where $S(X,Y) = \frac{1}{2\mu} \{ (X\mu)Y + (Y\mu)X - g(X,Y) \text{ grad } \mu \}$ and grad μ is calculated in the metric g, that is,

$$X(\mu) = g(X, \operatorname{grad} \mu).$$

Hint: Since $\overline{\nabla}$ is obviously symmetric, it suffices to show that $\overline{\nabla}$ is compatible with \overline{g} , that is, that

$$X(\bar{g}(Y,Z)) = \bar{g}(\overline{\nabla}_X Y, Z) + \bar{g}(Y, \overline{\nabla}_X Z).$$

But the first member of the equality above is

$$X(\mu g(Y,Z)) = X(\mu)g(Y,Z) + \mu g(\nabla_X Y,Z) + \mu g(Y,\nabla_X Z),$$

and the second is

$$\mu g(\nabla_X Y, Z) + \mu g(Y, \nabla_X Z)$$

$$+\mu \{g(S(X,Y),Z)+g(Y,S(X,Z))\}.$$

Therefore, it is enough to prove that

$$X(\mu)g(Y,Z) = \mu \{g(S(X,Y),Z) + g(Y,S(X,Z))\},\$$

which follows from a direct calculation.

6. (Umbilic hypersurfaces of the hyperbolic space). Let (M^{n+1}, g) be a manifold with a Riemannian metric g and let ∇ be its Riemannian connection. We say an immersion $x: N^n \to M^{n+1}$ is (totally) umbilic if for all $p \in N$, the second fundamental form B of x at p satisfies

$$\langle B(X,Y),\eta\rangle(p)=\lambda(p)\,\langle X,Y\rangle\,,\qquad \lambda(p)\in\mathbf{R},$$

for all $X, Y \in \mathcal{X}(N)$ and for a given unit field η normal to x(N); here we are using \langle , \rangle to denote the metric g on M and the metric induced by x on N.

a) Show that if M^{n+1} has constant sectional curvature, λ does not depend on p.

Hint: Let $T, X, Y \in \mathcal{X}(N)$. The given condition implies that

$$-\langle \nabla_X \eta, Y \rangle = \lambda \langle X, Y \rangle$$
 and $-\langle \nabla_T \eta, Y \rangle = \lambda \langle T, Y \rangle$.

Differentiate the first equation with respect to T and the second with respect to X, obtaining, for all Y,

$$\langle \nabla_T \nabla_X \eta - \nabla_X \nabla_T \eta, Y \rangle$$

$$= - \langle T(\lambda)X - X(\lambda)T + \nabla_{[X,T]}\eta, Y \rangle.$$

Use the fact that M has constant sectional curvature to conclude that $T(\lambda)X - X(\lambda)T = 0$. Because T and X can be chosen linearly independently, this implies that $X(\lambda) = 0$, for all $X \in \mathcal{X}(N)$; therefore $\lambda = \text{const.}$

b) Use Exercise 5 to show that if we change the metric g to a metric $\bar{g} = \mu g$, conformal to g, the immersion $x: N^n \to (M^{n+1}, \bar{g})$ continues being umbilic, that is, if (using the notation of Exercise 5) $\langle \nabla_X \eta, Y \rangle_g = -\lambda \langle X, Y \rangle_g$, then

$$\left\langle \overline{\nabla}_X(\frac{\eta}{\sqrt{\mu}}), Y \right\rangle_{\overline{g}} = \frac{-2\lambda\mu + \eta(\mu)}{2\mu\sqrt{\mu}} \left\langle X, Y \right\rangle_{\overline{g}}.$$

c) Take $M^{n+1} = \mathbb{R}^{n+1}$ with the euclidean metric. Show that if $x: N^n \to \mathbb{R}^{n+1}$ is umbilic, then x(N) is contained in an *n*-plane or an *n*-sphere in \mathbb{R}^{n+1} .

Hint: For (a), $\lambda = \text{constant}$. If $\lambda = 0$, $\langle \nabla_X \eta, Y \rangle = 0$ for all $X, Y \in \mathcal{X}(N)$ and all $\eta \in \mathcal{X}(N)^{\perp}$. It follows that x(N) is contained in an affine *n*-plane in \mathbb{R}^{n+1} . If $\lambda \neq 0$, consider the map $y: N \to \mathbb{R}^{n+1}$ given by

$$y(p) = x(p) - \frac{\eta(p)}{\lambda}, \qquad p \in N.$$

Let $T, Y \in \mathcal{X}(N)$. Observe that

$$\langle
abla_T \mathtt{Y}, Y
angle = \langle T, Y
angle - rac{1}{\lambda} \left\langle
abla_T \eta, Y
ight
angle = 0.$$

It follows that y(N) reduces to a point, call it x_o , and that x satisfies

$$|x(p) - x_o|^2 = 1/\lambda^2,$$

that is, x(N) is contained in a sphere of center x_o and radius $1/\lambda$.

- d) Use (b) and (c) to establish that the umbilic hypersurfaces of the hyperbolic space, in the upper half-space model H^{n+1} , are the intersections with H^{n+1} of n-planes or n-spheres of \mathbf{R}^{n+1} . Therefore, the umbilic hypersurfaces of the hyperbolic space are the geodesic spheres, the horospheres and the hyperspheres. Conclude that such hypersurfaces have constant sectional curvature.
- e) Calculate the mean curvature and the sectional curvature of the umbilic hypersurfaces of the hyperbolic space.

Hint: Consider the model of H^n as the upper half-space. Let $\sum = S \cap H^n$ be the intersection of H^n with a Euclidean (n-1)-sphere $S \subset \mathbb{R}^n$ of radius 1 and center in H^n . Since \sum is umbilic, all of the directions are principal, and it is enough to calculate the curvature of the curves of intersection of \sum with the x_1x_n -plane. Use the expression obtained in part (b) of this exercise to establish that the mean curvature of \sum (in the metric of H^n) is equal to 1 if S is tangent to ∂H^n , is equal to $\cos \alpha$ if S makes an angle α with ∂H^n , and is equal to the "height" of the Euclidean center of S relative to ∂H^n , if $S \subset H^n$. To calculate the sectional curvature, use the Gauss formula.

7. Define a "stereographic projection" $f: H_{-1}^n \to D^n$ from the model of the hyperbolic space H_{-1}^n of curvature -1 given in Exercise 3 onto the open ball

$$D^{n} = \{(x_{o}, \ldots, x_{n}); x_{o} = 0, \sum_{\alpha=1}^{n} x_{\alpha}^{2} < 1\}$$

in the following way: If $p \in H_{-1}^n \subset L^{n+1}$, join p to $p_o = (-1, 0, ..., 0)$ by a line r; f(p) is the intersection of r with D^n (See Fig. 3). Let $p = (x_0, ..., x_n)$ and $f(p) = (0, u_1, ..., u_n)$.

a) Prove that:

$$x_{\alpha} = \frac{2u_{\alpha}}{1 - \sum_{\alpha} u_{\alpha}^{2}}, \quad \alpha = 1, \dots, n,$$

$$x_{o} = \frac{2}{1 - \sum_{\alpha} u_{\alpha}^{2}} - 1.$$