFromTwitter(searchQuery, @twitterApiKeys).then (twitterResults) ->

 promises = [] # array of google places promises

 for tweet in twitterResults

 promises.push findPlaceInfo tweet.location, placesApiKey

 q.all(promises).spread -> # When all the places promises have returned

 for tweet, index in twitterResults

 tweet.location = arguments[index] # Attach new location to Tweet

 tweet.sentiment = sentiment tweet.body # Attach sentiment to Tweet

 tweet.keywords = removeWords tweet.body # Attach keywords to Tweet

 completeAction twitterResults # Done!

module.exports = GetGeoSentimentTweets

~ 180 ~

6.5.4 utils/stream-handler.coffee
Tweet = require '../models/Tweet'

removeWords = require 'remove-words'

sentimentAnalysis = require 'sentiment-analysis'

moment = require 'moment'

placeLookup = require 'place-lookup'

placesApiKey = require('../config/keys').googlePlaces

blankPlace = { place_name: '', location: { lat: 0.0000000, lng: 0.0000000 } }

makeTweetObj = (data, location)->

 body: data.body

 dateTime: data.date

 keywords : removeWords(data.body)

 sentiment : sentimentAnalysis(data.body)

 location : location

Determines if a Tweet object is complete & if it should be saved in the db

isSuitableForDb = (tweetData) ->

 if tweetData.sentiment == 0 then return false # Reject neutral tweets

 if tweetData.location.error? then return false # Reject no location tweets

 # Double check location is actually there, and reject if not

 if !tweetData.location.location.lat? then return false

 if !tweetData.location.location.lng? then return false

 # new! to make the db fill up more slowly, reject all slightly neutral tweets

 if tweetData.sentiment < 0.4 && tweetData.sentiment > -0.2 then return false

 # And reject tweets that out URL's - they're usually crap!

 if tweetData.body.indexOf('http') != -1 then return false

 return true

module.exports = (data, io) ->

 # Emit all tweets to the anyTweet listener

 anyTweet = makeTweetObj data, data.location

 anyTweet.dateTime = moment(new Date(anyTweet.dateTime)).fromNow()

 io.emit 'anyTweet', anyTweet

 if data.location.location.lat !=0

 tweet = makeTweetObj data, data.location

 io.emit 'tweet', tweet

 if isSuitableForDb tweet

 Tweet.findOneAndUpdate

 body: tweet.body,

 tweet,

 upsert: true,

 (err) -> if err then console.log 'ERROR UPDATING TWEET - '+err

Uncomment this to stream live geo-accurate tweets- it will drain API usage

else if data.location.location.lat == 0 and data.location.place_name != ''

placeLookup data.location.place_name, placesApiKey, (placeResults) ->

tweetLocation = if !placeResults.error then placeResults else blankPlace

tweet = makeTweetObj(data, tweetLocation)

if isSuitableForDb tweet

Tweet.findOneAndUpdate

body: tweet.body,

tweet,

upsert: true,

(err) -> if err then console.log 'ERROR UPDATING TWEET - '+err

io.emit 'tweet', tweet # If everythinks cool, emit the tweet

~ 181 ~

6.5.5 utils/format-for-keyword-vis.coffee
Tweet = require '../models/Tweet' # The Tweet model

MakeSummarySentences = require '../utils/make-summary-sentences'

removeWords = require 'remove-words'

sentimentAnalysis = require 'sentiment-analysis'

FetchTweets = require 'fetch-tweets'

API keys

twitterKey = require('../config/keys').twitter

fetchTweets = new FetchTweets twitterKey

class FormatWordsForCloud

 # Converts ordinary Tweet array to suitable form for word cloud

 formatResultsForCloud= (twitterResults, allWords = false) ->

 results = []

 tweetWords = makeTweetWords twitterResults

 for word in tweetWords

 sent = sentimentAnalysis word

 if allWords or sent != 0

 f = results.filter((item) -> item.text == word)

 if f.length == 0 then results.push(text: word, sentiment: sent, freq: 1)

 else for res in results then if res.text == word then res.freq++

 results

 findTopWords= (cloudWords) ->

 posData = cloudWords.filter (cw) -> cw.sentiment > 0

 negData = cloudWords.filter (cw) -> cw.sentiment < 0

 neutData = cloudWords.filter (cw) -> cw.sentiment == 0

 posData.sort (a, b) -> parseFloat(a.freq) - parseFloat(b.freq)

 posData = posData.reverse().slice(0,5)

 negData.sort (a, b) -> parseFloat(a.freq) - parseFloat(b.freq)

 negData = negData.reverse().slice(0,5)

 neutData.sort (a, b) -> parseFloat(a.freq) - parseFloat(b.freq)

 neutData = neutData.reverse().slice(0,5)

 {topPositive: posData, topNegative: negData, topNeutral: neutData}

 findTrendingWords = (cloudWords) ->

 cloudWords.sort (a, b) -> parseFloat(a.freq) - parseFloat(b.freq)

 cloudWords = cloudWords.reverse().slice(0,10)

 # Make a paragraph of keywords

 makeTweetWords = (twitterResults) ->

 para = ''

 for tweet in twitterResults then para += tweet.body + ' '

 removeWords para, false

 # Merge two sets of results

 mergeResults = (res1, res2) -> res1.concat res2

 # Make sentence description for map

 makeSentence = (data, searchTerm) ->

 (new MakeSummarySentences data, searchTerm).makeMapSentences()

 # Calls methods to fetch and format Tweets from the database

 renderWithDatabaseResults: (cb) ->

 Tweet.getAllTweets (tweets) ->

 cloudData = formatResultsForCloud(tweets)

 sentence = makeSentence(tweets, null)

 sentence.topWords = findTopWords cloudData

 cb cloudData, sentence

~ 182 ~

Calls methods to fetch fresh Twitter, sentiment, and place data

 renderWithFreshData: (searchTerm, cb) ->

 fetchTweets.byTopic searchTerm, (webTweets) ->

 Tweet.searchTweets searchTerm, (dbTweets) -> # Fetch matching db results

 data = mergeResults webTweets, dbTweets

 cloudData = formatResultsForCloud(data, true)

 sentence = makeSentence(data, searchTerm)

 sentence.topWords = findTopWords cloudData

 sentence.trending = findTrendingWords cloudData

 cb cloudData, sentence

 findTrends: (tweets) ->

 findTopWords formatResultsForCloud tweets, true

fwfc = new FormatWordsForCloud()

module.exports.getFreshData = fwfc.renderWithFreshData

module.exports.getDbData = fwfc.renderWithDatabaseResults

module.exports.findTopWords = fwfc.findTrends

6.5.6 utils/format-tweets-for-map.coffee
Tweet = require '../models/Tweet' # The Tweet model

CompleteTweets = require '../utils/get-complete-tweets' # Fetches & formats data

MakeSummarySentences = require '../utils/make-summary-sentences'

API keys

twitterKey = require('../config/keys').twitter

googlePlacesKey = require('../config/keys').googlePlaces

class FormatTweetsForMap

 # Slightly blur location data, as to not reveal users exact position

 blurLocationData = (loc) ->

 loc = loc + '' # Convert location part into a string

 accuracy = 3 # -1 = 110km, 1 = 10km, 2 = 1km, 3 = 100m, 4 = 10m ...

 digitIndex = (loc).indexOf('.') + accuracy # Find index of digit to modify

 randomDigit = Math.floor(Math.random() * 10)

 if loc.length > digitIndex

 loc = loc.substr(0, digitIndex) + randomDigit + loc.substr(digitIndex + 1)

 Number loc # Convert result back to a number, and return

 # Converts ordinary Tweet array to lat + lng array for the heat map

 formatResultsForMap = (twitterResults) ->

 mapData = []

 for tweet in twitterResults

 if !tweet.location.error?

 mapData.push

 sentiment: tweet.sentiment

 location:

 lat: blurLocationData tweet.location.location.lat

 lng: blurLocationData tweet.location.location.lng

 tweet: tweet.body

 mapData

Inserts an array of valid Tweets into the database, if not already

 insertTweetsIntoDatabase = (twitterResults) ->

 for tweet in twitterResults

 tweetData =

 body: tweet.body

 dateTime: tweet.date

 sentiment : tweet.sentiment

 location : tweet.location

 if isSuitableForDb tweetData

 Tweet.findOneAndUpdate

 body: tweetData.body,

~ 183 ~

 tweetData,

 upsert: true,

 (err) -> if err then console.log 'ERROR UPDATING TWEET - '+err

 # Determines if a Tweet object is complete & if it should be saved in the db

 isSuitableForDb = (tweetData) ->

 if tweetData.sentiment == 0 then return false

 if tweetData.location.error? then return false

 if !tweetData.location.location.lat? then return false

 if !tweetData.location.location.lng? then return false

 return true

 # Merge two sets of results

 mergeResults = (res1, res2) -> res1.concat res2

 # Make sentence description for map

 makeSentence = (data, searchTerm) ->

 (new MakeSummarySentences data, searchTerm).makeMapSentences()

 # Calls methods to fetch and format Tweets from the database

 renderWithDatabaseResults: (cb) ->

 Tweet.getAllTweets (tweets) ->

 cb formatResultsForMap(tweets), makeSentence(tweets, null)

 # Calls methods to fetch fresh Twitter, sentiment, and place data

 renderWithFreshData: (searchTerm, cb) ->

 completeTweets = new CompleteTweets(twitterKey, googlePlacesKey)

 completeTweets.go searchTerm, (webTweets) ->

 insertTweetsIntoDatabase(webTweets) # Add new Tweets to the db

 Tweet.searchTweets searchTerm, (dbTweets) -> # Fetch matching db results

 data = mergeResults webTweets, dbTweets

 cb formatResultsForMap(data), makeSentence(data, searchTerm)

ftfm = new FormatTweetsForMap()

module.exports.getFreshData = ftfm.renderWithFreshData

module.exports.getDbData = ftfm.renderWithDatabaseResults

~ 184 ~

6.5.7 utils/make-click-words.coffee

removeWords = require 'remove-words'

Makes keywords click-able hyperlinks, returns HTML

makeClickWords = (body) ->

 clWord = (word) -> (''+word).toLowerCase().replace /\W/g, ''

 clickWords = removeWords body # Array of keywords

 htmlTweet = ''

 aStyle = 'style="color: black; font-weight: bold;" ' # style for hyperlinks

 for word in body.split " "

 if clWord(word) in clickWords

 htmlTweet += "<a #{aStyle} href='/text-tweets/#{clWord word}'>#{word} "

 else htmlTweet += "#{word} "

 htmlTweet

module.exports = makeClickWords

6.5.8 utils/Watson-tone-analyser.coffee

watson = require('watson-developer-cloud')

watsonCredentials = require('../config/keys').watson

Format tone data

formatResults = (toneResults) ->

 results = []

 toneCategories = toneResults.document_tone.tone_categories

 for toneCategory in toneCategories.slice(0,toneCategories.length-1)

 for tone in toneCategory.tones

 results.push {name: tone.tone_name, score: tone.score}

 results

Fetch tone analyser results from BlueMix instance

fetchToneAnalyzerResults = (tweetsArr, callback) ->

 text = ''

 for tweet in tweetsArr then text += tweet.body + ' '

 tone_analyzer = watson.tone_analyzer(

 username: watsonCredentials.username

 password: watsonCredentials.password

 version: 'v3-beta'

 version_date: '2016-02-11')

 tone_analyzer.tone { text: text }, (err, tone) ->

 if err then console.log err; callback {}

 else callback formatResults tone

module.exports = fetchToneAnalyzerResults

~ 185 ~

6.5.9 utils/make-summary-sentence.coffee
class MakeSummarySentences

 constructor: (@tweetObjects, @searchTerm = null) ->

 # Finds the average value for an array of numbers

 findAv = (arr) ->

 t = 0

 for i in arr then t += i

 t/arr.length

 # Finds average positive, negative and overall sentiment from list of tweets

 getAverageSentiments = (tweetObjects) ->

 posSent = []

 negSent = []

 neuSent = []

 for item in tweetObjects

 if item.sentiment > 0 then posSent.push item.sentiment

 else if item.sentiment < 0 then negSent.push item.sentiment

 else neuSent.push(0)

 avPositive: Math.round(findAv(posSent) * 100)

 avNegative: Math.round(findAv(negSent) * -100)

 avSentiment: Math.round(findAv(posSent.concat(negSent).concat(neuSent))*100)

 totalPositive: posSent.length

 totalNegative: negSent.length

 # Determines if the overall sentiment is "Positive", "Negative" or "Neutral"

 getOverallSentimentName = (avSentiment) ->

 if avSentiment > 0 then "Positive"

 else if avSentiment < 0 then "Negative"

 else "Neutral"

 makeTxtStyle = (sentiment) ->

 col =

 if sentiment > 0 or sentiment == 'Positive' then 'green'

 else if sentiment < 0 or sentiment == 'Negative' then 'darkred'

 else 'gray'

 " style='font-weight: bold; color: #{col}' "

 makeGlobeSentence = (tweetObjects, relTo, averages, overallSent) ->

 numRes = "#{tweetObjects.length}"

 overallSentTxt = "#{overallSent}"

 overallSentTxt += "(#{averages.avSentiment}%)"

 positivePercent = "#{averages.avPositive}%"

 negativePercent = "#{averages.avNegative}%"

 s = "Globe displaying #{numRes} sentiment values calculated "

 s += "from Twitter results #{relTo} "

 s += "the overall sentiment is #{overallSentTxt}."

 s += "

"

 s += "#{averages.totalPositive} Tweets are positive "

 s += "with an average sentiment of #{positivePercent} "

 s += "and #{averages.totalNegative} Tweets are negative "

 s += "with an average sentiment of #{negativePercent}."

 s

 makeMapSentences = (tweetObjects, averages, overallSent, relTo) ->

 numRes = "#{tweetObjects.length}"

 mapShowing = "Map showing #{numRes} "

 mapShowing += "of the latest Twitter results #{relTo}
"

 mapShowing += "Overall sentiment is: "

 mapShowing += "#{overallSent} "

 mapShowing += "(#{averages.avSentiment}%)"

 p = makeTxtStyle 1

 n = makeTxtStyle -1

~ 186 ~

 sentimentSummary="Average positive: <b #{p}>#{averages.avPositive}%.
"

 sentimentSummary+="Average negative: <b #{n}>#{averages.avNegative}%."

 mapShowing: mapShowing

 sentimentSummary: sentimentSummary

 # Makes the sentences for the map

 makeMapSentences: () ->

 averages = getAverageSentiments(@tweetObjects)

 overallSent = getOverallSentimentName(averages.avSentiment)

 relTo = if @searchTerm? then "relating to #{@searchTerm}" else ""

 mapSentences = makeMapSentences @tweetObjects, averages, overallSent, relTo

 mapShowing: mapSentences.mapShowing

 sentimentSummary: mapSentences.sentimentSummary

 globeSentence: makeGlobeSentence @tweetObjects, relTo, averages, overallSent

 searchTerm: if @searchTerm then @searchTerm else ''

module.exports = MakeSummarySentences

6.5.10 utils/make-timeline-data.coffee
class MakeSummarySentences

 constructor: (@tweetObjects, @searchTerm = null) ->

 # Finds the average value for an array of numbers

 findAv = (arr) ->

 t = 0

 for i in arr then t += i

 t/arr.length

 # Finds average positive, negative and overall sentiment from list of tweets

 getAverageSentiments = (tweetObjects) ->

 posSent = []

 negSent = []

 neuSent = []

 for item in tweetObjects

 if item.sentiment > 0 then posSent.push item.sentiment

 else if item.sentiment < 0 then negSent.push item.sentiment

 else neuSent.push(0)

 avPositive: Math.round(findAv(posSent) * 100)

 avNegative: Math.round(findAv(negSent) * -100)

 avSentiment: Math.round(findAv(posSent.concat(negSent).concat(neuSent))*100)

 totalPositive: posSent.length

 totalNegative: negSent.length

 # Determines if the overall sentiment is "Positive", "Negative" or "Neutral"

 getOverallSentimentName = (avSentiment) ->

 if avSentiment > 0 then "Positive"

 else if avSentiment < 0 then "Negative"

 else "Neutral"

makeTxtStyle = (sentiment) ->

 col =

 if sentiment > 0 or sentiment == 'Positive' then 'green'

~ 187 ~

 else if sentiment < 0 or sentiment == 'Negative' then 'darkred'

 else 'gray'

 " style='font-weight: bold; color: #{col}' "

 makeGlobeSentence = (tweetObjects, relTo, averages, overallSent) ->

 numRes = "#{tweetObjects.length}"

 overallSentTxt = "#{overallSent}"

 overallSentTxt += "(#{averages.avSentiment}%)"

 positivePercent = "#{averages.avPositive}%"

 negativePercent = "#{averages.avNegative}%"

 s = "Globe displaying #{numRes} sentiment values calculated "

 s += "from Twitter results #{relTo} "

 s += "the overall sentiment is #{overallSentTxt}."

 s += "

"

 s += "#{averages.totalPositive} Tweets are positive "

 s += "with an average sentiment of #{positivePercent} "

 s += "and #{averages.totalNegative} Tweets are negative "

 s += "with an average sentiment of #{negativePercent}."

 s

 makeMapSentences = (tweetObjects, averages, overallSent, relTo) ->

 numRes = "#{tweetObjects.length}"

 mapShowing = "Map showing #{numRes} "

 mapShowing += "of the latest Twitter results #{relTo}
"

 mapShowing += "Overall sentiment is: "

 mapShowing += "#{overallSent} "

 mapShowing += "(#{averages.avSentiment}%)"

 p = makeTxtStyle 1

 n = makeTxtStyle -1

 sentimentSummary="Average positive: <b #{p}>#{averages.avPositive}%.
"

 sentimentSummary+="Average negative: <b #{n}>#{averages.avNegative}%."

 mapShowing: mapShowing

 sentimentSummary: sentimentSummary

 # Makes the sentences for the map

 makeMapSentences: () ->

 averages = getAverageSentiments(@tweetObjects)

 overallSent = getOverallSentimentName(averages.avSentiment)

 relTo = if @searchTerm? then "relating to #{@searchTerm}" else ""

 mapSentences = makeMapSentences @tweetObjects, averages, overallSent, relTo

 mapShowing: mapSentences.mapShowing

 sentimentSummary: mapSentences.sentimentSummary

 globeSentence: makeGlobeSentence @tweetObjects, relTo, averages, overallSent

 searchTerm: if @searchTerm then @searchTerm else ''

module.exports = MakeSummarySentences

~ 188 ~

6.6 MODELS

6.6.1 models/Tweet.coffee

mongoose = require 'mongoose'

schema = new mongoose.Schema({

 body : String

 dateTime : String

 sentiment : Number

 location : { type : Object , "default" : {} }

},

{ capped: { size: 491520, max: 1500, autoIndexId: true } }

)

schema.statics.getAllTweets = (callback) ->

 Tweet.find {}, (err, results) ->

 callback results

schema.statics.searchTweets = (searchTerm, callback) ->

 Tweet.find { keywords: searchTerm }, (err, results) ->

 callback results

module.exports = Tweet = mongoose.model('Tweet', schema)

~ 189 ~

6.7 API-ROUTES

6.7.1 api-routes/db-api.coffee
express = require('express')

router = express.Router()

fetchSentimentTweets = require '../utils/fetch-sentiment-tweets'

router.post '/', (req, res) ->

 fetchSentimentTweets '', (data, average) ->

 res.json data

module.exports = router

6.7.2 api-routes/antity-api.coffee
express = require('express')

router = express.Router()

entityExtraction = require 'haven-entity-extraction'

hpKey = require('../config/keys').hp

Formats tweets into a massive tweet body

formatText = (tweetBody) ->

 tweetBody = tweetBody.replace(/(?:https?|ftp):\/\/[\n\S]+/g, '')

 tweetBody = tweetBody.replace(/[^A-Za-z0-9]/g, '')

 tweetBody = tweetBody.substring(0, 5000)

formatData = (data) ->

 results = []

 for key in Object.keys data

 category = key.charAt(0).toUpperCase()+key.split('_')[0].slice(1)

 results.push name: category, items: data[key]

 results = results.sort (a, b) -> b.items.length - a.items.length

router.post '/', (req, res) ->

 entityExtraction formatText(req.body.text), hpKey, (data) ->

 res.json formatData data

module.exports = router

~ 190 ~

6.7.3 api-routes/tone-api.coffee
express = require('express')

router = express.Router()

fetchSentimentTweets = require '../utils/fetch-sentiment-tweets'

watson = require 'watson-developer-cloud'

watsonCredentials = require('../config/keys').watson

toneAnalyzer = watson.tone_analyzer {

 url: 'https://gateway.watsonplatform.net/tone-analyzer-beta/api/'

 username: watsonCredentials.username

 password: watsonCredentials.password

 version_date: '2016-11-02'

 version: 'v3-beta'

}

noBodyProvided = (req, res, next) ->

 makeBody = (twAr) ->

 tweetBody = ''

 for tw in twAr then tweetBody += tw.body + ' '

 tweetBody = tweetBody.replace(/(?:https?|ftp):\/\/[\n\S]+/g, '')

 tweetBody = tweetBody.replace(/[^A-Za-z0-9]/g, '').substring(0, 5000)

 toneRes = (body) ->

 toneAnalyzer.tone {text: body}, (err, data) ->

 if err then next err else res.json data

 if req.body.searchTerm? && req.body.searchTerm != ''

 fetchSentimentTweets req.body.searchTerm, (r) -> toneRes makeBody r

 else fetchSentimentTweets '', (r) -> toneRes makeBody r

router.post '/', (req, res, next) ->

 if !req.body.text? or req.body.text == '' then noBodyProvided req, res, next

 else

 toneAnalyzer.tone req.body, (err, data) ->

 if err then next err else res.json data

module.exports = router

~ 191 ~

6.7.4 api-routes/trending-api.coffee
express = require('express')

router = express.Router()

FetchTweets = require 'fetch-tweets'

twitterKey = require('../config/keys').twitter

asyncTweets = require '../utils/async-tweets'

placeLookup = require 'place-lookup'

placesKey = require('../config/keys').googlePlaces

fetchTweets = new FetchTweets twitterKey

findAverageSentiment = (tweetArr) ->

 totalSentiment = 0

 for tweet in tweetArr.tweets then totalSentiment += tweet.sentiment

 totalSentiment / tweetArr.tweets.length

findOriginalTrend = (searchTerm, searchTerms, trends) ->

 for st, i in searchTerms then if st == searchTerm then return trends[i]

 {}

makeTrendRequest = (woeid, cb) ->

 fetchTweets.trending woeid, (trendingResults) ->

 # Make a list of searchTerms from the trending topics

 searchTerms = []

 originalTrends = []

 i = 0

 while searchTerms.length < 10

 if !trendingResults[i]? then cb {}; return

 trend = trendingResults[i].trend.replace(/[\W_]+/g, '')

 if trend.length > 0

 searchTerms.push trend

 originalTrends.push trendingResults[i]

 i++

 # Make the actual request

 asyncTweets searchTerms, (twitterResults) ->

 #Make the results array

 results = []

 for tweetArr in twitterResults

 t = findOriginalTrend(tweetArr.searchTerm, searchTerms, trendingResults)

 results.push

 topic: t.trend

 sentiment: findAverageSentiment tweetArr

 volume: t.volume

 cb results

router.post '/', (req, res) ->

 woeid = 1

 makeTrendRequest woeid, (results) -> res.json {trends: results}

router.post '/:location', (req, res) ->

 fuzzyLocation = req.params.location

 placeLookup fuzzyLocation, placesKey, (placeResults) ->

 if !placeResults.error?

 lat = placeResults.location.lat

 lng = placeResults.location.lng

 fetchTweets.closestTrendingWoeid lat, lng, (places) ->

 woeid = places[0].woeid

 makeTrendRequest woeid, (results) ->

 if results == {} then res.json {}

 res.json {trends: results, location: placeResults.place_name}

 else res.json {}

module.exports = router

~ 192 ~

6.8 ROUTES

6.8.1 routes/about.coffee
express = require('express')

router = express.Router()

router.get '/', (req, res, next) ->

 res.render 'page_about',

 title: 'About'

 pageNum: -1

module.exports = router

6.8.2 routes/index.coffee

Require necessary modules, API keys and instantiate objects

fetchSentimentTweets = require '../utils/fetch-sentiment-tweets'

express = require('express')

router = express.Router()

Main route - no search term

router.get '/', (req, res, next) ->

 fetchSentimentTweets '', (results, average) -> # Fetch all data

 res.render 'index', # Render template

 title: 'Sentiment Sweep'

 pageNum: 0

 data: results

 averageSentiment: average

module.exports = router

6.8.3 routes/now.coffee
express = require('express')

router = express.Router()

router.get '/', (req, res) ->

 res.render 'page_now',

 title: 'The world right now | Sentiment Sweep'

 pageNum: 15

module.exports = router

6.8.4 routes/real-time-dash.coffee
express = require('express')

router = express.Router()

router.get '/', (req, res) ->

 res.render 'page_realtime',

 title: 'Real-time Dashboard | Sentiment Sweep'

 pageNum: 13

module.exports = router

~ 193 ~

6.8.5 routes/break-down.coffee

Require necessary modules, API keys and instantiate objects

Tweet = require '../models/Tweet' # The Tweet model

moment = require 'moment'

FetchTweets = require 'fetch-tweets'

twitterKey = require('../config/keys').twitter

fetchTweets = new FetchTweets twitterKey

removeWords = require 'remove-words'

hpSentimentAnalysis = require 'haven-sentiment-analysis'

hpKey = require('../config/keys').hp

express = require('express')

router = express.Router()

fetchAndFormatTweets = (searchTerm, cb) ->

 fetchTweets.byTopic searchTerm, (results) ->

 cb formatTweets results

formatTweets = (twitterResults) ->

 results = ""

 for tweet in twitterResults then results += tweet.body + " "

 results = results.replace(/(?:https?|ftp):\/\/[\n\S]+/g, '')

 results = results.replace(/[^A-Za-z0-9]/g, '')

 results = results.substring(0, 5000)

getHpSentimentResults = (tweetBody, cb) ->

 hpSentimentAnalysis tweetBody, hpKey, (results) ->

 cb results

formatResultsForChart = (hpResults) ->

 data = {

 name: 'sentiment-tree', children: [

 {name:'positive', children: []}

 {name:'negative', children: []}

]

 }

 i = 1

 while i <= 10

 data.children[0].children.push({name: i/10, children: [] })

 data.children[1].children.push({name: i/-10+'', children: [] })

 i++

 for posRes in hpResults.positive

 score = Math.round(posRes.score*10)/10

 for i in data.children[0].children

 if i.name == score then i.children.push(

 name: posRes.sentiment

 size: posRes.score

 topic: posRes.topic

)

 for negRes in hpResults.negative

 score = Math.round(negRes.score*10)/10+''

 for i, index in data.children[1].children

 if i.name == score then i.children.push(

 name: negRes.sentiment

 size: Math.abs(negRes.score)

 topic: negRes.topic

)

 data

Route with search term

router.get '/:query', (req, res) ->

 searchTerm = req.params.query # Get the search term from URL param

~ 194 ~

 fetchAndFormatTweets searchTerm, (tweetBody) ->

 getHpSentimentResults tweetBody, (hpResults) ->

 results = formatResultsForChart hpResults

 res.render 'page_breakDown',

 title: searchTerm+' results'

 pageNum: -1

 data: results

 searchTerm: searchTerm

router.get '/', (req, res) ->

 Tweet.getAllTweets (tweets) ->

 tweetBody = formatTweets tweets

 getHpSentimentResults tweetBody, (hpResults) ->

 results = formatResultsForChart hpResults

 res.render 'page_breakDown',

 title: 'Break down results'

 pageNum: -1

 data: results

 searchTerm: ''

module.exports = router

6.8.6 routes/timeline.coffee
express = require('express')

router = express.Router()

tweetTimeFormatter = require '../utils/make-timeline-data'

router.get '/', (req, res, next) ->

 tweetTimeFormatter.getDbData (data, txt) ->

 res.render 'page_timeline',

 title: 'Time Line'

 pageNum: 3

 data: data

 searchTerm: ''

router.get '/:query', (req, res) ->

 searchTerm = req.params.query # Get the search term from URL param

 tweetTimeFormatter.getFreshData searchTerm, (data, txt) ->

 res.render 'page_timeline',

 title: 'Time Line'

 pageNum: 3

 data: data

 searchTerm: searchTerm

module.exports = router

~ 195 ~

6.8.7 routes/region-map.coffee
fs = require 'fs'

express = require('express')

router = express.Router()

findRegion = require 'find-region-from-location'

mapTweetFormatter = require '../utils/format-tweets-for-map'

makeRegionMapData = (tweets) ->

 # Finds the average value for an array of numbers

 findAv = (arr) ->

 t = 0

 for i in arr then t += i

 Math.round(t/arr.length*100)/100

 # Group together the sentiments to their regions

 prelimResults = {}

 for tweet in tweets

 region = findRegion.country(tweet.location.lat, tweet.location.lng)

 if prelimResults[region] then

prelimResults[region].sentiments.push(tweet.sentiment)

 else prelimResults[region] = {region: region, sentiments: [tweet.sentiment]}

 # Make the results array, by finding the average sentiment for each region

 results = []

 for regionKey of prelimResults

 if prelimResults.hasOwnProperty regionKey

 results.push([regionKey, findAv(prelimResults[regionKey].sentiments)])

 # Order results by sentiment, then append colounm headings and min/max values

 sortFunc = (a, b) -> if a[1] == b[1] then 0 else if a[1] < b[1] then -1 else 1

 results.sort sortFunc

 results.unshift ['Country', 'Sentiment'], ['',-0.8], ['',0.8]

 results

getRegions = () ->

 fs.readFileSync(__dirname+'/../public/data/regions.csv','utf8').split('\r\n')

Render to page

render = (res, data, title, summaryTxt, location = '') ->

 summaryTxt.searchRegion = location

 res.render 'page_regions', # Call res.render for the map page

 data: data # The map data

 summary_text: summaryTxt # Summary of results

 title: title # The title of the rendered map

 pageNum: 6 # The position in the application

 csvRegions: getRegions() # List of all regions

Call render with search term

renderSearchTerm = (res, searchTerm, location= '') ->

 mapTweetFormatter.getFreshData searchTerm, (twitterData, summaryTxt) ->

 regionData = makeRegionMapData twitterData

 render res, regionData, searchTerm+' Region Map', summaryTxt, location

Call render for database data

renderAllData = (res, location= '') ->

 mapTweetFormatter.getDbData (data, txt) ->

 render res, makeRegionMapData(data), 'Map', txt, location

Path for main map root page

router.get '/', (req, res) -> renderAllData res

Path for map sub-page

router.get '/:query', (req, res) ->

 searchTerm = req.params.query # Get the search term from URL param

~ 196 ~

 if searchTerm != null then renderSearchTerm res, searchTerm

 else renderAllData res

Path for map location sub-page

router.get '/location/:query', (req, res) ->

 location = req.params.query # Get the location from URL param

 renderAllData res, location

module.exports = router

6.8.8 routes/tone-analyzer.coffee
express = require('express')

router = express.Router()

router.get '/', (req, res, next) ->

 res.render 'page_tones',

 title: 'Tone Analyzer'

 searchTerm: ''

 pageNum: 9

router.get '/:query', (req, res, next) ->

 res.render 'page_tones',

 title: 'Tone Analyzer'

 searchTerm: req.params.query

 pageNum: 9

module.exports = router

6.8.9 routes/trending.coffee
express = require('express')

router = express.Router()

router.get '/', (req, res, next) ->

 res.render 'page_trending',

 title: 'Trending Now'

 pageNum: 11

 location: ''

router.get '/:query', (req, res) ->

 location = req.params.query # Get the search term from URL param

 res.render 'page_trending',

 title: 'Trending in '+location

 pageNum: 11

 location: location

module.exports = router

~ 197 ~

6.8.10 routes/sa-comparison.coffee
express = require('express')

router = express.Router()

defaultRes = require('../public/data/all_sentiment_results_edwardsnowdon.json')

Renders the layout with the sentiment results passed as param

renderWithResults = (res, results, searchTerm) ->

 res.render('page_comparison', {results: results, searchTerm: searchTerm})

res.json results

Root task, called when no params passed, should use default results

router.get '/', (req, res, next) ->

 renderWithResults res, defaultRes, ''

Fetches Tweets for given query, calculates sentiment then calls render

router.get '/:query', (req, res, next) ->

 # Node modules

 fetchTweets = require('fetch-tweets')

 dictionarySA = require('sentiment-analysis')

 nluSA = require('haven-sentiment-analysis')

 # Keys and instance variables

 hpKey = require('../config/keys').hp

 twitterKey = require('../config/keys').twitter

 results = [] # Will hold list of json objects to be rendered

 completedRequests = 0 # Counts how many results returned

 searchTerm = req.params.query # Get the search term from URL param

 # Method will generate an object with all calculated sentiments for tweet

 calculateResults = (searchTerm) ->

 makeSentimentResults = (rawTweets) ->

 rawTweets.forEach (tweet, index) ->

 nluSA { text: tweet }, hpKey, (nluResults) ->

 results.push

 index: index

 tweet: tweet

 dictionary_sentiment: dictionarySA(tweet)

 nlu_sentiment: Math.round(nluResults.aggregate.score * 1000) / 1000

 human_sentiment: null

 completedRequests++

 if completedRequests == rawTweets.length # Everything is done, render

 renderWithResults res, results, searchTerm

 # Fetch the Tweets

 fetchTweets = new fetchTweets(twitterKey)

 searchOptions =

 q: searchTerm

 lang: 'en'

 count: 50

 fetchTweets.byTopic searchOptions, (results) ->

 rawTweets = []

 results.forEach (tweet) -> rawTweets.push tweet.body

 makeSentimentResults rawTweets

 if searchTerm != null

 calculateResults searchTerm

 else

 renderWithResults res, defaultRes, ''

module.exports = router

~ 198 ~

6.8.11 routes/search.coffee

Require necessary modules, API keys and instantiate objects

fetchSentimentTweets = require '../utils/fetch-sentiment-tweets'

wordFormatter = require('../utils/format-for-keyword-vis').findTopWords

#toneAnalyzer = require '../utils/watson-tone-analyzer'

makeClickWords = require '../utils/make-click-words'

express = require('express')

router = express.Router()

Converts Tweet objects into the right format

formatResults = (tweetArr) ->

 results = {}

 # Add keywords list

 wrdsjs = wordFormatter(tweetArr, true)

 topData = wrdsjs.topPositive.concat(wrdsjs.topNegative, wrdsjs.topNeutral)

 topData = topData.sort (a, b) -> parseFloat(b.freq) - parseFloat(a.freq)

 topData = topData.splice(0,10)

 results.keywordData= topData = topData.sort -> 0.5 - Math.random()

 # Find average sentiment

 totalSentiment = 0

 for tweet in tweetArr then totalSentiment += tweet.sentiment

 results.averageSentiment = totalSentiment / tweetArr.length

 # Find percentage positive, negative and neutral

 pieChart = {positive: 0, neutral: 0, negative: 0}

 for tweet in tweetArr

 if tweet.sentiment > 0 then pieChart.positive += 1

 else if tweet.sentiment < 0 then pieChart.negative += 1

 else pieChart.neutral += 1

 results.pieChart = pieChart

 results.tweets = tweetArr

 results

getTopTweets = (tweetArr) ->

 tweetArr = JSON.parse(JSON.stringify(tweetArr)) # Clone tweetArr

 results = {}

 topPositiveTweets = tweetArr.sort((b, a) ->

 a.sentiment - (b.sentiment)

).slice(0, 5)

 topNegativeTweets = tweetArr.sort((a, b) ->

 a.sentiment - (b.sentiment)

).slice(0, 5)

 for tweet in topPositiveTweets then tweet.body = makeClickWords tweet.body

 for tweet in topNegativeTweets then tweet.body = makeClickWords tweet.body

 results.topPositive = topPositiveTweets

 results.topNegative = topNegativeTweets

 results

makeTweetBody = (tweetArr) ->

 results = ""

 for tweet in tweetArr then results += tweet.body + ' '

 results

Main route - no search term

router.get '/', (req, res, next) ->

 res.render 'page_search',

 title: 'Search'

 pageNum: -1

 data: {}

 searchTerm: ''

Route with search term

router.get '/:query', (req, res) ->

~ 199 ~

 searchTerm = req.params.query # Get the search term from URL param

 fetchSentimentTweets searchTerm, (results, average) -> # Fetch all data

 res.render 'page_search', # Render template

 title: searchTerm+' results'

 pageNum: -1

 data: formatResults results

 averageSentiment: average

 searchTerm: searchTerm

 topTweets: getTopTweets results

 tweetBody: makeTweetBody results

module.exports = router

6.8.12 routes/word-cloud.coffee
express = require('express')

router = express.Router()

tweetWordFormatter = require '../utils/format-for-keyword-vis'

router.get '/', (req, res, next) ->

 tweetWordFormatter.getDbData (data, txt) ->

 res.render 'page_cloud',

 title: 'Word Cloud'

 pageNum: 5

 summary_text: txt

 data: data

router.get '/:query', (req, res) ->

 searchTerm = req.params.query # Get the search term from URL param

 tweetWordFormatter.getFreshData searchTerm, (data, txt) ->

 res.render 'page_cloud',

 title: 'Word Cloud'

 pageNum: 5

 summary_text: txt

 data: data

module.exports = router

~ 200 ~

6.8.13 routes/text-tweets.coffee

Require necessary modules, API keys and instantiate objects

Tweet = require '../models/Tweet' # The Tweet model

sentimentAnalysis = require 'sentiment-analysis'

moment = require 'moment'

makeClickWords = require '../utils/make-click-words'

FetchTweets = require 'fetch-tweets'

twitterKey = require('../config/keys').twitter

fetchTweets = new FetchTweets twitterKey

removeWords = require 'remove-words'

express = require('express')

router = express.Router()

Converts Tweet objects into the right format

formatTweets = (tweets) ->

 pos = []

 neg = []

 tweets.sort (b, a) -> new Date(a.dateTime).getTime() - new

Date(b.dateTime).getTime()

 tweets.slice(0,350)

 for t in tweets

 body = makeClickWords t.body

 location = t.location.place_name

 sentiment = if t.sentiment then t.sentiment else sentimentAnalysis t.body

 keywords = removeWords t.body

 r = body: body, location: location, sentiment: sentiment, keywords: keywords

 r.dateTime = moment(new Date(t.dateTime)).fromNow()

 if sentiment > 0 then pos.push r else if sentiment < 0 then neg.push r

 pos.sort (b, a) -> parseFloat(a.sentiment) - parseFloat(b.sentiment)

 neg.sort (a, b) -> parseFloat(a.sentiment) - parseFloat(b.sentiment)

 positive: pos.slice(0,100), negative: neg.slice(0,100)

Main route - no search term

router.get '/', (req, res, next) ->

 Tweet.getAllTweets (tweets) ->

 res.render 'page_textTweets',

 title: 'View Raw Tweets'

 pageNum: 7

 data: formatTweets tweets

 searchTerm: ''

Route with search term

router.get '/:query', (req, res) ->

 searchTerm = req.params.query # Get the search term from URL param

 fetchTweets.byTopic searchTerm, (tweets) ->

 res.render 'page_textTweets',

 title: searchTerm+' raw tweets'

 pageNum: 7

 data: formatTweets tweets

 searchTerm: searchTerm

module.exports = router

~ 201 ~

6.8.14 routes/word-plot.coffee
express = require('express')

router = express.Router()

tweetWordFormatter = require '../utils/format-for-keyword-vis'

router.get '/', (req, res, next) ->

 tweetWordFormatter.getDbData (data, txt) ->

 res.render 'page_wordPlot',

 title: 'Word Scatter Plot'

 pageNum: 5

 summary_text: txt

 data: data

router.get '/:query', (req, res) ->

 searchTerm = req.params.query # Get the search term from URL param

 tweetWordFormatter.getFreshData searchTerm, (data, txt) ->

 res.render 'page_wordPlot',

 title: 'Word Scatter Plot'

 pageNum: 5

 summary_text: txt

 data: data

module.exports = router

~ 202 ~

6.9 CONFIG

6.9.1 config/app-config.coffee
#Set the current environment to true in the env object

currentEnv = process.env.NODE_ENV or 'development'

exports.appName = "Twitter Sentiment Visualisations"

exports.env =

 production: false

 staging: false

 test: false

 development: false

exports.env[currentEnv] = true

exports.log =

 path: __dirname + "reports/log/app_#{currentEnv}.log"

exports.server =

 port: 8080

#In staging and production, listen loopback. nginx listens on the network.

 ip: '127.0.0.1'

if currentEnv not in ['production', 'staging']

 exports.enableTests = true

 #Listen on all IPs in dev/test (for testing from other machines)

 exports.server.ip = '0.0.0.0'

exports.db =

 URL: "mongodb://localhost/" +

 "#{exports.appName.toLowerCase()}_#{currentEnv}".replace RegExp(' ','g'),'-'

6.9.2 config/api-keys.coffee
exports.twitter =

 consumer_key : 'P7vhOiDbJWwNbEAb4OAkjNvvA'

 consumer_secret : 'OJh4gToZW2P37011GRP7zwChyAbAnzUF5teck0hnQZqvaPlj8M'

 token: '43356339-APKxVQa9JJXfioSebRt8kQB9A5HcTf9kZvuz2vVdR'

 token_secret: 'ZpiQ9acPV4vaHYjNxzLGjhgSgme71v8LZJ8yxphYFu4XZ'

exports.googlePlaces = 'AIzaSyBLcuWU22gEmEzh9wiYbcBb1I6wGghRAKU'

exports.hp = 'bc3d211e-4212-417c-ae57-04523565c46a'

exports.watson =

 username: 'd640965f-8baa-4bc9-9e49-0f85a9f694e9'

 password: 'mP0Ie7HBgbxb'

~ 203 ~

6.10 CLIENT SIDE SCRIPTS

6.10.1 map/map-main.coffee

initialize = ->

 # Include all map components

 themeModule = require('../map/theme-module.coffee')

 optionsModule = require('../map/options-module.coffee')

 heatmapModule = require('../map/heatmap-module.coffee')

 searchModule = require('../map/search-module.coffee')

 autocompleteModule = require('../map/autocomplete-module.coffee')

 markerClusterModule = require('../map/markercluster-module.coffee')

 liveInteractions = require('../map/live-interactions-module.coffee')

 socketModule = require('../map/socket-module.coffee')

 # Get the map, and set the map options

 map = new (google.maps.Map)(document.getElementById('map-canvas'),\

 optionsModule.mapOptions)

 # Apply map theme

 map.mapTypes.set 'map_style', themeModule.styledMap

 map.setMapTypeId 'map_style'

 # Apply heat map

 heatmapModule.positiveHeatmap.setMap map

 heatmapModule.negativeHeatmap.setMap map

 heatmapModule.neutralHeatmap.setMap map

 # Apply invisible marker cluster to map, so user can click

 markerClusterModule map

 # Initiate the places auto-complete and map search

 searchModule.initiatePlaceSearch map

 data = [

 {'value': '11', 'label': 'one'}

 {'value': '2', 'label': 'two'}

 {'value': '3', 'label': 'three' }

]

 $(document).ready ->

 goToUrl = (url) -> window.location = url # Navigate to a URL

 keywordSel = 'input#txtKeyword' # Selector for the keyword search box

$(keywordSel).autocompleter source: data # Turn on auto complete search

 # Submit search term, when the user presses enter

 $(keywordSel).bind 'enter', () -> goToUrl('/map/'+$(keywordSel).val())

 $(keywordSel).keyup (e) -> if e.keyCode == 13 then $(this).trigger 'enter'

 # Live interactions

 window.addHeatToMap = (so) -> liveInteractions.addToMap(so, heatmapModule)

 window.clearMap = -> liveInteractions.clearMap(heatmapModule)

 window.togglePositive = ->

 liveInteractions.toggleHeatMap(heatmapModule.positiveHeatmap)

 window.toggleNegative = ->

 liveInteractions.toggleHeatMap(heatmapModule.negativeHeatmap)

google.maps.event.addDomListener window, 'load', initialize

~ 204 ~

6.10.2 map/heatmap-module.coffee

positiveLocationData = []

negativeLocationData = []

neutralLocationData = []

makeLocationObject = (locationObj) ->

 new (google.maps.LatLng)(locationObj.lat, locationObj.lng)

Make heatmap location data

sentimentResults.forEach (sentObj) ->

 if sentObj.sentiment > 0

 positiveLocationData.push({

 location: makeLocationObject(sentObj.location)

 weight: sentObj.sentiment * 10

 })

 else if sentObj.sentiment < 0

 negativeLocationData.push({

 location: makeLocationObject(sentObj.location)

 weight: Math.abs sentObj.sentiment * 10

 })

 else

 neutralLocationData.push({

 location: makeLocationObject(sentObj.location)

 weight: 5

 })

Apply heat map to map

PositivePointArray = new (google.maps.MVCArray)(positiveLocationData)

positiveHeatmap =

 new (google.maps.visualization.HeatmapLayer)(data: PositivePointArray)

negativePointArray = new (google.maps.MVCArray)(negativeLocationData)

negativeHeatmap =

 new (google.maps.visualization.HeatmapLayer)(data: negativePointArray)

neutralPointArray = new (google.maps.MVCArray)(neutralLocationData)

neutralHeatmap =

 new (google.maps.visualization.HeatmapLayer)(data: neutralPointArray)

Define gradients

positiveGradient = [

 'rgba(255,255,255,0)', 'rgba(20,180,240, 0.2)', 'rgba(20,185,220,0.4)'

 'rgba(20,190,210, 0.6)', 'rgba(20,195,200, 0.8)', 'rgb(20,210,190)'

 'rgb(20,215,180)', 'rgb(20,220,170)', 'rgb(20,225,160)', 'rgb(20,230,150)'

 'rgb(20,235,140)', 'rgb(20,240,130)', 'rgb(20,245,120)', 'rgb(20,246,100)'

 'rgb(20,247,90)', 'rgb(20,248,85)', 'rgb(20,249,80)', 'rgb(21,250,75)'

 'rgb(21,251,70)', 'rgb(21,252,65)', 'rgb(21,253,60)', 'rgb(21,254,55)'

 'rgb(20,255,50)', 'rgb(20,255,45)', 'rgb(20,255,40)', 'rgb(20,255,35)'

 'rgb(19,255,30)', 'rgb(19,255,28)', 'rgb(19,255,25)', 'rgb(19,255,23)'

 'rgb(18,255,20)', 'rgb(17,255,19)', 'rgb(16,255,18)', 'rgb(15,255,17)'

 'rgb(14,255,16)', 'rgb(13,255,15)', 'rgb(12,255,14)', 'rgb(11,255,13)'

 'rgb(10,255,10)', 'rgb(9,255,5)', 'rgb(8,255,0)', 'rgb(7,255,0)'

 'rgb(6,255,0)', 'rgb(5,255,0)', 'rgb(4,250,0)', 'rgb(3,245,0)'

 'rgb(2,240,0)', 'rgb(1,235,0)', 'rgb(0,230,0)', 'rgb(0,225,0)'

 'rgb(0,220,0)', 'rgb(0,215,0)', 'rgb(0,210,0)', 'rgb(0,205,0)'

 'rgb(0,200,0)', 'rgb(0,195,0)', 'rgb(0,190,0)', 'rgb(0,185,0)'

]

negativeGradient = [

 'rgba(255,255,255,0)', 'rgba(255,255,0,0.2)', 'rgba(255,255,0,0.4)'

 'rgba(255,245,0,0.6)', 'rgba(255,235,0,0.8)', 'rgb(255,225,0)',

 'rgb(255,215,0)', 'rgb(255,200,0)', 'rgb(255,180,0)', 'rgb(255,160,0)',

 'rgb(255,150,0)', 'rgb(255,145,0)', 'rgb(255,140,0)', 'rgb(255,135,0)',

 'rgb(255,130,0)', 'rgb(255,125,0)', 'rgb(255,120,0)', 'rgb(255,115,0)',

~ 205 ~

 'rgb(255,110,0)', 'rgb(255,95,0)', 'rgb(255,90,0)', 'rgb(255,80,0)',

 'rgb(255,70,0)', 'rgb(255,60,0)', 'rgb(255,50,0)', 'rgb(255,45,0)',

 'rgb(255,40,0)', 'rgb(255,35,0)', 'rgb(255,30,0)', 'rgb(255,25,0)'

 'rgb(255,20,0)', 'rgb(255,19,0)', 'rgb(255,18,0)', 'rgb(255,17,0)'

 'rgb(255,16,0)', 'rgb(255,15,0)', 'rgb(255,14,0)', 'rgb(255,13,0)'

 'rgb(255,12,0)', 'rgb(255,11,0)', 'rgb(255,10,0)', 'rgb(255,9,0)'

 'rgb(255,6,0)', 'rgb(255,4,0)', 'rgb(255,2,0)', 'rgb(255,0,0)'

 'rgb(240,0,0)', 'rgb(220,0,0)', 'rgb(210,0,0)', 'rgb(190,0,0)', 'rgb(170,0,0)'

]

neutralGradient = [

 'rgba(160,160,160,0)', 'rgba(150,150,150,0.2)', 'rgba(140,140,140,0.5)',

 'rgba(130,130,130,0.7)', 'rgba(120,120,120,0.9)', 'rgb(100,100,100)',

 'rgb(90,90,90)', 'rgb(80,80,80)', 'rgb(70,70,70)', 'rgb(60,60,60)',

 'rgb(50,50,50)', 'rgb(40,40,40)', 'rgb(35,35,35)', 'rgb(30,30,30)'

]

Set gradients

positiveHeatmap.set 'gradient', positiveGradient

negativeHeatmap.set 'gradient', negativeGradient

neutralHeatmap.set 'gradient', neutralGradient

Set opacity

positiveHeatmap.set('opacity', 0.7);

negativeHeatmap.set('opacity', 0.7);

module.exports.positiveHeatmap = positiveHeatmap

module.exports.negativeHeatmap = negativeHeatmap

module.exports.neutralHeatmap = neutralHeatmap

~ 206 ~

6.10.3 map/live-interactions-module.coffee

Adds a sentiment object to the heatmap

addHeatToMap = (sentimentObject, heatmapModule) ->

 updateLayer = (heatmapLayer, newItem) ->

 if newItem.weight < 0 then newItem.weight = Math.abs(newItem.weight)

 newData = heatmapLayer.getData().j # Get old data

 newData.push(newItem) # Add new result to it

 heatmapLayer.setData(newData) # set the updated array

 location = new (google.maps.LatLng)(sentimentObject.location.lat,

 sentimentObject.location.lng)

 newItem =

 location: location

 weight: sentimentObject.sentiment * 10

 heatmapLayer =

 if sentimentObject.sentiment > 0 then heatmapModule.positiveHeatmap

 else if sentimentObject.sentiment < 0 then heatmapModule.negativeHeatmap

 else heatmapModule.neutralHeatmap

 updateLayer(heatmapLayer, newItem)

 $('span#numRes').text(Number($('span#numRes').text())+1) # Increment counter

oldPositiveHeatData = []

oldNegativeHeatData = []

Removes all heatmap layers

clearMap = (heatmapModule) ->

 tempPos = oldPositiveHeatData

 tempNeg = oldNegativeHeatData

 oldPositiveHeatData = heatmapModule.positiveHeatmap.getData().j

 oldNegativeHeatData = heatmapModule.negativeHeatmap.getData().j

 heatmapModule.positiveHeatmap.setData(tempPos)

 heatmapModule.neutralHeatmap.setData([])

 heatmapModule.negativeHeatmap.setData(tempNeg)

toggleHeatMap = (heatmap) ->

 heatmap.setMap if heatmap.getMap() then null else map

module.exports.addToMap = addHeatToMap

module.exports.clearMap = clearMap

module.exports.toggleHeatMap = toggleHeatMap

~ 207 ~

6.10.4 Map/marker-cluster-module.coffee

removeWords = require 'remove-words'

class MarkerClusterSetup

 constructor: (map) -> @map = map

 # Creates the HTML for the info window displayed when a maker is clicked

 makeInfoWindowContent = (markerData) ->

 uniformWord = (word) -> (''+word).toLowerCase().replace /\W/g, ''

 # Make the coloured score string (e.g. '30% Positive')

 scoreString =

 if markerData.sentiment > 0

 "<b style='color: green'>#{markerData.sentiment*100}% Positive"

 else if markerData.sentiment < 0

 "<b style='color: darkred'>#{markerData.sentiment*-100}% Negative"

 else "<b style='color: grey'>Neutral"

 # Make clickable Tweet text

 clickWords = removeWords markerData.tweet # Array of keywords

 htmlTweet = ''

 aStyle = 'style="color: black; font-weight: bold;" ' # style for hyperlinks

 for word in markerData.tweet.split " "

 if uniformWord(word) in clickWords

 htmlTweet += "<a #{aStyle} href='/map/#{uniformWord word}'>#{word} "

 else htmlTweet += "#{word} "

 # Put everything together to return

 "<div style='max-width: 25em'><p>#{htmlTweet}</p>#{scoreString}</div>"

 makeShape = () ->

 coords: [1, 1, 1, 20, 18, 20, 18, 1]

 type: 'poly'

 makeImage = (path) ->

 url: path

 size: new (google.maps.Size)(25, 25)

 origin: new (google.maps.Point)(0, 0)

 anchor: new (google.maps.Point)(12, 12)

 makeMarkers = (image, shape) ->

 infowindow = new google.maps.InfoWindow() # the pop-up thingy

 markers = [] # List of markers to be populated and returned

 # For each sentiment result, create a marker and push it to the array

 sentimentResults.forEach (sentObj) ->

 latLng = new google.maps.LatLng(sentObj.location.lat,sentObj.location.lng)

 marker = new google.maps.Marker({

 position: latLng

 map: @map

 icon: image

 shape: shape

 title : sentObj.tweet

 })

 # Action listener to show window when user presses marker

 google.maps.event.addListener marker, 'click', (evt) ->

 infowindow.setContent makeInfoWindowContent sentObj

 infowindow.open @map, this

 markers.push(marker)

 markers

 makeStyles = (path) ->

~ 208 ~

 maxZoom: 100

 gridSize: 40

 styles: [

 {

 url: path

 height: 35

 width: 35

 anchor: [16, 0]

 textColor: 'transparent'

 textSize: 10

 }

 {

 url: path

 height: 45

 width: 45

 anchor: [24, 0]

 textColor: 'transparent'

 textSize: 11

 }

 {

 url: path

 height: 55

 width: 55

 anchor: [32, 0]

 textColor: 'transparent'

 textSize: 12

 }

]

 start: ->

 pathToNothing = '/images/nothing.png'

 shape = makeShape()

 image = makeImage pathToNothing

 markers = makeMarkers image, shape

 styles = makeStyles pathToNothing

 new MarkerClusterer @map, markers, styles

Export the stuff

module.exports = (map) -> (new MarkerClusterSetup map).start()

~ 209 ~

6.10.5 map/options-module.coffee
mapOptions =

 center: new (google.maps.LatLng)(51.5068, -0.1225)

 zoom: 3

 maxZoom: 20

 streetViewControl : false

 panControl: false

 mapTypeControlOptions:

 style: google.maps.MapTypeControlStyle.HORIZONTAL_BAR

 position: google.maps.ControlPosition.LEFT_TOP

 mapTypeIds: [

 'map_style'

 google.maps.MapTypeId.SATELLITE

]

 zoomControlOptions: {

 style: google.maps.ZoomControlStyle.LARGE

 position: google.maps.ControlPosition.LEFT_CENTER

 }

module.exports.mapOptions = mapOptions

6.10.6 map/socket-module.coffee

if searchTerm == ''

 socket = io.connect()

 socket.on 'tweet', (tweetObj) ->

 heatMapItem =

 sentiment: tweetObj.sentiment

 location:

 lat: tweetObj.location.location.lat

 lng: tweetObj.location.location.lng

 window.addHeatToMap(heatMapItem)

6.10.7 map/autocomplete-module.coffee

module.exports.autocomplete = $ ->

 $('input#txtKeyword').autocompleter

 source: data

 focusOpen: false

~ 210 ~

6.10.8 map/search-module.coffee

initiateSearch = (map) ->

 # Configure autocomplete and map search

 input = document.getElementById('txtLocation')

 autocomplete = new (google.maps.places.Autocomplete)(input)

 infowindow = new (google.maps.InfoWindow)

 # Prepare for putting markers on map

 marker = new (google.maps.Marker)(

 map: map

 anchorPoint: new (google.maps.Point)(0, -29))

 google.maps.event.addListener autocomplete, 'place_changed', ->

 infowindow.close()

 marker.setVisible false

 place = autocomplete.getPlace()

 if !place.geometry

 window.alert 'Autocomplete\'s returned place contains no geometry'

 return

 # If the place has a geometry, then display marker on the map.

 if place.geometry.viewport

 map.fitBounds place.geometry.viewport

 else

 map.setCenter place.geometry.location

 map.setZoom 17 # Why 17? Because it looks good.

 marker.setIcon

 url: place.icon

 size: new (google.maps.Size)(71, 71)

 origin: new (google.maps.Point)(0, 0)

 anchor: new (google.maps.Point)(17, 34)

 scaledSize: new (google.maps.Size)(35, 35)

 marker.setPosition place.geometry.location

 marker.setVisible true

 address = ''

 if place.address_components

 address_parts = place.address_components

 address = [

 address_parts[1] and address_parts[1].short_name or ''

 address_parts[0] and address_parts[0].short_name or ''

 address_parts[2] and address_parts[2].short_name or ''

].join(' ')

 infowindow.setContent "<div>#{place.name}
" + address

 infowindow.open map, marker

 return

module.exports.initiatePlaceSearch = initiateSearch

6.10.9 map/theme-module.coffee

Array of styles.

styles = [

 {

 'featureType': 'administrative.country'

 'elementType': 'geometry.stroke'

 'stylers': [{ 'color': '#DCE7EB' }]

 }

 {

 'featureType': 'administrative.province'

 'elementType': 'geometry.stroke'

 'stylers': [{ 'color': '#DCE7EB' }]

 }

~ 211 ~

 {

 'featureType': 'landscape'

 'elementType': 'geometry'

 'stylers': [{ 'visibility': 'off' }]

 }

 {

 'featureType': 'poi'

 'elementType': 'all'

 'stylers': [{ 'visibility': 'off' }]

 }

 {

 'featureType': 'road'

 'elementType': 'all'

 'stylers': [{ 'visibility': 'off' }]

 }

 {

 'featureType': 'road'

 'elementType': 'labels'

 'stylers': [{ 'visibility': 'off' }]

 }

 {

 'featureType': 'transit'

 'elementType': 'labels.icon'

 'stylers': [{ 'visibility': 'off' }]

 }

 {

 'featureType': 'transit.line'

 'elementType': 'geometry'

 'stylers': [{ 'visibility': 'off' }]

 }

 {

 'featureType': 'transit.line'

 'elementType': 'labels.text'

 'stylers': [{ 'visibility': 'off' }]

 }

 {

 'featureType': 'transit.station.airport'

 'elementType': 'geometry'

 'stylers': [{ 'visibility': 'off' }]

 }

 {

 'featureType': 'transit.station.airport'

 'elementType': 'labels'

 'stylers': [{ 'visibility': 'off' }]

 }

 {

 'featureType': 'water'

 'elementType': 'geometry'

 'stylers': [{ 'color': '#83888B' }]

 }

 {

 'featureType': 'water'

 'elementType': 'labels'

 'stylers': [{ 'visibility': 'off' }]

 }

]

module.exports.styledMap = new (google.maps.StyledMapType)(styles,

 name: 'Sentiment Map'

)

~ 212 ~

6.10.10 globe/globe-main.coffee

ConfigureGlobe = require '../globe/configure-globe-module.coffee'

socketModule = require('../globe/socket-module.coffee')

configureGlobe = new ConfigureGlobe()

configureGlobe.go()

window.addSentiment = (so) -> configureGlobe.addNewPoint(so)

mainPage = 'globe'

require '../page-controls-module.coffee'

6.10.11 globe/socket-module.coffee
socket = io.connect();

socket.on 'tweet', (tweetObj) ->

 globeItem =

 sentiment: tweetObj.sentiment

 location:

 lat: tweetObj.location.location.lat

 lng: tweetObj.location.location.lng

 window.addSentiment(globeItem)

 $('span#numRes').text(Number($('span#numRes').text())+1) # Increment counter

6.10.12 globe/configure-globe.coffee

class ConfigureGlobe

 constructor: -> @globe

 constants = {

 maxHeight: 4 # Maximum height of the bars on the globe

 neutralSentiment: 0.2 # The sentiment weighting to be assigned to neutral

 colors: [

 'rgb(240,40,40)' # Negative Color (red)

 'rgb(180,180,180)' # Neutral Color (gray)

 'rgb(40,240,40)' # Positive Color (green)

]

 containerId: 'container' # The ID of the HTML container to place the globe

 imageDir: '/images/' # The directory storing all globe-related images

 }

 makeBarHeight = (sentiment) ->

 if sentiment == 0 then sentiment = constants.neutralSentiment

 height = sentiment * constants.maxHeight

 if height >= 0 then height else Math.abs height # Always return positive

 makeBarColIndex = (sentiment) ->

 if sentiment > 0 then return 2

 else if sentiment < 0 then return 0

 else return 1

~ 213 ~

 makeGlobeData = (sentimentResults) ->

 series = []

 for tweetObject in sentimentResults

 series.push tweetObject.location.lat

 series.push tweetObject.location.lng

 series.push makeBarHeight tweetObject.sentiment

 series.push makeBarColIndex tweetObject.sentiment

 [['Sentiment', series]];

 createGlobe = () ->

 new (DAT.Globe)(document.getElementById(constants.containerId), {

 imgDir: constants.imageDir,

 colorFn: (label) -> new THREE.Color(constants.colors[label])

 })

 addNewPoint: (sentimentObj) ->

 data = [

 sentimentObj.location.lat

 sentimentObj.location.lng

 makeBarHeight sentimentObj.sentiment

 makeBarColIndex sentimentObj.sentiment

]

 @globe.addData(data, {format: 'legend', name: 'newData'})

 @globe.createPoints()

 go: () ->

 # Configure new globe

 @globe = createGlobe()

 # Make globe data array

 data = makeGlobeData sentimentResults

 # Add data to the globe

 for d in data then @globe.addData(d[1], {format: 'legend', name: d[0]})

 @globe.createPoints() # Create the geometry

 @globe.animate() # Begin animation

module.exports = ConfigureGlobe

~ 214 ~

6.10.13 now/now-main.coffee
$ ->

 # Include browserify modules

 mapModule = require '../now/now-map-module.coffee'

 barsModule = require '../now/now-bars-module.coffee'

 countModule = require '../now/now-count-module.coffee'

 topTwModule = require '../now/now-top-tweets-module.coffee'

 # Initial render of each chart

 mapModule.startDraw()

 barsModule.generateBars()

 countModule.startCountCharts()

 topTwModule.init()

 # Call relevant stuff when a new tweet arrives

 newTweetArrived = (tweet) ->

 mapModule.addTweetToMap tweet

 barsModule.addToStats tweet

 # Socket.io

 socket = io.connect();

 socket.on 'tweet', (tweetObj) ->

 if tweetObj.sentiment != 0

 newTweetArrived(tweetObj)

 socket.on 'anyTweet', (tweetObj) ->

 if tweetObj.sentiment != 0

 countModule.newTweetArrived tweetObj

 if tweetObj.body.indexOf('http') == -1 and

 (tweetObj.sentiment > 0.6 or tweetObj.sentiment < -0.6)

 topTwModule.addTweet(tweetObj)

 # Bit of page setup

 $('input#txtSearch').characterCounter();

~ 215 ~

6.10.14 now/now-count-module.coffee

Keep count of tweets

numPositiveTweets = 0

numNegativeTweets = 0

numTotal = 0

Declare vars for objects

svg = null

chart = null

Template for bullet data

bulletData = [{

 title:'Sentiment'

 subtitle:'Proportion of tweets'

 ranges:[0,1,2]

 measures:[1,2]

 markers:[1]

}]

drawBulletChart = () ->

 margin = top: 5, right: 40, bottom: 20, left: 120

 width = $('#bullet-container').width() - (margin.left) - (margin.right)

 height = 50 - (margin.top) - (margin.bottom)

 chart = d3.bullet().width(width).height(height)

 svg = d3.select('#bullet-chart')

 .selectAll('svg')

 .data(bulletData)

 .enter()

 .append('svg')

 .attr('class', 'bullet')

 .attr('width', width + margin.left + margin.right)

 .attr('height', height + margin.top + margin.bottom)

 .append('g')

 .attr('transform', 'translate(' + margin.left + ',' + margin.top + ')')

 .call(chart)

 title = svg.append('g')

 .style('text-anchor', 'end')

 .attr('transform', 'translate(-6,' + height / 2 + ')')

 title.append('text').attr('class', 'title').text (d) -> d.title

 title.append('text')

 .attr('class', 'subtitle')

 .attr('dy', '1em')

 .text (d) -> d.subtitle

addDataToBullet = () ->

 bulletData.ranges = [numTotal * 0.33, numTotal * 0.66, numTotal]

 bulletData.measures = [numPositiveTweets, numPositiveTweets+numNegativeTweets]

 bulletData.markers = [(numPositiveTweets + numNegativeTweets)/2]

 svg.datum(bulletData).call chart.duration(1000)

newTweetArrived = (tweet) ->

 numTotal += 1

 if tweet.sentiment > 0

 numPositiveTweets += 1

 $('#countPos').html(numPositiveTweets)

 else if tweet.sentiment < 0

 numNegativeTweets += 1

 $('#countNeg').html(numNegativeTweets)

 if (numTotal % 15) == 0

 addDataToBullet()

module.exports.startCountCharts = drawBulletChart

module.exports.newTweetArrived = newTweetArrived

~ 216 ~

6.10.15 now/now-bars-module.coffee

Initialise Count Variables

numPositiveOfTweets = 0

numNegativeOfTweets = 0

totalPositiveScore = 0

totalNegativeScore = 0

totalNumTweets = 0

colChart = null

Generate Initial Bar Chart

generateBars = () ->

 colChart = c3.generate(

 bindto: '#mini-bar-charts'

 data:

 columns: [['Positive', 0], ['Negative', 0]]

 type: 'bar'

 colors:

 Positive: '#82FA58'

 Negative: '#F79F81'

 bar: width: ratio: 0.5

 axis:

 y:

 label: text: 'Weighted Proportions', position: 'outer-center'

 tick: format: -> return '';

)

addToStats = (tweet) ->

Update attributes and make calculations

 s = tweet.sentiment # Get the sentiment

 totalNumTweets += 1

 if s > 0 # Positive Tweet!

 numPositiveOfTweets +=1

 totalPositiveScore += s

 else if s < 0 # Negative Tweet!

 numNegativeOfTweets +=1

 totalNegativeScore += Math.abs s

 # Update data visualizations

 if s > 0 # Positive

 colChart.load columns: [['Positive', totalPositiveScore]]

 else if s < 0 # Negative

 colChart.load columns: [['Negative', totalNegativeScore]]

module.exports.addToStats = addToStats

module.exports.generateBars = generateBars

~ 217 ~

6.10.16 now/now-map-modue.coffee

Initialise geo config

geoChart = null

regionData = [

 ['Lat', 'Long', 'Sentiment', 'Size', {role: 'tooltip', p:{html:true}}]

 [51.2, -2.54, 0.1, 0.1,'']

]

geoOptions = {

 colorAxis: {colors: ['#DF0101', '#BDBDBD', '#04B404']}

 backgroundColor: '#2C2C2C'

 datalessRegionColor: '#D8D8D8'

 defaultColor: '#f5f5f5'

 showZoomOut: true

}

Render region map

drawRegionsMap = ->

 data = google.visualization.arrayToDataTable(regionData)

 geoChart =

 new (google.visualization.GeoChart)(document.getElementById('geo-chart'))

 geoChart.draw data, geoOptions

Add tweet to map

addTweetToMap = (tweet) ->

 regionData.push [tweet.location.location.lat, tweet.location.location.lng,

tweet.sentiment, Math.abs(tweet.sentiment), tweet.body]

 if google.visualization?

 newMapData = google.visualization.arrayToDataTable(regionData)

 geoChart.draw newMapData, geoOptions

 if regionData.length > 5 && regionData.length < 10

 $('#geo-chart-loader').fadeOut('slow')

 $('#geo-chart').slideDown('slow')

startDraw = () ->

 google.charts.load 'current', 'packages': ['geochart']

 google.charts.setOnLoadCallback drawRegionsMap

module.exports.addTweetToMap = addTweetToMap

module.exports.startDraw = startDraw

~ 218 ~

6.10.17 now/now-top-tweets-module.coffee

initTopTweets = () ->

makeClickWords = (clickWords, body) ->

 clWord = (word) -> (''+word).toLowerCase().replace /\W/g, ''

 htmlTweet = ''

 aStyle = 'style="color: black; font-weight: bold;" ' # style for hyperlinks

 for word in body.split " "

 if clWord(word) in clickWords

 htmlTweet += "<a #{aStyle} href='/search/#{clWord word}'>#{word} "

 else htmlTweet += "#{word} "

 htmlTweet

addTopTweet = (tweet) ->

 limit = 8

 tweetHtml = ""

 tweetHtml += "<div class='top-tweet' style='display: none'>"

 tweetHtml += "#{makeClickWords(tweet.keywords, tweet.body)}"

 tweetHtml += ""

 tweetHtml += "<i class='tiny material-icons small-grey'>location_on</i>"

 tweetHtml += "#{tweet.location.place_name}"

 tweetHtml += "</div>"

 if tweet.sentiment > 0

 $('#topPosLoader').slideUp('slow').remove()

 $('#topPositive').prepend(tweetHtml)

 $('#topPositive .top-tweet:first').slideDown('normal')

 .css('border-color','#82FF79')

 if $('#topPositive .top-tweet').length >= $('#posLimit').val()

 $('#topPositive .top-tweet:last').slideUp('normal').remove()

 else if tweet.sentiment < 0

 $('#topNegLoader').slideUp('slow').remove()

 $('#topNegative').prepend(tweetHtml)

 $('#topNegative .top-tweet:first').slideDown('normal')

 .css('border-color','#FF8675')

 if $('#topNegative .top-tweet').length >= $('#negLimit').val()

 $('#topNegative .top-tweet:last').slideUp('normal').remove()

$(document).ready -> $('select').material_select()

module.exports.init = initTopTweets

module.exports.addTweet = addTopTweet

~ 219 ~

6.10.18 visualisations/break-down.coffee

margin = { top: 40, right: 10, bottom: 10, left: 10 }

width = 960 - (margin.left) - (margin.right)

height = 500 - (margin.top) - (margin.bottom)

scaleColors = ["#a50026","#d73027","#f46d43","#fdae61","#fee08b","#B4B4B4",

 "#d9ef8b","#a6d96a","#66bd63","#1a9850","#006837"]

color = d3.scale.linear()

 .domain([-1,-0.8, -0.6, -0.4, -0.2, 0, 0.2, 0.4, 0.6, 0.8, 1])

 .range(scaleColors)

treemap = d3.layout.treemap()

 .size([width, height])

 .sticky(true).value((d) -> d.size)

div = d3.select('div#tree')

 .append('div')

 .style('position', 'relative')

 .style('width', width + margin.left + margin.right + 'px')

 .style('height', height + margin.top + margin.bottom + 'px')

 .style('left', margin.left + 'px')

 .style('top', margin.top + 'px')

position = ->

 @style('left', (d) -> d.x + 'px')

 .style('top', (d) -> d.y + 'px')

 .style('width', (d) -> Math.max(0, d.dx - 1) + 'px')

 .style 'height', (d) -> Math.max(0, d.dy - 1) + 'px'

root = data

node = div.datum(root)

 .selectAll('.tree-node')

 .data(treemap.nodes)

 .enter()

 .append('div')

 .attr('class', (d) -> 'tree-node ' + if d.topic? then 'tooltipped')

 .call(position)

 .attr('data-position', 'top')

 .attr('data-tooltip', (d) -> if d.topic != '' then d.topic else '[no topic]')

 .style('background', (d) -> if d.children then color(d.name) else null)

 .text((d) -> if d.children then null else d.name)

d3.selectAll('input').on 'change', ->

 value = if @value == 'count' then (-> 1) else ((d) -> d.size)

 node.data(treemap.value(value).nodes)

 .transition()

 .duration(1500)

 .call position

$(document).ready ->

 $('.tooltipped').tooltip delay: 50

$('#txtKeyword').keyup (e) -> if e.keyCode == 13

 showLoader()

 window.location = '/break-down/'+$('#txtKeyword').val()

~ 220 ~

6.10.19 visualisations/comparer.coffee

window.drawDonuts = (comparisonData) ->

 for result, index in comparisonData

 chart = c3.generate(

 bindto: '#chart-'+index

 data:

 columns: [

 ['Positive', result.pieChart.positive]

 # ['Neutral', result.pieChart.neutral]

 ['Negative', result.pieChart.negative]

]

 type: 'donut'

 colors: {

 Positive: '#01DF01',

 Neutral: '#848484',

 Negative: '#DF0101'

 }

 donut: title: result.searchTerm)

$('#get-results').click () ->

 url = '/comparer/'

 if $('#brand-1').val() != '' then url += $('#brand-1').val()

 if $('#brand-2').val() != '' then url += ','+$('#brand-2').val()

 if $('#brand-3').val() != '' then url += ','+$('#brand-3').val()

 if $('#brand-4').val() != '' then url += ','+$('#brand-4').val()

 showLoader()

 window.location = url

$('a#add-new').click () ->

 $('.input-field').slideDown('fast')

 $(this).fadeOut('fast')

$('#brand-2').keyup () ->

 if $(this).val() != ''

 $('.input-field').slideDown('fast')

 $('a#add-new').fadeOut('fast')

6.10.20 visualisations/comparison.coffee

Converts the raw Sentiment data into a format suitable for the scatter chart

generateScatterData = (rawResults) ->

 chartData = []

 chartData.push(['Sentiment', 'Dictionary-Based SA', 'NLU SA', 'Human SA'])

 chartData.push([0, null, null, 0])

 rawResults.forEach (sentimentObject) ->

 tweetLen = sentimentObject.tweet.length

 chartData.push([tweetLen, null, sentimentObject.dictionary_sentiment, null])

 chartData.push([tweetLen, sentimentObject.nlu_sentiment, null, null])

 if(sentimentObject.human_sentiment)

 chartData.push([tweetLen, null, null, sentimentObject.human_sentiment])

 chartData

Converts raw sentiment data into a format suitable for the bar chart

generateBarData = (rawResults) ->

 chartData = []

 chartData.push(['Tweet', 'Dictionary-Based SA', 'NLU SA', 'Human SA'])

 rawResults.forEach (so) ->

 chartData.push([

 so.tweet

 so.nlu_sentiment

 so.dictionary_sentiment

 if so.human_sentiment? then so.human_sentiment else 0

~ 221 ~

])

 chartData

Converts raw sentiment data into a format suitable for the column chart

generateSummaryData = (rawResults) ->

 chartData = []

 chartData.push ['', 'Dictionary', 'NLU', 'Human']

 dictionaryTotal = 0

 nluTotal = 0

 humanTotal = 0

 rawResults.forEach (sentimentObject) ->

 dictionaryTotal += sentimentObject.dictionary_sentiment

 nluTotal += sentimentObject.nlu_sentiment

 humanTotal += sentimentObject.human_sentiment

 chartData.push([

 'Sentiment Analysis Results'

 dictionaryTotal/rawResults.length

 nluTotal/rawResults.length

 humanTotal/rawResults.length

])

 chartData

Finds range of sentiment

getSummaryRange = (chartData) ->

 chartData[1].splice 0,1

 for d, i in chartData[1] then chartData[1][i] = Math.abs(d)

 Math.max.apply(Math, chartData[1])*2

Defines the chart data, options and calls draw method for both charts

drawChart = ->

 scatterData =

 google.visualization.arrayToDataTable generateScatterData sentimentResults

 barData =

 google.visualization.arrayToDataTable generateBarData sentimentResults

 summaryData =

 google.visualization.arrayToDataTable generateSummaryData sentimentResults

 # Define chart options for all charts

 scatterOptions =

 title: 'Comparison of Different Sentiment Analysis Methods'

 width: 900

 height: 500

 backgroundColor: '#fff'

 hAxis:

 title: 'String Length'

 minValue: 0

 maxValue: 100

 vAxis:

 title: 'Sentiment'

 minValue: -1

 maxValue: 1

 legend: position: 'right'

 colors: ['#6ec9ee', '#3D7CDB', '#0B326C']

 dataOpacity: 1

 barOptions =

 chart:

 title: 'Comparison of different sentiment analysis methods '

 subtitle: 'Hover over bar for more details of Tweet'

 width: 1000

 height: 1500

 chartArea:

 width: '50%'

 height: '100%'

 backgroundColor: '#fff'

 bars: 'horizontal'

 colors: ['#6ec9ee', '#3D7CDB', '#0B326C']

 axes: x: 0:

 side: 'top'

~ 222 ~

 label: 'Sentiment'

 summaryOptions =

 chart:

 title: 'Summary of Sentiment Analysis Results'

 subtitle: 'Comparing Dictionary and NLU based results'

 bars: 'vertical'

 vAxis:

 format: 'decimal'

 viewWindowMode: 'explicit'

 viewWindow:

 min: - getSummaryRange generateSummaryData sentimentResults

 max: getSummaryRange generateSummaryData sentimentResults

 height: 400

 colors: ['#6ec9ee', '#3D7CDB', '#0B326C']

 # Create all google charts with chart options

 chart = new google.charts.Bar document.getElementById 'summarry_bar_ch'

 chart.draw summaryData, google.charts.Bar.convertOptions summaryOptions

 scatterChart =

 new google.visualization.ScatterChart document.getElementById 'scatter_ch'

 scatterChart.draw scatterData, scatterOptions

 barChart = new google.visualization.BarChart document.getElementById 'bar_ch'

 barChart.draw barData, barOptions

 # Create a HTML table for the raw results

 drawTableChart = () ->

 data = generateBarData sentimentResults

 myTable = ''

 myTable += '<thead><tr>'

 myTable += '<th style="width: 30em">Tweet</th>'

 myTable += '<th>'+item+'</th>' for item in data[0].splice(1,3)

 myTable += '</tr></thead>'

 myTable += '<tbody>'

 i = 1

 while i < data.length

 myTable += '<tr>'

 myTable += '<td>'+cell+'</td>' for cell in data[i]

 myTable += '</tr>'

 i++

 myTable += '</tbody>'

 document.getElementById('table_ch').innerHTML = drawTableChart()

Load the google visualisations packages and call the draw method

google.load 'visualization', '1.1', packages: ['table', 'corechart', 'bar']

google.setOnLoadCallback drawChart

Update the search button when the textfield changes

btnSearch = document.getElementById('btnCalculate')

txtKeyword = document.getElementById('txtKeyword')

txtKeyword.onchange = txtKeyword.onkeyup = ->

 keyWord = encodeURIComponent(txtKeyword.value)

 btnSearch.setAttribute('href', '/sa-comparison/'+keyWord)

~ 223 ~

6.10.21 visualisations/comparison-for-search.coffee

requestDbData = (tweetBody) ->

 makePieData = (tweetArr) ->

 res = {searchTerm: '', pieChart: {}}

 pieChart = {positive: 0, neutral: 0, negative: 0}

 for tweet in tweetArr

 if tweet.sentiment > 0 then pieChart.positive += 1

 else if tweet.sentiment < 0 then pieChart.negative += 1

 else pieChart.neutral += 1

 res.pieChart = pieChart

 res

 # Called after results are returned, initiates the rendering process

 renderResults = (dbRes) ->

 window.drawDonuts([makePieData(results), makePieData(dbRes)])

 # Make the actual request

 $.post('/api/db', {}, (results) -> renderResults results)

$(document).ready ->

 requestDbData tweetBody

6.10.22 visualisations/entity-extraction.coffee

units = 'Widgets'

margin = top: 10, right: 10, bottom: 10, left: 10

width = 920 - (margin.left) - (margin.right)

height = 540 - (margin.top) - (margin.bottom)

formatNumber = d3.format(',.0f')

format = (d) -> formatNumber(d) + ' ' + units

color = d3.scale.category20()

append the svg canvas to the page

svg = d3.select('#chart')

 .append('svg')

 .attr('width', width + margin.left + margin.right)

 .attr('height', height + margin.top + margin.bottom)

 .append('g')

 .attr('transform', 'translate(' + margin.left + ',' + margin.top + ')')

Set the sankey diagram properties

sankey = d3.sankey().nodeWidth(36).nodePadding(10).size([width, height])

path = sankey.link()

load the data

graph = sankeyData

nodeMap = {}

the function for moving the nodes

dragmove = (d) ->

 d3.select(this)

 .attr 'transform', 'translate(' + (

 d.x = Math.max(0, Math.min(width - (d.dx), d3.event.x))

) + ',' + (

 d.y = Math.max(0, Math.min(height - (d.dy), d3.event.y))) + ')'

 sankey.relayout()

 link.attr 'd', path

graph.nodes.forEach (x) -> nodeMap[x.name] = x

~ 224 ~

graph.links = graph.links.map((x) ->

 {

 source: nodeMap[x.source]

 target: nodeMap[x.target]

 value: x.value

 }

)

sankey.nodes(graph.nodes).links(graph.links).layout 32

add in the links

link = svg.append('g')

 .selectAll('.sankey-link')

 .data(graph.links)

 .enter()

 .append('path')

 .attr('class', 'sankey-link')

 .attr('d', path)

 .style('stroke-width', (d) -> Math.max 1, d.dy)

 .sort((a, b) -> b.dy - (a.dy))

add the link titles

link.append('title').text (d) ->

 d.source.name + ' → ' + d.target.name + '\n' + format(d.value)

add in the nodes

node = svg.append('g')

 .selectAll('.sankey-node')

 .data(graph.nodes)

 .enter()

 .append('g')

 .attr('class', 'sankey-node')

 .attr('transform', (d) ->'translate(' + d.x + ',' + d.y + ')')

 .call(d3.behavior.drag().origin((d) -> d)

 .on('dragstart', -> @parentNode.appendChild this)

 .on('drag', dragmove))

add the rectangles for the nodes

node.append('rect').attr('height', (d) -> d.dy)

 .attr('width', sankey.nodeWidth())

 .style('fill', (d) -> d.color = color(d.name.replace(RegExp(' .*'), '')))

 .style('stroke', (d) -> d3.rgb(d.color).darker 2)

 .append('title').text (d) -> d.name + '\n' + format(d.value)

add in the title for the nodes

node.append('text')

 .attr('x', -6)

 .attr('y', (d) -> d.dy / 2)

 .attr('dy', '.35em')

 .attr('text-anchor', 'end')

 .attr('transform', null).text((d) -> d.name)

 .filter((d) -> d.x < width / 2)

 .attr('x', 6 + sankey.nodeWidth())

 .attr 'text-anchor', 'start'

Submit search term when enter is pressed

$('#txtKeyword').keyup (e) -> if e.keyCode == 13

 showLoader()

 window.location = '/entity-extraction/'+$('#txtKeyword').val()

~ 225 ~

6.10.23 visualisations/entity-summary.coffee

requestEntityData = (tweetBody) ->

Generates the HTML for each progress bar with label, value and tooltip

 makeHtmlProgress = (label, img, num) ->

 html = ""

 html += ""

 html += "<div class='chip sml-margin tooltipped' data-tooltip='#{num}

occurrences'>"

 if img? then if img != '' then html += ""

 html += "#{label}"

 html += "</div>"

 html += ""

 html

 # Called after results are returned, initiates the rendering process

 renderResults = (results) ->

 i = 0

 for category in results

 i += 1

 $('#entityResults'+i).append(

 "<h5 class='flow-text'>#{category.name}</h5>"

)

 for item in category.items

 img = item.additional_information.image

 $('#entityResults'+i).append(makeHtmlProgress(item.normalized_text, img,

item.matches.length))

 # Show containers now they have data in, and hide the loader

 $('#entityLoader').fadeOut('fast')

 j = 1

 while j <= 8 then $('#entityResults'+j).slideDown('slow'); j++

 $('img').error -> $(this).hide() # Hide 404 not found images

 $('.tooltipped').tooltip({delay: 50}) # Initialise the tooltip

 # Hide empty containers to start with

 j = 1

 while j <= 8 then $('#entityResults'+j).hide(); j++

 # Make the actual request

 $.post('/api/entity', {text:tweetBody}, (results) -> renderResults results)

$(document).ready ->

 requestEntityData tweetBody

6.10.24 visualisations/gauge-module.coffee

sentiment = (average * 100)/2 + 50

chart = c3.generate(

 bindto: '#gaugeChart'

 data:

 columns: [['sentiment', sentiment]]

 type: 'gauge'

 gauge: {}

 color:

 pattern: ["#C80000", "#EB3443","#F85353","#FF5A80","#EF7B96","#B1B1B1",

 "#8CD087","#7CE974","#62EC59","#42F735","#4AF43E"]

 threshold: values: [0,10,20,30,40, 50, 60, 70, 80, 90, 100]

 size: height: 180)

~ 226 ~

6.10.25 visualisations/hexagons-module.coffee

Hexagon color scale

scaleColors = ["#C80000", "#EB3443","#F85353","#FF5A80","#EF7B96","#B1B1B1",

 "#8CD087","#7CE974","#62EC59","#42F735","#4AF43E"]

fillScale = d3.scale.linear()

.domain([-1,-0.8, -0.6, -0.4, -0.2, 0, 0.2, 0.4, 0.6, 0.8, 1])

.range(scaleColors)

if homePage? and homePage

 scaleColors = ['rgb(15, 160, 255)', 'rgb(60, 230, 255)', 'rgb(60, 255, 181)'

 'rgb(70, 255, 99)', 'rgb(174, 255, 99)', 'rgb(217, 255, 99)'

 'rgb(251, 255, 99)', 'rgb(255, 230, 99)', 'rgb(255, 182, 99)'

 'rgb(255, 142, 99)', 'rgb(250, 125, 100)', 'rgb(255, 117, 99)'

 'rgb(255, 99, 100)', 'rgb(255, 55, 55)'

]

 scaleColors.reverse()

 fillScale = d3.scale.linear()

 .domain([-1,-0.8, -0.6, -0.5, -0.4, -0.3, -0.2, -0.1, 0, 0.1, 0.2, 0.3,

 0.4, 0.5, 0.6, 0.8, 1])

 .range(scaleColors)

Initialise tooltip

tip = d3.tip().attr('class', 'd3-tip').html((d, i) ->

 s = results[i].sentiment

 col = if s > 0 then 'green' else if s < 0 then 'darkred' else 'grey'

 html = 'Sentiment:'

 html += ' ' + s + '
'

 html += ''+results[i].body+''

 html

)

#svg sizes and margins

margin = top: 30, right: 20, bottom: 20, left: 50

if homePage? and homePage then margin = top: 0, right: 0, bottom: 0, left: 0

width = $(window).width() - margin.left - margin.right

height = ($(window).height() - margin.top - margin.bottom - 80)/2

if hexPage? then if hexPage then height = height and width = width -= 10

else if homePage? then if homePage then height = height * 0.8 and width += 20

MapColumns = Math.round(Math.sqrt(results.length*1.33))

MapRows = Math.round(Math.sqrt(results.length*0.66))

#The maximum radius the hexagons can have to still fit the screen

hexRadius = d3.min([

 width / ((MapColumns + 0.5) * Math.sqrt(3))

 height / ((MapRows + 1 / 3) * 1.5)

])

#Set the new height and width of the SVG

width = MapColumns * hexRadius * Math.sqrt(3)

heigth = MapRows * 1.5 * hexRadius + 0.5 * hexRadius

hexbin = d3.hexbin().radius(hexRadius) #Set the hexagon radius

#Calculate the center positions of each hexagon

points = []

i = 0

while i < MapRows

 j = 0

 while j < MapColumns

 points.push [hexRadius * j * 1.75, hexRadius * i * 1.5]

 j++

 i++

#Create SVG element

~ 227 ~

svg = d3.select('#chart')

.append('svg')

.attr('width', width + margin.left + margin.right)

.attr('height', height + margin.top + margin.bottom)

.append('g')

.attr('transform', 'translate(' + margin.left + ',' + margin.top + ')')

svg.call(tip) # call tool tip

#Start drawing the hexagons

svg.append('g')

.selectAll('.hexagon')

.data(hexbin(points))

.enter()

.append('path')

.attr('class', 'hexagon')

.attr('d', (d) -> 'M' + d.x + ',' + d.y + hexbin.hexagon())

.attr('stroke', (d, i) -> '#fff')

.attr('stroke-width', '1px')

.style('fill', (d, i) -> fillScale(results[i].sentiment))

.on 'mouseover', (d,i) ->

 tip.show(d, i)

 el = d3.select(this).transition().duration(10).style('fill-opacity', 0.3)

.on 'mouseout', (d, i) ->

 tip.hide(d, i)

 el = d3.select(this).transition().duration(1000).style('fill-opacity', 1)

window.updateHexData = (newData) ->

 randomIndex = Math.floor(Math.random() * points.length)

 results[randomIndex] = newData

 svg.selectAll('.hexagon')

 .data(hexbin(points))

 .style('fill', (d, i) -> fillScale(results[i].sentiment))

 .enter()

Socket.io

if io?

 socket = io.connect();

 socket.on 'anyTweet', (tweetObj) ->

 if tweetObj.sentiment != 0

 tweet = sentiment: tweetObj.sentiment, body: tweetObj.body

 window.updateHexData(tweet)

~ 228 ~

6.10.26 visualisations/homepage.coffee

homePage = true # Show different hexagons for the homepage

Submit search field when enter is pressed

$('#txtKeyword').keyup (e) ->

 if e.keyCode == 13

 showLoader()

 window.location = '/search/' + $('#txtKeyword').val()

 return

$(document).ready ->

 # Set the size of the chart to fit the window

 $('#part-1').css 'height', $(window).height()

 $('#chart').find('svg').attr

 'height': $(window).height() + 20

 'width': $(window).width()

 # Pull down the blocks on the front page

 $('.home-row').animate { 'margin-top': $(window).height() / 5 },

 duration: 600

 step: (now) -> $(this).attr 'margin-top', now

 # Scroll to positions

 $('a.scroll-down#scroll-1').click ->

 $('html, body').animate { scrollTop: $('#part-2').offset().top }, 850

 # Parallax scroll

 parallaxScroll = ->

 scrolledY = $(window).scrollTop()

 $('#part-1').css 'margin-top', scrolledY * 0.5 + 'px'

 $('#scroll-1').css 'bottom', scrolledY * 0.3 + 10 + 'px'

 $('#hex-details').css 'bottom', scrolledY * 0.3 + 10 + 'px'

 $(window).bind 'scroll', (e) -> parallaxScroll()

6.10.27

~ 229 ~

6.10.28 visualisations/radar-module.coffee

renderChart = (toneResults) ->

 $('#radarLoader').slideUp('slow')

 scaleColors = ['rgb(15, 160, 255)', 'rgb(60, 230, 255)', 'rgb(60, 255, 181)'

 'rgb(70, 255, 99)', 'rgb(174, 255, 99)', 'rgb(217, 255, 99)'

 'rgb(251, 255, 99)', 'rgb(255, 230, 99)', 'rgb(255, 182, 99)'

 'rgb(255, 142, 99)', 'rgb(250, 125, 100)', 'rgb(255, 117, 99)'

 'rgb(255, 99, 100)', 'rgb(255, 55, 55)', 'rgb(240,240,240)'

].reverse()

 color = d3.scale.linear()

 .domain([0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,18])

 .range(scaleColors)

 width = 600

 height = 500

 radius = Math.min(width, height) / 2 - 10

 formatNumber = d3.format(',d')

 x = d3.scale.linear().range([0,2 * Math.PI])

 y = d3.scale.sqrt().range([0, radius])

 partition = d3.layout.partition().value((d) -> d.size)

 arc = d3.svg.arc().startAngle((d) -> Math.max 0, Math.min(2 * Math.PI, x(d.x)))

 .endAngle((d) ->Math.max 0, Math.min(2 * Math.PI, x(d.x + d.dx)))

 .innerRadius((d) -> Math.max 0, y(d.y))

 .outerRadius((d) -> Math.max 0, y(d.y + d.dy))

 svg = d3.select('#tone-radar')

 .append('svg')

 .attr('width', width)

 .attr('height', height)

 .append('g')

 .attr('transform', 'translate(' + width / 2 + ',' + height / 2 + ')')

 click = (d) ->

 svg.transition().duration(750).tween('scale', ->

 xd = d3.interpolate(x.domain(), [d.x, d.x + d.dx])

 yd = d3.interpolate(y.domain(), [d.y, 1])

 yr = d3.interpolate(y.range(), [(if d.y then 20 else 0), radius])

 (t) ->

 x.domain xd(t)

 y.domain(yd(t)).range yr(t)

).selectAll('path').attrTween 'd', (d) -> -> arc d

 root = {name: 'Tones', children: []}

 for category, i in toneResults.document_tone.tone_categories

 root.children[i] = name: category.category_name, children: []

 for tone, j in category.tones

 root.children[i].children[j] = {name: tone.tone_name, size: tone.score}

 svg.selectAll('path')

 .data(partition.nodes(root))

 .enter()

 .append('path')

 .attr('d', arc)

 .attr('class', 'tt')

 .attr('data-tooltip', (d) -> d.name)

 .style('fill', (d, i) -> color i)

 .on('click', click)

 .append('title')

 .text (d) -> d.name + '\n' + formatNumber(d.value)

 d3.select(self.frameElement).style 'height', height + 'px'

 $('.tt').tooltip({delay: 50}) # Initialise the tooltip

module.exports = renderChart

~ 230 ~

6.10.29 visualisations/real-time-dash.coffee
Color Scale

scaleColors = ["#a50026", "#C11940","#d73027","#DC4139","#F04539","#F5504D",

 "#FD6060","#F87575","#DD8E8E","#B4B4B4","#B4B4B4","#BCF08C",

 "#d9ef8b","#92E16E","#a6d96a","#71C96E","#66bd63","#21B04C",

 "#1a9850","#027D35","#006837"]

fillScale = d3.scale.linear()

.domain([-1,-0.9, -0.8, -0.7, -0.6, -0.5, -0.4, -0.3, -0.2, -0.1,

 0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1])

.range(scaleColors)

Global Variables

chart = 0

chartData = 0

rawData = []

Generate the structure for the initial data object

makeData = -> [{key: "Sentiment Data", values: []}]

Generate NVd3 Graph with options

nv.addGraph ->

 chart = nv.models.scatterChart()

 .showDistX(true)

 .showDistY(true)

 .transitionDuration(350)

 .showLegend(false)

 .tooltipContent (key, y, e, graph) -> "<b style='max-width: 100ch'>

#{graph.point.label} "

 # Chart axis

 chart.xAxis

 .axisLabel('Time (HH:MM)')

 .tickFormat (d) -> d3.time.format('%I:%M') new Date(d)

 chart.yAxis

 .axisLabel('Sentiment (+/-)')

 .tickFormat (d) -> Math.round(d/10)*10 +'%'

 # Specify data and render

 rawData = makeData()

 chartData = d3.select('#real-time-scatter svg').datum(rawData)

 chartData.call chart

 nv.utils.windowResize chart.update

 chart

Dynamically add a new point to the graph

window.addPoint = (time, sentiment, label) ->

 axisSent = sentiment + (Math.round(((Math.random()/10)-0.05) *10000)/10000)

 size = Math.round(label.length/10) + (Math.abs(sentiment) * 10)

 rawData[0].values.push {

 x: time, y: axisSent * 100, size: size, label: label, color:

fillScale(sentiment)

 }

 chartData.datum(rawData).transition().duration(500).call(chart)

 nv.utils.windowResize(chart.update)

$ ->

 $('#real-time-scatter').hide()

 setTimeout(->

 $('#scatter-loader').fadeOut('slow')

 , 1500)

Socket.io

if io?

 socket = io.connect();

 socket.on 'anyTweet', (tweetObj) ->

 if tweetObj.sentiment != 0 && tweetObj.body.indexOf('http') == -1

 window.addPoint(new Date().getTime(), tweetObj.sentiment, tweetObj.body)

~ 231 ~

6.10.30 visualisations/regions-main.coffee

pageControls = require '../page-controls-module.coffee'

pageControls.setMainPage 'region-map'

Takes the raw CSV string and returns a nice list of JSON region objects

convertCsvToJson = (csvRegions) ->

 regions = []

 for r in csvRegions.splice 1,csvRegions.length # For each line in CSV file

 r = r.match(/(".*?"|[^",\s]+)(?=\s*,|\s*$)/g) # Break into array

 for e, i in r then r[i] = r[i].replace(/['"]+/g, '').trim() # Neaten

 regions.push { # Create a JSON object for region, and push to results

 country: r[0], alpha2_code: r[1], alpha3_code: r[2],

 numeric_code: r[3], latitude: Number(r[4]), longitude: Number(r[5])

 }

 regions # Done, return regions

Convert regions to JSON

regions = convertCsvToJson csvRegions

Make data array

data = []

for r in regions then data.push value: r.alpha2_code, label: r.country

$(document).ready ->

 locSel = '#txtLocation'

 $(locSel).autocompleter(

 source: data

 focusOpen: false

 callback: (value) -> window.location = ('/region-map/location/'+value)

)

 $(locSel).bind 'enter', () ->

 val = $(locSel).val()

 if val.length == 2 then window.location = ('/region-map/location/'+val)

 else alert("Invalid Country Code - select an option from the dropdown menu")

 $(locSel).keyup (e) -> if e.keyCode == 13 then $(this).trigger 'enter'

drawRegionsMap = ->

 data = google.visualization.arrayToDataTable(sentimentResults)

 options = {

 colorAxis: {colors: ['#DF0101', '#BDBDBD', '#04B404']}

 backgroundColor: '#2C2C2C'

 datalessRegionColor: '#D8D8D8'

 defaultColor: '#f5f5f5'

 showZoomOut: true

 }

 if searchRegion != '' then options.region = searchRegion

 chart = new

(google.visualization.GeoChart)(document.getElementById('regions_div'))

 chart.draw data, options

google.charts.load 'current', 'packages': ['geochart']

google.charts.setOnLoadCallback drawRegionsMap

~ 232 ~

6.10.32

6.10.33 visualisations/render-tone-bars.coffee

Generates the HTML for each progress bar with label, value and tooltip

makeHtmlProgress = (label, value) ->

 percent = Math.round(value*100)

 html = ""

 html += "<label>#{label}</label>"

 html += "<div class='progress horizontal-bar tooltipped' data-position='right'

data-tooltip='#{percent}%'>"

 html += "<div class='determinate' style='width: #{percent}%'>"

 html += "</div></div>"

 html

Called after results are returned, initiates the rendering process

renderResults = (results) ->

 for tCat, i in results.document_tone.tone_categories

 i += 1

 $('#toneResults'+i).append(

 "<h5 class='flow-text font-size1'>#{tCat.category_name}</h5>"

)

 for tone in tCat.tones

 $('#toneResults'+i).append(makeHtmlProgress(tone.tone_name, tone.score))

 # Show containers now they have data in, and hide the loader

 $('#toneLoader').fadeOut('fast')

 j = 1

 while j <= 3 then $('#toneResults'+j).slideDown('slow'); j++

 $('.tooltipped').tooltip({delay: 50}) # Initialise the tooltip

module.exports = renderResults

6.10.34 visualisations/search-summary-main.coffee

hexagonsModule = require '../visualisations/hexagons-module.coffee'

gaugeModule = require '../visualisations/gauge-module.coffee'

pageControls = require '../page-controls-module.coffee'

pageControls.setMainPage 'search'

~ 233 ~

6.10.36 visualisations/scatter-words-main.coffee

d3 = require 'd3/d3.min.js'

tipsy = require 'tipsy/index.js'

mainPage = 'word-scatter-plot'

pageControls = require '../page-controls-module.coffee'

pageControls.setMainPage mainPage

set the stage

margin = {t: 30, r: 20, b: 20, l: 40}

w = 600 - (margin.l) - (margin.r)

h = 500 - (margin.t) - (margin.b)

biggestFreq = 10

for e, i in wordData

 if e.freq > biggestFreq then biggestFreq = e.freq

 ran = Math.round(Math.random()*10)/100

 wordData[i].sentiment = wordData[i].sentiment + ran

x = d3.scale.linear().range([0, w/4, w/2, (w/4)*3, w])

y = d3.scale.linear().range([h - 60, 0])

scaleColors = ["#a50026","#d73027","#fdae61" ,"#B4B4B4",

 "#a6d96a","#1a9850","#006837"]

color = d3.scale.linear()

 .domain([-0.6, -0.4, -0.2, 0, 0.2, 0.4, 0.6])

 .range(scaleColors)

svg = d3.select('#scatter-words')

 .append('svg')

 .attr('width', w + margin.l + margin.r)

 .attr('height', h + margin.t + margin.b)

set axes, as well as details on their ticks

xAxis = d3.svg.axis().scale(x)

 .ticks(20).tickSubdivide(true).tickSize(6, 3, 0).orient('bottom')

yAxis = d3.svg.axis().scale(y)

 .ticks(20).tickSubdivide(true).tickSize(6, 3, 0).orient('left')

group that will contain all of the plots

groups = svg.append('g')

 .attr('transform', 'translate(' + margin.l + ',' + margin.t + ')')

array of the sentiments, used for the legend

sentiments = ['Positive', 'Neutral', 'Negative']

x0 = Math.max(-d3.min(wordData, (d) -> d.freq

), d3.max(wordData, (d) -> d.freq)

)

x.domain [0, 10, 20, 50, biggestFreq]

y.domain [-0.6, 0.6]

style the circles, set their locations based on data

circles = groups.selectAll('circle')

 .data(wordData)

 .enter()

 .append('circle')

 .attr('class', 'circles')

 .attr(

 cx: (d) -> x +d.freq

 cy: (d) -> y +d.sentiment

 r: 8

 id: (d) -> d.text

)

 .style('fill', (d) -> color d.sentiment)

 .style('opacity','0.6')

~ 234 ~

what to do when we mouse over a bubble

mouseOn = ->

 circle = d3.select(this)

 # transition to increase size/opacity of bubble

 circle.transition()

 .duration(800)

 .style('opacity', 1)

 .attr('r', 16).ease 'elastic'

 # append lines to bubbles that will be used to show the precise data points.

 # translate their location based on margins

 svg.append('g')

 .attr('class', 'guide')

 .append('line')

 .attr('x1', circle.attr('cx'))

 .attr('x2', circle.attr('cx'))

 .attr('y1', +circle.attr('cy') + 26)

 .attr('y2', h - (margin.t) - (margin.b))

 .attr('transform', 'translate(40,20)')

 .style('stroke', circle.style('fill'))

 .transition()

 .delay(200)

 .duration(400)

 .styleTween 'opacity', -> d3.interpolate 0, .5

 svg.append('g')

 .attr('class', 'guide')

 .append('line')

 .attr('x1', +circle.attr('cx') - 16)

 .attr('x2', 0)

 .attr('y1', circle.attr('cy'))

 .attr('y2', circle.attr('cy'))

 .attr('transform', 'translate(40,30)')

 .style('stroke', circle.style('fill'))

 .transition().delay(200).duration(400)

 .styleTween 'opacity', -> d3.interpolate 0, .5

 # function to move mouseover item to front of SVG stage, in case

 # another bubble overlaps it

 d3.selection::moveToFront = ->

 @each ->

 @parentNode.appendChild this

 circle.moveToFront()

what happens when we leave a bubble?

mouseOff = ->

 circle = d3.select(this)

 # go back to original size and opacity

 circle.transition()

 .duration(800)

 .style('opacity', .4)

 .attr('r', 8)

 .ease 'elastic'

 # fade out guide lines, then remove them

 d3.selectAll('.guide').transition().duration(100).styleTween('opacity', ->

 d3.interpolate .5, 0

).remove()

run the mouseon/out functions

circles.on 'mouseover', mouseOn

circles.on 'mouseout', mouseOff

~ 235 ~

tooltips (using jQuery plugin tipsy)

circles.append('title')

 .text (d) -> d.text

$('.circles').tipsy gravity: 's'

circles

 .attr('class', 'tooltipped')

 .attr('data-position', 'bottom')

 .attr('data-delay', '50')

 .attr('data-tooltip', (d) -> d.text)

the legend color guide

legend = svg.selectAll('rect')

 .data(sentiments)

 .enter()

 .append('rect')

 .attr(

 x: (d, i) -> 40 + i * 80

 y: h

 width: 25

 height: 12)

 .style('fill', (d) ->

 if d == 'Positive' then return color 0.5

 if d == 'Negative' then return color -0.5

 else return color 0

)

legend labels

svg.selectAll('text').data(sentiments).enter().append('text').attr(

 x: (d, i) -> 40 + i * 80

 y: h + 24).text (d) -> d

draw axes and axis labels

svg.append('g')

 .attr('class', 'x axis')

 .attr('transform', "translate(#{margin.l}, #{(h - 60 + margin.t)})")

 .call xAxis

svg.append('g')

 .attr('class', 'y axis')

 .attr('transform', "translate(#{margin.l},#{margin.t})")

 .call yAxis

svg.append('text')

 .attr('class', 'x label')

 .attr('text-anchor', 'end')

 .attr('x', w + 50)

 .attr('y', h - (margin.t) - 5)

 .text 'Frequency'

svg.append('text')

 .attr('class', 'y label')

 .attr('text-anchor', 'end')

 .attr('x', -20)

 .attr('y', 45)

 .attr('dy', '.75em')

 .attr('transform', 'rotate(-90)')

 .text 'Sentiment'

$(document).ready ->

 $('.tooltipped').tooltip delay: 50

~ 236 ~

6.10.37 visualisations/earch-summary-main.coffee

hexagonsModule = require '../visualisations/hexagons-module.coffee'

gaugeModule = require '../visualisations/gauge-module.coffee'

pageControls = require '../page-controls-module.coffee'

pageControls.setMainPage 'search'

6.10.38 visualisations/text-tweets.coffee

makeClickWords = (clickWords, body) ->

 clWord = (word) -> (''+word).toLowerCase().replace /\W/g, ''

 htmlTweet = ''

 aStyle = 'style="color: black; font-weight: bold;" ' # style for hyperlinks

 for word in body.split " "

 if clWord(word) in clickWords

 htmlTweet += "<a #{aStyle} href='/text-tweets/#{clWord word}'>#{word} "

 else htmlTweet += "#{word} "

 htmlTweet

makeDiv = (tweet) ->

 col = if tweet.sentiment > 0 then 'green' else 'darkred'

 html = "<div class='card-panel'>"

 html += "<div class='pull-right'>"

 html += "<b style='color: #{col}'>#{tweet.sentiment*100}%"

 html += "</div>"

 html += "#{makeClickWords tweet.keywords, tweet.body}"

 if tweet.location.place_name != null

 html += "
<i class='tiny material-icons small-grey'>location_on</i>"

 html += "<p class='small-grey inline'>#{tweet.location.place_name}</p>"

 html += "<div class='pull-right'>"

 html += "<i class='tiny material-icons small-grey inline'>schedule</i>"

 html += "<p class='small-grey inline'>#{tweet.dateTime}</p></div>"

 html += "</div>"

 html

socket = io.connect();

socket.on 'anyTweet', (tweetObj) ->

 searchTerm = $('#txtKeyword').val()

 if (searchTerm == '' or

 (tweetObj.body and tweetObj.body.indexOf(searchTerm) > -1)) and

 $('#showLive').is(':checked')

 if tweetObj.sentiment > 0

 $("#positiveContainer").prepend(makeDiv tweetObj)

 if $('#positiveContainer .card-panel').length > 100

 $('#positiveContainer .card-panel:last').remove()

 else if tweetObj.sentiment < 0

 $("#negativeContainer").prepend(makeDiv tweetObj)

 if $('#negativeContainer .card-panel').length > 100

 $('#negativeContainer .card-panel:last').remove()

$('#txtKeyword').keyup (e) -> if e.keyCode == 13

 showLoader()

 window.location = '/text-tweets/'+$('#txtKeyword').val()

~ 237 ~

6.10.39 visualisations/timeline-main.coffee

d3 = require 'd3/d3.min.js'

nv = require 'nvd3/build/nv.d3.js'

pageControls = require '../page-controls-module.coffee'

pageControls.setMainPage 'timeline'

nv.addGraph ->

Initiate NV chart

 chart = nv.models.lineChart()

 .margin(left: 100)

 .useInteractiveGuideline(true)

 .showLegend(true)

 .showYAxis(true)

 .showXAxis(true)

 .interpolate("basis")

 # Configure x-axis

 chart.xAxis

 .axisLabel('Time of Day')

 .tickFormat((d) -> d + ':00')

 chart.forceX([7,23])

 # Configure y-axis

 chart.yAxis

 .axisLabel('Sentiment')

 .tickFormat d3.format('.02f')

 # Specify data options

 chartData = [

 { values: results.posData, key: 'Positive', color: '#74DF00', area: true }

 { values: results.negData, key: 'Negative', color: '#FA5858', area: true }

]

 # Draw chart

 d3.select('#chart svg').datum(chartData).call chart

 #Update the chart when window re-sizes.

 nv.utils.windowResize -> chart.update(); chart

~ 238 ~

6.10.40 visualisations/tone-analysis-main.coffee

renderToneBars = require '../visualisations/render-tone-bars-module.coffee'

renderRadarChart = require '../visualisations/radar-module.coffee'

Press enter to search

require('../page-controls-module.coffee').setMainPage 'tone-analyzer'

Called when server returns results, calls functions to draw all charts

renderResults = (results) ->

 renderToneBars results

 if showAllCharts? && showAllCharts then renderRadarChart results

Called when page has loaded, initiates the request

makeRequest = (params) ->

 $.post('/api/tone', params, (results) -> renderResults results)

$(document).ready ->

 # Hide empty containers to start with

 j = 1; while j <= 3 then $('#toneResults'+j).hide(); j++

 # Call function which makes actual request

 if st? and st != '' then makeRequest {'searchTerm': st }

 else if tweetBody? then makeRequest {'text': tweetBody }

~ 239 ~

6.10.42 visualisations/trending.coffee

drawBubbleChart = (results) ->

 diameter = 450

 format = d3.format(',d')

 scaleColors = ["#C80000", "#EB3443","#B1B1B1","#42F735","#4AF43E"]

 color = d3.scale.linear()

 .domain([-0.8, -0.2, 0, 0.2, 0.8])

 .range(scaleColors)

 bubble = d3.layout.pack().sort(null).size([diameter, diameter]).padding(1.5)

 svg = d3.select('#bubble-trends')

 .append('svg')

 .attr('width', diameter)

 .attr('height', diameter)

 .attr('class', 'bubble')

 classes = (root) ->

 classes = []

 recurse = (name, node) ->

 if node.children

 node.children.forEach (child) ->

 recurse node.name, child

 else

 classes.push

 packageName: name

 className: node.name

 value: node.size

 col: node.col

 recurse null, root

 { children: classes }

 root = {name: 'trending', children:[

 {name: 'positive', children: []}

 {name: 'negative', children: []}

]}

 for trend in results

 if trend.sentiment > 0

 root.children[0].children.push {

 name: trend.topic, size: trend.volume, col: trend.sentiment }

 else if trend.sentiment < 0

 root.children[1].children.push {

 name: trend.topic, size: trend.volume, col: trend.sentiment }

 node = svg.selectAll('.node')

 .data(bubble.nodes(classes(root))

 .filter((d) -> !d.children))

 .enter()

 .append('g')

 .attr('class', 'node')

 .attr('transform', (d) -> 'translate(' + d.x + ',' + d.y + ')')

 node.append('title').text (d) -> d.className + ': ' + format(d.value)

 node.append('circle')

 .attr('r', (d) -> d.r)

 .style 'fill', (d) -> color d.col

 node.append('text')

 .attr('dy', '.3em')

 .style('text-anchor', 'middle')

 .text (d) -> d.className.substring 0, d.r / 3

 d3.select(self.frameElement).style 'height', diameter + 'px'

~ 240 ~

makeHtmlTrend = (trend) ->

 html = ""

 col =

 if trend.sentiment > 0 then 'green'

 else if trend.sentiment < 0 then 'darkred'

 else 'gray'

 html += ""

 html += "<p class='flow-text center' style='color: #{col}; font-weight: 600'>"

 html += "#{trend.topic}"

 html += "</p>"

 html

renderResults = (results) ->

 # If we have an error...

 if !results.trends? or results.trends.length < 1

 alert 'That location couldn\'t be recognised'

 window.location.href = '/trending'

 return

 if $.isEmptyObject(results.trends)

 $('#bubble-trends').append(

 "<h3>No results found for #{results.location}
Try another location</h3>")

 $('#trending-text-loader').fadeOut('slow')

 return

 # If everything is all cool then show text trends

 $('#trending-text').hide()

 for t in results.trends then $('#trending-text').append(makeHtmlTrend(t))

 $('#trending-text-loader').fadeOut('fast')

 $(' #trending-text').slideDown('slow');

 $('#titleLocation').html(results.location)

 drawBubbleChart(results.trends)

Make actual data request

$(document).ready ->

 urlPage = window.location.href.split('/').pop().toLowerCase()

 urlEnd = if urlPage != 'trending' then urlPage else ''

 $.post('/api/trending/'+urlEnd, {}, (results) -> renderResults results)

Execute search query when enter is pressed or button is clicked

$('#txtLocation').bind 'enter', () ->

 window.location.href = '/trending/'+$('#txtLocation').val()

$('#txtLocation').keyup (e) -> if e.keyCode == 13 then $(this).trigger 'enter'

$('#btnSearch').click () ->

 window.location.href = '/trending/'+$('#txtLocation').val()

~ 241 ~

6.10.43 visualisations/word-cloud-main.coffee

mainPage = 'word-cloud'

pageControls = require '../page-controls-module.coffee'

pageControls.setMainPage mainPage

WIDTH = 1200 # Width constant for canvas and chart

HEIGHT = 600 # Height constant for canvas and chart

getSentimentForWord = (word) ->

 for each in wordData then if each.text == word then return each.sentiment

 0 # if for some reason we can't find the word, then just return neutral.

scaleColors = ["#a50026","#d73027","#f46d43","#fdae61","#fee08b","#B4B4B4",

 "#d9ef8b","#a6d96a","#66bd63","#1a9850","#006837"]

fillScale = d3.scale.linear()

.domain([-1,-0.8, -0.6, -0.4, -0.2, 0, 0.2, 0.4, 0.6, 0.8, 1])

.range(scaleColors)

sizeScale = d3.scale.linear()

.domain([0,80])

.range([13,65])

draw = (words) ->

 d3.select('svg#cloud')

 .attr('width', WIDTH)

 .attr('height', HEIGHT)

 .style('padding', HEIGHT/4+'px '+WIDTH/3+'px')

 .append('g')

 .attr('transform', 'translate(150,150)')

 .selectAll('text')

 .data(words)

 .enter()

 .append('text')

 .style('font-size', (d) -> d.size + 'px')

 .style('font-family', 'Impact')

 .style('cursor', 'pointer')

 .style('fill', (d, i) -> fillScale getSentimentForWord d.text)

 .attr('text-anchor', 'middle')

 .attr('transform', (d) ->

 'translate(' + [d.x, d.y,] + ')rotate(' + d.rotate + ')')

 .text (d) -> d.text

 .on 'click', (d, i) -> window.location.href = '/word-cloud/'+d.text

d3.layout.cloud().size([WIDTH, HEIGHT])

 .words(wordData)

 .rotate(-> ~ ~ (Math.round(Math.random()*5)*45)-90)

 .font('Impact').fontSize((d) -> sizeScale d.freq)

 .on('end', draw).start()

~ 242 ~

6.10.44 /loading.coffee
$(window).load ->

 $('#loading-graphic').fadeOut 'slow'

root = exports ? this

root.showLoader = () -> $('#loading-graphic').fadeIn 'slow'

root.hideLoader = () -> $('#loading-graphic').fadeOut 'slow'

$(document).ready () ->

 $(".button-collapse").sideNav()

 if ($(window).width() <= 699)

 if window.location.pathname.indexOf('mobile') == -1

 document.location = '/mobile'

 $('.nav-wrapper ul').click(() -> root.showLoader())

6.10.45 /page-controlls-module.coffee

vis = false

if !mainPage then mainPage = 'globe'

$(document).ready ->

 goToUrl = (url) -> showLoader(); window.location = url # Navigate to a URL

 keywordSel = 'input#txtKeyword' # Selector for the keyword search box

 showDetails = () ->

 $('#theContent').slideDown()

 $('#btnHide').text 'Hide'

 true

 hideDetails = () ->

 $('#theContent').slideUp()

 $('#btnHide').text 'Show Details'

 false

 # Submit search term, when the user presses enter

 $(keywordSel).bind 'enter', () -> goToUrl('/'+mainPage+'/'+$(keywordSel).val())

 $(keywordSel).keyup (e) -> if e.keyCode == 13 then $(this).trigger 'enter'

 $('#btnSearch').click () -> goToUrl('/'+mainPage+'/'+$(keywordSel).val())

 $('#btnHide').click () ->

 if vis == true then vis = hideDetails() else vis = showDetails()

module.exports.setMainPage = (val) -> mainPage = val

~ 243 ~

6.11 STYLES (CLIENT-SIDE)

6.11.1 styles/constants.less

/******************\

 ---- COLORS ----

******************/

@col_darkPrimary: #074B94;

@col_primary: #3E9BFF;

@col_paleprimary: #96c4ff;

@col_white: #fff;

@col_palegrey: rgb(250,250,250);

@col_darkgrey: rgb(175, 175, 175);

/******************\

 ---- FONTS -----

******************/

@font_default: "Roboto","Helvetica Neue",Helvetica,Arial,sans-serif;

/******************\

 ---- SHADOWS ---

******************/

@shadow_panel_default: 0 1px 3px rgba(0,0,0,0.15);

@shadow_panel_hover: 0 1px 4px 1px rgba(0,0,0,0.2);

6.11.2 styles/general.less

@import "constants";

/******************\

 -- PAGE LAYOUT -

******************/

body {

 font: 14px "Lucida Grande", Helvetica, Arial, sans-serif;

 margin: 0;

 background: @col_palegrey;

 display: flex;

 min-height: 100vh;

 flex-direction: column;

}

main {

 flex: 1 0 auto;

 margin: 1em auto;

 padding: 1em;

}

footer{

 padding: 0;

}

~ 244 ~

.whitebg{

 background: @col_white;

 box-shadow: 0 1px 3px rgba(0, 0, 0, 0.2);

 &.card-padding{

 padding: 0.5em 1.5em;

 }

 &.curved{

 border-radius: 0.2em;

 }

}

/******************\

 ----- TEXT -----

******************/

p, a, span, li, html{

 font-family: @font_default;

}

h1, h2, h3, h4, h5{

 font-family: @font_default;

 font-weight: normal;

}

h1{ font-size: 2.5em; }

h2{ font-size: 2.28rem;}

h3{ font-size: 1.8rem; }

/******************\

 -- ADJUSTMENTS--

******************/

.absolute{ position: absolute;}

.maxWidth75{ max-width: 75em; }

.zero-margin {margin: 0; }

.zero-padding {padding: 0 !important; }

.pull-right{float:right; }

.pull-left{float:left; }

.auto-width{width: auto !important; }

.center-block {display: block; margin: 0 auto; }

.full-width{width: 100%; }

.small-grey{font-size: 0.8em; color: #7a7a7a; }

.inline{display: inline;}

.block{display: block !important}

.font-size1{font-size: 1em !important;}

.sml-margin{margin: 5px;}

.auto-overflow{overflow: auto; }

6.11.3 styles/loading.css

#loading-graphic{

 position: fixed;

 left: 0;

 top: 0;

 width: 100%;

 height: 100%;

 z-index: 998;

 background: url(/images/loading.gif) center no-repeat #fff;

}

~ 245 ~

6.11.4 styles/charts.less

/****************\

 * Simple Tweet *

****************/

.top-tweet{

 min-height: 2em;

 border-bottom: 1px solid #b5b5b5;

 padding: 2px 5px;

 margin-top: 8px;

}

/****************\

 * Bullet Chart *

****************/

.bullet { font: 10px sans-serif; }

.bullet .marker { stroke: #29276b; stroke-width: 2px; }

.bullet .tick line { stroke: #666; stroke-width: .5px; }

.bullet .range.s0 { fill: #eee; }

.bullet .range.s1 { fill: #c7c7c7; }

.bullet .range.s2 { fill: #a5a5a5; }

.bullet .measure.s0 { fill: rgba(255, 78, 66, 1); }

.bullet .measure.s1 { fill: #60ff56; }

.bullet .title { font-size: 12px; color: #404040; }

.bullet .subtitle { fill: #999; }

/****************\

 * Scatter Plot *

****************/

.axis path,

.axis line {

 fill: none;

 stroke: #000;

 shape-rendering: crispEdges;

 opacity: 1;

}

.axis text { font-size:10px; }

.circles { opacity: .5; }

.tipsy { font-size:11px; margin-top:-10px;}

.guide line {

 fill: none;

 stroke: #000;

 shape-rendering: crispEdges;

 opacity: 0;

}

/****************\

 * Tree Diagram *

****************/

#tree {

 font-family: "Helvetica Neue", Helvetica, Arial, sans-serif;

 position: relative;

 width: 960px;

 margin: -2em auto 1em auto;

 padding: 0;

}

.tree-node {

 border: solid 1px white;

 font: 10px sans-serif;

 line-height: 12px;

 overflow: hidden;

 position: absolute;

~ 246 ~

 text-indent: 2px;

}

.tree-node:hover{ background: grey; }

/******************\

 * Sankey Diagram *

******************/

.sankey-node rect {

 cursor: move;

 fill-opacity: .9;

 shape-rendering: crispEdges;

}

.sankey-node text {

 pointer-events: none;

 text-shadow: 0 1px 0 #fff;

}

.sankey-link {

 fill: none;

 stroke: #000;

 stroke-opacity: .2;

}

.sankey-link:hover {

 stroke-opacity: .5;

}

/**************\

 * D3 Tooltip *

**************/

.d3-tip {

 line-height: 1;

 font-weight: bold;

 padding: 12px;

 background: rgba(0, 0, 0, 0.8);

 color: #fff;

 border-radius: 2px;

 pointer-events: none;

}

/* Creates a small triangle extender for the tooltip */

.d3-tip:after {

 box-sizing: border-box;

 display: inline;

 font-size: 10px;

 width: 100%;

 line-height: 1;

 color: rgba(0, 0, 0, 0.8);

 position: absolute;

 pointer-events: none;

}

/* Northward tooltips */

.d3-tip.n:after {

 content: "\25BC";

 margin: -1px 0 0 0;

 top: 100%;

 left: 0;

 text-align: center;

}

/* Eastward tooltips */

.d3-tip.e:after {

 content: "\25C0";

 margin: -4px 0 0 0;

 top: 50%;

 left: -8px;

}

/* Southward tooltips */

.d3-tip.s:after {

 content: "\25B2";

 margin: 0 0 1px 0;

~ 247 ~

 top: -8px;

 left: 0;

 text-align: center;

}

/* Westward tooltips */

.d3-tip.w:after {

 content: "\25B6";

 margin: -4px 0 0 -1px;

 top: 50%;

 left: 100%;

}

/*****************\

 * Gauge Diagram *

*****************/

.c3-chart-arcs-background{fill:#e0e0e0;stroke:none}

/***************\

 * Radar Chart *

***************/

.radar-chart .area {

 fill-opacity: 0.7;

}

.radar-chart.focus .area {

 fill-opacity: 0.3;

}

.radar-chart.focus .area.focused {

 fill-opacity: 0.9;

}

.area.germany, .germany .circle {

 fill: #FFD700;

 stroke: none;

}

.area.argentina, .argentina .circle {

 fill: #ADD8E6;

 stroke: none;

}

/************************\

 * Horizontal Bar Chart *

************************/

.horizontal-bar{

 height: 15px;

}

#toneResults1 {

 .horizontal-bar:nth-of-type(1) {

 background: #ffaa99;

 .determinate {

 background: #ff694b;

 }

 }

 .horizontal-bar:nth-of-type(2) {

 background: #ffd48f;

 .determinate {

 background: #ffba6c;

 }

 }

 .horizontal-bar:nth-of-type(3) {

 background: #daff90;

 .determinate {

 background: #a5ff41;

 }

 }

 .horizontal-bar:nth-of-type(4) {

~ 248 ~

 background: #e8c6ff;

 .determinate {

 background: #d981ff;

 }

 }

 .horizontal-bar:nth-of-type(5) {

 background: #aeaeff;

 .determinate {

 background: #7c7aff;

 }

 }

}

#toneResults2 {

 .horizontal-bar:nth-of-type(1) {

 background: #5bfff5;

 .determinate {

 background: #00a2ff;

 }

 }

 .horizontal-bar:nth-of-type(2) {

 background: #fd7aff;

 .determinate {

 background: #ff21f4;

 }

 }

 .horizontal-bar:nth-of-type(3) {

 background: #fffa62;

 .determinate {

 background: #f8ff00;

 }

 }

}

/***********************************\

 * Comparison Chart on Search Page *

***********************************/

.search-av-chart1{

 .c3-arc-Positive{ opacity: 0.65 !important; }

 .c3-arc-Negative{ opacity: 0.65 !important; }

}

.search-av-chart2{

 .c3-arc-Positive{ opacity: 0.35 !important; }

 .c3-arc-Negative{ opacity: 0.35 !important; }

}

~ 249 ~

6.11.5 styles/components.less

@import "constants";

/************\

 * Side Nav *

************/

.side-nav{

 padding-top: 65px;

li{

 height: 2.5em;

 padding: 5px 0 0 5px;

 a{ line-height: 10px; height: 45px; }

 }

 .nav-fixed-bottom{

 position: absolute;

 bottom: 8em;

 height: 8em;

 width: 100%;

 }

}

/***********************\

 * Control Options Box *

***********************/

// The control box super class

.top-left-controls{

 position: absolute;

 margin: 0.5em;

 padding: 0.3em;

 z-index: 999;

 max-width: 20em;

 border-radius: 5px;

 cursor: default;

 opacity: 0.9;

 min-height: 3.5em;

 h2{

 display: inline;

 font-size: 1.5em;

 }

 .outline{

 background: none;

 text-decoration: none;

 border-radius: 4px;

 }

 .outline-button{

 .outline();

 cursor: pointer;

 padding: 0.5em;

 margin: 0.5em;

 width: 7em;

 display: inline-block;

 text-align: center;

 position: relative;

 }

}

// The control box for the globe

.top-left-controls-dark {

 .top-left-controls();

 background: rgba(50, 50, 50, .75);

 h2, p, label{ color: @col_white; }

~ 250 ~

 .outline-button{

 border: 1px solid @col_white;

 color: @col_white;

 &:hover{ background: rgba(50,50,50,.75)}

 }

 input{

 width: 15em;

 border: 1px solid @col_white;

 color: @col_white;

 background: none;

 text-decoration: none;

 border-radius: 4px; margin: 1em 0.5em;

 padding: 0.5em;

 &:focus{ background: rgba(50,50,50,.75); outline: none; }

 }

}

// The control box for the lighter pages

.top-left-controls-light {

 width: 16em;

 padding: 0.3em 0.8em;

 max-height: 550px;

 overflow-y: auto;

 .top-left-controls();

 background: rgba(255,255,255,0.8);

 .outline-button{

 &:hover{ background: rgba(180,180,180,.25)}

 }

 li{list-style-type: none;}

 li a{color: #000000; }

}

/************************\

 * Autocompleter styles *

************************/

.autocompleter {

 width: 20em !important;

 z-index: 999;

 background: #ffffff;

}

.autocompleter,

.autocompleter-hint {

 position: absolute;

}

.autocompleter-list {

 padding: 0;

 margin: 0;

 text-align: left;

 list-style: none;

 box-shadow: inset 0 0 6px rgba(0, 0, 0, 0.1);

 -webkit-box-sizing: border-box;

 box-sizing: border-box;

}

.autocompleter-item-selected {

 background: @col_white;

}

.autocompleter-item {

 padding: 6px 12px;

 font-size: 20px;

 color: #444444;

 cursor: pointer;

~ 251 ~

}

.autocompleter-item:hover {

 background: @col_palegrey;

}

.autocompleter-item strong {

 text-shadow: 0 1px 0 #ffffff;

 background: #b3d4ea;

}

.autocompleter-item span {

 color: @col_palegrey;

}

.autocompleter-hint {

 top: -56px;

 left: 0;

 display: none;

 width: 100%;

 padding: 12px 12px 12px 13px;

 font-size: 24px;

 font-weight: 400;

 color: #efefef;

 text-align: left;

}

.autocompleter-hint span {

 color: transparent;

}

.autocompleter-hint-show {

 display: block;

}

.autocompleter-closed {

 display: none;

}

.autocompleter-item{

 font-size: 1em;

}

.autocompleter{

 margin-top: -15px;

}

~ 252 ~

6.11.6 styles/map.less
@import 'constants';

.map-options{

 height: 5em;

 width: 100%;

 background: @col_white;

 box-shadow: @shadow_panel_default;

 margin: 3px 0;

 .input-field{

 input:focus {

 border-bottom-color: @col_primary;

 -webkit-box-shadow: 0 1px 0 0 @col_primary;

 -moz-box-shadow: 0 1px 0 0 @col_primary;

 box-shadow: 0 1px 0 0 @col_primary;

 }

 label:focus{ color: @col_primary; }

 }

}

html, body, #map-canvas {

 height: 100%;

 margin: 0;

 padding: 0;

}

#txtLocation{

 &::-webkit-input-placeholder {

 color: @col_white;

 }

 &:-moz-placeholder { /* Firefox 18- */

 color: @col_white;

 }

 &::-moz-placeholder { /* Firefox 19+ */

 color: @col_white;

 }

 &:-ms-input-placeholder {

 color: @col_white;

 }

}

#btnClearMap{

 margin: 4em 1em;

 padding: 0 0.5em;

 font-size: 0.8em;

}

~ 253 ~

6.11.7 styles/materialize.less
@import "constants";

nav, footer.page-footer{

 background: @col_primary;

 z-index: 999;

}

.brand-logo{

 height: 100%

}

.btn, .tabs .indicator{

 background: @col_primary;

 &:hover{ background: @col_paleprimary; }

}

.tabs .tab a{

 color: @col_primary;

 &:hover{ color: @col_darkPrimary; }

}

.flow-text{font-size: 1.5em; }

.card.small{

 margin: 10px;

 padding: 0;

}

.btn-flat:hover{

 background: rgba(200,200,200,0.5);

}

~ 254 ~

6.12 VIEWS (RUN ON SERVER-SIDE, RENDERED ON CLIENT-SIDE)

6.12.1

6.12.2 views/layout.jade

block pageConfig

- var pages = [{title: 'Heat Map', page:'map', index: '3'},

{title: 'Regional Map', page:'region-map', index: '2'},

{title: 'Raw Tweets', page:'text-tweets', index: '6'},

{title: 'Word Cloud', page:'word-cloud', index: '1'},

{title: 'Comparison', page:'comparer', index: '9'},

{title: 'Trending Now', page:'trending', index: '10'},

{title: 'Time Line', page:'timeline', index: '5'},

{title: '3D Globe', page:'globe', index: '4'},

{title: 'Entity Extraction', page:'entity-extraction', index: '7'},

{title: 'Tone Analyzer', page:'tone-analyzer', index: '11'},

{title: 'Sentiment Search', page:'search', index: '12'}]

doctype html

html

 head

 title= title

 include ./head

 block head

 body.vertical.layout

 div#loading-graphic

 include ./sidenav

 unless hideNav

 include ./navbar

 block content

 include ./footer_scripts

 block scripts

6.12.3 views/error.jade
extends layout

block content

 main.content.error-page

 h3 We have a slight problem...

 h2= error.status

 h1= message

 a.waves-effect.waves-light.btn.center-block(href='/') Head back to the homepage

 include ./footer

6.12.4 views/component-divider.jade
div.col.s12

 br

 div.divider

 br

~ 255 ~

6.12.5 views/component-spinner.jade
.preloader-wrapper.big.active

 .spinner-layer.spinner-blue

 .circle-clipper.left

 .circle

 .gap-patch

 .circle

 .circle-clipper.right

 .circle

 .spinner-layer.spinner-red

 .circle-clipper.left

 .circle

 .gap-patch

 .circle

 .circle-clipper.right

 .circle

 .spinner-layer.spinner-yellow

 .circle-clipper.left

 .circle

 .gap-patch

 .circle

 .circle-clipper.right

 .circle

 .spinner-layer.spinner-green

 .circle-clipper.left

 .circle

 .gap-patch

 .circle

 .circle-clipper.right

 .circle

6.12.6 views/footer.jade
footer.page-footer.zero-padding

 .container

 .row

 .col.l6.s12

 a(href='/'): h5.white-text Sentiment Sweep

 p.grey-text.text-lighten-4 The ultimate social media sentiment analysis

tool

 .col.s3

 ul

 li: b: a.grey-text.text-lighten-3(href='/') Main Menu

 each page in pages.splice(0,7)

 li: a.grey-text.text-lighten-3(href='/#{page.page}')= page.title

 .col.s3

 ul

 each page in pages.splice(0,6)

 li: a.grey-text.text-lighten-3(href='/#{page.page}')= page.title

 li: a.grey-text.text-lighten-3(href='/break-down') Topic Breakdown

 li: a.grey-text.text-lighten-3(href='/hexagons') Sentiment Hexagons

 li: a.grey-text.text-lighten-3(href='/word-scatter-plot') Word Scatter

Plot

 li: a.grey-text.text-lighten-3(href='/sa-comparison') SA Method

Comparison

 .footer-copyright

 .container

 a.flow-text.white-text(href='http://aliciasykes.com') © Alicia Sykes

2016

 a.flow-text.white-text.right(href='https://github.com/Lissy93/twitter-

sentiment-visualisation') Source Code & Documentation

~ 256 ~

6.12.7 views/footer-scripts.jade
script(type='text/javascript',

src='/bower_components/jquery/dist/jquery.min.js')

script(type='text/javascript',

src='/bower_components/materialize/dist/js/materialize.min.js')

script(type='text/javascript',

src='/javascripts/loading.js')

6.12.8 views/head.jade
link(rel='stylesheet',

href='/bower_components/materialize/dist/css/materialize.min.css')

link(rel='stylesheet',

href='/stylesheets/all.min.css')

link(rel='stylesheet',

href='https://fonts.googleapis.com/icon?family=Material+Icons',)

6.12.9 views/side-nav.jade
#slide-out.side-nav

 ul

 li: a(href='/') Home Page

 each page in pages

 li: a(href='/#{page.page}')= page.title

 .nav-fixed-bottom

 ul

 li: a(href='/', target='_blank') Home

 li: a(href='/about', target='_blank') About

 li: a(href='https://github.com/Lissy93/twitter-sentiment-

visualisation', target='_blank') Source Code & Documentation

 li: a(href='http://aliciasykes.com', target='_blank') © Alicia

Sykes 2016

6.12.10 views/navbar.jade
nav

 .nav-wrapper

 a.button-collapse(href='#', data-activates='slide-out')

 i.medium.material-icons reorder

 a.brand-logo.waves-effect.waves-block.waves-light(href='/')

 h1.title Sentiment Sweep

 ul#nav-mobile.right.hide-on-med-and-down.waves-effect.waves-block.waves-

light

 li(class=(pageNum===0 ? 'active' : ''))

 a(href='/') Dashboard

 li(class=(pageNum===1 ? 'active' : ''))

 a(href='/map') Heat Map

 li(class=(pageNum === 6 ? 'active' : ''))

 a(href='/region-map') Region Map

 li(class=(pageNum === 4 ? 'active' : ''))

 a(href='/globe') Globe

 li(class=(pageNum === 10 ? 'active' : ''))

 a(href='/comparer') Comparison

 li(class=(pageNum===3 ? 'active' : ''))

 a(href='/timeline') Timeline

 li(class=(pageNum===5 ? 'active' : ''))

~ 257 ~

 a(href='/word-cloud') Word Cloud

 li(class=(pageNum===7 ? 'active' : ''))

 a(href='/text-tweets') Raw Tweets

 li(class=(pageNum===8 ? 'active' : ''))

 a(href='/entity-extraction') Entity Extraction

6.12.11 index.jade
extends layout

block head

 link(href='https://fonts.googleapis.com/icon?family=Material+Icons',

rel='stylesheet')

block pageConfig

 - var hideNav = true

block content

 a#github-corner(href='https://github.com/Lissy93/twitter-sentiment-

visualisation', target = '_blank')

 img(src='/images/github-corner.png', title='View source code and

documentation on GitHub')

 #part-1

 .row.absolute.home-row

 .col.s6

 .card-panel

 h3 Introduction to Sentiment Sweep

 p Sentiment Sweep aims to captcha the mood of the internet, either

 | overall or towards a specific topic.

 | It does this by analysing real-time Twitter data, and calculating

 | how positive or negative each Tweet it.

 p A series of dynamic data visualisations are then used to

 | illustrate the results, and find trends between sentiment and

 | other factors such as time of day, location, topic, country,

people etc

 p It's open sauce, and the code and documentation can be viewed

 | on <a href='https://github.com/Lissy93/twitter-sentiment-

visualisation'>GitHub

 a.waves-effect.waves-teal.btn-flat.pull-right(href='/about') Read

More...

 .col.s6

 .card-panel

 h3 Get started, enter a search term...

 .input-field

 input#txtKeyword.validate(type='text')

 label(for='txtKeyword') Enter a keyword, topic, brand, celebrity or

search term

 h3 ... or scroll down to view more data visualisations

 #chart.home-hexagons

 a.scroll-down#scroll-1(href='#')

 i.material-icons.large.center-align play_for_work

 p.center-align Scroll Down

 a#hex-details(href='/hexagons')

 p The hexagon background is made up of Tweets from the past 60 seconds.

 | Hover over a hexagon to read the associated Tweet.

 | Sentiment is represented by color

 #part-0

 p

~ 258 ~

 .section#part-2

 .container

 h2 Sentiment Data Visualisations

 p.flow-text.grey-text.darken-4 Click one of the links below to generate

the chart with the latest Twitter data

 .row

 each page in pages

 .col.s3

 a(href='/#{page.page}')

 .card.home-card

 .card-image.waves-effect.waves-block.waves-light

 img(src='/images/thumbnails/thumb_#{page.index}.png')

 .card-content

 span.card-title.grey-text.text-darken-4= page.title

 footer

 .footer-copyright

 .row

 .col.s3

 p

 .col.s2

 a.small-grey.right(href='/about') About Sentiment Sweep

 .col.s2

 a.small-grey.right(href='https://github.com/Lissy93/twitter-

sentiment-visualisation') Source Code and Documentation

 .col.s2

 a.small-grey.right(href='http://aliciasykes.com') © Alicia

Sykes 2016

block scripts

 script.

 var homePage = true; // Show different hexagons

 var results = !{JSON.stringify(data)}; // Get and parse Twitter results

 var average = !{JSON.stringify(averageSentiment)}; // Average sentiment

 script(type = 'text/javascript', src = 'https://cdn.socket.io/socket.io-

1.4.3.js')

 script(type = 'text/javascript', src = '/javascripts/charts/home-page.js')

 script(type = 'text/javascript', src = '/bower_components/d3/d3.min.js')

 script(type = 'text/javascript', src = '/bower_components/hexbin/index.js')

 script(type = 'text/javascript', src = '/bower_components/d3tip/index.js')

 script(type='text/javascript', src='/javascripts/charts/hexagons-module.js')

~ 259 ~

6.12.12 views/page-about.jade
extends layout

block content

 main.content.about-page

 h1 About Sentiment Sweep

 h2 Introduction

 .row.card-panel

 h3 What is Sentiment Sweep?

 p.flow-text

 | Sentiment Sweep aims to captcha the mood of the internet,

 | either overall or towards a specific topic.

 | It does this by analysing real-time Twitter data, and

 | calculating how positive or negative each Tweet it.

 p.flow-text

 | Ten dynamic data visualisations are then used to illustrate

 | the results, and find trends between sentiment and other factors

 | such as time of day, location, topic, country, people etc

 h3 What can it be used for?

 p.flow-text

 | SS has many uses, from analysing how successful a marketing

 | campaign was in various locations and times, and comparing it

 | to your competitors, to predicting how stock prices will change

 | based on what people are saying about that company. It can also

 | be used to predict which political party will be next in power

 | before the polls are in, based on popularity of each.

 | It can show which train lines are currently delayed or overcrowded,

 | or which the football team has the most support at that time,

 | to name just a few uses.

 h3 Is it free?

 p.flow-text Yes.

 h2 Technical Overview

 .row.card-panel

 h3 How does it work?

 p.flow-text Well, in short Tweets are streamed live from Twitter, and

 | as each one comes in an algorithm calculates the sentiment based on

 | which words are in the Tweet and how they are positioned.

 | A function is then triggered that formats that Tweet and adds it

 | to which ever data visualisations are currently being viewed.

 | If you search for a custom search term, then that will fetch fresh

 | data from Twitter relative to what you searched and the synonyms.

 | If it's for a location based visualisation that the Google Places API

 | is used in conjunction to get the latitude and longitude of where the

 | Tweet was from. Data from the last 60 minutes is cashed, so that

 | everything loads fast.

 p.flow-text All the data visualisations use the same backend, but have

 | different adapter code to format the data into the right format for

 | each chart, most of which is done server-side for efficiency.

 | Everything's written in a very modular way, for maximum code

reusability.

 h3 Modular code, what's that?

 p.flow-text

 | Well most the components of sentiment sweep are quite generic, so

 | could be used for other things in other programs. For this reason

 | eight node modules have been written, documented and tested then

 | published free under the MIT license on NPM. They are in separate

 | repositories, but you can find links to them in the readme.md

 h3 So what's it written in?

 p.flow-text The backend is mainly Node.js written in CoffeeScript, and

 | using MongoDB for data caching. The data visualisations are mainly

 | developed using D3.js and most of them are rendered isomophically

 | so that real-time changes are efficient, again these are written in

 | CoffeeScript. The Express framework is used for routing, and page

 | layouts are written in Jade, with styles written in LESS.

~ 260 ~

 h3 Nice, so can I see the code?

 p.flow-text Yes, because it's 100% open sauce! Everything is published on

 | GitHub under the MIT license, so you can view and copy whatever

 | you want :)

 a(href='https://github.com/Lissy93/twitter-sentiment-visualisation')

 | Check it out here

 h3 How will I know what's what in the code?

 p.flow-text There is a lot of code, but it's all fully documented both

 | in-code documentation, unit tests, and written documentation.

 a(href='https://github.com/Lissy93/twitter-sentiment-

visualisation/tree/dev/docs')

 | You can read the written documentation here

 h2 Stability

 .row.card-panel

 h3 How do you know this works?

 p.flow-text It's unit tested.

 h3 What if I find a bug?

 p.flow-text If you find something that doesn't work as you'd expect,

 | then you can raise it as an issue

 a(href='https://github.com/Lissy93/twitter-sentiment-

visualisation/issues')

 | here.

 h3 The live data has stopped working, why?

 p.flow-text Probably the API limits have been reached, try again tomorrow.

 | This will be sorted later on when we can qualify for a larger quota.

 h3 What if I think this could be better?

 p.flow-text I'm always open to suggestions, there are contact details at

the bottom of the page.

 | Or create a pull request on GitHub and implement your modifications

for review.

 h2 Legal

 .row.card-panel

 h3 So I can copy the code, right?

 p.flow-text Yeah, because it's open-source. But you can't duplicate this

 | project and pass it of as your own work.

 h3 Is it guaranteed to work?

 p.flow-text Nope, no guarantees, use at your own risk.

 h3 Is it okay to be using people's Tweets like this?

 p.flow-text Sentiment Sweep follows the rules outlined in

 | the Twitter API T&C's. Only public Tweets are displayed,

 | and the users location is blurred by 100m, to hide their exact

address.

 | No Tweets are cashed for more than 24 hours (usually it's less than

an hour)

 h2 License

 .row.card-panel

 h3 MIT License

 p.flow-text Copyright (c) Alicia Sykes <alicia@aliciasykes.com>

 p.flow-text

 | Permission is hereby granted, free of charge, to any person obtaining

a copy

 | of this software and associated documentation files (the "Software"),

to deal

 | in the Software without restriction, including without limitation the

rights

 | to use, copy, modify, merge, publish, distribute, sub-license, and/or

sell

 | copies of the Software, and to permit persons to whom the Software is

furnished

 | to do so, subject to the following conditions:

~ 261 ~

 p.flow-text

 | The above copyright notice and this permission notice shall be

included install

 | copies or substantial portions of the Software.

 p.flow-text

 | THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,

EXPRESS OR

 | IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANT

ABILITY,

 | FITNESS FOR A PARTICULAR PURPOSE AND NON INFRINGEMENT. IN NO EVENT

SHALL

 | THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR

OTHER

 | LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,

ARISING FROM,

 | OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER

DEALINGS IN THE SOFTWARE.

 h2 Author

 .row.card-panel

 h3 Who wrote this thing?

 p.flow-text

 | Me, Alicia Sykes.

 h3 Why did you make it?

 p.flow-text

 | Thought it would be cool

 h3 Did it take long to develop?

 p.flow-text

 | Yes, ages - but I like coding :)

 h3 How can I contact you?

 p.flow-text

 | Visit my website, there's a contact form:

 a(href='http://aliciasykes.com') http://aliciasykes.com

 h3 Are you available for hire?

 p.flow-text

 | No, I get a lot of emails asking this. I am not looking for work at

this time!

 include ./footer

~ 262 ~

6.12.13 views/page-breakdown.jade
extends layout

block head

 link(href='https://fonts.googleapis.com/icon?family=Material+Icons',

rel='stylesheet')

block content

 div.row.center-block(style='width: 80%')

 div.col.s9.card-panel.input-field(style='height: 4em')

 input#txtKeyword.validate(type='text', value='#{searchTerm}')

 label(for='txtKeyword', style='margin-top: 1em') Enter a keyword, topic

or search term to fetch new Tweets

 div.col.s2.offset-s1.card-panel(style='height: 4em')

 form.tree

 input#size(type='radio', name='mode', value='size', checked='')

 label(for='size') Size

 input#count(type='radio', name='mode', value='count')

 label(for='count') Count

 div.row.center-block(style='width: 80%').card-panel

 if searchTerm

 - var relatingTo = ' relating to '+searchTerm+''

 else

 - var relatingTo = ''

 p The block diagram shows key terms that represented

sentiment!{relatingTo}.

 | The color represents sentiment, and the size of the block, weighting.

 b You can hover over the blocks to see the topic being described.

 div#tree

 br

block scripts

 script(type='text/javascript').

 var data = !{JSON.stringify(data)};

 script(type='text/javascript', src='/bower_components/d3/d3.min.js')

 script(type='text/javascript', src='/javascripts/charts/break-down.js')

~ 263 ~

6.12.14 views/page-cloud.jade
extends layout

block content

 div.top-left-controls-light

 .row

 .col.s12

 ul.tabs

 li.tab.col.s3

 a.active(href='/word-cloud') Cloud

 li.tab.col.s3(onClick='showLoader(); window.location="/word-

scatter-plot/#{summary_text.searchTerm}"')

 a(href='/word-scatter-plot') Scatter

 h2 Intro

 p Word cloud shows keywords commonly used in the latest Tweets.

 | The colour indicates sentiment of the containing Tweet

 | (red= negative, and green= positive),

 | and the size of the word represents the frequency of use.

 h2 Custom Twitter Data

 br

 label.active(for='txtKeyword') Enter Keyword (press Enter to search)

 input#txtKeyword.validate(type='text', value='#{summary_text.searchTerm}')

 br

 div.waves-effect.waves-light.btn.centerBlock#btnHide Show More

 br

 div#theContent(style='display:none')

 h2 Top Words used in Positive Tweets

 br

 ul

 each val in summary_text.topWords.topPositive

 li

 a(href='/word-cloud/#{val.text}') #{val.freq} x

#{val.text} (#{val.sentiment*100}%

positive)

 br

 h2 Top Words used in Negative Tweets

 br

 ul

 each val in summary_text.topWords.topNegative

 li

 a(href='/word-cloud/#{val.text}') #{val.freq} x

#{val.text} (#{val.sentiment*100}% negative)

 br

 if summary_text.trending

 h2 Trending Key Words

 br

 ul

 each val in summary_text.trending

 li

 a(href='/word-cloud/#{val.text}') #{val.freq} x

#{val.text}

 br

 else

 a.waves-effect.waves-light.btn.centerBlock(href='/scatter-plot-

words') View on Scatter Plot

 br

 br

 main.content.zero-padding.zero-margin

 svg#cloud(style='display: block; margin: 0 auto')

block scripts

 script(type='text/javascript', src='/bower_components/d3/d3.min.js')

 script(type='text/javascript', src='/bower_components/d3-word-cloud/index.js')

 script(type='text/javascript').

 var wordData = !{JSON.stringify(data)};

 script(type='text/javascript', src='/javascripts/word-cloud.bundle.js')

~ 264 ~

6.12.15 views/page-comparer.jade
extends layout

block content

 .container

 if data != ''

 .row

 for result, index in data

 - var topic = result.searchTerm.charAt(0).toUpperCase() +

result.searchTerm.slice(1)

 div(class='col s#{12/data.length}')

 h3= topic

 .card-panel

 p The overall average sentiment for <i>'#{topic}'</i>

is:

 if result.averageSentiment > 0

 p(style='color: green; font-size: 1.5em') Positive

(#{Math.round(result.averageSentiment * 100)}%)

 else if result.averageSentiment < 0

 p(style='color: darkred; font-size: 1.5em')

Negative (#{Math.round(result.averageSentiment * -100)}%)

 else

 p(style='color: grey; font-size: 1.5em') Neutral

 .card-panel

 h4.flow-text Summary of Tweets for <i>'#{topic}'</i>

 div(id='chart-#{index}')

 .card-panel

 h4.flow-text Top words used in <i>'#{topic}'</i> Tweets

 ol

 for wordObject in result.keywordData

 if wordObject.sentiment > 0

 - var color = 'green'

 else if wordObject.sentiment < 0

 - var color = 'darkred'

 else

 - var color = 'dimgrey'

 li

 a(href='/search/#{wordObject.text}',

style='color: #{color}; font-size: 1.1em; font-weight: bold;') #{wordObject.text}

 .card-panel

 h4.flow-text View more data visualisations for

<i>'#{topic}'</i>

 a.waves-effect.waves-teal.btn-flat.block(href='/word-

cloud/#{topic}') Word Cloud

 a.waves-effect.waves-teal.btn-

flat.block(href='/regional-map/#{topic}') Regional Map

 a.waves-effect.waves-teal.btn-

flat.block(href='/map/#{topic}') Heat Map

 a.waves-effect.waves-teal.btn-

flat.block(href='/globe/#{topic}') 3D Globe

 a.waves-effect.waves-teal.btn-

flat.block(href='/timeline/#{topic}') TimeLine

 a.waves-effect.waves-teal.btn-flat.block(href='/text-

tweets/#{topic}') Raw Tweets

 a.waves-effect.waves-teal.btn-flat.block(href='/entity-

extraction/#{topic}') Entity Extraction

 a.waves-effect.waves-teal.btn-flat.block(href='/break-

down/#{topic}') Topic Breakdown

 .row

 br

~ 265 ~

 br

 .center-block(style='width: 50%').card-panel

 h2 Brand Comparison

 span.flow-text Enter up to four brand names, retailers, businesses,

 | places, celebrities or objects that you'd like to compare

 | peoples opinions on.

 br

 .input-field

 label.active(for='brand-1') First Search Term

 input.validate#brand-1(type='text')

 .input-field

 label.active(for='brand-2') Second Search Term

 input.validate#brand-2(type='text')

 .input-field(style='display:none')

 label.active(for='brand-3') Third Search Term

 input.validate#brand-3(type='text')

 .input-field(style='display: none')

 label.active(for='brand-4') Forth Search Term

 input.validate#brand-4(type='text')

 a.small#add-new(style='cursor: pointer') Add more search queries

 br

 br

 .waves-effect.waves-light.btn.center-block#get-results Get Results!

block scripts

 script(type = 'text/javascript', src = '/bower_components/d3/d3.min.js')

 script(type='text/javascript', src='/bower_components/c3/c3.min.js')

 script(type='text/javascript', src='/javascripts/charts/comparer.js')

 script(type='text/javascript').

 window.drawDonuts(!{JSON.stringify(data)});

~ 266 ~

6.12.16 views/page-sa-comparison.jade
extends layout

block content

 main.content.maxWidth75

 div.whitebg.card-padding.curved

 h2 Comparison of methods of calculating Sentiment Analysis

 p

 | There are a number of different methods of calculating

 | sentiment analysis (SA). For this experiment I compare the

 | two most common methods, dictionary-based SA and natural

 | language understanding SA.

 | A set of Tweets will be fetched from the Twitter API, and

 | a script will calculate the sentiment for with both methods

 | and display the results in the table and charts below.

 div.row

 include ./component_divider

 div.col.s12.m6

 h3 Dictionary-based SA

 p

 | Dictionary-based sentiment analysis uses predefined dataset

 | of words annotated with their semantic values. The

algorithm

 | simply looks up the semantic value for each word and then

 | calculates the overall sentiment for the sentence based on

 | the values for each word.

 | The word list used in this example is the AFINN-111.

 | You can view the sourcecode and documentation for the

 | dictionary-based SA module

 | <a href="https://github.com/Lissy93/sentiment-

analysis">here

 div.col.s12.m6

 h3 Natural Language Understanding SA

 p

 | Natural language understanding-based sentiment analysis is a

 | little more complex, and takes longer for each calculation. It

 | also tends to be more costly as well, however the results are

 | considerably more accurate. It is also possible to extract

 | more than just a positivity value for each string, you can

 | drill down into much more detail about the attitudes conveyed.

 |

 | For this example the HP Haven OnDemand API has been used

 include ./component_divider

 div.col.s12.m6(style='float:right')

 h3 Data Sauce

 if(searchTerm)

 p Showing results related to #{searchTerm}

 else

 p

 | The following examples are using Twitter data relating to the

 | Edward Snowdon news story in 2013. There is also a third

 | column added which represents the sentiment calculated by a

 | number of humans in a questionnaire, this is to act as a

 | benchmark

 | You can enter your own search query below, Twitter data will

 | be fetched and the sentiment of each Tweet then calculated.

 div.col.s12.m6

 h3 Custom Data Sauce

 input#txtKeyword(

 placeholder='Enter keyword to calculate custom sentiment comparison data',

 type='text', class='validate', value="#{searchTerm}")

 a#btnCalculate.waves-effect.waves-light.btn(href='',

style='float:right', onclick='showLoader()') Calculate

~ 267 ~

 include ./component_divider

 div.row

 div.col.s12.m6

 div.whitebg.card-padding.curved.card-margin(style='width:35em')

 span#summarry_bar_ch

 div.col.s12.m6

 img(src='/images/sentiment-comparison.png',

width='500px').whitebg.card-padding.curved

 div.row.whitebg.card-padding.curved

 span#scatter_ch

 div.row.whitebg.card-padding.curved

 table#table_ch.bordered.centered.responsive-table(style='width:71em')

 div.row.whitebg.card-padding.curved

 span#bar_ch

 script(type='text/javascript', src='https://www.google.com/jsapi')

 script(type='text/javascript').

 var sentimentResults = !{JSON.stringify(results)};

 script(type = 'text/javascript', src =

'/bower_components/d3/d3.min.js')

 script(type='text/javascript', src='/javascripts/charts/comparison.js')

 include ./footer

6.12.17 views/page-entity-extraction.jade
extends layout

block head

 link(href='https://fonts.googleapis.com/icon?family=Material+Icons',

rel='stylesheet')

block content

 div.container

 .row

 div.col.s8.offset-s2.card-panel

 h3 Entity Extraction

 p Extract key information (people, places, topics, companies,

media...) from Tweets.

 | Enter a search term to fetch and analyse fresh Twitter data.

 div.input-field

 input#txtKeyword.validate(type='text', value='#{searchTerm}')

 label(for='txtKeyword') Enter a keyword, topic or search term

to fetch new Tweets

 .row

 div.col.s12.card-panel

 p#chart

 div.container(style='width: 90%')

 for key in Object.keys(data)

 h4 #{key.charAt(0).toUpperCase()+key.split('_')[0].slice(1)}

 div.row

 for entity in data[key]

 div.card.small.col.s2

 div.card-image

~ 268 ~

 img.better-img-card-

position(src='#{entity.additional_information.image}')

 span.card-title #{entity.normalized_text}

 div.card-content

 p #{entity.matches.length} occurrences found

 for match in entity.matches.splice(0,4)

 span= ' '+match+' '

 if entity.matches.length > 1

 span ...

 div.card-action

 if entity.additional_information.wiki != ''

 a(href='#{entity.additional_information.wiki}')

Wikipedia

 a(href='/entity-extraction/'+entity.normalized_text)

Entities

block scripts

 script(type='text/javascript').

 var results = !{JSON.stringify(data)};

 var searchTerm = !{JSON.stringify(searchTerm)};

 var sankeyData = !{JSON.stringify(sankeyData)};

 script(type='text/javascript', src='/bower_components/d3/d3.min.js')

 script(type='text/javascript', src='/bower_components/sankey.js/index.js')

 script(type='text/javascript', src='/javascripts/charts/entity-extraction.js')

6.12.18 views/page-word-plot.jade
extends layout

block content

 div.top-left-controls-light.card-panel(style='width: 13em')

 .row

 .col.s12

 ul.tabs

 li.tab.col.s3(onClick='showLoader(); window.location="/word-

cloud/#{summary_text.searchTerm}"')

 a(href='/word-cloud') Cloud

 li.tab.col.s3

 a.active(href='/word-scatter-plot') Scatter

 h2 Intro

 p Scatter chart showing keywords commonly used in the latest Tweets, along

 | with their sentiment, and frequency of use.

 br

 h2 Custom Data

 br

 label.active(for='txtKeyword') Enter Keyword

 input#txtKeyword.validate(type='text',

value='#{summary_text.searchTerm}')

 br

 div#scatter-words.center-block.card-panel

block scripts

 script(type='text/javascript').

 var wordData = !{JSON.stringify(data)};

 script(type='text/javascript', src='/javascripts/scatter-words.bundle.js')

~ 269 ~

6.12.19 views/page-globe.jade
extends layout

block pageConfig

 - var hideNav = true

block content

 div.top-left-controls-dark

 a.outline-button.auto-width(href='/', title='Back to Home') ← Home

 h2 Sentiment Globe

 input#txtKeyword(placeholder='Enter a keyword or topic',

value='#{summary_text.searchTerm}')

 div.outline-button#btnSearch Search

 div.outline-button(title='Hide this container', id='btnHide') More Data

 div#theContent(style='display:none')

 p The globe shows the sentiment from Tweets around the world,

 | in real-time. Red indicates negative and green positive.

 | The height of the bar represents the scale of the sentiment.

 | You can use your mouse to rotate the globe.

 br

 p!=summary_text.globeSentence

 br

 a.outline-button(href='/text-tweets/#{summary_text.searchTerm}') Raw

Tweets

 a.outline-button(href='/word-cloud/#{summary_text.searchTerm}') Key

Words

 a.outline-button(href='/map/#{summary_text.searchTerm}') Heat Map

 a.outline-button(href='/region-map/#{summary_text.searchTerm}') Region

Map

 div#container

block scripts

 script(type='text/javascript', src='/bower_components/Detector/index.js')

 script(type='text/javascript', src='/bower_components/three.min/index.js')

 script(type='text/javascript', src='/bower_components/Tween/index.js')

 script(type='text/javascript', src='/bower_components/globe/index.js')

 script(type='text/javascript', src='https://cdn.socket.io/socket.io-1.4.3.js')

 script(type='text/javascript').

 var sentimentResults = !{JSON.stringify(data)};

 script(type='text/javascript', src='/javascripts/globe.bundle.js')

6.12.20 views/page-hexagons.jade
extends layout

block content

 br

 span.grey-text

 | Hover over a hexagon to read the associated Tweet.

 | Sentiment is represented by color.

 | All Tweets are real-time and from the past 60 seconds.

 #chart(style='width: 100%; margin: 0; padding: 0;').center-block

block scripts

 script(type='text/javascript').

 var results = !{JSON.stringify(data)};

 var average = !{JSON.stringify(averageSentiment)};

 var searchTerm = !{JSON.stringify(searchTerm)};

 var hexPage = true;

 script(type = 'text/javascript', src = 'https://cdn.socket.io/socket.io-

1.4.3.js')

 script(type = 'text/javascript', src = '/bower_components/d3/d3.min.js')

 script(type = 'text/javascript', src = '/bower_components/d3tip/index.js')

 script(type='text/javascript', src='/javascripts/charts/hexagons-module.js')

~ 270 ~

6.12.21 views/page-realtime.jade
extends layout

block head

 link(href='/bower_components/nvd3/build/nv.d3.min.css', rel='stylesheet')

block content

 .container(style='width: 90%')

 .card-panel#real-time-scatter: svg(style='width: 100%; height: 500px;')

 #scatter-loader.center-block(style='width: 50px; margin-top: 200px'):

include ./component_spinner

block scripts

 script(type = 'text/javascript', src = 'https://cdn.socket.io/socket.io-

1.4.3.js')

 script(type = 'text/javascript', src = 'http://nvd3.org/assets/lib/d3.v3.js')

 script(type='text/javascript', src='http://nvd3.org/assets/js/nv.d3.js')

 script(type='text/javascript', src='/javascripts/charts/real-time-dash.js')

6.12.22 views/page-realtime.jade
extends layout

block head

 link(rel='stylesheet', href='/bower_components/nvd3/build/nv.d3.min.css')

block content

 main.content.timeline.full-width

 div(style='width: 80%; margin-bottom: 1em').center-block

 div.row

 div.col.s6.card-panel(style='min-height: 10em')

 h3 #{searchTerm} Sentiment Timeline

 p.flow-text Timeline shows the average positive and negative

sentiments of

 | Tweets over the last 24 hours.

 br

 div.col.s1

 br

 div.col.s5.card-panel(style='min-height: 10em')

 p.flow-text Enter a keyword or topic to view the sentiment over

time

 label.active(for='txtKeyword', style='width: 8em') Enter

keyword or topic to fetch new Tweets

 input#txtKeyword.validate(type='text', style='width: 12em;

margin-right: 1em', value='#{searchTerm}')

 div.btn#btnSearch Search

 br

 div#chart.card-panel(style='width: 80%; height: 25em;').center-block

 svg

block scripts

 script(type='text/javascript').

 var results = !{JSON.stringify(data)};

 script(type='text/javascript', src='/bower_components/d3/d3.min.js')

 script(type='text/javascript', src='/javascripts/timeline.bundle.js')

~ 271 ~

6.12.23 views/page-trending.jade
extends layout

block content

 .container(style='width: 60%')

 .row.card-panel

 h3 Search trends by location

 .col.s8

 .input-field

 input#txtLocation.validate(type='text', value='#{location}')

 label(for='txtLocation') Enter a location to fetch local

Twitter trends

 .col.s4

 br

 a.btn.waves-effect.waves-light#btnSearch Find Trending Topics

 .row.card-panel

 if location == ''

 h3 Showing world-wide Twitter trends

 else

 h3 Showing the latest Twitter trends from <span

id='titleLocation'>#{location}

 p.small-grey Sorted by volume, and the color indicates the sentiment of

associated Tweets.

 | Click a trend for more information

 #trending-text-loader.center-block(style='width: 2px;'): include

./component_spinner

 #trending-text

 .row.card-panel

 #bubble-trends.center-block(style='width: 460px;')

 p.flow-text Bubble chart shows trending topics for today from a

specific location.

 | The size of the bubble represents the volume of Tweets about a

certain

 | topic, and the color illustrates sentiment calculated from Tweets

 | associated with the topic. Hover over a bubble for more details.

block scripts

 script(type='text/javascript').

 var locationTxt = !{JSON.stringify(location)};

 script(type='text/javascript', src='/bower_components/d3/d3.min.js')

 script(type='text/javascript', src='/javascripts/charts/trending-bubble-

chart.js')

 script(type='text/javascript', src='/javascripts/charts/trending.js')

~ 272 ~

6.13 DEVELOPMENT AND BUILD FILES

6.13.1 ./gulpfile.js
/**

 * @author Alicia Sykes <alicia@aliciasykes.com> June 2015

 * To run script run "gulp" in the command line

 * My super amazing gulp setup, does EVERYTHING cool

 * possible to do to turns already awesome code into

 * even more awesomely efficient code

 *

 * The Gulp tasks are divided into the files in the './tasks/' directory

 * Read the build documentation at './docs/building.md'

 */

// Include gulp and require directory module

var gulp = require('gulp');

var reqdir = require('require-dir');

reqdir('./tasks'); // Include the folders containing ALL gulp tasks

gulp.task('default', ['start']); // Default task

6.13.2 tasks/browser-sync.js
/* Include the necessary modules */

var gulp = require('gulp');

var bSync = require('browser-sync');

var runSequence = require('run-sequence');

var CONFIG = require('../tasks/config');

gulp.task('start', function () {

 runSequence('build', 'test', 'nodemon', 'browser-sync');

});

gulp.task('browser-sync', function () {

 bSync.init({

 files: [CONFIG.SOURCE_ROOT+'/**/*.*'],

 proxy: 'http://localhost:3000',

 port: 4000,

 browser: ['google chrome'],

 open: false // Don't open browser automatically - it's annoying

 });

 /* For each CoffeeScript directory, watch, compile and reload */

 CONFIG.SCRIPT_PATHS.forEach(function(path) {

 gulp.watch(path.src, ['scripts']).on('change', bSync.reload);

 });

 /* Watch build and re-bundle browserify files */

 gulp.watch(CONFIG.SOURCE_ROOT+'/**/*-{main,module}.{js,coffee}',

['browserify'])

 .on('change', bSync.reload);

 /* Watch compile and reload LESS, SASS and CSS */

 gulp.watch(CONFIG.SOURCE_ROOT+'/**/*.{css,less}', ['styles']).on('change',

bSync.reload);

 /* And reload browsers when the views change too */

 gulp.watch("views/**/*.jade").on('change', bSync.reload);

});

~ 273 ~

6.13.3 tasks/browserify.js
var gulp = require('gulp');

var browserify = require('browserify');

var source = require('vinyl-source-stream');

var coffeeify = require('coffeeify');

var reactify = require('reactify');

var buffer = require('vinyl-buffer');

//var sourcemaps = require('gulp-sourcemaps'); // Uncomment to use sourcemaps

var glob = require('glob');

var es = require('event-stream');

var rename = require('gulp-rename');

var footer = require('gulp-footer');

var gutil = require('gulp-util');

var gsize = require('gulp-filesize');

var debowerify = require('debowerify');

var CONFIG = require('../tasks/config');

gulp.task('browserify', function () {

 glob('./'+CONFIG.SOURCE_ROOT+'/scripts/**/**-main.{js,coffee,jsx}',

function(err, files) {

 var tasks = files.map(function(entry) {

 return browserify({ entries: [entry], debug: true })

 .transform(coffeeify)

 .transform(reactify)

 .transform(debowerify)

 .bundle()

 .pipe(source(entry))

 .pipe(rename(function(filepath) {

 filepath.basename = filepath.basename.replace("-main","");

 filepath.dirname = "";

 filepath.extname = ".bundle.js";

 }))

 .pipe(buffer())

 /* Uncomment the next two lines for client-side-source maps for

debugging */

 //.pipe(sourcemaps.init({loadMaps: true}))

 //.pipe(sourcemaps.write('./'))

 .pipe(footer(CONFIG.FOOTER_TEXT))

 .pipe(gsize())

 .pipe(gulp.dest('./public/javascripts'))

 .on('error', gutil.log);

 });

 es.merge(tasks);

 });

 return gulp.src('*');

});

6.13.4 tasks/generate-config.js
/* Include the necessary modules */

var gulp = require('gulp');

var fs = require('fs');

/* If configuration files don't exist, create them

 (they'll still need populating with keys and credentials) */

gulp.task('generate-config', function(){

 fs.open('config/src/keys.coffee','r',function(err){

 if (err && err.code==='ENOENT') {

 fs.createReadStream('config/src/sample-keys.coffee')

 .pipe(fs.createWriteStream('config/src/keys.coffee'));

 }

 });

});

~ 274 ~

6.13.5 tasks/scripts.js
var gulp = require('gulp');

var gsize = require('gulp-filesize');

var jshint = require('gulp-jshint');

//var uglify = require('gulp-uglify'); // Uncomment to minify (see below aswell)

var coffee = require('gulp-coffee');

var cofLint = require('gulp-coffeelint');

var footer = require('gulp-footer');

var filter = require('gulp-filter');

var argv = require('yargs').argv;

var gulpIf = require('gulp-if');

var CONFIG = require('../tasks/config');

var devMode = argv.dev ? true : CONFIG.SHOW_OUTPUT;

/* JavaScript Tasks */

gulp.task('scripts', function(){

 /* A list of file sources and destinations */

 var paths = CONFIG.SCRIPT_PATHS;

 /* For each file path, run all script tasks */

 var tasks = [];

 paths.forEach(function(path) {

 tasks.push(awsesomeizeScripts(path.src, path.dest));

 });

 return (tasks); // Return all results as array of multiple streams

 /* Function applies all the tasks on the script files and returns a pipe dest

*/

 function awsesomeizeScripts(srcPath, resPath){

 /* Filters to be applied (so that different operations can be done on

different files) */

 var bundleFilter = filter(['*', '!**/*-main.{js,coffee}', '!**/*-

main.{js,coffee}']);

 var coffeeFilter = filter('**/*.coffee', {restore: true}); // MUST be

declared here in order to RESET correctly!

 return gulp.src(srcPath)

 .pipe(bundleFilter) // Ignore browserify files

 /* CoffeeScript tasks */

 .pipe(coffeeFilter)

 .pipe(cofLint())

 .pipe(gulpIf(devMode, cofLint.reporter()))

 .pipe(coffee())

 .pipe(coffeeFilter.restore)

 .pipe(jshint())

 .pipe(gulpIf(devMode, jshint.reporter('jshint-stylish')))

 //.pipe(uglify()) // Uncomment line to minify output JavaScript

 .pipe(footer(CONFIG.FOOTER_TEXT))

 .pipe(gulpIf(devMode, gsize()))

 .pipe(gulp.dest(resPath));

 }

});

~ 275 ~

6.13.6 tasks/styles.js
/* Include the necessary modules */

var gulp = require('gulp');

var gutil = require('gulp-util');

var gsize = require('gulp-filesize');

var concat = require('gulp-concat');

var less = require('gulp-less');

var minCss = require('gulp-minify-css');

//var cssLint = require('gulp-csslint'); // Uncomment to lint CSS

var changed = require('gulp-changed');

var footer = require('gulp-footer');

var es = require('event-stream');

var gulpIf = require('gulp-if');

var argv = require('yargs').argv;

var CONFIG = require('../tasks/config');

var devMode = argv.dev ? true : CONFIG.SHOW_OUTPUT;

/* CSS and Less Tasks */

gulp.task('styles', function(){

 var cssSrcPath = CONFIG.SOURCE_ROOT + '/'+CONFIG.CSS_SRC_DIR_NAME;

 var cssResPath = CONFIG.DEST_ROOT + '/'+CONFIG.CSS_DEST_DIR_NAME;

 var cssFromLess = gulp.src([cssSrcPath+'/*.less'])

 //.pipe(recess())

 //.pipe(recess.reporter())

 .pipe(less());

 var cssFromVanilla = gulp.src([cssSrcPath+'/*.css']);

 var excludedCss = gulp.src(cssSrcPath+'/*/*.css');

 var excludedLess = gulp.src(cssSrcPath+'/*/*.less')

 //.pipe(recess())

 //.pipe(recess.reporter())

 .pipe(less());

 var concatinatedCss = es.merge(cssFromLess, cssFromVanilla)

 .pipe(concat(CONFIG.CSS_FILE_NAME));

 return es.merge(concatinatedCss, excludedCss, excludedLess)

 .pipe(changed(cssResPath))

 //.pipe(cssLint()) // Uncomment to lint CSS

 //.pipe(gulpIf(devMode, cssLint.reporter()))

 .pipe(minCss({compatibility: 'ie8'}))

 .pipe(gulpIf(devMode, gsize()))

 .pipe(footer(CONFIG.FOOTER_TEXT))

 .pipe(gulp.dest(cssResPath))

 .on('error', gutil.log);

});

~ 276 ~

6.13.7 tasks/test.js
var gulp = require('gulp');

var mocha = require('gulp-mocha');

var istanbul = require('gulp-istanbul');

var gulpIf = require('gulp-if');

var argv = require('yargs').argv;

var CONFIG = require('../tasks/config');

var devMode = argv.dev ? true : CONFIG.SHOW_OUTPUT;

var reportMode = devMode ? 'spec' : 'nyan';

require('coffee-script/register');

/* Run all tests and produce coverage report */

gulp.task('test', function (cb) {

 gulp.src(['client-side-source/**/*.js', 'main.js'])

 .pipe(istanbul()) // Covering files

 .pipe(istanbul.hookRequire()) // Force `require` to return covered files

 .on('finish', function () {

 gulp.src(['test/*.{js,coffee}'])

 .pipe(mocha({reporter: reportMode}))

 .pipe(gulpIf(devMode, istanbul.writeReports({dir:

'./reports/coverage-reports'})))

 .pipe(istanbul.enforceThresholds({ thresholds: { global: 90 } }))

// Enforce a coverage of at least 90%

 .on('end', cb);

 });

});

/* Run Mocha tests */

gulp.task('mocha', function () {

 return gulp.src('test/*.{js,coffee}')

 .pipe(mocha({reporter: 'list'}));

});

6.13.8 tasks/watch.js

var gulp = require('gulp');

var CONFIG = require('../tasks/config');

/* Configure files to watch for changes - NOT USED BY DEFAULT TASK */

gulp.task('watch', function() {

 /* For each CoffeeScript directory, watch, compile and reload */

 CONFIG.SCRIPT_PATHS.forEach(function(path) {

 gulp.watch(path.src, ['scripts']);

 });

 /* Watch build and re-bundle browserify files */

 gulp.watch(CONFIG.SOURCE_ROOT+'/**/*-{main,module}.{js,coffee}',

['browserify']);

 /* Watch compile and reload LESS, SASS and CSS */

 gulp.watch(CONFIG.SOURCE_ROOT+'/**/*.{css,less}', ['styles']);

});

~ 277 ~

6.13.9 tasks/nodemon.js
/* Include the necessary modules */

var gulp = require('gulp');

var nodemon = require('gulp-nodemon');

var bSync = require('browser-sync');

/* Nodemon task for monitory for changes with live restarting */

gulp.task('nodemon', function (cb) {

 var called = false;

 return nodemon({

 script: './bin/www',

 watch: ['client-side-source/**/*']

 })

 .on('start', function onStart() {

 if (!called) { cb(); }

 called = true;

 })

 .on('restart', function onRestart() {

 setTimeout(function reload() {

 bSync.reload({

 stream: false

 });

 }, 500);

 });

});

6.13.10 tasks/quick-coffeescript.js
var gulp = require('gulp');

var coffee = require('gulp-coffee');

var CONFIG = require('../tasks/config');

gulp.task('quick-coffeescript-watch', function(){

 gulp.watch('./**/*.coffee', ['quick-coffeescript']);

});

gulp.task('quick-coffeescript', function(){

 /* A list of file sources and destinations */

 var paths = CONFIG.SCRIPT_PATHS;

 /* For each file path, run all script tasks */

 var tasks = [];

 paths.forEach(function(path) { tasks.push(coffeeify(path.src, path.dest))});

 return (tasks); // Return all results as array of multiple streams

 /* Function applies all the tasks on the script files & returns a pipe dest */

 function coffeeify(srcPath, resPath){

 return gulp.src(srcPath).pipe(coffee()).pipe(gulp.dest(resPath));

 }

});

6.13.11 tasks/images.js
/* Include the necessary modules */

var gulp = require('gulp');

/* CSS and Less Tasks */

gulp.task('images', function(){

 return[

 gulp.src('client-side-source/gr/favicon.ico').pipe(gulp.dest('public')),

 gulp.src('client-side-s/gr/**/*.{png,gif,jpg}').pipe(gulp.dest (path))

];

});

~ 278 ~

6.13.12 tasks/clean.js
var gulp = require('gulp');

var del = require('del');

var scriptPaths = require('../tasks/config').SCRIPT_PATHS;

/* Delete built files */

gulp.task('clean', function (cb) {

 var paths = ['public/javascripts', 'public/stylesheets'];

 scriptPaths.map(function(sp){

 paths.push(sp.dest+'/*.js');

 });

 del(paths).then(cb());

});

6.13.13 tasks/build.js
var gulp = require('gulp');

var runSequence = require('run-sequence');

/* Clean the work space */

gulp.task('build', function (cb) {

 runSequence('clean',

 ['scripts', 'browserify', 'styles', 'images'],

 cb);

});

6.13.14

6.13.15 tasks/config.js
/* Define constants */

var footerText = "\n\/* (C) Alicia Sykes <alicia@aliciasykes.com> 2015 "

+

 "*\\\r\n* MIT License. Read full license at: https:\/\/goo.gl\/IL4lQJ *\/"

module.exports = {

 SOURCE_ROOT : "client-side-source", // Folder name for all js and css

client-side-source

 DEST_ROOT : "public", // Folder name for the results root

 CSS_DEST_DIR_NAME : "stylesheets",// Name of CSS directory

 CSS_SRC_DIR_NAME : "styles", // Name of CSS directory

 JS_FILE_NAME : "all.min.js", // Name of output JavaScript file

 CSS_FILE_NAME : "all.min.css",// Name of output CSS file

 FOOTER_TEXT : footerText, // Optional footer text for output files

 SCRIPT_PATHS : [// Paths for JavaScript files

 { src: 'client-side-source/scripts/**/*.{js,coffee}',

 dest: 'public/javascripts' },

 { src: 'client-side-source/scripts/visualisations/*.coffee',

 dest: 'public/javascripts/charts' },

 { src: 'server-side-source/models/*.coffee', dest: 'models' },

 { src: 'server-side-source/utils/*.coffee', dest: 'utils' },

 { src: 'server-side-source/config/*.coffee', dest: 'config' },

 { src: 'server-side-source/routes/*.coffee', dest: 'routes' },

 { src: 'server-side-source/api-routes/*.coffee', dest: 'routes' }

],

 SHOW_OUTPUT: true

};

~ 279 ~

6.14 MODULE 1 – SENTIMENT ANALYSIS

6.14.1 index.coffee

afinnWordList = require __dirname + '/AFINN-111.json' # Get the AFINN-111 list

Returns a boolean true if given word is found in word list

doesWordExist = (word)->

 if word of afinnWordList then true else false

Returns an integer value + or - sentiment score for given word

getScoreOfWord = (word)->

 if afinnWordList[word] then afinnWordList[word] else 0

Formats sentence and returns a lowercase a-z array of words

getWordsInSentence = (sentence)->

 sentence = if sentence? then sentence else '' # Double check is defined

 sentence = if typeof sentence == 'string' then sentence else ''

 sentence = sentence.toLowerCase()

 sentence = sentence.replace(/(?:https?|ftp):\/\/[\n\S]+/g, '') # Remove URLs

 sentence = sentence.replace(/[^\w\s]/gi, '') # Remove special characters

 sentence = sentence.split(' ') # Split into an array

 sentence = sentence.filter((n) -> n != '') # Remove blanks

 sentence = removeDuplicates(sentence)

Remove Duplicates

removeDuplicates = (arr) ->

 if arr.length == 0

 return []

 res = {}

 res[arr[key]] = arr[key] for key in [0..arr.length-1]

 value for key, value of res

Ensure score is in a valid range between -1 to +1

scaleScore = (score)->

 score = if score > 10 then 10 else score

 score = if score < -10 then -10 else score

 score/10

Returns an overall sentiment score for sentence

analyseSentence = (sentence) ->

 score = 0

 wordsArr = getWordsInSentence(sentence)

 for word in wordsArr

 if doesWordExist(word)

 score += getScoreOfWord(word)

 scaleScore(score)

module.exports = analyseSentence # Export main method as module

If we're developing/ testing then export the private methods too

if process.env.NODE_ENV == 'test'

 module.exports =

 main: analyseSentence

 _private:

 scaleScore: scaleScore

 doesWordExist: doesWordExist

 getScoreOfWord: getScoreOfWord

 removeDuplicates: removeDuplicates

 getWordsInSentence: getWordsInSentence

~ 280 ~

6.14.2 .gitignore
node_modules

.idea

*.log

reports

dev.js

coverage

6.14.3 .travis.yml
language: node_js

node_js:

 - "0.12"

 - "0.10"

before_script:

 - "npm i -g mocha"

6.14.4 dev.js
/**

 * FOR DEVELOPMENT ONLY.

 * NOT TO BE PUSHED TO GIT!

 */

var sentimentAnalysis = require('./index');

console.log(sentimentAnalysis('Dinosaurs are awesome!'));

console.log(sentimentAnalysis('Everything is stupid'));

console.log(sentimentAnalysis('Windows is very unstable'));

console.log(sentimentAnalysis('The slug was tired, he felt slugish'));

console.log(sentimentAnalysis('London is gloomy today because of all the smog'));

console.log(sentimentAnalysis('I am so grateful for all the presents, thanks!'));

console.log(sentimentAnalysis('Really enjoying the warm weather'));

console.log(sentimentAnalysis('It was a catastrophic disaster'));

6.14.5 index.js (compiled)
(function(){var e,r,n,t,o,i,u;e=require(__dirname+"/AFINN-

111.json"),n=function(r){return r in e?!0:!1},t=function(r){return

e[r]?e[r]:0},o=function(e){return e=null!=e?e:"",e="string"==typeof

e?e:"",e=e.toLowerCase(),e=e.replace(/(?:https?|ftp):\/\/[\n\S]+/g,"

"),e=e.replace(/[^\w\s]/gi,""),e=e.split(""),e=e.filter(function(e){

return""!==e}),e=i(e)},i=function(e){var

r,n,t,o,i,u;if(0===e.length)return[];for(o={},n=r=0,t=e.length-

1;t>=0?t>=r:r>=t;n=t>=0?++r:--r)o[e[n]]=e[n];i=[];for(n in

o)u=o[n],i.push(u);return i},u=function(e){return e=e>10?10:e,e=-

10>e?-10:e,e/10},r=function(e){var

r,i,s,c,f;for(s=0,f=o(e),r=0,i=f.length;i>r;r++)c=f[r],n(c)&&(s+=t(c

));return

u(s)},module.exports=r,"test"===process.env.NODE_ENV&&(module.export

s={main:r,_private:{scaleScore:u,doesWordExist:n,getScoreOfWord:t,re

moveDuplicates:i,getWordsInSentence:o}})}).call(this);

~ 281 ~

6.14.6 package.json
{

 "name": "sentiment-analysis",

 "version": "0.1.1",

 "description": "Sentiment analysis module using AFINN-111",

 "main": "index.js",

 "scripts": {

 "test": "gulp test",

 "cover": "istanbul cover node_modules/mocha/bin/_mocha"

 },

 "repository": {

 "type": "git",

 "url": "git+https://github.com/Lissy93/sentiment-analysis.git"

 },

 "keywords": ["sentiment", "analysis", "sentiment", "analysis", "twitter",

 "AFINN", "AFINN-111", "emotion", "detection", "valence"

],

 "author": "Alicia Sykes <sykes.alicia@gmail.com> (http://aliciasykes.com)",

 "license": "MIT",

 "bugs": {

 "url": "https://github.com/Lissy93/sentiment-analysis/issues"

 },

 "homepage": "https://github.com/Lissy93/sentiment-analysis#readme",

 "devDependencies": {

 "chai": "^3.3.0",

 "coffee-script": "^1.10.0",

 "del": "^2.0.2",

 "gulp": "^3.9.0",

 "gulp-coffee": "^2.3.1",

 "gulp-coffeelint": "^0.5.0",

 "gulp-footer": "^1.0.5",

 "gulp-istanbul": "^0.10.1",

 "gulp-mocha": "^2.1.3",

 "gulp-watch": "^4.3.5",

 "mocha": "^2.3.3"

 }

}

~ 282 ~

6.14.7 gulpfile.js
/**

 * The gulp file configures the gulp build setup

 * Run "gulp build" to built project and compile CoffeeScript

 * Run "gulp test" to run Mocha unit tests and Istanbul coverage tests

 * Run "gulp" to clean, build, test and watch for changes during development

 */

/* Require the node modules */

var gulp = require('gulp');

var coffee = require('gulp-coffee');

var lint = require('gulp-coffeelint');

var del = require('del');

var footer = require('gulp-footer');

var mocha = require('gulp-mocha');

var istanbul= require('gulp-istanbul');

var watch = require('gulp-watch');

require('coffee-script/register');

var footerTxt = "\/* (C) Alicia Sykes <alicia@aliciasykes.com> 2015 " +

 "*\\\r\n* MIT License. Read full license at: https:\/\/goo.gl\/IL4lQJ *\/";

/* Delete the files currently in finished directory */

gulp.task('clean', function () {

 return del(['./index.js']);

});

/* Lint, compile and minify CoffeeScript */

gulp.task('build', ['clean'], function(){

 return gulp.src('./*.coffee')

 .pipe(lint())

 .pipe(lint.reporter())

 .pipe(coffee())

 .pipe(footer(footerTxt))

 .pipe(gulp.dest('./'))

});

/* Run unit tests and generate coverage report */

gulp.task('test', function (cb) {

 gulp.src(['./index.js'])

 .pipe(istanbul())

 .pipe(istanbul.hookRequire())

 .on('finish', function () {

 gulp.src('./test/**/*.coffee', {read: false})

 .pipe(mocha({ reporter: 'spec' }))

 .pipe(istanbul.writeReports({reporters: ['text-summary', 'lcov']}))

 //.pipe(istanbul.enforceThresholds({ thresholds: { global: 90 } }))

 .on('end', cb);

 });

});

/* Watch for changes and refresh */

gulp.task('watch', function(){

 gulp.watch('./**/*.coffee', ['test-after-build']);

 gulp.watch('./test/**/*.coffee', ['test']);

});

/* Don't test, until it has built, to avoid file not found errors */

gulp.task('test-after-build',['build'],function(){

 gulp.start('test')

});

/* Defualt gulp task, deletes old files, compiles source files and runs tests */

gulp.task('default', ['test-after-build', 'watch']);

~ 283 ~

6.14.9 readme.md
sentiment-analysis

[![Build Status](https://travis-ci.org/Lissy93/sentiment-

analysis.svg?branch=dev)](https://travis-ci.org/Lissy93/sentiment-analysis)

[![Dependency Status](https://david-dm.org/lissy93/sentiment-

analysis.svg)](https://david-dm.org/lissy93/sentiment-analysis)

[![devDependency Status](https://david-dm.org/lissy93/sentiment-analysis/dev-

status.svg)](https://david-dm.org/lissy93/sentiment-analysis#info=devDependencies)

[![Code Climate](https://codeclimate.com/github/Lissy93/sentiment-

analysis/badges/gpa.svg)](https://codeclimate.com/github/Lissy93/sentiment-

analysis)

> [AFINN-111] based Sentiment analysis module

Install

`npm install sentiment-analysis --save`

Usage

```javascript 

var sentimentAnalysis = require('sentiment-analysis'); 

 

sentimentAnalysis('Dinosaurs are awesome!'); // +0.4 

sentimentAnalysis('Everything is stupid');  // -0.2 

sentimentAnalysis('Windows is very unstable');  // -0.2 

sentimentAnalysis('London is gloomy today because of all the smog');  // -0.4 

sentimentAnalysis('I am so grateful for all the presents, thank you!');  // +0.5 

sentimentAnalysis('Really enjoying the warm weather');  // +0.3 

sentimentAnalysis('It was a catastrophic disaster');  // -0.6 

``` 

sentiment-analysis will return a score between -1 and +1, where negative numbers

represent a negative overall sentiment.

Testing

`npm test`

See unit test, integration testing results on [Travis CI]

Development

See the `gulpfile.js` for documentation of build process.

License

MIT � [Alicia Sykes](http://aliciasykes.com)

[AFINN-111]: <http://www2.imm.dtu.dk/pubdb/views/publication_details.php?id=6010>

[Travis CI]: <https://travis-ci.org/Lissy93/sentiment-analysis>

~ 284 ~

6.14.10 test/mocha.opts
--compilers coffee:coffee-script/register

--reporter spec

6.14.11

6.14.12 test/utils.test.coffee
expect = require('chai').expect

process.env.NODE_ENV = 'test'

sentimentAnalysis = require('../index')._private

describe 'doesWordExist will return boolean weather word exists', ()->

 doesWordExist = sentimentAnalysis.doesWordExist

 it 'should return a boolean value', ()->

 expect(doesWordExist('coffee')).to.be.a('boolean')

 expect(doesWordExist('mocha')).to.be.a('boolean')

 expect(doesWordExist('java')).to.be.a('boolean')

 it 'should return true for words that exist', () ->

 expect(doesWordExist('woo')).to.be.true

 expect(doesWordExist('alive')).to.be.true

 expect(doesWordExist('awesome')).to.be.true

 expect(doesWordExist('anger')).to.be.true

 expect(doesWordExist('bright')).to.be.true

 expect(doesWordExist('love')).to.be.true

 expect(doesWordExist('easy')).to.be.true

 expect(doesWordExist('drunk')).to.be.true

 expect(doesWordExist('dumb')).to.be.true

 expect(doesWordExist('hacked')).to.be.true

 expect(doesWordExist('important')).to.be.true

 expect(doesWordExist('hug')).to.be.true

 expect(doesWordExist('itchy')).to.be.true

 expect(doesWordExist('laugh')).to.be.true

 expect(doesWordExist('stupid')).to.be.true

 expect(doesWordExist('bomb')).to.be.true

 it 'should return false for words that do not exist', () ->

 expect(doesWordExist('hello')).to.be.false

 expect(doesWordExist('world')).to.be.false

 expect(doesWordExist('everything')).to.be.false

 expect(doesWordExist('is')).to.be.false

 expect(doesWordExist('stupidness')).to.be.false

 expect(doesWordExist('acid')).to.be.false

 expect(doesWordExist('dinosaurs')).to.be.false

 expect(doesWordExist('laptop')).to.be.false

 expect(doesWordExist('pepsi')).to.be.false

 expect(doesWordExist('lorem')).to.be.false

 expect(doesWordExist('ipsum')).to.be.false

 expect(doesWordExist('squashed')).to.be.false

 expect(doesWordExist('watson')).to.be.false

 expect(doesWordExist('brain')).to.be.false

 it 'should not throw an error with funny values', ()->

 expect(doesWordExist(1)).to.be.a('boolean')

 expect(doesWordExist([])).to.be.a('boolean')

 expect(doesWordExist(true)).to.be.a('boolean')

 expect(doesWordExist(undefined)).to.be.a('boolean')

 expect(doesWordExist(1)).to.be.false

 expect(doesWordExist([])).to.be.false

 expect(doesWordExist(undefined)).to.be.false

describe 'getScoreOfWord method return a sentiment score for that word', ()->

 getScoreOfWord = sentimentAnalysis.getScoreOfWord

~ 285 ~

 it 'should return an integer', ()->

 expect(getScoreOfWord('amazing')).to.be.a('number')

 expect(getScoreOfWord('warm')).to.be.a('number')

 expect(getScoreOfWord('yummy')).to.be.a('number')

 it 'should be in a range of -5 to + 5', () ->

 expect(getScoreOfWord('nice')).to.be.above(-5).to.be.below(5)

 expect(getScoreOfWord('good')).to.be.below(5).to.be.below(5)

 expect(getScoreOfWord('great')).to.be.above(-5).to.be.below(5)

 expect(getScoreOfWord('awesome')).to.be.above(-5).to.be.below(5)

 it 'should return 0 if word doesn\'t exist, rather than crashing', ()->

 expect(getScoreOfWord('batman')).equal(0)

 expect(getScoreOfWord('superman')).equal(0)

 expect(getScoreOfWord('spiderman')).equal(0)

 expect(getScoreOfWord('pepperpig')).equal(0)

 it 'should return 0 if passed multiple words at a time that don\'t exist', ()->

 expect(getScoreOfWord('type error')).equal(0)

 expect(getScoreOfWord('everything is stupid')).equal(0)

 expect(getScoreOfWord('dinosaurs are awesome')).equal(0)

 it 'should return actual positive score for positive words that exist', ()->

 expect(getScoreOfWord('united')).equal(1)

 expect(getScoreOfWord('unstoppable')).equal(2)

 expect(getScoreOfWord('excited')).equal(3)

 expect(getScoreOfWord('win')).equal(4)

 expect(getScoreOfWord('outstanding')).equal(5)

 it 'should return actual negative score for negative words that exist', ()->

 expect(getScoreOfWord('fight')).equal(-1)

 expect(getScoreOfWord('fails')).equal(-2)

 expect(getScoreOfWord('evil')).equal(-3)

 expect(getScoreOfWord('fraud')).equal(-4)

 expect(getScoreOfWord('twat')).equal(-5)

 it 'should return 0 for neutral words that exist', ()->

 expect(getScoreOfWord('some kind')).equal(0)

 # There is only 1 neutral result in the AFINN word list!

describe 'getWordsInSentence will transform a sentence into a clean array', ()->

 getWordsInSentence = sentimentAnalysis.getWordsInSentence

 it 'Should correctly turn a sentence into an array', ()->

 expect(getWordsInSentence('hello world')).eql(['hello', 'world'])

 expect(getWordsInSentence('this is a longer sentence'))

 .eql(['this', 'is', 'a', 'longer', 'sentence'])

 it 'Should normalise case', ()->

 expect(getWordsInSentence('HeLlO wOrLd')).eql(['hello', 'world'])

 expect(getWordsInSentence('JAVASCRIPT')).eql(['javascript'])

 it 'Should remove dupplicates', ()->

 expect(getWordsInSentence('foo foo bar foo'))

 .eql(['foo', 'bar'])

 expect(getWordsInSentence('foo foo BAR Foo bAr foO bar foo'))

 .eql(['foo', 'bar',])

 it 'Should remove blanks', ()->

 expect(getWordsInSentence('space blank '))

 .eql(['space', 'blank'])

 it 'Should remove special characters', ()->

 expect(getWordsInSentence('foo ! ^&*^&^%^%&^^&%%^bar$$%^'))

 .eql(['foo', 'bar'])

describe 'removeDupplicates should remove dupplicates from an array', () ->

 removeDupplicates = sentimentAnalysis.removeDuplicates

~ 286 ~

 it 'should remove duplicates', () ->

 expect(removeDupplicates(['hello', 'world', 'hello', 'hello']))

 .eql(['hello', 'world'])

describe 'scaleScore should ensure the score is within the valid range', () ->

 scaleScore = sentimentAnalysis.scaleScore

 it 'should not be below -1', () ->

 expect(scaleScore(-1.2)).to.be.above(-1.01)

 expect(scaleScore(-38.8)).to.be.above(-1.01)

 expect(scaleScore(1.2)).to.be.above(-1.01)

 it 'should not be above +1', () ->

 expect(scaleScore(4.5)).to.be.below(1.01)

 expect(scaleScore(42)).to.be.below(1.01)

 expect(scaleScore(-1.2)).to.be.below(1.01)

 it 'should have 1 or 2 decimal places', () ->

 expect(scaleScore(1)).to.be.within(-1,+1);

 expect(scaleScore(-1)).to.be.within(-1,+1);

 expect(scaleScore(0)).to.be.within(-1,+1);

 expect(scaleScore(10)).to.be.within(-1,+1);

 expect(scaleScore(-1)).to.be.within(-1,+1);

 expect(scaleScore(-1.01)).to.be.within(-1,+1);

 expect(scaleScore(+1.0001)).to.be.within(-1,+1);

 expect(scaleScore(999999)).to.be.within(-1,+1);

 expect(scaleScore(-999999)).to.be.within(-1,+1);

 expect(scaleScore(-0)).to.be.within(-1,+1);

 expect(scaleScore(+0)).to.be.within(-1,+1);

 expect(scaleScore(42)).to.be.within(-1,+1);

 expect(scaleScore(3.1415926535897932)).to.be.within(-1,+1);

 expect(scaleScore(-273.15)).to.be.within(-1,+1);

6.14.13

6.14.14 test/main.test.coffee
expect = require('chai').expect

process.env.NODE_ENV = 'test'

sentimentAnalysis = require('../index').main

describe 'Check the modules basic functionality', ()->

 it 'should return an integer', () ->

 expect(sentimentAnalysis('lorem ipsum dolor seit amet'))

 .to.be.a('number')

 expect(sentimentAnalysis('foo bar')).to.not.be.undefined;

 it 'Should return the correct sentiment value for negative sentences', () ->

 expect(sentimentAnalysis('I hate everything, everything is stupid')).equal(-

0.5)

 expect(sentimentAnalysis('London is gloomy today because of all the

smog')).equal(-0.4)

 expect(sentimentAnalysis('He was captured and put into slavery')).equal(-0.3)

 expect(sentimentAnalysis('Windows is very unstable')).equal(-0.2)

 expect(sentimentAnalysis('The slug was tired, he felt slugish')).equal(-0.2)

 it 'Should return the correct sentiment value for positive sentences', () ->

 expect(sentimentAnalysis('Today is a wonderful amazing awesome day')).equal(1)

 expect(sentimentAnalysis('I am so grateful for all the presents, thank

you!')).equal(0.5)

 it 'Should not return a score greater than 1 of smaller than -1', () ->

 expect(sentimentAnalysis('happy happy amazing awesome cool'))

 .to.be.above(-1.1).to.be.below(1.1)

 expect(sentimentAnalysis('crap crap crap crap'))

 .to.be.above(-1.1).to.be.below(1.1)

~ 287 ~

6.15 MODULE 2- FETCH TWEETS

request = require 'request'

querystring = require 'querystring'

class FetchTweets

 shouldFormatResults = null

 constructor: (@credentials, @shouldFormatResults = true) ->

 shouldFormatResults = @shouldFormatResults

 # Fetches the data from given URL from Twitter

 makeRequest = (url, credentials, callback) ->

 oauth = {

 callback: '/'

 consumer_key: credentials.consumer_key

 consumer_secret: credentials.consumer_secret

 }

 request {

 url: url

 json: true

 oauth: oauth

 },(error, response, body)->

 if !error and response.statusCode == 200

 callback (body)

 # Processes the results to get rid of not needed data

 formatResults = (twitterResults) ->

 if !shouldFormatResults

 return twitterResults

 tweetObjescts = []

 for rawTweetObject in twitterResults.statuses

 tweetObjescts.push({

 'date': rawTweetObject.created_at,

 'body': rawTweetObject.text

 'location': prepareLocation(rawTweetObject)

 'retweet-count' : rawTweetObject.retweet_count

 'favorited-count' : rawTweetObject.favorite_count

 'lang' : rawTweetObject.lang

 })

 tweetObjescts

 # Get location

 prepareLocation = (body) ->

 location =

 place_name: '_'

 location: { lat: 0.0000000, lng: 0.0000000 }

 # Check Coordinates object

 if body.coordinates?

 location.location.lat = body.coordinates.coordinates[1]

 location.location.lng = body.coordinates.coordinates[0]

 else if body.geo?

 location.location.lat = body.geo.coordinates[0]

 location.location.lng = body.geo.coordinates[1]

 # Check for place name

 if body.place?

 location.place_name = body.place.name

 else if body.user?

 location.place_name = body.user.location

~ 288 ~

 location

 formatTrends = (preResults) ->

 results = []

 for item in preResults[0].trends

 results.push {trend: item.name, volume: item.tweet_volume}

 results

 byTopic: (params = '', cb) ->

 if typeof params is 'string'

 urlParams = 'q='+params+'&count=100'

 else if typeof params is 'object'

 urlParams = querystring.stringify(params)

 url = 'https://api.twitter.com/1.1/search/tweets.json?'+urlParams

 makeRequest url, @credentials, (results) ->

 cb formatResults(results)

 trending: (placeId, cb) ->

 trendingUrl = 'https://api.twitter.com/1.1/trends/place.json'+'?id='+placeId

 makeRequest trendingUrl, @credentials, (results) -> cb formatTrends results

 closestTrendingWoeid: (lat, long, cb) ->

 url="https://api.twitter.com/1.1/trends/closest.json?lat=#{lat}&long=#{long}"

 makeRequest url, @credentials, (results) -> cb results

module.exports = FetchTweets

~ 289 ~

6.16 MODULE 3 – STREAM TWEETS

request = require 'request'

querystring = require 'querystring'

_private = {}

class StreamTweets

 shouldFormatResults = null # Will be set (true|false) when object initiated

 constructor: (@credentials, @shouldFormatResults = true) ->

 shouldFormatResults = @shouldFormatResults

 # Fetches the data from given URL from Twitter

 makeRequest = (params, credentials, callback) ->

 message = "" # Variable that accumulates tweets

 separator = "\r" # What separates multiple Tweet objects

 params.oauth = {

 callback: '/'

 consumer_key: credentials.consumer_key

 consumer_secret: credentials.consumer_secret

 token : credentials.token

 token_secret : credentials.token_secret

 }

 req = request.post(params, (err) ->

 console.error err if err

)

 req.on 'data', (buffer) ->

 message += buffer.toString()

 tweetSeparatorIndex = message.indexOf(separator)

 didFindTweet = tweetSeparatorIndex != -1

 if didFindTweet

 tweet = message.slice(0, tweetSeparatorIndex)

 if isStrValidJson(tweet)

 callback JSON.parse(tweet)

 message = message.slice(tweetSeparatorIndex + 1)

 req.on 'disconnect', (reason) -> console.log reason

 # Processes the results to get rid of not needed data

 formatResults = (twitterResults) ->

 if !shouldFormatResults

 return twitterResults

 {

 'date': twitterResults.created_at,

 'body': twitterResults.text

 'location': prepareLocation(twitterResults)

 'retweet-count' : twitterResults.retweet_count

 'favorited-count' : twitterResults.favorite_count

 'lang' : twitterResults.lang

 }

 # Get location

 prepareLocation = (body) ->

 location =

 place_name: '_'

 location: { lat: 0.0000000, lng: 0.0000000 }

 # Check Coordinates object

~ 290 ~

 if body.coordinates?

 location.location.lat = body.coordinates.coordinates[1]

 location.location.lng = body.coordinates.coordinates[0]

 else if body.geo?

 location.location.lat = body.geo.coordinates[0]

 location.location.lng = body.geo.coordinates[1]

 # Check for place name

 if body.place?

 location.place_name = body.place.name

 else if body.user?

 location.place_name = body.user.location

 location

 # Check if the string would be valid json

 isStrValidJson = (str) ->

 try JSON.parse str

 catch e then return false

 true

 # Public function, to be directly called by main program

 stream: (params, cb) ->

 #Check what type of params we working with, and format appropriately

 if typeof params is 'string' then urlParams = 'track='+params

 else if typeof params is 'object' then urlParams =

querystring.stringify(params)

 params = {

 uri: 'https://stream.twitter.com/1.1/statuses/filter.json?'+urlParams

 }

 makeRequest params, @credentials, (results) ->

 cb formatResults(results)

 _private = {

 isStrValidJson: isStrValidJson

 formatResults: formatResults

 makeRequest: makeRequest

 }

module.exports = StreamTweets

If we're developing/ testing then export the private methods too

if process.env.NODE_ENV == 'test'

 module.exports = {

 main: StreamTweets

 _private: _private

 }

~ 291 ~

6.17 MODULE 4 – REMOVE WORDS
fs = require('fs')

_private = {}

removeWords = (sentence, getRidOfDuplicates=true, wordsArray=undefined) ->

 if !wordsArray?

 wordsArray = fs.readFileSync(__dirname + '/words.txt', 'utf8').split('\r\n')

 else

 wordsArray =

 if typeof wordsArray == 'string' then [wordsArray] else wordsArray

 wordsArray = formatWordsArr(wordsArray)

 sentence = if typeof sentence == 'string' then sentence else ''

 sentenceArr = arrayifySentence(sentence)

 for dictionaryWord in wordsArray

 for sentenceWord, index in sentenceArr

 if sentenceWord == dictionaryWord

 sentenceArr.splice(index,1)

 if getRidOfDuplicates then return removeDuplicates(sentenceArr)

 else return sentenceArr

Format the sentence and return an array

arrayifySentence = (sentence) ->

 sentence = formatSentence(sentence) # Lowercase + remove special chars

 sentence = sentence.split(' ') # Split into an array

 sentence = sentence.filter((n) -> n != '') # Remove blanks

Formats each element of the words array

formatWordsArr = (wordsArr) ->

 if !wordsArr instanceof Array

 return []

 for word, i in wordsArr

 wordsArr[i] = formatSentence(word)

 wordsArr

Removes URLs, special characters and then de-capitalizes a string

formatSentence = (sentence) ->

 sentence = if sentence? then sentence else '' # Double check is defined

 sentence = sentence.toLowerCase()

 sentence = sentence.replace(/(?:https?|ftp):\/\/[\n\S]+/g, '') # Remove URLs

 sentence = sentence.replace(/[^\w\s]/gi, '') # Remove special characters

removeDuplicates = (arr) ->

 if arr.length == 0

 return []

 res = {}

 res[arr[key]] = arr[key] for key in [0..arr.length-1]

 value for key, value of res

_private = {

 arrayifySentence: arrayifySentence

 formatWordsArr: formatWordsArr

 formatSentence: formatSentence

 removeDuplicates: removeDuplicates

}

module.exports = removeWords

If we're developing/ testing then export the private methods too

if process.env.NODE_ENV == 'test'

 module.exports = {

 main: removeWords

 _private: _private

 }

~ 292 ~

6.18 MODULE 5 - PLACE LOOKUP

request = require 'request'

querystring = require 'querystring'

host = "https://maps.googleapis.com/maps/api/place/textsearch/json"

removeStingChars = (str)->

 str.replace(/[^A-Za-z0-9\s,]/g,'')

makeURL = (paramaters, apiKey)->

 urlParams =

 if typeof paramaters is 'string' then 'query='+ removeStingChars paramaters

 else if typeof paramaters is 'object' then querystring.stringify(paramaters)

 host + '?' + 'key=' + apiKey + '&' + urlParams

formatResults = (body)->

 place_name: body.results[0]['formatted_address']

 location: body.results[0]['geometry']['location']

makeRequest = (url, requestCallback)->

 request { url: url, json: true},

 (error, response, body) ->

 if !error and response.statusCode == 200 then requestCallback(body)

main = (paramaters, apiKey, callback)->

 url = makeURL(paramaters, apiKey)

 makeRequest(url, (results)->

 try callback(formatResults(results))

 catch e then callback({error: 'Zero results returned'})

)

module.exports = main

~ 293 ~

6.19 MODULE 6 – TWEET LOCATION
request = require 'request'

main = (placeID, credentials, callback, formatResults = false)->

 url = "https://api.twitter.com/1.1/geo/id/#{placeID}.json" # The endpoint

 oauthCredentials = { # The keys

 consumer_key : credentials.consumer_key,

 consumer_secret : credentials.consumer_secret,

 token: credentials.token,

 token_secret: credentials.token_secret

 }

 # Make the request

 request {

 url: url

 json: true

 oauth: oauthCredentials

 },(error, response, body)->

 if !error and response.statusCode == 200

 callback(if formatResults then stripDown(body) else body)

Optionally get rid of all pointless data and just return lat and lon for GMaps

stripDown = (body) ->

 if body.centroid?

 lat: Math.round(body.centroid[1] * Math.pow(10, 6)) / Math.pow(10, 6),

 lon: Math.round(body.centroid[0] * Math.pow(10, 6)) / Math.pow(10, 6)

 else

 {}

module.exports = main

6.20 MODULE 7 – HP HAVEN SA
request = require 'request'

querystring = require 'querystring'

main = (paramaters, apiKey, callback)->

 host = "https://api.havenondemand.com/1/api/sync/analyzesentiment/v1"

 if typeof paramaters is 'string'

 urlParams = 'text='+paramaters

 else if typeof paramaters is 'object'

 urlParams = querystring.stringify(paramaters)

 url = host + '?' + urlParams + '&apikey=' + apiKey

 request {

 url: url

 json: true

 }, (error, response, body) ->

 if !error and response.statusCode == 200

 callback(body)

module.exports = main

~ 294 ~

6.21 MODULE 8 – HP HAVEN EXTRACT ENTITIES
request = require 'request'

querystring = require 'querystring'

entities = ['people_eng', 'places_eng', 'companies_eng', 'organizations',

 'languages', 'drugs_eng', 'professions', 'universities',

 'films', 'internet', 'teams',]

makeUrl = (paramaters, apiKey) ->

 host = "https://api.havenondemand.com/1/api/sync/extractentities/v2"

 if typeof paramaters is 'string'

 urlParams = 'text='+paramaters

 for entity in entities then urlParams += '&entity_type='+entity

 urlParams += '&show_alternatives=false'

 else if typeof paramaters is 'object'

 entities = paramaters.entity_type

 urlParams = querystring.stringify(paramaters)

 url = host + '?' + urlParams + '&apikey=' + apiKey

formatResults = (body) ->

 results = {}

 for b in body.entities

 if !results[b.type] then results[b.type] = []

 matches = []

 for m in b.matches then matches.push m.original_text

 additionalInformation = {}

 additionalInformation.wiki =

 if b.additional_information.hasOwnProperty 'wikipedia_eng'

 b.additional_information.wikipedia_eng

 else ''

 additionalInformation.image =

 if b.additional_information.hasOwnProperty 'image'

 b.additional_information.image

 else ''

 results[b.type].push({

 normalized_text: b.normalized_text

 matches: matches

 additional_information: additionalInformation

 })

 results

module.exports = (paramaters, apiKey, callback)->

 url = makeUrl paramaters, apiKey # Make the URL

 # Make the actual request, and call the callback

 request {url: url, json: true}, (error, response, body) ->

 if !error and response.statusCode == 200 then callback formatResults body

 else callback(error)

6.21.1

~ 295 ~

6.22 MODULE 9 – FIND REGION FROM LOCATION
fs = require('fs')

_private = {}

Takes the raw CSV string and returns a nice list of JSON region objects

convertCsvToJson = (csvRegions) ->

 regions = []

 for r in csvRegions.splice 1,csvRegions.length # For each line in CSV file

 r = r.match(/(".*?"|[^",\s]+)(?=\s*,|\s*$)/g) # Break into array

 for e, i in r then r[i] = r[i].replace(/['"]+/g, '').trim() # Neaten

 regions.push { # Create a JSON object for region, and push to results

 country: r[0], alpha2_code: r[1], alpha3_code: r[2],

 numeric_code: r[3], latitude: Number(r[4]), longitude: Number(r[5])

 }

 regions # Done, return regions

Returns a region object closest to a given latitude and longitude

findRegion = (lat, lng) ->

 # Inject regions from CSV file

 csvRegions = fs.readFileSync(__dirname + '/regions.csv', 'utf8').split('\r\n')

 # Convert regions to JSON

 regions = convertCsvToJson csvRegions

 # Find difference between our location and region location

 for r in regions

 r.diff= Math.round(Math.abs(r.latitude - lat) + Math.abs(r.longitude - lng))

 # Sort regions by closest first

 regions.sort (a, b) -> parseFloat(a.diff) - parseFloat(b.diff)

 regions[0] # Return closest region

Create and export functions

module.exports.country = (lat, lng) -> findRegion(lat, lng).country

module.exports.alpha2_code = (lat, lng) -> findRegion(lat, lng).alpha2_code

module.exports.alpha3_code = (lat, lng) -> findRegion(lat, lng).alpha3_code

module.exports.numeric_code = (lat, lng) -> findRegion(lat, lng).numeric_code

module.exports.regionObject = findRegion

~ 296 ~

7 APPENDIX SEVEN

TECH STACK

This appendix document briefly lists all the external packages, libraries, frameworks

and opensource languages that were utilised to create the final solution

Twitter Sentiment Visualisations

The research and development of a sentiment analysis module, and the

implementation of it on real-time social media data, to generate a series of live

visual representations of sentiment towards a specific topic or by location in

order to find trends.

Alicia Sykes 12011471

Oxford Brookes University

~ 297 ~

Language 1 Node.js

Language 7 JavaScript

Language 2 CoffeeScript

Language 5 CSS3

Language 4 Less

Language 6 HTML5

Language 3 Jade

Language 8 Markdown

Database 1 MongoDB Framework 1 Express.js

Framework 2 Socket.io

Library 1 D3.js

API 1 IBM Watson

~ 298 ~

Library 2 jQuery

Library 3 Underscore.js

API 2 HP Haven OnDemand

API 3 Google Places Dev Tools 7 GitHub

Dev Tools 8 JetBrains WebStorm

Dev Tools 5 Gulp

Dev Tools 6 Require.js

Dev Tools 4 Bower

Dev Tools 2 Node Package Manager

Dev Tools 3 Node Package Manager

Dev Tools 1 Chai and Mocha
Dev Tools 9 Code Climate

