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Chapter 1

INTRODUCTION TO DIFFERENTIAL EQUATIONS

1.1 Definitions and Terminology

INTRODUCTION TO

DIFFERENTIAL EQUATIONS1

1.1 Definitions and Terminology

1. Second order; linear

2. Third order; nonlinear because of (dy/dx)4

3. Fourth order; linear

4. Second order; nonlinear because of cos(r + u)

5. Second order; nonlinear because of (dy/dx)2 or
√

1 + (dy/dx)2

6. Second order; nonlinear because of R2

7. Third order; linear

8. Second order; nonlinear because of ẋ2

9. Writing the boundary-value problem in the form x(dy/dx) + y2 = 1, we see that it is nonlinear

in y because of y2. However, writing it in the form (y2 − 1)(dx/dy) + x = 0, we see that it is

linear in x.

10. Writing the differential equation in the form u(dv/du) + (1 + u)v = ueu we see that it is linear

in v. However, writing it in the form (v+uv−ueu)(du/dv) +u = 0, we see that it is nonlinear

in u.

11. From y = e−x/2 we obtain y′ = −1
2e
−x/2. Then 2y′ + y = −e−x/2 + e−x/2 = 0.

12. From y = 6
5 −

6
5e
−20t we obtain dy/dt = 24e−20t, so that

dy

dt
+ 20y = 24e−20t + 20

(
6

5
− 6

5
e−20t

)
= 24.

13. From y = e3x cos 2x we obtain y′ = 3e3x cos 2x− 2e3x sin 2x and y′′ = 5e3x cos 2x− 12e3x sin 2x,

so that y′′ − 6y′ + 13y = 0.

14. From y = − cosx ln(secx+ tanx) we obtain y′ = −1 + sinx ln(secx+ tanx) and

y′′ = tanx+ cosx ln(secx+ tanx). Then y′′ + y = tanx.
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CHAPTER 1 INTRODUCTION TO DIFFERENTIAL EQUATIONS

15. The domain of the function, found by solving x+ 2 ≥ 0, is [−2,∞). From y′ = 1 + 2(x+ 2)−1/2

we have

(y − x)y′ = (y − x)[1 + (2(x+ 2)−1/2]

= y − x+ 2(y − x)(x+ 2)−1/2

= y − x+ 2[x+ 4(x+ 2)1/2 − x](x+ 2)−1/2

= y − x+ 8(x+ 2)1/2(x+ 2)−1/2 = y − x+ 8.

An interval of definition for the solution of the differential equation is (−2,∞) because y′ is

not defined at x = −2.

16. Since tanx is not defined for x = π/2 + nπ, n an integer, the domain of y = 5 tan 5x is

{x
∣∣ 5x 6= π/2 + nπ} or {x

∣∣ x 6= π/10 + nπ/5}. From y′ = 25 sec2 5x we have

y′ = 25(1 + tan2 5x) = 25 + 25 tan2 5x = 25 + y2.

An interval of definition for the solution of the differential equation is (−π/10, π/10). Another

interval is (π/10, 3π/10), and so on.

17. The domain of the function is {x
∣∣ 4−x2 6= 0} or {x

∣∣ x 6= −2 or x 6= 2}. From y′ = 2x/(4−x2)2

we have

y′ = 2x

(
1

4− x2

)2

= 2xy2.

An interval of definition for the solution of the differential equation is (−2, 2). Other intervals

are (−∞,−2) and (2,∞).

18. The function is y = 1/
√

1− sinx , whose domain is obtained from 1 − sinx 6= 0 or sinx 6= 1.

Thus, the domain is {x
∣∣ x 6= π/2 + 2nπ}. From y′ = −1

2(1− sinx)−3/2(− cosx) we have

2y′ = (1− sinx)−3/2 cosx = [(1− sinx)−1/2]3 cosx = y3 cosx.

An interval of definition for the solution of the differential equation is (π/2, 5π/2). Another

interval is (5π/2, 9π/2) and so on.

19. Writing ln(2X − 1)− ln(X − 1) = t and differentiating implicitly we obtain

2

2X − 1

dX

dt
− 1

X − 1

dX

dt
= 1(

2

2X − 1
− 1

X − 1

)
dX

dt
= 1

2X − 2− 2X + 1

(2X − 1)(X − 1)

dX

dt
= 1

dX

dt
= −(2X − 1)(X − 1) = (X − 1)(1− 2X).

2
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1.1 Definitions and Terminology

Exponentiating both sides of the implicit solution we obtain

2X − 1

X − 1
= et

2X − 1 = Xet − et

et − 1 = (et − 2)X

X =
et − 1

et − 2
.

-3 -2 -1 1 2 3

-2

-1

1

2

3

4

y

x

Solving et − 2 = 0 we get t = ln 2. Thus, the solution is defined on (−∞, ln 2) or on (ln 2,∞).

The graph of the solution defined on (−∞, ln 2) is dashed, and the graph of the solution defined

on (ln 2,∞) is solid.

20. Implicitly differentiating the solution, we obtain

−2x2
dy

dx
− 4xy + 2y

dy

dx
= 0

−x2 dy − 2xy dx+ y dy = 0

2xy dx+ (x2 − y)dy = 0.

Using the quadratic formula to solve y2− 2x2y− 1 = 0 for y,

we get y =
(
2x2 ±

√
4x4 + 4

)
/2 = x2 ±

√
x4 + 1 . Thus,

-4 -2 2 4

-4

-2

2

4

y

x

two explicit solutions are y1 = x2 +
√
x4 + 1 and y2 = x2 −

√
x4 + 1 . Both solutions are

defined on (−∞,∞). The graph of y1(x) is solid and the graph of y2 is dashed.

21. Differentiating P = c1e
t/
(
1 + c1e

t
)

we obtain

dP

dt
=

(
1 + c1e

t
)
c1e

t − c1et · c1et

(1 + c1et)
2 =

c1e
t

1 + c1et

[(
1 + c1e

t
)
− c1et

]
1 + c1et

=
c1e

t

1 + c1et

[
1− c1e

t

1 + c1et

]
= P (1− P ).

22. Differentiating y = e−x
2

∫ x

0
et

2
dt+ c1e

−x2 we obtain

y′ = e−x
2
ex

2 − 2xe−x
2

∫ x

0
et

2
dt− 2c1xe

−x2 = 1− 2xe−x
2

∫ x

0
et

2
dt− 2c1xe

−x2 .

Substituting into the differential equation, we have

y′ + 2xy = 1− 2xe−x
2

∫ x

0
et

2
dt− 2c1xe

−x2 + 2xe−x
2

∫ x

0
et

2
dt+ 2c1xe

−x2 = 1.

23. From y = c1e
2x + c2xe

2x we obtain
dy

dx
= (2c1 + c2)e

2x + 2c2xe
2x and

d2y

dx2
= (4c1 + 4c2)e

2x +

4c2xe
2x, so that

d2y

dx2
− 4

dy

dx
+ 4y = (4c1 + 4c2 − 8c1 − 4c2 + 4c1)e

2x + (4c2 − 8c2 + 4c2)xe
2x = 0.

3
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CHAPTER 1 INTRODUCTION TO DIFFERENTIAL EQUATIONS

24. From y = c1x
−1 + c2x+ c3x lnx+ 4x2 we obtain

dy

dx
= −c1x−2 + c2 + c3 + c3 lnx+ 8x,

d2y

dx2
= 2c1x

−3 + c3x
−1 + 8,

and

d3y

dx3
= −6c1x

−4 − c3x−2,

so that

x3
d3y

dx3
+ 2x2

d2y

dx2
− x dy

dx
+ y = (−6c1 + 4c1 + c1 + c1)x

−1 + (−c3 + 2c3 − c2 − c3 + c2)x

+ (−c3 + c3)x lnx+ (16− 8 + 4)x2

= 12x2.

25. From y =

{
−x2, x < 0

x2, x ≥ 0
we obtain y′ =

{
−2x, x < 0

2x, x ≥ 0
so that xy′ − 2y = 0.

26. The function y(x) is not continuous at x = 0 since lim
x→0−

y(x) = 5 and lim
x→0+

y(x) = −5. Thus,

y′(x) does not exist at x = 0.

27. From y = emx we obtain y′ = memx. Then y′ + 2y = 0 implies

memx + 2emx = (m+ 2)emx = 0.

Since emx > 0 for all x, m = −2. Thus y = e−2x is a solution.

28. From y = emx we obtain y′ = memx. Then 5y′ = 2y implies

5memx = 2emx or m =
2

5
.

Thus y = e2x/5 > 0 is a solution.

29. From y = emx we obtain y′ = memx and y′′ = m2emx. Then y′′ − 5y′ + 6y = 0 implies

m2emx − 5memx + 6emx = (m− 2)(m− 3)emx = 0.

Since emx > 0 for all x, m = 2 and m = 3. Thus y = e2x and y = e3x are solutions.

30. From y = emx we obtain y′ = memx and y′′ = m2emx. Then 2y′′ + 7y′ − 4y = 0 implies

2m2emx + 7memx − 4emx = (2m− 1)(m+ 4)emx = 0.

Since emx > 0 for all x, m = 1
2 and m = −4. Thus y = ex/2 and y = e−4x are solutions.

4
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1.1 Definitions and Terminology

31. From y = xm we obtain y′ = mxm−1 and y′′ = m(m− 1)xm−2. Then xy′′ + 2y′ = 0 implies

xm(m− 1)xm−2 + 2mxm−1 = [m(m− 1) + 2m]xm−1 = (m2 +m)xm−1

= m(m+ 1)xm−1 = 0.

Since xm−1 > 0 for x > 0, m = 0 and m = −1. Thus y = 1 and y = x−1 are solutions.

32. From y = xm we obtain y′ = mxm−1 and y′′ = m(m − 1)xm−2. Then x2y′′ − 7xy′ + 15y = 0

implies

x2m(m− 1)xm−2 − 7xmxm−1 + 15xm = [m(m− 1)− 7m+ 15]xm

= (m2 − 8m+ 15)xm = (m− 3)(m− 5)xm = 0.

Since xm > 0 for x > 0, m = 3 and m = 5. Thus y = x3 and y = x5 are solutions.

In Problems 33–36 we substitute y = c into the differential equations and use y′ = 0 and y′′ = 0.

33. Solving 5c = 10 we see that y = 2 is a constant solution.

34. Solving c2 + 2c− 3 = (c+ 3)(c− 1) = 0 we see that y = −3 and y = 1 are constant solutions.

35. Since 1/(c− 1) = 0 has no solutions, the differential equation has no constant solutions.

36. Solving 6c = 10 we see that y = 5/3 is a constant solution.

37. From x = e−2t + 3e6t and y = −e−2t + 5e6t we obtain

dx

dt
= −2e−2t + 18e6t and

dy

dt
= 2e−2t + 30e6t.

Then

x+ 3y = (e−2t + 3e6t) + 3(−e−2t + 5e6t) = −2e−2t + 18e6t =
dx

dt
and

5x+ 3y = 5(e−2t + 3e6t) + 3(−e−2t + 5e6t) = 2e−2t + 30e6t =
dy

dt
.

38. From x = cos 2t+ sin 2t+ 1
5e
t and y = − cos 2t− sin 2t− 1

5e
t we obtain

dx

dt
= −2 sin 2t+ 2 cos 2t+

1

5
et or

dy

dt
= 2 sin 2t− 2 cos 2t− 1

5
et

and

d2x

dt2
= −4 cos 2t− 4 sin 2t+

1

5
et or

d2y

dt2
= 4 cos 2t+ 4 sin 2t− 1

5
et.

Then

4y + et = 4(− cos 2t− sin 2t− 1

5
et) + et = −4 cos 2t− 4 sin 2t+

1

5
et =

d2x

dt2

and

4x− et = 4(cos 2t+ sin 2t+
1

5
et)− et = 4 cos 2t+ 4 sin 2t− 1

5
et =

d2y

dt2
.

5
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CHAPTER 1 INTRODUCTION TO DIFFERENTIAL EQUATIONS

Discussion Problems

39. (y′)2 + 1 = 0 has no real solutions because (y′)2 + 1 is positive for all functions y = φ(x).

40. The only solution of (y′)2 + y2 = 0 is y = 0, since, if y 6= 0, y2 > 0 and (y′)2 + y2 ≥ y2 > 0.

41. The first derivative of f(x) = ex is ex. The first derivative of f(x) = ekx is f ′(x) = kekx. The

differential equations are y′ = y and y′ = ky, respectively.

42. Any function of the form y = cex or y = ce−x is its own second derivative. The corresponding

differential equation is y′′ − y = 0. Functions of the form y = c sinx or y = c cosx have second

derivatives that are the negatives of themselves. The differential equation is y′′ + y = 0.

43. We first note that
√

1− y2 =
√

1− sin2 x =
√

cos2 x = | cosx|. This prompts us to consider

values of x for which cosx < 0, such as x = π. In this case

dy

dx

∣∣∣∣∣
x=π

=
d

dx
(sinx)

∣∣∣∣∣
x=π

= cosx
∣∣
x=π

= cosπ = −1,

but √
1− y2

∣∣∣
x=π

=
√

1− sin2 π =
√

1 = 1.

Thus, y = sinx will only be a solution of y′ =
√

1− y2 when cosx > 0. An interval of definition

is then (−π/2, π/2). Other intervals are (3π/2, 5π/2), (7π/2, 9π/2), and so on.

44. Since the first and second derivatives of sin t and cos t involve sin t and cos t, it is plausible that

a linear combination of these functions, A sin t+B cos t, could be a solution of the differential

equation. Using y′ = A cos t − B sin t and y′′ = −A sin t − B cos t and substituting into the

differential equation we get

y′′ + 2y′ + 4y = −A sin t−B cos t+ 2A cos t− 2B sin t+ 4A sin t+ 4B cos t

= (3A− 2B) sin t+ (2A+ 3B) cos t = 5 sin t.

Thus 3A − 2B = 5 and 2A + 3B = 0. Solving these simultaneous equations we find A = 15
13

and B = −10
13 . A particular solution is y = 15

13 sin t− 10
13 cos t.

45. One solution is given by the upper portion of the graph with domain approximately (0, 2.6).

The other solution is given by the lower portion of the graph, also with domain approximately

(0, 2.6).

46. One solution, with domain approximately (−∞, 1.6) is the portion of the graph in the second

quadrant together with the lower part of the graph in the first quadrant. A second solution,

with domain approximately (0, 1.6) is the upper part of the graph in the first quadrant. The

third solution, with domain (0, ∞), is the part of the graph in the fourth quadrant.

6
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1.1 Definitions and Terminology

47. Differentiating (x3 + y3)/xy = 3c we obtain

xy(3x2 + 3y2y′)− (x3 + y3)(xy′ + y)

x2y2
= 0

3x3y + 3xy3y′ − x4y′ − x3y − xy3y′ − y4 = 0

(3xy3 − x4 − xy3)y′ = −3x3y + x3y + y4

y′ =
y4 − 2x3y

2xy3 − x4
=
y(y3 − 2x3)

x(2y3 − x3)
.

48. A tangent line will be vertical where y′ is undefined, or in this case, where x(2y3 − x3) = 0.

This gives x = 0 and 2y3 = x3. Substituting y3 = x3/2 into x3 + y3 = 3xy we get

x3 +
1

2
x3 = 3x

(
1

21/3
x

)
3

2
x3 =

3

21/3
x2

x3 = 22/3x2

x2(x− 22/3) = 0.

Thus, there are vertical tangent lines at x = 0 and x = 22/3, or at (0, 0) and (22/3, 21/3). Since

22/3 ≈ 1.59, the estimates of the domains in Problem 46 were close.

49. The derivatives of the functions are φ′1(x) = −x/
√

25− x2 and φ′2(x) = x/
√

25− x2, neither

of which is defined at x = ±5.

50. To determine if a solution curve passes through (0, 3) we let t = 0 and P = 3 in the equation

P = c1e
t/(1 + c1e

t). This gives 3 = c1/(1 + c1) or c1 = −3
2 . Thus, the solution curve

P =
(−3/2)et

1− (3/2)et
=
−3et

2− 3et

passes through the point (0, 3). Similarly, letting t = 0 and P = 1 in the equation for the

one-parameter family of solutions gives 1 = c1/(1 + c1) or c1 = 1 + c1. Since this equation has

no solution, no solution curve passes through (0, 1).

51. For the first-order differential equation integrate f(x). For the second-order differential equa-

tion integrate twice. In the latter case we get y =
∫

(
∫
f(x)dx)dx+ c1x+ c2.

52. Solving for y′ using the quadratic formula we obtain the two differential equations

y′ =
1

x

(
2 + 2

√
1 + 3x6

)
and y′ =

1

x

(
2− 2

√
1 + 3x6

)
,

so the differential equation cannot be put in the form dy/dx = f(x, y).

53. The differential equation yy′ − xy = 0 has normal form dy/dx = x. These are not equivalent

because y = 0 is a solution of the first differential equation but not a solution of the second.

7
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CHAPTER 1 INTRODUCTION TO DIFFERENTIAL EQUATIONS

54. Differentiating y = c1x + c2x
2 we get y′ = c1 + 2c2x and y′′ = 2c2. Then c2 = 1

2 y
′′ and

c1 = y′ − xy′′, so

y = c1x+ c2x
2 = (y′ − xy′′)x+

1

2
y′′x2 = xy′ − 1

2
x2y′′.

The differential equation is 1
2 x

2y′′ − xy′ + y = 0 or x2y′′ − 2xy′ + 2y = 0.

55. (a) Since e−x
2

is positive for all values of x, dy/dx > 0 for all x, and a solution, y(x), of the

differential equation must be increasing on any interval.

(b) lim
x→−∞

dy

dx
= lim

x→−∞
e−x

2
= 0 and lim

x→∞

dy

dx
= lim

x→∞
e−x

2
= 0. Since

dy

dx
approaches 0 as x

approaches −∞ and ∞, the solution curve has horizontal asymptotes to the left and to

the right.

(c) To test concavity we consider the second derivative

d2y

dx2
=

d

dx

(
dy

dx

)
=

d

dx

(
e−x

2
)

= −2xe−x
2
.

Since the second derivative is positive for x < 0 and negative for x > 0, the solution curve

is concave up on (−∞, 0) and concave down on (0,∞). x

(d)

-4 -2 2 4

-1

0.5

y

x

56. (a) The derivative of a constant solution y = c is 0, so solving 5− c = 0 we see that c = 5 and

so y = 5 is a constant solution.

(b) A solution is increasing where dy/dx = 5− y > 0 or y < 5. A solution is decreasing where

dy/dx = 5− y < 0 or y > 5.

57. (a) The derivative of a constant solution is 0, so solving y(a− by) = 0 we see that y = 0 and

y = a/b are constant solutions.

(b) A solution is increasing where dy/dx = y(a − by) = by(a/b − y) > 0 or 0 < y < a/b. A

solution is decreasing where dy/dx = by(a/b− y) < 0 or y < 0 or y > a/b.

(c) Using implicit differentiation we compute

d2y

dx2
= y(−by′) + y′(a− by) = y′(a− 2by).

Solving d2y/dx2 = 0 we obtain y = a/2b. Since d2y/dx2 > 0 for 0 < y < a/2b and

d2y/dx2 < 0 for a/2b < y < a/b, the graph of y = φ(x) has a point of inflection at

y = a/2b.

8
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1.1 Definitions and Terminology

(d)

-2 -1 1 2

-4

-2

2

4

6

y

x

58. (a) If y = c is a constant solution then y′ = 0, but c2 + 4 is never 0 for any real value of c.

(b) Since y′ = y2 + 4 > 0 for all x where a solution y = φ(x) is defined, any solution must

be increasing on any interval on which it is defined. Thus it cannot have any relative

extrema.

(c) Using implicit differentiation we compute d2y/dx2 = 2yy′ = 2y(y2 +4). Setting d2y/dx2 =

0 we see that y = 0 corresponds to the only possible point of inflection. Since d2y/dx2 < 0

for y < 0 and d2y/dx2 > 0 for y > 0, there is a point of inflection where y = 0.

(d)

-1 1

-2

2

y

x

Computer Lab Assignments

59. In Mathematica use

Clear[y]

y[x ]:= x Exp[5x] Cos[2x]

y[x]

y ′ ′ ′ ′ [x] - 20 y ′ ′ ′ [x] + 158 y ′ ′ [x] - 580 y ′ [x] + 841 y[x] // Simplify

The output will show y(x) = e5xx cos 2x, which verifies that the correct function was entered,

and 0, which verifies that this function is a solution of the differential equation.

9
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CHAPTER 1 INTRODUCTION TO DIFFERENTIAL EQUATIONS

60. In Mathematica use

Clear[y]

y[x ]:= 20Cos[5 Log[x]]/x - 3 Sin[5 Log[x]]/x

y[x]

x ∧ 3 y ′ ′ ′ [x] + 2 x ∧ 2 y ′ ′ [x] + 20 x y ′ [x] - 78 y[x] // Simplify

The output will show y(x) =
20 cos(5 lnx)

x
− 3 sin(5 lnx)

x
, which verifies that the correct

function was entered, and 0, which verifies that this function is a solution of the differential

equation.

1.2 Initial-Value Problems

1.2 Initial-Value Problems

1. Solving −1/3 = 1/(1 + c1) we get c1 = −4. The solution is y = 1/(1− 4e−x).

2. Solving 2 = 1/(1 + c1e) we get c1 = −(1/2)e−1. The solution is y = 2/(2− e−(x+1)) .

3. Letting x = 2 and solving 1/3 = 1/(4 + c) we get c = −1. The solution is y = 1/(x2− 1). This

solution is defined on the interval (1,∞).

4. Letting x = −2 and solving 1/2 = 1/(4 + c) we get c = −2. The solution is y = 1/(x2 − 2).

This solution is defined on the interval (−∞,−
√

2 ).

5. Letting x = 0 and solving 1 = 1/c we get c = 1. The solution is y = 1/(x2 + 1). This solution

is defined on the interval (−∞,∞).

6. Letting x = 1/2 and solving −4 = 1/(1/4 + c) we get c = −1/2. The solution is y =

1/(x2 − 1/2) = 2/(2x2 − 1). This solution is defined on the interval (−1/
√

2 , 1/
√

2 ).

In Problems 7–10 we use x = c1 cos t+ c2 sin t and x′ = −c1 sin t+ c2 cos t to obtain a system of two

equations in the two unknowns c1 and c2.

7. From the initial conditions we obtain the system

c1 = −1

c2 = 8.

The solution of the initial-value problem is x = − cos t+ 8 sin t.

10
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1.2 Initial-Value Problems

8. From the initial conditions we obtain the system

c2 = 0

−c1 = 1.

The solution of the initial-value problem is x = − cos t.

9. From the initial conditions we obtain
√

3

2
c1 +

1

2
c2 =

1

2

−1

2
c1 +

√
3

2
c2 = 0.

Solving, we find c1 =
√

3/4 and c2 = 1/4. The solution of the initial-value problem is

x = (
√

3/4) cos t+ (1/4) sin t.

10. From the initial conditions we obtain
√

2

2
c1 +

√
2

2
c2 =

√
2

−
√

2

2
c1 +

√
2

2
c2 = 2

√
2 .

Solving, we find c1 = −1 and c2 = 3. The solution of the initial-value problem is

x = − cos t+ 3 sin t.

In Problems 11–14 we use y = c1e
x + c2e

−x and y′ = c1e
x − c2e

−x to obtain a system of two

equations in the two unknowns c1 and c2.

11. From the initial conditions we obtain

c1 + c2 = 1

c1 − c2 = 2.

Solving, we find c1 = 3
2 and c2 = −1

2 . The solution of the initial-value problem is

y =
3

2
ex − 1

2
e−x.

12. From the initial conditions we obtain

ec1 + e−1c2 = 0

ec1 − e−1c2 = e.

Solving, we find c1 = 1
2 and c2 = −1

2e
2. The solution of the initial-value problem is

y =
1

2
ex − 1

2
e2e−x =

1

2
ex − 1

2
e2−x.

11
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CHAPTER 1 INTRODUCTION TO DIFFERENTIAL EQUATIONS

13. From the initial conditions we obtain

e−1c1 + ec2 = 5

e−1c1 − ec2 = −5.

Solving, we find c1 = 0 and c2 = 5e−1. The solution of the initial-value problem is

y = 5e−1e−x = 5e−1−x.

14. From the initial conditions we obtain

c1 + c2 = 0

c1 − c2 = 0.

Solving, we find c1 = c2 = 0. The solution of the initial-value problem is y = 0.

15. Two solutions are y = 0 and y = x3.

16. Two solutions are y = 0 and y = x2. A lso, any constant multiple of x2 is a solution.

17. For f(x, y) = y2/3 we have Thus, the differential equation will have a unique solution in any

rectangular region of the plane where y 6= 0.

18. For f(x, y) =
√
xy we have ∂f/∂y = 1

2

√
x/y . Thus, the differential equation will have a unique

solution in any region where x > 0 and y > 0 or where x < 0 and y < 0.

19. For f(x, y) =
y

x
we have

∂f

∂y
=

1

x
. Thus, the differential equation will have a unique solution

in any region where x > 0 or where x < 0.

20. For f(x, y) = x+y we have
∂f

∂y
= 1. Thus, the differential equation will have a unique solution

in the entire plane.

21. For f(x, y) = x2/(4− y2) we have ∂f/∂y = 2x2y/(4− y2)2. Thus the differential equation will

have a unique solution in any region where y < −2, −2 < y < 2, or y > 2.

22. For f(x, y) =
x2

1 + y3
we have

∂f

∂y
=
−3x2y2

(1 + y3)2
. Thus, the differential equation will have a

unique solution in any region where y 6= −1.

23. For f(x, y) =
y2

x2 + y2
we have

∂f

∂y
=

2x2y

(x2 + y2)2
. Thus, the differential equation will have a

unique solution in any region not containing (0, 0).

24. For f(x, y) = (y + x)/(y − x) we have ∂f/∂y = −2x/(y − x)2. Thus the differential equation

will have a unique solution in any region where y < x or where y > x.

12
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1.2 Initial-Value Problems

In Problems 25–28 we identify f(x, y) =
√
y2 − 9 and ∂f/∂y = y/

√
y2 − 9. We see that f and

∂f/∂y are both continuous in the regions of the plane determined by y < −3 and y > 3 with no

restrictions on x.

25. Since 4 > 3, (1, 4) is in the region defined by y > 3 and the differential equation has a unique

solution through (1, 4).

26. Since (5, 3) is not in either of the regions defined by y < −3 or y > 3, there is no guarantee of

a unique solution through (5, 3).

27. Since (2,−3) is not in either of the regions defined by y < −3 or y > 3, there is no guarantee

of a unique solution through (2,−3).

28. Since (−1, 1) is not in either of the regions defined by y < −3 or y > 3, there is no guarantee

of a unique solution through (−1, 1).

29. (a) A one-parameter family of solutions is y = cx. Since y′ = c, xy′ = xc = y and y(0) =

c · 0 = 0.

(b) Writing the equation in the form y′ = y/x, we see that R cannot contain any point on the

y-axis. Thus, any rectangular region disjoint from the y-axis and containing (x0, y0) will

determine an interval around x0 and a unique solution through (x0, y0). Since x0 = 0 in

part (a), we are not guaranteed a unique solution through (0, 0).

(c) The piecewise-defined function which satisfies y(0) = 0 is not a solution since it is not

differentiable at x = 0.

30. (a) Since
d

dx
tan(x + c) = sec2(x + c) = 1 + tan2(x + c), we see that y = tan(x + c) satisfies

the differential equation.

(b) Solving y(0) = tan c = 0 we obtain c = 0 and y = tanx. Since tanx is discontinuous at

x = ±π/2, the solution is not defined on (−2, 2) because it contains ±π/2.

(c) The largest interval on which the solution can exist is (−π/2, π/2).

31. (a) Since
d

dx

(
− 1

x+ c

)
=

1

(x+ c)2
= y2, we see that y = − 1

x+ c
is a solution of the differential

equation.

(b) Solving y(0) = −1/c = 1 we obtain c = −1 and y = 1/(1− x). Solving y(0) = −1/c = −1

we obtain c = 1 and y = −1/(1 +x). Being sure to include x = 0, we see that the interval

of existence of y = 1/(1− x) is (−∞, 1), while the interval of existence of y = −1/(1 + x)

is (−1,∞).

(c) By inspection we see that y = 0 is a solution on (−∞,∞).

13
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CHAPTER 1 INTRODUCTION TO DIFFERENTIAL EQUATIONS

32. (a) Applying y(1) = 1 to y = −1/(x+ c) gives

1 = − 1

1 + c
or 1 + c = −1.

Thus c = −2 and

y = − 1

x− 2
=

1

2− x
.

(b) Applying y(3) = −1 to y = −1/(x+ c) gives

−1 = − 1

3 + c
or 3 + c = 1.

Thus c = −2 and

y = − 1

x− 2
=

1

2− x
.

H1, 1L

H3, -1L
1 2 3 4

x

-4

-2

2

4

y y = 1
2−x , (−∞, 2)

y = 1
2−x , (2, ∞)

(c) No, they are not the same solution. The interval I of definition for the solution in part (a)

is (−∞, 2); whereas the interval I of definition for the solution in part (b) is (2,∞). See

the figure.

33. (a) Differentiating 3x2 − y2 = c we get 6x− 2yy′ = 0 or yy′ = 3x.

(b) Solving 3x2 − y2 = 3 for y we get

y = φ1(x) =
√

3(x2 − 1) , 1 < x <∞,

y = φ2(x) = −
√

3(x2 − 1) , 1 < x <∞,

y = φ3(x) =
√

3(x2 − 1) , −∞ < x < −1,

y = φ4(x) = −
√

3(x2 − 1) , −∞ < x < −1.

H-2, 3L

-4 -2 2 4

-6

-4

-2

2

4

6

y

(c) Only y = φ3(x) satisfies y(−2) = 3.

34. (a) Setting x = 2 and y = −4 in 3x2 − y2 = c we get

12− 16 = −4 = c, so the explicit solution is

y = −
√

3x2 + 4 , −∞ < x <∞.

(b) Setting c = 0 we have y =
√

3x and y = −
√

3x, both

defined on (−∞,∞) and both passing through the

origin.

H2, -4L

-4 -2 2 4
x

-6

-4

-2

2

y

In Problems 35–38 we consider the points on the graphs with x-coordinates x0 = −1, x0 = 0, and

x0 = 1. The slopes of the tangent lines at these points are compared with the slopes given by y′(x0)

in (a) through (f).

35. The graph satisfies the conditions in (b) and (f).

36. The graph satisfies the conditions in (e).

14
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1.2 Initial-Value Problems

37. The graph satisfies the conditions in (c) and (d).

38. The graph satisfies the conditions in (a).

In Problems 39-44 y = c1 cos 2x + c2 sin 2x is a two parameter family of solutions of the second-

order differential equation y′′ + 4y = 0. In some of the problems we will use the fact that

y′ = −2c1 sin 2x+ 2c2 cos 2x.

39. From the boundary conditions y(0) = 0 and y
(π

4

)
= 3 we obtain

y(0) = c1 = 0

y
(π

4

)
= c1 cos

(π
2

)
+ c2 sin

(π
2

)
= c2 = 3.

Thus, c1 = 0, c2 = 3, and the solution of the boundary-value problem is y = 3 sin 2x.

40. From the boundary conditions y(0) = 0 and y(π) = 0 we obtain

y(0) = c1 = 0

y(π) = c1 = 0.

Thus, c1 = 0, c2 is unrestricted, and the solution of the boundary-value problem is y = c2 sin 2x,

where c2 is any real number.

41. From the boundary conditions y′(0) = 0 and y′
(π

6

)
= 0 we obtain

y′(0) = 2c2 = 0

y′
(π

6

)
= −2c1 sin

(π
3

)
= −
√

3 c1 = 0.

Thus, c2 = 0, c1 = 0, and the solution of the boundary-value problem is y = 0.

42. From the boundary conditions y(0) = 1 and y′(π) = 5 we obtain

y(0) = c1 = 1

y′(π) = 2c2 = 5.

Thus, c1 = 1, c2 =
5

2
, and the solution of the boundary-value problem is y = cos 2x+

5

2
sin 2x.

43. From the boundary conditions y(0) = 0 and y(π) = 2 we obtain

y(0) = c1 = 0

y(π) = c1 = 2.

Since 0 6= 2, this is not possible and there is no solution.

44. From the boundary conditions y′ =
(π

2

)
= 1 and y′(π) = 0 we obtain

y′
(π

2

)
= −2c2 = 1

y′(π) = 2c2 = 0.

Since 0 6= −1, this is not possible and there is no solution.

15
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CHAPTER 1 INTRODUCTION TO DIFFERENTIAL EQUATIONS

Discussion Problems

45. Integrating y′ = 8e2x + 6x we obtain

y =

∫
(8e2x + 6x)dx = 4e2x + 3x2 + c.

Setting x = 0 and y = 9 we have 9 = 4 + c so c = 5 and y = 4e2x + 3x2 + 5.

46. Integrating y′′ = 12x− 2 we obtain

y′ =

∫
(12x− 2)dx = 6x2 − 2x+ c1.

Then, integrating y′ we obtain

y =

∫
(6x2 − 2x+ c1)dx = 2x3 − x2 + c1x+ c2.

At x = 1 the y-coordinate of the point of tangency is y = −1 + 5 = 4. This gives the initial

condition y(1) = 4. The slope of the tangent line at x = 1 is y′(1) = −1. From the initial

conditions we obtain

2− 1 + c1 + c2 = 4 or c1 + c2 = 3

and 6− 2 + c1 = −1 or c1 = −5.

Thus, c1 = −5 and c2 = 8, so y = 2x3 − x2 − 5x+ 8.

47. When x = 0 and y = 1
2 , y′ = −1, so the only plausible solution curve is the one with negative

slope at (0, 12 ), or the red curve.

48. If the solution is tangent to the x-axis at (x0, 0), then y′ = 0 when x = x0 and y = 0.

Substituting these values into y′ + 2y = 3x− 6 we get 0 + 0 = 3x0 − 6 or x0 = 2.

49. The theorem guarantees a unique (meaning single) solution through any point. Thus, there

cannot be two distinct solutions through any point.

50. When y = 1
16x

4, y′ = 1
4x

3 = x(14x
2) = xy1/2, and y(2) = 1

16(16) = 1. When

y =

{
0, x < 0
1
16 x

4, x ≥ 0

we have

y′ =

{
0, x < 0
1
4x

3, x ≥ 0
= x

{
0, x < 0
1
4 x

2, x ≥ 0
= xy1/2 ,

and y(2) = 1
16(16) = 1. The two different solutions are the same on the interval (0,∞), which

is all that is required by Theorem 1.2.1.

51. At t = 0, dP/dt = 0.15P (0) + 20 = 0.15(100) + 20 = 35. Thus, the population is increasing at

a rate of 3,500 individuals per year. If the population is 500 at time t = T then

dP

dt

∣∣∣∣∣
t=T

= 0.15P (T ) + 20 = 0.15(500) + 20 = 95.

Thus, at this time, the population is increasing at a rate of 9,500 individuals per year.

16
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1.3 Differential Equations as Mathematical Models

1.3 Differential Equations as Mathematical Models

1.3 Differential Equations as Mathematical Models

Population Dynamics

1.
dP

dt
= kP + r;

dP

dt
= kP − r

2. Let b be the rate of births and d the rate of deaths. Then b = k1P and d = k2P . Since

dP/dt = b− d, the differential equation is dP/dt = k1P − k2P .

3. Let b be the rate of births and d the rate of deaths. Then b = k1P and d = k2P
2. Since

dP/dt = b− d, the differential equation is dP/dt = k1P − k2P 2.

4.
dP

dt
= k1P − k2P 2 − h, h > 0

Newton’s Law of cooling/Warming
5. From the graph in the text we estimate T0 = 180◦ and Tm = 75◦. We observe that when

T = 85, dT/dt ≈ −1. From the differential equation we then have

k =
dT/dt

T − Tm
=

−1

85− 75
= −0.1.

6. By inspecting the graph in the text we take Tm to be Tm(t) = 80 − 30 cosπt/12. Then the

temperature of the body at time t is determined by the differential equation

dT

dt
= k

[
T −

(
80− 30 cos

π

12
t
)]
, t > 0.

Spread of a Disease/Technology
7. The number of students with the flu is x and the number not infected is 1000− x, so dx/dt =

kx(1000− x).

8. By analogy, with the differential equation modeling the spread of a disease, we assume that the

rate at which the technological innovation is adopted is proportional to the number of people

who have adopted the innovation and also to the number of people, y(t), who have not yet

adopted it. Then x+y = n, and assuming that initially one person has adopted the innovation,

we have
dx

dt
= kx(n− x), x(0) = 1.

Mixtures
9. The rate at which salt is leaving the tank is

Rout (3 gal/min)

(
A

300
lb/gal

)
=

A

100
lb/min.

Thus dA/dt = −A/100 (where the minus sign is used since the amount of salt is decreasing).

The initial amount is A(0) = 50.

17
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CHAPTER 1 INTRODUCTION TO DIFFERENTIAL EQUATIONS

10. The rate at which salt is entering the tank is

Rin = (3 gal/min) · (2 lb/gal) = 6 lb/min.

Since the solution is pumped out at a slower rate, it is accumulating at the rate of

(3 − 2)gal/min = 1 gal/min. After t minutes there are 300 + t gallons of brine in the tank.

The rate at which salt is leaving is

Rout = (2 gal/min) ·
(

A

300 + t
lb/gal

)
=

2A

300 + t
lb/min.

The differential equation is
dA

dt
= 6− 2A

300 + t
.

11. The rate at which salt is entering the tank is

Rin = (3 gal/min)(2 lb/gal) = 6 lb/min.

Since the tank loses liquid at the net rate of

3 gal/min− 3.5 gal/min = −0.5 gal/min,

after t minutes the number of gallons of brine in the tank is 300− 1
2 t gallons. Thus the rate at

which salt is leaving is

Rout =

(
A

300− t/2
lb/gal

)
(3.5 gal/min) =

3.5A

300− t/2
lb/min =

7A

600− t
lb/min.

The differential equation is

dA

dt
= 6− 7A

600− t
or

dA

dt
+

7

600− t
A = 6.

12. The rate at which salt is entering the tank is

Rin = (cin lb/gal)(rin gal/min) = cinrin lb/min.

Now let A(t) denote the number of pounds of salt and N(t) the number of gallons of brine

in the tank at time t. The concentration of salt in the tank as well as in the outflow is

c(t) = x(t)/N(t). But the number of gallons of brine in the tank remains steady, is increased,

or is decreased depending on whether rin = rout, rin > rout, or rin < rout. In any case, the

number of gallons of brine in the tank at time t is N(t) = N0 + (rin − rout)t. The output rate

of salt is then

Rout =

(
A

N0 + (rin − rout)t
lb/gal

)
(rout gal/min) = rout

A

N0 + (rin − rout)t
lb/min.

The differential equation for the amount of salt, dA/dt = Rin −Rout, is

dA

dt
= cinrin − rout

A

N0 + (rin − rout)t
or

dA

dt
+

rout
N0 + (rin − rout)t

A = cinrin.

18
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1.3 Differential Equations as Mathematical Models

Draining a Tank

13. The volume of water in the tank at time t is V = Awh. The differential equation is then

dh

dt
=

1

Aw

dV

dt
=

1

Aw

(
−cAh

√
2gh

)
= −cAh

Aw

√
2gh .

Using Ah = π

(
2

12

)2

=
π

36
, Aw = 102 = 100, and g = 32, this becomes

dh

dt
= −cπ/36

100

√
64h = − cπ

450

√
h .

14. The volume of water in the tank at time t is V = 1
3πr

2h where r is the radius of the tank

at height h. From the figure in the text we see that r/h = 8/20 so that r = 2
5h and V =

1
3π
(
2
5h
)2
h = 4

75πh
3. Differentiating with respect to t we have dV/dt = 4

25πh
2 dh/dt or

dh

dt
=

25

4πh2
dV

dt
.

From Problem 13 we have dV/dt = −cAh
√

2gh where c = 0.6, Ah = π
(

2
12

)2
, and g = 32. Thus

dV/dt = −2π
√
h/15 and

dh

dt
=

25

4πh2

(
−2π
√
h

15

)
= − 5

6h3/2
.

Series Circuits

15. Since i = dq/dt and Ld2q/dt2 +Rdq/dt = E(t), we obtain Ldi/dt+Ri = E(t).

16. By Kirchhoff’s second law we obtain R
dq

dt
+

1

C
q = E(t).

Falling Bodies and Air Resistance

17. From Newton’s second law we obtain m
dv

dt
= −kv2 +mg.

Newton’s Second Law and Archimedes’ Principle

18. Since the barrel in Figure 1.3.17(b) in the text is submerged an additional y feet below its

equilibrium position the number of cubic feet in the additional submerged portion is the volume

of the circular cylinder: π×(radius)2×height or π(s/2)2y. Then we have from Archimedes’

principle

upward force of water on barrel = weight of water displaced

= (62.4)× (volume of water displaced)

= (62.4)π(s/2)2y = 15.6πs2y.

19
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CHAPTER 1 INTRODUCTION TO DIFFERENTIAL EQUATIONS

It then follows from Newton’s second law that

w

g

d2y

dt2
= −15.6πs2y or

d2y

dt2
+

15.6πs2g

w
y = 0,

where g = 32 and w is the weight of the barrel in pounds.

Newton’s Second Law and Hooke’s Law

19. The net force acting on the mass is

F = ma = m
d2x

dt2
= −k(s+ x) +mg = −kx+mg − ks.

Since the condition of equilibrium is mg = ks, the differential equation is

m
d2x

dt2
= −kx.

20. From Problem 19, without a damping force, the differential equation is md2x/dt2 = −kx.

With a damping force proportional to velocity, the differential equation becomes

m
d2x

dt2
= −kx− βdx

dt
or m

d2x

dt2
+ β

dx

dt
+ kx = 0.

Newton’s Second Law and Rocket Motion

21. Since the positive direction is taken to be upward, and the acceleration due to gravity g is

positive, (14) in Section 1.3 becomes

m
dv

dt
= −mg − kv +R.

This equation, however, only applies if m is constant. Since in this case m includes the variable

amount of fuel we must use (17) in Exercises 1.3:

F =
d

dt
(mv) = m

dv

dt
+ v

dm

dt
.

Thus, replacing mdv/dt with mdv/dt+ vdm/dt, we have

m
dv

dt
+ v

dm

dt
= −mg − kv +R or m

dv

dt
+ v

dm

dt
+ kv = −mg +R.

22. Here we are given that the variable mass of the rocket is m(t) = mp + mν + mf (t), where

mp and mν are the constant masses of the payload and vehicle, respectively, and mf (t) is the

variable mass of the fuel.

(a) Since
d

dt
m(t) =

d

dt

(
mp +mν +mf (t)

)
=

d

dt
mf (t),

the rates at which the mass of the rocket and the mass of the fuel change are the same.

20
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1.3 Differential Equations as Mathematical Models

(b) If the rocket loses fuel at a constant rate λ then we take dm/dt = −λ. We use −λ instead

of λ because the fuel is decreasing over time. We next divide the resulting differential

equation in Problem 21 by m, obtaining

dv

dt
+
v

m
(−λ) +

kv

m
= −g +

R

m
or

dv

dt
+
k − λ
m

v = −g +
R

m
.

Integrating dm/dt = −λ with respect to t we have m(t) = −λ + C. Since m(0) = m0,

C = m0 and m(t) = −λt+m0. The differential equation then may be written as

dv

dt
+

k − λ
m0 − λt

v = −g +
R

m0 − λt
.

(c) We integrate dmf/dt = −λ to obtain mf (t) = −λt + C. Since mf (0) = C we have

mf (t− λt+mf (0). At burnout mf (tb) = −λtb +mf (0) = 0, so tb = mf (0)/λ.

Newton’s Second Law and the Law of Universal Gravitation

23. From g = k/R2 we find k = gR2. Using a = d2r/dt2 and the fact that the positive direction is

upward we get

d2r

dt2
= −a = − k

r2
= −gR

2

r2
or

d2r

dt2
+
gR2

r2
= 0.

24. The gravitational force on m is F = −kMrm/r
2. Since Mr = 4πδr3/3 and M = 4πδR3/3 we

have Mr = r3M/R3 and

F = −k Mrm

r2
= −k r

3Mm/R3

r2
= −k mM

R3
r.

Now from F = ma = d2r/dt2 we have

m
d2r

dt2
= −k mM

R3
r or

d2r

dt2
= −kM

R3
r.

Additional Mathematical Models

25. The differential equation is
dA

dt
= k(M −A) where k > 0.

26. The differential equation is
dA

dt
= k1(M −A)− k2A.

27. The differential equation is x′(t) = r − kx(t) where k > 0.

28. By the Pythagorean Theorem the slope of the tangent line is y′ =
−y√
s2 − y2

.
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CHAPTER 1 INTRODUCTION TO DIFFERENTIAL EQUATIONS

29. We see from the figure that 2θ + α = π. Thus

y

−x
= tanα = tan(π − 2θ) = − tan 2θ = − 2 tan θ

1− tan2 θ
.

Since the slope of the tangent line is y′ = tan θ we have

y/x = 2y′/[1 − (y′)2] or y − y(y′)2 = 2xy′, which is the

quadratic equation y(y′)2 + 2xy′ − y = 0 in y′. Using the

quadratic formula, we get

y′ =
−2x±

√
4x2 + 4y2

2y
=
−x±

√
x2 + y2

y
.

Since dy/dx > 0, the differential equation is

dy

dx
=
−x+

√
x2 + y2

y
or y

dy

dx
−
√
x2 + y2 + x = 0.

Discussion Problems

30. The differential equation is dP/dt = kP , so from Problem 41 in Exercises 1.1, P = ekt, and a

one-parameter family of solutions is P = cekt.

31. The differential equation in (3) is dT/dt = k(T − Tm). When the body is cooling, T > Tm, so

T −Tm > 0. Since T is decreasing, dT/dt < 0 and k < 0. When the body is warming, T < Tm,

so T − Tm < 0. Since T is increasing, dT/dt > 0 and k < 0.

32. The differential equation in (8) is dA/dt = 6 − A/100. If A(t) attains a maximum, then

dA/dt = 0 at this time and A = 600. If A(t) continues to increase without reaching a maximum,

then A′(t) > 0 for t > 0 and A cannot exceed 600. In this case, if A′(t) approaches 0 as t

increases to infinity, we see that A(t) approaches 600 as t increases to infinity.

33. This differential equation could describe a population that undergoes periodic fluctuations.

34. (a) As shown in Figure 1.3.24(b) in the text, the resultant of the reaction force of magnitude

F and the weight of magnitude mg of the particle is the centripetal force of magnitude

mω2x. The centripetal force points to the center of the circle of radius x on which the

particle rotates about the y-axis. Comparing parts of similar triangles gives

F cos θ = mg and F sin θ = mω2x.

(b) Using the equations in part (a) we find

tan θ =
F sin θ

F cos θ
=
mω2x

mg
=
ω2x

g
or

dy

dx
=
ω2x

g
.

22
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1.3 Differential Equations as Mathematical Models

35. From Problem 23, d2r/dt2 = −gR2/r2. Since R is a constant, if r = R + s, then d2r/dt2 =

d2s/dt2 and, using a Taylor series, we get

d2s

dt2
= −g R2

(R+ s)2
= −gR2(R+ s)−2 ≈ −gR2

[
R−2 − 2sR−3 + · · ·

]
= −g +

2gs

R3
+ · · · .

Thus, for R much larger than s, the differential equation is approximated by d2s/dt2 = −g.

36. (a) If ρ is the mass density of the raindrop, then m = ρV and

dm

dt
= ρ

dV

dt
= ρ

d

dt

[4

3
πr3
]

= ρ
(

4πr2
dr

dt

)
= ρS

dr

dt
.

If dr/dt is a constant, then dm/dt = kS where ρ dr/dt = k or dr/dt = k/ρ. Since the

radius is decreasing, k < 0. Solving dr/dt = k/ρ we get r = (k/ρ)t+ c0. Since r(0) = r0,

c0 = r0 and r = kt/ρ+ r0.

(b) From Newton’s second law,
d

dt
[mv] = mg, where v is the velocity of the raindrop. Then

m
dv

dt
+ v

dm

dt
= mg or ρ

(4

3
πr3
)dv
dt

+ v(k4πr2) = ρ
(4

3
πr3
)
g.

Dividing by 4ρπr3/3 we get

dv

dt
+

3k

ρr
v = g or

dv

dt
+

3k/ρ

kt/ρ+ r0
v = g, k < 0.

37. We assume that the plow clears snow at a constant rate of k cubic miles per hour. Let t be the

time in hours after noon, x(t) the depth in miles of the snow at time t, and y(t) the distance

the plow has moved in t hours. Then dy/dt is the velocity of the plow and the assumption

gives

wx
dy

dt
= k,

where w is the width of the plow. Each side of this equation simply represents the volume

of snow plowed in one hour. Now let t0 be the number of hours before noon when it started

snowing and let s be the constant rate in miles per hour at which x increases. Then for t > −t0,
x = s(t+ t0). The differential equation then becomes

dy

dt
=

k

ws

1

t+ t0
.

Integrating, we obtain

y =
k

ws
[ ln(t+ t0) + c ],

where c is a constant. Now when t = 0, y = 0 so c = − ln t0 and

y =
k

ws
ln

(
1 +

t

t0

)
.

23
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CHAPTER 1 INTRODUCTION TO DIFFERENTIAL EQUATIONS

Finally, from the fact that when t = 1, y = 2 and when t = 2, y = 3, we obtain(
1 +

2

t0

)2

=

(
1 +

1

t0

)3

.

Expanding and simplifying gives t20 + t0 − 1 = 0. Since t0 > 0, we find t0 ≈ 0.618 hours ≈ 37

minutes. Thus it started snowing at about 11:23 in the morning.

38. (1) :
dP

dt
= kP is linear (2) :

dA

dt
= kA is linear

(3) :
dT

dt
= k(T − Tm) is linear (5) :

dx

dt
= kx(n+ 1− x) is nonlinear

(6) :
dX

dt
= k(α−X)(β −X) is nonlinear (8) :

dA

dt
= 6− A

100
is linear

(10) :
dh

dt
= −Ah

Aw

√
2gh is nonlinear (11) : L

d2q

dt2
+R

dq

dt
+

1

C
q = E(t) is linear

(12) :
d2s

dt2
= −g is linear (14) : m

dv

dt
= mg − kv is linear

(15) : m
d2s

dt2
+ k

ds

dt
= mg is linear

(16) :
dy

dx
=
W

T1
linearity or nonlinearity is determined by the manner in which W and T1 involve x.

1.R Chapter 1 in Review

1.
d

dx
c1e

10x = 10c1e
10x;

dy

dx
= 10y

2.
d

dx
(5 + c1e

−2x) = −2c1e
−2x = −2(5 + c1e

−2x − 5);
dy

dx
= −2(y − 5) or

dy

dx
= −2y + 10

3.
d

dx
(c1 cos kx+ c2 sin kx) = −kc1 sin kx+ kc2 cos kx;

d2

dx2
(c1 cos kx+ c2 sin kx) = −k2c1 cos kx− k2c2 sin kx = −k2(c1 cos kx+ c2 sin kx);

d2y

dx2
= −k2y or

d2y

dx2
+ k2y = 0

4.
d

dx
(c1 cosh kx+ c2 sinh kx) = kc1 sinh kx+ kc2 cosh kx;

d2

dx2
(c1 cosh kx+ c2 sinh kx) = k2c1 cosh kx+ k2c2 sinh kx = k2(c1 cosh kx+ c2 sinh kx);

d2y

dx2
= k2y or

d2y

dx2
− k2y = 0

24
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5. y = c1e
x + c2xe

x; y′ = c1e
x + c2xe

x + c2e
x; y′′ = c1e

x + c2xe
x + 2c2e

x;

y′′ + y = 2(c1e
x + c2xe

x) + 2c2e
x = 2(c1e

x + c2xe
x + c2e

x) = 2y′; y′′ − 2y′ + y = 0

6. y′ = −c1ex sinx+ c1e
x cosx+ c2e

x cosx+ c2e
x sinx;

y′′ = −c1ex cosx−c1ex sinx−c1ex sinx+c1e
x cosx−c2ex sinx+c2e

x cosx+c2e
x cosx+c2e

x sinx

y′′ = −2c1e
x sinx+ 2c2e

x cosx;

y′′ − 2y′ = −2c1e
x cosx− 2c2e

x sinx = −2y; y′′ − 2y′ + 2y = 0

7. a, d (8.) c (9.) b (10.) a, c (11.) b (12.) a, b, d

13. A few solutions are y = 0, y = c, and y = ex. In general, y = c1 + c2e
x is a solution for any

constants c1 and c2.

14. When y is a constant, then y′ = 0. Thus, easy solutions to see are y = 0 and y = 3.

15. The slope of the tangent line at (x, y) is y′, so the differential equation is y′ = x2 + y2.

16. The rate at which the slope changes is dy′/dx = y′′, so the differential equation is y′′ = −y′ or

y′′ + y′ = 0.

17. (a) The domain is all real numbers.

(b) Since y′ = 2/3x1/3, the solution y = x2/3 is undefined at x = 0. This function is a solution

of the differential equation on (−∞, 0) and also on (0,∞).

18. (a) Differentiating y2 − 2y = x2 − x+ c we obtain 2yy′ − 2y′ = 2x− 1 or (2y − 2)y′ = 2x− 1.

(b) Setting x = 0 and y = 1 in the solution we have 1 − 2 = 0 − 0 + c or c = −1. Thus, a

solution of the initial-value problem is y2 − 2y = x2 − x− 1.

(c) Solving y2 − 2y − (x2 − x− 1) = 0 by the quadratic formula we get

y =
2±

√
4 + 4(x2 − x− 1)

2
= 1±

√
x2 − x = 1±

√
x(x− 1) .

Since x(x − 1) ≥ 0 for x ≤ 0 or x ≥ 1, we see that neither y = 1 +
√
x(x− 1) nor

y = 1 −
√
x(x− 1) is differentiable at x = 0. Thus, both functions are solutions of the

differential equation, but neither is a solution of the initial-value problem.

19. Setting x = x0 and y = 1 in y = −2/x+ x, we get

1 = − 2

x0
+ x0 or x20 − x0 − 2 = (x0 − 2)(x0 + 1) = 0.

Thus, x0 = 2 or x0 = −1. Since x 6= 0 in y = −2/x+ x, we see that y = −2/x+ x is a solution

of the initial-value problem xy′ + y = 2x, y(−1) = 1 on the interval (−∞, 0) (−1 < 0), and

y = −2/x+ x is a solution of the initial-value problem xy′ + y = 2x, y(2) = 1, on the interval

(0,∞) (2 > 0).

25
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CHAPTER 1 INTRODUCTION TO DIFFERENTIAL EQUATIONS

20. From the differential equation, y′(1) = 12 +[y(1)]2 = 1+(−1)2 = 2 > 0, so y(x) is increasing in

some neighborhood of x = 1. From y′′ = 2x+ 2yy′ we have y′′(1) = 2(1) + 2(−1)(2) = −2 < 0,

so y(x) is concave down in some neighborhood of x = 1.

21. (a) x

-4 -2 2 4
x

-4

-2

2

4

y

-4 -2 2 4
x

-4

-2

2

4

y

y = x2 + c1 y = −x2 + c2

(b) When y = x2+c1, y
′ = 2x and (y′)2 = 4x2. When y = −x2+c2, y

′ = −2x and (y′)2 = 4x2.

(c) Pasting together x2, x ≥ 0, and −x2, x ≤ 0, we get

f(x) =

{
−x2, x ≤ 0

x2, x > 0.

22. The slope of the tangent line is y′
∣∣
(−1,4)= 6

√
4 + 5(−1)3 = 7.

23. Differentiating y = x sinx+ x cosx we get

y′ = x cosx+ sinx− x sinx+ cosx

y′′ = −x sinx+ cosx+ cosx− x cosx− sinx− sinxand

= −x sinx− x cosx+ 2 cosx− 2 sinx.

Thus

y′′ + y = −x sinx− x cosx+ 2 cosx− 2 sinx+ x sinx+ x cosx = 2 cosx− 2 sinx.

An interval of definition for the solution is (−∞,∞).

24. Differentiating y = x sinx+ (cosx) ln(cosx) we get

y′ = x cosx+ sinx+ cosx

(
− sinx

cosx

)
− (sinx) ln(cosx)

= x cosx+ sinx− sinx− (sinx) ln(cosx)

= x cosx− (sinx) ln(cosx)

26
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y′′ = −x sinx+ cosx− sinx

(
− sinx

cosx

)
− (cosx) ln(cosx)and,

= −x sinx+ cosx+
sin2 x

cosx
− (cosx) ln(cosx)

= −x sinx+ cosx+
1− cos2 x

cosx
− (cosx) ln(cosx)

= −x sinx+ cosx+ secx− cosx− (cosx) ln(cosx)

= −x sinx+ secx− (cosx) ln(cosx).

Thus

y′′ + y = −x sinx+ secx− (cosx) ln(cosx) + x sinx+ (cosx) ln(cosx) = secx.

To obtain an interval of definition we note that the domain of lnx is (0,∞), so we must have

cosx > 0. Thus, an interval of definition is (−π/2, π/2).

25. Differentiating y = sin(lnx) we obtain y′ = cos(lnx)/x and y′′ = −[sin(lnx) + cos(lnx)]/x2.

Then

x2y′′ + xy′ + y = x2
(
−sin(lnx) + cos(lnx)

x2

)
+ x

cos(lnx)

x
+ sin(lnx) = 0.

An interval of definition for the solution is (0,∞).

26. Differentiating y = cos(lnx) ln(cos(lnx)) + (lnx) sin(lnx) we obtain

y′ = cos(lnx)
1

cos(lnx)

(
−sin(lnx)

x

)
+ ln(cos(lnx))

(
−sin(lnx)

x

)
+ lnx

cos(lnx)

x
+

sin(lnx)

x

= − ln(cos(lnx)) sin(lnx)

x
+

(lnx) cos(lnx)

x

and

y′′ = −x
[
ln(cos(lnx))

cos(lnx)

x
+ sin(lnx)

1

cos(lnx)

(
−sin(lnx)

x

)] 1

x2

+ ln(cos(lnx)) sin(lnx)
1

x2
+ x

[
(lnx)

(
−sin(lnx)

x

)
+

cos(lnx)

x

]
1

x2
− (lnx) cos(lnx)

1

x2

=
1

x2

[
− ln(cos(lnx)) cos(lnx) +

sin2(lnx)

cos(lnx)
+ ln(cos(lnx)) sin(lnx)

− (lnx) sin(lnx) + cos(lnx)− (lnx) cos(lnx)

]
.

Then

x2y′′ + xy′ + y = − ln(cos(lnx)) cos(lnx) +
sin2(lnx)

cos(lnx)
+ ln(cos(lnx)) sin(lnx)

− (lnx) sin(lnx) + cos(lnx)− (lnx) cos(lnx)− ln(cos(lnx)) sin(lnx)

+ (lnx) cos(lnx) + cos(lnx) ln(cos(lnx)) + (lnx) sin(lnx)

=
sin2(lnx)

cos(lnx)
+ cos(lnx) =

sin2(lnx) + cos2(lnx)

cos(lnx)
=

1

cos(lnx)
= sec(lnx).

27
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CHAPTER 1 INTRODUCTION TO DIFFERENTIAL EQUATIONS

To obtain an interval of definition, we note that the domain of lnx is (0,∞), so we must have

cos(lnx) > 0. Since cosx > 0 when −π/2 < x < π/2, we require −π/2 < lnx < π/2. Since ex

is an increasing function, this is equivalent to e−π/2 < x < eπ/2. Thus, an interval of definition

is (e−π/2, eπ/2). Much of this problem is more easily done using a computer algebra system

such as Mathematica or Maple.

27. Using implicit differentiation on x3y3 = x3 + 1 we have

3x3y2y′ + 3x2y3 = 3x2

xy2y′ + y3 = 1

xy′ + y =
1

y2
.

28. Using implicit differentiation on (x− 5)2 + y2 = 1 we have

2(x− 5) + 2yy′ = 0

x− 5 + yy′ = 0

y′ = −x− 5

y(
y′
)2

=
(x− 5)2

y2
=

1− y2

y2
=

1

y2
− 1

(
y′
)2

+ 1 =
1

y2
.

29. Using implicit differentiation on y3 + 3y = 1− 3x we have

3y2y′ + 3y′ = −3

y2y′ + y′ = −1

y′ = − 1

y2 + 1
.

Again, using implicit differentiation, we have

y′′ = − −2yy′

(y2 + 1)2
= 2yy′

(
1

y2 + 1

)2

= 2yy′
(
− 1

y2 + 1

)2

= 2yy′
(
− y′

)2
= 2y(y′)3.

30. Using implicit differentiation on y = exy we have

y′ = exy
(
xy′ + y

)(
1− xexy

)
y′ = yexy.

Since y = exy we have

(1− xy)y′ = y · y or (1− xy)y′ = y2.

28
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In Problems 31–34 we have y′ = 3c1e
3x − c2ex − 2.

31. The initial conditions imply

c1 + c2 = 0

3c1 − c2 − 2 = 0,

so c1 = 1
2 and c2 = −1

2 . Thus y = 1
2e

3x − 1
2e
−x − 2x.

32. The initial conditions imply

c1 + c2 = 1

3c1 − c2 − 2 = −3,

so c1 = 0 and c2 = 1. Thus y = e−x − 2x.

33. The initial conditions imply

c1e
3 + c2e

−1 − 2 = 4

3c1e
3 − c2e−1 − 2 = −2,

so c1 = 3
2e
−3 and c2 = 9

2e. Thus y = 3
2e

3x−3 + 9
2e
−x+1 − 2x.

34. The initial conditions imply

c1e
−3 + c2e+ 2 = 0

3c1e
−3 − c2e− 2 = 1,

so c1 = 1
4e

3 and c2 = −9
4e
−1. Thus y = 1

4e
3x+3 − 9

4e
−x−1 − 2x.

35. From the graph we see that estimates for y0 and y1 are y0 = −3 and y1 = 0.

36. Figure 1.3.3 in the text can be used for reference in this problem. The differential equation is

dh

dt
= −cA0

Aw

√
2gh .

Using A0 = π(1/24)2 = π/576, Aw = π(2)2 = 4π, and g = 32, this becomes

dh

dt
= −cπ/576

4π

√
64h =

c

288

√
h .

37. Let P (t) be the number of owls present at time t. Then dP/dt = k(P − 200 + 10t).

38. Setting A′(t) = −0.002 and solving A′(t) = −0.0004332A(t) for A(t), we obtain

A(t) =
A′(t)

−0.0004332
=

−0.002

−0.0004332
≈ 4.6 grams.

29
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Chapter 2

FIRST-ORDER DIFFERENTIAL EQUATIONS

2.1 Solution Curves Without a Solutionq

FIRST-ORDER

DIFFERENTIAL EQUATIONS2
2.1 Solution Curves Without a Solutionq

2.1.1 DIRECTION FIELDS

In Problems 1–4 the graph corresponding to the initial condition in Part (a) is red, Part (b) is

green, Part (c) is blue, and Part (d) is brown. The pictures are obtain using Mathematica with

VectorPlot[{1, f[x, y]}, {x, lhs, rhs}, {y, down, up}, . . . ].

1. x

-3 -2 -1 1 2 3

-3

-2

-1

1

2

3

x

y 2. x

-8 -4 4 8

-8

-4

4

8

x

y

3. x

-4 -2 2 4

-4

-2

2

4

x

y 4. x

-4 -2 2 4

-4

-2

2

4

x

y

In Problems 5–12 the graph corresponding to the initial condition in Part (a) is red, and Part (b)

is blue. The pictures are obtain using Mathematica, as mentioned before Problem 1.

5. x

-4 -2 2 4

-4

-2

2

4

x

y 6. x

-4 -2 2 4

-4

-2

2

4

x

y
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2.1 Solution Curves Without a Solutionq

7. x

-4 -2 2 4

-4

-2

2

4

x

y 8. x

-4 -2 2 4

-4

-2

2

4

x

y

9. x

-4 -2 2 4

-4

-2

2

4

x

y 10. x

-4 -2 2 4

-4

-2

2

4

x

y

11. x

-4 -2 2 4

-4

-2

2

4

x

y 12. x

-4 -2 2 4

-4

-2

2

4

x

y

In Problems 13 and 14 Mathematica was used, as mentioned before Problem 1.

13. x

-3 -1 1 3

-3

-1

1

3

x

y
14. x

-4 -2 2 4

-4

-2

2

4

x

y
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CHAPTER 2 FIRST-ORDER DIFFERENTIAL EQUATIONS

15. (a) The isoclines have the form y = −x + c, which are

straight lines with slope −1.

(b) The isoclines have the form x2 + y2 = c, which are

circles centered at the origin.

Discussion Problems

16. (a) When x = 0 or y = 4, dy/dx = −2 so the lineal elements have slope −2. When y = 3 or

y = 5, dy/dx = x− 2, so the lineal elements at (x, 3) and (x, 5) have slopes x− 2.

(b) At (0, y0) the solution curve is headed down. If y → ∞ as x increases, the graph must

eventually turn around and head up, but while heading up it can never cross y = 4 where

a tangent line to a solution curve must have slope −2. Thus, y cannot approach ∞ as x

approaches ∞.

17. When y < 1
2x

2, y′ = x2 − 2y is positive and the portions of

solution curves “outside” the nullcline parabola are increas-

ing. When y > 1
2x

2, y′ = x2−2y is negative and the portions

of the solution curves “inside” the nullcline parabola are de-

creasing.

18. (a) Any horizontal lineal element should be at a point on a nullcline. In Problem 1 the

nullclines are x2 − y2 = 0 or y = ±x. In Problem 3 the nullclines are 1 − xy = 0 or

y = 1/x. In Problem 4 the nullclines are (sinx) cos y = 0 or x = nπ and y = π/2 + nπ,

where n is an integer. The graphs on the next page show the nullclines for the differential

equations in Problems 1, 3, and 4 superimposed on the corresponding direction field.

32
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2.1 Solution Curves Without a Solution

(b) An autonomous first-order differential equation has the form y′ = f(y). Nullclines have

the form y = c where f(c) = 0. These are the equilibrium solutions of the differential

equation.

2.1.2 AUTONOMOUS FIRST-ORDER DEs

19. Writing the differential equation in the form dy/dx = y(1 − y)(1 + y) we see that

critical points are located at y = −1, y = 0, and y = 1. The phase portrait is shown

at the right.

(a) x

1 2
x

1

3

5

y (b)

-2 -1 1 2
x

1

y

(c) x

-2 -1 1 2
x

-1

y (d)

1 2
x

-5

-3

-1

y

20. Writing the differential equation in the form dy/dx = y2(1 − y)(1 + y) we see that

critical points are located at y = −1, y = 0, and y = 1. The phase portrait is shown

at the right, and the graphs of the typical solutions are shown on the next page.

33
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CHAPTER 2 FIRST-ORDER DIFFERENTIAL EQUATIONS

(a) x

1 2
x

1

3

5

y (b)

-2 -1 1 2
x

1

y

(c) x

-2 -1 1 2
x

-1

y (d)

x

-5

-3

-1

y

In Problems 21–28 graphs of typical solutions are shown. However, in some of the solutions, even

though the upper and lower graphs either actually bend up or down, they display as straight line

segments. This is a peculiarity of the Mathematica graphing routine and may be due to the fact that

the NDSolve function was used rather than DSolve. NDSolve uses a numerical routine (see

Section 2.6 in the text), and involves sampling x-coordinates where the corresponding y-coordinates

are approximated. It may be that the routine involved breaks down as the graph becomes nearly

vertical, forcing the x-coordinates on the graph to becomes closer and closer together.

21. Solving y2 − 3y = y(y − 3) = 0 we obtain the critical points 0 and 3. From the

phase portrait we see that 0 is asymptotically stable (attractor) and 3 is unstable

(repeller).

-4 -2 2 4
x

-2

2

4

6

y

22. Solving y2−y3 = y2(1−y) = 0 we obtain the critical points 0 and 1. From the phase

portrait we see that 1 is asymptotically stable (attractor) and 0 is semi-stable.

-4 -2 2 4
x

-2

2

y
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2.1 Solution Curves Without a Solutionq

23. Solving (y − 2)4 = 0 we obtain the critical point 2. From the phase portrait we see

that 2 is semi-stable.

-4 -2 2 4
x

2

4

y

24. Solving 10 + 3y − y2 = (5 − y)(2 + y) = 0 we obtain the critical points −2 and 5.

From the phase portrait we see that 5 is asymptotically stable (attractor) and −2

is unstable (repeller).

-6 -4 -2 2 4 6
x

-4

-2

2

4

6

y

25. Solving y2(4 − y2) = y2(2 − y)(2 + y) = 0 we obtain the critical points −2, 0, and

2. From the phase portrait we see that 2 is asymptotically stable (attractor), 0 is

semi-stable, and −2 is unstable (repeller).

-6 -4 -2 2 4 6
x

-4

-2

2

4

y

26. Solving y(2−y)(4−y) = 0 we obtain the critical points 0, 2, and 4. From the phase

portrait we see that 2 is asymptotically stable (attractor) and 0 and 4 are unstable

(repellers).

-4 -2 2 4
x

-2

2

4

6

y
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CHAPTER 2 FIRST-ORDER DIFFERENTIAL EQUATIONS

27. Solving y ln(y+ 2) = 0 we obtain the critical points −1 and 0. From the phase por-

trait we see that −1 is asymptotically stable (attractor) and 0 is unstable (repeller).

-4 -2 2 4
x

-2

2

y

28. Solving yey − 9y = y(ey − 9) = 0 (since ey is always positive) we obtain the critical

points 0 and ln 9. From the phase portrait we see that 0 is asymptotically stable

(attractor) and ln 9 is unstable (repeller).

-4 -2 2 4
x

-2

2

4

y

29. The critical points are 0 and c because the

graph of f(y) is 0 at these points. Since

f(y) > 0 for y < 0 and y > c, the graph

of the solution is increasing on (−∞, 0) and

(c, ∞). Since f(y) < 0 for 0 < y < c, the

graph of the solution is decreasing on (0, c).

30. The critical points are approximately at −2,

2, 0.5, and 1.7. Since f(y) > 0 for y < −2.2

and 0.5 < y < 1.7, the graph of the solution

is increasing on (−∞, −2.2) and (0.5, 1.7).

Since f(y) < 0 for −2.2 < y < 0.5 and

y > 1.7, the graph is decreasing on

(−2.2, 0.5) and (1.7, ∞).

36
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2.1 Solution Curves Without a Solutionq

Discussion Problems

31. From the graphs of z = (π/2)y and z = sin y we see that

(π/2)y− sin y = 0 has only three solutions. By inspection

we see that the critical points are −π/2, 0, and π/2. From

the graph at the right we see that

2

π
y − sin y

{
< 0 for y < −π/2
> 0 for y > π/2

2

π
y − sin y

{
> 0 for − π/2 < y < 0

< 0 for 0 < y < π/2.

This enables us to construct the phase portrait shown at the right. From this portrait we see

that π/2 and −π/2 are unstable (repellers), and 0 is asymptotically stable (attractor).

32. For dy/dx = 0 every real number is a critical point, and hence all critical points are nonisolated.

33. Recall that for dy/dx = f(y) we are assuming that f and f ′ are continuous functions of y

on some interval I. Now suppose that the graph of a nonconstant solution of the differential

equation crosses the line y = c. If the point of intersection is taken as an initial condition we

have two distinct solutions of the initial-value problem. This violates uniqueness, so the graph

of any nonconstant solution must lie entirely on one side of any equilibrium solution. Since f is

continuous it can only change signs at a point where it is 0. But this is a critical point. Thus,

f(y) is completely positive or completely negative in each region Ri. If y(x) is oscillatory or

has a relative extremum, then it must have a horizontal tangent line at some point (x0, y0).

In this case y0 would be a critical point of the differential equation, but we saw above that the

graph of a nonconstant solution cannot intersect the graph of the equilibrium solution y = y0.

34. By Problem 33, a solution y(x) of dy/dx = f(y) cannot have relative extrema and hence must

be monotone. Since y′(x) = f(y) > 0, y(x) is monotone increasing, and since y(x) is bounded

above by c2, limx→∞ y(x) = L, where L ≤ c2. We want to show that L = c2. Since L is a

horizontal asymptote of y(x), limx→∞ y
′(x) = 0. Using the fact that f(y) is continuous we

have

f(L) = f( lim
x→∞

y(x)) = lim
x→∞

f(y(x)) = lim
x→∞

y′(x) = 0.

But then L is a critical point of f . Since c1 < L ≤ c2, and f has no critical points between c1

and c2, L = c2.

35. Assuming the existence of the second derivative, points of inflection of y(x) occur where y′′(x) =

0. From dy/dx = f(y) we have d2y/dx2 = f ′(y) dy/dx. Thus, the y-coordinate of a point of

inflection can be located by solving f ′(y) = 0. Points where dy/dx = 0 correspond to constant

solutions of the differential equation.

37
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CHAPTER 2 FIRST-ORDER DIFFERENTIAL EQUATIONS

36. Solving y2 − y − 6 = (y − 3)(y + 2) = 0 we see that 3 and −2

are critical points. Now

d2y/dx2 = (2y − 1) dy/dx = (2y − 1)(y − 3)(y + 2),

so the only possible point of inflection is at y = 1
2 , although

the concavity of solutions can be different on either side of

y = −2 and y = 3. Since y′′(x) < 0 for y < −2 and 1
2 < y < 3,

and y′′(x) > 0 for −2 < y < 1
2 and y > 3, we see that solution

curves are concave down for y < −2 and 1
2 < y < 3 and concave up for −2 < y < 1

2 and
y > 3. Points of inflection of solutions of autonomous differential equations will have the same
y-coordinates because between critical points they are horizontal translates of each other.

37. If (1) in the text has no critical points it has no constant solutions. The solutions have neither

an upper nor lower bound. Since solutions are monotonic, every solution assumes all real

values.

Mathematical Models

38. The critical points are 0 and b/a. From the phase portrait we see that 0 is an

attractor and b/a is a repeller. Thus, if an initial population satisfies P0 > b/a,

the population becomes unbounded as t increases, most probably in finite time,

i.e.P (t) → ∞ as t → T . If 0 < P0 < b/a, then the population eventually dies out,

that is, P (t) → 0 as t → ∞. Since population P > 0 we do not consider the case

P0 < 0.

39. The only critical point of the autonomous differential equation is the positive number h/k. A

phase portrait shows that this point is unstable, so h/k is a repeller. For any initial condition

P (0) = P0 < h/k, dP/dt < 0, which means P (t) is monotonic decreasing and so the graph of

P (t) must cross the t-axis or the line P = 0 at some time t1 > 0. But P (t1) = 0 means the

population is extinct at time t1.

40. Writing the differential equation in the form

dv

dt
=

k

m

(mg
k
− v
)

we see that a critical point is mg/k. From the phase portrait we see that mg/k is

an asymptotically stable critical point. Thus, limt→∞ v = mg/k.

38
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2.1 Solution Curves Without a Solutionq

41. Writing the differential equation in the form

dv

dt
=

k

m

(mg
k
− v2

)
=

k

m

(√
mg

k
− v
)(√

mg

k
+ v

)
we see that the only physically meaningful critical point is

√
mg/k. From the

phase portrait we see that
√
mg/k is an asymptotically stable critical point. Thus,

limt→∞ v =
√
mg/k.

42. (a) From the phase portrait we see that critical points are α and β. Let X(0) = X0.

• If X0 < α, we see that X → α as t→∞.

• If α < X0 < β, we see that X → α as t→∞.

• If X0 > β, we see that X(t) increases in an unbounded manner, but more specific

behavior of X(t) as t→∞ is not known.

(b) When α = β the phase portrait is as shown.

• If X0 < α, then X(t)→ α as t→∞.

• If X0 > α, then X(t) increases in an unbounded manner. This could happen in a

finite amount of time. That is, the phase portrait does not indicate that X becomes

unbounded as t→∞.

(c) When k = 1 and α = β the differential equation is dX/dt = (α − X)2. For X(t) =

α− 1/(t+ c) we have dX/dt = 1/(t+ c)2 and

(α−X)2 =

[
α−

(
α− 1

t+ c

)]2
=

1

(t+ c)2
=
dX

dt
.

For X(0) = α/2 we obtain

X(t) = α− 1

t+ 2/α
.

For X(0) = 2α we obtain

X(t) = α− 1

t− 1/α
.

39
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CHAPTER 2 FIRST-ORDER DIFFERENTIAL EQUATIONS

For X0 > α, X(t) increases without bound up to t = 1/α. For t > 1/α, X(t) increases

but X → α as t→∞

2.2 Separable Equationsq

2.2 Separable Equationsq

In this section and ones following we will encounter an expression of the form ln |g(y)| = f(x) + c.

To solve for g(y) we exponentiate both sides of the equation. This yields |g(y)| = ef(x)+c = ecef(x)

which implies g(y) = ±ecef(x). Letting c1 = ±ec we obtain g(y) = c1e
f(x).

1. From dy = sin 5x dx we obtain y = −1
5 cos 5x+ c.

2. From dy = (x+ 1)2 dx we obtain y = 1
3(x+ 1)3 + c.

3. From dy = −e−3x dx we obtain y = 1
3e
−3x + c.

4. From
1

(y − 1)2
dy = dx we obtain − 1

y − 1
= x+ c or y = 1− 1

x+ c
.

5. From
1

y
dy =

4

x
dx we obtain ln |y| = 4 ln |x|+ c or y = c1x

4.

6. From
1

y2
dy = −2x dx we obtain −1

y
= −x2 + c or y =

1

x2 + c1
.

7. From e−2ydy = e3xdx we obtain 3e−2y + 2e3x = c.

8. From yeydy =
(
e−x + e−3x

)
dx we obtain yey − ey + e−x +

1

3
e−3x = c.

9. From

(
y + 2 +

1

y

)
dy = x2 lnx dx we obtain

y2

2
+ 2y + ln |y| = x3

3
ln |x| − 1

9
x3 + c.

10. From
1

(2y + 3)2
dy =

1

(4x+ 5)2
dx we obtain

2

2y + 3
=

1

4x+ 5
+ c.

11. From
1

csc y
dy = − 1

sec2 x
dx or sin y dy = − cos2 x dx = −1

2(1 + cos 2x) dx we obtain

− cos y = −1
2x−

1
4 sin 2x+ c or 4 cos y = 2x+ sin 2x+ c1.

12. From 2y dy = − sin 3x

cos3 3x
dx or 2y dy = − tan 3x sec2 3x dx we obtain y2 = −1

6 sec2 3x+ c.

13. From
ey

(ey + 1)2
dy =

−ex

(ex + 1)3
dx we obtain − (ey + 1)−1 = 1

2 (ex + 1)−2 + c.

14. From
y

(1 + y2)1/2
dy =

x

(1 + x2)1/2
dx we obtain

(
1 + y2

)1/2
=
(
1 + x2

)1/2
+ c.

15. From
1

S
dS = k dr we obtain S = cekr.

40
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2.2 Separable Equationsq

16. From
1

Q− 70
dQ = k dt we obtain ln |Q− 70| = kt+ c or Q− 70 = c1e

kt.

17. From
1

P − P 2
dP =

(
1

P
+

1

1− P

)
dP = dt we obtain ln |P | − ln |1 − P | = t + c so that

ln

∣∣∣∣ P

1− P

∣∣∣∣ = t+ c or
P

1− P
= c1e

t. Solving for P we have P =
c1e

t

1 + c1et
.

18. From
1

N
dN =

(
tet+2 − 1

)
dt we obtain ln |N | = tet+2 − et+2 − t+ c or N = c1e

tet+2−et+2−t.

19. From
y − 2

y + 3
dy =

x− 1

x+ 4
dx or

(
1− 5

y + 3

)
dy =

(
1− 5

x+ 4

)
dx we obtain y − 5 ln |y + 3| =

x− 5 ln |x+ 4|+ c or

(
x+ 4

y + 3

)5

= c1e
x−y.

20. From
y + 1

y − 1
dy =

x+ 2

x− 3
dx or

(
1 +

2

y − 1

)
dy =

(
1 +

5

x− 3

)
dx we obtain y+ 2 ln |y− 1| =

x+ 5 ln |x− 3|+ c or
(y − 1)2

(x− 3)5
= c1e

x−y.

21. From x dx =
1√

1− y2
dy we obtain 1

2x
2 = sin−1 y + c or y = sin

(
x2

2
+ c1

)
.

22. From
1

y2
dy =

1

ex + e−x
dx =

ex

(ex)2 + 1
dx we obtain −1

y
= tan−1 ex+c or y = − 1

tan−1 ex + c
.

23. From
1

x2 + 1
dx = 4 dt we obtain tan−1 x = 4t+ c. Using x(π/4) = 1 we find c = −3π/4. The

solution of the initial-value problem is tan−1 x = 4t− 3π

4
or x = tan

(
4t− 3π

4

)
.

24. From
1

y2 − 1
dy =

1

x2 − 1
dx or

1

2

(
1

y − 1
− 1

y + 1

)
dy =

1

2

(
1

x− 1
− 1

x+ 1

)
dx we obtain

ln |y−1|− ln |y+ 1| = ln |x−1|− ln |x+ 1|+ ln c or
y − 1

y + 1
=
c(x− 1)

x+ 1
. Using y(2) = 2 we find

c = 1. A solution of the initial-value problem is
y − 1

y + 1
=
x− 1

x+ 1
or y = x.

25. From
1

y
dy =

1− x
x2

dx =

(
1

x2
− 1

x

)
dx we obtain ln |y| = −1

x
− ln |x| = c or xy = c1e

−1/x.

Using y(−1) = −1 we find c1 = e−1. The solution of the initial-value problem is xy = e−1−1/x

or y = e−(1+1/x)/x.

26. From
1

1− 2y
dy = dt we obtain −1

2 ln |1− 2y| = t+ c or 1− 2y = c1e
−2t. Using y(0) = 5/2 we

find c1 = −4. The solution of the initial-value problem is 1− 2y = −4e−2t or y = 2e−2t + 1
2 .

41
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CHAPTER 2 FIRST-ORDER DIFFERENTIAL EQUATIONS

27. Separating variables and integrating we obtain

dx√
1− x2

− dy√
1− y2

= 0 and sin−1 x− sin−1 y = c.

Setting x = 0 and y =
√

3/2 we obtain c = −π/3. Thus, an implicit solution of the initial-

value problem is sin−1 x − sin−1 y = −π/3. Solving for y and using an addition formula from

trigonometry, we get

y = sin
(

sin−1 x+
π

3

)
= x cos

π

3
+
√

1− x2 sin
π

3
=
x

2
+

√
3
√

1− x2
2

.

28. From
1

1 + (2y)2
dy =

−x
1 + (x2)2

dx we obtain

1

2
tan−1 2y = −1

2
tan−1 x2 + c or tan−1 2y + tan−1 x2 = c1.

Using y(1) = 0 we find c1 = π/4. Thus, an implicit solution of the initial-value problem is

tan−1 2y + tan−1 x2 = π/4 . Solving for y and using a trigonometric identity we get

2y = tan
(π

4
− tan−1 x2

)
y =

1

2
tan

(π
4
− tan−1 x2

)
=

1

2

(
tan(π/4)− tan(tan−1 x2)

1 + tan(π/4) tan(tan−1 x2)

)

=
1

2

(
1− x2

1 + x2

)
.

29. Separating variables, integrating from 4 to x, and using t as a dummy variable of integration

gives ∫ x

4

1

y

dy

dt
dt =

∫ x

4
e−t

2
dt

ln y(t)
∣∣∣x
4

=

∫ x

4
e−t

2
dt

ln y(x)− ln y(4) =

∫ x

4
e−t

2
dt,

Using the initial condition we have

ln y(x) = ln y(4) +

∫ x

4
e−t

2
dt = ln 1 +

∫ x

4
e−t

2
dt =

∫ x

4
e−t

2
dt.

Thus,

y(x) = e
∫ x
4 e−t2dt.

42
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q

30. Separating variables, integrating from −2 to x, and using t as a dummy variable of integration

gives ∫ x

−2

1

y2
dy

dt
dt =

∫ x

−2
sin t2dt

−y(t)−1
∣∣∣x
−2

=

∫ x

−2
sin t2dt

−y(x)−1 + y(−2)−1 =

∫ x

−2
sin t2dt

−y(x)−1 = −y(−2)−1 +

∫ x

−2
sin t2dt

y(x)−1 = 3−
∫ x

−2
sin t2dt.

Thus

y(x) =
1

3−
∫ x
−2 sin t2dt

.

31. Separating variables we have 2y dy = (2x+ 1)dx. Integrating

gives y2 = x2 + x + c. When y(−2) = −1 we find c = −1,

so y2 = x2 + x − 1 and y = −
√
x2 + x− 1 . The negative

square root is chosen because of the initial condition.

To obtain the exact interval of definition we want x2+x−1 >

0. Since y = x2 + x − 1 = 0 is a parabola opening up and

x2+x−1 = 0 when x = −1
2±

1
2

√
5, we use

(
−∞, −1

2−
1
2

√
5
)

(because of the initial condition).

-4 -2
x

-4

-2

y

32. The problem should read

(2y − 2)
dy

dx
= 3x2 + 4x+ 2, y(−2) = 1.

Separating variables we have (2y − 2)dy = (3x2 + 4x+ 2)dx.

Integrating gives y2 − 2y = x3 + 2x2 + 2x + c. We complete

the square by adding 1 to the left-hand side and absorbing

the 1 into the constant on the right-hand side. This gives

(y − 1)2 = x3 + 2x2 + 2x+ c1. From the initial condition we

find that c1 = 4, so the solution of the initial-value problem

is

y = 1−
√
x3 + 2x2 + 2x+ 4 ,

where the minus sign is determined by the initial condition.

-2 2
x

-4

-2

y

2.2 Separable Equations 43
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CHAPTER 2 FIRST-ORDER DIFFERENTIAL EQUATIONS

To obtain the exact interval of definition of the solution we want

x3 + 2x2 + 2x+ 4 = (x2 + 2)(x+ 2) > 0 or x > −2.

Thus, the interval of definition of the solution is (−2, ∞).

33. Writing the differential equation as exdx = e−ydy and inte-

grating we have ex = −e−y + c. Using y(0) = 0 we find that

c = 2 so that y = − ln(2− ex).

To find the interval of definition of this solution we note that

2− ex > 0 so x must be in (−∞, ln 2).

-4 -2
x

2

4

y

34. Integrating the differential equation we have − cosx+ 1
2y

2 =

c. Then y(0) = 1 implies that c = −1
2 , and so y =

√
2 cosx− 1. We choose the positive square root because

of the initial condition.

To find the interval of definition of the solution we note that

-1 1
x

1

y

2 cosx− 1 > 0 or cosx >
1

2
, so − π

3
< x <

π

3
,

and x must be in
(
−π

3
,
π

3

)
.

35. (a) The equilibrium solutions y(x) = 2 and y(x) = −2 satisfy the initial conditions y(0) = 2

and y(0) = −2, respectively. Setting x = 1
4 and y = 1 in y = 2(1 + ce4x)/(1 − ce4x) we

obtain

1 = 2
1 + ce

1− ce
, 1− ce = 2 + 2ce, −1 = 3ce, and c = − 1

3e
.

The solution of the corresponding initial-value problem is

y = 2

(
1− 1

3e
4x−1

1 + 1
3e

4x−1

)
= 2

(
3− e4x−1

3 + e4x−1

)
.

(b) Separating variables and integrating yields

1

4
ln |y − 2| − 1

4
ln |y + 2|+ ln c1 = x

ln |y − 2| − ln |y + 2|+ ln c = 4x

ln
∣∣∣ c(y − 2)

y + 2

∣∣∣ = 4x

c
y − 2

y + 2
= e4x .

Solving for y we get y = 2(c + e4x)/(c − e4x). The initial condition y(0) = −2 implies

2(c + 1)/(c − 1) = −2 which yields c = 0 and y(x) = −2. The initial condition y(0) = 2

44
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does not correspond to a value of c, and it must simply be recognized that y(x) = 2 is a

solution of the initial-value problem. Setting x = 1
4 and y = 1 in y = 2(c+ e4x)/(c− e4x)

leads to c = −3e. Thus, a solution of the initial-value problem is

y = 2
−3e+ e4x

−3e− e4x
= 2

3− e4x−1

3 + e4x−1
.

36. Separating variables, we have

dy

y2 − y
=
dx

x
or

∫
dy

y(y − 1)
= ln |x|+ c.

Using partial fractions, we obtain∫ (
1

y − 1
− 1

y

)
dy = ln |x|+ c

ln |y − 1| − ln |y| = ln |x|+ c

ln

∣∣∣∣y − 1

xy

∣∣∣∣ = c

y − 1

xy
= ec = c1.

Solving for y we get y = 1/(1 − c1x). We note by inspection that y = 0 is a singular solution

of the differential equation.

(a) Setting x = 0 and y = 1 we have 1 = 1/(1 − 0), which is true for all values of c1. Thus,

solutions passing through (0, 1) are y = 1/(1− c1x).

(b) Setting x = 0 and y = 0 in y = 1/(1− c1x) we get 0 = 1. Thus, the only solution passing

through (0, 0) is y = 0.

(c) Setting x = 1
2 and y = 1

2 we have 1
2 = 1/(1− 1

2 c1), so c1 = −2 and y = 1/(1 + 2x).

(d) Setting x = 2 and y = 1
4 we have 1

4 = 1/(1 − 2c1), so c1 = −3
2 and y = 1/(1 + 3

2x) =

2/(2 + 3x).

37. Singular solutions of dy/dx = x
√

1− y2 are y = −1 and y = 1. A singular solution of

(ex + e−x)dy/dx = y2 is y = 0.

38. Differentiating ln(x2 + 10) + csc y = c we get

2x

x2 + 10
− csc y cot y

dy

dx
= 0,

2x

x2 + 10
− 1

sin y
· cos y

sin y

dy

dx
= 0,

or

2x sin2 y dx− (x2 + 10) cos y dy = 0.
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CHAPTER 2 FIRST-ORDER DIFFERENTIAL EQUATIONS

Writing the differential equation in the form

dy

dx
=

2x sin2 y

(x2 + 10) cos y

we see that singular solutions occur when sin2 y = 0, or y = kπ, where k is an integer.

39. The singular solution y = 1 satisfies the initial-value
problem.

40. Separating variables we obtain
dy

(y − 1)2
= dx. Then

− 1

y − 1
= x+ c and y =

x+ c− 1

x+ c
.

Setting x = 0 and y = 1.01 we obtain c = −100. The
solution is

y =
x− 101

x− 100
.

41. Separating variables we obtain
dy

(y − 1)2 + 0.01
= dx.

Then

10 tan−1 10(y−1) = x+c and y = 1+
1

10
tan

x+ c

10
.

Setting x = 0 and y = 1 we obtain c = 0. The
solution is

y = 1 +
1

10
tan

x

10
.

46
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42. Separating variables we obtain
dy

(y − 1)2 + 0.01
= dx.

Then

10 tan−1 10(y−1) = x+c and y = 1+
1

10
tan

x+ c

10
.

Setting x = 0 and y = 1 we obtain c = 0. The

solution is

y = 1 +
1

10
tan

x

10
.

Alternatively, we can use the fact that∫
dy

(y − 1)2 − 0.01
= − 1

0.1
tanh−1

y − 1

0.1
= −10 tanh−1 10(y − 1).

We use the inverse hyperbolic tangent because |y−1| < 0.1 or 0.9 < y < 1.1. This follows from

the initial condition y(0) = 1. Solving the above equation for y we get y = 1 + 0.1 tanh(x/10).

43. Separating variables, we have

dy

y − y3
=

dy

y(1− y)(1 + y)
=

(
1

y
+

1/2

1− y
− 1/2

1 + y

)
dy = dx.

Integrating, we get

ln |y| − 1

2
ln |1− y| − 1

2
ln |1 + y| = x+ c.

When y > 1, this becomes

ln y − 1

2
ln(y − 1)− 1

2
ln(y + 1) = ln

y√
y2 − 1

= x+ c.

Letting x = 0 and y = 2 we find c = ln(2/
√

3 ). Solving for y we get y1(x) = 2ex/
√

4e2x − 3 ,

where x > ln(
√

3/2).

When 0 < y < 1 we have

ln y − 1

2
ln(1− y)− 1

2
ln(1 + y) = ln

y√
1− y2

= x+ c.

Letting x = 0 and y = 1
2 we find c = ln(1/

√
3 ). Solving for y we get y2(x) = ex/

√
e2x + 3 ,

where −∞ < x <∞.

When −1 < y < 0 we have

ln(−y)− 1

2
ln(1− y)− 1

2
ln(1 + y) = ln

−y√
1− y2

= x+ c.

Letting x = 0 and y = −1
2 we find c = ln(1/

√
3 ). Solving for y we get y3(x) = −ex/

√
e2x + 3 ,

where −∞ < x <∞.
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CHAPTER 2 FIRST-ORDER DIFFERENTIAL EQUATIONS

When y < −1 we have

ln(−y)− 1

2
ln(1− y)− 1

2
ln(−1− y) = ln

−y√
y2 − 1

= x+ c.

Letting x = 0 and y = −2 we find c = ln(2/
√

3 ). Solving for y we get y4(x) = −2ex/
√

4e2x − 3 ,

where x > ln(
√

3/2).

44. (a) The second derivative of y is

d2y

dx2
= − dy/dx

(y − 3)2
= −1/(y − 3)

(y − 3)2
= − 1

(y − 3)3
.

The solution curve is concave down when
d2y/dx2 < 0 or y > 3, and concave up when
d2y/dx2 > 0 or y < 3. From the phase portrait
we see that the solution curve is decreasing when
y < 3 and increasing when y > 3.

(b) Separating variables and integrating we obtain

(y − 3) dy = dx

1

2
y2 − 3y = x+ c

y2 − 6y + 9 = 2x+ c1

(y − 3)2 = 2x+ c1

y = 3±
√

2x+ c1 .

The initial condition dictates whether to use the plus or minus sign.

When y1(0) = 4 we have c1 = 1 and y1(x) = 3 +
√

2x+ 1 .

When y2(0) = 2 we have c1 = 1 and y2(x) = 3−
√

2x+ 1 .

When y3(1) = 2 we have c1 = −1 and y3(x) = 3−
√

2x− 1 .

When y4(−1) = 4 we have c1 = 3 and y4(x) = 3 +
√

2x+ 3 .

45. We separate variable and rationalize the denominator:

dy =
1

1 + sinx
· 1− sinx

1− sinx
dx =

1− sinx

1− sin2 x
dx =

1− sinx

cos2x
dx

= (sec2 x− tanx secx)dx.

48
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2.2 Separable Equationsq

Integrating, we have y = tanx− secx+ C.

46. Separating variables we have
√
y dy = sin

√
x dx. Then∫

√
y dy =

∫
sin
√
x dx and

2

3
y3/2 =

∫
sin
√
x dx.

To integrate sin
√
x we first make the substitution u =

√
x. then du =

1

2
√
x
dx =

1

2u
du and∫

sin
√
x dx =

∫
(sinu)(2u)du = 2

∫
u sinu du.

Using integration by parts we find∫
u sinu du = −u cosu+ sinu = −

√
x cos

√
x+ sin

√
x.

Thus

2

3
y =

∫
sin
√
x dx = −2

√
x cos

√
x+ 2 sin

√
x+ C

y = 32/3
(
−
√
x cos

√
x+ sin

√
x+ C

)
.and

47. Separating variables we have dy/(
√
y + y) = dx/(

√
x + x). To integrate

∫
dx/(
√
x + x) we

substitute u2 = x and get∫
2u

u+ u2
du =

∫
2

1 + u
du = 2 ln |1 + u|+ c = 2 ln(1 +

√
x ) + c.

Integrating the separated differential equation we have

2 ln(1 +
√
y ) = 2 ln(1 +

√
x ) + c or ln(1 +

√
y ) = ln(1 +

√
x ) + ln c1.

Solving for y we get y = [c1(1 +
√
x )− 1]2.

48. Separating variables and integrating we have∫
dy

y2/3(1− y1/3)
=

∫
dx

∫
y2/3

1− y1/3
dy = x+ c1

−3 ln
∣∣1− y1/3∣∣ = x+ c1

ln
∣∣1− y1/3∣∣ = −x

3
+ c2∣∣1− y1/3∣∣ = c3e
−x/3

1− y1/3 = c4e
−x/3

y1/3 = 1 + c5e
−x/3

y =
(
1 + c5e

−x/3)3.

49
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CHAPTER 2 FIRST-ORDER DIFFERENTIAL EQUATIONS

49. Separating variables we have y dy = e
√
x dx. If u =

√
x, then u2 = x and 2u du = dx. Thus,∫

e
√
x dx =

∫
2ueu du and, using integration by parts, we find∫

y dy =

∫
e
√
x dx so

1

2
y2 =

∫
2ueu du = −2eu + C = 2

√
xe
√
x − 2e

√
x + C,

y = 2

√√
x e
√
x − e

√
x + C .and

To find C we solve y(1) = 4.

y(1) = 2

√√
1 e
√
1 − e

√
1 + C = 2

√
C = 4 so C = 4,

and the solution of the initial-value problem is y = 2
√√

x e
√
x − e

√
x + 4.

50. Separating variables we have y dy = x tan−1 x dx. Integrating both sides and using integration

by parts with u = tan−1 x and dv = x dx we have∫
y dy = x tan−1 x dx

1

2
y2 =

1

2
x2 tan−1 x− 1

2
x+

1

2
tan−1 x+ C

y2 = x2 tan−1 x− x+ tan−1 x+ C1

y =
√
x2 tan−1 x− x+ tan−1 x+ C1

To find C1 we solve y(0) = 3.

y(0) =
√

02 tan−1 0− 0 + tan−1 0 + C1 =
√
C1 = 3 so C1 = 9,

and the solution of the initial-value problem is y =
√
x2 tan−1 x− x+ tan−1 x+ 9.

Discussion Problems

51. (a) While y2(x) = −
√

25− x2 is defined at x = −5 and x = 5, y′2(x) is not defined at these

values, and so the interval of definition is the open interval (−5, 5).

(b) At any point on the x-axis the derivative of y(x) is undefined, so no solution curve can

cross the x-axis. Since −x/y is not defined when y = 0, the initial-value problem has no

solution.

52. (a) Separating variables and integrating we obtain x2 − y2 = c. For c 6= 0 the graph is a

hyperbola centered at the origin. All four initial conditions imply c = 0 and y = ±x.

Since the differential equation is not defined for y = 0, solutions are y = ±x, x < 0 and

y = ±x, x > 0. The solution for y(a) = a is y = x, x > 0; for y(a) = −a is y = −x; for

y(−a) = a is y = −x, x < 0; and for y(−a) = −a is y = x, x < 0.

50
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q

(b) Since x/y is not defined when y = 0, the initial-value problem has no solution.

(c) Setting x = 1 and y = 2 in x2− y2 = c we get c = −3, so y2 = x2 + 3 and y(x) =
√
x2 + 3 ,

where the positive square root is chosen because of the initial condition. The domain is

all real numbers since x2 + 3 > 0 for all x.

53. Separating variables we have dy/
(√

1 + y2 sin2 y
)

=

dx which is not readily integrated (even by a CAS).

We note that dy/dx ≥ 0 for all values of x and y and

that dy/dx = 0 when y = 0 and y = π, which are

equilibrium solutions.

54. (a) The solution of y′ = y, y(0) = 1, is y = ex. Using separation of variables we find that the

solution of y′ = y
[
1 + 1/(x lnx)

]
, y(e) = 1, is y = ex−e lnx. Solving the two solutions

simultaneously we obtain

ex = ex−e lnx, so ee = lnx and x = ee
e
.

(b) Since y = e(e
ee ) ≈ 2.33 × 101,656,520, the y-coordinate of the point of intersection of the

two solution curves has over 1.65 million digits.

55. We are looking for a function y(x) such that

y2 +

(
dy

dx

)2

= 1.

Using the positive square root gives

dy

dx
=
√

1− y2

dy√
1− y2

= dx

sin−1 y = x+ c.

Thus a solution is y = sin(x+ c). If we use the negative square root we obtain

y = sin(c− x) = − sin(x− c) = − sin(x+ c1).

Note that when c = c1 = 0 and when c = c1 = π/2 we obtain the well known particular

solutions y = sinx, y = − sinx, y = cosx, and y = − cosx. Note also that y = 1 and y = −1

are singular solutions.

2.2 Separable Equations 51
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CHAPTER 2 FIRST-ORDER DIFFERENTIAL EQUATIONS

56. (a) x

(b) For |x| > 1 and |y| > 1 the differential equation is dy/dx =
√
y2 − 1 /

√
x2 − 1 . Separating

variables and integrating, we obtain

dy√
y2 − 1

=
dx√
x2 − 1

and cosh−1 y = cosh−1 x+ c.

Setting x = 2 and y = 2 we find c = cosh−1 2− cosh−1 2 = 0 and cosh−1 y = cosh−1 x. An

explicit solution is y = x.

Mathematical Model

57. Since the tension T1 (or magnitude T1) acts at the lowest point of the cable, we use symmetry

to solve the problem on the interval [0, L/2]. The assumption that the roadbed is uniform (that

is, weighs a constant ρ pounds per horizontal foot) implies W = ρx, where x is measured in feet

and 0 ≤ x ≤ L/2. Therefore (10) in the text becomes dy/dx = (ρ/T1)x. This last equation is a

separable equation of the form given in (1) of Section 2.2 in the text. Integrating and using the

initial condition y(0) = a shows that the shape of the cable is a parabola: y(x) = (ρ/2T1)x
2+a.

In terms of the sag h of the cable and the span L, we see from Figure 2.2.5 in the text that

y(L/2) = h+ a. By applying this last condition to y(x) = (ρ/2T1)x
2 + a enables us to express

ρ/2T1 in terms of h and L: y(x) = (4h/L2)x2 + a. Since y(x) is an even function of x, the

solution is valid on −L/2 ≤ x ≤ L/2.

Computer Lab Assignments

58. (a) Separating variables and integrating, we have

(3y2 + 1)dy = −(8x+ 5)dx

and
y3 + y = −4x2 − 5x+ c.

Using a CAS we show various contours of f(x, y) =

y3+y+4x2+5x. The plots, shown on [−5, 5]×[−5, 5],

correspond to c-values of 0, ±5, ±20, ±40, ±80, and

±125.

52
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2.2 Separable Equationsq

(b) The value of c corresponding to y(0) = −1 is

f(0, −1) = −2; to y(0) = 2 is f(0, 2) = 10; to

y(−1) = 4 is f(−1, 4) = 67; and to y(−1) = −3 is

−31.

59. (a) An implicit solution of the differential equation (2y + 2)dy − (4x3 + 6x)dx = 0 is

y2 + 2y − x4 − 3x2 + c = 0.

The condition y(0) = −3 implies that c = −3. Therefore y2 + 2y − x4 − 3x2 − 3 = 0.

(b) Using the quadratic formula we can solve for y in terms of x:

y =
−2±

√
4 + 4(x4 + 3x2 + 3)

2
.

The explicit solution that satisfies the initial condition is then

y = −1−
√
x4 + 3x3 + 4 .

(c) From the graph of f(x) = x4 + 3x3 + 4 below we see that f(x) ≤ 0 on the approximate

interval −2.8 ≤ x ≤ −1.3. Thus the approximate domain of the function

y = −1−
√
x4 + 3x3 + 4 = −1−

√
f(x)

is x ≤ −2.8 or x ≥ −1.3. The graph of this function is shown below.

53
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CHAPTER 2 FIRST-ORDER DIFFERENTIAL EQUATIONS

(d) Using the root finding capabilities of a CAS, the zeros of f are found

to be −2.82202 and −1.3409. The domain of definition of the solution

y(x) is then x > −1.3409. The equality has been removed since the

derivative dy/dx does not exist at the points where f(x) = 0. The

graph of the solution y = φ(x) is given on the right.

60. (a) Separating variables and integrating, we
have

(−2y + y2)dy = (x− x2)dx

and

−y2 +
1

3
y3 =

1

2
x2 − 1

3
x3 + c.

Using a CAS we show some contours of

f(x, y) = 2y3 − 6y2 + 2x3 − 3x2. The plots

shown on [−7, 7]× [−5, 5] correspond to c-values of −450, −300, −200, −120, −60, −20,

−10, −8.1, −5, −0.8, 20, 60, and 120.

(b) The value of c corresponding to y(0) = 3
2 is

f
(
0, 3

2

)
= −27

4 . The portion of the graph

between the dots corresponds to the solution

curve satisfying the initial condition. To deter-

mine the interval of definition we find dy/dx for

2y3 − 6y2 + 2x3 − 3x2 = −27
4 . Using implicit

differentiation we get y′ = (x − x2)/(y2 − 2y),

which is infinite when y = 0 and y = 2. Letting

y = 0 in 2y3 − 6y2 + 2x3 − 3x2 = −27
4 and using a CAS to solve for x we get x =

−1.13232. Similarly, letting y = 2, we find x = 1.71299. The largest interval of definition

is approximately (−1.13232, 1.71299).

(c) The value of c corresponding to y(0) = −2 is

f(0, −2) = −40. The portion of the graph to

the right of the dot corresponds to the solution

curve satisfying the initial condition. To deter-

mine the interval of definition we find dy/dx for

2y3−6y2+2x3−3x2 = −40. Using implicit differ-

entiation we get y′ = (x − x2)/(y2 − 2y), which

is infinite when y = 0 and y = 2. Letting
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2.3 Linear Equationsq

y = 0 in 2y3−6y2 +2x3−3x2 = −40 and using a CAS to solve for x we get x = −2.29551.

The largest interval of definition is approximately (−2.29551, ∞).

2.3 Linear Equationsq

2.3 Linear Equationsq

1. For y′ − 5y = 0 an integrating factor is e−
∫
5 dx = e−5x so that

d

dx

[
e−5xy

]
= 0 and y = ce5x

for −∞ < x <∞. There is no transient term.

2. For y′ + 2y = 0 an integrating factor is e
∫
2 dx = e2x so that

d

dx

[
e2xy

]
= 0 and y = ce−2x for

−∞ < x <∞. The transient term is ce−2x.

3. For y′+ y = e3x an integrating factor is e
∫
dx = ex so that

d

dx
[exy] = e4x and y = 1

4e
3x + ce−x

for −∞ < x <∞. The transient term is ce−x.

4. For y′+4y = 4
3 an integrating factor is e

∫
4 dx = e4x so that

d

dx

[
e4xy

]
= 4

3e
4x and y = 1

3 +ce−4x

for −∞ < x <∞. The transient term is ce−4x.

5. For y′ + 3x2y = x2 an integrating factor is e
∫
3x2 dx = ex

3
so that

d

dx

[
ex

3
y
]

= x2ex
3

and

y = 1
3 + ce−x

3
for −∞ < x <∞. The transient term is ce−x

3
.

6. For y′ + 2xy = x3 an integrating factor is e
∫
2x dx = ex

2
so that

d

dx

[
ex

2
y
]

= x3ex
2

and

y = 1
2x

2 − 1
2 + ce−x

2
for −∞ < x <∞. The transient term is ce−x

2
.

7. For y′+
1

x
y =

1

x2
an integrating factor is e

∫
(1/x)dx = x so that

d

dx
[xy] =

1

x
and y =

1

x
lnx+

c

x
for 0 < x <∞. The entire solution is transient.

8. For y′−2y = x2+5 an integrating factor is e−
∫
2 dx = e−2x so that

d

dx

[
e−2xy

]
= x2e−2x+5e−2x

and y = −1
2x

2 − 1
2x−

11
4 + ce2x for −∞ < x <∞. There is no transient term.

9. For y′ − 1

x
y = x sinx an integrating factor is e−

∫
(1/x)dx =

1

x
so that

d

dx

[
1

x
y

]
= sinx and

y = cx− x cosx for 0 < x <∞. There is no transient term.

10. For y′+
2

x
y =

3

x
an integrating factor is e

∫
(2/x)dx = x2 so that

d

dx

[
x2y
]

= 3x and y = 3
2 +cx−2

for 0 < x <∞.
1

2
The transient term is cx−2.

11. For y′ +
4

x
y = x2 − 1 an integrating factor is e

∫
(4/x)dx = x4 so that

d

dx

[
x4y
]

= x6 − x4 and

y = 1
7x

3 − 1
5x+ cx−4 for 0 < x <∞.

1

2
The transient term is cx−4.
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CHAPTER 2 FIRST-ORDER DIFFERENTIAL EQUATIONS

12. For y′− x

(1 + x)
y = x an integrating factor is e−

∫
[x/(1+x)]dx = (x+1)e−x so that

d

dx

[
(x+ 1)e−xy

]
=

x(x+ 1)e−x and y = −x− 2x+ 3

x+ 1
+

cex

x+ 1
for −1 < x <∞. There is no transient term.

13. For y′+

(
1 +

2

x

)
y =

ex

x2
an integrating factor is e

∫
[1+(2/x)]dx = x2ex so that

d

dx

[
x2exy

]
= e2x

and y =
1

2

ex

x2
+
ce−x

x2
for 0 < x <∞. The transient term is

ce−x

x2
.

14. For y′+

(
1 +

1

x

)
y =

1

x
e−x sin 2x an integrating factor is e

∫
[1+(1/x)]dx = xex so that

d

dx
[xexy] =

sin 2x and y = − 1

2x
e−x cos 2x+

ce−x

x
for 0 < x <∞. The entire solution is transient.

15. For
dx

dy
− 4

y
x = 4y5 an integrating factor is e−

∫
(4/y)dy = eln y

−4
= y−4 so that

d

dy

[
y−4x

]
= 4y

and x = 2y6 + cy4 for 0 < y <∞.
1

2
There is no transient term.

16. For
dx

dy
+

2

y
x = ey an integrating factor is e

∫
(2/y)dy = y2 so that

d

dy

[
y2x
]

= y2ey and

x = ey − 2

y
ey +

2

y2
ey +

c

y2
for 0 < y <∞. The transient term is

c

y2
.

17. For y′+(tanx)y = secx an integrating factor is e
∫
tanx dx = secx so that

d

dx
[(secx) y] = sec2 x

and y = sinx+ c cosx for −π/2 < x < π/2. There is no transient term.

18. For y′ + (cotx)y = sec2 x cscx an integrating factor is e
∫
cotx dx = eln | sinx| = sinx so that

d

dx
[(sinx) y] = sec2 x and y = secx+ c cscx for 0 < x < π/2. There is no transient term.

19. For y′+
x+ 2

x+ 1
y =

2xe−x

x+ 1
an integrating factor is e

∫
[(x+2)/(x+1)]dx = (x+1)ex, so

d

dx
[(x+ 1)exy] =

2x and y =
x2

x+ 1
e−x +

c

x+ 1
e−x for −1 < x <∞. The entire solution is transient.

20. For y′+
4

x+ 2
y =

5

(x+ 2)2
an integrating factor is e

∫
[4/(x+2)]dx = (x+2)4 so that

d

dx

[
(x+ 2)4y

]
=

5(x+ 2)2 and y =
5

3
(x+ 2)−1 + c(x+ 2)−4 for −2 < x <∞. The entire solution is transient.

1

2

21. For
dr

dθ
+ r sec θ = cos θ an integrating factor is e

∫
sec θ dθ = eln | secx+tanx| = sec θ+ tan θ so that

d

dθ
[(sec θ + tan θ)r] = 1 + sin θ and (sec θ + tan θ)r = θ − cos θ + c for −π/2 < θ < π/2 .

1

2

22. For
dP

dt
+ (2t − 1)P = 4t − 2 an integrating factor is e

∫
(2t−1) dt = et

2−t so that
d

dt

[
et

2−tP
]

=

(4t− 2)et
2−t and P = 2 + cet−t

2
for −∞ < t <∞. The transient term is cet−t

2
.

56

© 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part, except for use as permitted in a license distributed 
with a certain product or service or otherwise on a password-protected website for classroom use. 

Not For Sale

©
 C

en
ga

ge
 L

ea
rn

in
g.

 A
ll 

rig
ht

s r
es

er
ve

d.
 N

o 
di

st
rib

ut
io

n 
al

lo
w

ed
 w

ith
ou

t e
xp

re
ss

 a
ut

ho
riz

at
io

n.



q

23. For y′+

(
3 +

1

x

)
y =

e−3x

x
an integrating factor is e

∫
[3+(1/x)]dx = xe3x so that

d

dx

[
xe3xy

]
= 1

and y = e−3x +
ce−3x

x
for 0 < x <∞. The entire solution is transient.

24. For y′+
2

x2 − 1
y =

x+ 1

x− 1
an integrating factor is e

∫
[2/(x2−1)]dx =

x− 1

x+ 1
so that

d

dx

[
x− 1

x+ 1
y

]
=

1 and (x− 1)y = x(x+ 1) + c(x+ 1) for −1 < x < 1.

25. For y′ − 5y = x an integrating factor is e
∫
−5 dx = e−5x so that

d

dx
[e−5xy] = xe−5x and

y = e5x
∫
xe−5xdx = e5x

(
−1

5
xe−5x − 1

25
e−5x + c

)
= −1

5
x− 1

25
+ ce5x.

If y(0) = 3 then c = 1
25 and y = −1

5 x−
1
25 + 76

25 e
5x. The solution is defined on I = (−∞, ∞).

26. For y′ + 3y = 2x an integrating factor is e
∫
3 dx = e3x so that

d

dx
[e3xy] = 2xe3x and

y = e−3x
∫

2xe3xdx = e−3x
(

2

3
xe3x − 2

9
e3x + c

)
=

2

3
x− 2

9
+ ce−3x.

If y(0) = 1
3 then c = 5

9 and y = 2
3 x−

2
9 + 5

9 e
−3x. The solution is defined on I = (−∞, ∞).

27. For y′+
1

x
y =

1

x
ex an integrating factor is e

∫
(1/x)dx = x so that

d

dx
[xy] = ex and y =

1

x
ex+

c

x

for 0 < x < ∞. If y(1) = 2 then c = 2 − e and y =
1

x
ex +

2− e
x

. The solution is defined on

I = (0, ∞).

28. For
dx

dy
− 1

y
x = 2y an integrating factor is e−

∫
(1/y)dy =

1

y
so that

d

dy

[
1

y
x

]
= 2 and x = 2y2+cy

for 0 < y < ∞. If y(1) = 5 then c = −49

5
and x = 2y2 − 49

5
y. The solution is defined on

I = (0, ∞).

29. For
di

dt
+
R

L
i =

E

L
an integrating factor is e

∫
(R/L) dt = eRt/L so that

d

dt

[
eRt/L i

]
=
E

L
eRt/L and

i =
E

R
+ce−Rt/L for−∞ < t <∞. If i(0) = i0 then c = i0−E/R and i =

E

R
+

(
i0 −

E

R

)
e−Rt/L.

The solution is defined on I = (−∞, ∞).

30. For
dT

dt
− kT = −Tmk an integrating factor is e

∫
(−k)dt = e−kt so that

d

dt
[e−ktT ] = −Tmke−kt

and T = Tm+ cekt for −∞ < t <∞.If T (0) = T0 then c = T0−Tm and T = Tm+(T0−Tm)ekt.

The solution is defined on I = (−∞, ∞).
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CHAPTER 2 FIRST-ORDER DIFFERENTIAL EQUATIONS

31. For y′ +
1

x
y = 4 +

1

x
an integrating factor is e

∫
(1/x) dx = x so that

d

dx
[xy] = 4x+ 1 and

y =
1

x

∫
(4x+ 1)dx =

1

x

(
2x2 + x+ c

)
= 2x+ 1 +

c

x
.

If y(1) = 8 then c = 5 and y = 2x+ 1 +
5

x
. The solution is defined on I = (0, ∞).

32. For y′ + 4xy = x3ex
2

an integrating factor is e4x dx = e2x
2

so that
d

dx
[e2x

2
y] = x3e3x

2
and

y = e−2x
2

∫
x3e3x

2
dx = e−2x

2

(
1

6
x2e3x

2 − 1

18
e3x

2
+ c

)
=

1

6
x2ex

2 − 1

18
ex

2
+ ce−2x

2
.

If y(0) = −1 then c = −17
18 and y = 1

6 x
2ex

2 − 1
18 e

x2 − 17
18 e
−2x2 . The solution is defined on

I = (−∞, ∞).

33. For y′+
1

x+ 1
y =

lnx

x+ 1
an integrating factor is e

∫
[1/(x+1)]dx = x+1 so that

d

dx
[(x+1)y] = lnx

and

y =
x

x+ 1
lnx− x

x+ 1
+

c

x+ 1

for 0 < x <∞. If y(1) = 10 then c = 21 and y =
x

x+ 1
lnx− x

x+ 1
+

21

x+ 1
. The solution is

defined on I = (0, ∞).

34. For y′+
1

x+ 1
y =

1

x(x+ 1)
an integrating factor is e

∫
[1/(x+1)]dx = x+1 so that

d

dx
[(x+1)y] =

1

x

and

y =
1

x+ 1

∫
1

x
dx =

1

x+ 1
(lnx+ c) =

lnx

x+ 1
+

c

x+ 1
.

If y(e) = 1 then c = e and y =
lnx

x+ 1
+

e

x+ 1
. The solution is defined on I = (0, ∞).

35. For y′ − (sinx)y = 2 sinx an integrating factor is e
∫
(− sinx) dx = ecosx so that

d

dx
[ecosxy] =

2(sinx)ecosx and

y = e− cosx

∫
2(sinx)ecosxdx = e− cosx (−2ecosx + c) = −2 + ce− cosx.

If y(π/2) = 1 then c = 3 and y = −2 + 3e− cosx. The solution is defined on I = (−∞, ∞).

36. For y′ + (tanx)y = cos2 x an integrating factor is e
∫
tanx dx = eln | secx| = secx so that

d

dx
[(secx) y] = cosx and y = sinx cosx + c cosx for −π/2 < x < π/2. If y(0) = −1 then

c = −1 and y = sinx cosx− cosx. The solution is defined on I = (−π/2, π/2).
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37. For y′ + 2y = f(x) an integrating factor is e2x so that

ye2x =

{
1
2e

2x + c1, 0 ≤ x ≤ 3

c2, 0 ≤ x > 3.

If y(0) = 0 then c1 = −1/2 and for continuity we must

have c2 = 1
2e

6 − 1
2 so that

y =


1
2(1− e−2x), 0 ≤ x ≤ 3

1
2(e6 − 1)e−2x, 0 ≤ x > 3.

38. For y′ + y = f(x) an integrating factor is ex so that

yex =

{
ex + c1, 0 ≤ x ≤ 1

−ex + c2, 0 ≤ x > 1.

If y(0) = 1 then c1 = 0 and for continuity we must have

c2 = 2e so that

y =

{
1, 0 ≤ x ≤ 1

2e1−x − 1, 0 ≤ x > 1.

39. For y′ + 2xy = f(x) an integrating factor is ex
2

so that

yex
2

=

{
1
2e
x2 + c1, 0 ≤ x < 1

c2, 0 ≤ x ≥ 1.

If y(0) = 2 then c1 = 3/2 and for continuity we must have

c2 = 1
2e+ 3

2 so that

y =


1
2 + 3

2e
−x2 , 0 ≤ x < 1(

1
2e+ 3

2

)
e−x

2
, 0 ≤ x ≥ 1.

40. For

y′ +
2x

1 + x2
y =


x

1 + x2
, 0 ≤ x ≤ 1

−x
1 + x2

, 0 < x > 1,

an integrating factor is 1 + x2 so that

(
1 + x2

)
y =


1

2
x2 + c1, 0 ≤ x ≤ 1

−1

2
x2 + c2, 0 ≤ x > 1.
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CHAPTER 2 FIRST-ORDER DIFFERENTIAL EQUATIONS

If y(0) = 0 then c1 = 0 and for continuity we must have c2 = 1 so that

y =


1

2
− 1

2 (1 + x2)
, 0 ≤ x ≤ 1

3

2 (1 + x2)
− 1

2
, 0 ≤ x > 1.

41. We first solve the initial-value problem y′+ 2y = 4x, y(0) = 3 on the

interval [0, 1]. The integrating factor is e
∫
2 dx = e2x, so

d

dx
[e2xy] = 4xe2x

e2xy =

∫
4xe2xdx = 2xe2x − e2x + c1

y = 2x− 1 + c1e
−2x.

Using the initial condition, we find y(0) = −1 + c1 = 3, so c1 = 4

and y = 2x − 1 + 4e−2x, 0 ≤ x ≤ 1. Now, since y(1) = 2 − 1 + 4e−2 = 1 + 4e−2, we solve the

initial-value problem y′− (2/x)y = 4x, y(1) = 1 + 4e−2 on the interval (1, ∞). The integrating

factor is e
∫
(−2/x)dx = e−2 lnx = x−2, so

d

dx
[x−2y] = 4xx−2 =

4

x

x−2y =

∫
4

x
dx = 4 lnx+ c2

y = 4x2 lnx+ c2x
2.

(We use lnx instead of ln |x| because x > 1.) Using the initial condition we find y(1) = c2 =

1 + 4e−2, so y = 4x2 lnx+ (1 + 4e−2)x2, x > 1. Thus, the solution of the original initial-value

problem is

y =

{
2x− 1 + 4e−2x, 0 ≤ x ≤ 1

4x2 lnx+ (1 + 4e−2)x2, 0 ≤ x > 1.

See Problem 48 in this section.

42. For y′ + exy = 1 an integrating factor is ee
x
. Thus

d

dx

[
ee

x
y
]

= ee
x

and ee
x
y =

∫ x

0
ee

t
dt+ c.

From y(0) = 1 we get c = e, so y = e−e
x ∫ x

0 e
etdt+ e1−e

x
.

When y′ + exy = 0 we can separate variables and integrate:

dy

y
= −ex dx and ln |y| = −ex + c.

Thus y = c1e
−ex . From y(0) = 1 we get c1 = e, so y = e1−e

x
.

When y′ + exy = ex we can see by inspection that y = 1 is a solution.
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43. An integrating factor for y′ − 2xy = 1 is e−x
2
. Thus

d

dx
[e−x

2
y] = e−x

2

e−x
2
y =

∫ x

0
e−t

2
dt =

√
π

2
erf(x) + c

y =

√
π

2
ex

2
erf(x) + cex

2
.

From y(1) =

√
π

2
e erf(1) + ce = 1 we get c = e−1 −

√
π

2
erf(1). The solution of the initial-value

problem is

y =

√
π

2
ex

2
erf(x) +

(
e−1 −

√
π

2
erf(1)

)
ex

2

= ex
2−1 +

√
π

2
ex

2(
erf(x)− erf(1)

)
.

Discussion Problems

44. We want 4 to be a critical point, so we use y′ = 4− y.

45. (a) All solutions of the form y = x5ex − x4ex + cx4 satisfy the initial condition. In this case,

since 4/x is discontinuous at x = 0, the hypotheses of Theorem 1.2.1 are not satisfied and

the initial-value problem does not have a unique solution.

(b) The differential equation has no solution satisfying y(0) = y0, y0 > 0.

(c) In this case, since x0 > 0, Theorem 1.2.1 applies and the initial-value problem has a unique

solution given by y = x5ex − x4ex + cx4 where c = y0/x
4
0 − x0ex0 + ex0 .

46. On the interval (−3, 3) the integrating factor is

e
∫
x dx/(x2−9) = e−

∫
x dx/(9−x2) = e

1
2
ln(9−x2) =

√
9− x2 ,

and so
d

dx

[√
9− x2 y

]
= 0 and y =

c√
9− x2

.

47. We want the general solution to be y = 3x − 5 + ce−x. (Rather than e−x, any function that

approaches 0 as x→∞ could be used.) Differentiating we get

y′ = 3− ce−x = 3− (y − 3x+ 5) = −y + 3x− 2,

so the differential equation y′ + y = 3x− 2 has solutions asymptotic to the line y = 3x− 5.

48. The left-hand derivative of the function at x = 1 is 1/e and the right-hand derivative at x = 1

is 1− 1/e. Thus, y is not differentiable at x = 1.
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CHAPTER 2 FIRST-ORDER DIFFERENTIAL EQUATIONS

49. (a) Differentiating yc = c/x3 we get

y′c = −3c

x4
= −3

x

c

x3
= −3

x
yc

so a differential equation with general solution yc = c/x3 is xy′ + 3y = 0. Now

xy′p + 3yp = x(3x2) + 3(x3) = 6x3,

so a differential equation with general solution y = c/x3 + x3 is xy′ + 3y = 6x3. This will

be a general solution on (0, ∞).

(b) Since y(1) = 13−1/13 = 0, an initial condition is y(1) = 0.

Since y(1) = 13+2/13 = 3, an initial condition is y(1) = 3.

In each case the interval of definition is (0, ∞). The initial-

value problem xy′+3y = 6x3, y(0) = 0 has solution y = x3

for −∞ < x < ∞. In the figure the lower curve is the

graph of y(x) = x3 − 1/x3, while the upper curve is the

graph of y = x3 − 2/x3.

(c) The first two initial-value problems in part (b) are not unique. For example, setting

y(2) = 23 − 1/23 = 63/8, we see that y(2) = 63/8 is also an initial condition leading to

the solution y = x3 − 1/x3.

50. Since e
∫
P (x)dx+c = ece

∫
P (x)dx = c1e

∫
P (x)dx, we would have

c1e
∫
P (x)dxy = c2+

∫
c1e

∫
P (x)dxf(x) dx and y = c3e

−
∫
P (x)dx+e−

∫
P (x)dx

∫
e
∫
P (x)dxf(x) dx,

which is the same as (4) in the text.

51. We see by inspection that y = 0 is a solution.

Mathematical Models

52. The solution of the first equation is x = c1e
−λ1t. From x(0) = x0 we obtain c1 = x0 and so

x = x0e
−λ1t. The second equation then becomes

dy

dt
= x0λ1e

−λ1t − λ2y or
dy

dt
+ λ2y = x0λ1e

−λ1t,

which is linear. An integrating factor is eλ2t. Thus

d

dt
[eλ2ty ] = x0λ1e

−λ1teλ2t = x0λ1e
(λ2−λ1)t

eλ2ty =
x0λ1
λ2 − λ1

e(λ2−λ1)t + c2

y =
x0λ1
λ2 − λ1

e−λ1t + c2e
−λ2t.
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q

From y(0) = y0 we obtain c2 = (y0λ2 − y0λ1 − x0λ1)/(λ2 − λ1). The solution is

y =
x0λ1
λ2 − λ1

e−λ1t +
y0λ2 − y0λ1 − x0λ1

λ2 − λ1
e−λ2t.

53. Writing the differential equation as
dE

dt
+

1

RC
E = 0 we see that an integrating factor is et/RC .

Then

d

dt
[et/RCE] = 0

et/RCE = c

E = ce−t/RC .

From E(4) = ce−4/RC = E0 we find c = E0e
4/RC . Thus, the solution of the initial-value

problem is

E = E0e
4/RCe−t/RC = E0e

−(t−4)/RC .

Computer Lab Assignments

54. (a) An integrating factor for y′ − 2xy = −1 is e−x
2
. Thus

d

dx
[e−x

2
y] = −e−x2

e−x
2
y = −

∫ x

0
e−t

2
dt = −

√
π

2
erf(x) + c.

From y(0) =
√
π/2, and noting that erf(0) = 0, we get c =

√
π/2. Thus

y = ex
2

(
−
√
π

2
erf(x) +

√
π

2

)
=

√
π

2
ex

2
(1− erf(x)) =

√
π

2
ex

2
erfc(x).

(b) Using a CAS we find y(2) ≈ 0.226339.

55. (a) An integrating factor for

y′ +
2

x
y =

10 sinx

x3

is x2. Thus

d

dx
[x2y] = 10

sinx

x

x2y = 10

∫ x

0

sin t

t
dt+ c

y = 10x−2Si(x) + cx−2.
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CHAPTER 2 FIRST-ORDER DIFFERENTIAL EQUATIONS

From y(1) = 0 we get c = −10Si(1). Thus

y = 10x−2Si(x)− 10x−2Si(1) = 10x−2
(
Si(x)− Si(1)

)
.

(b) x

(c) From the graph in part (b) we see that the absolute maximum occurs around x = 1.7.

Using the root-finding capability of a CAS and solving y′(x) = 0 for x we see that the

absolute maximum is (1.688, 1.742).

56. (a) The integrating factor for y′ − (sinx2)y = 0 is e−
∫ x
0 sin t2 dt. Then

d

dx

[
e−

∫ x
0 sin t2dty

]
= 0

e−
∫ x
0 sin t2 dty = c1

y = c1e
∫ x
0 sin t2dt.

Letting t =
√
π/2u we have dt =

√
π/2 du and∫ x

0
sin t2 dt =

√
π

2

∫ √2/π x

0
sin
(π

2
u2
)
du =

√
π

2
S

(√
2

π
x

)
so y = c1e

√
π/2S(

√
2/π x). Using S(0) = 0 and y(0) = c1 = 5 we have y = 5e

√
π/2S(

√
2/π x).

(b) x

(c) From the graph we see that as x → ∞, y(x) oscillates with decreasing amplitudes ap-

proaching 9.35672. Since limx→∞ 5S(x) = 1
2 , limx→∞ y(x) = 5e

√
π/8 ≈ 9.357, and since

limx→−∞ S(x) = −1
2 , limx→−∞ y(x) = 5e−

√
π/8 ≈ 2.672.
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2.4 Exact Equations

(d) From the graph in part (b) we see that the absolute maximum occurs around x = 1.7 and

the absolute minimum occurs around x = −1.8. Using the root-finding capability of a

CAS and solving y′(x) = 0 for x, we see that the absolute maximum is (1.772, 12.235)

and the absolute minimum is (−1.772, 2.044).

2.4 Exact Equationsq

2.4 Exact Equationsq

1. Let M = 2x − 1 and N = 3y + 7 so that My = 0 = Nx. From fx = 2x − 1 we obtain

f = x2 − x+ h(y), h′(y) = 3y + 7, and h(y) = 3
2y

2 + 7y. A solution is x2 − x+ 3
2y

2 + 7y = c.

2. Let M = 2x+ y and N = −x− 6y. Then My = 1 and Nx = −1, so the equation is not exact.

3. Let M = 5x + 4y and N = 4x − 8y3 so that My = 4 = Nx. From fx = 5x + 4y we obtain

f = 5
2x

2 + 4xy + h(y), h′(y) = −8y3, and h(y) = −2y4. A solution is 5
2x

2 + 4xy − 2y4 = c.

4. Let M = sin y − y sinx and N = cosx + x cos y − y so that My = cos y − sinx = Nx. From

fx = sin y − y sinx we obtain f = x sin y + y cosx + h(y), h′(y) = −y, and h(y) = −1
2y

2. A

solution is x sin y + y cosx− 1
2y

2 = c.

5. Let M = 2y2x− 3 and N = 2yx2 + 4 so that My = 4xy = Nx. From fx = 2y2x− 3 we obtain

f = x2y2 − 3x+ h(y), h′(y) = 4, and h(y) = 4y. A solution is x2y2 − 3x+ 4y = c.

6. Let M = 4x3− 3y sin 3x− y/x2 and N = 2y− 1/x+ cos 3x so that My = −3 sin 3x− 1/x2 and

Nx = 1/x2 − 3 sin 3x. The equation is not exact.

7. Let M = x2− y2 and N = x2− 2xy so that My = −2y and Nx = 2x− 2y. The equation is not

exact.

8. LetM = 1+lnx+y/x andN = −1+lnx so thatMy = 1/x = Nx. From fy = −1+lnx we obtain

f = −y+y lnx+h(y), h′(x) = 1+lnx, and h(y) = x lnx. A solution is −y+y lnx+x lnx = c.

9. Let M = y3 − y2 sinx − x and N = 3xy2 + 2y cosx so that My = 3y2 − 2y sinx = Nx. From

fx = y3 − y2 sinx − x we obtain f = xy3 + y2 cosx − 1
2x

2 + h(y), h′(y) = 0, and h(y) = 0. A

solution is xy3 + y2 cosx− 1
2x

2 = c.

10. Let M = x3 + y3 and N = 3xy2 so that My = 3y2 = Nx. From fx = x3 + y3 we obtain

f = 1
4x

4 + xy3 + h(y), h′(y) = 0, and h(y) = 0. A solution is 1
4x

4 + xy3 = c.

11. Let M = y ln y− e−xy and N = 1/y+ x ln y so that My = 1 + ln y+ xe−xy and Nx = ln y. The

equation is not exact.

12. Let M = 3x2y+ ey and N = x3 + xey − 2y so that My = 3x2 + ey = Nx. From fx = 3x2y+ ey

we obtain f = x3y+xey+h(y), h′(y) = −2y, and h(y) = −y2. A solution is x3y+xey−y2 = c.
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CHAPTER 2 FIRST-ORDER DIFFERENTIAL EQUATIONS

13. Let M = y−6x2−2xex and N = x so that My = 1 = Nx. From fx = y−6x2−2xex we obtain

f = xy−2x3−2xex+2ex+h(y), h′(y) = 0, and h(y) = 0. A solution is xy−2x3−2xex+2ex = c.

14. Let M = 1 − 3/x + y and N = 1 − 3/y + x so that My = 1 = Nx. From fx = 1 − 3/x + y

we obtain f = x − 3 ln |x| + xy + h(y), h′(y) = 1 − 3

y
, and h(y) = y − 3 ln |y|. A solution is

x+ y + xy − 3 ln |xy| = c.

15. Let M = x2y3 − 1/
(
1 + 9x2

)
and N = x3y2 so that My = 3x2y2 = Nx. From

fx = x2y3−1/
(
1 + 9x2

)
we obtain f = 1

3x
3y3− 1

3 arctan(3x)+h(y), h′(y) = 0, and h(y) = 0.

A solution is x3y3 − arctan(3x) = c.

16. Let M = −2y and N = 5y − 2x so that My = −2 = Nx. From fx = −2y we obtain

f = −2xy + h(y), h′(y) = 5y, and h(y) = 5
2y

2. A solution is −2xy + 5
2y

2 = c.

17. Let M = tanx − sinx sin y and N = cosx cos y so that My = − sinx cos y = Nx. From

fx = tanx− sinx sin y we obtain f = ln | secx|+ cosx sin y + h(y), h′(y) = 0, and h(y) = 0. A

solution is ln | secx|+ cosx sin y = c.

18. Let M = 2y sinx cosx− y + 2y2exy
2

and N = −x+ sin2 x+ 4xyexy
2

so that

My = 2 sinx cosx− 1 + 4xy3exy
2

+ 4yexy
2

= Nx.

From fx = 2y sinx cosx − y + 2y2exy
2

we obtain f = y sin2 x − xy + 2exy
2

+ h(y), h′(y) = 0,

and h(y) = 0. A solution is y sin2 x− xy + 2exy
2

= c.

19. Let M = 4t3y−15t2−y and N = t4+3y2−t so that My = 4t3−1 = Nt. From ft = 4t3y−15t2−y
we obtain f = t4y−5t3−ty+h(y), h′(y) = 3y2, and h(y) = y3. A solution is t4y−5t3−ty+y3 = c.

20. LetM = 1/t+1/t2−y/
(
t2 + y2

)
andN = yey+t/

(
t2 + y2

)
so thatMy =

(
y2 − t2

)
/
(
t2 + y2

)2
=

Nt. From ft = 1/t+1/t2−y/
(
t2 + y2

)
we obtain f = ln |t|− 1

t
−arctan

(
t

y

)
+h(y), h′(y) = yey,

and h(y) = yey − ey. A solution is

ln |t| − 1

t
− arctan

(
t

y

)
+ yey − ey = c.

21. Let M = x2 + 2xy + y2 and N = 2xy + x2 − 1 so that My = 2(x + y) = Nx. From fx =

x2 + 2xy+ y2 we obtain f = 1
3x

3 + x2y+ xy2 +h(y), h′(y) = −1, and h(y) = −y. The solution

is 1
3x

3 +x2y+xy2−y = c. If y(1) = 1 then c = 4/3 and a solution of the initial-value problem

is 1
3x

3 + x2y + xy2 − y = 4
3 .

22. Let M = ex + y and N = 2 + x + yey so that My = 1 = Nx. From fx = ex + y we

obtain f = ex + xy + h(y), h′(y) = 2 + yey, and h(y) = 2y + yey − y. The solution is

ex + xy + 2y + yey − ey = c. If y(0) = 1 then c = 3 and a solution of the initial-value problem

is ex + xy + 2y + yey − ey = 3.
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2.4 Exact Equations

23. Let M = 4y + 2t − 5 and N = 6y + 4t − 1 so that My = 4 = Nt. From ft = 4y + 2t − 5

we obtain f = 4ty + t2 − 5t + h(y), h′(y) = 6y − 1, and h(y) = 3y2 − y. The solution is

4ty+ t2 − 5t+ 3y2 − y = c. If y(−1) = 2 then c = 8 and a solution of the initial-value problem

is 4ty + t2 − 5t+ 3y2 − y = 8.

24. Let M = t/2y4 and N =
(
3y2 − t2

)
/y5 so that My = −2t/y5 = Nt. From ft = t/2y4 we obtain

f =
t2

4y4
+ h(y), h′(y) =

3

y3
, and h(y) = − 3

2y2
. The solution is

t2

4y4
− 3

2y2
= c. If y(1) = 1

then c = −5/4 and a solution of the initial-value problem is
t2

4y4
− 3

2y2
= −5

4
.

25. Let M = y2 cosx− 3x2y − 2x and N = 2y sinx− x3 + ln y so that My = 2y cosx− 3x2 = Nx.

From fx = y2 cosx − 3x2y − 2x we obtain f = y2 sinx − x3y − x2 + h(y), h′(y) = ln y, and

h(y) = y ln y − y. The solution is y2 sinx − x3y − x2 + y ln y − y = c. If y(0) = e then c = 0

and a solution of the initial-value problem is y2 sinx− x3y − x2 + y ln y − y = 0.

26. Let M = y2 + y sinx and N = 2xy − cosx− 1/
(
1 + y2

)
so that My = 2y + sinx = Nx. From

fx = y2+y sinx we obtain f = xy2−y cosx+h(y), h′(y) = −1/(1+y2) , and h(y) = − tan−1 y.

The solution is xy2 − y cosx − tan−1 y = c. If y(0) = 1 then c = −1 − π/4 and a solution of

the initial-value problem is xy2 − y cosx− tan−1 y = −1− π/4 .

27. Equating My = 3y2 + 4kxy3 and Nx = 3y2 + 40xy3 we obtain k = 10.

28. Equating My = 18xy2 − sin y and Nx = 4kxy2 − sin y we obtain k = 9/2.

29. Let M = −x2y2 sinx+ 2xy2 cosx and N = 2x2y cosx so that My = −2x2y sinx+ 4xy cosx =

Nx. From fy = 2x2y cosx we obtain f = x2y2 cosx+h(y), h′(y) = 0, and h(y) = 0. A solution

of the differential equation is x2y2 cosx = c.

30. Let M =
(
x2 + 2xy − y2

)
/
(
x2 + 2xy + y2

)
and N =

(
y2 + 2xy − x2

)
/
(
y2 + 2xy + x2

)
so

that My = −4xy/(x + y)3 = Nx. From fx =
(
x2 + 2xy + y2 − 2y2

)
/(x + y)2 we obtain

f = x +
2y2

x+ y
+ h(y), h′(y) = −1, and h(y) = −y. A solution of the differential equation is

x2 + y2 = c(x+ y).

31. We note that (My−Nx)/N = 1/x, so an integrating factor is e
∫
dx/x = x. Let M = 2xy2 + 3x2

and N = 2x2y so that My = 4xy = Nx. From fx = 2xy2 + 3x2 we obtain f = x2y2 +x3 +h(y),

h′(y) = 0, and h(y) = 0. A solution of the differential equation is x2y2 + x3 = c.

32. We note that (My−Nx)/N = 1, so an integrating factor is e
∫
dx = ex. Let M = xyex+y2ex+yex

and N = xex + 2yex so that My = xex + 2yex + ex = Nx. From fy = xex + 2yex we obtain

f = xyex + y2ex + h(x), h′(y) = 0, and h(y) = 0. A solution of the differential equation is

xyex + y2ex = c.

33. We note that (Nx −My)/M = 2/y, so an integrating factor is e
∫
2dy/y = y2. Let M = 6xy3

and N = 4y3 + 9x2y2 so that My = 18xy2 = Nx. From fx = 6xy3 we obtain f = 3x2y3 + h(y),

h′(y) = 4y3, and h(y) = y4. A solution of the differential equation is 3x2y3 + y4 = c.
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CHAPTER 2 FIRST-ORDER DIFFERENTIAL EQUATIONS

34. We note that (My − Nx)/N = − cotx, so an integrating factor is e−
∫
cotx dx = cscx. Let

M = cosx cscx = cotx and N = (1 + 2/y) sinx cscx = 1 + 2/y, so that My = 0 = Nx. From

fx = cotx we obtain f = ln(sinx) + h(y), h′(y) = 1 + 2/y, and h(y) = y + ln y2. A solution of

the differential equation is ln(sinx) + y + ln y2 = c.

35. We note that (My −Nx)/N = 3, so an integrating factor is e
∫
3 dx = e3x. Let

M = (10− 6y + e−3x)e3x = 10e3x − 6ye3x + 1 and N = −2e3x,

so that My = −6e3x = Nx. From fx = 10e3x−6ye3x+1 we obtain f = 10
3 e

3x−2ye3x+x+h(y),

h′(y) = 0, and h(y) = 0. A solution of the differential equation is 10
3 e

3x − 2ye3x + x = c.

36. We note that (Nx −My)/M = −3/y, so an integrating factor is e−3
∫
dy/y = 1/y3. Let

M = (y2 + xy3)/y3 = 1/y + x and N = (5y2 − xy + y3 sin y)/y3 = 5/y − x/y2 + sin y,

so that My = −1/y2 = Nx. From fx = 1/y + x we obtain f = x/y + 1
2x

2 + h(y),

h′(y) = 5/y + sin y, and h(y) = 5 ln |y| − cos y. A solution of the differential equation is

x/y + 1
2x

2 + 5 ln |y| − cos y = c.

37. We note that (My − Nx)/N = 2x/(4 + x2), so an integrating factor is e−2
∫
x dx/(4+x2) =

1/(4 + x2). Let M = x/(4 + x2) and N = (x2y + 4y)/(4 + x2) = y, so that My = 0 = Nx.

From fx = x(4 + x2) we obtain f = 1
2 ln(4 + x2) + h(y), h′(y) = y, and h(y) = 1

2y
2. A solution

of the differential equation is 1
2 ln(4 + x2) + 1

2y
2 = c. Multiplying both sides by 2 and then

exponentiating we find ey
2
(4 + x2) = c1. Using the initial condition y(4) = 0 we see that

c1 = 20 and the solution of the initial-value problem is ey
2
(4 + x2) = 20.

38. We note that (My − Nx)/N = −3/(1 + x), so an integrating factor is e−3
∫
dx/(1+x) =

1/(1 + x)3. Let M = (x2 + y2 − 5)/(1 + x)3 and N = −(y + xy)/(1 + x)3 = −y/(1 + x)2, so

that My = 2y/(1 + x)3 = Nx. From fy = −y/(1 + x)2 we obtain f = −1
2y

2/(1 + x)2 + h(x),

h′(x) = (x2 − 5)/(1 + x)3, and h(x) = 2/(1 + x)2 + 2/(1 + x) + ln |1 + x|. A solution of the

differential equation is

− y2

2(1 + x)2
+

2

(1 + x)2
+

2

(1 + x)
+ ln |1 + x| = c.

Using the initial condition y(0) = 1 we see that c = 7
2 and the solution of the initial-value

problem is

− y2

2(1 + x)2
+

2

(1 + x)2
+

2

(1 + x)
+ ln |1 + x| = 7

2
.

39. (a) Implicitly differentiating x3 + 2x2y + y2 = c and solving for dy/dx we obtain

3x2 + 2x2
dy

dx
+ 4xy + 2y

dy

dx
= 0 and

dy

dx
= −3x2 + 4xy

2x2 + 2y
.

By writing the last equation in differential form we get (4xy+ 3x2)dx+ (2y+ 2x2)dy = 0.
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2.4 Exact Equatio q

(b) Setting x = 0 and y = −2 in x3 + 2x2y + y2 = c we find c = 4, and setting x = y = 1 we

also find c = 4. Thus, both initial conditions determine the same implicit solution.

(c) Solving x3 + 2x2y + y2 = 4 for y we get

y1(x) = −x2 −
√

4− x3 + x4

and
y2(x) = −x2 +

√
4− x3 + x4 .

Observe in the figure that y1(0) = −2 and y2(1) = 1.

Discussion Problems

40. To see that the equations are not equivalent consider dx = −(x/y)dy. An integrating factor is

µ(x, y) = y resulting in y dx+ x dy = 0. A solution of the latter equation is y = 0, but this is

not a solution of the original equation.

41. The explicit solution is y =
√

(3 + cos2 x)/(1− x2) . Since 3 + cos2 x > 0 for all x we must

have 1− x2 > 0 or −1 < x < 1. Thus, the interval of definition is (−1, 1).

42. (a) Since fy = N(x, y) = xexy + 2xy +
1

x
we obtain f = exy + xy2 +

y

x
+ h(x) so that

fx = yexy + y2 − y

x2
+ h′(x). Let M(x, y) = yexy + y2 − y

x2
.

(b) Since fx = M(x, y) = y1/2x−1/2+x
(
x2 + y

)−1
we obtain f = 2y1/2x1/2+1

2 ln
∣∣x2 + y

∣∣+g(y)

so that fy = y−1/2x1/2 + 1
2

(
x2 + y

)−1
+ g′(x). Let N(x, y) = y−1/2x1/2 + 1

2

(
x2 + y

)−1
.

43. First note that

d
(√

x2 + y2
)

=
x√

x2 + y2
dx+

y√
x2 + y2

dy.

Then x dx+ y dy =
√
x2 + y2 dx becomes

x√
x2 + y2

dx+
y√

x2 + y2
dy = d

(√
x2 + y2

)
= dx.

The left side is the total differential of
√
x2 + y2 and the right side is the total differential of

x+ c. Thus
√
x2 + y2 = x+ c is a solution of the differential equation.

44. To see that the statement is true, write the separable equation as −g(x) dx + dy/h(y) = 0.

Identifying M = −g(x) and N = 1/h(y), we see that My = 0 = Nx, so the differential equation

is exact.
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CHAPTER 2 FIRST-ORDER DIFFERENTIAL EQUATIONS

Mathematical Model

45. (a) In differential form we have (v2−32x)dx+xv dv = 0. This is not an exact form, but µ(x) =

x is an integrating factor. Multiplying by x we get (xv2−32x2)dx+x2v dv = 0. This form

is the total differential of u = 1
2x

2v2 − 32
3 x

3, so an implicit solution is 1
2x

2v2 − 32
3 x

3 = c.

Letting x = 3 and v = 0 we find c = −288. Solving for v we get

v = 8

√
x

3
− 9

x2
.

(b) The chain leaves the platform when x = 8, so the velocity at this time is

v(8) = 8

√
8

3
− 9

64
≈ 12.7 ft/s.

Computer Lab Assignments

46. (a) Letting

M(x, y) =
2xy

(x2 + y2)2
and N(x, y) = 1 +

y2 − x2

(x2 + y2)2

we compute

My =
2x3 − 8xy2

(x2 + y2)3
= Nx,

so the differential equation is exact. Then we have

∂f

∂x
= M(x, y) =

2xy

(x2 + y2)2
= 2xy(x2 + y2)−2

f(x, y) = −y(x2 + y2)−1 + g(y) = − y

x2 + y2
+ g(y)

∂f

∂y
=

y2 − x2

(x2 + y2)2
+ g′(y) = N(x, y) = 1 +

y2 − x2

(x2 + y2)2
.

Thus, g′(y) = 1 and g(y) = y. The solution is y − y

x2 + y2
= c. When c = 0 the solution

is x2 + y2 = 1.

(b) The first graph below is obtained in Mathematica using f(x, y) = y − y/(x2 + y2) and

ContourPlot[f[x, y], { x, -3, 3}, { y, -3, 3},
Axes−>True, AxesOrigin−>{0, 0}, AxesLabel−>{ x, y},
Frame−>False, PlotPoints−>100, ContourShading−>False,
Contours−>{ 0, -0.2, 0.2, -0.4, 0.4, -0.6, 0.6, -0.8, 0.8} ]

The second graph uses

x = −

√
y3 − cy2 − y

c− y
and x =

√
y3 − cy2 − y

c− y
.
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2.5 Solutions by Substitutions

In this case the x-axis is vertical and the y-axis is horizontal. To obtain the third graph,

we solve y−y/(x2+y2) = c for y in a CAS. This appears to give one real and two complex

solutions. When graphed in Mathematica however, all three solutions contribute to the

graph. This is because the solutions involve the square root of expressions containing c.

For some values of c the expression is negative, causing an apparent complex solution to

actually be real.

2.5 Solutions by Substitutionsq

2.5 Solutions by Substitutionsq

1. Letting y = ux we have

(x− ux) dx+ x(u dx+ x du) = 0

dx+ x du = 0

dx

x
+ du = 0

ln |x|+ u = c

x ln |x|+ y = cx.

2. Letting y = ux we have

(x+ ux) dx+ x(u dx+ x du) = 0

(1 + 2u) dx+ x du = 0

dx

x
+

du

1 + 2u
= 0

ln |x|+ 1

2
ln |1 + 2u| = c

x2
(

1 + 2
y

x

)
= c1

x2 + 2xy = c1.
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CHAPTER 2 FIRST-ORDER DIFFERENTIAL EQUATIONS

3. Letting x = vy we have

vy(v dy + y dv) + (y − 2vy) dy = 0

vy2 dv + y
(
v2 − 2v + 1

)
dy = 0

v dv

(v − 1)2
+
dy

y
= 0

ln |v − 1| − 1

v − 1
+ ln |y| = c

ln

∣∣∣∣xy − 1

∣∣∣∣− 1

x/y − 1
+ ln y = c

(x− y) ln |x− y| − y = c(x− y).

4. Letting x = vy we have

y(v dy + y dv)− 2(vy + y) dy = 0

y dv − (v + 2) dy = 0

dv

v + 2
− dy

y
= 0

ln |v + 2| − ln |y| = c

ln

∣∣∣∣xy + 2

∣∣∣∣− ln |y| = c

x+ 2y = c1y
2.

5. Letting y = ux we have

(
u2x2 + ux2

)
dx− x2(u dx+ x du) = 0

u2 dx− x du = 0

dx

x
− du

u2
= 0

ln |x|+ 1

u
= c

ln |x|+ x

y
= c

y ln |x|+ x = cy.
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2.5 Solutions by Substitutions

6. Letting y = ux and using partial fractions, we have

(
u2x2 + ux2

)
dx+ x2(u dx+ x du) = 0

x2
(
u2 + 2u

)
dx+ x3 du = 0

dx

x
+

du

u(u+ 2)
= 0

ln |x|+ 1

2
ln |u| − 1

2
ln |u+ 2| = c

x2u

u+ 2
= c1

x2
y

x
= c1

(y
x

+ 2
)

x2y = c1(y + 2x).

7. Letting y = ux we have

(ux− x) dx− (ux+ x)(u dx+ x du) = 0(
u2 + 1

)
dx+ x(u+ 1) du = 0

dx

x
+

u+ 1

u2 + 1
du = 0

ln |x|+ 1

2
ln
(
u2 + 1

)
+ tan−1 u = c

lnx2
(
y2

x2
+ 1

)
+ 2 tan−1

y

x
= c1

ln
(
x2 + y2

)
+ 2 tan−1

y

x
= c1.

8. Letting y = ux we have

(x+ 3ux) dx− (3x+ ux)(u dx+ x du) = 0(
u2 − 1

)
dx+ x(u+ 3) du = 0

dx

x
+

u+ 3

(u− 1)(u+ 1)
du = 0

ln |x|+ 2 ln |u− 1| − ln |u+ 1| = c

x(u− 1)2

u+ 1
= c1

x
(y
x
− 1
)2

= c1

(y
x

+ 1
)

(y − x)2 = c1(y + x).
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CHAPTER 2 FIRST-ORDER DIFFERENTIAL EQUATIONS

9. Letting y = ux we have

−ux dx+ (x+
√
ux)(u dx+ x du) = 0

(x2 + x2
√
u ) du+ xu3/2 dx = 0(

u−3/2 +
1

u

)
du+

dx

x
= 0

−2u−1/2 + ln |u|+ ln |x| = c

ln |y/x|+ ln |x| = 2
√
x/y + c

y(ln |y| − c)2 = 4x.

10. Letting y = ux we have(
ux+

√
x2 − (ux)2

)
dx− x(udx+ xdu) du = 0√
x2 − u2x2 dx− x2 du = 0

x
√

1− u2 dx− x2 du = 0, (x > 0)

dx

x
− du√

1− u2
= 0

lnx− sin−1 u = c

sin−1 u = lnx+ c1

sin−1
y

x
= lnx+ c2

y

x
= sin(lnx+ c2)

y = x sin(lnx+ c2).

See Problem 33 in this section for an analysis of the solution.

11. Letting y = ux we have

(
x3 − u3x3

)
dx+ u2x3(u dx+ x du) = 0

dx+ u2x du = 0

dx

x
+ u2 du = 0

ln |x|+ 1

3
u3 = c

3x3 ln |x|+ y3 = c1x
3.

Using y(1) = 2 we find c1 = 8. The solution of the initial-value problem is 3x3 ln |x|+y3 = 8x3.
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2.5 Solutions by Substitutionsq

12. Letting y = ux we have

(x2 + 2u2x2)dx− ux2(u dx+ x du) = 0

x2(1 + u2)dx− ux3 du = 0

dx

x
− u du

1 + u2
= 0

ln |x| − 1

2
ln(1 + u2) = c

x2

1 + u2
= c1

x4 = c1(x
2 + y2).

Using y(−1) = 1 we find c1 = 1/2. The solution of the initial-value problem is 2x4 = y2 + x2.

13. Letting y = ux we have

(x+ uxeu) dx− xeu(u dx+ x du) = 0

dx− xeu du = 0

dx

x
− eu du = 0

ln |x| − eu = c

ln |x| − ey/x = c.

Using y(1) = 0 we find c = −1. The solution of the initial-value problem is ln |x| = ey/x − 1.

14. Letting x = vy we have

y(v dy + y dv) + vy(ln vy − ln y − 1) dy = 0

y dv + v ln v dy = 0

dv

v ln v
+
dy

y
= 0

ln |ln |v||+ ln |y| = c

y ln

∣∣∣∣xy
∣∣∣∣ = c1.

Using y(1) = e we find c1 = −e. The solution of the initial-value problem is y ln

∣∣∣∣xy
∣∣∣∣ = −e.

15. From y′ +
1

x
y =

1

x
y−2 and w = y3 we obtain

dw

dx
+

3

x
w =

3

x
. An integrating factor is x3 so

that x3w = x3 + c or y3 = 1 + cx−3.

16. From y′ − y = exy2 and w = y−1 we obtain
dw

dx
+w = −ex. An integrating factor is ex so that

exw = −1
2e

2x + c or y−1 = −1
2e
x + ce−x.

75

© 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part, except for use as permitted in a license distributed 
with a certain product or service or otherwise on a password-protected website for classroom use. Not For Sale

©
 C

en
ga

ge
 L

ea
rn

in
g.

 A
ll 

rig
ht

s r
es

er
ve

d.
 N

o 
di

st
rib

ut
io

n 
al

lo
w

ed
 w

ith
ou

t e
xp

re
ss

 a
ut

ho
riz

at
io

n.



CHAPTER 2 FIRST-ORDER DIFFERENTIAL EQUATIONS

17. From y′ + y = xy4 and w = y−3 we obtain
dw

dx
− 3w = −3x. An integrating factor is e−3x so

that e−3xw = xe−3x + 1
3e
−3x + c or y−3 = x+ 1

3 + ce3x.

18. From y′ −
(

1 +
1

x

)
y = y2 and w = y−1 we obtain

dw

dx
+

(
1 +

1

x

)
w = −1. An integrating

factor is xex so that xexw = −xex + ex + c or y−1 = −1 +
1

x
+
c

x
e−x.

19. From y′ − 1

t
y = − 1

t2
y2 and w = y−1 we obtain

dw

dt
+

1

t
w =

1

t2
. An integrating factor is t so

that tw = ln t + c or y−1 =
1

t
ln t +

c

t
. Writing this in the form

t

y
= ln t + c, we see that the

solution can also be expressed in the form et/y = c1t.

20. From y′ +
2

3 (1 + t2)
y =

2t

3 (1 + t2)
y4 and w = y−3 we obtain

dw

dt
− 2t

1 + t2
w =

−2t

1 + t2
. An

integrating factor is
1

1 + t2
so that

w

1 + t2
=

1

1 + t2
+ c or y−3 = 1 + c

(
1 + t2

)
.

21. From y′− 2

x
y =

3

x2
y4 and w = y−3 we obtain

dw

dx
+

6

x
w = − 9

x2
. An integrating factor is x6 so

that x6w = −9
5x

5+c or y−3 = −9
5x
−1+cx−6. If y(1) = 1

2 then c = 49
5 and y−3 = −9

5x
−1+ 49

5 x
−6.

22. From y′ + y = y−1/2 and w = y3/2 we obtain
dw

dx
+

3

2
w =

3

2
. An integrating factor is e3x/2 so

that e3x/2w = e3x/2 + c or y3/2 = 1 + ce−3x/2. If y(0) = 4 then c = 7 and y3/2 = 1 + 7e−3x/2.

23. Let u = x + y + 1 so that du/dx = 1 + dy/dx. Then
du

dx
− 1 = u2 or

1

1 + u2
du = dx. Thus

tan−1 u = x+ c or u = tan(x+ c), and x+ y + 1 = tan(x+ c) or y = tan(x+ c)− x− 1.

24. Let u = x+y so that du/dx = 1+dy/dx. Then
du

dx
−1 =

1− u
u

or u du = dx. Thus 1
2u

2 = x+c

or u2 = 2x+ c1, and (x+ y)2 = 2x+ c1.

25. Let u = x + y so that du/dx = 1 + dy/dx. Then
du

dx
− 1 = tan2 u or cos2 u du = dx. Thus

1
2u + 1

4 sin 2u = x + c or 2u + sin 2u = 4x + c1, and 2(x + y) + sin 2(x + y) = 4x + c1 or

2y + sin 2(x+ y) = 2x+ c1.

26. Let u = x+y so that du/dx = 1+dy/dx. Then
du

dx
−1 = sinu or

1

1 + sinu
du = dx. Multiplying

by (1 − sinu)/(1 − sinu) we have
1− sinu

cos2 u
du = dx or (sec2 u − secu tanu)du = dx. Thus

tanu− secu = x+ c or tan(x+ y)− sec(x+ y) = x+ c.

27. Let u = y − 2x+ 3 so that du/dx = dy/dx− 2. Then
du

dx
+ 2 = 2 +

√
u or

1√
u
du = dx. Thus

2
√
u = x+ c and 2

√
y − 2x+ 3 = x+ c.
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2.5 Solutions by Substitutions

28. Let u = y − x + 5 so that du/dx = dy/dx − 1. Then
du

dx
+ 1 = 1 + eu or e−udu = dx. Thus

−e−u = x+ c and −ey−x+5 = x+ c.

29. Let u = x+ y so that du/dx = 1 + dy/dx. Then
du

dx
− 1 = cosu and

1

1 + cosu
du = dx. Now

1

1 + cosu
=

1− cosu

1− cos2 u
=

1− cosu

sin2 u
= csc2 u− cscu cotu,

so we have
∫

(csc2 u − cscu cotu)du =
∫
dx and − cotu + cscu = x + c. Thus − cot(x + y) +

csc(x+ y) = x+ c. Setting x = 0 and y = π/4 we obtain c =
√

2− 1. The solution is

csc(x+ y)− cot(x+ y) = x+
√

2− 1.

30. Let u = 3x+2y so that du/dx = 3+2 dy/dx. Then
du

dx
= 3+

2u

u+ 2
=

5u+ 6

u+ 2
and

u+ 2

5u+ 6
du =

dx. Now by long division

u+ 2

5u+ 6
=

1

5
+

4

25u+ 30

so we have

∫ (
1

5
+

4

25u+ 30

)
du = dx

and 1
5u+ 4

25 ln |25u+ 30| = x+ c. Thus

1

5
(3x+ 2y) +

4

25
ln |75x+ 50y + 30| = x+ c.
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CHAPTER 2 FIRST-ORDER DIFFERENTIAL EQUATIONS

Setting x = −1 and y = −1 we obtain c = 4
25 ln 95. The solution is

1

5
(3x+ 2y) +

4

25
ln |75x+ 50y + 30| = x+

4

25
ln 95

or 5y − 5x+ 2 ln |75x+ 50y + 30| = 2 ln 95.

Discussion Problems

31. We write the differential equation M(x, y)dx+N(x, y)dy = 0 as dy/dx = f(x, y) where

f(x, y) = −M(x, y)

N(x, y)
.

The function f(x, y) must necessarily be homogeneous of degree 0 when M and N are homo-

geneous of degree α. Since M is homogeneous of degree α, M(tx, ty) = tαM(x, y), and letting

t = 1/x we have

M(1, y/x) =
1

xα
M(x, y) or M(x, y) = xαM(1, y/x).

Thus
dy

dx
= f(x, y) = −x

αM(1, y/x)

xαN(1, y/x)
= −M(1, y/x)

N(1, y/x)
= F

(y
x

)
.

32. Rewrite (5x2 − 2y2)dx− xy dy = 0 as

xy
dy

dx
= 5x2 − 2y2

and divide by xy, so that
dy

dx
= 5

x

y
− 2

y

x
.

We then identify

F
(y
x

)
= 5

(y
x

)−1
− 2

(y
x

)
.

33. (a) By inspection y = x and y = −x are solutions of the differential equation and not members

of the family y = x sin(lnx+ c2).

(b) Letting x = 5 and y = 0 in sin−1(y/x) = lnx + c2 we

get sin−1 0 = ln 5 + c or c = − ln 5. Then sin−1(y/x) =

lnx − ln 5 = ln(x/5). Because the range of the arcsine

function is [−π/2, π/2] we must have

−π
2
≤ ln

x

5
≤ π

2

e−π/2 ≤ x

5
≤ eπ/2

5e−π/2 ≤ x ≤ 5eπ/2.

The interval of definition of the solution is approximately [1.04, 24.05].
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2.5 Solutions by Substitutions

34. As x→ −∞, e6x → 0 and y → 2x+ 3. Now write (1 + ce6x)/(1− ce6x) as (e−6x+ c)/(e−6x− c).
Then, as x→∞, e−6x → 0 and y → 2x− 3.

35. (a) The substitutions

y = y1 + u and
dy

dx
=
dy1
dx

+
du

dx

lead to

dy1
dx

+
du

dx
= P +Q(y1 + u) +R(y1 + u)2

= P +Qy1 +Ry21 +Qu+ 2y1Ru+Ru2

or
du

dx
− (Q+ 2y1R)u = Ru2.

This is a Bernoulli equation with n = 2 which can be reduced to the linear equation

dw

dx
+ (Q+ 2y1R)w = −R

by the substitution w = u−1.

(b) Identify P (x) = −4/x2, Q(x) = −1/x, and R(x) = 1. Then
dw

dx
+

(
−1

x
+

4

x

)
w = −1. An

integrating factor is x3 so that x3w = −1
4x

4 +c or u =
(
− 1

4x+cx−3
)−1

. Thus, y =
2

x
+u.

36. Write the differential equation in the form x(y′/y) = lnx + ln y and let u = ln y. Then

du/dx = y′/y and the differential equation becomes x(du/dx) = lnx + u or du/dx − u/x =

(lnx)/x, which is first-order and linear. An integrating factor is e−
∫
dx/x = 1/x, so that (using

integration by parts)

d

dx

[1

x
u
]

=
lnx

x2
and

u

x
= −1

x
− lnx

x
+ c.

The solution is

ln y = −1− lnx+ cx or y =
ecx−1

x
.

Mathematical Models

37. Write the differential equation as

dv

dx
+

1

x
v = 32v−1,

and let u = v2 or v = u1/2. Then
dv

dx
=

1

2
u−1/2

du

dx
,

and substituting into the differential equation, we have

1

2
u−1/2

du

dx
+

1

x
u1/2 = 32u−1/2 or

du

dx
+

2

x
u = 64.
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CHAPTER 2 FIRST-ORDER DIFFERENTIAL EQUATIONS

The latter differential equation is linear with integrating factor e
∫
(2/x)dx = x2, so

d

dx
[x2u] = 64x2

and

x2u =
64

3
x3 + c or v2 =

64

3
x+

c

x2
.

38. Write the differential equation as dP/dt− aP = −bP 2 and let u = P−1 or P = u−1. Then

dp

dt
= −u−2 du

dt
,

and substituting into the differential equation, we have

−u−2 du
dt
− au−1 = −bu−2 or

du

dt
+ au = b.

The latter differential equation is linear with integrating factor e
∫
a dt = eat, so

d

dt
[eatu] = beat

and

eatu =
b

a
eat + c

eatP−1 =
b

a
eat + c

P−1 =
b

a
+ ce−at

P =
1

b/a+ ce−at
=

a

b+ c1e−at
.

2.6 A Numerical Methodq

1. We identify f(x, y) = 2x− 3y + 1. Then, for h = 0.1,

yn+1 = yn + 0.1(2xn − 3yn + 1) = 0.2xn + 0.7yn + 0.1,

and

y(1.1) ≈ y1 = 0.2(1) + 0.7(5) + 0.1 = 3.8

y(1.2) ≈ y2 = 0.2(1.1) + 0.7(3.8) + 0.1 = 2.98.
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2.6 A Numerical Methodq

For h = 0.05,

yn+1 = yn + 0.05(2xn − 3yn + 1) = 0.1xn + 0.85yn + 0.05,

and

y(1.05) ≈ y1 = 0.1(1) + 0.85(5) + 0.05 = 4.4

y(1.1) ≈ y2 = 0.1(1.05) + 0.85(4.4) + 0.05 = 3.895

y(1.15) ≈ y3 = 0.1(1.1) + 0.85(3.895) + 0.05 = 3.47075

y(1.2) ≈ y4 = 0.1(1.15) + 0.85(3.47075) + 0.05 = 3.11514.

2. We identify f(x, y) = x+ y2. Then, for h = 0.1,

yn+1 = yn + 0.1(xn + y2n) = 0.1xn + yn + 0.1y2n,

and

y(0.1) ≈ y1 = 0.1(0) + 0 + 0.1(0)2 = 0

y(0.2) ≈ y2 = 0.1(0.1) + 0 + 0.1(0)2 = 0.01.

For h = 0.05,

yn+1 = yn + 0.05(xn + y2n) = 0.05xn + yn + 0.05y2n,

and

y(0.05) ≈ y1 = 0.05(0) + 0 + 0.05(0)2 = 0

y(0.1) ≈ y2 = 0.05(0.05) + 0 + 0.05(0)2 = 0.0025

y(0.15) ≈ y3 = 0.05(0.1) + 0.0025 + 0.05(0.0025)2 = 0.0075

y(0.2) ≈ y4 = 0.05(0.15) + 0.0075 + 0.05(0.0075)2 = 0.0150.

3. Separating variables and integrating, we have

dy

y
= dx and ln |y| = x+ c.

Thus y = c1e
x and, using y(0) = 1, we find c = 1, so y = ex is the solution of the initial-value

problem.
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CHAPTER 2 FIRST-ORDER DIFFERENTIAL EQUATIONS

4. Separating variables and integrating, we have

dy

y
= 2x dx and ln |y| = x2 + c.

Thus y = c1e
x2 and, using y(1) = 1, we find c = e−1, so y = ex

2−1 is the solution of the

initial-value problem.

h=0.1 h=0.05
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2.6 A Numerical Methodq

5. h=0.1 h=0.05 6. h=0.1 h=0.05

7. h=0.1 h=0.05 8. h=0.1 h=0.05

9. h=0.1 h=0.05 10. h=0.1 h=0.05
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CHAPTER 2 FIRST-ORDER DIFFERENTIAL EQUATIONS

11. Tables of values were computed using the Euler and RK4 methods. The resulting points were

plotted and joined using ListPlot in Mathematica.

h=0.25 h=0.1 h=0.05

12. Tables of values were computed using the Euler and RK4 methods. The resulting points were

plotted and joined using ListPlot in Mathematica.

h=0.25 h=0.1 h=0.05

Discussion Problems

13. Tables of values, shown below, were first computed using Euler’s method with h = 0.1 and

h = 0.05, and then using the RK4 method with the same values of h. Using separation of

variables we find that the solution of the differential equation is y = 1/(1 − x2), which is

undefined at x = 1, where the graph has a vertical asymptote. Because the actual solution

of the differential equation becomes unbounded at x approaches 1, very small changes in the

inputs x will result in large changes in the corresponding outputs y. This can be expected to

have a serious effect on numerical procedures.

84

© 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part, except for use as permitted in a license distributed 
with a certain product or service or otherwise on a password-protected website for classroom use. 

Not For Sale

©
 C

en
ga

ge
 L

ea
rn

in
g.

 A
ll 

rig
ht

s r
es

er
ve

d.
 N

o 
di

st
rib

ut
io

n 
al

lo
w

ed
 w

ith
ou

t e
xp

re
ss

 a
ut

ho
riz

at
io

n.



2.6 A Numerical Methodq

h=0.1 (Euler) h=0.05 (Euler) h=0.1 (RK4) h=0.05 (RK4)

The points in the tables above were plotted and joined using ListPlot in Mathematica.

h=0.1 h=0.05

Computer Lab Assignments

14. (a) The graph to the right was obtained using RK4 and

ListPlot in Mathematica with h = 0.1.

(b) Writing the differential equation in the form y′+2xy = 1 we see that an integrating factor

is e
∫
2xdx = ex

2
, so

d

dx
[ex

2
y] = ex

2
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CHAPTER 2 FIRST-ORDER DIFFERENTIAL EQUATIONS

and

y = e−x
2

∫ x

0
et

2
dt+ ce−x

2
.

This solution can also be expressed in terms of the inverse error function as

y =

√
π

2
e−x

2
erfi(x) + ce−x

2
.

Letting x = 0 and y(0) = 0 we find c = 0, so the solution of the initial-value problem is

y = e−x
2

∫ x

0
et

2
dt =

√
π

2
e−x

2
erfi(x).

(c) Using FindRoot in Mathematica we see that y′(x) = 0 when x = 0.924139. Since

y(0.924139) = 0.541044, we see from the graph in part (a) that (0.924139, 0.541044)

is a relative maximum. Now, using the substitution u = −t in the integral below, we have

y(−x) = e−(−x)
2

∫ −x
0

et
2
dt = e−x

2

∫ x

0
e(−u)

2
(−du) = −e−x2

∫ x

0
eu

2
du = −y(x).

Thus, y(x) is an odd function and (−0.924139, −0.541044) is a relative minimum.

2.7 Chapter 2 in Reviewq

2.R Chapter 2 in Reviewq

1. Writing the differential equation in the form y′ = k(y + A/k) we see that the critical point

−A/k is a repeller for k > 0 and an attractor for k < 0.

2. Separating variables and integrating we have

dy

y
=

4

x
dx

ln y = 4 lnx+ c = lnx4 + c

y = c1x
4.

We see that when x = 0, y = 0, so the initial-value problem has an infinite number of solutions

for k = 0 and no solutions for k 6= 0.

3. True; y = k2/k1 is always a solution for k1 6= 0.

4. True; writing the differential equation as a1(x) dy + a2(x)y dx = 0 and separating variables

yields
dy

y
= −a2(x)

a1(x)
dx.
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2.R Chapter 2 in Reviewq

5. An example of a nonlinear third-order differential equation in normal form is
d3y

dx3
= xey.

There are many possible answers.

6. False, because rθ + r + θ + 1 = (r + 1)(θ + 1) and the differential equation can be written as

dr

r + 1
= (θ + 1)dθ.

7. True, because the differential equation can be written as
dy

f(y)
= dx .

8. Since the differential equation is autonomous, 2 − |y| = 0 implies that y = 2 and y = −2 are

critical points and hence solutions of the differential equation.

9. The differential equation is separable so

dy

y
= exdx implies ln |y| = ee

x
+ c,

and thus y = c1e
ex is the general solution of the differential equation.

10. We have

y′ = |x| =

{
−x, x < 0

x, x ≥ 0
implies y =

{
−1

2x
2 + c1, x < 0

1
2x

2 + c2, x ≥ 0.

The initial condition y(−1) = 2 implies that −1
2(−1)2 + c1 = 2 so

c1 = 5
2 . Since y(x) is supposed to be continuous at x = 0, the two

parts of the function must agree. That is, c2 must also be 5
2 , and

y(x) =

{
−1

2x
2 + 5

2 , x < 0

1
2x

2 + 5
2 , x ≥ 0

=

{
−1

2(5− x2), x < 0

1
2(5 + x2), x ≥ 0 .

-5 5
x

-10

-5

5

10

y

11. Differentiating we find

dy

dx
= ecosxxe− cosx + (− sinx) cosx

∫ x

0
te− cos tdt = x− (sinx)y.

Thus the linear differential equation is
dy

dx
+ (sinx)y = x.

12. An example of an autonomous linear first-order differential equation with a single critical point

at −3 is
dy

dx
= y + 3, whereas an autonomous nonlinear first-order differential equation with

a single critical point −3 is
dy

dx
= (y + 3)2.

13.
dy

dx
= (y − 1)2(y − 3)2
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CHAPTER 2 FIRST-ORDER DIFFERENTIAL EQUATIONS

14.
dy

dx
= y(y − 2)2(y − 4)

15. When n is odd, xn < 0 for x < 0 and xn > 0 for x > 0. In this case 0 is unstable. When n is

even, xn > 0 for x < 0 and for x > 0. In this case 0 is semi-stable. When n is odd, −xn > 0 for

x < 0 and −xn < 0 for x > 0. In this case 0 is asymptotically stable. When n is even, −xn < 0

for x < 0 and for x > 0. In this case 0 is semi-stable. Technically, 00 is an indeterminant form;

however for all values of x except 0, x0 = 1. Thus, we define 00 to be 1 in this case.

16. Using a CAS we find that the zero of f occurs at approximately P = 1.3214. From the graph

we observe that dP/dt > 0 for P < 1.3214 and dP/dt < 0 for P > 1.3214, so P = 1.3214 is an

asymptotically stable critical point. Thus, limt→∞ P (t) = 1.3214.

17. x

18. (a) linear in y, homogeneous, exact (b) linear in x

(c) separable, exact, linear in x and y (d) Bernoulli in x

(e) separable (f) separable, linear in x, Bernoulli

(g) linear in x (h) homogeneous

(i) Bernoulli (j) homogeneous, exact, Bernoulli

(k) linear in x and y, exact, separable,

homogeneous

(l) exact, linear in y

(m) homogeneous (n) separable

19. Separating variables and using the identity cos2 x = 1
2(1 + cos 2x), we have

cos2 x dx =
y

y2 + 1
dy,

1

2
x+

1

4
sin 2x =

1

2
ln
(
y2 + 1

)
+ c,

2x+ sin 2x = 2 ln
(
y2 + 1

)
+ c.and
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2.R Chapter 2 in Reviewq

20. Write the differential equation in the form

y ln
x

y
dx =

(
x ln

x

y
− y
)
dy.

This is a homogeneous equation, so let x = uy. Then dx = u dy + y du and the differential

equation becomes

y lnu(u dy + y du) = (uy lnu− y) dy or y lnu du = −dy.

Separating variables, we obtain

lnu du = −dy
y

u ln |u| − u = − ln |y|+ c

x

y
ln

∣∣∣∣xy
∣∣∣∣− x

y
= − ln |y|+ c

x(lnx− ln y)− x = −y ln |y|+ cy.

21. The differential equation
dy

dx
+

2

6x+ 1
y = − 3x2

6x+ 1
y−2

is Bernoulli. Using w = y3, we obtain the linear equation

dw

dx
+

6

6x+ 1
w = − 9x2

6x+ 1
.

An integrating factor is 6x+ 1, so

d

dx
[(6x+ 1)w] = −9x2,

w = − 3x3

6x+ 1
+

c

6x+ 1
,

and

(6x+ 1)y3 = −3x3 + c.

Note: The differential equation is also exact.

22. Write the differential equation in the form (3y2 + 2x)dx + (4y2 + 6xy)dy = 0. Letting M =

3y2 + 2x and N = 4y2 + 6xy we see that My = 6y = Nx, so the differential equation is exact.

From fx = 3y2 + 2x we obtain f = 3xy2 + x2 + h(y). Then fy = 6xy + h′(y) = 4y2 + 6xy and

h′(y) = 4y2 so h(y) = 4
3y

3. A one-parameter family of solutions is

3xy2 + x2 +
4

3
y3 = c.
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CHAPTER 2 FIRST-ORDER DIFFERENTIAL EQUATIONS

23. Write the equation in the form
dQ

dt
+

1

t
Q = t3 ln t.

An integrating factor is eln t = t, so

d

dt
[tQ] = t4 ln t

tQ = − 1

25
t5 +

1

5
t5 ln t+ c

and

Q = − 1

25
t4 +

1

5
t4 ln t+

c

t
.

24. Letting u = 2x+ y + 1 we have
du

dx
= 2 +

dy

dx
,

and so the given differential equation is transformed into

u

(
du

dx
− 2

)
= 1 or

du

dx
=

2u+ 1

u
.

Separating variables and integrating we get

u

2u+ 1
du = dx(

1

2
− 1

2

1

2u+ 1

)
du = dx

1

2
u− 1

4
ln |2u+ 1| = x+ c

2u− ln |2u+ 1| = 2x+ c1.

Resubstituting for u gives the solution

4x+ 2y + 2− ln |4x+ 2y + 3| = 2x+ c1

or
2x+ 2y + 2− ln |4x+ 2y + 3| = c1.

25. Write the equation in the form

dy

dx
+

8x

x2 + 4
y =

2x

x2 + 4
.

An integrating factor is
(
x2 + 4

)4
, so

d

dx

[(
x2 + 4

)4
y
]

= 2x
(
x2 + 4

)3
(
x2 + 4

)4
y =

1

4

(
x2 + 4

)4
+ c

y =
1

4
+ c

(
x2 + 4

)−4
.and
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2.R Chapter 2 in Reviewq

26. LettingM = 2r2 cos θ sin θ+r cos θ andN = 4r+sin θ−2r cos2 θ we see thatMr = 4r cos θ sin θ+

cos θ = Nθ, so the differential equation is exact. From fθ = 2r2 cos θ sin θ + r cos θ we obtain

f = −r2 cos2 θ+ r sin θ+ h(r). Then fr = −2r cos2 θ+ sin θ+ h′(r) = 4r+ sin θ− 2r cos2 θ and

h′(r) = 4r so h(r) = 2r2. The solution is

−r2 cos2 θ + r sin θ + 2r2 = c.

27. The differential equation has the form (d/dx) [(sinx)y] = 0. Integrating, we have (sinx)y = c

or y = c/ sinx. The initial condition implies c = −2 sin(7π/6) = 1. Thus, y = 1/ sinx = cscx,

where the interval π < x < 2π is chosen to include x = 7π/6.

28. Separating variables and integrating we have

dy

y2
= −2(t+ 1) dt

−1

y
= −(t+ 1)2 + c

y =
1

(t+ 1)2 + c1
← letting −c = c1 .

The initial condition y(0) = −1
8 implies c1 = −9, so a solution of the initial-value problem is

y =
1

(t+ 1)2 − 9
or y =

1

t2 + 2t− 8
,

where −4 < t < 2.

29. (a) For y < 0,
√
y is not a real number.

(b) Separating variables and integrating we have

dy
√
y

= dx and 2
√
y = x+ c.

Letting y(x0) = y0 we get c = 2
√
y0 − x0, so that

2
√
y = x+ 2

√
y0 − x0 and y =

1

4
(x+ 2

√
y0 − x0)2.

Since
√
y > 0 for y 6= 0, we see that dy/dx = 1

2(x + 2
√
y0 − x0) must be positive. Thus,

the interval on which the solution is defined is (x0 − 2
√
y0 , ∞).

30. (a) The differential equation is homogeneous and we let y = ux. Then

(x2 − y2) dx+ xy dy = 0

(x2 − u2x2) dx+ ux2(u dx+ x du) = 0

dx+ ux du = 0

u du = −dx
x

1

2
u2 = − ln |x|+ c

y2

x2
= −2 ln |x|+ c1.
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CHAPTER 2 FIRST-ORDER DIFFERENTIAL EQUATIONS

The initial condition gives c1 = 2, so an implicit solution is y2 = x2(2− 2 ln |x|).

(b) Solving for y in part (a) and being sure that the initial con-

dition is still satisfied, we have y = −
√

2 |x|(1− ln |x|)1/2,
where −e ≤ x ≤ e so that 1 − ln |x| ≥ 0. The graph of

this function indicates that the derivative is not defined

at x = 0 and x = e. Thus, the solution of the initial-value

problem is y = −
√

2x(1− lnx)1/2, for 0 < x < e.

31. The graph of y1(x) is the portion of the closed blue curve lying in the fourth quadrant. Its

interval of definition is approximately (0.7, 4.3). The graph of y2(x) is the portion of the

left-hand blue curve lying in the third quadrant. Its interval of definition is (−∞, 0).

32. The first step of Euler’s method gives y(1.1) ≈ 9 + 0.1(1 + 3) = 9.4. Applying Euler’s method

one more time gives y(1.2) ≈ 9.4 + 0.1(1 + 1.1
√

9.4 ) ≈ 9.8373.

33. Since the differential equation is autonomous, all lineal

elements on a given horizontal line have the same slope.

The direction field is then as shown in the figure at the

right. It appears from the figure that the differential

equation has critical points at −2 (an attractor) and at 2

(a repeller). Thus, −2 is an asymptotically stable critical

point and 2 is an unstable critical point.

34. Since the differential equation is autonomous, all lineal

elements on a given horizontal line have the same slope.

The direction field is then as shown in the figure at the

right. It appears from the figure that the differential

equation has no critical points.
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Chapter 3

MODELING WITH FIRST-ORDER DIFFERENTIAL EQUATIONS

3.1 Linear Modelsq

MODELING WITH FIRST-ORDER

DIFFERENTIAL EQUATIONS3
3.1 Linear Modelsq

Growth and Decay

1. Let P = P (t) be the population at time t, and P0 the initial population. From dP/dt = kP

we obtain P = P0e
kt. Using P (5) = 2P0 we find k = 1

5 ln 2 and P = P0e
(ln 2)t/5. Setting

P (t) = 3P0 we have 3 = e(ln 2)t/5, so

ln 3 =
(ln 2)t

5
and t =

5 ln 3

ln 2
≈ 7.9 years.

Setting P (t) = 4P0 we have 4 = e(ln 2)t/5, so

ln 4 =
(ln 2)t

5
and t ≈ 10 years.

2. From Problem 1 the growth constant is k = 1
5 ln 2. Then P = P0e

(1/5)(ln 2)t and 10,000 =

P0e
(3/5) ln 2. Solving for P0 we get P0 = 10,000e−(3/5) ln 2 = 6,597.5. Now

P (10) = P0e
(1/5)(ln 2)(10) = 6,597.5e2 ln 2 = 4P0 = 26,390.

The rate at which the population is growing is

P ′(10) = kP (10) =
1

5
(ln 2)26,390 = 3658 persons/year.

3. Let P = P (t) be the population at time t. Then dP/dt = kP and P = cekt. From P (0) = c =

500 we see that P = 500ekt. Since 15% of 500 is 75, we have P (10) = 500e10k = 575. Solving

for k, we get k = 1
10 ln 575

500 = 1
10 ln 1.15. When t = 30,

P (30) = 500e(1/10)(ln 1.15)30 = 500e3 ln 1.15 = 760 years

and

P ′(30) = kP (30) =
1

10
(ln 1.15)760 = 10.62 persons/year.

4. Let P = P (t) be bacteria population at time t and P0 the initial number. From dP/dt = kP

we obtain P = P0e
kt. Using P (3) = 400 and P (10) = 2000 we find 400 = P0e

3k or ek =

(400/P0)
1/3. From P (10) = 2000 we then have 2000 = P0e

10k = P0(400/P0)
10/3, so

2000

40010/3
= P

−7/3
0 and P0 =

(
2000

40010/3

)−3/7
≈ 201.
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CHAPTER 3 MODELING WITH FIRST-ORDER DIFFERENTIAL EQUATIONS

5. Let A = A(t) be the amount of lead present at time t. From dA/dt = kA and A(0) = 1

we obtain A = ekt. Using A(3.3) = 1/2 we find k = 1
3.3 ln(1/2). When 90% of the lead has

decayed, 0.1 grams will remain. Setting A(t) = 0.1 we have et(1/3.3) ln(1/2) = 0.1, so

t

3.3
ln

1

2
= ln 0.1 and t =

3.3 ln 0.1

ln(1/2)
≈ 10.96 hours.

6. Let A = A(t) be the amount present at time t. From dA/dt = kA and A(0) = 100 we obtain

A = 100ekt. Using A(6) = 97 we find k = 1
6 ln 0.97. Then A(24) = 100e(1/6)(ln 0.97)24 =

100(0.97)4 ≈ 88.5 mg.

7. Setting A(t) = 50 in Problem 6 we obtain 50 = 100ekt, so

kt = ln
1

2
and t =

ln(1/2)

(1/6) ln 0.97
≈ 136.5 hours.

8. (a) The solution of dA/dt = kA is A(t) = A0e
kt. Letting A = 1

2A0 and solving for t we obtain

the half-life T = −(ln 2)/k.

(b) Since k = −(ln 2)/T we have

A(t) = A0e
−(ln 2)t/T = A02

−t/T .

(c) Writing 1
8A0 = A02

−t/T as 2−3 = 2−t/T and solving for t we get t = 3T . Thus, an initial

amount A0 will decay to 1
8A0 in three half-lives.

9. Let I = I(t) be the intensity, t the thickness, and I(0) = I0. If dI/dt = kI and I(3) = 0.25I0,

then I = I0e
kt, k = 1

3 ln 0.25, and I(15) = 0.00098I0.

10. From dS/dt = rS we obtain S = S0e
rt where S(0) = S0.

(a) If S0 = $5000 and r = 5.75% then S(5) = $6665.45.

(b) If S(t) =$10,000 then t = 12 years.

(c) S ≈ $6651.82

Carbon Dating

11. Assume that A = A0e
kt and k = −0.00012378. If A(t) = 0.145A0 then t ≈ 15,600 years.

12. From Example 3 in the text, the amount of carbon present at time t is A(t) = A0e
−0.00012378t.

Letting t = 660 and solving for A0 we have A(660) = A0e
−0.0001237(660) = 0.921553A0. Thus,

approximately 92% of the original amount of C-14 remained in the cloth as of 1988.
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3.1 Linear Modelsq

Newton’s Law of Cooling/Warming

13. Assume that dT/dt = k(T − 10) so that T = 10 + cekt. If T (0) = 70◦ and T (1/2) = 50◦ then

c = 60 and k = 2 ln(2/3) so that T (1) = 36.67◦. If T (t) = 15◦ then t = 3.06 minutes.

14. Assume that dT/dt = k(T − 5) so that T = 5 + cekt. If T (1) = 55◦ and T (5) = 30◦ then

k = −1
4 ln 2 and c = 59.4611 so that T (0) = 64.4611◦.

15. We use the fact that the boiling temperature for water is 100◦ C. Now assume that dT/dt =

k(T − 100) so that T = 100 + cekt. If T (0) = 20◦ and T (1) = 22◦, then c = −80 and

k = ln(39/40) ≈ −0.0253. Then T (t) = 100− 80e−0.0253t, and when T = 90, t = 82.1 seconds.

If T (t) = 98◦ then t = 145.7 seconds.

16. The differential equation for the first container is dT1/dt = k1(T1 − 0) = k1T1, whose solution

is T1(t) = c1e
k1t. Since T1(0) = 100 (the initial temperature of the metal bar), we have

100 = c1 and T1(t) = 100ek1t. After 1 minute, T1(1) = 100ek1 = 90◦C, so k1 = ln 0.9 and

T1(t) = 100et ln 0.9. After 2 minutes, T1(2) = 100e2 ln 0.9 = 100(0.9)2 = 81◦C.

The differential equation for the second container is dT2/dt = k2(T2−100), whose solution

is T2(t) = 100 + c2e
k2t. When the metal bar is immersed in the second container, its initial

temperature is T2(0) = 81, so

T2(0) = 100 + c2e
k2(0) = 100 + c2 = 81

and c2 = −19. Thus, T2(t) = 100− 19ek2t. After 1 minute in the second tank, the temperature

of the metal bar is 91◦C, so

T2(1) = 100− 19ek2 = 91

ek2 =
9

19

k2 = ln
9

19

and T2(t) = 100− 19et ln(9/19). Setting T2(t) = 99.9 we have

100− 19et ln(9/19) = 99.9

et ln(9/19) =
0.1

19

t =
ln(0.1/19)

ln(9/19)
≈ 7.02.

Thus, from the start of the “double dipping” process, the total time until the bar reaches

99.9◦C in the second container is approximately 9.02 minutes.
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CHAPTER 3 MODELING WITH FIRST-ORDER DIFFERENTIAL EQUATIONS

17. Using separation of variables to solve dT/dt = k(T − Tm) we get T (t) = Tm + cekt. Using

T (0) = 70 we find c = 70− Tm, so T (t) = Tm + (70− Tm)ekt. Using the given observations, we

obtain

T
(1

2

)
= Tm + (70− Tm)ek/2 = 110

T (1) = Tm + (70− Tm)ek = 145.

Then, from the first equation, ek/2 = (110− Tm)/(70− Tm) and

ek = (ek/2)2 =

(
110− Tm
70− Tm

)2

=
145− Tm
70− Tm

(110− Tm)2

70− Tm
= 145− Tm

12100− 220Tm + T 2
m = 10150− 215Tm + T 2

m

Tm = 390.

The temperature in the oven is 390◦.

18. (a) The initial temperature of the bath is Tm(0) = 60◦, so in the short term the temperature

of the chemical, which starts at 80◦, should decrease or cool. Over time, the temperature

of the bath will increase toward 100◦ since e−0.1t decreases from 1 toward 0 as t increases

from 0. Thus, in the long term, the temperature of the chemical should increase or warm

toward 100◦.

(b) Adapting the model for Newton’s law of cooling, we
have

dT

dt
= −0.1(T − 100 + 40e−0.1t), T (0) = 80.

Writing the differential equation in the form

dT

dt
+ 0.1T = 10− 4e−0.1t

we see that it is linear with integrating factor e
∫
0.1 dt = e0.1t. Thus

d

dt
[e0.1tT ] = 10e0.1t − 4

e0.1tT = 100e0.1t − 4t+ c

and
T (t) = 100− 4te−0.1t + ce−0.1t.

Now T (0) = 80 so 100 + c = 80, c = −20 and

T (t) = 100− 4te−0.1t − 20e−0.1t = 100− (4t+ 20)e−0.1t.

The thinner curve verifies the prediction of cooling followed by warming toward 100◦. The

wider curve shows the temperature Tm of the liquid bath.
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3.1 Linear Modelsq

19. Identifying Tm = 70, the differential equation is dT/dt = k(T − 70). Assuming T (0) = 98.6

and separating variables we find T (t) = 70 + 28.9ekt. If t1 > 0 is the time of discovery of the

body, then

T (t1) = 70 + 28.6ekt1 = 85 and T (t1 + 1) = 70 + 28.6ek(t1+1) = 80.

Therefore ekt1 = 15/28.6 and ek(t1+1) = 10/28.6. This implies

ek =
10

28.6
e−kt1 =

10

28.6
· 28.6

15
=

2

3
,

so k = ln 2
3 ≈ −0.405465108. Therefore

t1 =
1

k
ln

15

28.6
≈ 1.5916 ≈ 1.6.

Death took place about 1.6 hours prior to the discovery of the body.

20. Solving the differential equation dT/dt = kS(T − Tm) subject to T (0) = T0 gives

T (t) = Tm + (T0 − Tm)ekSt.

The temperatures of the coffee in cups A and B are, respectively,

TA(t) = 70 + 80ekSt and TB(t) = 70 + 80e2kSt.

Then TA(30) = 70 + 80e30kS = 100, which implies e30kS = 3
8 . Hence

TB(30) = 70 + 80e60kS = 70 + 80
(
e30kS

)2
= 70 + 80

(
3

8

)2

= 70 + 80

(
9

64

)
= 81.25◦F.

Mixtures

21. From dA/dt = 4 − A/50 we obtain A = 200 + ce−t/50. If A(0) = 30 then c = −170 and

A = 200− 170e−t/50.

22. From dA/dt = 0−A/50 we obtain A = ce−t/50. If A(0) = 30 then c = 30 and A = 30e−t/50.

23. From dA/dt = 10 − A/100 we obtain A = 1000 + ce−t/100. If A(0) = 0 then c = −1000 and

A(t) = 1000− 1000e−t/100.

24. From Problem 23 the number of pounds of salt in the tank at time t is A(t) = 1000−1000e−t/100.

The concentration at time t is c(t) = A(t)/500 = 2− 2e−t/100. Therefore c(5) = 2− 2e−1/20 =

0.0975 lb/gal and limt→∞ c(t) = 2. Solving c(t) = 1 = 2−2e−t/100 for t we obtain t = 100 ln 2 ≈
69.3 min.
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CHAPTER 3 MODELING WITH FIRST-ORDER DIFFERENTIAL EQUATIONS

25. From
dA

dt
= 10− 10A

500− (10− 5)t
= 10− 2A

100− t

we obtain A = 1000− 10t+ c(100− t)2. If A(0) = 0 then c = − 1
10 . The tank is empty in 100

minutes.

26. With cin(t) = 2 + sin(t/4) lb/gal, the initial-value problem is

dA

dt
+

1

100
A = 6 + 3 sin

t

4
, A(0) = 50.

The differential equation is linear with integrating factor e
∫
dt/100 = et/100, so

d

dt
[et/100A(t)] =

(
6 + 3 sin

t

4

)
et/100

et/100A(t) = 600et/100 +
150

313
et/100 sin

t

4
− 3750

313
et/100 cos

t

4
+ c,

and

A(t) = 600 +
150

313
sin

t

4
− 3750

313
cos

t

4
+ ce−t/100.

Letting t = 0 and A = 50 we have 600− 3750/313 + c = 50 and c = −168400/313. Then

A(t) = 600 +
150

313
sin

t

4
− 3750

313
cos

t

4
− 168400

313
e−t/100.

The graphs on [0, 300] and [0, 600] below show the effect of the sine function in the input when

compared with the graph in Figure 3.1.4(a) in the text.

27. From
dA

dt
= 3− 4A

100 + (6− 4)t
= 3− 2A

50 + t

we obtain A = 50+ t+ c(50+ t)−2. If A(0) = 10 then c = −100,000 and A(30) = 64.38 pounds.

28. (a) Initially the tank contains 300 gallons of solution. Since brine is pumped in at a rate of

3 gal/min and the mixture is pumped out at a rate of 2 gal/min, the net change is an

increase of 1 gal/min. Thus, in 100 minutes the tank will contain its capacity of 400

gallons.
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3.1 Linear Modelsq

(b) The differential equation for the amount of salt in the tank is A′(t) = 6 − 2A/(300 + t)

with solution

A(t) = 600 + 2t− (4.95× 107)(300 + t)−2, 0 ≤ t ≤ 100,

as noted in the discussion following Example 5 in the text. Thus, the amount of salt in

the tank when it overflows is

A(100) = 800− (4.95× 107)(400)−2 = 490.625 lbs.

(c) When the tank is overflowing the amount of salt in the tank is governed by the differential

equation

dA

dt
= (3 gal/min)(2 lb/gal)−

(
A

400
lb/gal

)
(3 gal/min)

= 6− 3A

400
, A(100) = 490.625.

Solving the equation, we obtain A(t) = 800 + ce−3t/400. The initial condition yields

c = −654.947, so that

A(t) = 800− 654.947e−3t/400.

When t = 150, A(150) = 587.37 lbs.

(d) As t → ∞, the amount of salt is 800 lbs, which is to be expected since

(400 gal)(2 lb/gal)= 800 lbs.

(e) x

Series Circuits

29. Assume Ldi/dt + Ri = E(t), L = 0.1, R = 50, and E(t) = 50 so that i = 3
5 + ce−500t. If

i(0) = 0 then c = −3/5 and limt→∞ i(t) = 3/5.

30. Assume Ldi/dt+Ri = E(t), E(t) = E0 sinωt, and i(0) = i0 so that

i =
E0R

L2ω2 +R2
sinωt− E0Lω

L2ω2 +R2
cosωt+ ce−Rt/L.

Since i(0) = i0 we obtain c = i0 +
E0Lω

L2ω2 +R2
.
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CHAPTER 3 MODELING WITH FIRST-ORDER DIFFERENTIAL EQUATIONS

31. Assume that Rdq/dt + (1/C)q = E(t), R = 200, C = 10−4, and E(t) = 100. Then q =

1/100 + ce−50t. If q(0) = 0 then c = −1/100 and i = 1
2e
−50t.

32. Assume Rdq/dt + (1/C)q = E(t), R = 1000, C = 5 × 10−6, and E(t) = 200. Then q =
1

1000 + ce−200t and i = −200ce−200t. If i(0) = 0.4 then c = − 1
500 , q(0.005) = 0.003 coulombs,

and i(0.005) = 0.1472 amps. We have q → 1
1000 as t→∞.

33. For 0 ≤ t ≤ 20 the differential equation is 20 di/dt+ 2i = 120. An integrating factor is et/10, so

(d/dt)[et/10i] = 6et/10 and i = 60 + c1e
−t/10. If i(0) = 0 then c1 = −60 and i = 60− 60e−t/10.

For t > 20 the differential equation is 20 di/dt + 2i = 0 and i = c2e
−t/10. At t = 20 we want

c2e
−2 = 60− 60e−2 so that c2 = 60

(
e2 − 1

)
. Thus{

60− 60e−t/10, 0 ≤ t ≤ 20

60
(
e2 − 1

)
e−t/10, t > 20.

34. Separating variables, we obtain

dq

E0 − q/C
=

dt

k1 + k2t

−C ln
∣∣∣E0 −

q

C

∣∣∣ =
1

k2
ln |k1 + k2t|+ c1

(E0 − q/C)−C

(k1 + k2t)1/k2
= c2.

Setting q(0) = q0 we find c2 = (E0 − q0/C)−C/k
1/k2
1 , so

(E0 − q/C)−C

(k1 + k2t)1/k2
=

(E0 − q0/C)−C

k
1/k2
1(

E0 −
q

C

)−C
=
(
E0 −

q0
C

)−C ( k1
k + k2t

)−1/k2

E0 −
q

C
=
(
E0 −

q0
C

)( k1
k + k2t

)1/Ck2

q = E0C + (q0 − E0C)

(
k1

k + k2t

)1/Ck2

.

Additional Linear Models

35. (a) From mdv/dt = mg− kv we obtain v = mg/k+ ce−kt/m. If v(0) = v0 then c = v0−mg/k
and the solution of the initial-value problem is

v(t) =
mg

k
+
(
v0 −

mg

k

)
e−kt/m.
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3.1 Linear Modelsq

(b) As t→∞ the limiting velocity is mg/k.

(c) From ds/dt = v and s(0) = 0 we obtain

s(t) =
mg

k
t− m

k

(
v0 −

mg

k

)
e−kt/m +

m

k

(
v0 −

mg

k

)
.

36. (a) Integrating d2s/dt2 = −g we get v(t) = ds/dt = −gt+c. From v(0) = 300 we find c = 300,

and we are given g = 32, so the velocity is v(t) = −32t+ 300.

(b) Integrating again and using s(0) = 0 we get s(t) = −16t2 + 300t. The maximum height

is attained when v = 0, that is, at ta = 9.375. The maximum height will be s(9.375) =

1406.25 ft.

37. When air resistance is proportional to velocity, the model for the velocity is mdv/dt =

−mg − kv (using the fact that the positive direction is upward.) Solving the differential

equation using separation of variables we obtain v(t) = −mg/k + ce−kt/m. From v(0) = 300

we get

v(t) = −mg
k

+
(

300 +
mg

k

)
e−kt/m.

Integrating and using s(0) = 0 we find

s(t) = −mg
k
t+

m

k

(
300 +

mg

k

)
(1− e−kt/m).

Setting k = 0.0025, m = 16/32 = 0.5, and g = 32 we have

s(t) = 1,340,000− 6,400t− 1,340,000e−0.005t

and
v(t) = −6,400 + 6,700e−0.005t.

The maximum height is attained when v = 0, that is, at ta = 9.162. The maximum height will

be s(9.162) = 1363.79 ft, which is less than the maximum height in Problem 36.

38. Assuming that the air resistance is proportional to velocity and the positive direction is down-

ward with s(0) = 0, the model for the velocity is mdv/dt = mg− kv. Using separation of vari-

ables to solve this differential equation, we obtain v(t) = mg/k+ce−kt/m. Then, using v(0) = 0,

we get v(t) = (mg/k)(1−e−kt/m). Letting k = 0.5, m = (125+35)/32 = 5, and g = 32, we have

v(t) = 320(1−e−0.1t). Integrating, we find s(t) = 320t+3200e−0.1t+c1. Solving s(0) = 0 for c1

we find c1 = −3200, therefore s(t) = 320t+ 3200e−0.1t − 3200. At t = 15, when the parachute

opens, v(15) = 248.598 and s(15) = 2314.02. At this time the value of k changes to k = 10

and the new initial velocity is v0 = 248.598. With the parachute open, the skydiver’s velocity

is vp(t) = mg/k + c2e
−kt/m, where t is reset to 0 when the parachute opens. Letting m = 5,

g = 32, and k = 10, this gives vp(t) = 16+c2e
−2t. From v(0) = 248.598 we find c2 = 232.598, so

vp(t) = 16 + 232.598e−2t. Integrating, we get sp(t) = 16t− 116.299e−2t + c3. Solving sp(0) = 0

for c3, we find c3 = 116.299, so sp(t) = 16t − 116.299e−2t + 116.299. Twenty seconds after

leaving the plane is five seconds after the parachute opens. The skydiver’s velocity at this time
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CHAPTER 3 MODELING WITH FIRST-ORDER DIFFERENTIAL EQUATIONS

is vp(5) = 16.0106 ft/s and she has fallen a total of s(15) + sp(5) = 2314.02 + 196.29 = 2510.31

feet. Her terminal velocity is limt→∞ vp(t) = 16, so she has very nearly reached her terminal

velocity five seconds after the parachute opens. When the parachute opens, the distance to

the ground is 15,000 − s(15) = 15,000 − 2,314 = 12,686 ft. Solving sp(t) = 12,686 we get

t = 785.6 s = 13.1 min. Thus, it will take her approximately 13.1 minutes to reach the ground

after her parachute has opened and a total of (785.6 + 15)/60 = 13.34 minutes after she exits

the plane.

39. (a) The differential equation is first-order and linear. Letting b = k/ρ, the integrating factor

is e
∫
3b dt/(bt+r0) = (r0 + bt)3. Then

d

dt
[(r0 + bt)3v] = g(r0 + bt)3 and (r0 + bt)3v =

g

4b
(r0 + bt)4 + c.

The solution of the differential equation is v(t) = (g/4b)(r0 + bt) + c(r0 + bt)−3. Using

v(0) = 0 we find c = −gr40/4b, so that

v(t) =
g

4b
(r0 + bt)− gr40

4b(r0 + bt)3
=
gρ

4k

(
r0 +

k

ρ
t
)
− gρr40

4k(r0 + kt/ρ)3
.

(b) Integrating dr/dt = k/ρ we get r = kt/ρ + c. Using r(0) = r0 we have c = r0, so

r(t) = kt/ρ+ r0.

(c) If r = 0.007 ft when t = 10 s, then solving r(10) = 0.007 for k/ρ, we obtain k/ρ = −0.0003

and r(t) = 0.01 − 0.0003t. Solving r(t) = 0 we get t = 33.3, so the raindrop will have

evaporated completely at 33.3 seconds.

40. Separating variables, we obtain dP/P = k cos t dt, so

ln |P | = k sin t+ c and P = c1e
k sin t.

If P (0) = P0, then c1 = P0 and P = P0e
k sin t.

41. (a) From dP/dt = (k1 − k2)P we obtain P = P0e
(k1−k2)t where P0 = P (0).

(b) If k1 > k2 then P → ∞ as t → ∞. If k1 = k2 then P = P0 for every t. If k1 < k2 then

P → 0 as t→∞.

42. (a) The solution of the differential equation is P (t) = c1e
kt + h/k. If we let the initial popu-

lation of fish be P0 then P (0) = P0 which implies that

c1 = P0 −
h

k
and P (t) =

(
P0 −

h

k

)
ekt +

h

k
.
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3.1 Linear Modelsq

(b) For P0 > h/k all terms in the solution are positive. In this case P (t) increases as time t

increases. That is, P (t) → ∞ as t → ∞. For P0 = h/k the population remains constant

for all time t:

P (t) =

(
h

k
− h

k

)
ekt +

h

k
=
h

k
.

For 0 < P0 < h/k the coefficient of the exponential function is negative and so the function

decreases as time t increases.

(c) Since the function decreases and is concave down, the graph of P (t) crosses the t-axis.

That is, there exists a time T > 0 such that P (T ) = 0. Solving(
P0 −

h

k

)
ekT +

h

k
= 0

for T shows that the time of extinction is

T =
1

k
ln

(
h

h− kP0

)
.

43. (a) Solving r − kx = 0 for x we find the equilibrium solution x = r/k. When

x < r/k, dx/dt > 0 and when x > r/k, dx/dt < 0. From the phase portrait

we see that limt→∞ x(t) = r/k.

(b) From dx/dt = r−kx and x(0) = 0 we obtain x = r/k− (r/k)e−kt

so that x→ r/k as t→∞. If x(T ) = r/2k then T = (ln 2)/k.

44. (a) Solving k1(M − A) − k2A = 0 for A we find the equilibrium solution

A = k1M/(k1 + k2). From the phase portrait we see that limt→∞A(t) =

k1M/(k1 + k2). Since k2 > 0, the material will never be completely memo-

rized and the larger k2 is, the less the amount of material will be memorized

over time.
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CHAPTER 3 MODELING WITH FIRST-ORDER DIFFERENTIAL EQUATIONS

(b) Write the differential equation in the form

dA/dt+ (k1 + k2)A = k1M.

Then an integrating factor is e(k1+k2)t, and

d

dt

[
e(k1+k2)tA

]
= k1Me(k1+k2)t

e(k1+k2)tA =
k1M

k1 + k2
e(k1+k2)t + c

A =
k1M

k1 + k2
+ ce−(k1+k2)t.

Using A(0) = 0 we find c = − k1M

k1 + k2
and A =

k1M

k1 + k2

(
1− e−(k1+k2)t

)
. As t → ∞,

A→ k1M

k1 + k2
.

45. (a) For 0 ≤ t < 4, 6 ≤ t < 10 and 12 ≤ t < 16, no voltage is applied to the heart and E(t) = 0.

At the other times, the differential equation is dE/dt = −E/RC. Separating variables,

integrating, and solving for e, we get E = ke−t/RC , subject to E(4) = E(10) = E(16) = 12.

These intitial conditions yield, respectively, k = 12e4/RC , k = 12e10/RC , k = 12e16/RC ,

and k = 12e22/RC . Thus

0, 0 ≤ t < 4, 6 ≤ t < 10, 12 ≤ t < 16

12e(4−t)/RC , 4 ≤ t < 6

12e(10−t)/RC , 10 ≤ t < 12

12e(16−t)/RC , 16 ≤ t < 18

12e(22−t)/RC , 22 ≤ t < 24.

(b) x

46. (a) (i) Using Newton’s second law of motion, F = ma = mdv/dt, the differential equation for

the velocity v is

m
dv

dt
= mg sin θ or

dv

dt
= g sin θ,

where mg sin θ, 0 < θ < π/2, is the component of the weight along the plane in the

direction of motion.
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3.1 Linear Modelsq

(ii) The model now becomes

m
dv

dt
= mg sin θ − µmg cos θ,

where µmg cos θ is the component of the force of sliding friction (which acts perpendicular

to the plane) along the plane. The negative sign indicates that this component of force is

a retarding force which acts in the direction opposite to that of motion.

(iii) If air resistance is taken to be proportional to the instantaneous velocity of the body,

the model becomes

m
dv

dt
= mg sin θ − µmg cos θ − kv,

where k is a constant of proportionality.

(b) (i) With m = 3 slugs, the differential equation is

3
dv

dt
= (96) · 1

2
or

dv

dt
= 16.

Integrating the last equation gives v(t) = 16t+ c1. Since v(0) = 0, we have c1 = 0 and so

v(t) = 16t.

(ii) With m = 3 slugs, the differential equation is

3
dv

dt
= (96) · 1

2
−
√

3

4
· (96) ·

√
3

2
or

dv

dt
= 4.

In this case v(t) = 4t.

(iii) When the retarding force due to air resistance is taken into account, the differential

equation for velocity v becomes

3
dv

dt
= (96) · 1

2
−
√

3

4
· (96) ·

√
3

2
− 1

4
v or 3

dv

dt
= 12− 1

4
v.

The last differential equation is linear and has solution v(t) = 48+c1e
−t/12. Since v(0) = 0,

we find c1 = −48, so v(t) = 48− 48e−t/12.

47. (a) (i) If s(t) is distance measured down the plane from the highest point, then ds/dt = v.

Integrating ds/dt = 16t gives s(t) = 8t2 + c2. Using s(0) = 0 then gives c2 = 0. Now

the length L of the plane is L = 50/ sin 30◦ = 100 ft. The time it takes the box to slide

completely down the plane is the solution of s(t) = 100 or t2 = 25/2, so t ≈ 3.54 s.

(ii) Integrating ds/dt = 4t gives s(t) = 2t2 + c2. Using s(0) = 0 gives c2 = 0, so s(t) = 2t2

and the solution of s(t) = 100 is now t ≈ 7.07 s.

(iii) Integrating ds/dt = 48 − 48e−t/12 and using s(0) = 0 to determine the constant of

integration, we obtain s(t) = 48t+ 576e−t/12 − 576. With the aid of a CAS we find that

the solution of s(t) = 100, or

100 = 48t+ 576e−t/12 − 576 or 0 = 48t+ 576e−t/12 − 676,

is now t ≈ 7.84 s.
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CHAPTER 3 MODELING WITH FIRST-ORDER DIFFERENTIAL EQUATIONS

(b) The differential equation mdv/dt = mg sin θ − µmg cos θ can be written

m
dv

dt
= mg cos θ(tan θ − µ).

If tan θ = µ, dv/dt = 0 and v(0) = 0 implies that v(t) = 0. If tan θ < µ and v(0) = 0,

then integration implies v(t) = g cos θ(tan θ − µ)t < 0 for all time t.

(c) Since tan 23◦ = 0.4245 and µ =
√

3/4 = 0.4330, we see that tan 23◦ < 0.4330. The

differential equation is dv/dt = 32 cos 23◦(tan 23◦ −
√

3/4) = −0.251493. Integration

and the use of the initial condition gives v(t) = −0.251493t + 1. When the box stops,

v(t) = 0 or 0 = −0.251493t + 1 or t = 3.976254 s. From s(t) = −0.125747t2 + t we find

s(3.976254) = 1.988119 ft.

(d) With v0 > 0, v(t) = −0.251493t + v0 and s(t) = −0.125747t2 + v0t. Because two real

positive solutions of the equation s(t) = 100, or 0 = −0.125747t2 + v0t − 100, would be

physically meaningless, we use the quadratic formula and require that b2 − 4ac = 0 or

v20 − 50.2987 = 0. From this equality we find v0 ≈ 7.092164 ft/s. For the time it takes the

box to traverse the entire inclined plane, we must have 0 = −0.125747t2+7.092164t−100.

Mathematica gives complex roots for the last equation: t = 28.2001±0.0124458i. But, for

0 = −0.125747t2 + 7.092164691t− 100,

the roots are t = 28.1999 s and t = 28.2004 s. So if v0 > 7.092164, we are guaranteed that

the box will slide completely down the plane.

48. (a) We saw in part (b) of Problem 36 that the ascent time is ta = 9.375. To find when the

cannonball hits the ground we solve s(t) = −16t2 + 300t = 0, getting a total time in flight

of t = 18.75 s. Thus, the time of descent is td = 18.75 − 9.375 = 9.375. The impact

velocity is vi = v(18.75) = −300, which has the same magnitude as the initial velocity.

(b) We saw in Problem 37 that the ascent time in the case of air resistance is ta = 9.162.

Solving s(t) = 1,340,000 − 6,400t − 1,340,000e−0.005t = 0 we see that the total time of

flight is 18.466 s. Thus, the descent time is td = 18.466 − 9.162 = 9.304. The impact

velocity is vi = v(18.466) = −290.91, compared to an initial velocity of v0 = 300.
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3.2 Nonlinear Modelsq

3.2 Nonlinear Modelsq

3.2 Nonlinear Modelsq

Logistic Equation

1. (a) Solving N(1 − 0.0005N) = 0 for N we find the equilibrium solutions N =

0 and N = 2000. When 0 < N < 2000, dN/dt > 0. From the phase

portrait we see that limt→∞N(t) = 2000. A graph of the solution is shown in

part (b).

(b) Separating variables and integrating we have

dN

N(1− 0.0005N)
=
( 1

N
− 1

N − 2000

)
dN = dt

and
lnN − ln(N − 2000) = t+ c.

Solving for N we get N(t) = 2000ec+t/(1 + ec+t) = 2000ecet/(1 + ecet). Using N(0) = 1

and solving for ec we find ec = 1/1999 and so N(t) = 2000et/(1999 + et). Then N(10) =

1833.59, so 1834 companies are expected to adopt the new technology when t = 10.

2. From dN/dt = N(a− bN) and N(0) = 500 we obtain

N =
500a

500b+ (a− 500b)e−at
.

Since limt→∞N = a/b = 50,000 and N(1) = 1000 we have a = 0.7033, b = 0.00014, and

N = 50,000/(1 + 99e−0.7033t) .

3. From dP/dt = P
(
10−1 − 10−7P

)
and P (0) = 5000 we obtain P = 500/(0.0005 + 0.0995e−0.1t)

so that P → 1,000,000 as t→∞. If P (t) = 500,000 then t = 52.9 months.

4. (a) We have dP/dt = P (a− bP ) with P (0) = 3.929 million. Using separation of variables we

obtain

P (t) =
3.929a

3.929b+ (a− 3.929b)e−at
=

a/b

1 + (a/3.929b− 1)e−at

=
c

1 + (c/3.929− 1)e−at
,

where c = a/b. At t = 60(1850) the population is 23.192 million, so

23.192 =
c

1 + (c/3.929− 1)e−60a
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CHAPTER 3 MODELING WITH FIRST-ORDER DIFFERENTIAL EQUATIONS

or c = 23.192 + 23.192(c/3.929− 1)e−60a. At t = 120(1910),

91.972 =
c

1 + (c/3.929− 1)e−120a

or c = 91.972 + 91.972(c/3.929− 1)(e−60a)2. Combining the two equations for c we get(
(c− 23.192)/23.192

c/3.929− 1

)2 ( c

3.929
− 1
)

=
c− 91.972

91.972

or

91.972(3.929)(c− 23.192)2 = (23.192)2(c− 91.972)(c− 3.929).

The solution of this quadratic equation is c = 197.274. This in turn gives a = 0.0313.

Therefore,

P (t) =
197.274

1 + 49.21e−0.0313t
.

(b) x

The model predicts a population of 159.0 million for 1960 and 167.8 million for 1970. The

census populations for these years were 179.3 and 203.3, respectively. The percentage

errors are 12.8 and 21.2, respectively.

Modifications of the Logistic Model

5. (a) The differential equation is dP/dt = P (5 − P ) − 4. Solving P (5 − P ) − 4 = 0

for P we obtain equilibrium solutions P = 1 and P = 4. The phase portrait

is shown on the right and solution curves are shown in part (b). We see that

for P0 > 4 and 1 < P0 < 4 the population approaches 4 as t increases. For

0 < P < 1 the population decreases to 0 in finite time.
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3.2 Nonlinear Modelsq

(b) The differential equation is

dP

dt
= P (5−P )−4 = −(P 2−5P +4) = −(P −4)(P −1).

Separating variables and integrating, we obtain

dP

(P − 4)(P − 1)
= −dt(

1/3

P − 4
− 1/3

P − 1

)
dP = −dt

1

3
ln

∣∣∣∣P − 4

P − 1

∣∣∣∣ = −t+ c

P − 4

P − 1
= c1e

−3t.

Setting t = 0 and P = P0 we find c1 = (P0 − 4)/(P0 − 1). Solving for P we obtain

P (t) =
4(P0 − 1)− (P0 − 4)e−3t

(P0 − 1)− (P0 − 4)e−3t
.

(c) To find when the population becomes extinct in the case 0 < P0 < 1 we set P = 0 in

P − 4

P − 1
=
P0 − 4

P0 − 1
e−3t

from part (a) and solve for t. This gives the time of extinction

t = −1

3
ln

4(P0 − 1)

P0 − 4
.

6. Solving P (5 − P ) − 25
4 = 0 for P we obtain the equilibrium solution P = 5

2 . For P 6= 5
2 ,

dP/dt < 0. Thus, if P0 < 5
2 , the population becomes extinct (otherwise there would be

another equilibrium solution.) Using separation of variables to solve the initial-value problem,

we get

P (t) = [4P0 + (10P0 − 25)t]/[4 + (4P0 − 10)t].

To find when the population becomes extinct for P0 <
5
2 we solve P (t) = 0 for t. We see that

the time of extinction is t = 4P0/5(5− 2P0).

7. Solving P (5−P )− 7 = 0 for P we obtain complex roots, so there are no equilibrium solutions.

Since dP/dt < 0 for all values of P , the population becomes extinct for any initial condition.

Using separation of variables to solve the initial-value problem, we get

P (t) =
5

2
+

√
3

2
tan

[
tan−1

(
2P0 − 5√

3

)
−
√

3

2
t

]
.

Solving P (t) = 0 for t we see that the time of extinction is

t =
2

3

(√
3 tan−1(5/

√
3 ) +

√
3 tan−1

[
(2P0 − 5)/

√
3
])
.
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CHAPTER 3 MODELING WITH FIRST-ORDER DIFFERENTIAL EQUATIONS

8. (a) The differential equation is dP/dt = P (1 − lnP ), which has

the equilibrium solution P = e. When P0 > e, dP/dt < 0, and

when P0 < e, dP/dt > 0.

(b) The differential equation is dP/dt = P (1 + lnP ), which has

the equilibrium solution P = 1/e. When P0 > 1/e, dP/dt > 0,

and when P0 < 1/e, dP/dt < 0.

(c) From dP/dt = P (a−b lnP ) we obtain −(1/b) ln |a−b lnP | = t+c1 so that P = ea/be−ce
−bt

.

If P (0) = P0 then c = (a/b)− lnP0.

Chemical Reactions

9. Let X = X(t) be the amount of C at time t and dX/dt = k(120− 2X)(150−X). If X(0) = 0

and X(5) = 10, then

X(t) =
150− 150e180kt

1− 2.5e180kt
,

where k = .0001259 and X(20) = 29.3 grams. Now by L’Hôpital’s rule, X → 60 as t → ∞, so

that the amount of A→ 0 and the amount of B → 30 as t→∞.

10. From dX/dt = k(150 −X)2, X(0) = 0, and X(5) = 10 we obtain X = 150 − 150/(150kt + 1)

where k = .000095238. Then X(20) = 33.3 grams and X → 150 as t→∞ so that the amount

of A→ 0 and the amount of B → 0 as t→∞. If X(t) = 75 then t = 70 minutes.

Additional nonlinear Models

11. (a) The initial-value problem is dh/dt = −8Ah
√
h /Aw,

h(0) = H. Separating variables and integrating we

have

dh√
h

= −8Ah
Aw

dt and 2
√
h = −8Ah

Aw
t+ c.

Using h(0) = H we find c = 2
√
H , so the solution

of the initial-value problem is
√
h(t) = (Aw

√
H − 4Aht)/Aw, where Aw

√
H − 4Aht ≥ 0.

Thus,

h(t) = (Aw
√
H − 4Aht)

2/A2
w for 0 ≤ t ≤ Aw

√
H/4Ah.
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3.2 Nonlinear Modelsq

(b) Identifying H = 10, Aw = 4π, and Ah = π/576 we have

h(t) = t2/331,776− (
√

5/2 /144)t+ 10.

Solving h(t) = 0 we see that the tank empties in 576
√

10 seconds or 30.36 minutes.

12. To obtain the solution of this differential equation we use h(t) from Problem 13 in Exercises

1.3. Then h(t) = (Aw
√
H − 4cAht)

2/A2
w. Solving h(t) = 0 with c = 0.6 and the values from

Problem 11 we see that the tank empties in 3035.79 seconds or 50.6 minutes.

13. (a) Separating variables and integrating gives

6h3/2dh = −5dt and
12

5
h5/2 = −5t+ c.

Using h(0) = 20 we find c = 1920
√

5 , so the solution of the initial-value problem is

h(t) =
(
800
√

5− 25
12 t
)2/5

. Solving h(t) = 0 we see that the tank empties in 384
√

5 seconds

or 14.31 minutes.

(b) When the height of the water is h, the radius of the top of the water is r = h tan 30◦ =

h/
√

3 and Aw = πh2/3. The differential equation is

dh

dt
= −cAh

Aw

√
2gh = −0.6

π(2/12)2

πh2/3

√
64h = − 2

5h3/2
.

Separating variables and integrating gives

5h3/2dh = −2 dt and 2h5/2 = −2t+ c.

Using h(0) = 9 we find c = 486, so the solution of the initial-value problem is h(t) =

(243− t)2/5. Solving h(t) = 0 we see that the tank empties in 243 seconds or 4.05 minutes.

14. When the height of the water is h, the radius of the top of the water is 2
5(20 − h) and

Aw = 4π(20− h)2/25. The differential equation is

dh

dt
= −cAh

Aw

√
2gh = −0.6

π(2/12)2

4π(20− h)2/25

√
64h = −5

6

√
h

(20− h)2
.

Separating variables and integrating we have

(20− h)2√
h

dh = −5

6
dt and 800

√
h− 80

3
h3/2 +

2

5
h5/2 = −5

6
t+ c.

Using h(0) = 20 we find c = 2560
√

5/3, so an implicit solution of the initial-value problem is

800
√
h− 80

3
h3/2 +

2

5
h5/2 = −5

6
t+

2560
√

5

3
.

To find the time it takes the tank to empty we set h = 0 and solve for t. The tank empties in

1024
√

5 seconds or 38.16 minutes. Thus, the tank empties more slowly when the base of the

cone is on the bottom.
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CHAPTER 3 MODELING WITH FIRST-ORDER DIFFERENTIAL EQUATIONS

15. (a) After separating variables we obtain

mdv

mg − kv2
= dt

1

g

dv

1− (
√
k v/
√
mg )2

= dt

√
mg
√
k g

√
k/mg dv

1− (
√
k v/
√
mg )2

= dt

√
m

kg
tanh−1

√
k v
√
mg

= t+ c

tanh−1
√
k v
√
mg

=

√
kg

m
t+ c1.

Thus the velocity at time t is

v(t) =

√
mg

k
tanh

(√
kg

m
t+ c1

)
.

Setting t = 0 and v = v0 we find c1 = tanh−1(
√
k v0/

√
mg ).

(b) Since tanh t→ 1 as t→∞, we have v →
√
mg/k as t→∞.

(c) Integrating the expression for v(t) in part (a) we obtain an integral of the form
∫
du/u:

s(t) =

√
mg

k

∫
tanh

(√
kg

m
t+ c1

)
dt =

m

k
ln

[
cosh

(√
kg

m
t+ c1

)]
+ c2.

Setting t = 0 and s = 0 we find c2 = −(m/k) ln(cosh c1), where c1 is given in part (a).

16. The differential equation is mdv/dt = −mg − kv2. Separating variables and integrating, we

have

dv

mg + kv2
= −dt

m

1√
mgk

tan−1

(√
k v
√
mg

)
= − 1

m
t+ c

tan−1

(√
k v
√
mg

)
= −

√
gk

m
t+ c1

v(t) =

√
mg

k
tan

(
c1 −

√
gk

m
t

)
.
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3.2 Nonlinear Modelsq

Setting v(0) = 300, m = 16
32 = 1

2 , g = 32, and k = 0.0003, we find v(t) =

230.94 tan(c1 − 0.138564t) and c1 = 0.914743. Integrating

v(t) = 230.94 tan(0.914743− 0.138564t)

we get

s(t) = 1666.67 ln | cos(0.914743− 0.138564t)|+ c2.

Using s(0) = 0 we find c2 = 823.843. Solving v(t) = 0 we see that the maximum height is

attained when t = 6.60159. The maximum height is s(6.60159) = 823.843 ft.

17. (a) Let ρ be the weight density of the water and V the volume of the object. Archimedes’

principle states that the upward buoyant force has magnitude equal to the weight of the

water displaced. Taking the positive direction to be down, the differential equation is

m
dv

dt
= mg − kv2 − ρV.

(b) Using separation of variables we have

mdv

(mg − ρV )− kv2
= dt

m√
k

√
k dv

(
√
mg − ρV )2 − (

√
k v)2

= dt

m√
k

1√
mg − ρV

tanh−1
√
k v√

mg − ρV
= t+ c.

Thus

v(t) =

√
mg − ρV

k
tanh

(√
kmg − kρV

m
t+ c1

)
.

(c) Since tanh t→ 1 as t→∞, the terminal velocity is
√

(mg − ρV )/k .

18. (a) Writing the equation in the form (x−
√
x2 + y2 )dx+y dy = 0 we identifyM = x−

√
x2 + y2

and N = y. Since M and N are both homogeneous functions of degree 1 we use the

substitution y = ux. It follows that(
x−

√
x2 + u2x2

)
dx+ ux(u dx+ x du) = 0

x
[
1−

√
1 + u2 + u2

]
dx+ x2u du = 0

− u du

1 + u2 −
√

1 + u2
=
dx

x

u du√
1 + u2 (1−

√
1 + u2 )

=
dx

x
.
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CHAPTER 3 MODELING WITH FIRST-ORDER DIFFERENTIAL EQUATIONS

Letting w = 1−
√

1 + u2 we have dw = −u du/
√

1 + u2 so that

− ln
∣∣∣1−√1 + u2

∣∣∣ = ln |x|+ c

1

1−
√

1 + u2
= c1x

1−
√

1 + u2 = −c2
x

(−c2 = 1/c1)

1 +
c2
x

=

√
1 +

y2

x2

1 +
2c2
x

+
c22
x2

= 1 +
y2

x2
.

Solving for y2 we have

y2 = 2c2x+ c22 = 4
(c2

2

)(
x+

c2
2

)
which is a family of parabolas symmetric with respect to the x-axis with vertex at

(−c2/2, 0) and focus at the origin.

(b) Let u = x2 + y2 so that
du

dx
= 2x+ 2y

dy

dx
.

Then

y
dy

dx
=

1

2

du

dx
− x

and the differential equation can be written in the form

1

2

du

dx
− x = −x+

√
u or

1

2

du

dx
=
√
u .

Separating variables and integrating gives

du

2
√
u

= dx

√
u = x+ c

u = x2 + 2cx+ c2

x2 + y2 = x2 + 2cx+ c2

y2 = 2cx+ c2.

19. (a) From 2W 2−W 3 = W 2(2−W ) = 0 we see that W = 0 and W = 2 are constant solutions.

(b) Separating variables and using a CAS to integrate we get

dW

W
√

4− 2W
= dx and − tanh−1

(1

2

√
4− 2W

)
= x+ c.
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3.2 Nonlinear Modelsq

Using the facts that the hyperbolic tangent is an odd function and 1− tanh2 x = sech2x

we have

1

2

√
4− 2W = tanh(−x− c) = − tanh(x+ c)

1

4
(4− 2W ) = tanh2(x+ c)

1− 1

2
W = tanh2(x+ c)

1

2
W = 1− tanh2(x+ c) = sech2(x+ c).

Thus, W (x) = 2sech2(x+ c).

(c) Letting x = 0 and W = 2 we find that sech2(c) = 1 and

c = 0. Thus, W (x) = 2sech2x and W = 2 are the two

solutions that satisfy the initial condition W (0) = 2. Their

graphs are shown in the figure to the right.

20. (a) See the figures in the text that accompany this problem. Solving r2 + (10− h)2 = 102 for

r2 we see that r2 = 20h − h2. Combining the rate of input of water, π, with the rate of

output due to evaporation, kπr2 = kπ(20h − h2), we have dV/dt = π − kπ(20h − h2).
Using V = 10πh2 − 1

3πh
3, we see also that dV/dt = (20πh− πh2)dh/dt. Thus,

(20πh− πh2)dh
dt

= π − kπ(20h− h2) and
dh

dt
=

1− 20kh+ kh2

20h− h2
.

(b) Letting k = 1/100, separating variables and integrating

(with the help of a CAS), we get

100h(h− 20)

(h− 10)2
dh = dt and

100(h2 − 10h+ 100)

10− h
= t+c.

Using h(0) = 0 we find c = 1000, and solving for h we get

h(t) = 0.005
(√
t2 + 4000t − t

)
, where the positive square

root is chosen because h ≥ 0.

(c) The volume of the tank is V = 2
3π(10)3 feet, so at a rate of π cubic feet per minute, the

tank will fill in 2
3(10)3 ≈ 666.67 minutes ≈ 11.11 hours.

(d) At 666.67 minutes, the depth of the water is h(666.67) = 5.486 feet. From the graph in

(b) we suspect that limt→∞ h(t) = 10, in which case the tank will never completely fill.

To prove this we compute the limit of h(t):

lim
t→∞

h(t) = 0.005 lim
t→∞

(√
t2 + 4000t− t

)
= 0.005 lim

t→∞

t2 + 4000t− t2√
t2 + 4000t+ t

= 0.005 lim
t→∞

4000t

t
√

1 + 4000/t+ t
= 0.005

4000

1 + 1
= 0.005(2000) = 10.
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CHAPTER 3 MODELING WITH FIRST-ORDER DIFFERENTIAL EQUATIONS

21. (a) With c = 0.01 the differential equation is dP/dt = kP 1.01. Separating variables and

integrating we obtain

P−1.01dP = kdt

P−0.01

−0.01
= kt+ c1

P−0.01 = −0.01kt+ c2

P (t) = (−0.01kt+ c2)
−100

P (0) = c−1002 = 10

c2 = 10−0.01.

Then

P (t) =
1

(−0.01kt+ 10−0.01)100

and, since P doubles in 5 months from 10 to 20,

P (5) =
1

(−0.01k(5) + 10−0.01
= 20,

so (
− 0.01k(5) + 10−0.01

)100
=

1

20

−0.01k =

[(
1
20

)1/100 − ( 1
10

)1/100]
5

= −0, 001350.

Thus P (t) = 1/
(
− 0.001350t+ 10−0.01

)100
.

(b) Define T =
(

1
10

)1/100
/0.001350 ≈ 724 months = 60 years. As t → 724 (from the left),

P →∞.

(c) P (50) = 1/
[
− 0.001350(50) + 10−0.01

]100 ≈ 12, 839 and

P (100) = 1/
[
− 0.001350(100) + 10−0.01

]100 ≈ 28, 630, 966

22. (a) From the phase portrait we see that P = 0 is an attractor for 0 < P0 < K = a/b

and P = K is a repeller for P0 > K.

0

K

P
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3.2 Nonlinear Modelsq

(b) Letting a = 0.1, b = 0.0005 and using separation of variables gives(
− 1

P
+

b

bP − a

)
dP = adt

Integrating we have

− lnP + ln(bP − a) = at+ c1

ln

(
bP − a
P

)
= at+ c1

bP − a
P

= c2e
at

P =
a

b− c2eat
.

Since P (0) = 300,

c2 =
300b− a

300
and P (t) =

300a

300b = (300b− a)eat
.

Then, with b = 0.0005 and a = 0.1,

P (t) =
300(0.1)

300(0.0005)−
[
300(0.0005)− 0.1

]
e0.1t

=
30

0.15− 0.05e0.1t
=

600

3− e0.1t

and

3− e0.1 = 0 implies 0.1t = ln 3, so t = 10 ln 3.

This is doomsday in finite time, since P (t)→∞ as t→ 10 ln 3 (from the left) ≈ 10.99.

(c) For P0 = 100,

P (t) =
100a

100b− (100b− a)eat
=

100(0.1)

100(0.0005)−
[
100(0.0005)− 0.1

]
e0.1t

=
10

0.05 + 0.05e0.1t
=

200

1 + e0.1t
,

and P (t)→ 0 as t→∞.
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CHAPTER 3 MODELING WITH FIRST-ORDER DIFFERENTIAL EQUATIONS

Project Problems

23. (a) x

(b) The regression line is

Q = 0.0348391− 0.000168222P.

(c) The solution of the logistic equation is given in equation (5) in the text. Identifying

a = 0.0348391 and b = 0.000168222 we have

P (t) =
aP0

bP0 + (a− bP0)e−at
.

(d) With P0 = 3.929 the solution becomes

P (t) =
0.136883

0.000660944 + 0.0341781e−0.0348391t
.

(e) x
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3.2 Nonlinear Modelsq

(f) We identify t = 180 with 1970, t = 190 with 1980, and t = 200 with 1990. The model

predicts P (180) = 188.661, P (190) = 193.735, and P (200) = 197.485. The actual pop-

ulation figures for these years are 203.303, 226.542, and 248.765 millions. As t → ∞,

P (t)→ a/b = 207.102.

24. (a) Using a CAS to solve P (1−P )+0.3e−P = 0 for P we see that P = 1.09216 is an equilibrium

solution.

(b) Since f(P ) > 0 for 0 < P < 1.09216, the solution P (t) of

dP/dt = P (1− P ) + 0.3e−P , P (0) = P0,

is increasing for P0 < 1.09216. Since f(P ) < 0 for

P > 1.09216, the solution P (t) is decreasing for

P0 > 1.09216. Thus P = 1.09216 is an attractor.

(c) The curves for the second initial-value problem are thicker.

The equilibrium solution for the logic model is P = 1.

Comparing 1.09216 and 1, we see that the percentage in-

crease is 9.216%.

25. To find td we solve

m
dv

dt
= mg − kv2, v(0) = 0

using separation of variables. This gives

v(t) =

√
mg

k
tanh

√
kg

m
t.

Integrating and using s(0) = 0 gives

s(t) =
m

k
ln

(
cosh

√
kg

m
t

)
.

To find the time of descent we solve s(t) = 823.84 and find td = 7.77882. The impact velocity

is v(td) = 182.998, which is positive because the positive direction is downward.

26. (a) Solving vt =
√
mg/k for k we obtain k = mg/v2t . The differential equation then becomes

m
dv

dt
= mg − mg

v2t
v2 or

dv

dt
= g

(
1− 1

v2t
v2
)
.

Separating variables and integrating gives

vt tanh−1
v

vt
= gt+ c1.
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CHAPTER 3 MODELING WITH FIRST-ORDER DIFFERENTIAL EQUATIONS

The initial condition v(0) = 0 implies c1 = 0, so

v(t) = vt tanh
gt

vt
.

We find the distance by integrating:

s(t) =

∫
vt tanh

gt

vt
dt =

v2t
g

ln

(
cosh

gt

vt

)
+ c2.

The initial condition s(0) = 0 implies c2 = 0, so

s(t) =
v2t
g

ln

(
cosh

gt

vt

)
.

In 25 seconds she has fallen 20,000− 14,800 = 5,200 feet. Using a CAS to solve

5200 = (v2t /32) ln

(
cosh

32(25)

vt

)
for vt gives vt ≈ 271.711 ft/s. Then

s(t) =
v2t
g

ln

(
cosh

gt

vt

)
= 2307.08 ln(cosh 0.117772t).

(b) At t = 15, s(15) = 2,542.94 ft and v(15) = s′(15) = 256.287 ft/sec.

27. While the object is in the air its velocity is modeled by the linear differential equation mdv/dt =

mg − kv. Using m = 160, k = 1
4 , and g = 32, the differential equation becomes dv/dt +

(1/640)v = 32. The integrating factor is e
∫
dt/640 = et/640 and the solution of the differential

equation is et/640v =
∫

32et/640dt = 20,480et/640 + c. Using v(0) = 0 we see that c = −20,480

and v(t) = 20,480 − 20,480e−t/640. Integrating we get s(t) = 20,480t + 13,107,200e−t/640 + c.

Since s(0) = 0, c = −13,107,200 and s(t) = −13,107,200 + 20,480t+ 13,107,200e−t/640. To find

when the object hits the liquid we solve s(t) = 500 − 75 = 425, obtaining ta = 5.16018. The

velocity at the time of impact with the liquid is va = v(ta) = 164.482. When the object is in

the liquid its velocity is modeled by the nonlinear differential equation mdv/dt = mg − kv2.
Using m = 160, g = 32, and k = 0.1 this becomes dv/dt = (51,200 − v2)/1600. Separating

variables and integrating we have

dv

51,200− v2
=

dt

1600
and

√
2

640
ln

∣∣∣∣ v − 160
√

2

v + 160
√

2

∣∣∣∣= 1

1600
t+ c.

Solving v(0) = va = 164.482 we obtain c = −0.00407537. Then, for v < 160
√

2 = 226.274,∣∣∣∣ v − 160
√

2

v + 160
√

2

∣∣∣∣= e
√
2t/5−1.8443 or − v − 160

√
2

v + 160
√

2
= e
√
2t/5−1.8443.

Solving for v we get

v(t) =
13964.6− 2208.29e

√
2t/5

61.7153 + 9.75937e
√
2t/5

.
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3.2 Nonlinear Modelsq

Integrating we find

s(t) = 226.275t− 1600 ln(6.3237 + e
√
2t/5) + c.

Solving s(0) = 0 we see that c = 3185.78, so

s(t) = 3185.78 + 226.275t− 1600 ln(6.3237 + e
√
2t/5).

To find when the object hits the bottom of the tank we solve s(t) = 75, obtaining tb = 0.466273.

The time from when the object is dropped from the helicopter to when it hits the bottom of

the tank is ta + tb = 5.62708 seconds.

28. The velocity vector of the swimmer is

v = vs + vr = (−vs cos θ,−vs sin θ) + (0, vr) = (−vs cos θ,−vs sin θ + vr) =

(
dx

dt
,
dy

dt

)
.

Equating components gives

dx

dt
= −vs cos θ and

dy

dt
= −vs sin θ + vr

so
dx

dt
= −vs

x√
x2 + y2

and
dy

dt
= −vs

y√
x2 + y2

+ vr.

Thus,

dy

dx
=
dy/dt

dx/dt
=
−vsy + vr

√
x2 + y2

−vsx
=
vsy − vr

√
x2 + y2

vsx
.

29. (a) With k = vr/vs,

dy

dx
=
y − k

√
x2 + y2

x

is a first-order homogeneous differential equation (see Section 2.5). Substituting y = ux

into the differential equation gives

u+ x
du

dx
= u− k

√
1 + u2 or

du

dx
= −k

√
1 + u2.

Separating variables and integrating we obtain∫
du√

1 + u2
= −

∫
k dx or ln

(
u+

√
1 + u2

)
= −k lnx+ ln c.

This implies

lnxk
(
u+

√
1 + u2

)
= ln c or xk

(
y

x
+

√
x2 + y2

x

)
= c.

The condition y(1) = 0 gives c = 1 and so y +
√
x2 + y2 = x1−k. Solving for y gives

y(x) =
1

2

(
x1−k − x1+k

)
.
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CHAPTER 3 MODELING WITH FIRST-ORDER DIFFERENTIAL EQUATIONS

(b) If k = 1, then vs = vr and y = 1
2(1− x2). Since y(0) = 1

2 , the swimmer lands on the west

beach at (0, 12). That is, 1
2 mile north of (0, 0). If k > 1, then vr > vs and 1− k < 0. This

means limx→0+ y(x) becomes infinite, since limx→0+ x
1−k becomes infinite. The swimmer

never makes it to the west beach and is swept northward with the current. If 0 < k < 1,

then vs > vr and 1 − k > 0. The value of y(x) at x = 0 is y(0) = 0. The swimmer has

made it to the point (0, 0).

30. The velocity vector of the swimmer is

v = vs + vr = (−vs, 0) + (0, vr) =

(
dx

dt
,
dy

dt

)
.

Equating components gives
dx

dt
= −vs and

dy

dt
= vr

so
dy

dx
=
dy/dt

dx/dt
=

vr
−vs

= −vr
vs
.

31. The differential equation
dy

dx
= −30x(1− x)

2

separates into dy = 15(−x+ x2)dx. Integration gives y(x) = −15
2 x

2 + 5x3 + c. The condition

y(1) = 0 gives c = 5
2 and so y(x) = 1

2(−15x2 + 10x3 + 5). Since y(0) = 5
2 , the swimmer has to

walk 2.5 miles back down the west beach to reach (0, 0).

32. This problem has a great many components, so we will consider the case in which air resistance

is assumed to be proportional to the velocity. By Problem 35 in Section 3.1 the differential

equation is

m
dv

dt
= mg − kv,

and the solution is

v(t) =
mg

k
+
(
v0 −

mg

k

)
e−kt/m.

If we take the initial velocity to be 0, then the velocity at time t is

v(t) =
mg

k
− mg

k
e−kt/m.

The mass of the raindrop is about m = 62 × 0.000000155/32 ≈ 0.0000003 and g = 32, so the

volocity at time t is

v(t) =
0.0000096

k
− 0.0000096

k
e−3333333kt

If we let k = 0.0000007, then v(100) ≈ 13.7 ft/s. In this case 100 is the time in seconds. Since

7 mph ≈ 10.3 ft/s, the assertion that the average velocity is 7 mph is not unreasonable. Of

course, this assumes that the air resistance is proportional to the velocity, and, more impor-

tantly, that the constant of proportionality is 0.0000007. The assumption about the constant

is particularly suspect.
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3.2 Nonlinear Modelsq

33. (a) Letting c = 0.6, Ah = π( 1
32 ·

1
12)2, Aw = π · 12 = π, and g = 32, the differential equation

in Problem 12 becomes dh/dt = −0.00003255
√
h . Separating variables and integrating,

we get 2
√
h = −0.00003255t + c, so h = (c1 − 0.00001628t)2. Setting h(0) = 2, we find

c =
√

2 , so h(t) = (
√

2− 0.00001628t)2, where h is measured in feet and t in seconds.

(b) One hour is 3,600 seconds, so the hour mark should be placed
at

h(3600) = [
√

2− 0.00001628(3600)]2 ≈ 1.838 ft ≈ 22.0525 in.

up from the bottom of the tank. The remaining marks corre-

sponding to the passage of 2, 3, 4, . . . , 12 hours are placed at

the values shown in the table. The marks are not evenly spaced

because the water is not draining out at a uniform rate; that

is, h(t) is not a linear function of time.

34. (a) Letting c = 0.6, Ah = π( 1
32 ·

1
12)2, Aw = π · 12 = π, and g = 32, the differential equation

in Problem 12 becomes dh/dt = −0.00003255
√
h . Separating variables and integrating,

we get 2
√
h = −0.00003255t + c, so h = (c1 − 0.00001628t)2. Setting h(0) = 2, we find

c =
√

2 , so h(t) = (
√

2− 0.00001628t)2, where h is measured in feet and t in seconds.

(b) One hour is 3,600 seconds, so the hour mark should be placed at

h(3600) = [
√

2− 0.00001628(3600)]2 ≈ 1.838 ft ≈ 22.0525 in.

up from the bottom of the tank. The remaining marks corresponding to the passage of 2,

3, 4, . . . , 12 hours are placed at the values shown in the table. The marks are not evenly

spaced because the water is not draining out at a uniform rate; that is, h(t) is not a linear

function of time.

35. If we let rh denote the radius of the hole and Aw = π[f(h)]2, then the

differential equation dh/dt = −k
√
h, where k = cAh

√
2g/Aw, becomes

dh

dt
= −

cπr2h
√

2g

π[f(h)]2

√
h = −

8cr2h
√
h

[f(h)]2
.

For the time marks to be equally spaced, the rate of change of the

height must be a constant; that is, dh/dt = −a. (The constant is

negative because the height is decreasing.) Thus

−a = −
8cr2h
√
h

[f(h)]2
, [f(h)]2 =

8cr2h
√
h

a
, and r = f(h) = 2rh

√
2c

a
h1/4.
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CHAPTER 3 MODELING WITH FIRST-ORDER DIFFERENTIAL EQUATIONS

Solving for h, we have

h =
a2

64c2r4h
r4.

The shape of the tank with c = 0.6, a = 2 ft/12 hr = 1 ft/21,600 s, and rh = 1/32(12) = 1/384

is shown in the above figure.

3.3 Modeling with Systems of First-Order Differential Equationsq

3.3 Modeling with Systems of First-Order Differential Equationsq

Radioactive Series

1. The linear equation dx/dt = −λ1x can be solved by either separation of variables or by an

integrating factor. Integrating both sides of dx/x = −λ1dt we obtain ln |x| = −λ1t + c from

which we get x = c1e
−λ1t. Using x(0) = x0 we find c1 = x0 so that x = x0e

−λ1t. Substituting

this result into the second differential equation we have

dy

dt
+ λ2y = λ1x0e

−λ1t

which is linear. An integrating factor is eλ2t so that

d

dt

[
eλ2ty

]
= λ1x0e

(λ2−λ1)t + c2

y =
λ1x0
λ2 − λ1

e(λ2−λ1)te−λ2t + c2e
−λ2t =

λ1x0
λ2 − λ1

e−λ1t + c2e
−λ2t.

Using y(0) = 0 we find c2 = −λ1x0/(λ2 − λ1). Thus

y =
λ1x0
λ2 − λ1

(
e−λ1t − e−λ2t

)
.

Substituting this result into the third differential equation we have

dz

dt
=
λ1λ2x0
λ2 − λ1

(
e−λ1t − e−λ2t

)
.

Integrating we find

z = − λ2x0
λ2 − λ1

e−λ1t +
λ1x0
λ2 − λ1

e−λ2t + c3.

Using z(0) = 0 we find c3 = x0. Thus

z = x0

(
1− λ2

λ2 − λ1
e−λ1t +

λ1
λ2 − λ1

e−λ2t
)
.
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3.3 Modeling with Systems of First-Order Differential Equationsq

2. We see from the graph that the half-life of A is

approximately 4.7 days. To determine the half-

life of B we use t = 50 as a base, since at this

time the amount of substance A is so small that

it contributes very little to substance B. Now we

see from the graph that y(50) ≈ 16.2 and y(191) ≈
8.1. Thus, the half-life of B is approximately 141

days.

3. The amounts x and y are the same at about t = 5 days. The amounts x and z are the same

at about t = 20 days. The amounts y and z are the same at about t = 147 days. The time

when y and z are the same makes sense because most of A and half of B are gone, so half of

C should have been formed.

4. Suppose that the series is described schematically by W =⇒ −λ1X =⇒ −λ2Y =⇒ −λ3Z
where −λ1, −λ2, and −λ3 are the decay constants for W , X and Y , respectively, and Z is a

stable element. Let w(t), x(t), y(t), and z(t) denote the amounts of substances W , X, Y , and

Z, respectively. A model for the radioactive series is

dw

dt
= −λ1w

dx

dt
= λ1w − λ2x

dy

dt
= λ2x− λ3y

dz

dt
= λ3y.

Mixtures

5. The system is

x′1 = 2 · 3 +
1

50
x2 −

1

50
x1 · 4 = − 2

25
x1 +

1

50
x2 + 6

x′2 =
1

50
x1 · 4−

1

50
x2 −

1

50
x2 · 3 =

2

25
x1 −

2

25
x2.

6. Let x1, x2, and x3 be the amounts of salt in tanks A, B, and C, respectively, so that

x′1 =
1

100
x2 · 2−

1

100
x1 · 6 =

1

50
x2 −

3

50
x1

x′2 =
1

100
x1 · 6 +

1

100
x3 −

1

100
x2 · 2−

1

100
x2 · 5 =

3

50
x1 −

7

100
x2 +

1

100
x3

x′3 =
1

100
x2 · 5−

1

100
x3 −

1

100
x3 · 4 =

1

20
x2 −

1

20
x3.
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CHAPTER 3 MODELING WITH FIRST-ORDER DIFFERENTIAL EQUATIONS

7. (a) A model is

dx1
dt

= 3 · x2
100− t

− 2 · x1
100 + t

, x1(0) = 100

dx2
dt

= 2 · x1
100 + t

− 3 · x2
100− t

, x2(0) = 50.

(b) Since the system is closed, no salt enters or leaves the system and x1(t)+x2(t) = 100+50 =

150 for all time. Thus x1 = 150− x2 and the second equation in part (a) becomes

dx2
dt

=
2(150− x2)

100 + t
− 3x2

100− t
=

300

100 + t
− 2x2

100 + t
− 3x2

100− t
or

dx2
dt

+

(
2

100 + t
+

3

100− t

)
x2 =

300

100 + t
,

which is linear in x2. An integrating factor is

e2 ln(100+t)−3 ln(100−t) = (100 + t)2(100− t)−3
so

d

dt
[(100 + t)2(100− t)−3x2] = 300(100 + t)(100− t)−3.

Using integration by parts, we obtain

(100 + t)2(100− t)−3x2 = 300

[
1

2
(100 + t)(100− t)−2 − 1

2
(100− t)−1 + c

]
.

Thus

x2 =
300

(100 + t)2

[
c(100− t)3 − 1

2
(100− t)2 +

1

2
(100 + t)(100− t)

]
=

300

(100 + t)2
[c(100− t)3 + t(100− t)].

Using x2(0) = 50 we find c = 5/3000. At t = 30, x2 = (300/1302)(703c+30·70) ≈ 47.4 lbs.

8. A model is

dx1
dt

= (4 gal/min)(0 lb/gal)− (4 gal/min)

(
1

200
x1 lb/gal

)
dx2
dt

= (4 gal/min)

(
1

200
x1 lb/gal

)
− (4 gal/min)

(
1

150
x2 lb/gal

)
dx3
dt

= (4 gal/min)

(
1

150
x2 lb/gal

)
− (4 gal/min)

(
1

100
x3 lb/gal

)
or

dx1
dt

= − 1

50
x1

dx2
dt

=
1

50
x1 −

2

75
x2

dx3
dt

=
2

75
x2 −

1

25
x3.
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3.3 Modeling with Systems of First-Order Differential Equationsq

Over a long period of time we would expect x1, x2, and x3 to approach 0 because the entering

pure water should flush the salt out of all three tanks.

Predator-Prey Models

9. Zooming in on the graph it can be seen that the

populations are first equal at about t = 5.6. The

approximate periods of x and y are both 45.

Competition Models

10. (a) The population y(t) approaches 10,000, while the

population x(t) approaches extinction.

(b) The population x(t) approaches 5,000, while the

population y(t) approaches extinction.

(c) The population y(t) approaches 10,000, while the

population x(t) approaches extinction.

(d) The population x(t) approaches 5,000, while the

population y(t) approaches extinction.

11. (a) x (b)
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CHAPTER 3 MODELING WITH FIRST-ORDER DIFFERENTIAL EQUATIONS

(c) x (d)

In each case the population x(t) approaches 6,000, while the population y(t) approaches 8,000.

Networks

12. By Kirchhoff’s first law we have i1 = i2 + i3. By Kirchhoff’s second law, on each loop we

have E(t) = Li′1 + R1i2 and E(t) = Li′1 + R2i3 + q/C so that q = CR1i2 − CR2i3. Then

i3 = q′ = CR1i
′
2 − CR2i3 so that the system is

Li′2 + Li′3 +R1i2 = E(t)

−R1i
′
2 +R2i

′
3 +

1

C
i3 = 0.

13. By Kirchhoff’s first law we have i1 = i2 + i3. Applying Kirchhoff’s second law to each loop we

obtain

E(t) = i1R1 + L1
di2
dt

+ i2R2

and

E(t) = i1R1 + L2
di3
dt

+ i3R3.

Combining the three equations, we obtain the system

L1
di2
dt

+ (R1 +R2)i2 +R1i3 = E

L2
di3
dt

+R1i2 + (R1 +R3)i3 = E.

14. By Kirchhoff’s first law we have i1 = i2 + i3. By Kirchhoff’s second law, on each loop we have

E(t) = Li′1 +Ri2 and E(t) = Li′1 +q/C so that q = CRi2. Then i3 = q′ = CRi′2 so that system

is

Li′ +Ri2 = E(t)

CRi′2 + i2 − i1 = 0.
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3.3 Modeling with Systems of First-Order Differential Equationsq

Additional Nonlinear Models

15. We first note that s(t) + i(t) + r(t) = n. Now the rate of change of the number of susceptible

persons, s(t), is proportional to the number of contacts between the number of people infected

and the number who are susceptible; that is, ds/dt = −k1si. We use −k1 < 0 because

s(t) is decreasing. Next, the rate of change of the number of persons who have recovered is

proportional to the number infected; that is, dr/dt = k2i where k2 > 0 since r is increasing.

Finally, to obtain di/dt we use

d

dt
(s+ i+ r) =

d

dt
n = 0.

This gives
di

dt
= −dr

dt
− ds

dt
= −k2i+ k1si.

The system of differential equations is then

ds

dt
= −k1si

di

dt
= −k2i+ k1si

dr

dt
= k2i.

A reasonable set of initial conditions is i(0) = i0, the number of infected people at time 0,

s(0) = n− i0, and r(0) = 0.

16. (a) If we know s(t) and i(t) then we can determine r(t) from s+ i+ r = n.

(b) In this case the system is

ds

dt
= −0.2si

di

dt
= −0.7i+ 0.2si.

We also note that when i(0) = i0, s(0) = 10− i0 since r(0) = 0 and i(t) + s(t) + r(t) = 0

for all values of t. Now k2/k1 = 0.7/0.2 = 3.5, so we consider initial conditions s(0) = 2,

i(0) = 8; s(0) = 3.4, i(0) = 6.6; s(0) = 7, i(0) = 3; and s(0) = 9, i(0) = 1.
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CHAPTER 3 MODELING WITH FIRST-ORDER DIFFERENTIAL EQUATIONS

We see that an initial susceptible population greater than k2/k1 results in an epidemic in

the sense that the number of infected persons increases to a maximum before decreasing

to 0. On the other hand, when s(0) < k2/k1, the number of infected persons decreases

from the start and there is no epidemic.

Project Problems

17. Since x0 > y0 > 0 we have x(t) > y(t) and y − x < 0.

Thus dx/dt < 0 and dy/dt > 0. We conclude that x(t) is

decreasing and y(t) is increasing. As t→∞ we expect that

x(t) → C and y(t) → C, where C is a constant common

equilibrium concentration.

18. We write the system in the form

dx

dt
= k1(y − x)

dy

dt
= k2(x− y),

where k1 = κ/VA and k2 = κ/VB. Letting z(t) = x(t)− y(t) we have

dx

dt
− dy

dt
= k1(y − x)− k2(x− y)

dz

dt
= k1(−z)− k2z

dz

dt
+ (k1 + k2)z = 0.

This is a linear first-order differential equation with solution z(t) = c1e
−(k1+k2)t. Now

dx

dt
= −k1(y − x) = −k1z = −k1c1e−(k1+k2)t

and

x(t) = c1
k1

k1 + k2
e−(k1+k2)t + c2.

Since y(t) = x(t)− z(t) we have

y(t) = −c1
k2

k1 + k2
e−(k1+k2)t + c2.

The initial conditions x(0) = x0 and y(0) = y0 imply

c1 = x0 − y0 and c2 =
x0k2 + y0k1
k1 + k2

.
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3.3 Modeling with Systems of First-Order Differential Equationsq

The solution of the system is

x(t) =
(x0 − y0)k1
k1 + k2

e−(k1+k2)t +
x0k2 + y0k1
k1 + k2

y(t) =
(y0 − x0)k2
k1 + k2

e−(k1+k2)t +
x0k2 + y0k1
k1 + k2

.

As t→∞, x(t) and y(t) approach the common limit

x0k2 + y0k1
k1 + k2

=
x0κ/VB + y0κ/VA
κ/VA + κ/VB

=
x0VA + y0VB
VA + VB

= x0
VA

VA + VB
+ y0

VB
VA + VB

.

This makes intuitive sense because the limiting concentration is seen to be a weighted average

of the two initial concentrations.

19. Since there are initially 25 pounds of salt in

tank A and none in tank B, and since further-

more only pure water is being pumped into tank

A, we would expect that x1(t) would steadily

decrease over time. On the other hand, since

salt is being added to tank B from tank A, we

would expect x2(t) to increase over time. How-

ever, since pure water is being added to the system at a constant rate and a mixed solution is

being pumped out of the system, it makes sense that the amount of salt in both tanks would

approach 0 over time.

20. We assume here that the temperature, T (t), of the metal bar does not affect the tempera-

ture, TA(t), of the medium in container A. By Newton’s law of cooling, then, the differential

equations for TA(t) and T (t) are

dTA
dt

= kA(TA − TB), kA < 0

dT

dt
= k(T − TA), k < 0,

subject to the initial conditions T (0) = T0 and TA(0) = T1. Separating variables in the first

equation, we find TA(t) = TB + c1e
kAt. Using TA(0) = T1 we find c1 = T1 − TB, so

TA(t) = TB + (T1 − TB)ekAt.

Substituting into the second differential equation, we have

dT

dt
= k(T − TA) = kT − kTA = kT − k[TB + (T1 − TB)ekAt]

dT

dt
− kT = −kTB − k(T1 − TB)ekAt.
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CHAPTER 3 MODELING WITH FIRST-ORDER DIFFERENTIAL EQUATIONS

This is a linear differential equation with integrating factor e
∫
−k dt = e−kt. Then

d

dt
[e−ktT ] = −kTBe−kt − k(T1 − TB)e(kA−k)t

e−ktT = TBe
−kt − k

kA − k
(T1 − TB)e(kA−k)t + c2

T = TB −
k

kA − k
(T1 − TB)ekAt + c2e

kt.

Using T (0) = T0 we find c2 = T0 − TB +
k

kA − k
(T1 − TB), so

T (t) = TB −
k

kA − k
(T1 − TB)ekAt +

[
T0 − TB +

k

kA − k
(T1 − TB)

]
ekt.

3.4 Chapter 3 in Reviewq

3.R Chapter 3 in Reviewq

1. The differential equation is dP/dt = 0.15P .

2. True. From dA/dt = kA, A(0) = A0, we haveA(t) = A0e
kt andA′(t) = kA0e

kt, soA′(0) = kA0.

At T = −(ln 2)k,

A′(−(ln 2)/k) = kA(−(ln 2)/k) = kA0e
k[−(ln 2)/k] = kA0e

− ln 2 =
1

2
kA0.

3. From
dP

dt
= 0.018P and P (0) = 4 billion we obtain P = 4e0.018t so that P (45) = 8.99 billion.

4. Let A = A(t) be the volume of CO2 at time t. From dA/dt = 1.2− A/4 and A(0) = 16 ft3 we

obtain A = 4.8 + 11.2e−t/4. Since A(10) = 5.7 ft3, the concentration is 0.017%. As t → ∞ we

have A→ 4.8 ft3 or 0.06%.

5. Separating variables, we have √
s2 − y2
y

dy = −dx.
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3.R Chapter 3 in Reviewq

Substituting y = s sin θ, this becomes√
s2 − s2 sin2 θ

s sin θ
(s cos θ)dθ = −dx

s

∫
cos2 θ

sin θ
dθ = −

∫
dx

s

∫
1− sin2 θ

sin θ
dθ = −x+ c

s

∫
(csc θ − sin θ)dθ = −x+ c

−s ln | csc θ + cot θ|+ s cos θ = −x+ c

−s ln

∣∣∣∣∣sy +

√
s2 − y2
y

∣∣∣∣∣+ s

√
s2 − y2
s

= −x+ c.

Letting s = 10, this is

−10 ln

∣∣∣∣∣10

y
+

√
100− y2
y

∣∣∣∣∣+
√

100− y2 = −x+ c.

Letting x = 0 and y = 10 we determine that c = 0, so the solution is

−10 ln

∣∣∣∣∣10 +
√

100− y2
y

∣∣∣∣∣+
√

100− y2 = −x

or

x = 10 ln

∣∣∣∣∣10 +
√

100− y2
y

∣∣∣∣∣−√100− y2.

6. From V dC/dt = kA(Cs − C) and C(0) = C0 we obtain C = Cs + (C0 − Cs)e−kAt/V .

7. (a) The differential equation

dT

dt
= k(T − Tm) = k[T − T2 −B(T1 − T )]

= k[(1 +B)T − (BT1 + T2)] = k(1 +B)

(
T − BT1 + T2

1 +B

)
is autonomous and has the single critical point (BT1 + T2)/(1 + B). Since k < 0 and

B > 0, by phase-line analysis it is found that the critical point is an attractor and

lim
t→∞

T (t) =
BT1 + T2

1 +B
.

Moreover,

lim
t→∞

Tm(t) = lim
t→∞

[T2 +B(T1 − T )] = T2 +B

(
T1 −

BT1 + T2
1 +B

)
=
BT1 + T2

1 +B
.
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CHAPTER 3 MODELING WITH FIRST-ORDER DIFFERENTIAL EQUATIONS

(b) The differential equation is

dT

dt
= k(T − Tm) = k(T − T2 −BT1 +BT )

or
dT

dt
− k(1 +B)T = −k(BT1 + T2).

This is linear and has integrating factor e−
∫
k(1+B)dt = e−k(1+B)t. Thus,

d

dt
[e−k(1+B)tT ] = −k(BT1 + T2)e

−k(1+B)t

e−k(1+B)tT =
BT1 + T2

1 +B
e−k(1+B)t + c

T (t) =
BT1 + T2

1 +B
+ cek(1+B)t.

To find c we use the fact that T (0) = T1. Then, letting t = 0,

T1 =
BT1 + T2

1 +B
+ c · 1 so c = T1 −

BT1 + T2
1 +B

=
T1 − T2
1 +B

and

T (t) =
BT1 + T2

1 +B
+
T1 − T2
1 +B

ek(1+B)t.

Since k is negative, limt→∞ T (t) = (BT1 + T2)/(1 +B).

(c) The temperature T (t) decreases to the value (BT1 + T2)/(1 +B), whereas Tm(t) increases

to (BT1 + T2)/(1 +B) as t→∞. Thus, the temperature (BT1 + T2)/(1 +B), (which is a

weighted average
B

1 +B
T1 +

1

1 +B
T2

of the two initial temperatures), can be interpreted as an equilibrium temperature. The

body cannot get cooler than this value whereas the medium cannot get hotter than this

value.

8. (a) By separation of variables and partial fractions,

ln

∣∣∣∣∣T − TmT + Tm

∣∣∣∣∣− 2 tan−1
(
T

Tm

)
= 4T 3

mkt+ c.

Then rewrite the right-hand side of the differential equation as

dT

dt
= k(T 4 − T 4

m) = [(Tm + (T − Tm))4 − T 4
m]

= kT 4
m

[(
1 +

T − Tm
Tm

)4

− 1

]

= kT 4
m

[(
1 + 4

T − Tm
Tm

+ 6

(
T − Tm
Tm

)2

· · ·

)
− 1

]
← binomial expansion
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3.R Chapter 3 in Reviewq

(b) When T − Tm is small compared to Tm, every term in the expansion after the first two

can be ignored, giving

dT

dt
≈ k1(T − Tm), where k1 = 4kT 3

m.

9. We first solve (1 − t/10)di/dt + 0.2i = 4. Separating variables we obtain

di/(40− 2i) = dt/(10− t). Then

−1

2
ln |40− 2i| = − ln |10− t|+ c or

√
40− 2i = c1(10− t).

Since i(0) = 0 we must have c1 = 2/
√

10 . Solving for i we get i(t) = 4t− 1
5 t

2, 0 ≤ t < 10. For

t ≥ 10 the equation for the current becomes

i(t) =

{
4t− 1

5 t
2, 0 ≤ t < 10

20, t ≥ 10.

The graph of i(t) is given in the figure.

10. From y
[
1 + (y′)2

]
= k we obtain dx = (

√
y/
√
k − y )dy. If y = k sin2 θ then

dy = 2k sin θ cos θ dθ, dx = 2k

(
1

2
− 1

2
cos 2θ

)
dθ, and x = kθ − k

2
sin 2θ + c.

If x = 0 when θ = 0 then c = 0.

11. From dx/dt = k1x(α− x) we obtain(
1/α

x
+

1/α

α− x

)
dx = k1 dt

so that x = αc1e
αk1t/(1 + c1e

αk1t). From dy/dt = k2xy we obtain

ln |y| = k2
k1

ln
∣∣∣1 + c1e

αk1t
∣∣∣+ c or y = c2

(
1 + c1e

αk1t
)k2/k1

.

12. In tank A the salt input is(
7

gal

min

)(
2

lb

gal

)
+

(
1

gal

min

)(
x2
100

lb

gal

)
=

(
14 +

1

100
x2

)
lb

min
.

The salt output is(
3

gal

min

)(
x1
100

lb

gal

)
+

(
5

gal

min

)(
x1
100

lb

gal

)
=

2

25
x1

lb

min
.

In tank B the salt input is (
5

gal

min

)(
x1
100

lb

gal

)
=

1

20
x1

lb

min
.

135

© 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part, except for use as permitted in a license distributed 
with a certain product or service or otherwise on a password-protected website for classroom use. Not For Sale

©
 C

en
ga

ge
 L

ea
rn

in
g.

 A
ll 

rig
ht

s r
es

er
ve

d.
 N

o 
di

st
rib

ut
io

n 
al

lo
w

ed
 w

ith
ou

t e
xp

re
ss

 a
ut

ho
riz

at
io

n.



CHAPTER 3 MODELING WITH FIRST-ORDER DIFFERENTIAL EQUATIONS

The salt output is(
1

gal

min

)(
x2
100

lb

gal

)
+

(
4

gal

min

)(
x2
100

lb

gal

)
=

1

20
x2

lb

min
.

The system of differential equations is then

dx1
dt

= 14 +
1

100
x2 −

2

25
x1

dx2
dt

=
1

20
x1 −

1

20
x2.

13. From y = −x−1 + c1e
x we obtain y′ = y+x so that the differential equation of the orthogonal

family is
dy

dx
= − 1

y + x
or

dx

dy
+ x = −y.

This is a linear differential equation and has integrating factor e
∫
dy = ey, so

d

dy
[eyx] = −yey

eyx = −yey + ey + c2

x = −y + 1 + c2e
−y.

14. Differentiating the family of curves, we have

y′ = − 1

(x+ c1)2
= − 1

y2
.

The differential equation for the family of orthogonal trajec-
tories is then y′ = y2. Separating variables and integrating
we get

dy

y2
= dx

−1

y
= x+ c1

y = − 1

x+ c1
.

15. (a) From the third differential equation in the statement of the problem in the text we have

dK

dt
= −(λ1 + λ2)K so K(t) = c1e

−(λ1+λ2)t.

Since K(0) = K0 we have K(t) = K0e
−(λ1+λ2)t. Next,

dC

dt
= λ1K = λ1K0e

−(λ1+λ2)t so C(t) = − λ1
λ1 + λ2

+ c2.
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3.R Chapter 3 in Reviewq

Since C(0) = 0 we have

c2 =
λ1

λ1 + λ2
K0 and C(t) =

λ1
λ1 + λ2

K0

[
1− e−(λ1+λ2)t

]
.

Finally

dA

dt
= λ2K = λ2K0e

−(λ1+λ2)t so A(t) = − λ1
λ1 + λ2

K0e
−(λ1+λ2)t + c3.

Since A(0) = 0

c3 =
λ2

λ1 + λ2
K0 and A(t) =

λ2
λ1 + λ2

K0

[
1− e−(λ1+λ2)t

]
.

(b) Since λ1 + λ2 = 5.34× 10−10 we have

K(t) = K0e
−0.000000000534t =

1

2
K0 and t =

ln 1
2

−0.000000000534
≈ 1.3× 109 years.

(c) Since

lim
t→∞

C(t) =
λ1

λ1 + λ2
lim
t→∞

K0

[
1− e−(λ1+λ2)t

]
=

λ1
λ1 + λ2

K0

and

lim
t→∞

A(t) =
λ1

λ1 + λ2
lim
t→∞

K0

[
1− e−(λ2+λ2)t

]
=

λ2
λ1 + λ2

K0,

we have

lim
t→∞

C(t) =
4.7526× 10−10

5.34× 10−10
K0 = 0.89K0 or 89%

and

lim
t→∞

A(t) =
0.5874× 10−10

5.34× 10−10
K0 = 0.11K0 or 11%.
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Chapter 4

HIGHER-ORDER DIFFERENTIAL EQUATIONS

4.1 Preliminary Theory – Linear Equationsq

Higher-Order

Differential Equations4
4.1 Preliminary Theory – Linear Equationsq

4.1.1 Initial-Value and Boundary-Value Problems

1. From y = c1e
x + c2e

−x we find y′ = c1e
x − c2e−x. Then y(0) = c1 + c2 = 0, y′(0) = c1 − c2 = 1

so that c1 = 1
2 and c2 = −1

2 . The solution is y = 1
2e
x − 1

2e
−x.

2. From y = c1e
4x+c2e

−x we find y′ = 4c1e
4x−c2e−x. Then y(0) = c1+c2 = 1, y′(0) = 4c1−c2 = 2

so that c1 = 3
5 and c2 = 2

5 . The solution is y = 3
5e

4x + 2
5e
−x.

3. From y = c1x+ c2x lnx we find y′ = c1 + c2(1+ lnx). Then y(1) = c1 = 3, y′(1) = c1 + c2 = −1

so that c1 = 3 and c2 = −4. The solution is y = 3x− 4x lnx.

4. From y = c1 + c2 cosx+ c3 sinx we find y′ = −c2 sinx+ c3 cosx and y′′ = −c2 cosx− c3 sinx.

Then y(π) = c1 − c2 = 0, y′(π) = −c3 = 2, y′′(π) = c2 = −1 so that c1 = −1, c2 = −1, and

c3 = −2. The solution is y = −1− cosx− 2 sinx.

5. From y = c1 + c2x
2 we find y′ = 2c2x. Then y(0) = c1 = 0, y′(0) = 2c2 · 0 = 0 and hence

y′(0) = 1 is not possible. Since a2(x) = x is 0 at x = 0, Theorem 4.1.1 is not violated.

6. In this case we have y(0) = c1 = 0, y′(0) = 2c2 · 0 = 0 so c1 = 0 and c2 is arbitrary. Two

solutions are y = x2 and y = 2x2.

7. From x(0) = x0 = c1 we see that x(t) = x0 cosωt+ c2 sinωt and x′(t) = −x0 sinωt+ c2ω cosωt.

Then x′(0) = x1 = c2ω implies c2 = x1/ω. Thus

x(t) = x0 cosωt+
x1
ω

sinωt.

8. Solving the system

x(t0) = c1 cosωt0 + c2 sinωt0 = x0

x′(t0) = −c1ω sinωt0 + c2ω cosωt0 = x1

for c1 and c2 gives

c1 =
ωx0 cosωt0 − x1 sinωt0

ω
and c2 =

x1 cosωt0 + ωx0 sinωt0
ω

.
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4.1 Preliminary Theory – Linear Equationsq

Thus

x(t) =
ωx0 cosωt0 − x1 sinωt0

ω
cosωt+

x1 cosωt0 + ωx0 sinωt0
ω

sinωt

= x0(cosωt cosωt0 + sinωt sinωt0) +
x1
ω

(sinωt cosωt0 − cosωt sinωt0)

= x0 cosω(t− t0) +
x1
ω

sinω(t− t0).

9. Since a2(x) = x− 2 and x0 = 0 the problem has a unique solution for −∞ < x < 2.

10. Since a0(x) = tanx and x0 = 0 the problem has a unique solution for −π/2 < x < π/2.

11. (a) We have y(0) = c1 + c2 = 0, y(1) = c1e + c2e
−1 = 1 so that c1 = e/

(
e2 − 1

)
and

c2 = −e/
(
e2 − 1

)
. The solution is y = e (ex − e−x) /

(
e2 − 1

)
.

(b) We have y(0) = c3 cosh 0+c4 sinh 0 = c3 = 0 and y(1) = c3 cosh 1+c4 sinh 1 = c4 sinh 1 = 1,

so c3 = 0 and c4 = 1/ sinh 1. The solution is y = (sinhx)/(sinh 1).

(c) Starting with the solution in part (b) we have

y =
1

sinh 1
sinhx =

2

e1 − e−1
ex − e−x

2
=
ex − e−x

e− 1/e
=

e

e2 − 1
(ex − e−x).

12. In this case we have y(0) = c1 = 1, y′(1) = 2c2 = 6 so that c1 = 1 and c2 = 3. The solution is

y = 1 + 3x2.

13. From y = c1e
x cosx+ c2e

x sinx we find y′ = c1e
x(− sinx+ cosx) + c2e

x(cosx+ sinx).

(a) We have y(0) = c1 = 1, y′(π) = −eπ(c1 +c2) = 0 so that c1 = 1 and c2 = −1. The solution

is y = ex cosx− ex sinx.

(b) We have y(0) = c1 = 1, y(π) = −eπ = −1, which is not possible.

(c) We have y(0) = c1 = 1, y(π/2) = c2e
π/2 = 1 so that c1 = 1 and c2 = e−π/2. The solution

is y = ex cosx+ e−π/2ex sinx.

(d) We have y(0) = c1 = 0, y(π) = c2e
π sinπ = 0 so that c1 = 0 and c2 is arbitrary. Solutions

are y = c2e
x sinx, for any real numbers c2.

14. (a) We have y(−1) = c1 + c2 + 3 = 0, y(1) = c1 + c2 + 3 = 4, which is not possible.

(b) We have y(0) = c1 · 0 + c2 · 0 + 3 = 1, which is not possible.

(c) We have y(0) = c1 · 0 + c2 · 0 + 3 = 3, y(1) = c1 + c2 + 3 = 0 so that c1 is arbitrary and

c2 = −3− c1. Solutions are y = c1x
2 − (c1 + 3)x4 + 3.

(d) We have y(1) = c1 + c2 + 3 = 3, y(2) = 4c1 + 16c2 + 3 = 15 so that c1 = −1 and c2 = 1.

The solution is y = −x2 + x4 + 3.
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CHAPTER 4 HIGHER-ORDER DIFFERENTIAL EQUATIONS

4.1.2 Homogeneous Equations

15. Since (−4)x+ (3)x2 + (1)(4x− 3x2) = 0 the set of functions is linearly dependent.

16. Since (1)0 + (0)x + (0)ex = 0 the set of functions is linearly dependent. A similar argument

shows that any set of functions containing f(x) = 0 will be linearly dependent.

17. Since (−1/5)5 + (1) cos2 x+ (1) sin2 x = 0 the set of functions is linearly dependent.

18. Since (1) cos 2x+ (1)1 + (−2) cos2 x = 0 the set of functions is linearly dependent.

19. Since (−4)x+ (3)(x− 1) + (1)(x+ 3) = 0 the set of functions is linearly dependent.

20. From the graphs of f1(x) = 2 + x and

f2(x) = 2 + |x| we see that the set of

functions is linearly independent since they

cannot be multiples of each other.

21. Suppose c1(1 +x) + c2x+ c3x
2 = 0. Then c1 + (c1 + c2)x+ c3x

2 = 0 and so c1 = 0, c1 + c2 = 0,

and c3 = 0. Since c1 = 0 we also have c2 = 0. Thus, the set of functions is linearly independent.

22. Since (−1/2)ex + (1/2)e−x + (1) sinhx = 0 the set of functions is linearly dependent.

23. The functions satisfy the differential equation and are linearly independent since

W
(
e−3x, e4x

)
= 7ex 6= 0

for −∞ < x <∞. The general solution is

y = c1e
−3x + c2e

4x.

24. The functions satisfy the differential equation and are linearly independent since

W (cosh 2x, sinh 2x) = 2

for −∞ < x <∞. The general solution is

y = c1 cosh 2x+ c2 sinh 2x.

25. The functions satisfy the differential equation and are linearly independent since

W (ex cos 2x, ex sin 2x) = 2e2x 6= 0

for −∞ < x <∞. The general solution is y = c1e
x cos 2x+ c2e

x sin 2x.
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4.1 Preliminary Theory – Linear Equationsq

26. The functions satisfy the differential equation and are linearly independent since

W
(
ex/2, xex/2

)
= ex 6= 0

for −∞ < x <∞. The general solution is

y = c1e
x/2 + c2xe

x/2.

27. The functions satisfy the differential equation and are linearly independent since

W
(
x3, x4

)
= x6 6= 0

for 0 < x <∞. The general solution on this interval is

y = c1x
3 + c2x

4.

28. The functions satisfy the differential equation and are linearly independent since

W (cos(lnx), sin(lnx)) = 1/x 6= 0

for 0 < x <∞. The general solution on this interval is

y = c1 cos(lnx) + c2 sin(lnx).

29. The functions satisfy the differential equation and are linearly independent since

W
(
x, x−2, x−2 lnx

)
= 9x−6 6= 0

for 0 < x <∞. The general solution on this interval is

y = c1x+ c2x
−2 + c3x

−2 lnx.

30. The functions satisfy the differential equation and are linearly independent since

W (1, x, cosx, sinx) = 1

for −∞ < x <∞. The general solution on this interval is

y = c1 + c2x+ c3 cosx+ c4 sinx.

4.1.3 Nonhomogeneous Equations

31. The functions y1 = e2x and y2 = e5x form a fundamental set of solutions of the associated

homogeneous equation, and yp = 6ex is a particular solution of the nonhomogeneous equation.
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CHAPTER 4 HIGHER-ORDER DIFFERENTIAL EQUATIONS

32. The functions y1 = cosx and y2 = sinx form a fundamental set of solutions of the associ-

ated homogeneous equation, and yp = x sinx + (cosx) ln(cosx) is a particular solution of the

nonhomogeneous equation.

33. The functions y1 = e2x and y2 = xe2x form a fundamental set of solutions of the associated

homogeneous equation, and yp = x2e2x + x− 2 is a particular solution of the nonhomogeneous

equation.

34. The functions y1 = x−1/2 and y2 = x−1 form a fundamental set of solutions of the associated

homogeneous equation, and yp = 1
15x

2 − 1
6x is a particular solution of the nonhomogeneous

equation.

35. (a) We have y′p1 = 6e2x and y′′p1 = 12e2x, so

y′′p1 − 6y′p1 + 5yp1 = 12e2x − 36e2x + 15e2x = −9e2x.

Also, y′p2 = 2x+ 3 and y′′p2 = 2, so

y′′p2 − 6y′p2 + 5yp2 = 2− 6(2x+ 3) + 5(x2 + 3x) = 5x2 + 3x− 16.

(b) By the superposition principle for nonhomogeneous equations a particular solution of

y′′ − 6y′ + 5y = 5x2 + 3x− 16− 9e2x is yp = x2 + 3x+ 3e2x. A particular solution of the

second equation is

yp = −2yp2 −
1

9
yp1 = −2x2 − 6x− 1

3
e2x.

36. (a) yp1 = 5 (b) yp2 = −2x (c) yp = yp1 +yp2 = 5−2x (d) yp = 1
2yp1−2yp2 = 5

2+4x

Discussion Problems

37. (a) Since D2x = 0, x and 1 are solutions of y′′ = 0. Since they are linearly independent, the

general solution is y = c1x+ c2.

(b) Since D3x2 = 0, x2, x, and 1 are solutions of y′′′ = 0. Since they are linearly independent,

the general solution is y = c1x
2 + c2x+ c3.

(c) Since D4x3 = 0, x3, x2, x, and 1 are solutions of y(4) = 0. Since they are linearly

independent, the general solution is y = c1x
3 + c2x

2 + c3x+ c4.

(d) By part (a), the general solution of y′′ = 0 is yc = c1x+ c2. Since D2x2 = 2! = 2, yp = x2

is a particular solution of y′′ = 2. Thus, the general solution is y = c1x+ c2 + x2.

(e) By part (b), the general solution of y′′′ = 0 is yc = c1x
2 + c2x+ c3. Since D3x3 = 3! = 6,

yp = x3 is a particular solution of y′′′ = 6. Thus, the general solution is

y = c1x
2 + c2x+ c3 + x3.
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4.1 Preliminary Theory – Linear Equationsq

(f) By part (c), the general solution of y(4) = 0 is yc = c1x
3 + c2x

2 + c3x + c4. Since

D4x4 = 4! = 24, yp = x4 is a particular solution of y(4) = 24. Thus, the general solution

is y = c1x
3 + c2x

2 + c3x+ c4 + x4.

38. By the superposition principle, if y1 = ex and y2 = e−x are both solutions of a homogeneous

linear differential equation, then so are

1

2
(y1 + y2) =

ex + e−x

2
= coshx and

1

2
(y1 − y2) =

ex − e−x

2
= sinhx.

39. (a) From the graphs of y1 = x3 and y2 = |x|3 we

see that the functions are linearly independent

since they cannot be multiples of each other.

It is easily shown that y1 = x3 is a solution of

x2y′′ − 4xy′ + 6y = 0. To show that y2 = |x|3

is a solution let y2 = x3 for x ≥ 0 and let

y2 = −x3 for x < 0.

(b) If x ≥ 0 then y2 = x3 and

W (y1, y2) =

∣∣∣∣∣ x3 x3

3x2 3x2

∣∣∣∣∣ = 0.

If x < 0 then y2 = −x3 and

W (y1, y2) =

∣∣∣∣∣ x3 −x3

3x2 −3x2

∣∣∣∣∣ = 0.

This does not violate Theorem 4.1.3 since a2(x) = x2 is zero at x = 0.

(c) The functions Y1 = x3 and Y2 = x2 are solutions of x2y′′−4xy′+6y = 0. They are linearly

independent since W
(
x3, x2

)
= x4 6= 0 for −∞ < x <∞.

(d) The function y = x3 satisfies y(0) = 0 and y′(0) = 0.

(e) Neither is the general solution on (−∞, ∞) since we form a general solution on an interval

for which a2(x) 6= 0 for every x in the interval.

40. Since ex−3 = e−3ex = (e−5e2)ex = e−5ex+2, we see that ex−3 is a constant multiple of ex+2 and

the set of functions is linearly dependent.

41. Since 0y1 + 0y2 + · · ·+ 0yk + 1yk+1 = 0, the set of solutions is linearly dependent.

42. The set of solutions is linearly dependent. Suppose n of the solutions are linearly independent

(if not, then the set of n + 1 solutions is linearly dependent). Without loss of generality,

let this set be y1, y2, . . . , yn. Then y = c1y1 + c2y2 + · · · + cnyn is the general solution

of the nth-order differential equation and for some choice, c∗1, c
∗
2, . . . , c

∗
n, of the coefficients

yn+1 = c∗1y1 + c∗2y2 + · · ·+ c∗nyn. But then the set y1, y2, . . . , yn, yn+1 is linearly dependent.

143

© 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part, except for use as permitted in a license distributed 
with a certain product or service or otherwise on a password-protected website for classroom use. Not For Sale

©
 C

en
ga

ge
 L

ea
rn

in
g.

 A
ll 

rig
ht

s r
es

er
ve

d.
 N

o 
di

st
rib

ut
io

n 
al

lo
w

ed
 w

ith
ou

t e
xp

re
ss

 a
ut

ho
riz

at
io

n.



CHAPTER 4 HIGHER-ORDER DIFFERENTIAL EQUATIONS

4.2 Reduction of Orderq

4.2 Reduction of Orderq

In Problems 1-8 we use reduction of order to find a second solution. In Problems 9-16 we use

formula (5) from the text.

1. Define y = u(x)e2x so

y′ = 2ue2x + u′e2x, y′′ = e2xu′′ + 4e2xu′ + 4e2xu, and y′′ − 4y′ + 4y = e2xu′′ = 0.

Therefore u′′ = 0 and u = c1x+ c2. Taking c1 = 1 and c2 = 0 we see that a second solution is

y2 = xe2x.

2. Define y = u(x)xe−x so

y′ = (1− x)e−xu+ xe−xu′, y′′ = xe−xu′′ + 2(1− x)e−xu′ − (2− x)e−xu,

and

y′′ + 2y′ + y = e−x(xu′′ + 2u′) = 0 or u′′ +
2

x
u′ = 0.

If w = u′ we obtain the linear first-order equation w′+
2

x
w = 0 which has the integrating factor

e2
∫
dx/x = x2. Now

d

dx
[x2w] = 0 gives x2w = c.

Therefore w = u′ = c/x2 and u = c1/x. A second solution is y2 =
1

x
xe−x = e−x.

3. Define y = u(x) cos 4x so

y′ = −4u sin 4x+ u′ cos 4x, y′′ = u′′ cos 4x− 8u′ sin 4x− 16u cos 4x

and

y′′ + 16y = (cos 4x)u′′ − 8(sin 4x)u′ = 0 or u′′ − 8(tan 4x)u′ = 0.

If w = u′ we obtain the linear first-order equation w′−8(tan 4x)w = 0 which has the integrating

factor e−8
∫
tan 4x dx = cos2 4x. Now

d

dx
[(cos2 4x)w] = 0 gives (cos2 4x)w = c.

Therefore w = u′ = c sec2 4x and u = c1 tan 4x. A second solution is y2 = tan 4x cos 4x = sin 4x.

4. Define y = u(x) sin 3x so

y′ = 3u cos 3x+ u′ sin 3x, y′′ = u′′ sin 3x+ 6u′ cos 3x− 9u sin 3x,

and

y′′ + 9y = (sin 3x)u′′ + 6(cos 3x)u′ = 0 or u′′ + 6(cot 3x)u′ = 0.
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4.2 Reduction of Orderq

If w = u′ we obtain the linear first-order equation w′+6(cot 3x)w = 0 which has the integrating

factor e6
∫
cot 3x dx = sin2 3x. Now

d

dx
[(sin2 3x)w] = 0 gives (sin2 3x)w = c.

Therefore w = u′ = c csc2 3x and u = c1 cot 3x. A second solution is y2 = cot 3x sin 3x = cos 3x.

5. Define y = u(x) coshx so

y′ = u sinhx+ u′ coshx, y′′ = u′′ coshx+ 2u′ sinhx+ u coshx

and

y′′ − y = (coshx)u′′ + 2(sinhx)u′ = 0 or u′′ + 2(tanhx)u′ = 0.

If w = u′ we obtain the linear first-order equation w′+2(tanhx)w = 0 which has the integrating

factor e2
∫
tanhx dx = cosh2 x. Now

d

dx
[(cosh2 x)w] = 0 gives (cosh2 x)w = c.

Therefore w = u′ = c sech2x and u = c tanhx. A second solution is y2 = tanhx coshx = sinhx.

6. Define y = u(x)e5x so

y′ = 5e5xu+ e5xu′, y′′ = e5xu′′ + 10e5xu′ + 25e5xu

and

y′′ − 25y = e5x(u′′ + 10u′) = 0 or u′′ + 10u′ = 0.

If w = u′ we obtain the linear first-order equation w′+10w = 0 which has the integrating factor

e10
∫
dx = e10x. Now

d

dx
[e10xw] = 0 gives e10xw = c.

Therefore w = u′ = ce−10x and u = c1e
−10x. A second solution is y2 = e−10xe5x = e−5x.

7. Define y = u(x)e2x/3 so

y′ =
2

3
e2x/3u+ e2x/3u′, y′′ = e2x/3u′′ +

4

3
e2x/3u′ +

4

9
e2x/3u

and
9y′′ − 12y′ + 4y = 9e2x/3u′′ = 0.

Therefore u′′ = 0 and u = c1x+ c2. Taking c1 = 1 and c2 = 0 we see that a second solution is

y2 = xe2x/3.

8. Define y = u(x)ex/3 so

y′ =
1

3
ex/3u+ ex/3u′, y′′ = ex/3u′′ +

2

3
ex/3u′ +

1

9
ex/3u

and
6y′′ + y′ − y = ex/3(6u′′ + 5u′) = 0 or u′′ +

5

6
u′ = 0.

If w = u′ we obtain the linear first-order equation w′+ 5
6w = 0 which has the integrating factor

e(5/6)
∫
dx = e5x/6. Now

d

dx
[e5x/6w] = 0 gives e5x/6w = c.

Therefore w = u′ = ce−5x/6 and u = c1e
−5x/6. A second solution is y2 = e−5x/6ex/3 = e−x/2.
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CHAPTER 4 HIGHER-ORDER DIFFERENTIAL EQUATIONS

9. Identifying P (x) = −7/x we have

y2 = x4
∫
e−

∫
(−7/x) dx

x8
dx = x4

∫
1

x
dx = x4 ln |x|.

A second solution is y2 = x4 ln |x|.

10. Identifying P (x) = 2/x we have

y2 = x2
∫
e−

∫
(2/x) dx

x4
dx = x2

∫
x−6dx = −1

5
x−3.

A second solution is y2 = x−3.

11. Identifying P (x) = 1/x we have

y2 = lnx

∫
e−

∫
dx/x

(lnx)2
dx = lnx

∫
dx

x(lnx)2
= lnx

(
− 1

lnx

)
= −1.

A second solution is y2 = 1.

12. Identifying P (x) = 0 we have

y2 = x1/2 lnx

∫
e−

∫
0 dx

x(lnx)2
dx = x1/2 lnx

(
− 1

lnx

)
= −x1/2.

A second solution is y2 = x1/2.

13. Identifying P (x) = −1/x we have

y2 = x sin(lnx)

∫
e−

∫
−dx/x

x2 sin2(lnx)
dx = x sin(lnx)

∫
x

x2 sin2(lnx)
dx

= x sin(lnx)

∫
csc2(lnx)

x
dx = [x sin(lnx)] [− cot(lnx)] = −x cos(lnx).

A second solution is y2 = x cos(lnx).

14. Identifying P (x) = −3/x we have

y2 = x2 cos(lnx)

∫
e−

∫
−3 dx/x

x4 cos2(lnx)
dx = x2 cos(lnx)

∫
x3

x4 cos2(lnx)
dx

= x2 cos(lnx)

∫
sec2(lnx)

x
dx = x2 cos(lnx) tan(lnx) = x2 sin(lnx).

A second solution is y2 = x2 sin(lnx).
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4.2 Reduction of Orderq

15. Identifying P (x) = 2(1 + x)/
(
1− 2x− x2

)
we have

y2 = (x+ 1)

∫
e−

∫
2(1+x)dx/(1−2x−x2)

(x+ 1)2
dx = (x+ 1)

∫
eln(1−2x−x

2)

(x+ 1)2
dx

= (x+ 1)

∫
1− 2x− x2

(x+ 1)2
dx = (x+ 1)

∫ [
2

(x+ 1)2
− 1

]
dx

= (x+ 1)

[
− 2

x+ 1
− x
]

= −2− x2 − x.

A second solution is y2 = x2 + x+ 2.

16. Identifying P (x) = −2x/
(
1− x2

)
we have

y2 =

∫
e−

∫
−2x dx/(1−x2)dx =

∫
e− ln(1−x2)dx =

∫
1

1− x2
dx =

1

2
ln

∣∣∣∣1 + x

1− x

∣∣∣∣ .
A second solution is y2 = ln |(1 + x)/(1− x)|.

17. Define y = u(x)e−2x so

y′ = −2ue−2x + u′e−2x, y′′ = u′′e−2x − 4u′e−2x + 4ue−2x

and

y′′ − 4y = e−2xu′′ − 4e−2xu′ = 0 or u′′ − 4u′ = 0.

If w = u′ we obtain the linear first-order equation w′−4w = 0 which has the integrating factor

e−4
∫
dx = e−4x. Now

d

dx
[e−4xw] = 0 gives e−4xw = c.

Therefore w = u′ = ce4x and u = c1e
4x. A second solution is y2 = e−2xe4x = e2x. We see by

observation that a particular solution is yp = −1/2. The general solution is

y = c1e
−2x + c2e

2x − 1

2
.

18. Define y = u(x) · 1 so

y′ = u′, y′′ = u′′ and y′′ + y′ = u′′ + u′ = 1.

If w = u′ we obtain the linear first-order equation w′ +w = 1 which has the integrating factor

e
∫
dx = ex. Now

d

dx
[exw] = ex gives exw = ex + c.

Therefore w = u′ = 1 + ce−x and u = x+ c1e
−x + c2. The general solution is

y = u = x+ c1e
−x + c2.
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CHAPTER 4 HIGHER-ORDER DIFFERENTIAL EQUATIONS

19. Define y = u(x)ex so

y′ = uex + u′ex, y′′ = u′′ex + 2u′ex + uex

and

y′′ − 3y′ + 2y = exu′′ − exu′ = 5e3x.

If w = u′ we obtain the linear first-order equation w′ − w = 5e2x which has the integrating

factor e−
∫
dx = e−x. Now

d

dx
[e−xw] = 5ex gives e−xw = 5ex + c1.

Therefore w = u′ = 5e2x + c1e
x and u = 5

2e
2x + c1e

x + c2. The general solution is

y = uex =
5

2
e3x + c1e

2x + c2e
x,

so y2 = e2x and a particular is yp = 5
2 e

3x

20. Define y = u(x)ex so

y′ = uex + u′ex, y′′ = u′′ex + 2u′ex + uex

and

y′′ − 4y′ + 3y = exu′′ − exu′ = x.

If w = u′ we obtain the linear first-order equation w′ − 2w = xe−x which has the integrating

factor e−
∫
2dx = e−2x. Now

d

dx
[e−2xw] = xe−3x gives e−2xw = −1

3
xe−3x − 1

9
e−3x + c1.

Therefore w = u′ = −1
3 xe

−x − 1
9e
−x + c1e

2x and u = 1
3 xe

−x + 4
9e
−x + c2e

2x + c3. The general

solution is

y = uex =
1

3
x+

4

9
+ c2e

3x + c3e
x,

so y2 = e3x and yp = 1
3 x+ 4

9 .

Discussion Problems

21. (a) For m1 constant, let y1 = em1x. Then y′1 = m1e
m1x and y′′1 = m2

1e
m1x. Substituting into

the differential equation we obtain

ay′′1 + by′1 + cy1 = am2
1e
m1x + bm1e

m1x + cem1x

= em1x(am2
1 + bm1 + c) = 0.

Thus, y1 = em1x will be a solution of the differential equation whenever am2
1+bm1+c = 0.

Since a quadratic equation always has at least one real or complex root, the differential

equation must have a solution of the form y1 = em1x.
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4.2 Reduction of Orderq

(b) Write the differential equation in the form

y′′ +
b

a
y′ +

c

a
y = 0,

and let y1 = em1x be a solution. Then a second solution is given by

y2 = em1x

∫
e−bx/a

e2m1x
dx

= em1x

∫
e−(b/a+2m1)xdx

= − 1

b/a+ 2m1
em1xe−(b/a+2m1)x (m1 6= −b/2a)

= − 1

b/a+ 2m1
e−(b/a+m1)x.

Thus, when m1 6= −b/2a, a second solution is given by y2 = em2x where m2 = −b/a−m1.

When m1 = −b/2a a second solution is given by

y2 = em1x

∫
dx = xem1x.

(c) The functions

sinx =
1

2i
(eix − e−ix)

sinhx =
1

2
(ex − e−x)

and

cosx =
1

2
(eix + e−ix)

coshx =
1

2
(ex + e−x)

are all expressible in terms of exponential functions.

22. We have y′1 = 1 and y′′1 = 0, so xy′′1 − xy′1 + y1 = 0− x+ x = 0 and y1(x) = x is a solution of

the differential equation. Letting y = u(x)y1(x) = xu(x) we get

y′ = xu′(x) + u(x) and y′′ = xu′′(x) + 2u′(x).

Then xy′′ − xy′ + y = x2u′′ + 2xu′ − x2u′ − xu+ xu = x2u′′ − (x2 − 2x)u′ = 0. If we make the

substitution w = u′, the linear first-order differential equation becomes x2w′ − (x2 − x)w = 0,

which is separable:

dw

dx
=
(

1− 1

x

)
w

dw

w
=
(

1− 1

x

)
dx

lnw = x− lnx+ c

w = c1
ex

x
.
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CHAPTER 4 HIGHER-ORDER DIFFERENTIAL EQUATIONS

Then u′ = c1e
x/x and u = c1

∫
exdx/x. To integrate ex/x we use the series representation for

ex. Thus, a second solution is

y2 = xu(x) = c1x

∫
ex

x
dx

= c1x

∫
1

x

(
1 + x+

1

2!
x2 +

1

3!
x3 + · · ·

)
dx

= c1x

∫ (
1

x
+ 1 +

1

2!
x+

1

3!
x2 + · · ·

)
dx

= c1x

(
lnx+ x+

1

2(2!)
x2 +

1

3(3!)
x3 + · · ·

)

= c1

(
x lnx+ x2 +

1

2(2!)
x3 +

1

3(3!)
x4 + · · ·

)
.

An interval of definition is probably (0, ∞) because of the lnx term.

Computer Lab Assignments

23. (a) We have y′ = y′′ = ex, so

xy′′ − (x+ 10)y′ + 10y = xex − (x+ 10)ex + 10ex = 0,

and y = ex is a solution of the differential equation.

(b) By (5) in the text a second solution is

y2 = y1

∫
e−

∫
P (x) dx

y21
dx = ex

∫
e
∫

x+10
x

dx

e2x
dx = ex

∫
e
∫
(1+10/x)dx

e2x
dx

= ex
∫
ex+lnx10

e2x
dx = ex

∫
x10e−x dx

= ex(−3,628,800− 3,628,800x− 1,814,400x2 − 604,800x3 − 151,200x4

− 30,240x5 − 5,040x6 − 720x7 − 90x8 − 10x9 − x10)e−x

= −3,628,800− 3,628,800x− 1,814,400x2 − 604,800x3 − 151,200x4

− 30,240x5 − 5,040x6 − 720x7 − 90x8 − 10x9 − x10.

(c) By Corollary (A) of Theorem 4.1.2, − 1

10!
y2 =

10∑
n=0

1

n!
xn is a solution.
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4.3 Homogeneous Linear Equations with Constant Coefficientsq

4.3 Homogeneous Linear Equations with Constant Coefficientsq

4.3 Homogeneous Linear Equations with Constant Coefficientsq

1. From 4m2 +m = 0 we obtain m = 0 and m = −1/4 so that y = c1 + c2e
−x/4.

2. From m2 − 36 = 0 we obtain m = 6 and m = −6 so that y = c1e
6x + c2e

−6x.

3. From m2 −m− 6 = 0 we obtain m = 3 and m = −2 so that y = c1e
3x + c2e

−2x.

4. From m2 − 3m+ 2 = 0 we obtain m = 1 and m = 2 so that y = c1e
x + c2e

2x.

5. From m2 + 8m+ 16 = 0 we obtain m = −4 and m = −4 so that y = c1e
−4x + c2xe

−4x.

6. From m2 − 10m+ 25 = 0 we obtain m = 5 and m = 5 so that y = c1e
5x + c2xe

5x.

7. From 12m2 − 5m− 2 = 0 we obtain m = −1/4 and m = 2/3 so that y = c1e
−x/4 + c2e

2x/3.

8. From m2 + 4m− 1 = 0 we obtain m = −2±
√

5 so that y = c1e
(−2+

√
5 )x + c2e

(−2−
√
5 )x.

9. From m2 + 9 = 0 we obtain m = 3i and m = −3i so that y = c1 cos 3x+ c2 sin 3x.

10. From 3m2 + 1 = 0 we obtain m = i/
√

3 and m = −i/
√

3 so that

y = c1 cos(x/
√

3 ) + c2(sinx/
√

3 ).

11. From m2 − 4m+ 5 = 0 we obtain m = 2± i so that y = e2x(c1 cosx+ c2 sinx).

12. From 2m2 + 2m+ 1 = 0 we obtain m = −1/2± i/2 so that

y = e−x/2[c1 cos(x/2) + c2 sin(x/2)].

13. From 3m2 + 2m+ 1 = 0 we obtain m = −1/3±
√

2 i/3 so that

y = e−x/3[c1 cos(
√

2x/3) + c2 sin(
√

2x/3)].

14. From 2m2 − 3m+ 4 = 0 we obtain m = 3/4±
√

23 i/4 so that

y = e3x/4[c1 cos(
√

23x/4) + c2 sin(
√

23x/4)].

15. From m3 − 4m2 − 5m = 0 we obtain m = 0, m = 5, and m = −1 so that

y = c1 + c2e
5x + c3e

−x.

16. From m3 − 1 = 0 we obtain m = 1 and m = −1/2±
√

3 i/2 so that

y = c1e
x + e−x/2[c2 cos(

√
3x/2) + c3 sin(

√
3x/2)].
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CHAPTER 4 HIGHER-ORDER DIFFERENTIAL EQUATIONS

17. From m3 − 5m2 + 3m+ 9 = 0 we obtain m = −1, m = 3, and m = 3 so that

y = c1e
−x + c2e

3x + c3xe
3x.

18. From m3 + 3m2 − 4m− 12 = 0 we obtain m = −2, m = 2, and m = −3 so that

y = c1e
−2x + c2e

2x + c3e
−3x.

19. From m3 +m2 − 2 = 0 we obtain m = 1 and m = −1± i so that

u = c1e
t + e−t(c2 cos t+ c3 sin t).

20. From m3 −m2 − 4 = 0 we obtain m = 2 and m = −1/2±
√

7 i/2 so that

x = c1e
2t + e−t/2[c2 cos(

√
7t/2) + c3 sin(

√
7t/2)].

21. From m3 + 3m2 + 3m+ 1 = 0 we obtain m = −1, m = −1, and m = −1 so that

y = c1e
−x + c2xe

−x + c3x
2e−x.

22. From m3 − 6m2 + 12m− 8 = 0 we obtain m = 2, m = 2, and m = 2 so that

y = c1e
2x + c2xe

2x + c3x
2e2x.

23. From m4 +m3 +m2 = 0 we obtain m = 0, m = 0, and m = −1/2±
√

3 i/2 so that

y = c1 + c2x+ e−x/2[c3 cos(
√

3x/2) + c4 sin(
√

3x/2)].

24. From m4 − 2m2 + 1 = 0 we obtain m = 1, m = 1, m = −1, and m = −1 so that

y = c1e
x + c2xe

x + c3e
−x + c4xe

−x.

25. From 16m4 + 24m2 + 9 = 0 we obtain m = ±
√

3 i/2 and m = ±
√

3 i/2 so that

y = c1 cos(
√

3x/2) + c2 sin(
√

3x/2) + c3x cos(
√

3x/2) + c4x sin(
√

3x/2).

26. From m4 − 7m2 − 18 = 0 we obtain m = 3, m = −3, and m = ±
√

2 i so that

y = c1e
3x + c2e

−3x + c3 cos
√

2x+ c4 sin
√

2x.

27. From m5 + 5m4 − 2m3 − 10m2 + m + 5 = 0 we obtain m = −1, m = −1, m = 1, and m = 1,

and m = −5 so that

u = c1e
−r + c2re

−r + c3e
r + c4re

r + c5e
−5r.
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4.3 Homogeneous Linear Equations with Constant Coefficientsq

28. From 2m5 − 7m4 + 12m3 + 8m2 = 0 we obtain m = 0, m = 0, m = −1/2, and m = 2 ± 2i so

that

x = c1 + c2s+ c3e
−s/2 + e2s(c4 cos 2s+ c5 sin 2s).

29. From m2 + 16 = 0 we obtain m = ±4i so that y = c1 cos 4x + c2 sin 4x. If y(0) = 2 and

y′(0) = −2 then c1 = 2, c2 = −1/2, and y = 2 cos 4x− 1
2 sin 4x.

30. From m2+1 = 0 we obtain m = ±i so that y = c1 cos θ+c2 sin θ. If y(π/3) = 0 and y′(π/3) = 2

then

1

2
c1 +

√
3

2
c2 = 0

−
√

3

2
c1 +

1

2
c2 = 2,

so c1 = −
√

3, c2 = 1, and y = −
√

3 cos θ + sin θ.

31. From m2 − 4m − 5 = 0 we obtain m = −1 and m = 5, so that y = c1e
−t + c2e

5t. If y(1) = 0

and y′(1) = 2, then c1e
−1 + c2e

5 = 0, −c1e−1 + 5c2e
5 = 2, so c1 = −e/3, c2 = e−5/3, and

y = −1
3e

1−t + 1
3e

5t−5.

32. From 4m2 − 4m − 3 = 0 we obtain m = −1/2 and m = 3/2 so that y = c1e
−x/2 + c2e

3x/2.

If y(0) = 1 and y′(0) = 5 then c1 + c2 = 1, −1
2c1 + 3

2c2 = 5, so c1 = −7/4, c2 = 11/4, and

y = −7
4e
−x/2 + 11

4 e
3x/2.

33. From m2 +m+ 2 = 0 we obtain m = −1/2±
√

7 i/2 so that

y = e−x/2[c1 cos(
√

7x/2) + c2 sin(
√

7x/2)].

If y(0) = 0 and y′(0) = 0 then c1 = 0 and c2 = 0 so that y = 0.

34. From m2 − 2m+ 1 = 0 we obtain m = 1 and m = 1 so that y = c1e
x + c2xe

x. If y(0) = 5 and

y′(0) = 10 then c1 = 5, c1 + c2 = 10 so c1 = 5, c2 = 5, and y = 5ex + 5xex.

35. From m3 + 12m2 + 36m = 0 we obtain m = 0, m = −6, and m = −6 so that

y = c1 + c2e
−6x + c3xe

−6x.

If y(0) = 0, y′(0) = 1, and y′′(0) = −7 then

c1 + c2 = 0, −6c2 + c3 = 1, 36c2 − 12c3 = −7,

so c1 = 5/36, c2 = −5/36, c3 = 1/6, and y = 5
36 −

5
36e
−6x + 1

6xe
−6x.
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CHAPTER 4 HIGHER-ORDER DIFFERENTIAL EQUATIONS

36. From m3 + 2m2 − 5m− 6 = 0 we obtain m = −1, m = 2, and m = −3 so that

y = c1e
−x + c2e

2x + c3e
−3x.

If y(0) = 0, y′(0) = 0, and y′′(0) = 1 then

c1 + c2 + c3 = 0, −c1 + 2c2 − 3c3 = 0, c1 + 4c2 + 9c3 = 1,

so c1 = −1/6, c2 = 1/15, c3 = 1/10, and

y = −1

6
e−x +

1

15
e2x +

1

10
e−3x.

37. From m2 − 10m+ 25 = 0 we obtain m = 5 and m = 5 so that y = c1e
5x + c2xe

5x. If y(0) = 1

and y(1) = 0 then c1 = 1, c1e
5 + c2e

5 = 0, so c1 = 1, c2 = −1, and y = e5x − xe5x.

38. From m2 + 4 = 0 we obtain m = ±2i so that y = c1 cos 2x+ c2 sin 2x. If y(0) = 0 and y(π) = 0

then c1 = 0 and y = c2 sin 2x.

39. From m2 + 1 = 0 we obtain m = ±i so that y = c1 cosx+ c2 sinx and y′ = −c1 sinx+ c2 cosx.

From y′(0) = c1(0) + c2(1) = c2 = 0 and y′(π/2) = −c1(1) = 0 we find c1 = c2 = 0. A solution

of the boundary-value problem is y = 0.

40. From m2 − 2m+ 2 = 0 we obtain m = 1± i so that y = ex(c1 cosx+ c2 sinx). If y(0) = 1 and

y(π) = 1 then c1 = 1 and y(π) = eπ cosπ = −eπ. Since −eπ 6= 1, the boundary-value problem

has no solution.

41. The auxiliary equation is m2−3 = 0 which has roots −
√

3 and
√

3 . By (10) the general solution

is y = c1e
√
3x + c2e

−
√
3x. By (11) the general solution is y = c1 cosh

√
3x + c2 sinh

√
3x. For

y = c1e
√
3x + c2e

−
√
3x the initial conditions imply c1 + c2 = 1,

√
3c1−

√
3c2 = 5. Solving for c1

and c2 we find c1 = 1
2(1+5

√
3 ) and c2 = 1

2(1−5
√

3 ) so y = 1
2(1+5

√
3 )e
√
3x+ 1

2(1−5
√

3 )e−
√
3x.

For y = c1 cosh
√

3x+ c2 sinh
√

3x the initial conditions imply c1 = 1,
√

3c2 = 5. Solving for c1

and c2 we find c1 = 1 and c2 = 5
3

√
3 so y = cosh

√
3x+ 5

3

√
3 sinh

√
3x.

42. The auxiliary equation is m2−1 = 0 which has roots −1 and 1. By (10) the general solution is

y = c1e
x+ c2e

−x. By (11) the general solution is y = c1 coshx+ c2 sinhx. For y = c1e
x+ c2e

−x

the boundary conditions imply c1 + c2 = 1, c1e− c2e−1 = 0. Solving for c1 and c2 we find c1 =

1/(1+e2) and c2 = e2/(1+e2) so y = ex/(1+e2)+e2e−x/(1+e2). For y = c1 coshx+ c2 sinhx

the boundary conditions imply c1 = 1, c2 = − tanh 1, so y = coshx− (tanh 1) sinhx.

43. The auxiliary equation should have two positive roots, so that the solution has the form

y = c1e
k1x + c2e

k2x. Thus, the differential equation is (f).
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4.3 Homogeneous Linear Equations with Constant Coefficientsq

44. The auxiliary equation should have one positive and one negative root, so that the solution

has the form y = c1e
k1x + c2e

−k2x. Thus, the differential equation is (a).

45. The auxiliary equation should have a pair of complex roots α ± βi where α < 0, so that the

solution has the form eαx(c1 cosβx+ c2 sinβx). Thus, the differential equation is (e).

46. The auxiliary equation should have a repeated negative root, so that the solution has the form

y = c1e
−x + c2xe

−x. Thus, the differential equation is (c).

47. The differential equation should have the form y′′ + k2y = 0 where k = 1 so that the period of

the solution is 2π. Thus, the differential equation is (d).

48. The differential equation should have the form y′′ + k2y = 0 where k = 2 so that the period of

the solution is π. Thus, the differential equation is (b).

49. We have (m− 1)(m− 5) = m2 − 6m+ 5, so the differential equation is y′′ − 6y′ + 5y = 0.

50. We have (m+ 4)(m+ 3) = m2 + 7m+ 12, so the differential equation is y′′ + 7y′ + 12y = 0.

51. We have m(m− 2) = m2 − 2m, so the differential equation is y′′ − 2y′ = 0.

52. We have (m− 10)2 = m2 − 20m+ 100, so the differential equation is y′′ − 20y′ + 100y = 0.

53. We have (m− 3i)(m+ 3i) = m2 + 9, so the differential equation is y′′ + 9y = 0.

54. We have (m− 7)(m+ 7) = m2 − 49, so the differential equation is y′′ − 49y = 0.

55. We have [m − (−1 + i)] [m − (−1 − i)] = m2 + 2m + 2, so the differential equation is

y′′ + 2y′ + 2y = 0.

56. We have m [m − (2 + 5i)] [(m − (2 − 5i)] = m3 − 4m2 + 29m, so the differential equation is

y′′′ − 4y′′ + 29y′ = 0.

57. We have m2(m− 8) = m3− 8m2, so the differential equation is y′′′ − 8y′′ = 0.

58. We have (m2 + 1)(m2 + 4) = m4 + 5m2 + 29, so the differential equation is y(4) + 5y′′+ 4y = 0.

Discussion Problems

59. A third root must be m3 = 3− i and the auxiliary equation is(
m+

1

2

)
[m− (3 + i)][m− (3− i)] =

(
m+

1

2

)
(m2 − 6x+ 10) = m3 − 11

2
m2 + 7m+ 5.

The differential equation is

y′′′ − 11

2
y′′ + 7y′ + 5y = 0.
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CHAPTER 4 HIGHER-ORDER DIFFERENTIAL EQUATIONS

The differential equation is not unique since any constant multiple of the left-hand side of the

differential equation would lead to the same auxiliary roots.

60. The auxiliary equation of 2y′′′+7y′′+4y′−4y = 0 is 2m3 +7m2 +4m−4 = 0. Because m1 = 1
2

is a root of the equation it follows from the Factor Theorem of algebra that m− 1
2 is a factor

of 2m3 + 7m2 + 4m− 4. By synthetic division we find that

2m3 + 7m2 + 4m− 4 = (m− 1

2
)(2m2 + 8m+ 8)

or

2m3 + 7m2 + 4m− 4 = (2m− 1)(m2 + 4m+ 4) = (2m− 1)(m+ 2)2

Thus the roots of the auxiliary equation are m1 = 1
2 , m2 = m3 = −2, and the general solution

of the differential equation is

y = c1e
x/2 + c2e

−2x + c3xe
−2x.

61. From the solution y1 = e−4x cosx we conclude that m1 = −4 + i and m2 = −4 − i are roots

of the auxiliary equation. Hence another solution must be y2 = e−4x sinx. Now dividing the

polynomial m3 + 6m2 +m− 34 by
[
m− (−4 + i)

][
m− (−4− i)

]
= m2 + 8m+ 17 gives m− 2.

Therefore m3 = 2 is the third root of the auxiliary equation, and the general solution of the

differential equation is

y = c1e
−4x cosx+ c2e

−4x sinx+ c3e
2x.

62. Factoring the difference of two squares we obtain

m4 + 1 = (m2 + 1)2 − 2m2 = (m2 + 1−
√

2m)(m2 + 1 +
√

2m) = 0.

Using the quadratic formula on each factor we get m = ±
√

2/2±
√

2 i/2. The solution of the

differential equation is

y(x) = e
√
2x/2

(
c1 cos

√
2

2
x+ c2 sin

√
2

2
x

)
+ e−

√
2x/2

(
c3 cos

√
2

2
x+ c4 sin

√
2

2
x

)
.

63. Using the definition of sinhx and the formula for the cosine of the sum of two angles, we have

y = sinhx− 2 cos(x+ π/6)

=
1

2
ex − 1

2
e−x − 2

[
(cosx)

(
cos

π

6

)
− (sinx)

(
sin

π

6

)]
=

1

2
ex − 1

2
e−x − 2

(√
3

2
cosx− 1

2
sinx

)

=
1

2
ex − 1

2
e−x −

√
3 cosx+ sinx.

156

© 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part, except for use as permitted in a license distributed 
with a certain product or service or otherwise on a password-protected website for classroom use. 

Not For Sale

©
 C

en
ga

ge
 L

ea
rn

in
g.

 A
ll 

rig
ht

s r
es

er
ve

d.
 N

o 
di

st
rib

ut
io

n 
al

lo
w

ed
 w

ith
ou

t e
xp

re
ss

 a
ut

ho
riz

at
io

n.



4.3 Homogeneous Linear Equations with Constant Coefficientsq

This form of the solution can be obtained from the general solution

y = c1e
x + c2e

−x + c3 cosx+ c4 sinx

by choosing c1 = 1
2 , c2 = −1

2 , c3 = −
√

3 , and c4 = 1.

64. (a) We write the auxiliary equation as m2+α2 = 0, and consider three cases where λ = α = 0,

λ = −α2 < 0, and λ = α2 > 0:

Case I When α = 0 the general solution of the differential equation is y = c1 + c2x. The

boundary conditions imply 0 = y(0) = c1 and 0 = y(π/2) = c2π/2, so that c1 = c2 = 0

and the problem possesses only the trivial solution.

Case II When λ = −α2 < 0 the general solution of the differential equation is y =

c1e
αx + c2e

−αx. In this case, y(0) = c1 + c2 = 0 and y(π/2) = c1e
απ/2 + c2e

απ/2 = 0. This

is a homogeneous linear system of equations with unequal coefficients, so c1 = c2 = 0, and

the boundary-value problem possesses only the trivial solution.

(b) Case III When λ = α2 > 0 the general solution of the differential equation is y =

c1 cosαx + c2 sinαx. In this case, y(0) = 0 yields c1 = 0, so that y = c2 sinαx. The

second boundary condition implies 0 = c2 sinαπ/2. When απ/2 is an integer multiple

of π, that is, when α = 2k for k a nonzero integer, the problem will have nontrivial

solutions. Thus, for λ = α2 = 4k2 the boundary-value problem will have nontrivial

solutions y = c2 sin 2kx, where k is a nonzero integer. On the other hand, when α is not

an even integer, the boundary-value problem will have only the trivial solution.

Computer Lab Assignments

65. Using a CAS to solve the auxiliary equation m3 − 6m2 + 2m+ 1 we find m1 = −0.270534,

m2 = 0.658675, and m3 = 5.61186. The general solution is

y = c1e
−0.270534x + c2e

0.658675x + c3e
5.61186x.

66. Using a CAS to solve the auxiliary equation 6.11m3 + 8.59m2 + 7.93m+ 0.778 = 0 we find

m1 = −0.110241, m2 = −0.647826 + 0.857532i, and m3 = −0.647826− 0.857532i. The general

solution is

y = c1e
−0.110241x + e−0.647826x(c2 cos 0.857532x+ c3 sin 0.857532x).
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CHAPTER 4 HIGHER-ORDER DIFFERENTIAL EQUATIONS

67. Using a CAS to solve the auxiliary equation 3.15m4 − 5.34m2 + 6.33m− 2.03 = 0 we find

m1 = −1.74806, m2 = 0.501219, m3 = 0.62342 + 0.588965i, and m4 = 0.62342 − 0.588965i.

The general solution is

y = c1e
−1.74806x + c2e

0.501219x + e0.62342x(c3 cos 0.588965x+ c4 sin 0.588965x).

68. Using a CAS to solve the auxiliary equation m4 + 2m2−m+ 2 = 0 we find m1 = 1/2 +
√

3 i/2,

m2 = 1/2−
√

3 i/2, m3 = −1/2 +
√

7 i/2, and m4 = −1/2−
√

7 i/2. The general solution is

y = ex/2

(
c1 cos

√
3

2
x+ c2 sin

√
3

2
x

)
+ e−x/2

(
c3 cos

√
7

2
x+ c4 sin

√
7

2
x

)
.

69. From 2m4 + 3m3− 16m2 + 15m− 4 = 0 we obtain m = −4, m = 1
2 , m = 1, and m = 1, so that

y = c1e
−4x + c2e

x/2 + c3e
x + c4xe

x. If y(0) = −2, y′(0) = 6, y′′(0) = 3, and y′′′(0) = 1
2 , then

c1 + c2 + c3 = −2

−4c1 +
1

2
c2 + c3 + c4 = 6

16c1 +
1

4
c2 + c3 + 2c4 = 3

−64c1 +
1

8
c2 + c3 + 3c4 =

1

2
,

so c1 = − 4
75 , c2 = −116

3 , c3 = 918
25 , c4 = −58

5 , and

y = − 4

75
e−4x − 116

3
ex/2 +

918

25
ex − 58

5
xex.

70. From m4 − 3m3 + 3m2 − m = 0 we obtain m = 0, m = 1, m = 1, and m = 1 so that

y = c1 + c2e
x + c3xe

x + c4x
2ex. If y(0) = 0, y′(0) = 0, y′′(0) = 1, and y′′′(0) = 1 then

c1 + c2 = 0, c2 + c3 = 0, c2 + 2c3 + 2c4 = 1, c2 + 3c3 + 6c4 = 1,

so c1 = 2, c2 = −2, c3 = 2, c4 = −1/2, and

y = 2− 2ex + 2xex − 1

2
x2ex.
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4.4 Undetermined Coefficients—Superposition Approachq

4.4 Undetermined Coefficients—Superposition Approachq

4.4 Undetermined Coefficients—Superposition Approachq

1. From m2 + 3m + 2 = 0 we find m1 = −1 and m2 = −2. Then yc = c1e
−x + c2e

−2x and we

assume yp = A. Substituting into the differential equation we obtain 2A = 6. Then A = 3,

yp = 3 and

y = c1e
−x + c2e

−2x + 3.

2. From 4m2 + 9 = 0 we find m1 = −3
2 i and m2 = 3

2 i. Then yc = c1 cos 3
2x + c2 sin 3

2x and we

assume yp = A. Substituting into the differential equation we obtain 9A = 15. Then A = 5
3 ,

yp = 5
3 and

y = c1 cos
3

2
x+ c2 sin

3

2
x+

5

3
.

3. From m2− 10m+ 25 = 0 we find m1 = m2 = 5. Then yc = c1e
5x + c2xe

5x and we assume that

yp = Ax+B. Substituting into the differential equation we obtain 25A = 30 and −10A+25B =

3. Then A = 6
5 , B = 3

5 , yp = 6
5x+ 3

5 , and

y = c1e
5x + c2xe

5x +
6

5
x+

3

5
.

4. From m2 +m− 6 = 0 we find m1 = −3 and m2 = 2. Then yc = c1e
−3x + c2e

2x and we assume

yp = Ax+B. Substituting into the differential equation we obtain −6A = 2 and A− 6B = 0.

Then A = −1
3 , B = − 1

18 , yp = −1
3x−

1
18 , and

y = c1e
−3x + c2e

2x − 1

3
x− 1

18
.

5. From 1
4m

2 + m + 1 = 0 we find m1 = m2 = −2. Then yc = c1e
−2x + c2xe

−2x and we assume

yp = Ax2 +Bx+C. Substituting into the differential equation we obtain A = 1, 2A+B = −2,

and 1
2A+B + C = 0. Then A = 1, B = −4, C = 7

2 , yp = x2 − 4x+ 7
2 , and

y = c1e
−2x + c2xe

−2x + x2 − 4x+
7

2
.

6. From m2−8m+20 = 0 we find m1 = 4+2i and m2 = 4−2i. Then yc = e4x(c1 cos 2x+c2 sin 2x)

and we assume yp = Ax2 + Bx+ C + (Dx+ E)ex. Substituting into the differential equation

we obtain

2A− 8B + 20C = 0

−6D + 13E = 0

−16A+ 20B = 0

13D = −26

20A = 100.
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CHAPTER 4 HIGHER-ORDER DIFFERENTIAL EQUATIONS

Then A = 5, B = 4, C = 11
10 , D = −2, E = −12

13 , yp = 5x2 + 4x+ 11
10 +

(
−2x− 12

13

)
ex and

y = e4x(c1 cos 2x+ c2 sin 2x) + 5x2 + 4x+
11

10
+

(
−2x− 12

13

)
ex.

7. From m2 + 3 = 0 we find m1 =
√

3 i and m2 = −
√

3 i. Then yc = c1 cos
√

3x + c2 sin
√

3x

and we assume yp = (Ax2 +Bx+C)e3x. Substituting into the differential equation we obtain

2A + 6B + 12C = 0, 12A + 12B = 0, and 12A = −48. Then A = −4, B = 4, C = −4
3 ,

yp =
(
−4x2 + 4x− 4

3

)
e3x and

y = c1 cos
√

3x+ c2 sin
√

3x+

(
−4x2 + 4x− 4

3

)
e3x.

8. From 4m2 − 4m − 3 = 0 we find m1 = 3
2 and m2 = −1

2 . Then yc = c1e
3x/2 + c2e

−x/2 and

we assume yp = A cos 2x + B sin 2x. Substituting into the differential equation we obtain

−19− 8B = 1 and 8A− 19B = 0. Then A = − 19
425 , B = − 8

425 , yp = − 19
425 cos 2x− 8

425 sin 2x,

and

y = c1e
3x/2 + c2e

−x/2 − 19

425
cos 2x− 8

425
sin 2x.

9. From m2 −m = 0 we find m1 = 1 and m2 = 0. Then yc = c1e
x + c2 and we assume yp = Ax.

Substituting into the differential equation we obtain −A = −3. Then A = 3, yp = 3x and

y = c1e
x + c2 + 3x.

10. From m2 + 2m = 0 we find m1 = −2 and m2 = 0. Then yc = c1e
−2x + c2 and we assume

yp = Ax2 +Bx+ Cxe−2x. Substituting into the differential equation we obtain 2A+ 2B = 5,

4A = 2, and −2C = −1. Then A = 1
2 , B = 2, C = 1

2 , yp = 1
2x

2 + 2x+ 1
2xe
−2x, and

y = c1e
−2x + c2 +

1

2
x2 + 2x+

1

2
xe−2x.

11. From m2 − m + 1
4 = 0 we find m1 = m2 = 1

2 . Then yc = c1e
x/2 + c2xe

x/2 and we assume

yp = A + Bx2ex/2. Substituting into the differential equation we obtain 1
4A = 3 and 2B = 1.

Then A = 12, B = 1
2 , yp = 12 + 1

2x
2ex/2, and

y = c1e
x/2 + c2xe

x/2 + 12 +
1

2
x2ex/2.

12. From m2 − 16 = 0 we find m1 = 4 and m2 = −4. Then yc = c1e
4x + c2e

−4x and we assume

yp = Axe4x. Substituting into the differential equation we obtain 8A = 2. Then A = 1
4 ,

yp = 1
4xe

4x and

y = c1e
4x + c2e

−4x +
1

4
xe4x.

13. From m2+4 = 0 we find m1 = 2i and m2 = −2i. Then yc = c1 cos 2x+c2 sin 2x and we assume

yp = Ax cos 2x + Bx sin 2x. Substituting into the differential equation we obtain 4B = 0 and

−4A = 3. Then A = −3
4 , B = 0, yp = −3

4x cos 2x, and

y = c1 cos 2x+ c2 sin 2x− 3

4
x cos 2x.
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4.4 Undetermined Coefficients—Superposition Approachq

14. From m2 − 4 = 0 we find m1 = 2 and m2 = −2. Then yc = c1e
2x + c2e

−2x and we assume

that yp = (Ax2 + Bx + C) cos 2x + (Dx2 + Ex + F ) sin 2x. Substituting into the differential

equation we obtain

−8A = 0

−8B + 8D = 0

2A− 8C + 4E = 0

−8D = 1

−8A− 8E = 0

−4B + 2D − 8F = −3.

Then A = 0, B = −1
8 , C = 0, D = −1

8 , E = 0, F = 13
32 , so

yp = −1

8
x cos 2x+

(
−1

8
x2 +

13

32

)
sin 2x,

and

y = c1e
2x + c2e

−2x − 1

8
x cos 2x+

(
−1

8
x2 +

13

32

)
sin 2x.

15. From m2 + 1 = 0 we find m1 = i and m2 = −i. Then yc = c1 cosx + c2 sinx and we assume

yp = (Ax2 +Bx) cosx+ (Cx2 +Dx) sinx. Substituting into the differential equation we obtain

4C = 0, 2A + 2D = 0, −4A = 2, and −2B + 2C = 0. Then A = −1
2 , B = 0, C = 0, D = 1

2 ,

yp = −1
2x

2 cosx+ 1
2x sinx, and

y = c1 cosx+ c2 sinx− 1

2
x2 cosx+

1

2
x sinx.

16. From m2 − 5m = 0 we find m1 = 5 and m2 = 0. Then yc = c1e
5x + c2 and we assume

yp = Ax4 +Bx3 +Cx2 +Dx. Substituting into the differential equation we obtain −20A = 2,

12A − 15B = −4, 6B − 10C = −1, and 2C − 5D = 6. Then A = − 1
10 , B = 14

75 , C = 53
250 ,

D = −697
625 , yp = − 1

10x
4 + 14

75x
3 + 53

250x
2 − 697

625x, and

y = c1e
5x + c2 −

1

10
x4 +

14

75
x3 +

53

250
x2 − 697

625
x.

17. From m2−2m+ 5 = 0 we find m1 = 1 +2i and m2 = 1−2i. Then yc = ex(c1 cos 2x+ c2 sin 2x)

and we assume yp = Axex cos 2x + Bxex sin 2x. Substituting into the differential equation we

obtain 4B = 1 and −4A = 0. Then A = 0, B = 1
4 , yp = 1

4xe
x sin 2x, and

y = ex(c1 cos 2x+ c2 sin 2x) +
1

4
xex sin 2x.
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CHAPTER 4 HIGHER-ORDER DIFFERENTIAL EQUATIONS

18. From m2−2m+ 2 = 0 we find m1 = 1 + i and m2 = 1− i. Then yc = ex(c1 cosx+ c2 sinx) and

we assume yp = Ae2x cosx + Be2x sinx. Substituting into the differential equation we obtain

A+ 2B = 1 and −2A+B = −3. Then A = 7
5 , B = −1

5 , yp = 7
5e

2x cosx− 1
5e

2x sinx and

y = ex(c1 cosx+ c2 sinx) +
7

5
e2x cosx− 1

5
e2x sinx.

19. From m2 + 2m + 1 = 0 we find m1 = m2 = −1. Then yc = c1e
−x + c2xe

−x and we assume

yp = A cosx+B sinx+C cos 2x+D sin 2x. Substituting into the differential equation we obtain

2B = 0, −2A = 1, −3C + 4D = 3, and −4C − 3D = 0. Then A = −1
2 , B = 0, C = − 9

25 ,

D = 12
25 , yp = −1

2 cosx− 9
25 cos 2x+ 12

25 sin 2x, and

y = c1e
−x + c2xe

−x − 1

2
cosx− 9

25
cos 2x+

12

25
sin 2x.

20. From m2 + 2m − 24 = 0 we find m1 = −6 and m2 = 4. Then yc = c1e
−6x + c2e

4x and

we assume yp = A + (Bx2 + Cx)e4x. Substituting into the differential equation we obtain

−24A = 16, 2B + 10C = −2, and 20B = −1. Then A = −2
3 , B = − 1

20 , C = − 19
100 ,

yp = −2
3 −

(
1
20x

2 + 19
100x

)
e4x, and

y = c1e
−6x + c2e

4x − 2

3
−
(

1

20
x2 +

19

100
x

)
e4x.

21. From m3 − 6m2 = 0 we find m1 = m2 = 0 and m3 = 6. Then yc = c1 + c2x + c3e
6x

and we assume yp = Ax2 + B cosx + C sinx. Substituting into the differential equation we

obtain −12A = 3, 6B − C = −1, and B + 6C = 0. Then A = −1
4 , B = − 6

37 , C = 1
37 ,

yp = −1
4x

2 − 6
37 cosx+ 1

37 sinx, and

y = c1 + c2x+ c3e
6x − 1

4
x2 − 6

37
cosx+

1

37
sinx.

22. From m3 − 2m2 − 4m+ 8 = 0 we find m1 = m2 = 2 and m3 = −2. Then

yc = c1e
2x + c2xe

2x + c3e
−2x

and we assume yp = (Ax3 + Bx2)e2x. Substituting into the differential equation we obtain

24A = 6 and 6A+ 8B = 0. Then A = 1
4 , B = − 3

16 , yp =
(
1
4x

3 − 3
16x

2
)
e2x, and

y = c1e
2x + c2xe

2x + c3e
−2x +

(
1

4
x3 − 3

16
x2
)
e2x.
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4.4 Undetermined Coefficients—Superposition Approachq

23. From m3 − 3m2 + 3m − 1 = 0 we find m1 = m2 = m3 = 1. Then yc = c1e
x + c2xe

x + c3x
2ex

and we assume yp = Ax + B + Cx3ex. Substituting into the differential equation we obtain

−A = 1, 3A− B = 0, and 6C = −4. Then A = −1, B = −3, C = −2
3 , yp = −x− 3− 2

3x
3ex,

and

y = c1e
x + c2xe

x + c3x
2ex − x− 3− 2

3
x3ex.

24. From m3 −m2 − 4m+ 4 = 0 we find m1 = 1, m2 = 2, and m3 = −2. Then

yc = c1e
x + c2e

2x + c3e
−2x

and we assume yp = A+ Bxex + Cxe2x. Substituting into the differential equation we obtain

4A = 5, −3B = −1, and 4C = 1. Then A = 5
4 , B = 1

3 , C = 1
4 , yp = 5

4 + 1
3xe

x + 1
4xe

2x, and

y = c1e
x + c2e

2x + c3e
−2x +

5

4
+

1

3
xex +

1

4
xe2x.

25. From m4 + 2m2 + 1 = 0 we find m1 = m3 = i and m2 = m4 = −i. Then

yc = c1 cosx+ c2 sinx+ c3x cosx+ c4x sinx

and we assume yp = Ax2+Bx+C. Substituting into the differential equation we obtain A = 1,

B = −2, and 4A+ C = 1. Then A = 1, B = −2, C = −3, yp = x2 − 2x− 3, and

y = c1 cosx+ c2 sinx+ c3x cosx+ c4x sinx+ x2 − 2x− 3.

26. From m4 −m2 = 0 we find m1 = m2 = 0, m3 = 1, and m4 = −1. Then

yc = c1 + c2x+ c3e
x + c4e

−x

and we assume yp = Ax3 + Bx2 + (Cx2 +Dx)e−x. Substituting into the differential equation

we obtain −6A = 4, −2B = 0, 10C − 2D = 0, and −4C = 2. Then A = −2
3 , B = 0, C = −1

2 ,

D = −5
2 , yp = −2

3x
3 −

(
1
2x

2 + 5
2x
)
e−x, and

y = c1 + c2x+ c3e
x + c4e

−x − 2

3
x3 −

(
1

2
x2 +

5

2
x

)
e−x.

27. We have yc = c1 cos 2x + c2 sin 2x and we assume yp = A. Substituting into the differential

equation we find A = −1
2 . Thus y = c1 cos 2x + c2 sin 2x − 1

2 . From the initial conditions we

obtain c1 = 0 and c2 =
√

2 , so y =
√

2 sin 2x− 1
2 .
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CHAPTER 4 HIGHER-ORDER DIFFERENTIAL EQUATIONS

28. We have yc = c1e
−2x + c2e

x/2 and we assume yp = Ax2 + Bx + C. Substituting into the

differential equation we find A = −7, B = −19, and C = −37. Thus

y = c1e
−2x + c2e

x/2 − 7x2 − 19x− 37.

From the initial conditions we obtain c1 = −1
5 and c2 = 186

5 , so

y = −1

5
e−2x +

186

5
ex/2 − 7x2 − 19x− 37.

29. We have yc = c1e
−x/5 + c2 and we assume yp = Ax2 + Bx. Substituting into the differential

equation we find A = −3 and B = 30. Thus y = c1e
−x/5 + c2 − 3x2 + 30x. From the initial

conditions we obtain c1 = 200 and c2 = −200, so

y = 200e−x/5 − 200− 3x2 + 30x.

30. We have yc = c1e
−2x + c2xe

−2x and we assume yp = (Ax3 + Bx2)e−2x. Substituting into the

differential equation we find A = 1
6 and B = 3

2 . Thus y = c1e
−2x+c2xe

−2x+
(
1
6x

3 + 3
2x

2
)
e−2x.

From the initial conditions we obtain c1 = 2 and c2 = 9, so

y = 2e−2x + 9xe−2x +

(
1

6
x3 +

3

2
x2
)
e−2x.

31. We have yc = e−2x(c1 cosx + c2 sinx) and we assume yp = Ae−4x. Substituting into the

differential equation we find A = 7. Thus y = e−2x(c1 cosx+ c2 sinx) + 7e−4x. From the initial

conditions we obtain c1 = −10 and c2 = 9, so

y = e−2x(−10 cosx+ 9 sinx) + 7e−4x.

32. We have yc = c1 coshx+ c2 sinhx and we assume yp = Ax coshx+Bx sinhx. Substituting into

the differential equation we find A = 0 and B = 1
2 . Thus

y = c1 coshx+ c2 sinhx+
1

2
x sinhx.

From the initial conditions we obtain c1 = 2 and c2 = 12, so

y = 2 coshx+ 12 sinhx+
1

2
x sinhx.

33. We have xc = c1 cosωt+ c2 sinωt and we assume xp = At cosωt+Bt sinωt. Substituting into

the differential equation we find A = −F0/2ω and B = 0. Thus

x = c1 cosωt+ c2 sinωt− (F0/2ω)t cosωt.
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4.4 Undetermined Coefficients—Superposition Approachq

From the initial conditions we obtain c1 = 0 and c2 = F0/2ω
2, so

x =
F0

2ω2
sinωt− F0

2ω
t cosωt.

34. We have xc = c1 cosωt + c2 sinωt and we assume xp = A cos γt + B sin γt, where γ 6= ω.

Substituting into the differential equation we find A = F0/(ω
2 − γ2) and B = 0. Thus

x = c1 cosωt+ c2 sinωt+
F0

ω2 − γ2
cos γt.

From the initial conditions we obtain c1 = −F0/(ω
2 − γ2) and c2 = 0, so

x = − F0

ω2 − γ2
cosωt+

F0

ω2 − γ2
cos γt.

35. We have yc = c1 + c2e
x + c3xe

x and we assume yp = Ax+Bx2ex +Ce5x. Substituting into the

differential equation we find A = 2, B = −12, and C = 1
2 . Thus

y = c1 + c2e
x + c3xe

x + 2x− 12x2ex +
1

2
e5x.

From the initial conditions we obtain c1 = 11, c2 = −11, and c3 = 9, so

y = 11− 11ex + 9xex + 2x− 12x2ex +
1

2
e5x.

36. We have yc = c1e
−2x + ex(c2 cos

√
3x + c3 sin

√
3x) and we assume yp = Ax + B + Cxe−2x.

Substituting into the differential equation we find A = 1
4 , B = −5

8 , and C = 2
3 . Thus

y = c1e
−2x + ex(c2 cos

√
3x+ c3 sin

√
3x) +

1

4
x− 5

8
+

2

3
xe−2x.

From the initial conditions we obtain c1 = −23
12 , c2 = −59

24 , and c3 = 17
72

√
3 , so

y = −23

12
e−2x + ex

(
−59

24
cos
√

3x+
17

72

√
3 sin

√
3x

)
+

1

4
x− 5

8
+

2

3
xe−2x.

37. We have yc = c1 cosx + c2 sinx and we assume yp = Ax2 + Bx + C. Substituting into the

differential equation we find A = 1, B = 0, and C = −1. Thus y = c1 cosx+ c2 sinx+ x2 − 1.

From y(0) = 5 and y(1) = 0 we obtain

c1 − 1 = 5

(cos 1)c1 + (sin 1)c2 = 0.

Solving this system we find c1 = 6 and c2 = −6 cot 1. The solution of the boundary-value

problem is

y = 6 cosx− 6(cot 1) sinx+ x2 − 1.
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CHAPTER 4 HIGHER-ORDER DIFFERENTIAL EQUATIONS

38. We have yc = ex(c1 cosx + c2 sinx) and we assume yp = Ax + B. Substituting into the

differential equation we find A = 1 and B = 0. Thus y = ex(c1 cosx + c2 sinx) + x. From

y(0) = 0 and y(π) = π we obtain

c1 = 0

π − eπc1 = π.

Solving this system we find c1 = 0 and c2 is any real number. The solution of the boundary-

value problem is

y = c2e
x sinx+ x.

39. The general solution of the differential equation y′′+3y = 6x is y = c1 cos
√

3x+c2 sin
√

3x+2x.

The condition y(0) = 0 implies c1 = 0 and so y = c2 sin
√

3x+2x. The condition y(1)+y′(1) = 0

implies c2 sin
√

3 + 2 + c2
√

3 cos
√

3 + 2 = 0 so c2 = −4/(sin
√

3 +
√

3 cos
√

3 ). The solution is

y =
−4 sin

√
3x

sin
√

3 +
√

3 cos
√

3
+ 2x.

40. Using the general solution y = c1 cos
√

3x+ c2 sin
√

3x+ 2x, the boundary conditions

y(0) + y′(0) = 0, y(1) = 0 yield the system

c1 +
√

3c2 + 2 = 0

c1 cos
√

3 + c2 sin
√

3 + 2 = 0.

Solving gives

c1 =
2(−
√

3 + sin
√

3 )√
3 cos

√
3− sin

√
3

and c2 =
2(1− cos

√
3 )√

3 cos
√

3− sin
√

3
.

Thus,

y =
2(−
√

3 + sin
√

3 ) cos
√

3x√
3 cos

√
3− sin

√
3

+
2(1− cos

√
3 ) sin

√
3x√

3 cos
√

3− sin
√

3
+ 2x.

41. We have yc = c1 cos 2x+c2 sin 2x and we assume yp = A cosx+B sinx on [0, π/2]. Substituting

into the differential equation we find A = 0 and B = 1
3 . Thus y = c1 cos 2x+ c2 sin 2x+ 1

3 sinx

on [0, π/2]. On (π/2, ∞) we have y = c3 cos 2x + c4 sin 2x. From y(0) = 1 and y′(0) = 2 we

obtain

c1 = 1

1

3
+ 2c2 = 2.

Solving this system we find c1 = 1 and c2 = 5
6 . Thus y = cos 2x+ 5

6 sin 2x+ 1
3 sinx on [0, π/2].

Now continuity of y at x = π/2 implies

cosπ +
5

6
sinπ +

1

3
sin

π

2
= c3 cosπ + c4 sinπ
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4.4 Undetermined Coefficients—Superposition Approachq

or −1 + 1
3 = −c3. Hence c3 = 2

3 . Continuity of y′ at x = π/2 implies

−2 sinπ +
5

3
cosπ +

1

3
cos

π

2
= −2c3 sinπ + 2c4 cosπ

or −5
3 = −2c4. Then c4 = 5

6 and the solution of the initial-value problem is

y(x) =

cos 2x+ 5
6 sin 2x+ 1

3 sinx, 0 ≤ x ≤ π/2

2
3 cos 2x+ 5

6 sin 2x, x > π/2.

42. We have yc = ex(c1 cos 3x + c2 sin 3x) and we assume yp = A on [0, π]. Substituting into the

differential equation we find A = 2. Thus, y = ex(c1 cos 3x+ c2 sin 3x) + 2 on [0, π]. On (π, ∞)

we have y = ex(c3 cos 3x+ c4 sin 3x). From y(0) = 0 and y′(0) = 0 we obtain

c1 = −2, c1 + 3c2 = 0.

Solving this system, we find c1 = −2 and c2 = 2
3 . Thus y = ex(−2 cos 3x + 2

3 sin 3x) + 2 on

[0, π ]. Now, continuity of y at x = π implies

eπ(−2 cos 3π +
2

3
sin 3π) + 2 = eπ(c3 cos 3π + c4 sin 3π)

or 2 + 2eπ = −c3eπ or c3 = −2e−π(1 + eπ). Continuity of y′ at π implies

20

3
eπ sin 3π = eπ[(c3 + 3c4) cos 3π + (−3c3 + c4) sin 3π]

or −c3eπ − 3c4e
π = 0. Since c3 = −2e−π(1 + eπ) we have c4 = 2

3e
−π(1 + eπ). The solution of

the initial-value problem is

y(x) =

e
x(−2 cos 3x+ 2

3 sin 3x) + 2, 0 ≤ x ≤ π

(1 + eπ)ex−π(−2 cos 3x+ 2
3 sin 3x), x > π.

Discussion Problems

43. (a) From yp = Aekx we find y′p = Akekx and y′′p = Ak2ekx. Substituting into the differential

equation we get

aAk2ekx + bAkekx + cAekx = (ak2 + bk + c)Aekx = ekx,

so (ak2 + bk + c)A = 1. Since k is not a root of am2 + bm+ c = 0, A = 1/(ak2 + bk + c).

(b) From yp = Axekx we find y′p = Akxekx +Aekx and y′′p = Ak2xekx + 2Akekx. Substituting

into the differential equation we get

aAk2xekx + 2aAkekx + bAkxekx + bAekx + cAxekx

= (ak2 + bk + c)Axekx + (2ak + b)Aekx

= (0)Axekx + (2ak + b)Aekx = (2ak + b)Aekx = ekx
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CHAPTER 4 HIGHER-ORDER DIFFERENTIAL EQUATIONS

where ak2 + bk+ c = 0 because k is a root of the auxiliary equation. Now, the roots of the

auxiliary equation are −b/2a ±
√
b2 − 4ac /2a, and since k is a root of multiplicity one,

k 6= −b/2a and 2ak + b 6= 0. Thus (2ak + b)A = 1 and A = 1/(2ak + b).

(c) If k is a root of multiplicity two, then, as we saw in part (b), k = −b/2a and 2ak+ b = 0.

From yp = Ax2ekx we find y′p = Akx2ekx+2Axekx and y′′p = Ak2x2ekx+4Akxekx = 2Aekx.

Substituting into the differential equation, we get

aAk2x2ekx + 4aAkxekx + 2aAekx + bAkx2ekx + 2bAxekx + cAx2ekx

= (ak2 + bk + c)Ax2ekx + 2(2ak + b)Axekx + 2aAekx

= (0)Ax2ekx + 2(0)Axekx + 2aAekx = 2aAekx = ekx.

Since the differential equation is second order, a 6= 0 and A =
1

2a
.

44. Using the double-angle formula for the cosine, we have

sinx cos 2x = sinx(cos2 x− sin2 x) = sinx(1− 2 sin2 x) = sinx− 2 sin3 x.

Since sinx is a solution of the related homogeneous differential equation we look for a particular

solution of the form yp = Ax sinx + Bx cosx + C sin3 x. Substituting into the differential

equation we obtain

2A cosx+ (6C − 2B) sinx− 8C sin3 x = sinx− 2 sin3 x.

Equating coefficients we find A = 0, C = 1
4 , and B = 1

4 . Thus, a particular solution is

yp =
1

4
x cosx+

1

4
sin3 x.

45. (a) f(x) = ex sinx. We see that yp →∞ as x→∞ and yp → 0 as x→ −∞.

(b) f(x) = e−x. We see that yp →∞ as x→∞ and yp →∞ as x→ −∞.

(c) xf(x) = sin 2x. We see that yp is sinusoidal.

(d) f(x) = 1. We see that yp is constant and simply translates yc vertically.
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4.4 Undetermined Coefficients—Superposition Approachq

Computer Lab Assignments

46. The complementary function is yc = e2x(c1 cos 2x+ c2 sin 2x). We assume a particular solution

of the form yp = (Ax3 + Bx2 + Cx)e2x cos 2x + (Dx3 + Ex2 + F )e2x sin 2x. Substituting into

the differential equation and using a CAS to simplify yields

[12Dx2 + (6A+ 8E)x+ (2B + 4F )]e2x cos 2x

+ [−12Ax2 + (−8B + 6D)x+ (−4C + 2E)]e2x sin 2x

= (2x2 − 3x)e2x cos 2x+ (10x2 − x− 1)e2x sin 2x.

This gives the system of equations

12D = 2 6A+ 8E = −3 2B + 4F = 0

−12A = 10 −8B + 6D = −1 −4C + 2E = −1,

from which we find A = −5
6 , B = 1

4 , C = 3
8 , D = 1

6 , E = 1
4 , and F = −1

8 . Thus, a particular

solution of the differential equation is

yp =

(
−5

6
x3 +

1

4
x2 +

3

8
x

)
e2x cos 2x+

(
1

6
x3 +

1

4
x2 − 1

8
x

)
e2x sin 2x.

47. The complementary function is yc = c1 cosx + c2 sinx + c3x cosx + c4x sinx. We assume a

particular solution of the form yp = Ax2 cosx + Bx3 sinx. Substituting into the differential

equation and using a CAS to simplify yields

(−8A+ 24B) cosx+ 3Bx sinx = 2 cosx− 3x sinx.

This implies −8A+ 24B = 2 and −24B = −3. Thus B = 1
8 , A = 1

8 , and

yp =
1

8
x2 cosx+

1

8
x3 sinx.
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CHAPTER 4 HIGHER-ORDER DIFFERENTIAL EQUATIONS

4.5 Undetermined Coefficients—Annihilator Approachq

4.5 Undetermined Coefficients—Annihilator Approachq

1. (9D2 − 4)y = (3D − 2)(3D + 2)y = sinx

2. (D2 − 5)y = (D −
√

5 )(D +
√

5 )y = x2 − 2x

3. (D2 − 4D − 12)y = (D − 6)(D + 2)y = x− 6

4. (2D2 − 3D − 2)y = (2D + 1)(D − 2)y = 1

5. (D3 + 10D2 + 25D)y = D(D + 5)2y = ex

6. (D3 + 4D)y = D(D2 + 4)y = ex cos 2x

7. (D3 + 2D2 − 13D + 10)y = (D − 1)(D − 2)(D + 5)y = xe−x

8. (D3 + 4D2 + 3D)y = D(D + 1)(D + 3)y = x2 cosx− 3x

9. (D4 + 8D)y = D(D + 2)(D2 − 2D + 4)y = 4

10. (D4 − 8D2 + 16)y = (D − 2)2(D + 2)2y = (x3 − 2x)e4x

11. D4y = D4(10x3 − 2x) = D3(30x2 − 2) = D2(60x) = D(60) = 0

12. (2D − 1)y = (2D − 1)4ex/2 = 8Dex/2 − 4ex/2 = 4ex/2 − 4ex/2 = 0

13. (D − 2)(D + 5)(e2x + 3e−5x) = (D − 2)(2e2x − 15e−5x + 5e2x + 15e−5x)

(D − 2)(D + 5)(e2x + 3e−5x) = (D − 2)7e2x = 14e2x − 14e2x = 0

14. (D2 + 64)(2 cos 8x− 5 sin 8x) = D(−16 sin 8x− 40 cos 8x) + 64(2 cos 8x− 5 sin 8x)

(D2 + 64)(2 cos 8x− 5 sin 8x) = −128 cos 8x+ 320 sin 8x+ 128 cos 8x− 320 sin 8x = 0

15. D4 because of x3

16. D5 because of x4

17. D(D − 2) because of 1 and e2x

18. D2(D − 6)2 because of x and xe6x

19. D2 + 4 because of cos 2x

20. D(D2 + 1) because of 1 and sinx

21. D3(D2 + 16) because of x2 and sin 4x
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4.5 Undetermined Coefficients—Annihilator Approachq

22. D2(D2 + 1)(D2 + 25) because of x, sinx, and cos 5x

23. (D + 1)(D − 1)3 because of e−x and x2ex

24. D(D − 1)(D − 2) because of 1, ex, and e2x

25. D(D2 − 2D + 5) because of 1 and ex cos 2x

26. (D2 + 2D + 2)(D2 − 4D + 5) because of e−x sinx and e2x cosx

27. 1, x, x2, x3, x4

28. D2 + 4D = D(D + 4); 1, e−4x

29. e6x, e−3x/2

30. D2 − 9D − 36 = (D − 12)(D + 3); e12x, e−3x

31. cos
√

5x, sin
√

5x

32. D2 − 6D + 10 = D2 − 2(3)D + (32 + 12); e3x cosx, e3x sinx

33. D3 − 10D2 + 25D = D(D − 5)2; 1, e5x, xe5x

34. 1, x, e5x, e7x

35. Applying D to the differential equation we obtain

D(D2 − 9)y = 0.

Then

y = c1e
3x + c2e

−3x︸ ︷︷ ︸
yc

+ c3

and yp = A. Substituting yp into the differential equation yields −9A = 54 or A = −6. The

general solution is

y = c1e
3x + c2e

−3x − 6.

36. Applying D to the differential equation we obtain

D(2D2 − 7D + 5)y = 0.

Then

y = c1e
5x/2 + c2e

x︸ ︷︷ ︸
yc

+ c3

and yp = A. Substituting yp into the differential equation yields 5A = −29 or A = −29/5. The

general solution is

y = c1e
5x/2 + c2e

x − 29

5
.
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CHAPTER 4 HIGHER-ORDER DIFFERENTIAL EQUATIONS

37. Applying D to the differential equation we obtain

D(D2 +D)y = D2(D + 1)y = 0.

Then

y = c1 + c2e
−x︸ ︷︷ ︸

yc

+ c3x

and yp = Ax. Substituting yp into the differential equation yields A = 3. The general solution

is

y = c1 + c2e
−x + 3x.

38. Applying D to the differential equation we obtain

D(D3 + 2D2 +D)y = D2(D + 1)2y = 0.

Then

y = c1 + c2e
−x + c3xe

−x︸ ︷︷ ︸
yc

+ c4x

and yp = Ax. Substituting yp into the differential equation yields A = 10. The general solution

is

y = c1 + c2e
−x + c3xe

−x + 10x.

39. Applying D2 to the differential equation we obtain

D2(D2 + 4D + 4)y = D2(D + 2)2y = 0.

Then

y = c1e
−2x + c2xe

−2x︸ ︷︷ ︸
yc

+ c3 + c4x

and yp = Ax+B. Substituting yp into the differential equation yields 4Ax+(4A+4B) = 2x+6.

Equating coefficients gives

4A = 2

4A+ 4B = 6.

Then A = 1/2, B = 1, and the general solution is

y = c1e
−2x + c2xe

−2x +
1

2
x+ 1.

172

© 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part, except for use as permitted in a license distributed 
with a certain product or service or otherwise on a password-protected website for classroom use. 

Not For Sale

©
 C

en
ga

ge
 L

ea
rn

in
g.

 A
ll 

rig
ht

s r
es

er
ve

d.
 N

o 
di

st
rib

ut
io

n 
al

lo
w

ed
 w

ith
ou

t e
xp

re
ss

 a
ut

ho
riz

at
io

n.



4.5 Undetermined Coefficients—Annihilator Approachq

40. Applying D2 to the differential equation we obtain

D2(D2 + 3D)y = D3(D + 3)y = 0.

Then

y = c1 + c2e
−3x︸ ︷︷ ︸

yc

+ c3x
2 + c4x

and yp = Ax2 + Bx. Substituting yp into the differential equation yields 6Ax + (2A + 3B) =

4x− 5. Equating coefficients gives

6A = 4

2A+ 3B = −5.

Then A = 2/3, B = −19/9, and the general solution is

y = c1 + c2e
−3x +

2

3
x2 − 19

9
x.

41. Applying D3 to the differential equation we obtain

D3(D3 +D2)y = D5(D + 1)y = 0.

Then

y = c1 + c2x+ c3e
−x︸ ︷︷ ︸

yc

+ c4x
4 + c5x

3 + c6x
2

and yp = Ax4 +Bx3 + Cx2. Substituting yp into the differential equation yields

12Ax2 + (24A+ 6B)x+ (6B + 2C) = 8x2.

Equating coefficients gives

12A = 8

24A+ 6B = 0

6B + 2C = 0.

Then A = 2/3, B = −8/3, C = 8, and the general solution is

y = c1 + c2x+ c3e
−x +

2

3
x4 − 8

3
x3 + 8x2.

42. Applying D4 to the differential equation we obtain

D4(D2 − 2D + 1)y = D4(D − 1)2y = 0.
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CHAPTER 4 HIGHER-ORDER DIFFERENTIAL EQUATIONS

Then

y = c1e
x + c2xe

x︸ ︷︷ ︸
yc

+ c3x
3 + c4x

2 + c5x+ c6

and yp = Ax3 +Bx2 + Cx+ E. Substituting yp into the differential equation yields

Ax3 + (B − 6A)x2 + (6A− 4B + C)x+ (2B − 2C + E) = x3 + 4x.

Equating coefficients gives

A = 1

B − 6A = 0

6A− 4B + C = 4

2B − 2C + E = 0.

Then A = 1, B = 6, C = 22, E = 32 , and the general solution is

y = c1e
x + c2xe

x + x3 + 6x2 + 22x+ 32.

43. Applying D − 4 to the differential equation we obtain

(D − 4)(D2 −D − 12)y = (D − 4)2(D + 3)y = 0.

Then

y = c1e
4x + c2e

−3x︸ ︷︷ ︸
yc

+ c3xe
4x

and yp = Axe4x. Substituting yp into the differential equation yields 7Ae4x = e4x. Equating

coefficients gives A = 1/7. The general solution is

y = c1e
4x + c2e

−3x +
1

7
xe4x.

44. Applying D − 6 to the differential equation we obtain

(D − 6)(D2 + 2D + 2)y = 0.

Then

y = e−x(c1 cosx+ c2 sinx)︸ ︷︷ ︸
yc

+ c3e
6x

and yp = Ae6x. Substituting yp into the differential equation yields 50Ae6x = 5e6x. Equating

coefficients gives A = 1/10. The general solution is

y = e−x(c1 cosx+ c2 sinx) +
1

10
e6x.
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4.5 Undetermined Coefficients—Annihilator Approachq

45. Applying D(D − 1) to the differential equation we obtain

D(D − 1)(D2 − 2D − 3)y = D(D − 1)(D + 1)(D − 3)y = 0.

Then

y = c1e
3x + c2e

−x︸ ︷︷ ︸
yc

+ c3e
x + c4

and yp = Aex +B. Substituting yp into the differential equation yields −4Aex− 3B = 4ex− 9.

Equating coefficients gives A = −1 and B = 3. The general solution is

y = c1e
3x + c2e

−x − ex + 3.

46. Applying D2(D + 2) to the differential equation we obtain

D2(D + 2)(D2 + 6D + 8)y = D2(D + 2)2(D + 4)y = 0.

Then

y = c1e
−2x + c2e

−4x︸ ︷︷ ︸
yc

+ c3xe
−2x + c4x+ c5

and yp = Axe−2x +Bx+ C. Substituting yp into the differential equation yields

2Ae−2x + 8Bx+ (6B + 8C) = 3e−2x + 2x.

Equating coefficients gives

2A = 3

8B = 2

6B + 8C = 0.

Then A = 3/2, B = 1/4, C = −3/16 , and the general solution is

y = c1e
−2x + c2e

−4x +
3

2
xe−2x +

1

4
x− 3

16
.

47. Applying D2 + 1 to the differential equation we obtain

(D2 + 1)(D2 + 25)y = 0.

Then

y = c1 cos 5x+ c2 sin 5x︸ ︷︷ ︸
yc

+ c3 cosx+ c4 sinx

and yp = A cosx+B sinx. Substituting yp into the differential equation yields

24A cosx+ 24B sinx = 6 sinx.

Equating coefficients gives A = 0 and B = 1/4. The general solution is

y = c1 cos 5x+ c2 sin 5x+
1

4
sinx.
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CHAPTER 4 HIGHER-ORDER DIFFERENTIAL EQUATIONS

48. Applying D(D2 + 1) to the differential equation we obtain

D(D2 + 1)(D2 + 4)y = 0.

Then

y = c1 cos 2x+ c2 sin 2x︸ ︷︷ ︸
yc

+ c3 cosx+ c4 sinx+ c5

and yp = A cosx+B sinx+ C. Substituting yp into the differential equation yields

3A cosx+ 3B sinx+ 4C = 4 cosx+ 3 sinx− 8.

Equating coefficients gives A = 4/3, B = 1, and C = −2. The general solution is

y = c1 cos 2x+ c2 sin 2x+
4

3
cosx+ sinx− 2.

49. Applying (D − 4)2 to the differential equation we obtain

(D − 4)2(D2 + 6D + 9)y = (D − 4)2(D + 3)2y = 0.

Then

y = c1e
−3x + c2xe

−3x︸ ︷︷ ︸
yc

+ c3xe
4x + c4e

4x

and yp = Axe4x +Be4x. Substituting yp into the differential equation yields

49Axe4x + (14A+ 49B)e4x = −xe4x.

Equating coefficients gives

49A = −1

14A+ 49B = 0.

Then A = −1/49, B = 2/343, and the general solution is

y = c1e
−3x + c2xe

−3x − 1

49
xe4x +

2

343
e4x.

50. Applying D2(D − 1)2 to the differential equation we obtain

D2(D − 1)2(D2 + 3D − 10)y = D2(D − 1)2(D − 2)(D + 5)y = 0.

Then

y = c1e
2x + c2e

−5x︸ ︷︷ ︸
yc

+ c3xe
x + c4e

x + c5x+ c6
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4.5 Undetermined Coefficients—Annihilator Approachq

and yp = Axex +Bex + Cx+ E. Substituting yp into the differential equation yields

−6Axex + (5A− 6B)ex − 10Cx+ (3C − 10E) = xex + x.

Equating coefficients gives

−6A = 1

5A− 6B = 0

−10C = 1

3C − 10E = 0.

Then A = −1/6, B = −5/36, C = −1/10, E = −3/100, and the general solution is

y = c1e
2x + c2e

−5x − 1

6
xex − 5

36
ex − 1

10
x− 3

100
.

51. Applying D(D − 1)3 to the differential equation we obtain

D(D − 1)3(D2 − 1)y = D(D − 1)4(D + 1)y = 0.

Then

y = c1e
x + c2e

−x︸ ︷︷ ︸
yc

+ c3x
3ex + c4x

2ex + c5xe
x + c6

and yp = Ax3ex +Bx2ex + Cxex + E. Substituting yp into the differential equation yields

6Ax2ex + (6A+ 4B)xex + (2B + 2C)ex − E = x2ex + 5.

Equating coefficients gives

6A = 1

6A+ 4B = 0

2B + 2C = 0

−E = 5.

Then A = 1/6, B = −1/4, C = 1/4, E = −5, and the general solution is

y = c1e
x + c2e

−x +
1

6
x3ex − 1

4
x2ex +

1

4
xex − 5.

52. Applying (D + 1)3 to the differential equation we obtain

(D + 1)3(D2 + 2D + 1)y = (D + 1)5y = 0.
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CHAPTER 4 HIGHER-ORDER DIFFERENTIAL EQUATIONS

Then

y = c1e
−x + c2xe

−x︸ ︷︷ ︸
yc

+ c3x
4e−x + c4x

3e−x + c5x
2e−x

and yp = Ax4e−x +Bx3e−x + Cx2e−x. Substituting yp into the differential equation yields

12Ax2e−x + 6Bxe−x + 2Ce−x = x2e−x.

Equating coefficients gives A = 1
12 , B = 0, and C = 0. The general solution is

y = c1e
−x + c2xe

−x +
1

12
x4e−x.

53. Applying D2 − 2D + 2 to the differential equation we obtain

(D2 − 2D + 2)(D2 − 2D + 5)y = 0.

Then

y = ex(c1 cos 2x+ c2 sin 2x)︸ ︷︷ ︸
yc

+ ex(c3 cosx+ c4 sinx)

and yp = Aex cosx+Bex sinx. Substituting yp into the differential equation yields

3Aex cosx+ 3Bex sinx = ex sinx.

Equating coefficients gives A = 0 and B = 1/3. The general solution is

y = ex(c1 cos 2x+ c2 sin 2x) +
1

3
ex sinx.

54. Applying D2 − 2D + 10 to the differential equation we obtain

(D2 − 2D + 10)

(
D2 +D +

1

4

)
y = (D2 − 2D + 10)

(
D +

1

2

)2

y = 0.

Then

y = c1e
−x/2 + c2xe

−x/2︸ ︷︷ ︸
yc

+ c3e
x cos 3x+ c4e

x sin 3x

and yp = Aex cos 3x+Bex sin 3x. Substituting yp into the differential equation yields

(9B − 27A/4)ex cos 3x− (9A+ 27B/4)ex sin 3x = −ex cos 3x+ ex sin 3x.

Equating coefficients gives

−27

4
A+ 9B = −1

−9A− 27

4
B = 1.

Then A = −4/225, B = −28/225, and the general solution is

y = c1e
−x/2 + c2xe

−x/2 − 4

225
ex cos 3x− 28

225
ex sin 3x.
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4.5 Undetermined Coefficients—Annihilator Approachq

55. Applying D2 + 25 to the differential equation we obtain

(D2 + 25)(D2 + 25) = (D2 + 25)2 = 0.

Then

y = c1 cos 5x+ c2 sin 5x︸ ︷︷ ︸
yc

+ c3x cos 5x+ c4x cos 5x

and yp = Ax cos 5x+Bx sin 5x. Substituting yp into the differential equation yields

10B cos 5x− 10A sin 5x = 20 sin 5x.

Equating coefficients gives A = −2 and B = 0. The general solution is

y = c1 cos 5x+ c2 sin 5x− 2x cos 5x.

56. Applying D2 + 1 to the differential equation we obtain

(D2 + 1)(D2 + 1) = (D2 + 1)2 = 0.

Then

y = c1 cosx+ c2 sinx︸ ︷︷ ︸
yc

+ c3x cosx+ c4x cosx

and yp = Ax cosx+Bx sinx. Substituting yp into the differential equation yields

2B cosx− 2A sinx = 4 cosx− sinx.

Equating coefficients gives A = 1/2 and B = 2. The general solution is

y = c1 cosx+ c2 sinx+
1

2
x cosx− 2x sinx.

57. Applying (D2 + 1)2 to the differential equation we obtain

(D2 + 1)2(D2 +D + 1) = 0.

Then

y = e−x/2

[
c1 cos

√
3

2
x+ c2 sin

√
3

2
x

]
︸ ︷︷ ︸

yc

+ c3 cosx+ c4 sinx+ c5x cosx+ c6x sinx

and yp = A cosx+B sinx+ Cx cosx+Ex sinx. Substituting yp into the differential equation

yields

(B + C + 2E) cosx+ Ex cosx+ (−A− 2C + E) sinx− Cx sinx = x sinx.
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CHAPTER 4 HIGHER-ORDER DIFFERENTIAL EQUATIONS

Equating coefficients gives

B + C + 2E = 0

E = 0

−A− 2C + E = 0

−C = 1.

Then A = 2, B = 1, C = −1, and E = 0, and the general solution is

y = e−x/2

[
c1 cos

√
3

2
x+ c2 sin

√
3

2
x

]
+ 2 cosx+ sinx− x cosx.

58. Writing cos2 x = 1
2(1 + cos 2x) and applying D(D2 + 4) to the differential equation we obtain

D(D2 + 4)(D2 + 4) = D(D2 + 4)2 = 0.

Then

y = c1 cos 2x+ c2 sin 2x︸ ︷︷ ︸
yc

+ c3x cos 2x+ c4x sin 2x+ c5

and yp = Ax cos 2x+Bx sin 2x+ C. Substituting yp into the differential equation yields

−4A sin 2x+ 4B cos 2x+ 4C =
1

2
+

1

2
cos 2x.

Equating coefficients gives A = 0, B = 1/8, and C = 1/8. The general solution is

y = c1 cos 2x+ c2 sin 2x+
1

8
x sin 2x+

1

8
.

59. Applying D3 to the differential equation we obtain

D3(D3 + 8D2) = D5(D + 8) = 0.

Then

y = c1 + c2x+ c3e
−8x︸ ︷︷ ︸

yc

+ c4x
2 + c5x

3 + c6x
4

and yp = Ax2 +Bx3 + Cx4. Substituting yp into the differential equation yields

16A+ 6B + (48B + 24C)x+ 96Cx2 = 2 + 9x− 6x2.

Equating coefficients gives

16A+ 6B = 2

48B + 24C = 9

96C = −6.

Then A = 11/256, B = 7/32, and C = −1/16, and the general solution is

y = c1 + c2x+ c3e
−8x +

11

256
x2 +

7

32
x3 − 1

16
x4.
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4.5 Undetermined Coefficients—Annihilator Approachq

60. Applying D(D − 1)2(D + 1) to the differential equation we obtain

D(D − 1)2(D + 1)(D3 −D2 +D − 1) = D(D − 1)3(D + 1)(D2 + 1) = 0.

Then

y = c1e
x + c2 cosx+ c3 sinx︸ ︷︷ ︸

yc

+ c4 + c5e
−x + c6xe

x + c7x
2ex

and yp = A+Be−x + Cxex + Ex2ex. Substituting yp into the differential equation yields

4Exex + (2C + 4E)ex − 4Be−x −A = xex − e−x + 7.

Equating coefficients gives

4E = 1

2C + 4E = 0

−4B = −1

−A = 7.

Then A = −7, B = 1/4, C = −1/2, and E = 1/4, and the general solution is

y = c1e
x + c2 cosx+ c3 sinx− 7 +

1

4
e−x − 1

2
xex +

1

4
x2ex.

61. Applying D2(D − 1) to the differential equation we obtain

D2(D − 1)(D3 − 3D2 + 3D − 1) = D2(D − 1)4 = 0.

Then

y = c1e
x + c2xe

x + c3x
2ex︸ ︷︷ ︸

yc

+ c4 + c5x+ c6x
3ex

and yp = A+Bx+ Cx3ex. Substituting yp into the differential equation yields

(−A+ 3B)−Bx+ 6Cex = 16− x+ ex.

Equating coefficients gives

−A+ 3B = 16

−B = −1

6C = 1.

Then A = −13, B = 1, and C = 1/6, and the general solution is

y = c1e
x + c2xe

x + c3x
2ex − 13 + x+

1

6
x3ex.
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CHAPTER 4 HIGHER-ORDER DIFFERENTIAL EQUATIONS

62. Writing (ex+ e−x)2 = 2 + e2x+ e−2x and applying D(D−2)(D+ 2) to the differential equation

we obtain

D(D − 2)(D + 2)(2D3 − 3D2 − 3D + 2) = D(D − 2)2(D + 2)(D + 1)(2D − 1) = 0.

Then

y = c1e
−x + c2e

2x + c3e
x/2︸ ︷︷ ︸

yc

+ c4 + c5xe
2x + c6e

−2x

and yp = A+Bxe2x + Ce−2x. Substituting yp into the differential equation yields

2A+ 9Be2x − 20Ce−2x = 2 + e2x + e−2x.

Equating coefficients gives A = 1, B = 1/9, and C = −1/20. The general solution is

y = c1e
−x + c2e

2x + c3e
x/2 + 1 +

1

9
xe2x − 1

20
e−2x.

63. Applying D(D − 1) to the differential equation we obtain

D(D − 1)(D4 − 2D3 +D2) = D3(D − 1)3 = 0.

Then

y = c1 + c2x+ c3e
x + c4xe

x︸ ︷︷ ︸
yc

+ c5x
2 + c6x

2ex

and yp = Ax2+Bx2ex. Substituting yp into the differential equation yields 2A+2Bex = 1+ex.

Equating coefficients gives A = 1/2 and B = 1/2. The general solution is

y = c1 + c2x+ c3e
x + c4xe

x +
1

2
x2 +

1

2
x2ex.

64. Applying D3(D − 2) to the differential equation we obtain

D3(D − 2)(D4 − 4D2) = D5(D − 2)2(D + 2) = 0.

Then

y = c1 + c2x+ c3e
2x + c4e

−2x︸ ︷︷ ︸
yc

+ c5x
2 + c6x

3 + c7x
4 + c8xe

2x

and yp = Ax2 +Bx3 + Cx4 + Exe2x. Substituting yp into the differential equation yields

(−8A+ 24C)− 24Bx− 48Cx2 + 16Ee2x = 5x2 − e2x.

Equating coefficients gives

−8A+ 24C = 0

−24B = 0

−48C = 5

16E = −1.
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4.5 Undetermined Coefficients—Annihilator Approachq

Then A = −5/16, B = 0, C = −5/48, and E = −1/16, and the general solution is

y = c1 + c2x+ c3e
2x + c4e

−2x − 5

16
x2 − 5

48
x4 − 1

16
xe2x.

65. The complementary function is yc = c1e
8x + c2e

−8x. Using D to annihilate 16 we find yp = A.

Substituting yp into the differential equation we obtain −64A = 16. Thus A = −1/4 and

y = c1e
8x + c2e

−8x − 1

4

y′ = 8c1e
8x − 8c2e

−8x.

The initial conditions imply

c1 + c2 =
5

4

8c1 − 8c2 = 0.

Thus c1 = c2 = 5/8 and

y =
5

8
e8x +

5

8
e−8x − 1

4
.

66. The complementary function is yc = c1+c2e
−x. UsingD2 to annihilate x we find yp = Ax+Bx2.

Substituting yp into the differential equation we obtain (A + 2B) + 2Bx = x. Thus A = −1

and B = 1/2, and

y = c1 + c2e
−x − x+

1

2
x2

y′ = −c2e−x − 1 + x.

The initial conditions imply

c1 + c2 = 1

−c2 = 1.

Thus c1 = 2 and c2 = −1, and

y = 2− e−x − x+
1

2
x2.

67. The complementary function is yc = c1 + c2e
5x. Using D2 to annihilate x − 2 we find yp =

Ax+Bx2. Substituting yp into the differential equation we obtain (−5A+2B)−10Bx = −2+x.

Thus A = 9/25 and B = −1/10, and

y = c1 + c2e
5x +

9

25
x− 1

10
x2

y′ = 5c2e
5x +

9

25
− 1

5
x.
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CHAPTER 4 HIGHER-ORDER DIFFERENTIAL EQUATIONS

The initial conditions imply

c1 + c2 = 0

c2 =
41

125
.

Thus c1 = −41/125 and c2 = 41/125, and

y = − 41

125
+

41

125
e5x +

9

25
x− 1

10
x2.

68. The complementary function is yc = c1e
x + c2e

−6x. Using D − 2 to annihilate 10e2x we find

yp = Ae2x. Substituting yp into the differential equation we obtain 8Ae2x = 10e2x. Thus

A = 5/4 and

y = c1e
x + c2e

−6x +
5

4
e2x

y′ = c1e
x − 6c2e

−6x +
5

2
e2x.

The initial conditions imply

c1 + c2 = −1

4

c1 − 6c2 = −3

2
.

Thus c1 = −3/7 and c2 = 5/28, and

y = −3

7
ex +

5

28
e−6x +

5

4
e2x

69. The complementary function is yc = c1 cosx + c2 sinx. Using (D2 + 1)(D2 + 4) to annihilate

8 cos 2x−4 sinx we find yp = Ax cosx+Bx sinx+C cos 2x+E sin 2x. Substituting yp into the

differential equation we obtain 2B cosx− 3C cos 2x− 2A sinx− 3E sin 2x = 8 cos 2x− 4 sinx.

Thus A = 2, B = 0, C = −8/3, and E = 0, and

y = c1 cosx+ c2 sinx+ 2x cosx− 8

3
cos 2x

y′ = −c1 sinx+ c2 cosx+ 2 cosx− 2x sinx+
16

3
sin 2x.

The initial conditions imply

c2 +
8

3
= −1

−c1 − π = 0.

Thus c1 = −π and c2 = −11/3, and

y = −π cosx− 11

3
sinx+ 2x cosx− 8

3
cos 2x.
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4.5 Undetermined Coefficients—Annihilator Approachq

70. The complementary function is yc = c1 + c2e
x + c3xe

x. Using D(D− 1)2 to annihilate xex + 5

we find yp = Ax + Bx2ex + Cx3ex. Substituting yp into the differential equation we obtain

A+ (2B + 6C)ex + 6Cxex = xex + 5. Thus A = 5, B = −1/2, and C = 1/6, and

y = c1 + c2e
x + c3xe

x + 5x− 1

2
x2ex +

1

6
x3ex

y′ = c2e
x + c3(xe

x + ex) + 5− xex +
1

6
x3ex

y′′ = c2e
x + c3(xe

x + 2ex)− ex − xex +
1

2
x2ex +

1

6
x3ex.

The initial conditions imply

c1 + c2 = 2

c2 + c3 + 5 = 2

c2 + 2c3 − 1 = −1.

Thus c1 = 8, c2 = −6, and c3 = 3, and

y = 8− 6ex + 3xex + 5x− 1

2
x2ex +

1

6
x3ex.

71. The complementary function is yc = e2x(c1 cos 2x + c2 sin 2x). Using D4 to annihilate x3 we

find yp = A + Bx + Cx2 + Ex3. Substituting yp into the differential equation we obtain

(8A − 4B + 2C) + (8B − 8C + 6E)x + (8C − 12E)x2 + 8Ex3 = x3. Thus A = 0, B = 3/32,

C = 3/16, and E = 1/8, and

y = e2x(c1 cos 2x+ c2 sin 2x) +
3

32
x+

3

16
x2 +

1

8
x3

y′ = e2x [c1(2 cos 2x− 2 sin 2x) + c2(2 cos 2x+ 2 sin 2x)] +
3

32
+

3

8
x+

3

8
x2.

The initial conditions imply

c1 = 2

2c1 + 2c2 +
3

32
= 4.

Thus c1 = 2, c2 = −3/64, and

y = e2x(2 cos 2x− 3

64
sin 2x) +

3

32
x+

3

16
x2 +

1

8
x3.

72. The complementary function is yc = c1 + c2x + c3x
2 + c4e

x. Using D2(D − 1) to annihilate

x+ ex we find yp = Ax3 +Bx4 +Cxex. Substituting yp into the differential equation we obtain
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CHAPTER 4 HIGHER-ORDER DIFFERENTIAL EQUATIONS

(−6A+ 24B)− 24Bx+ Cex = x+ ex. Thus A = −1/6, B = −1/24, and C = 1, and

y = c1 + c2x+ c3x
2 + c4e

x − 1

6
x3 − 1

24
x4 + xex

y′ = c2 + 2c3x+ c4e
x − 1

2
x2 − 1

6
x3 + ex + xex

y′′ = 2c3 + c4e
x − x− 1

2
x2 + 2ex + xex.

y′′′ = c4e
x − 1− x+ 3ex + xex.

The initial conditions imply

c1 + c4 = 0

c2 + c4 + 1 = 0

2c3 + c4 + 2 = 0

2 + c4 = 0.

Thus c1 = 2, c2 = 1, c3 = 0, and c4 = −2, and

y = 2 + x− 2ex − 1

6
x3 − 1

24
x4 + xex.

Discussion Problems

73. To see in this case that the factors of L do not commute consider the operators (xD−1)(D+4)

and (D + 4)(xD − 1). Applying the operators to the function x we find

(xD − 1)(D + 4)x = (xD2 + 4xD −D − 4)x

= xD2x+ 4xDx−Dx− 4x

= x(0) + 4x(1)− 1− 4x = −1

and

(D + 4)(xD − 1)x = (D + 4)(xDx− x)

= (D + 4)(x · 1− x) = 0.

Thus, the operators are not the same.
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4.6 Variation of Parametersq

4.6 Variation of Parametersq

4.6 Variation of Parametersq

The particular solution, yp = u1y1 +u2y2, in the following problems can take on a variety of forms,

especially where trigonometric functions are involved. The validity of a particular form can best be

checked by substituting it back into the differential equation.

1. The auxiliary equation is m2 + 1 = 0, so yc = c1 cosx+ c2 sinx and

W (y1, y2) =

∣∣∣∣∣ − cosx sinx

− sinx cosx

∣∣∣∣∣ = 1.

Identifying f(x) = secx we obtain

u′1 = −sinx secx

1
= − tanx

u′2 =
cosx secx

1
= 1.

Then u1 = ln | cosx|, u2 = x, and

y = c1 cosx+ c2 sinx+ cosx ln | cosx|+ x sinx.

2. The auxiliary equation is m2 + 1 = 0, so yc = c1 cosx+ c2 sinx and

W =

∣∣∣∣∣ − cosx sinx

− sinx cosx

∣∣∣∣∣ = 1.

Identifying f(x) = tanx we obtain

u′1 = − sinx tanx =
cos2 x− 1

cosx
= cosx− secx

u′2 = sinx.

Then u1 = sinx− ln | secx+ tanx|, u2 = − cosx, and

y = c1 cosx+ c2 sinx+ cosx (sinx− ln | secx+ tanx|)− cosx sinx

= c1 cosx+ c2 sinx− cosx ln | secx+ tanx|.

In the remaining problems in this section the value of the Wronskian is given, but the determinant

which is used to evaluate the Wronskian is not shown.

3. The auxiliary equation is m2 + 1 = 0, so yc = c1 cosx + c2 sinx and W = 1. Identifying

f(x) = sinx we obtain

u′1 = − sin2 x

u′2 = cosx sinx.
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CHAPTER 4 HIGHER-ORDER DIFFERENTIAL EQUATIONS

Then

u1 =
1

4
sin 2x− 1

2
x =

1

2
sinx cosx− 1

2
x

u2 = −1

2
cos2 x.

and

y = c1 cosx+ c2 sinx+
1

2
sinx cos2 x− 1

2
x cosx− 1

2
cos2 x sinx

= c1 cosx+ c2 sinx− 1

2
x cosx.

4. The auxiliary equation is m2 + 1 = 0, so yc = c1 cosx + c2 sinx and W = 1. Identifying

f(x) = secx tanx we obtain

u′1 = − sinx(secx tanx) = − tan2 x = 1− sec2 x

u′2 = cosx(secx tanx) = tanx.

Then u1 = x− tanx, u2 = − ln | cosx|, and

y = c1 cosx+ c2 sinx+ x cosx− sinx− sinx ln | cosx|

= c1 cosx+ c3 sinx+ x cosx− sinx ln | cosx|.

5. The auxiliary equation is m2 + 1 = 0, so yc = c1 cosx + c2 sinx and W = 1. Identifying

f(x) = cos2 x we obtain

u′1 = − sinx cos2 x

u′2 = cos3 x = cosx
(
1− sin2 x

)
.

Then u1 = 1
3 cos3 x, u2 = sinx− 1

3 sin3 x, and

y = c1 cosx+ c2 sinx+
1

3
cos4 x+ sin2 x− 1

3
sin4 x

= c1 cosx+ c2 sinx+
1

3

(
cos2 x+ sin2 x

) (
cos2 x− sin2 x

)
+ sin2 x

= c1 cosx+ c2 sinx+
1

3
cos2 x+

2

3
sin2 x

= c1 cosx+ c2 sinx+
1

3
+

1

3
sin2 x.

This is equivalent to

y = c1 cosx+ c2 sinx+
1

2
− 1

6
cos 2x.
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4.6 Variation of Parametersq

6. The auxiliary equation is m2 + 1 = 0, so yc = c1 cosx + c2 sinx and W = 1. Identifying

f(x) = sec2 x we obtain

u′1 = − sinx

cos2 x

u′2 = secx.

Then

u1 = − 1

cosx
= − secx

u2 = ln | secx+ tanx|

and

y = c1 cosx+ c2 sinx− cosx secx+ sinx ln | secx+ tanx|

= c1 cosx+ c2 sinx− 1 + sinx ln | secx+ tanx|.

7. The auxiliary equation is m2 − 1 = 0, so yc = c1e
x + c2e

−x and W = −2. Identifying

f(x) = coshx = 1
2(e−x + ex) we obtain

u′1 =
1

4
e−2x +

1

4

u′2 = −1

4
− 1

4
e2x.

Then

u1 = −1

8
e−2x +

1

4
x

u2 = −1

8
e2x − 1

4
x

and

y = c1e
x + c2e

−x − 1

8
e−x +

1

4
xex − 1

8
ex − 1

4
xe−x

= c3e
x + c4e

−x +
1

4
x(ex − e−x)

= c3e
x + c4e

−x +
1

2
x sinhx.

8. The auxiliary equation is m2 − 1 = 0, so yc = c1e
x + c2e

−x and W = −2. Identifying

f(x) = sinh 2x we obtain

u′1 = −1

4
e−3x +

1

4
ex

u′2 =
1

4
e−x − 1

4
e3x.
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CHAPTER 4 HIGHER-ORDER DIFFERENTIAL EQUATIONS

Then

u1 =
1

12
e−3x +

1

4
ex

u2 = −1

4
e−x − 1

12
e3x.

and

y = c1e
x + c2e

−x +
1

12
e−2x +

1

4
e2x − 1

4
e−2x − 1

12
e2x

= c1e
x + c2e

−x +
1

6

(
e2x − e−2x

)
= c1e

x + c2e
−x +

1

3
sinh 2x.

9. The auxiliary equation is m2 − 4 = 0, so yc = c1e
2x + c2e

−2x and W = −4. Identifying

f(x) = e2x/x we obtain u′1 = 1/4x and u′2 = −e4x/4x. Then

u1 =
1

4
ln |x|,

u2 = −1

4

∫ x

x0

e4t

t
dt

and

y = c1e
2x + c2e

−2x +
1

4

(
e2x ln |x| − e−2x

∫ x

x0

e4t

t
dt

)
, x0 > 0.

10. The auxiliary equation is m2 − 9 = 0, so yc = c1e
3x + c2e

−3x and W = −6. Identifying

f(x) = 9x/e3x we obtain u′1 = 3
2xe
−6x and u′2 = −3

2x. Then

u1 = − 1

24
e−6x − 1

4
xe−6x,

u2 = −3

4
x2

and

y = c1e
3x + c2e

−3x − 1

24
e−3x − 1

4
xe−3x − 3

4
x2e−3x

= c1e
3x + c3e

−3x − 1

4
xe−3x(1− 3x).

11. The auxiliary equation is m2 + 3m + 2 = (m + 1)(m + 2) = 0, so yc = c1e
−x + c2e

−2x and

W = −e−3x. Identifying f(x) = 1/(1 + ex) we obtain

u′1 =
ex

1 + ex

u′2 = − e2x

1 + ex
=

ex

1 + ex
− ex.
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4.6 Variation of Parametersq

Then u1 = ln(1 + ex), u2 = ln(1 + ex)− ex, and

y = c1e
−x + c2e

−2x + e−x ln(1 + ex) + e−2x ln(1 + ex)− e−x

= c3e
−x + c2e

−2x + (1 + e−x)e−x ln(1 + ex).

12. The auxiliary equation is m2 − 2m + 1 = (m − 1)2 = 0, so yc = c1e
x + c2xe

x and W = e2x.

Identifying f(x) = ex/
(
1 + x2

)
we obtain

u′1 = − xexex

e2x (1 + x2)
= − x

1 + x2

u′2 =
exex

e2x (1 + x2)
=

1

1 + x2
.

Then u1 = −1
2 ln

(
1 + x2

)
, u2 = tan−1 x, and

y = c1e
x + c2xe

x − 1

2
ex ln

(
1 + x2

)
+ xex tan−1 x.

13. The auxiliary equation is m2 + 3m + 2 = (m + 1)(m + 2) = 0, so yc = c1e
−x + c2e

−2x and

W = −e−3x. Identifying f(x) = sin ex we obtain

u′1 =
e−2x sin ex

e−3x
= ex sin ex

u′2 =
e−x sin ex

−e−3x
= −e2x sin ex.

Then u1 = − cos ex, u2 = ex cos ex − sin ex, and

y = c1e
−x + c2e

−2x − e−x cos ex + e−x cos ex − e−2x sin ex

= c1e
−x + c2e

−2x − e−2x sin ex.

14. The auxiliary equation is m2 − 2m + 1 = (m − 1)2 = 0, so yc = c1e
t + c2te

t and W = e2t.

Identifying f(t) = et tan−1 t we obtain

u′1 = − te
tet tan−1 t

e2t
= −t tan−1 t

u′2 =
etet tan−1 t

e2t
= tan−1 t.

Then

u1 = −1 + t2

2
tan−1 t+

t

2

u2 = t tan−1 t− 1

2
ln
(
1 + t2

)
and

y = c1e
t + c2te

t +

(
−1 + t2

2
tan−1 t+

t

2

)
et +

(
t tan−1 t− 1

2
ln
(
1 + t2

))
tet

= c1e
t + c3te

t +
1

2
et
[(
t2 − 1

)
tan−1 t− ln

(
1 + t2

)]
.
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CHAPTER 4 HIGHER-ORDER DIFFERENTIAL EQUATIONS

15. The auxiliary equation is m2 + 2m+ 1 = (m+ 1)2 = 0, so yc = c1e
−t + c2te

−t and W = e−2t.

Identifying f(t) = e−t ln t we obtain

u′1 = − te
−te−t ln t

e−2t
= −t ln t

u′2 =
e−te−t ln t

e−2t
= ln t.

Then

u1 = −1

2
t2 ln t+

1

4
t2

u2 = t ln t− t

and

y = c1e
−t + c2te

−t − 1

2
t2e−t ln t+

1

4
t2e−t + t2e−t ln t− t2e−t

= c1e
−t + c2te

−t +
1

2
t2e−t ln t− 3

4
t2e−t.

16. The auxiliary equation is 2m2 + 2m + 1 = 0, so yc = e−x/2[c1 cos(x/2) + c2 sin(x/2)] and

W = 1
2e
−x. Identifying f(x) = 2

√
x we obtain

u′1 = −e
−x/2 sin(x/2)2

√
x

e−x/2
= −4ex/2

√
x sin

x

2

u′2 = −e
−x/2 cos(x/2)2

√
x

e−x/2
= 4ex/2

√
x cos

x

2
.

Then

u1 = −4

∫ x

x0

et/2
√
t sin

t

2
dt

u2 = 4

∫ x

x0

et/2
√
t cos

t

2
dt

and

y = e−x/2
(
c1 cos

x

2
+c2 sin

x

2

)
−4e−x/2 cos

x

2

∫ x

x0

et/2
√
t sin

t

2
dt+4e−x/2 sin

x

2

∫ x

x0

et/2
√
t cos

t

2
dt.

17. The auxiliary equation is 3m2 − 6m + 6 = 0, so yc = ex(c1 cosx + c2 sinx) and W = e2x.

Identifying f(x) = 1
3e
x secx we obtain

u′1 = −(ex sinx)(ex secx)/3

e2x
= −1

3
tanx

u′2 =
(ex cosx)(ex secx)/3

e2x
=

1

3
.

Then u1 = 1
3 ln | cosx |, u2 = 1

3 x, and

y = c1e
x cosx+ c2e

x sinx+
1

3
ex cosx ln | cosx |+ 1

3
xex sinx.
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4.6 Variation of Parametersq

18. The auxiliary equation is 4m2− 4m+ 1 = (2m− 1)2 = 0, so yc = c1e
x/2 + c2xe

x/2 and W = ex.

Identifying f(x) = 1
4e
x/2
√

1− x2 we obtain

u′1 = −xe
x/2ex/2

√
1− x2

4ex
= −1

4
x
√

1− x2

u′2 =
ex/2ex/2

√
1− x2

4ex
=

1

4

√
1− x2.

To find u1 and u2 we use the substitution v = 1 − x2 and the trig substitution x = sin θ,

respectively:

u1 =
1

12

(
1− x2

)3/2
u2 =

x

8

√
1− x2 +

1

8
sin−1 x.

Thus

y = c1e
x/2 + c2xe

x/2 +
1

12
ex/2

(
1− x2

)3/2
+

1

8
x2ex/2

√
1− x2 +

1

8
xex/2 sin−1 x.

19. The auxiliary equation is 4m2 − 1 = (2m − 1)(2m + 1) = 0, so yc = c1e
x/2 + c2e

−x/2 and

W = −1. Identifying f(x) = xex/2/4 we obtain u′1 = x/4 and u′2 = −xex/4. Then u1 = x2/8

and u2 = −xex/4 + ex/4. Thus

y = c1e
x/2 + c2e

−x/2 +
1

8
x2ex/2 − 1

4
xex/2 +

1

4
ex/2

= c3e
x/2 + c2e

−x/2 +
1

8
x2ex/2 − 1

4
xex/2

and

y′ =
1

2
c3e

x/2 − 1

2
c2e
−x/2 +

1

16
x2ex/2 +

1

8
xex/2 − 1

4
ex/2.

The initial conditions imply

1

2
c3 +

1

2
c2xxx = 1

1

2
c3 −

1

2
c2 −

1

4
= 0.

Thus c3 = 3/4 and c2 = 1/4, and

y =
3

4
ex/2 +

1

4
e−x/2 +

1

8
x2ex/2 − 1

4
xex/2.

20. The auxiliary equation is 2m2 + m − 1 = (2m − 1)(m + 1) = 0, so yc = c1e
x/2 + c2e

−x and

W = −3
2e
−x/2. Identifying f(x) = (x+ 1)/2 we obtain

u′1 =
1

3
e−x/2(x+ 1)

u′2 = −1

3
ex(x+ 1).
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CHAPTER 4 HIGHER-ORDER DIFFERENTIAL EQUATIONS

Then

u1 = −e−x/2
(

2

3
x− 2

)
u2 = −1

3
xex.

Thus

y = c1e
x/2 + c2e

−x − x− 2 and y′ =
1

2
c1e

x/2 − c2e−x − 1.

The initial conditions imply

1

2
c1 − c2 − 2 = 1

1

2
c1 − c2 − 1 = 0.

Thus c1 = 8/3 and c2 = 1/3, and

y =
8

3
ex/2 +

1

3
e−x − x− 2.

21. The auxiliary equation is m2 + 2m − 8 = (m − 2)(m + 4) = 0, so yc = c1e
2x + c2e

−4x and

W = −6e−2x. Identifying f(x) = 2e−2x − e−x we obtain

u′1 =
1

3
e−4x − 1

6
e−3x

u′2 =
1

6
e3x − 1

3
e2x.

Then

u1 = − 1

12
e−4x +

1

18
e−3x

u2 =
1

18
e3x − 1

6
e2x.

Thus

y = c1e
2x + c2e

−4x − 1

12
e−2x +

1

18
e−x +

1

18
e−x − 1

6
e−2x

= c1e
2x + c2e

−4x − 1

4
e−2x +

1

9
e−x

and

y′ = 2c1e
2x − 4c2e

−4x +
1

2
e−2x − 1

9
e−x.

The initial conditions imply

2c1 + 4c2 −
5

36
= 1

2c1 − 4c2 +
7

18
= 0.

Thus c1 = 25/36 and c2 = 4/9, and

y =
25

36
e2x +

4

9
e−4x − 1

4
e−2x +

1

9
e−x.
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4.6 Variation of Parametersq

22. The auxiliary equation is m2 − 4m + 4 = (m − 2)2 = 0, so yc = c1e
2x + c2xe

2x and W = e4x.

Identifying f(x) =
(
12x2 − 6x

)
e2x we obtain

u′1 = 6x2 − 12x3

u′2 = 12x2 − 6x.

Then

u1 = 2x3 − 3x4

u2 = 4x3 − 3x2.

Thus

y = c1e
2x + c2xe

2x +
(
2x3 − 3x4

)
e2x +

(
4x3 − 3x2

)
xe2x

= c1e
2x + c2xe

2x + e2x
(
x4 − x3

)
and

y′ = 2c1e
2x + c2

(
2xe2x + e2x

)
+ e2x

(
4x3 − 3x2

)
+ 2e2x

(
x4 − x3

)
.

The initial conditions imply

2c1 + c2 = 1

2c1 + c2 = 0.

Thus c1 = 1 and c2 = −2, and

y = e2x − 2xe2x + e2x
(
x4 − x3

)
= e2x

(
x4 − x3 − 2x+ 1

)
.

23. Write the equation in the form

y′′ +
1

x
y′ +

(
1− 1

4x2

)
y = x−1/2

and identify f(x) = x−1/2. From y1 = x−1/2 cosx and y2 = x−1/2 sinx we compute

W (y1, y2) = 1/x. Now

u′1 = − sinx so u1 = cosx,

and

u′2 = cosx so u2 = sinx.

Thus a particular solution is

yp = x−1/2 cos2 x+ x−1/2 sin2 x,

and the general solution is

y = c1x
−1/2 cosx+ c2x

−1/2 sinx+ x−1/2 cos2 x+ x−1/2 sin2 x

= c1x
−1/2 cosx+ c2x

−1/2 sinx+ x−1/2.
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CHAPTER 4 HIGHER-ORDER DIFFERENTIAL EQUATIONS

24. Write the equation in the form

y′′ +
1

x
y′ +

1

x2
y =

sec(lnx)

x2

and identify f(x) = sec(lnx)/x2. From y1 = cos(lnx) and y2 = sin(lnx) we compute W = 1/x.

Now

u′1 = −tan(lnx)

x
so u1 = ln | cos(lnx)|

and

u′2 =
1

x
so u2 = lnx.

Thus, a particular solution is

yp = cos(lnx) ln | cos(lnx)|+ (lnx) sin(lnx),

and the general solution is

y = c1 cos(lnx) + c2 sin(lnx) + cos(lnx) ln | cos(lnx)|+ (lnx) sin(lnx).

25. The auxiliary equation is m3 +m = m(m2 + 1) = 0, so yc = c1 + c2 cosx+ c3 sinx and W = 1.

Identifying f(x) = tanx we obtain

u′1 = W1 = tanx

u′2 = W2 = − sinx

u′3 = W3 = − sinx tanx =
cos2 x− 1

cosx
= cosx− secx.

Then

u1 = − ln | cosx|

u2 = cosx

u3 = sinx− ln | secx+ tanx|

and

y = c1 + c2 cosx+ c3 sinx− ln | cosx|+ cos2 x

+ sin2 x− sinx ln | secx+ tanx|

= c4 + c2 cosx+ c3 sinx− ln | cosx| − sinx ln | secx+ tanx|

for −π/2 < x < π/2.
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4.6 Variation of Parametersq

26. The auxiliary equation is m3 + 4m = m
(
m2 + 4

)
= 0, so yc = c1 + c2 cos 2x + c3 sin 2x and

W = 8. Identifying f(x) = sec 2x we obtain

u′1 =
1

8
W1 =

1

4
sec 2x

u′2 =
1

8
W2 = −1

4

u′3 =
1

8
W3 = −1

4
tan 2x.

Then

u1 =
1

8
ln | sec 2x+ tan 2x|

u2 = −1

4
x

u3 =
1

8
ln | cos 2x|

and

y = c1 + c2 cos 2x+ c3 sin 2x+
1

8
ln | sec 2x+ tan 2x| − 1

4
x cos 2x+

1

8
sin 2x ln | cos 2x|

for −π/4 < x < π/4.

27. The auxiliary equation is m3− 2m2−m+ 2 = 0 so yc = c1e
x + c2e

−x + c3e
2x and W = −6e2x.

Identifying f(x) = e4x we find W1 = 3e5x, W2 = −e7x, and W3 = −2e4x. Then

u′1 =
W1

W
=

3e5x

−6e2x
= −1

2
e3x

u′2 =
W2

W
=
−e7x

−6e2x
=

1

6
e5x

u′3 =
W3

W
=
−2e4x

−6e2x
=

1

3
e2x,

and integrating we find that

u1 = −1

6
e3x

u2 =
1

30
e5x

u3 =
1

6
e2x.

Thus yp = −1
6 e

3x · ex + 1
30 e

5x · e−x + 1
6 e

2x · e2x = 1
30 e

4x, and the general solution is

y = c1e
x + c2e

−x + c3e
2x +

1

30
e4x.
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CHAPTER 4 HIGHER-ORDER DIFFERENTIAL EQUATIONS

28. The auxiliary equation is m3−3m2+2m+2 = m(m−1)(m−2) = 0 so yc = c1+c2e
x+c3e

2x and

W = 2e3x. Identifying f(x) = e2x/(1 + ex) we find W1 = e5x/(1 + ex), W2 = −2e4x/(1 + ex),

and W3 = e3x/(1 + ex). Then

u′1 =
W1

W
=

1

2

e2x

1 + ex
=

1

2
ex − 1

2

ex

1 + ex

u′2 =
W2

W
= − ex

1 + ex

u′3 =
W3

W
=

1

2

1

1 + ex
=

1

2

e−x

1 + e−x
,

and integrating we find that

u1 =
1

2
ex − 1

2
ln(1 + ex)

u2 = − ln(1 + ex)

u3 = −1

2
ln(1 + e−x).

Thus

yp = 1 ·
(

1

2
ex − 1

2
ln(1 + ex)

)
+ ex · (− ln(1 + ex)) + e2x ·

(
−1

2
ln(1 + e−x)

)

=
1

2
ex − 1

2
ln(1 + ex)− ex ln(1 + ex)− 1

2
e2x ln(1 + e−x).

To get the general solution we include the first term of yp into the second term of yc so that

y = c1 + c2e
x + c3e

2x +
1

2
ex − 1

2
ln(1 + ex)− ex ln(1 + ex)− 1

2
e2x ln(1 + e−x)

= c1 + c4e
x + c3e

2x − 1

2
ln(1 + ex)− ex ln(1 + ex)− 1

2
e2x ln(1 + e−x)

= c1 + c4e
x + c3e

2x −
(

1

2
+ ex

)
ln(1 + ex)− 1

2
e2x ln(1 + e−x),

which is defined on (−∞,∞)

Discussion Problems

29. The auxiliary equation is 3m2 − 6m+ 30 = 0, which has roots 1± 3i, so

yc = ex(c1 cos 3x+ c2 sin 3x).

We consider first the differential equation 3y′′− 6y′+ 30y = 15 sinx, which can be solved using

undetermined coefficients. Letting yp1 = A cosx+B sinx and substituting into the differential

equation we get

(27A− 6B) cosx+ (6A+ 27B) sinx = 15 sinx.
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4.6 Variation of Parametersq

Then

27A− 6B = 0 and 6A+ 27B = 15,

so A = 2
17 and B = 9

17 . Thus, yp1 = 2
17 cosx + 9

17 sinx. Next, we consider the differential

equation 3y′′ − 6y′ + 30y, for which a particular solution yp2 can be found using variation of

parameters. The Wronskian is W = 3e2x. Identifying f(x) = 1
3e
x tanx we obtain

u′1 = −1

9
sin 3x tan 3x = −1

9

(
sin2 3x

cos 3x

)
= −1

9

(
1− cos2 3x

cos 3x

)
= −1

9
(sec 3x− cos 3x)

so

u1 = − 1

27
ln | sec 3x+ tan 3x|+ 1

27
sin 3x.

Next

u′2 =
1

9
sin 3x so u2 = − 1

27
cos 3x.

Thus

yp2 = − 1

27
ex cos 3x(ln | sec 3x+ tan 3x| − sin 3x)− 1

27
ex sin 3x cos 3x

= − 1

27
ex(cos 3x) ln | sec 3x+ tan 3x|

and the general solution of the original differential equation is

y = ex(c1 cos 3x+ c2 sin 3x) + yp1(x) + yp2(x).

30. The auxiliary equation is m2 − 2m + 1 = (m − 1)2 = 0, which has repeated root 1, so

yc = c1e
x + c2xe

x. We consider first the differential equation y′′− 2y′+ y = 4x2− 3, which can

be solved using undetermined coefficients. Letting yp1 = Ax2 + Bx+ C and substituting into

the differential equation we get

Ax2 + (−4A+B)x+ (2A− 2B + C) = 4x2 − 3.

Then

A = 4, −4A+B = 0, and 2A− 2B + C = −3,

so A = 4, B = 16, and C = 21. Thus, yp1 = 4x2 + 16x+ 21. Next we consider the differential

equation y′′− 2y′+ y = x−1ex, for which a particular solution yp2 can be found using variation

of parameters. The Wronskian is W = e2x. Identifying f(x) = ex/x we obtain u′1 = −1 and

u′2 = 1/x. Then u1 = −x and u2 = lnx, so that

yp2 = −xex + xex lnx,

and the general solution of the original differential equation is

y = yc + yp1 + yp2 = c1e
x + c2xe

x + 4x2 + 16x+ 21− xex + xex lnx

= c1e
x + c3xe

x + 4x2 + 16x+ 21 + xex lnx
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CHAPTER 4 HIGHER-ORDER DIFFERENTIAL EQUATIONS

31. The interval of definition for Problem 1 is (−π/2, π/2), for Problem 7 is (−∞,∞), for

Problem 9 is (0,∞), and for Problem 18 is (−1, 1). In Problem 24 the general solution is

y = c1 cos(lnx) + c2 sin(lnx) + cos(lnx) ln | cos(lnx)|+ (lnx) sin(lnx)

for −π/2 < lnx < π/2 or e−π/2 < x < eπ/2. The bounds on lnx are due to the presence of

sec(lnx) in the differential equation.

32. We are given that y1 = x2 is a solution of x4y′′ + x3y′ − 4x2y = 0. To find a second solution

we use reduction of order. Let y = x2u(x). Then the product rule gives

y′ = x2u′ + 2xu and y′′ = x2u′′ + 4xu′ + 2u,

so

x4y′′ + x3y′ − 4x2y = x5(xu′′ + 5u′) = 0.

Letting w = u′, this becomes xw′ + 5w = 0. Separating variables and integrating we have

dw

w
= −5

x
dx and ln |w| = −5 lnx+ c.

Thus, w = x−5 and u = −1
4x
−4. A second solution is then y2 = x2x−4 = 1/x2, and the

general solution of the homogeneous differential equation is yc = c1x
2 + c2/x

2. To find a par-

ticular solution, yp, we use variation of parameters. The Wronskian is W = −4/x. Identifying

f(x) = 1/x4 we obtain u′1 = 1
4x
−5 and u′2 = −1

4x
−1. Then u1 = − 1

16x
−4 and u2 = −1

4 lnx, so

yp = − 1

16
x−4x2 − 1

4
(lnx)x−2 = − 1

16
x−2 − 1

4
x−2 lnx.

The general solution is

y = c1x
2 +

c2
x2
− 1

16x2
− 1

4x2
lnx.

4.7 Cauchy-Euler Equationq

1. The auxiliary equation is m2 −m− 2 = (m+ 1)(m− 2) = 0 so that y = c1x
−1 + c2x

2.

2. The auxiliary equation is 4m2 − 4m+ 1 = (2m− 1)2 = 0 so that y = c1x
1/2 + c2x

1/2 lnx.

3. The auxiliary equation is m2 = 0 so that y = c1 + c2 lnx.

4. The auxiliary equation is m2 − 4m = m(m− 4) = 0 so that y = c1 + c2x
4.

5. The auxiliary equation is m2 + 4 = 0 so that y = c1 cos(2 lnx) + c2 sin(2 lnx).
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4.7 Cauchy-Euler Equationq

6. The auxiliary equation is m2 + 4m+ 3 = (m+ 1)(m+ 3) = 0 so that y = c1x
−1 + c2x

−3.

7. The auxiliary equation is m2 − 4m− 2 = 0 so that y = c1x
2−
√
6 + c2x

2+
√
6.

8. The auxiliary equation is m2 + 2m− 4 = 0 so that y = c1x
−1+

√
5 + c2x

−1−
√
5.

9. The auxiliary equation is 25m2 + 1 = 0 so that y = c1 cos
(
1
5 lnx

)
+ c2 sin

(
1
5 lnx

)
.

10. The auxiliary equation is 4m2 − 1 = (2m− 1)(2m+ 1) = 0 so that y = c1x
1/2 + c2x

−1/2.

11. The auxiliary equation is m2 + 4m+ 4 = (m+ 2)2 = 0 so that y = c1x
−2 + c2x

−2 lnx.

12. The auxiliary equation is m2 + 7m+ 6 = (m+ 1)(m+ 6) = 0 so that y = c1x
−1 + c2x

−6.

13. The auxiliary equation is 3m2 + 3m+ 1 = 0 so that

y = x−1/2

[
c1 cos

(√
3

6
lnx

)
+ c2 sin

(√
3

6
lnx

)]
.

14. The auxiliary equation is m2 − 8m+ 41 = 0 so that y = x4 [c1 cos(5 lnx) + c2 sin(5 lnx)].

15. Assuming that y = xm and substituting into the differential equation we obtain

m(m− 1)(m− 2)− 6 = m3 − 3m2 + 2m− 6 = (m− 3)(m2 + 2) = 0.

Thus

y = c1x
3 + c2 cos

(√
2 lnx

)
+ c3 sin

(√
2 lnx

)
.

16. Assuming that y = xm and substituting into the differential equation we obtain

m(m− 1)(m− 2) +m− 1 = m3 − 3m2 + 3m− 1 = (m− 1)3 = 0.

Thus

y = c1x+ c2x lnx+ c3x(lnx)2.

17. Assuming that y = xm and substituting into the differential equation we obtain

m(m− 1)(m− 2)(m− 3) + 6m(m− 1)(m− 2) = m4 − 7m2 + 6m

= m(m− 1)(m− 2)(m+ 3) = 0.

Thus

y = c1 + c2x+ c3x
2 + c4x

−3.

18. Assuming that y = xm and substituting into the differential equation we obtain

m(m− 1)(m− 2)(m− 3) + 6m(m− 1)(m− 2) + 9m(m− 1) + 3m+ 1 = m4 + 2m2 + 1

= (m2 + 1)2 = 0.

Thus

y = c1 cos(lnx) + c2 sin(lnx) + c3(lnx) cos(lnx) + c4(lnx) sin(lnx).
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CHAPTER 4 HIGHER-ORDER DIFFERENTIAL EQUATIONS

19. The auxiliary equation is m2−5m = m(m−5) = 0 so that yc = c1 +c2x
5 and the Wronskian is

W (1, x5) = 5x4. Identifying f(x) = x3 we obtain u′1 = −1
5x

4 and u′2 = 1/5x. Then u1 = − 1
25x

5,

u2 = 1
5 lnx, and

y = c1 + c2x
5 − 1

25
x5 +

1

5
x5 lnx = c1 + c3x

5 +
1

5
x5 lnx.

20. The auxiliary equation is 2m2+3m+1 = (2m+1)(m+1) = 0 so that yc = c1x
−1+c2x

−1/2 and

the Wronskian is W (x−1, x−1/2) = 1
2x
−5/2. Identifying f(x) = 1

2 − 1/2x we obtain u′1 = x− x2

and u′2 = x3/2 − x1/2. Then u1 = 1
2x

2 − 1
3x

3, u2 = 2
5x

5/2 − 2
3x

3/2, and

y = c1x
−1 + c2x

−1/2 +
1

2
x− 1

3
x2 +

2

5
x2 − 2

3
x = c1x

−1 + c2x
−1/2 − 1

6
x+

1

15
x2.

21. The auxiliary equation is m2 − 2m + 1 = (m − 1)2 = 0 so that yc = c1x + c2x lnx and the

Wronskian is W (x, x lnx) = x. Identifying f(x) = 2/x we obtain u′1 = −2 lnx/x and u′2 = 2/x.

Then u1 = −(lnx)2, u2 = 2 lnx, and

y = c1x+ c2x lnx− x(lnx)2 + 2x(lnx)2

= c1x+ c2x lnx+ x(lnx)2, x > 0.

22. The auxiliary equation is m2 − 3m+ 2 = (m− 1)(m− 2) = 0 so that yc = c1x+ c2x
2 and the

Wronskian is W (x, x2) = x2. Identifying f(x) = x2ex we obtain u′1 = −x2ex and u′2 = xex.

Then u1 = −x2ex + 2xex − 2ex, u2 = xex − ex, and

y = c1x+ c2x
2 − x3ex + 2x2ex − 2xex + x3ex − x2ex

= c1x+ c2x
2 + x2ex − 2xex.

23. The auxiliary equation m(m − 1) + m − 1 = m2 − 1 = 0 has roots m1 = −1, m2 = 1, so

yc = c1x
−1 + c2x. With y1 = x−1, y2 = x, and the identification f(x) = lnx/x2, we get

W = 2x−1, W1 = − lnx/x, and W2 = lnx/x3.

Then u′1 = W1/W = −(lnx)/2, u′2 = W2/W = (lnx)/2x2, and integration by parts gives

u1 =
1

2
x− 1

2
x lnx

u2 = −1

2
x−1 lnx− 1

2
x−1,

so

yp = u1y1 + u2y2 =

(
1

2
x− 1

2
x lnx

)
x−1 +

(
−1

2
x−1 lnx− 1

2
x−1

)
x = − lnx

and

y = yc + yp = c1x
−1 + c2x− lnx, x > 0.
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4.7 Cauchy-Euler Equationq

24. The auxiliary equation m(m − 1) + m − 1 = m2 − 1 = 0 has roots m1 = −1, m2 = 1, so

yc = c1x
−1 + c2x. With y1 = x−1, y2 = x, and the identification f(x) = 1/x2(x+ 1), we get

W = 2x−1, W1 = −1/x(x+ 1), and W2 = 1/x3(x+ 1).

Then u′1 = W1/W = −1/2(x + 1), u′2 = W2/W = 1/2x2(x + 1), and integration by partial

fractions for u′2 gives

u1 = −1

2
ln(x+ 1)

u2 = −1

2
x−1 − 1

2
lnx+

1

2
ln(x+ 1),

so

yp = u1y1 + u2y2 =

[
−1

2
ln(x+ 1)

]
x−1 +

[
−1

2
x−1 − 1

2
lnx+

1

2
ln(x+ 1)

]
x

= −1

2
− 1

2
x lnx+

1

2
x ln(x+ 1)− ln(x+ 1)

2x
= −1

2
+

1

2
x ln

(
1 +

1

x

)
− ln(x+ 1)

2x

and

y = yc + yp = c1x
−1 + c2x−

1

2
+

1

2
x ln

(
1 +

1

x

)
− ln(x+ 1)

2x
, x > 0.

25. The auxiliary equation ism2+2m = m(m+2) = 0, so that y = c1+c2x
−2

and y′ = −2c2x
−3. The initial conditions imply

c1 + c2 = 0

−2c2 = 4.

Thus, c1 = 2, c2 = −2, and y = 2 − 2x−2. The graph is given to the

right.

26. The auxiliary equation is m2 − 6m+ 8 = (m− 2)(m− 4) = 0, so that

y = c1x
2 + c2x

4 and y′ = 2c1x+ 4c2x
3.

The initial conditions imply

4c1 + 16c2 = 32

4c1 + 32c2 = 0.

Thus, c1 = 16, c2 = −2, and y = 16x2 − 2x4. The graph is given to the

right.
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CHAPTER 4 HIGHER-ORDER DIFFERENTIAL EQUATIONS

27. The auxiliary equation is m2 + 1 = 0, so that

y = c1 cos(lnx) + c2 sin(lnx)

and

y′ = −c1
1

x
sin(lnx) + c2

1

x
cos(lnx).

The initial conditions imply c1 = 1 and c2 = 2. Thus y = cos(lnx) + 2 sin(lnx). The graph is

given to the right.

28. The auxiliary equation is m2 − 4m+ 4 = (m− 2)2 = 0, so that

y = c1x
2 + c2x

2 lnx and y′ = 2c1x+ c2(x+ 2x lnx).

The initial conditions imply c1 = 5 and c2 + 10 = 3. Thus

y = 5x2 − 7x2 lnx. The graph is given to the right.

xx

29. The auxiliary equation is m2 = 0 so that yc = c1 + c2 lnx and the

Wronskian is W (1, lnx) = 1/x. Identifying f(x) = 1 we obtain

u′1 = −x lnx and u′2 = x. Then u1 = 1
4x

2 − 1
2x

2 lnx, u2 = 1
2x

2, and

y = c1 + c2 lnx+
1

4
x2 − 1

2
x2 lnx+

1

2
x2 lnx = c1 + c2 lnx+

1

4
x2.

The initial conditions imply c1 + 1
4 = 1 and c2 + 1

2 = −1
2 . Thus, c1 = 3

4 ,

c2 = −1, and y = 3
4 − lnx+ 1

4x
2. The graph is given to the right.

30. The auxiliary equation is

m2 − 6m+ 8 = (m− 2)(m− 4) = 0,

so that yc = c1x
2 + c2x

4 and the Wronskian is W = 2x5.

Identifying f(x) = 8x4 we obtain u′1 = −4x3 and u′2 =

4x. Then u1 = −x4, u2 = 2x2, and y = c1x
2+c2x

4+x6.

The initial conditions imply

1

4
c1 +

1

16
c2 = − 1

64

c1 +
1

2
c2 = − 3

16
.

Thus c1 = 1
16 , c2 = −1

2 , and y = 1
16x

2 − 1
2x

4 + x6. The graph is given above.
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4.7 Cauchy-Euler Equationq

31. Substituting x = et into the differential equation we obtain

d2y

dt2
+ 8

dy

dt
− 20y = 0.

The auxiliary equation is m2 + 8m− 20 = (m+ 10)(m− 2) = 0 so that

y = c1e
−10t + c2e

2t = c1x
−10 + c2x

2.

32. Substituting x = et into the differential equation we obtain

d2y

dt2
− 10

dy

dt
+ 25y = 0.

The auxiliary equation is m2 − 10m+ 25 = (m− 5)2 = 0 so that

y = c1e
5t + c2te

5t = c1x
5 + c2x

5 lnx.

33. Substituting x = et into the differential equation we obtain

d2y

dt2
+ 9

dy

dt
+ 8y = e2t.

The auxiliary equation is m2 + 9m+ 8 = (m+ 1)(m+ 8) = 0 so that yc = c1e
−t+ c2e

−8t. Using

undetermined coefficients we try yp = Ae2t. This leads to 30Ae2t = e2t, so that A = 1/30 and

y = c1e
−t + c2e

−8t +
1

30
e2t = c1x

−1 + c2x
−8 +

1

30
x2.

34. Substituting x = et into the differential equation we obtain

d2y

dt2
− 5

dy

dt
+ 6y = 2t.

The auxiliary equation is m2 − 5m+ 6 = (m− 2)(m− 3) = 0 so that yc = c1e
2t + c2e

3t. Using

undetermined coefficients we try yp = At + B. This leads to (−5A + 6B) + 6At = 2t, so that

A = 1/3, B = 5/18, and

y = c1e
2t + c2e

3t +
1

3
t+

5

18
= c1x

2 + c2x
3 +

1

3
lnx+

5

18
.

35. Substituting x = et into the differential equation we obtain

d2y

dt2
− 4

dy

dt
+ 13y = 4 + 3et.

The auxiliary equation is m2 − 4m + 13 = 0 so that yc = e2t(c1 cos 3t + c2 sin 3t). Using

undetermined coefficients we try yp = A + Bet. This leads to 13A + 10Bet = 4 + 3et, so that

A = 4/13, B = 3/10, and

y = e2t(c1 cos 3t+ c2 sin 3t) +
4

13
+

3

10
et

= x2 [c1 cos(3 lnx) + c2 sin(3 lnx)] +
4

13
+

3

10
x.
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CHAPTER 4 HIGHER-ORDER DIFFERENTIAL EQUATIONS

36. From
d2y

dx2
=

1

x2

(
d2y

dt2
− dy

dt

)
it follows that

d3y

dx3
=

1

x2
d

dx

(
d2y

dt2
− dy

dt

)
− 2

x3

(
d2y

dt2
− dy

dt

)

=
1

x2
d

dx

(
d2y

dt2

)
− 1

x2
d

dx

(
dy

dt

)
− 2

x3
d2y

dt2
+

2

x3
dy

dt

=
1

x2
d3y

dt3

(
1

x

)
− 1

x2
d2y

dt2

(
1

x

)
− 2

x3
d2y

dt2
+

2

x3
dy

dt

=
1

x3

(
d3y

dt3
− 3

d2y

dt2
+ 2

dy

dt

)
.

Substituting into the differential equation we obtain

d3y

dt3
− 3

d2y

dt2
+ 2

dy

dt
− 3

(
d2y

dt2
− dy

dt

)
+ 6

dy

dt
− 6y = 3 + 3t

or d3y

dt3
− 6

d2y

dt2
+ 11

dy

dt
− 6y = 3 + 3t.

The auxiliary equation is m3 − 6m2 + 11m − 6 = (m − 1)(m − 2)(m − 3) = 0 so that

yc = c1e
t + c2e

2t + c3e
3t. Using undetermined coefficients we try yp = A + Bt. This leads

to (11B − 6A)− 6Bt = 3 + 3t, so that A = −17/12, B = −1/2, and

y = c1e
t + c2e

2t + c3e
3t − 17

12
− 1

2
t = c1x+ c2x

2 + c3x
3 − 17

12
− 1

2
lnx.

In the next two problems we use the substitution t = −x since the initial conditions are on the

interval (−∞, 0). In this case
dy

dt
=
dy

dx

dx

dt
= −dy

dx

and
d2y

dt2
=

d

dt

(
dy

dt

)
=

d

dt

(
−dy
dx

)
= − d

dt
(y′) = −dy

′

dx

dx

dt
= −d

2y

dx2
dx

dt
=
d2y

dx2
.

37. The differential equation and initial conditions become

4t2
d2y

dt2
+ y = 0; y(t)

∣∣∣∣
t=1

= 2, y′(t)

∣∣∣∣
t=1

= −4.

The auxiliary equation is 4m2 − 4m+ 1 = (2m− 1)2 = 0, so that

y = c1t
1/2 + c2t

1/2 ln t and y′ =
1

2
c1t
−1/2 + c2

(
t−1/2 +

1

2
t−1/2 ln t

)
.

The initial conditions imply c1 = 2 and 1 + c2 = −4. Thus

y = 2t1/2 − 5t1/2 ln t = 2(−x)1/2 − 5(−x)1/2 ln(−x), x < 0.
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4.7 Cauchy-Euler Equationq

38. The differential equation and initial conditions become

t2
d2y

dt2
− 4t

dy

dt
+ 6y = 0; y(t)

∣∣∣∣
t=2

= 8, y′(t)

∣∣∣∣
t=2

= 0.

The auxiliary equation is m2 − 5m+ 6 = (m− 2)(m− 3) = 0, so that

y = c1t
2 + c2t

3 and y′ = 2c1t+ 3c2t
2.

The initial conditions imply

4c1 + 8c2 = 8

4c1 + 12c2 = 0

from which we find c1 = 6 and c2 = −2. Thus

y = 6t2 − 2t3 = 6x2 + 2x3, x < 0.

39. Letting y = (x+ 3)m we have y′ = m(x+ 3)m−1, and y′′ = m(m− 1)(x+ 3)m−2. Substituting

into the differential equation we find

(x+ 3)2m(m− 1)(x+ 3)m−2 − 8(x+ 3)m(x+ 3)m−1 + 14(x+ 3)m

= m(m− 1)(x+ 3)m − 8m(x+ 3)m + 14(x+ 3)m = 0,

so m(m− 1)− 8m+ 14 = m2− 9m+ 14 = (m− 2)(m− 7) = 0. Thus, m1 = 2 and m2 = 7, and

the general solution is

y = c1(x+ 3)2 + c2(x+ 3)7.

40. Letting y = (x− 1)m we have y′ = m(x− 1)m−1, and y′′ = m(m− 1)(x− 1)m−2. Substituting

into the differential equation we find

(x− 1)2m(m− 1)(x− 1)m−2 − (x− 1)m(x− 1)m−1 + 5(x− 1)m

= m(m− 1)(x− 1)m −m(x− 1)m + 5(x− 1)m = 0,

so m(m− 1)− 2m+ 5 = 0. By the quadratic formula then m1 = 1 + 2i and m2 = 1− 2i, and

the general solution is

y = (x− 1)
[
c1 cos

(
ln(x− 1)

)
+ c2

(
ln(x− 1)

)]
.

41. Letting t = x+ 2 we obtain dy/dx = dy/dt and, using the Chain Rule,

d2y

dx2
=

d

dx

(
dy

dt

)
=
d2y

dt2
dt

dx
=
d2y

dt2
(1) =

d2y

dt2
.
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CHAPTER 4 HIGHER-ORDER DIFFERENTIAL EQUATIONS

Substituting into the differential equation we obtain

t2
d2y

dt2
+ t

dy

dt
+ y = 0.

The auxiliary equation is m2 + 1 = 0 so that

y = c1 cos(ln 2t) + c2 sin(ln 2t) = c1 cos[ ln(x+ 2)] + c2 sin[ ln(x+ 2)].

42. Letting t = x− 4 we obtain dy/dx = dy/dt and, using the Chain Rule,

d2y

dx2
=

d

dx

(
dy

dt

)
=
d2y

dt2
dt

dx
=
d2y

dt2
(1) =

d2y

dt2
.

Substituting into the differential equation we obtain

t2
d2y

dt2
− 5t

dy

dt
+ 9y = 0.

The auxiliary equation is m(m−1)−5m+9 = m2−6m+9 = (m−3)2 = 0 so that m1 = m2 = 3.

Then

y = c1t
3 + c2t

3 ln t = c1(x− 4)3 + c2(x− 4)3 ln(x− 4).

Discussion Problems

43. In Problem 42 we must have x− 4 > 0 or x > 4. The largest interval over which the solution

is defined is (4, ∞).

44. If 1− i is a root of the auxiliary equation then so is 1 + i, and the auxiliary equation is

(m− 2)[m− (1 + i)][m− (1− i)] = m3 − 4m2 + 6m− 4 = 0.

We need m3−4m2+6m−4 to have the form m(m−1)(m−2)+bm(m−1)+cm+d. Expanding

this last expression and equating coefficients we get b = −1, c = 3, and d = −4. Thus, the

differential equation is

x3y′′′ − x2y′′ + 3xy′ − 4y = 0.

45. For x2y′′ = 0 the auxiliary equation is m(m− 1) = 0 and the general solution is y = c1 + c2x.

The initial conditions imply c1 = y0 and c2 = y1, so y = y0 + y1x. The initial conditions are

satisfied for all real values of y0 and y1.

For x2y′′ − 2xy′ + 2y = 0 the auxiliary equation is m2 − 3m + 2 = (m − 1)(m − 2) = 0 and

the general solution is y = c1x + c2x
2. The initial condition y(0) = y0 implies 0 = y0 and the

condition y′(0) = y1 implies c1 = y1. Thus, the initial conditions are satisfied for y0 = 0 and

for all real values of y1.
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4.7 Cauchy-Euler Equationq

For x2y′′ − 4xy′ + 6y = 0 the auxiliary equation is m2 − 5m+ 6 = (m− 2)(m− 3) = 0 and the

general solution is y = c1x
2 + c2x

3. The initial conditions imply y(0) = 0 = y0 and y′(0) = 0.

Thus, the initial conditions are satisfied only for y0 = y1 = 0.

46. The function y(x) = −
√
x cos(lnx) is defined for x > 0 and has x-intercepts where lnx =

π/2 + kπ for k an integer or where x = eπ/2+kπ. Solving π/2 + kπ = 0.5 we get k ≈ −0.34,

so eπ/2+kπ < 0.5 for all negative integers and the graph has infinitely many x-intercepts in the

interval (0, 0.5).

Computer Lab Assignments

47. The auxiliary equation is

2m(m− 1)(m− 2)− 10.98m(m− 1) + 8.5m+ 1.3 = 0,

so that m1 = −0.053299, m2 = 1.81164, m3 = 6.73166, and

y = c1x
−0.053299 + c2x

1.81164 + c3x
6.73166.

48. The auxiliary equation is

m(m− 1)(m− 2) + 4m(m− 1) + 5m− 9 = 0,

so that m1 = 1.40819 and the two complex roots are −1.20409±2.22291i. The general solution

of the differential equation is

y = c1x
1.40819 + x−1.20409[c2 cos(2.22291 lnx) + c3 sin(2.22291 lnx)].

49. The auxiliary equation is

m(m− 1)(m− 2)(m− 3) + 6m(m− 1)(m− 2) + 3m(m− 1)− 3m+ 4 = 0,

so that m1 = m2 =
√

2 and m3 = m4 = −
√

2 . The general solution of the differential equation

is

y = c1x
√
2 + c2x

√
2 lnx+ c3x

−
√
2 + c4x

−
√
2 lnx.

50. The auxiliary equation is

m(m− 1)(m− 2)(m− 3)− 6m(m− 1)(m− 2) + 33m(m− 1)− 105m+ 169 = 0,

so that m1 = m2 = 3 + 2i and m3 = m4 = 3 − 2i. The general solution of the differential

equation is

y = x3[c1 cos(2 lnx) + c2 sin(2 lnx)] + x3 lnx[c3 cos(2 lnx) + c4 sin(2 lnx)].
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CHAPTER 4 HIGHER-ORDER DIFFERENTIAL EQUATIONS

51. The auxiliary equation

m(m− 1)(m− 2)−m(m− 1)− 2m+ 6 = m3 − 4m2 +m+ 6 = 0

has roots m1 = −1, m2 = 2, and m3 = 3, so yc = c1x
−1 + c2x

2 + c3x
3. With y1 = x−1, y2 = x2,

y3 = x3, and the identification f(x) = 1/x, we get from (15) of Section 4.6 in the text

W1 = x3, W2 = −4, W3 = 3/x, and W = 12x.

Then u′1 = W1/W = x2/12, u′2 = W2/W = −1/3x, u′3 = 1/4x2, and integration gives

u1 =
x3

36
, u2 = −1

3
lnx, and u3 = − 1

4x
,

so

yp = u1y1 + u2y2 + u3y3 =
x3

36
x−1 + x2

(
−1

3
lnx

)
+ x3

(
− 1

4x

)
= −2

9
x2 − 1

3
x2 lnx,

and

y = yc + yp = c1x
−1 + c2x

2 + c3x
3 − 2

9
x2 − 1

3
x2 lnx, x > 0.

4.8 Green’s Functionsq

4.8 Green’s Functionsq

4.8.1 Initial-Value Problems

1. From the homogeneous differential equation y′′ − 16y = 0, we find y1 = e−4x and y2 = e4x so

W
(
e−4x, e4x

)
=

e−4x e4x

−4e−4x 4e4x
= 8.

Then

G(x, t) =
e−4te4x − e−4xe4t

8
=

1

8

[
e4(x−t) − e−4(x−t)

]
and

yp(x) =
1

8

∫ x

x0

[
e4(x−t) − e−4(x−t)

]
f(t)dt =

1

4

∫ x

x0

sinh 4(x− t)f(t)dt.

2. From the homogeneous differential equation y′′+ 3y′−10y = 0, we find y1 = e2x and y2 = e−5x

so

W
(
e2x, e−5x

)
=

e2x e−5x

2e2x −5e−5x
= −7e−3x
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4.8 Green’s Functionsq

Then

G(x, t) =
e2te−5x − e2xe−5t

−7e−3t
=

1

7

[
e2(x−t) − e−5(x−t)

]
and

yp(x) =
1

7

∫ x

x0

[
e2(x−t) − e−5(x−t)

]
f(t)dt.

3. From the homogeneous differential equation y′′ + 2y′ + y = 0, we find y1 = e−x and y2 = xe−x

so

W
(
e−x, xe−x

)
=

e−x xe−x

−e−x −xe−x + e−x
= e−2x

Then

G(x, t) =
e−txe−x − e−xte−t

e−2t
= (x− t)e−(x−t)

and

yp(x) =

∫ x

x0

(x− t)e−(x−t)f(t)dt.

4. From the homogeneous differential equation 4y′′−4y′+y = 0, we find y1 = ex/2 and y2 = xex/2

so

W
(
ex/2, xex/2

)
=

ex/2 xex/2

1
2 e

x/2 1
2 xe

x/2 + ex/2
= ex

Then

G(x, t) =
et/2xex/2 − ex/2tet/2

et
= (x− t)e(x−t)/2

and

yp(x) =

∫ x

x0

(x− t)e(x−t)/2 1

4
f(t)dt.

5. From the homogeneous differential equation y′′ + 9y = 0, we find y1 = cos 3x and y2 = sin 3x

so

W (cos 3x, sin 3x) =
cos 3x sin 3x

−3 sin 3x 3 cos 3x
= 3

Then

G(x, t) =
cos 3t sin 3x− cos 3x sin 3t

3
=

1

3
sin 3(x− t)

and

yp(x) =
1

3

∫ x

x0

sin 3(x− t)f(t)dt.
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CHAPTER 4 HIGHER-ORDER DIFFERENTIAL EQUATIONS

6. From the homogeneous differential equation y′′ − 2y′ + 2y = 0, we find y1 = ex cosx and

y2 = ex sinx so

W (ex cosx, ex sinx) =
ex cosx ex sinx

−ex sinx+ ex cosx ex cosx+ ex sinx
= e2x

Then

G(x, t) =
et cos tex sinx− ex cosxet sin t

e2t
= ex−t sin(x− t)

and

yp(x) =

∫ x

x0

ex−t sin(x− t)f(t)dt.

7. From y′′ − 16y = xe−2x we have

y = yc + yp = c1e
−4x + c2e

4x + yp,

so

y = c1e
−4x + c2e

4x +
1

4

∫ x

x0

sinh 4(x− t)te−2tdt.

8. From y′′ + 3y′ − 10y = x2 we have

y = yc + yp = c1e
2x + c2e

−5x + yp,

so

y = c1e
2x + c2e

−5x +
1

7

∫ x

x0

[
e2(x−t) − e−5(x−t)

]
t2dt.

9. From y′′ + 2y′ + y = e−x we have

y = yc + yp = c1e
−x + c2xe

−x + yp,

so

y = c1e
−x + c2xe

−x +

∫ x

x0

(x− t)e−(x−t)e−tdt.

10. From 4y′′ − 4y′ + y = arctanx we have

y = yc + yp = c1e
x/2 + c2xe

x/2 + yp,

so

y = c1e
x/2 + c2xe

x/2 +

∫ x

x0

(x− t)e(x−t)/2 1

4
arctan tdt.
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4.8 Green’s Functionsq

11. From y′′ + 9y = x+ sinx we have

y = yc + yp = c1 cos 3x+ c2 sin 3x+ yp,

so

y = c1 cos 3x+ c2 sin 3x+
1

3

∫ x

x0

sin 3(x− t)(t+ sin t)dt.

12. From y′′ − 2y′ + 2y = cos2 x we have

y = yc + yp = c1e
x cosx+ c2e

x sinx+ yp,

so

y = c1e
x cosx+ c2e

x sinx =

∫ x

x0

e(x−t) sin(x− t) cos2 tdt.

13. The initial-value problem is y′′ − 4y = e2x, y(0) = 0, y′(0) = 0. Then we find that

y1 = e−2x, y2 = e2x so W
(
e−2x, e2x

)
=

e−2x e2x

−2e−2x 2e2x
= 4.

Then G(x, t) =
e−2te2x − e−2xe2t

4
=

1

4

[
e2(x−t) − e−2(x−t)

]
and the solution of the initial-value

problem is

yp(x) =
1

4

∫ x

0

[
e2(x−t) − e−2(x−t)

]
e2tdt

=
1

4
e2x
∫ x

0
dt− 1

4
e−2x

∫ x

0
e4tdt =

1

4
xe2x − 1

16
e2x +

1

16
e−2x.

14. The initial-value problem is y′′ − y′ = 1, y(0) = 0, y′(0) = 0. Then we find that

y1 = 1, y2 = ex so W (1, ex) =
1 ex

0 ex
= ex.

Then G(x, t) =
ex − et

et
= ex−t − 1 and the solution of the initial-value problem is

yp(x) =

∫ x

0
(ex−t − 1)dt = ex

∫ x

0
e−tdt−

∫ x

0
dt = ex − x− 1.

15. The initial-value problem is y′′ − 10y′ + 25y = e5x, y(0) = 0, y′(0) = 0. Then we find that

y1 = e5x, y2 = xe5x so W
(
e5x, xe5x

)
=

e5x xe5x

5e5x 5xe5x + e5x
= e10x.
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CHAPTER 4 HIGHER-ORDER DIFFERENTIAL EQUATIONS

Then G(x, t) =
e5txe5x − e5xte5t

e10t
= (x− t)e5(x−t) and the solution of the initial-value problem

is

yp(x) =

∫ x

0
(x− t)e5(x−t)e5tdt = xe5x

∫ x

0
dt− e5x

∫ x

0
tdt = x2e5x − 1

2
x2e5x =

1

2
x2e5x.

16. The initial-value problem is y′′ + 6y′ + 9y = x, y(0) = 0, y′(0) = 0. Then we find that

y1 = e−3x, y2 = xe−3x so W
(
e−3x, xe−3x

)
=

e−3x xe−3x

−3e−3x −3xe−3x + e−3x
= e−6x.

Then G(x, t) =
e−3txe−3x − e−3xte−3t

e−6t
= (x − t)e−3(x−t) and the solution of the initial-value

problem is

yp(x) =

∫ x

0
(x− t)e−3(x−t)tdt = xe−3x

∫ x

0
te3tdt− e−3x

∫ x

0
t2e3tdt

=

(
−1

9
x+

1

9
xe−3x +

1

3
x2
)
−
(

2

27
− 2

27
e−3x − 2

9
x+

1

3
x2
)

=
2

27
e−3x +

1

9
xe−3x − 2

27
+

1

9
x.

17. The initial-value problem is y′′+ y = cscx cotx, y(π/2) = 0, y′(π/2) = 0. Then we find that

y1 = cosx, y2 = sinx so W (cosx, sinx) =
cosx sinx

− sinx cosx
= 1.

Then G(x, t) = cos t sinx−cosx sin t = sin(x−t) and the solution of the initial-value problem

is

yp(x) =

∫ x

π/2
(cos t sinx− cosx sin t) csc t cot t dt

= sinx

∫ x

π/2
cot2 tdt− cosx

∫ x

π/2
cot t dt

= sinx

∫ x

π/2
(csc2 t− 1)dt− cosx

∫ x

π/2
cot tdt

= sinx
(
− cotx− x+

π

2

)
− cosx (ln | sinx|)

= − cosx− x sinx+
π

2
sinx− cosx (ln | sinx|)

= − cosx+
π

2
sinx− x sinx− cosx (ln | sinx|) .
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4.8 Green’s Functionsq

18. The initial-value problem is y′′ + y = sec2 x, y(π) = 0, y′(π) = 0. Then we find that

y1 = cosx, y2 = sinx so W (cosx, sinx) =
cosx sinx

− sinx cosx
= 1.

Then G(x, t) = cos t sinx−cosx sin t = sin(x−t) and the solution of the initial-value problem

is

yp(x) =

∫ x

π
(cos t sinx− cosx sin t) sec2 t dt

= sinx

∫ x

π
sec tdt− cosx

∫ x

π
sec t tan tdt

= − cosx− 1 + sinx ln | secx+ tanx|.

19. The initial-value problem is y′′ − 4y = e2x, y(0) = 1, y′(0) = −4, so y(x) = c1e
−2x + c2e

2x.

The initial conditions give

−2c1 + 2c2 = −4

−2c1 + 2c2 = −4,

so c1 = 3
2 and c2 = −1

2 , which implies that yh = 3
2 e
−2x − 1

2 e
2x. Now, yp found in the solution

of Problem 13 in this section gives

y = yh + yp =
3

2
e−2x − 1

2
e2x +

(
1

4
xe2x − 1

16
e2x +

1

16
e−2x

)
=

25

16
e−2x − 9

16
e2x +

1

4
xe2x.

20. The initial-value problem is y′′−y′ = 1, y(0) = 10, y′(0) = 1, so y(x) = c1 + c2e
x. The initial

conditions give

c1 + c2 = 10

c2 = 11,

so c1 = 9 and c2 = 1, which implies that yh = 9 + ex. Now, yp found in the solution of Problem

14 in this section gives

y = yh + yp = 9 + ex + (ex − x− 1) = 8 + 2ex − x.
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CHAPTER 4 HIGHER-ORDER DIFFERENTIAL EQUATIONS

21. The initial-value problem is y′′ − 10y′ + 25y = e5x, y(0) = −1, y′(0) = 1, so y(x) =

c1e
5x + c2xe

5x. The initial conditions give

5c1 + c2 = −1

5c1 + c2 = −1,

so c1 = −1 and c2 = 6, which implies that yh = −e5x + 6xe5x. Now, yp found in the solution

of Problem 15 in this section gives

y = yh + yp = −e5x + 6xe5x +
1

2
x2e5x.

22. The initial-value problem is y′′ + 6y′ + 9y = x, y(0) = 1, y′(0) = −3, so

y(x) = c1e
−3x + c2xe

−3x. The initial conditions give

−3c1 + c2 = −1

−3c1 + c2 = −3,

so c1 = 1 and c2 = 0, which implies that yh = e−3x. Now, yp found in the solution of Problem

16 in this section gives

y = yh + yp = e−3x +

(
2

27
e−3x +

1

9
xe−3x − 2

27
+

1

9
x

)
=

29

27
e−3x +

1

9
xe−3x − 2

27
+

1

9
x.

23. The initial-value problem is y′′ + y = cscx cotx, y(π/2) = −π
2 , y

′(π/2) = −1, so y(x) =

c1 cosx+ c2 sinx. The initial conditions give

c2 = −π
2

−c1 + c2 = −1,

so c1 = 1 and c2 = −π
2 , which implies that yh = cosx− π

2 sinx. Now, yp found in the solution

of Problem 17 in this section gives

y = yh + yp = cosx− π

2
sinx+

(
− cosx+

π

2
sinx− x sinx− cos(ln | sinx|)

)
= −x sinx− cos(ln | sinx|).

24. The initial-value problem is y′′+y = sec2 x, y(π) = 1
2 , y

′(π) = −1, so y(x) = c1 cosx+c2 sinx.

The initial conditions give

−c1 − c2 = −1

2

−c2 = −1,
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4.8 Green’s Functionsq

so c1 = −1
2 and c2 = 1, which implies that yh = −1

2 cosx+sinx. Now, yp found in the solution

of Problem 18 in this section gives

y = yh + yp = −1

2
cosx+ sinx+ (− cosx− 1 + sinx ln | secx+ tanx|)

= −3

2
cosx+ sinx− 1 + sinx ln | secx+ tanx|.

25. The initial-value problem is y′′ + 3y′ + 2y = sin ex, y(0) = −1, y′(0) = 0, so y(x) =

c1e
−x + c2e

−2x. The initial conditions give

−c1 + 2c2 = −1

−c1 − 2c2 = −0,

so c1 = −2 and c2 = 1, which implies that yh = −2e−x + e−2x. The Wronskian is

W
(
e−x, e−2x

)
=

e−x e−2x

−e−x −2e−2x
= −e−3x.

Then G(x, t) =
e−te−2x − e−xe−2t

−e−3t
= e−xet − e2te−2x so

yp(x) =

∫ x

0
(e−xet − e2te−2x) sin etdt = e−x

∫ x

0
et sin etdt− e−2x

∫ x

0
e2t sin etdt

= e−x(− cos ex + cos 1)− e−2x(−ex cos ex + sin ex + cos 1− sin 1)

= e−x cos 1 + (sin 1− cos 1)e−2x − e−2x sin ex.

The solution of the initial-value problem is

y = yh + yp = −2e−x + e−2x +
(
e−x cos 1 + e−2x(sin 1− cos 1)− e−2x sin ex

)
= (cos 1− 2)e−x + (1 + sin 1− cos 1)e−2x − e−2x sin ex.

26. The initial-value problem is y′′ + 3y′ + 2y =
1

1 + ex
, y(0) = 0, y′(0) = −2, so y(x) =

c1e
−x + c2e

−2x. The initial conditions give

−c1 + 2c2 = 0

−c1 − 2c2 = 1,

so c1 = 1 and c2 = −1, which implies that yh = e−x − e−2x. The Wronskian is

W
(
e−x, e−2x

)
=

e−x e−2x

−e−x −2e−2x
= −e−3x.
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CHAPTER 4 HIGHER-ORDER DIFFERENTIAL EQUATIONS

Then G(x, t) =
e−te−2x − e−xe−2t

−e−3t
= e−xet − e2te−2x so

yp(x) =

∫ x

0
(e−xet − e2te−2x)

1

1 + et
dt = e−x

∫ x

0

et

1 + et
dt− e−2x

∫ x

0

e2t

1 + et
dt

= e−x[ln(1 + ex)− ln 2]− e−2x[ex − ln(1 + ex)− 1 + ln 2]

= e−x(−1− ln 2) + (1− ln 2)e−2x + e−x ln(1 + ex) + e−2x ln(1 + ex).

The solution of the initial-value problem is

y = yh + yp = e−x − e−2x +
[
e−x(−1− ln 2) + (1− ln 2)e−2x + e−x ln(1 + ex) + e−2x ln(1 + ex)

]
= −(ln 2)e−x − (ln 2)e−2x + e−x ln(1 + ex) + e−2x ln(1 + ex).

27. The Cauchy-Euler initial-value problem x2y′′ − 2xy′ + 2y = x, y(1) = 2, y′(1) = −1, has

auxiliary equation m(m−1)−2m+2 = m2−3m+2 = (m−1)(m−2) = 0 so m1 = 1, m2 = 2,

y(x) = c1x+ c2x
2, and y′ = c1 + 2c2x. The initial conditions give

c1 + 2c2 = −2

c1 + 2c2 = −1,

so c1 = 5 and c2 = −3, which implies that yh = 5x− 3x2. The Wronskian is

W
(
x, x2

)
=

x x2

1 2x2
= x2.

Then G(x, t) =
tx2 − xt2

t2
=
x(x− t)

t
. From the standard form of the differential equation we

identify the forcing function f(t) =
1

t
. Then, for x > 1,

yp(x) =

∫ x

1

x(x− t)
t

1

t
dt = x2

∫ x

1

1

t2
dt− x

∫ x

1

1

t
dt

= x2
(
−1

x
+ 1

)
− x(lnx− ln 1) = x2 − x− x lnx.

The solution of the initial-value problem is

y = yh + yp = (5x− 3x2) + (x2 − x− x lnx) = 4x− 2x2 − x lnx.
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4.8 Green’s Functionsq

28. The Cauchy-Euler initial-value problem x2y′′− 2xy′+ 2y = x lnx, y(1) = 1, y′(1) = 0, has

auxiliary equation m(m−1)−2m+2 = m2−3m+2 = (m−1)(m−2) = 0 so m1 = 1, m2 = 2,

y(x) = c1x+ c2x
2, and y′ = c1 + 2c2x. The initial conditions give

c1 + 2c2 = 1

c1 + 2c2 = 0,

so c1 = 2 and c2 = −1, which implies that yh = 2x− x2. The Wronskian is

W
(
x, x2

)
=

x x2

1 2x2
= x2.

Then G(x, t) =
tx2 − xt2

t2
=
x(x− t)

t
. From the standard form of the differential equation we

identify the forcing function f(t) =
ln t

t
. Then, for x > 1,

yp(x) =

∫ x

1

x(x− t)
t

ln t

t
dt = x2

∫ x

1
t−2 ln tdt− x

∫ x

1

ln t

t
dt

= x2
(
− lnx

x
− 1

x
+ 1

)
− x

(
1

2
(lnx)2

)
= x2 − x− x lnx− 1

2
x(lnx)2.

The solution of the initial-value problem is

y = yh + yp = (2x− x2) +

(
x2 − x− x lnx− 1

2
x(lnx)2

)
= x− x lnx− 1

2
x(lnx)2.

29. The Cauchy-Euler initial-value problem x2y′′ − 6y = lnx, y(1) = 1, y′(1) = 3, has aux-

iliary equation m(m − 1) − 6 = m2 − m − 6 = (m − 3)(m + 2) = 0 so m1 = 3, m2 = −2,

y(x) = c1x
3 + c2x

−2, and y′ = 3c1x
2 − 2c2x

−3. The initial conditions give

3c1 + 2c2 = 1

3c1 − 2c2 = 3,

so c1 = 1 and c2 = 0, which implies that yh = x3. The Wronskian is

W
(
x3, x−2

)
=

x3 x−2

3x2 −2x−3
= −5.
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CHAPTER 4 HIGHER-ORDER DIFFERENTIAL EQUATIONS

Then G(x, t) =
t3x−2 − x3t−2

−5
= −1

5

(
t3

x2
− x3

t2

)
. From the standard form of the differential

equation we identify the forcing function f(t) =
ln t

t2
. Then, for x > 1,

yp(x) =

∫ x

1

1

5

(
t3

x2
− x3

t2

)
ln t

t2
dt = −1

5
x−2

∫ x

1
t ln t dt+

1

5
x3
∫ x

1
t−4 ln tdt

= −1

5
x−2

(
−x

2

4
+

1

2
x2 lnx+

1

4

)
+

1

5
x3
(
− 1

9x3
− lnx

3x3
+

1

9

)
=

1

20
− 1

10
lnx− 1

20
x−2 − 1

45
− 1

15
lnx+

1

45
x3

=
1

36
− 1

6
lnx+

1

45
x3 − 1

20
x−2.

The solution of the initial-value problem is

y = yh + yp = x3 +

(
1

36
− 1

6
lnx+

1

45
x3 − 1

20
x−2

)
=

46

45
x3 − 1

20
x−2 +

1

36
− 1

6
lnx.

30. The Cauchy-Euler initial-value problem x2y′′ − xy′ + y = x2, y(1) = 4, y′(1) = 3, has

auxiliary equation m(m − 1) − m + 1 = m2 − 2m + 1 = (m − 1)2 = 0 so m1 = m2 = 1,

y(x) = c1x+ c2x lnx, and y′ = c1 + c2(1 + lnx). The initial conditions give

c1 + c2 = 4

c1 + c2 = 3,

so c1 = 4 and c2 = −1, which implies that yh = 4x− x lnx. The Wronskian is

W (x, x lnx) =
x x lnx

1 1 + lnx
= x.

Then G(x, t) =
tx lnx− xt ln t

t
= x lnx − x ln t. From the standard form of the differential

equation we identify the forcing function f(t) = 1. Then, for x > 1,

yp(x) =

∫ x

1
(x lnx− x ln t)dt = x lnx

∫ x

1
dt− x

∫ x

1
ln t dt

= x lnx(x− 1)− x(x lnx− x+ 1) = x2 − x− x lnx.

The solution of the initial-value problem is

y = yh + yp = 4x− x lnx+
(
x2 − x− x lnx

)
= x2 + 3x− 2x lnx.
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4.8 Green’s Functionsq

31. The initial-value problem is y′′ − y = f(x), y(0) = 8, y′(0) = 2, where f(x) =

{
−1, x < 0

−1, x ≥ 0.

We first find

yh(x) = 5ex + 3e−x and yp(x) =
1

2

∫ x

0

[
ex−t − e−(x−t)

]
f(t)dt.

Then for x < 0,

yp(x) = −1

2

∫ x

0
[ex−t − e−(x−t)]dt = −1

2
ex
∫ x

0
e−tdt+

1

2
e−x

∫ x

0
etdt

= −1

2
ex(1− e−x) +

1

2
e−x(ex − 1) = −1

2
ex +

1

2
+

1

2
− 1

2
e−x

= 1− 1

2
ex − 1

2
e−x,

yp(x) =
1

2

∫ x

0
[ex−t − e−(x−t)]dt =

1

2
ex
∫ x

0
e−tdt− 1

2
e−x
∫ x

0
etdtand for x ≥ 0

=
1

2
ex(1− e−x)− 1

2
e−x(ex − 1) =

1

2
ex − 1

2
− 1

2
+

1

2
e−x

= −1 +
1

2
ex +

1

2
e−x.

The solution is

y(x) = yh(x) + yp(x) = 5ex + 3e−x + yp(x),

yp(x) =

{
−1− 1

2 e
x − 1

2 e
−x, x < 0

−1 + 1
2 e

x + 1
2 e
−x, x ≥ 0

=

{
−1− coshx, x < 0

−1 + coshx, x ≥ 0.
where

32. The initial-value problem is y′′ − y = f(x), y(0) = 3, y′(0) = 2, where f(x) =

{
0, x < 0

x, x ≥ 0.

We first find

yh(x) =
5

2
ex +

1

2
e−x and yp(x) =

1

2

∫ x

0
[ex−t − e−(x−t)f(t)dt.

Then for x < 0,

yp(x) =
1

2

∫ x

0
[ex−t − e−(x−t)]0dt = 0,

yp(x) =
1

2

∫ x

0
[ex−t − e−(x−t)]tdt =

1

2
ex
∫ x

0
te−tdt− 1

2

∫ x

0
tetdtand for x ≥ 0

=
1

2
ex(1− e−x − xe−x)− 1

2
e−x(1− ex + xex)

=
1

2
ex − 1

2
− 1

2
x− 1

2
e−x +

1

2
− 1

2
x =

1

2
ex − 1

2
e−x − x.
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CHAPTER 4 HIGHER-ORDER DIFFERENTIAL EQUATIONS

The solution is

y(x) = yh(x) + yp(x) =
5

2
ex +

1

2
e−x + yp(x),

yp(x) =

{
0, x < 0
1
2 e

x − 1
2 e
−x − x, x ≥ 0

=

{
0, x < 0

sinhx− x, x ≥ 0.
where

33. The initial-value problem is y′′ + y = f(x), y(0) = 1, y′(0) = −1, where

f(x) =


10, x < 0

10, 0 ≤ x ≤ 3π

10, x > 3π.

We first find

yh(x) = cosx− sinx and yp(x) =

∫ x

0
sin(x− t)f(t)dt.

Then for x < 0

yp(x) =

∫ x

0
sin(x− t)0dt = 0,

yp(x) = 10

∫ x

0
sin(x− t)dt = 10− 10 cosx,for 0 ≤ x ≤ 3π

yp(x) = 10

∫ 3π

0
sin(x− t)dt+

∫ x

3π
sin(x− t)0dt = −20 cosx.and for x > 3π

The solution is

y(x) = yh(x) + yp(x) = cosx− sinx+ yp(x),

yp(x) =


−20, x < 0

−10− 10 cosx, 0 ≤ x ≤ 3π

−20 cosx, x > 3π.

where

34. The initial-value problem is y′′ + y = f(x), y(0) = 0, y′(0) = 1, where

f(x) =


0, x < 0

cosx, 0 ≤ x ≤ 4π

0, x > 4π.

We first find

yh(x) = sinx and yp(x) =

∫ x

0
sin(x− t)f(t)dt.
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4.8 Green’s Functionsq

Then for x < 0

yp(x) =

∫ x

0
sin(x− t)0dt = 0,

yp(x) =

∫ x

0
sin(x− t) cos tdt =

1

2
x sinx,for 0 ≤ x ≤ 4π

yp(x) =

∫ 4π

0
sin(x− t) cos tdt+

∫ x

4π
sin(x− t)0dt = 2π sinx.and for x > 4π

The solution is

y(x) = yh(x) + yp(x) = sinx+ yp(x),

yp(x) =


0, x < 0
1
2 x sinx, 0 ≤ x ≤ 4π

2π sinx, x > 4π.

where

To evaluate the integral of
∫

sin(x− t) cos t dt we use the facts that

sin(A−B) = sinA cosB − cosA sinB and cos(A−B) = cosA cosB + sinA sinB.

4.8.2 Boundary-Value Problems

35. The boundary-value problem is y′′ = f(x), y(0) = 0, y(1) = 0. The solution of the associated

homogeneous equation is y = c1 + c2x.

(a) To satisfy y(0) = 0 we take y1(x) = x and to satisfy y(1) = 0 we take y2(x) = x− 1. The

Wronskian of y1 and y2 is

W (y1, y2) =
x x− 1

1 1
= 1,

so

G(x, t) =

{
t(x− 1), 0 ≤ t ≤ x
x(t− 1), x ≤ t ≤ 1.

Therefore

yp(x) =

∫ 1

0
G(x, t) f(t)dt = (x− 1)

∫ x

0
tf(t)dt+ x

∫ 1

x
(t− 1)f(t)dt.
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CHAPTER 4 HIGHER-ORDER DIFFERENTIAL EQUATIONS

(b) By the Product Rule and the Fundamental Theorem of Calculus, the first two derivative

of yp(x) are

y′p(x) = (x− 1)xf(x) +

∫ x

0
tf(t)dt+ x[−(x− 1)f(x)] +

∫ 1

x
(t− 1)f(t)dt

y′′p(x) = (x− 1)[xf ′(x) + f(x)] + xf(x) + xf(x)

− [(x2 − x)f ′(x) + (2x− 1)f(x)]− (x− 1)f(x)

= x2f ′(x) + xf(x)− xf ′(x)− f(x) + xf(x) + xf(x)− x2f(x)

+ xf ′(x)− 2xf(x) + f(x)− xf(x) + f(x) = f(x)

Thus, yp(x) satisfies the differential equation. To see that the boundary conditions are

satisfied we compute

yp(0) = (0− 1)

∫ 0

0
tf(t)dt+ 0 ·

∫ 1

0
(t− 1)f(t)dt = 0

yp(1) = (1− 1)

∫ 1

0
tf(t)dt+ 1 ·

∫ 1

1
(t− 1)f(t)dt = 0.and

36. The boundary-value problem is y′′ = f(x), y(0) = 0, y(1) + y′(1) = 0. The solution of the

associated homogeneous equation is y = c1 + c2x.

(a) To satisfy y(0) = 0 we take y1(x) = x and to satisfy y(1) + y′(1) = 0 we note that

y(1) + y′(1) = (c1 + c2) + c2 = 0 which implies that c1 = −2c2. Taking c2 = 1, we find

that c1 = −2, so we have y2(x) = −2 + x. The Wronskian of y1 and y2 is

W (y1, y2) =
x −2 + x

1 1
= 2,

so

G(x, t) =

{
1
2 t(x− 2), 0 ≤ t ≤ x
1
2 x(t− 2), x ≤ t ≤ 1.

Therefore

yp(x) =

∫ 1

0
G(x, t) f(t)dt =

1

2
(x− 2)

∫ x

0
tf(t)dt+

1

2
x

∫ 1

x
(t− 2)f(t)dt.
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4.8 Green’s Functionsq

(b) By the Product Rule and the Fundamental Theorem of Calculus, the first two derivative

of yp(x) are

y′p(x) =
1

2
(x− 2)xf(x) +

1

2

∫ x

0
tf(t)dt+

1

2
x[−(x− 2)f(x)] +

1

2

∫ 1

x
(t− 2)f(t)dt

y′′p(x) =
1

2
(x− 2)[xf ′(x) + f(x)] +

1

2
xf(x) +

1

2
xf(x)

− 1

2
(x2 − 2x)f ′(x)− 1

2
(2x− 2)f(x)− 1

2
(x− 2)f(x)

=
1

2

[
x2f ′(x) + xf(x)− 2xf ′(x)− 2f(x) + xf(x) + xf(x)− x2f ′(x)

+ 2xf ′(x)− 2xf(x) + 2f(x)− xf(x) + 2f(x)
]

= f(x)

Thus, yp(x) satisfies the differential equation. To see that the boundary conditions are

satisfied we first compute

yp(0) =
1

2
(0− 2)

∫ 0

0
tf(t)dt+

1

2
(0)

∫ 1

0
(t− 2)f(t)dt = 0.

Next we use y′p(x) found at the beginning of this part of the solution to compute

yp(1) + y′p(1) =
1

2
(1− 2)

∫ 1

0
tf(t)dt+

1

2
(1)

∫ 1

1
(t− 2)f(t)dt+

1

2
(1− 2)f(x)

+
1

2

∫ 1

0
tf(t)dt+

1

2
(1)[−(1− 2)f(x)] +

1

2
(1)

∫ 1

1
(1− 2)f(t)dt

=
1

2
(−1)

∫ 1

0
tf(t)dt+

1

2
(−1)f(1) +

1

2

∫ 1

0
tf(t)dt+

1

2
f(1) = 0.

37. If f(x) = 1 in Problem 35, then

yp(x) = (x− 1)

∫ x

0
tdt+ x

∫ 1

x
(t− 1)dt =

1

2
x2 − 1

2
x.

38. If f(x) = x in Problem 36, then

yp(x) =
1

2
(x− 2)

∫ x

0
t2dt+

1

2
x

∫ 1

x
(t− 2)tdt =

1

6
x3 − 1

3
x.

39. The boundary-value problem is y′′+y = 1, y(0) = 0, y(1) = 0. The solution of the associated

homogeneous equation is y = c1 cosx + c2 sinx. Since y(0) = c1 cos 0 + c2 sin 0 = c1 = 0, we

take y1(x) = sinx. To satisfy y(1) = 0 we note that y(1) = c1 cos 1 + c2 sin 1 = 0 which implies

that c1 = −c2 sin 1/ cos 1 so

y(x) = −c2
sin 1

cos 1
cosx+ c2 sinx = − c2

cos 1
(sinx cos 1− cosx sin 1) .
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CHAPTER 4 HIGHER-ORDER DIFFERENTIAL EQUATIONS

Taking c2 = − cos 1, we have

y2(x) = sinx cos 1− cosx sin 1 = sin(x− 1).

The Wronskian of y1 and y2 is

W (y1, y2) =
sinx sin(x− 1)

cosx cos(x− 1)
= sinx cos(x− 1)− cosx sin(x− 1) = sin[x− (x− 1)] = sin 1,

so

G(x, t) =


sin t sin(x− 1)

sin 1
, 0 ≤ t ≤ x

sinx sin(t− 1)

sin 1
, x ≤ t ≤ 1.

Therefore, taking f(t) = 1,

yp(x) =

∫ 1

0
G(x, t) dt =

sin(x− 1)

sin 1

∫ x

0
sin tdt+

sinx

sin 1

∫ 1

x
sin(t− 1)dt

=
sin(x− 1)

sin 1
(− cosx+ 1) +

sinx

sin 1
[−1 + cos(x− 1)] =

sin(x− 1)

sin 1
− sinx

sin 1
+ 1.

40. The boundary-value problem is y′′ + 9y = 1, y(0) = 0, y′(π) = 0. The solution of the

associated homogeneous equation is y = c1 cos 3x+ c2 sin 3x. Since y(0) = c1 cos 0 + c2 sin 0 =

c1 = 0, we take y1(x) = sin 3x. Since y′(x) = −3c1 sin 3x+ 3c2 cos 3x we see that y′(π) = −3c2.

Then y′(π) = 0, implies that −3c2 = 0 or c2 = 0. Taking c1 = 1 we have y2(x) = cos 3x. The

Wronskian of y1 and y2 is

W (y1, y2) =
sin 3x cos 3x

3 cos 3x −3 sin 3x
= −3,

so

G(x, t) =

−
1
3 sin 3t cos 3x, 0 ≤ t ≤ x

−1
3 sin 3x cos 3t, x ≤ t ≤ π.

Therefore, taking f(t) = 1,

yp(x) =

∫ π

0
G(x, t) dt = −1

3
cos 3x

∫ x

0
sin 3tdt− 1

3
sin 3x

∫ π

x
cos 3tdt

= −1

3
cos 3x

(
1

3
− 1

3
cos 3x

)
− 1

3
sin 3x

(
−1

3
sin 3x

)
=

1

9
− 1

9
cos 3x.

41. The boundary-value problem is y′′ − 2y′ + 2y = ex, y(0) = 0, y(π/2) = 0. The auxiliary

equation is

m2 − 2m+ 2 = 0 so m =
2±
√

4− 8

2
= 1± i.
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4.8 Green’s Functionsq

The solution of the associated homogeneous equation is then y = ex (c1 cosx+ c2 sinx). It is

easily seen that

y1(x) = ex sinx and y2(x) = ex cosx

satisfy the boundary conditions. The Wronskian of y1 and y2 is

W (y1, y2) =
ex sinx ex cosx

ex cosx+ ex sinx −ex sinx+ ex cosx

= e2x
[
− sin2 x+ sinx cosx− (cos2 x+ sinx cosx)

]
= −e2x,

so

G(x, t) =


et sin tex cosx

−e2t
, 0 ≤ t ≤ x

ex sinxet cos t

−e2t
, x ≤ t ≤ π/2.

Therefore, taking f(t) = et,

yp(x) =

∫ π/2

0
G(x, t) etdt = −ex cosx

∫ x

0
sin tdt− ex sinx

∫ π/2

x
cos tdt

= −ex cosx(1− cosx)− ex sinx(1− sinx) = −ex cosx− ex sinx+ ex.

42. The boundary-value problem is y′′ − y′ = e2x, y(0) = 0, y(1) = 0. The solution of the

associated homogeneous equation is y = c1 + c2e
x. Since y(0) = c1 + c2 = 0, we see that

c1 = −c2 and we take y1(x) = 1 − ex. To satisfy y(1) = 0 we note that y(1) = c1 + c2e = 0

which implies that c1 = −c2e so

y(x) = −c2e+ c2e
x = −c2e(1− ex−1).

Taking c2 = −1/e, we have y2(x) = 1− ex−1. The Wronskian of y1 and y2 is

W (y1, y2) =
1− ex 1− ex−1

−ex −ex−1
= −ex−1 + e2x−1 + ex − e2x−1 = ex − ex−1 = ex(1− e−1),

so

G(x, t) =


(1− et)(1− ex−1)

et(1− e−1)
, 0 ≤ t ≤ x

(1− ex)(1− et−1)
et(1− e−1)

, x ≤ t ≤ 1.
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CHAPTER 4 HIGHER-ORDER DIFFERENTIAL EQUATIONS

Therefore, taking f(t) = e2t,

yp(x) =

∫ 1

0
G(x, t) e2tdt =

1− ex−1

1− e−1

∫ x

0
(et − e2t)dt+

1− ex

1− e−1

∫ 1

x
(et − e2t−1)dt

=
1− ex−1

1− e−1

(
ex − 1

2
e2x − 1

2

)
+

1− ex

1− e−1

(
1

2
e− ex +

1

2
e2x−1

)

=
1

2
e2x − 1

2
ex =

1

2
ex+1 +

1

2
e.

43. The Cauchy-Euler boundary-value problem x2y′′+xy′ = 1, y(e−1) = 0, y(1) = 0 has auxiliary

equation m(m−1)+m = m2 = 0 so y(x) = c1+c2 lnx. Since y(e−1) = c1+c2 ln e−1 = c1−c2 =

0, c1 = c2 and y(x) = c2 + c2 lnx = c2(1 + lnx). Taking c2 = 1 we have y1(x) = 1 + lnx. To

satisfy y(1) = 0 we note that y(1) = c1 + c2 ln 1 = c1 = 0 which implies that y(x) = c2 lnx.

Taking c2 = 1 we find y2(x) = lnx. The Wronskian of y1 and y2 is

W (y1, y2) =
1 + lnx lnx

1/x 1/x
=

1

x
,

so

G(x, t) =


(1 + ln t)(lnx)

1/t
, 0 ≤ t ≤ x

(1 + lnx)(ln t)

1/t
, x ≤ t ≤ 1.

From the standard form of the differential equation we identify the forcing function f(t) =
1

t2
.

Then,

yp(x) =

∫ 1

e−1

G(x, t)
1

t2
dt = lnx

∫ x

e−1

(
1

t
+

ln t

t

)
dt+ (1 + lnx)

∫ 1

x

ln t

t
dt

= (lnx)

(
lnx+

1

2
(lnx)2 +

1

2

)
+ (1 + lnx)

(
−1

2
(lnx)2

)
=

1

2
(lnx)2 +

1

2
lnx.

44. The Cauchy-Euler boundary-value problem x2y′′−4xy′+ 6y = x4, y(1)−y′(1) = 0, y(3) = 0

has auxiliary equation m(m − 1) − 4m + 6 = m2 − 5m + 6 = (m − 2)(m − 3) = 0 so y(x) =

c1x
2 + c2x

3. Since y(1)−y′(1) = (c1 + c2)− (2c1 + 3c2) = −c1−2c2 = 0 we have c1 = −2c2 and

y(x) = −2c2x
2 + c2x

3. Taking c2 = −1 we have y1(x) = 2x2 − x3. From y(3) = 9c1 + 27c2 = 0

we have c1 = −3c2, so y(x) = −3c2x
2 + c2x

3 = −c2(3x2 − x3). Again, letting c2 = −1 we have

y2(x) = 3x2 − x3. The Wronskian of y1 and y2 is

W (y1, y2) =
2x2 − x3 3x2 − x3

4x− 3x2 6x− 3x2
= x4,
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4.8 Green’s Functionsq

so

G(x, t) =


(2t2 − t3)(3x2 − x3)

t4
, 0 ≤ t ≤ x

(2x2 − x3)(3t2 − t3)
t4

, x ≤ t ≤ 3.

From the standard form of the differential equation we identify the forcing function f(t) = t2.

Then,

yp(x) =

∫ 3

1
G(x, t) t2dt = (3x2 − x3)

∫ x

1
(2− t)dt+ (2x2 − x3)

∫ 3

x
(3− t)dt

= (3x2 − x3)
(

2x− 1

2
x2 − 3

2

)
+ (2x2 − x3)

(
9

2
− 3x+

1

2
x2
)

=
9

2
x2 − 3x3 +

1

2
x4.

Discussion Problems

45. Let L =
d2

dx2
+ P

d

dx
+Q be a differential operator. If

y(x) = yp(x) +
B

y1(b)
y1(x) +

A

y2(a)
y2(x)

L(y) =

f(x)︷ ︸︸ ︷
L(yp) +

B

y1(b)

0︷ ︸︸ ︷
L(y1) +

A

y2(a)

0︷ ︸︸ ︷
L(y2) = f(x).then

Moreover,

y(a) =

0︷ ︸︸ ︷
yp(a) +

B

y1(b)

0︷ ︸︸ ︷
y1(a) +

A

y2(a)
y2(a) = A

y(b) =

0︷ ︸︸ ︷
yp(b) +

B

y1(b)
y1(b) +

A

y2(a)

0︷ ︸︸ ︷
y2(b) = B.and

Now it was assumed at the start of the discussions on boundary-value problems that

y′′ + Py′ +Qy = 0 y(a) = 0, y(b) = 0

possessed only the trivial solution y = 0. But if the general solution of the differential equation

is y(x) = c1y1(x) + c2y2(x), then

y(a) = c1y1(a) + c2y2(a) = 0

y(b) = c1y1(b) + c2y2(b) = 0.
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CHAPTER 4 HIGHER-ORDER DIFFERENTIAL EQUATIONS

This system will have a unique trivial solution for c1 and c2 if and only if

W (y1, y2) =
y1(a) y2(a)

y1(b) y2(b)
=

0︷ ︸︸ ︷
y1(a) +

0︷ ︸︸ ︷
y2(b)− y2(a)y1(b) 6= 0.

This requires y1(b) 6= 0 and y2(a) 6= 0.

46. From Problem 39 in this section,

yp(x) =

∫ 1

0
G(x, t) dt =

sin(x− 1)

sin 1
− sinx

sin 1
+ 1,

where y1(x) = sinx and y2(x) = sin(x − 1). Therefore, using Problem 45 above, with A = 5

and B = −10 the solution of the boundary-value problem y′′ + y = 1, y(0) = 5, y(1) = −10

is

y(x) =
sin(x− 1)

sin 1
− sinx

sin 1
+ 1 +

(−10)

sin 1
sinx+

5

sin(−1)
sin(x− 1)

y(x) = −4
sin(x− 1)

sin 1
− 11

sinx

sin 1
+ 1.or

4.9 Solving Systems of Linear DEs by Eliminationq

4.9 Solving Systems of Linear DEs by Eliminationq

1. FromDx = 2x−y andDy = x we obtain y = 2x−Dx, Dy = 2Dx−D2x, and (D2−2D+1)x = 0.

The solution is

x = c1e
t + c2te

t

y = (c1 − c2)et + c2te
t.

2. From Dx = 4x + 7y and Dy = x − 2y we obtain y = 1
7Dx −

4
7x, Dy = 1

7D
2x − 4

7Dx, and

(D2 − 2D − 15)x = 0. The solution is

x = c1e
5t + c2e

−3t

y =
1

7
c1e

5t − c2e−3t.

3. From Dx = −y+ t and Dy = x− t we obtain y = t−Dx, Dy = 1−D2x, and (D2 +1)x = 1+ t.

The solution is

x = c1 cos t+ c2 sin t+ 1 + t

y = c1 sin t− c2 cos t+ t− 1.
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4.9 Solving Systems of Linear DEs by Eliminationq

4. From Dx− 4y = 1 and x+Dy = 2 we obtain y = 1
4Dx−

1
4 , Dy = 1

4D
2x, and (D2 + 1)x = 2.

The solution is

x = c1 cos t+ c2 sin t+ 2

y =
1

4
c2 cos t− 1

4
c1 sin t− 1

4
.

5. From (D2 + 5)x − 2y = 0 and −2x + (D2 + 2)y = 0 we obtain y = 1
2(D2 + 5)x,

D2y = 1
2(D4 + 5D2)x, and (D2 + 1)(D2 + 6)x = 0. The solution is

x = c1 cos t+ c2 sin t+ c3 cos
√

6 t+ c4 sin
√

6 t

y = 2c1 cos t+ 2c2 sin t− 1

2
c3 cos

√
6 t− 1

2
c4 sin

√
6 t.

6. From (D + 1)x + (D − 1)y = 2 and 3x + (D + 2)y = −1 we obtain x = −1
3 −

1
3(D + 2)y,

Dx = −1
3(D2 + 2D)y, and (D2 + 5)y = −7. The solution is

y = c1 cos
√

5 t+ c2 sin
√

5 t− 7

5

x =

(
−2

3
c1 −

√
5

3
c2

)
cos
√

5 t+

(√
5

3
c1 −

2

3
c2

)
sin
√

5 t+
3

5
.

7. From D2x = 4y + et and D2y = 4x − et we obtain y = 1
4D

2x − 1
4e
t, D2y = 1

4D
4x − 1

4e
t, and

(D2 + 4)(D − 2)(D + 2)x = −3et. The solution is

x = c1 cos 2t+ c2 sin 2t+ c3e
2t + c4e

−2t +
1

5
et

y = −c1 cos 2t− c2 sin 2t+ c3e
2t + c4e

−2t − 1

5
et.

8. From (D2 + 5)x+Dy = 0 and (D + 1)x+ (D − 4)y = 0 we obtain (D − 5)(D2 + 4)x = 0 and

(D − 5)(D2 + 4)y = 0. The solution is

x = c1e
5t + c2 cos 2t+ c3 sin 2t

y = c4e
5t + c5 cos 2t+ c6 sin 2t.

Substituting into (D + 1)x+ (D − 4)y = 0 gives

(6c1 + c4)e
5t + (c2 + 2c3 − 4c5 + 2c6) cos 2t+ (−2c2 + c3 − 2c5 − 4c6) sin 2t = 0

so that c4 = −6c1, c5 = 1
2c3, c6 = −1

2c2, and

y = −6c1e
5t +

1

2
c3 cos 2t− 1

2
c2 sin 2t.

231

© 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part, except for use as permitted in a license distributed 
with a certain product or service or otherwise on a password-protected website for classroom use. Not For Sale

©
 C

en
ga

ge
 L

ea
rn

in
g.

 A
ll 

rig
ht

s r
es

er
ve

d.
 N

o 
di

st
rib

ut
io

n 
al

lo
w

ed
 w

ith
ou

t e
xp

re
ss

 a
ut

ho
riz

at
io

n.



CHAPTER 4 HIGHER-ORDER DIFFERENTIAL EQUATIONS

9. From Dx + D2y = e3t and (D + 1)x + (D − 1)y = 4e3t we obtain D(D2 + 1)x = 34e3t and

D(D2 + 1)y = −8e3t. The solution is

y = c1 + c2 sin t+ c3 cos t− 4

15
e3t

x = c4 + c5 sin t+ c6 cos t+
17

15
e3t.

Substituting into (D + 1)x+ (D − 1)y = 4e3t gives

(c4 − c1) + (c5 − c6 − c3 − c2) sin t+ (c6 + c5 + c2 − c3) cos t = 0

so that c4 = c1, c5 = c3, c6 = −c2, and

x = c1 − c2 cos t+ c3 sin t+
17

15
e3t.

10. From D2x−Dy = t and (D + 3)x+ (D + 3)y = 2 we obtain D(D + 1)(D + 3)x = 1 + 3t and

D(D + 1)(D + 3)y = −1− 3t. The solution is

x = c1 + c2e
−t + c3e

−3t − t+
1

2
t2

y = c4 + c5e
−t + c6e

−3t + t− 1

2
t2.

Substituting into (D + 3)x+ (D + 3)y = 2 and D2x−Dy = t gives

3(c1 + c4) + 2(c2 + c5)e
−t = 2

and

(c2 + c5)e
−t + 3(3c3 + c6)e

−3t = 0

so that c4 = −c1, c5 = −c2, c6 = −3c3, and

y = −c1 − c2e−t − 3c3e
−3t + t− 1

2
t2.

11. From (D2 − 1)x− y = 0 and (D − 1)x+Dy = 0 we obtain y = (D2 − 1)x, Dy = (D3 −D)x,

and (D − 1)(D2 +D + 1)x = 0. The solution is

x = c1e
t + e−t/2

[
c2 cos

√
3

2
t+ c3 sin

√
3

2
t

]

y =

(
−3

2
c2 −

√
3

2
c3

)
e−t/2 cos

√
3

2
t+

(√
3

2
c2 −

3

2
c3

)
e−t/2 sin

√
3

2
t.
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4.9 Solving Systems of Linear DEs by Eliminationq

12. From (2D2−D−1)x−(2D+1)y = 1 and (D−1)x+Dy = −1; (2D+1)(D−1)(D+1)x = −1

and (2D + 1)(D + 1)y = −2. The solution is

x = c1e
−t/2 + c2e

−t + c3e
t + 1

y = c4e
−t/2 + c5e

−t − 2.

Substituting into (D − 1)x+Dy = −1 gives(
−3

2
c1 −

1

2
c4

)
e−t/2 + (−2c2 − c5)e−t = 0

so that c4 = −3c1, c5 = −2c2, and

y = −3c1e
−t/2 − 2c2e

−t − 2.

13. From (2D − 5)x + Dy = et and (D − 1)x + Dy = 5et we obtain Dy = (5 − 2D)x + et and

(4−D)x = 4et. Then

x = c1e
4t +

4

3
et

and Dy = −3c1e
4t + 5et so that

y = −3

4
c1e

4t + c2 + 5et.

14. From Dx + Dy = et and (−D2 + D + 1)x + y = 0 we obtain y = (D2 − D − 1)x,

Dy = (D3 −D2 −D)x, and D2(D − 1)x = et. The solution is

x = c1 + c2t+ c3e
t + tet

y = −c1 − c2 − c2t− c3et − tet + et.

15. Multiplying the first equation by D+ 1 and the second equation by D2 + 1 and subtracting we

obtain (D4 −D2)x = 1. Then

x = c1 + c2t+ c3e
t + c4e

−t − 1

2
t2.

Multiplying the first equation by D + 1 and subtracting we obtain D2(D + 1)y = 1. Then

y = c5 + c6t+ c7e
−t − 1

2
t2.

Substituting into (D − 1)x+ (D2 + 1)y = 1 gives

(−c1 + c2 + c5 − 1) + (−2c4 + 2c7)e
−t + (−1− c2 + c6)t = 1

so that c5 = c1 − c2 + 2, c6 = c2 + 1, and c7 = c4. The solution of the system is

x = c1 + c2t+ c3e
t + c4e

−t − 1

2
t2

y = (c1 − c2 + 2) + (c2 + 1)t+ c4e
−t − 1

2
t2.

233

© 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part, except for use as permitted in a license distributed 
with a certain product or service or otherwise on a password-protected website for classroom use. Not For Sale

©
 C

en
ga

ge
 L

ea
rn

in
g.

 A
ll 

rig
ht

s r
es

er
ve

d.
 N

o 
di

st
rib

ut
io

n 
al

lo
w

ed
 w

ith
ou

t e
xp

re
ss

 a
ut

ho
riz

at
io

n.



CHAPTER 4 HIGHER-ORDER DIFFERENTIAL EQUATIONS

16. From D2x − 2(D2 + D)y = sin t and x + Dy = 0 we obtain x = −Dy, D2x = −D3y, and

D(D2 + 2D + 2)y = − sin t. The solution is

y = c1 + c2e
−t cos t+ c3e

−t sin t+
1

5
cos t+

2

5
sin t

x = (c2 + c3)e
−t sin t+ (c2 − c3)e−t cos t+

1

5
sin t− 2

5
cos t.

17. From Dx = y, Dy = z. and Dz = x we obtain x = D2y = D3x so that (D−1)(D2+D+1)x = 0,

x = c1e
t + e−t/2

[
c2 sin

√
3

2
t+ c3 cos

√
3

2
t

]
,

y = c1e
t +

(
−1

2
c2 −

√
3

2
c3

)
e−t/2 sin

√
3

2
t+

(√
3

2
c2 −

1

2
c3

)
e−t/2 cos

√
3

2
t,

and

z = c1e
t +

(
−1

2
c2 +

√
3

2
c3

)
e−t/2 sin

√
3

2
t+

(
−
√

3

2
c2 −

1

2
c3

)
e−t/2 cos

√
3

2
t.

18. From Dx+ z = et, (D − 1)x+Dy +Dz = 0, and x+ 2y +Dz = et we obtain z = −Dx+ et,

Dz = −D2x+ et, and the system (−D2 +D−1)x+Dy = −et and (−D2 + 1)x+ 2y = 0. Then

y = 1
2(D2 − 1)x, Dy = 1

2D(D2 − 1)x, and (D − 2)(D2 + 1)x = −2et so that the solution is

x = c1e
2t + c2 cos t+ c3 sin t+ et

y =
3

2
c1e

2t − c2 cos t− c3 sin t

z = −2c1e
2t − c3 cos t+ c2 sin t.

19. Write the system in the form

Dx− 6y = 0

x−Dy + z = 0

x+ y −Dz = 0.

Multiplying the second equation by D and adding to the third equation we obtain

(D + 1)x− (D2 − 1)y = 0. Eliminating y between this equation and Dx− 6y = 0 we find

(D3 −D − 6D − 6)x = (D + 1)(D + 2)(D − 3)x = 0.

Thus

x = c1e
−t + c2e

−2t + c3e
3t,
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4.9 Solving Systems of Linear DEs by Eliminationq

and, successively substituting into the first and second equations, we get

y = −1

6
c1e
−t − 1

3
c2e
−2t +

1

2
c3e

3t

z = −5

6
c1e
−t − 1

3
c2e
−2t +

1

2
c3e

3t.

20. Write the system in the form

(D + 1)x− z = 0

(D + 1)y − z = 0

x− y +Dz = 0.

Multiplying the third equation by D + 1 and adding to the second equation we obtain

(D + 1)x+ (D2 +D − 1)z = 0. Eliminating z between this equation and (D + 1)x− z = 0 we

find D(D + 1)2x = 0. Thus

x = c1 + c2e
−t + c3te

−t,

and, successively substituting into the first and third equations, we get

y = c1 + (c2 − c3)e−t + c3te
−t

z = c1 + c3e
−t.

21. From (D+5)x+y = 0 and 4x−(D+1)y = 0 we obtain y = −(D+5)x so thatDy = −(D2+5D)x.

Then 4x+ (D2 + 5D)x+ (D + 5)x = 0 and (D + 3)2x = 0. Thus

x = c1e
−3t + c2te

−3t

y = −(2c1 + c2)e
−3t − 2c2te

−3t.

Using x(1) = 0 and y(1) = 1 we obtain

c1e
−3 + c2e

−3 = 0

−(2c1 + c2)e
−3 − 2c2e

−3 = 1

or

c1 + c2 = 0

2c1 + 3c2 = −e3.

Thus c1 = e3 and c2 = −e3. The solution of the initial value problem is

x = e−3t+3 − te−3t+3

y = −e−3t+3 + 2te−3t+3.
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CHAPTER 4 HIGHER-ORDER DIFFERENTIAL EQUATIONS

22. FromDx−y = −1 and 3x+(D−2)y = 0 we obtain x = −1
3(D−2)y so thatDx = −1

3(D2−2D)y.

Then −1
3(D2 − 2D)y = y − 1 and (D2 − 2D + 3)y = 3. Thus

y = et
(
c1 cos

√
2 t+ c2 sin

√
2 t
)

+ 1

and

x =
1

3
et
[(
c1 −

√
2 c2

)
cos
√

2 t+
(√

2 c1 + c2

)
sin
√

2 t
]

+
2

3
.

Using x(0) = y(0) = 0 we obtain

c1 + 1 = 0

r
1

3

(
c1 −

√
2 c2

)
+

2

3
= 0.

Thus c1 = −1 and c2 =
√

2/2. The solution of the initial value problem is

x = et

(
−2

3
cos
√

2 t−
√

2

6
sin
√

2 t

)
+

2

3

y = et

(
− cos

√
2 t+

√
2

2
sin
√

2 t

)
+ 1.

Mathematical Models

23. Equating Newton’s law with the net forces in the x- and y-directions gives md2x/dt2 = 0

and md2y/dt2 = −mg, respectively. From mD2x = 0 we obtain x(t) = c1t + c2, and from

mD2y = −mg or D2y = −g we obtain y(t) = −1
2gt

2 + c3t+ c4.

24. From Newton’s second law in the x-direction we have

m
d2x

dt2
= −k cos θ = −k 1

v

dx

dt
= −|c|dx

dt
.

In the y-direction we have

m
d2y

dt2
= −mg − k sin θ = −mg − k 1

v

dy

dt
= −mg − |c|dy

dt
.

FrommD2x+|c|Dx = 0 we haveD(mD+|c|)x = 0. Then (mD+|c|)x = c1 or (D+|c|/m)x = c2.

This is a linear first-order differential equation. An integrating factor is e
∫
|c|dt/m = e|c|t/m so

that
d

dt
[e|c|t/mx] = c2e

|c|t/m

and e|c|t/mx = (c2m/|c|)e|c|t/m + c3. The general solution of this equation is

x(t) = c4 + c3e
−|c|t/m.
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4.9 Solving Systems of Linear DEs by Eliminationq

From (mD2+|c|D)y = −mg we have D(mD+|c|)y = −mg so that (mD+|c|)y = −mgt+c1
or (D + |c|/m)y = −gt + c2. This is a linear first-order differential equation with integrating

factor e
∫
|c|dt/m = e|c|t/m. Thus

d

dt
[e|c|t/my] = (−gt+ c2)e

|c|t/m

e|c|t/my = −mg
|c|

te|c|t/m +
m2g

c2
e|c|t/m + c3e

|c|t/m + c4

and

y(t) = −mg
|c|

t+
m2g

c2
+ c3 + c4e

−|c|t/m.

Discussion Problems

25. Multiplying the first equation by D + 1 and the second equation by D we obtain

D(D + 1)x− 2D(D + 1)y = 2t+ t2

D(D + 1)x− 2D(D + 1)y = 0.

This leads to 2t+ t2 = 0, so the system has no solution.

Computer Lab Assignments

26. The FindRoot application of Mathematica gives a solution of x1(t) = x2(t) as approximately

t = 13.73 minutes. So tank B contains more salt than tank A for t > 13.73 minutes.

27. (a) Separating variables in the first equation, we have dx1/x1 = −dt/50, so x1 = c1e
−t/50.

From x1(0) = 15 we get c1 = 15. The second differential equation then becomes

dx2
dt

=
15

50
e−t/50 − 2

75
x2 or

dx2
dt

+
2

75
x2 =

3

10
e−t/50.

This differential equation is linear and has the integrating factor e
∫
2 dt/75 = e2t/75. Then

d

dt
[e2t/75x2] =

3

10
e−t/50+2t/75 =

3

10
et/150

so

e2t/75x2 = 45et/150 + c2

and
x2 = 45e−t/50 + c2e

−2t/75.

From x2(0) = 10 we get c2 = −35. The third differential equation then becomes

dx3
=

90
e−t/50 − 70

e−2t/75 − 1
x3
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CHAPTER 4 HIGHER-ORDER DIFFERENTIAL EQUATIONS

or
dx3
dt

+
1

25
x3 =

6

5
e−t/50 − 14

15
e−2t/75.

This differential equation is linear and has the integrating factor e
∫
dt/25 = et/25. Then

d

dt
[et/25x3] =

6

5
e−t/50+t/25 − 14

15
e−2t/75+t/25 =

6

5
et/50 − 14

15
et/75,

so

et/25x3 = 60et/50 − 70et/75 + c3

and
x3 = 60e−t/50 − 70e−2t/75 + c3e

−t/25.

From x3(0) = 5 we get c3 = 15. The solution of the initial-value problem is

x1(t) = 15e−t/50

x2(t) = 45e−t/50 − 35e−2t/75

x3(t) = 60e−t/50 − 70e−2t/75 + 15e−t/25.

(b) x

(c) Solving x1(t) = 1
2 , x2(t) = 1

2 , and x3(t) = 1
2 , FindRoot gives, respectively,

t1 = 170.06 min, t2 = 214.7 min, and t3 = 224.4 min. Thus, all three tanks will con-

tain less than or equal to 0.5 pounds of salt after 224.4 minutes.
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4.10 Nonlinear Differential Equationsq

4.10 Nonlinear Differential Equationsq

4.10 Nonlinear Differential Equationsq

1. We have y′1 = y′′1 = ex, so

(y′′1)2 = (ex)2 = e2x = y21.

Also, y′2 = − sinx and y′′2 = − cosx, so

(y′′2)2 = (− cosx)2 = cos2 x = y22.

However, if y = c1y1 +c2y2, we have (y′′)2 = (c1e
x−c2 cosx)2 and y2 = (c1e

x+c2 cosx)2. Thus

(y′′)2 6= y2.

2. We have y′1 = y′′1 = 0, so

y1y
′′
1 = 1 · 0 = 0 =

1

2
(0)2 =

1

2
(y′1)

2.

Also, y′2 = 2x and y′′2 = 2, so

y2y
′′
2 = x2(2) = 2x2 =

1

2
(2x)2 =

1

2
(y′2)

2.

However, if y = c1y1 + c2y2, we have yy′′ = (c1 · 1 + c2x
2)(c1 · 0 + 2c2) = 2c2(c1 + c2x

2) and
1
2(y′)2 = 1

2 [c1 · 0 + c2(2x)]2 = 2c22x
2. Thus yy′′ 6= 1

2(y′)2.

3. Let u = y′ so that u′ = y′′. The equation becomes u′ = −u2 − 1 which is separable. Thus

du

u2 + 1
= −dx =⇒ tan−1 u = −x+ c1 =⇒ y′ = tan(c1 − x)

=⇒ y = ln | cos(c1 − x)|+ c2.

4. Let u = y′ so that u′ = y′′. The equation becomes u′ = 1 + u2. Separating variables we obtain

du

1 + u2
= dx =⇒ tan−1 u = x+ c1 =⇒ u = tan(x+ c1)

=⇒ y = − ln | cos(x+ c1)|+ c2.

5. Let u = y′ so that u′ = y′′. The equation becomes x2u′ + u2 = 0. Separating variables we

obtain

du

u2
= −dx

x2
=⇒ −1

u
=

1

x
+ c1 =

c1x+ 1

x

=⇒ u = − 1

c1

(
x

x+ 1/c1

)
=

1

c1

(
1

c1x+ 1
− 1

)
=⇒ y =

1

c21
ln |c1x+ 1| − 1

c1
x+ c2.
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CHAPTER 4 HIGHER-ORDER DIFFERENTIAL EQUATIONS

6. Let u = y′ so that y′′ = u du/dy. The equation becomes (y + 1)u du/dy = u2. Separating

variables we obtain

du

u
=

dy

y + 1
=⇒ ln |u| = ln |y + 1|+ ln c1 =⇒ u = c1(y + 1)

=⇒ dy

dx
= c1(y + 1) =⇒ dy

y + 1
= c1 dx

=⇒ ln |y + 1| = c1x+ c2 =⇒ y + 1 = c3e
c1x.

7. Let u = y′ so that y′′ = u du/dy. The equation becomes u du/dy + 2yu3 = 0. Separating

variables we obtain

du

u2
+ 2y dy = 0 =⇒ −1

u
+ y2 = c1 =⇒ u =

1

y2 − c1
=⇒ y′ =

1

y2 − c1

=⇒
(
y2 − c1

)
dy = dx =⇒ 1

3
y3 − c1y = x+ c2.

8. Let u = y′ so that y′′ = u du/dy. The equation becomes y2u du/dy = u. Separating variables

we obtain

du =
dy

y2
=⇒ u = −1

y
+ c1 =⇒ y′ =

c1y − 1

y
=⇒ y

c1y − 1
dy = dx

=⇒ 1

c1

(
1 +

1

c1y − 1

)
dy = dx (for c1 6= 0) =⇒ 1

c1
y +

1

c21
ln |y − 1| = x+ c2.

If c1 = 0, then y dy = −dx and another solution is 1
2y

2 = −x+ c2.

9. Letting u = y′ we have

y′′ =
du

dx
=
du

dy

dy

dx
= u

du

dy
so 2y′y′′ = 1 becomes 2u2

du

dy
= 1.

Then, separating variables, integrating, and simplifying, we have

2u2du = dy

2

3
u3 = y + c1

u =

(
3

2
y + c2

)1/3

=
dy

dx(
3

2
y + c2

)−1/3
dy = dx

(
3

2
y + c2

)2/3

= x+ c3

3

2
y + c2 =

(
x+ c3

)3/2
.
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4.10 Nonlinear Differential Equationsq

Now

y(0) = 2 implies 3 + c2 = c
3/2
3 and y′(0) = 1 implies c3 = 1.

Thus c2 = −2 and 3
2 y − 2 = (x+ 1)3/2. The solution of the initial-value problem is

y =
2

3
(x+ 1)3/2 +

4

3
.

10. Letting u = y′ the differential equation becomes u′+xu2 = 0. Separating variables, integrating,

and simplifying we have

du

dx
= −xu2

u−2du = −xdx

−1

u
= −1

2
x2 + c1

y′ =
2

x2 + c2

Using the initial conditions y′(1) = 2 we have 2 = 2/(1 + c2), so c2 = 0 and y′ = 2x−2.

Integrating we find y = −2x−1 + c3. Using the other initial condition, y(1) = 4, we have

4 = −2 + c3 so c3 = 6 and the solution of the initial-value problem is

y = 6− 2

x
.

11. (a) x

(b) Let u = y′ so that y′′ = u du/dy. The equation becomes u du/dy + yu = 0. Separating

variables we obtain

du = −y dy =⇒ u = −1

2
y2 + c1 =⇒ y′ = −1

2
y2 + c1.

When x = 0, y = 1 and y′ = −1 so −1 = −1/2 + c1 and c1 = −1/2. Then

dy

dx
= −1

2
y2 − 1

2
=⇒ dy

y2 + 1
= −1

2
dx =⇒ tan−1 y = −1

2
x+ c2

=⇒ y = tan

(
−1

2
x+ c2

)
.
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CHAPTER 4 HIGHER-ORDER DIFFERENTIAL EQUATIONS

When x = 0, y = 1 so 1 = tan c2 and c2 = π/4. The solution of the initial-value problem

is

y = tan

(
π

4
− 1

2
x

)
.

The graph is shown in part (a).

(c) The interval of definition is −π/2 < π/4− x/2 < π/2 or −π/2 < x < 3π/2.

12. Let u = y′ so that u′ = y′′. The equation becomes (u′)2+u2 = 1

which results in u′ = ±
√

1− u2 . To solve u′ =
√

1− u2 we

separate variables:

du√
1− u2

= dx =⇒ sin−1 u = x+ c1 =⇒ u = sin(x+ c1)

=⇒ y′ = sin(x+ c1).

When x = π/2, y′ =
√

3/2, so
√

3/2 = sin(π/2 + c1) and c1 = −π/6. Thus

y′ = sin
(
x− π

6

)
=⇒ y = − cos

(
x− π

6

)
+ c2.

When x = π/2, y = 1/2, so 1/2 = − cos(π/2−π/6) + c2 = −1/2 + c2 and c2 = 1. The solution

of the initial-value problem is y = 1− cos(x− π/6).

To solve u′ = −
√

1− u2 we separate variables:

du√
1− u2

= −dx =⇒ cos−1 u = x+ c1

=⇒ u = cos(x+ c1) =⇒ y′ = cos(x+ c1).

When x = π/2, y′ =
√

3/2, so
√

3/2 = cos(π/2 + c1) and c1 = −π/3. Thus

y′ = cos
(
x− π

3

)
=⇒ y = sin

(
x− π

3

)
+ c2.

When x = π/2, y = 1/2, so 1/2 = sin(π/2− π/3) + c2 = 1/2 + c2 and c2 = 0. The solution of

the initial-value problem is y = sin(x− π/3).

13. Let u = y′ so that u′ = y′′. The equation becomes u′ − (1/x)u = (1/x)u3, which is Bernoulli.

Using w = u−2 we obtain dw/dx+ (2/x)w = −2/x. An integrating factor is x2, so

d

dx
[x2w] = −2x =⇒ x2w = −x2 + c1 =⇒ w = −1 +

c1
x2

=⇒ u−2 = −1 +
c1
x2

=⇒ u =
x√

c1 − x2

=⇒ dy

dx
=

x√
c1 − x2

=⇒ y = −
√
c1 − x2 + c2

=⇒ c1 − x2 = (c2 − y)2 =⇒ x2 + (c2 − y)2 = c1.
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4.10 Nonlinear Differential Equationsq

14. Let u = y′ so that u′ = y′′. The equation becomes u′ − (1/x)u = u2, which is a Bernoulli

differential equation. Using the substitution w = u−1 we obtain dw/dx + (1/x)w = −1. An

integrating factor is x, so

d

dx
[xw] = −x =⇒ w = −1

2
x+

1

x
c =⇒ 1

u
=
c1 − x2

2x
=⇒ u =

2x

c1 − x2
=⇒ y = − ln

∣∣c1 − x2∣∣+ c2.

In Problems 15-18 the thinner curve is obtained using a numerical solver, while the thicker curve

is the graph of the Taylor polynomial.

15. We look for a solution of the form

y(x) = y(0) + y′(0)x+
1

2!
y′′(0)x2 +

1

3!
y′′′(0)x3+

1

4!
y(4)(0)x4 +

1

5!
y(5)(0)x5.

From y′′(x) = x+ y2 we compute

y′′′(x) = 1 + 2yy′

y(4)(x) = 2yy′′ + 2(y′)2

y(5)(x) = 2yy′′′ + 6y′y′′.

Using y(0) = 1 and y′(0) = 1 we find

y′′(0) = 1, y′′′(0) = 3, y(4)(0) = 4, y(5)(0) = 12.

An approximate solution is

y(x) = 1 + x+
1

2
x2 +

1

2
x3 +

1

6
x4 +

1

10
x5.

16. We look for a solution of the form

y(x) = y(0) + y′(0)x+
1

2!
y′′(0)x2 +

1

3!
y′′′(0)x3+

1

4!
y(4)(0)x4 +

1

5!
y(5)(0)x5.

From y′′(x) = 1− y2 we compute

y′′′(x) = −2yy′

y(4)(x) = −2yy′′ − 2(y′)2

y(5)(x) = −2yy′′′ − 6y′y′′.
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CHAPTER 4 HIGHER-ORDER DIFFERENTIAL EQUATIONS

Using y(0) = 2 and y′(0) = 3 we find

y′′(0) = −3, y′′′(0) = −12, y(4)(0) = −6, y(5)(0) = 102.

An approximate solution is

y(x) = 2 + 3x− 3

2
x2 − 2x3 − 1

4
x4 +

17

20
x5.

17. We look for a solution of the form

y(x) = y(0) + y′(0)x+
1

2!
y′′(0)x2 +

1

3!
y′′′(0)x3+

1

4!
y(4)(0)x4 +

1

5!
y(5)(0)x5.

From y′′(x) = x2 + y2 − 2y′ we compute

y′′′(x) = 2x+ 2yy′ − 2y′′

y(4)(x) = 2 + 2(y′)2 + 2yy′′ − 2y′′′

y(5)(x) = 6y′y′′ + 2yy′′′ − 2y(4).

Using y(0) = 1 and y′(0) = 1 we find

y′′(0) = −1, y′′′(0) = 4, y(4)(0) = −6, y(5)(0) = 14.

An approximate solution is

y(x) = 1 +x− 1

2
x2 +

2

3
x3− 1

4
x4 +

7

60
x5.

18. We look for a solution of the form

y(x) = y(0) + y′(0)x+
1

2!
y′′(0)x2 +

1

3!
y′′′(0)x3+

1

4!
y(4)(0)x4 +

1

5!
y(5)(0)x5 +

1

6!
y(6)(0)x6.

From y′′(x) = ey we compute

y′′′(x) = eyy′

y(4)(x) = ey(y′)2 + eyy′′

y(5)(x) = ey(y′)3 + 3eyy′y′′ + eyy′′′

y(6)(x) = ey(y′)4 + 6ey(y′)2y′′ + 3ey(y′′)2 + 4eyy′y′′′ + eyy(4).

Using y(0) = 0 and y′(0) = −1 we find

y′′(0) = 1, y′′′(0) = −1, y(4)(0) = 2, y(5)(0) = −5, y(6)(0) = 16.
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4.10 Nonlinear Differential Equationsq

An approximate solution is

y(x) = −x+
1

2
x2 − 1

6
x3 +

1

12
x4 +

1

24
x5 +

1

45
x6.

19. We need to solve [1 + (y′)2]3/2 = y′′. Let u = y′ so that u′ = y′′. The equation becomes

(1 + u2)3/2 = u′ or (1 + u2)3/2 = du/dx. Separating variables and using the substitution

u = tan θ we have

du

(1 + u2)3/2
= dx =⇒

∫
sec2 θ

(1 + tan2 θ)
3/2

dθ = x =⇒
∫

sec2 θ

sec3 θ
dθ = x

=⇒
∫

cos θ dθ = x =⇒ sin θ = x =⇒ u√
1 + u2

= x

=⇒ y′√
1 + (y′)2

= x =⇒ (y′)2 = x2
[
1 + (y′)2

]
=

x2

1− x2

=⇒ y′ =
x√

1− x2
(for x > 0) =⇒ y = −

√
1− x2 .

Discussion Problems

20. When y = sinx, y′ = cosx, y′′ = − sinx, and

(y′′)2 − y2 = sin2 x− sin2 x = 0.

When y = e−x, y′ = −e−x, y′′ = e−x, and

(y′′)2 − y2 = e−2x − e−2x = 0.

From (y′′)2 − y2 = 0 we have y′′ = ±y, which can be treated as two linear equations. Since

linear combinations of solutions of linear homogeneous differential equations are also solutions,

we see that y = c1e
x + c2e

−x and y = c3 cosx + c4 sinx must satisfy the differential equation.

However, linear combinations that involve both exponential and trigonometric functions will

not be solutions since the differential equation is not linear and each type of function satisfies

a different linear differential equation that is part of the original differential equation.

21. Letting u = y′′, separating variables, and integrating we have

du

dx
=
√

1 + u2 ,
du√

1 + u2
= dx, and sinh−1 u = x+ c1.

Then

u = y′′ = sinh(x+ c1), y′ = cosh(x+ c1) + c2, and y = sinh(x+ c1) + c2x+ c3.
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CHAPTER 4 HIGHER-ORDER DIFFERENTIAL EQUATIONS

22. If the constant −c21 is used instead of c21, then, using partial fractions,

y = −
∫

dx

x2 − c21
= − 1

2c1

∫ (
1

x− c1
− 1

x+ c1

)
dx =

1

2c1
ln

∣∣∣∣ x+ c1
x− c1

∣∣∣∣ +c2.

Alternatively, the inverse hyperbolic tangent can be used.

Mathematical Models

23. Let u = dx/dt so that d2x/dt2 = u du/dx. The equation becomes u du/dx = −k2/x2.
Separating variables we obtain

u du = −k
2

x2
dx =⇒ 1

2
u2 =

k2

x
+ c =⇒ 1

2
v2 =

k2

x
+ c.

When t = 0, x = x0 and v = 0 so 0 = (k2/x0) + c and c = −k2/x0. Then

1

2
v2 = k2

(
1

x
− 1

x0

)
and

dx

dt
= −k

√
2

√
x0 − x
xx0

.

Separating variables we have

−
√

xx0
x0 − x

dx = k
√

2 dt =⇒ t = −1

k

√
x0
2

∫ √
x

x0 − x
dx.

Using Mathematica to integrate we obtain

t = −1

k

√
x0
2

[
−
√
x(x0 − x)− x0

2
tan−1

(x0 − 2x)

2x

√
x

x0 − x

]

=
1

k

√
x0
2

[√
x(x0 − x) +

x0
2

tan−1
x0 − 2x

2
√
x(x0 − x)

]
.

24. x

For d2x/dt2 + sinx = 0 the motion appears to be periodic with amplitude 1 when x1 = 0. The

amplitude and period are larger for larger magnitudes of x1.

For d2x/dt2 + dx/dt+ sinx = 0 the motion appears to be periodic with decreasing amplitude.

The dx/dt term could be said to have a damping effect.
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4.R Chapter 4 in Reviewq

4.11 Chapter 4 in Reviewq

4.R Chapter 4 in Reviewq

1. Since, simply by substitution, y = 0 is seen to be a solution of the given initial-value problem

by Theorem 4.1.1 in the text, it is the only solution

2. Since yc = c1e
x + c2e

−x, a particular solution for y′′ − y = 1 + ex is yp = A+Bxex.

3. False; it is not true unless the differential equation is homogeneous. For example, y1 = x is a

solution of y′′ + y = x, but y2 = 5x is not.

4. False; Theorem 4.1.3 in the text requires that f1 and f2 be solutions of a homogeneous lin-

ear differential equation. For example, f1(x) = x and f2(x) = |x| are defined and linearly

independent on [−1, 1], but the Wronskian does not exist at x = 0, since f2(x) is not defined

there.

5. The auxiliary equation is second-order and has 5i as a root. Thus, the other root of the

auxiliary equation must be −5i, since complex roots of polynomials with real coefficients must

occur in conjugate pairs. Thus, a second solution of the differential equation must be cos 5x

and the general solution is y = c1 cos 5x+ c2 sin 5x.

6. The roots are m1 = m2 = m3 = 0 and m4 = 1. To see this, note that the general solution of a

homogeneous linear fourth-order differential equation with auxiliary equation m3(m − 1) = 0

is y = c1 + c2x+ c3x
2 + c4e

x.

7. If y = c1x
2 + c2x

2 lnx, x > 0, is the general solution of a Cauchy-Euler differential equation,

then the roots of its auxiliary equation are m1 = m2 = 2 and the auxiliary equation is

m2 − 4m+ 4 = m(m− 1)− 3m+ 4 = 0.

Thus, the Cauchy-Euler differential equation is x2y′′ − 3xy′ + 4y = 0.

8. For yp = Ax2 we have y′p = 2Ax, y′′p = 2A, and y′′′p = 0. Thus, substituting yp into the

differential equation, we have 0 + 2A = 1 and A = 1
2 .

9. By the superposition principle for nonhomogeneous equations a particular solution is

yp = yp1 + yp2 = x+ x2 − 2 = x2 + x− 2.

10. True, by the superposition for homogeneous equations.

11. The set is linearly independent over (−∞, 0) and linearly dependent over (0, ∞).
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CHAPTER 4 HIGHER-ORDER DIFFERENTIAL EQUATIONS

12. (a) Since f2(x) = 2 lnx = 2f1(x), the set of functions is linearly dependent.

(b) Since xn+1 is not a constant multiple of xn, the set of functions is linearly independent.

(c) Since x+ 1 is not a constant multiple of x, the set of functions is linearly independent.

(d) Since f1(x) = cosx cos(π/2) − sinx sin(π/2) = − sinx = −f2(x), the set of functions is

linearly dependent.

(e) Since f1(x) = 0 · f2(x), the set of functions is linearly dependent.

(f) Since 2x is not a constant multiple of 2, the set of functions is linearly independent.

(g) Since 3(x2) + 2(1− x2)− (2 + x2) = 0, the set of functions is linearly dependent.

(h) Since xex+1 + 0(4x− 5)ex − exex = 0, the set of functions is linearly dependent.

13. (a) The general solution is

y = c1e
3x + c2e

−5x + c3xe
−5x + c4e

x + c5xe
x + c6x

2ex.

(b) The general solution is

y = c1x
3 + c2x

−5 + c3x
−5 lnx+ c4x+ c5x lnx+ c6x(lnx)2.

14. Variation of parameters will work for all choices of g(x), although the integral involved may not

always be able to be expressed in terms of elementary functions. The method of undetermined

coefficients will work for the functions in (b), (c), and (e).

15. From m2 − 2m− 2 = 0 we obtain m = 1±
√

3 so that

y = c1e
(1+
√
3 )x + c2e

(1−
√
3 )x.

16. From 2m2 + 2m+ 3 = 0 we obtain m = −1/2± (
√

5/2)i so that

y = e−x/2

(
c1 cos

√
5

2
x+ c2 sin

√
5

2
x

)
.

17. From m3 + 10m2 + 25m = 0 we obtain m = 0, m = −5, and m = −5 so that

y = c1 + c2e
−5x + c3xe

−5x.

18. From 2m3 + 9m2 + 12m+ 5 = 0 we obtain m = −1, m = −1, and m = −5/2 so that

y = c1e
−5x/2 + c2e

−x + c3xe
−x.
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4.R Chapter 4 in Reviewq

19. From 3m3 + 10m2 + 15m+ 4 = 0 we obtain m = −1/3 and m = −3/2± (
√

7/2)i so that

y = c1e
−x/3 + e−3x/2

(
c2 cos

√
7

2
x+ c3 sin

√
7

2
x

)
.

20. From 2m4 + 3m3 + 2m2 + 6m− 4 = 0 we obtain m = 1/2, m = −2, and m = ±
√

2 i so that

y = c1e
x/2 + c2e

−2x + c3 cos
√

2x+ c4 sin
√

2x.

21. Applying D4 to the differential equation we obtain D4(D2 − 3D + 5) = 0. Then

y = e3x/2

(
c1 cos

√
11

2
x+ c2 sin

√
11

2
x

)
︸ ︷︷ ︸

yc

+ c3 + c4x+ c5x
2 + c6x

3

and yp = A+Bx+ Cx2 +Dx3. Substituting yp into the differential equation yields

(5A− 3B + 2C) + (5B − 6C + 6D)x+ (5C − 9D)x2 + 5Dx3 = −2x+ 4x3.

Equating coefficients gives A = −222/625, B = 46/125, C = 36/25, and D = 4/5. The general

solution is

y = e3x/2

(
c1 cos

√
11

2
x+ c2 sin

√
11

2
x

)
− 222

625
+

46

125
x+

36

25
x2 +

4

5
x3.

22. Applying (D− 1)3 to the differential equation we obtain (D− 1)3(D− 2D+ 1) = (D− 1)5 = 0.

Then

y = c1e
x + c2xe

x︸ ︷︷ ︸
yc

+ c3x
2ex + c4x

3ex + c5x
4ex

and yp = Ax2ex +Bx3ex + Cx4ex. Substituting yp into the differential equation yields

12Cx2ex + 6Bxex + 2Aex = x2ex.

Equating coefficients gives A = 0, B = 0, and C = 1/12. The general solution is

y = c1e
x + c2xe

x +
1

12
x4ex.

23. Applying D(D2 + 1) to the differential equation we obtain

D(D2 + 1)(D3 − 5D2 + 6D) = D2(D2 + 1)(D − 2)(D − 3) = 0.

Then

y = c1 + c2e
2x + c3e

3x︸ ︷︷ ︸
yc

+ c4x+ c5 cosx+ c6 sinx

and yp = Ax+B cosx+ C sinx. Substituting yp into the differential equation yields

6A+ (5B + 5C) cosx+ (−5B + 5C) sinx = 8 + 2 sinx.

Equating coefficients gives A = 4/3, B = −1/5, and C = 1/5. The general solution is

y = c1 + c2e
2x + c3e

3x +
4

3
x− 1

5
cosx+

1

5
sinx.
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CHAPTER 4 HIGHER-ORDER DIFFERENTIAL EQUATIONS

24. Applying D to the differential equation we obtain D(D3 −D2) = D3(D − 1) = 0. Then

y = c1 + c2x+ c3e
x︸ ︷︷ ︸

yc

+ c4x
2

and yp = Ax2. Substituting yp into the differential equation yields −2A = 6. Equating

coefficients gives A = −3. The general solution is

y = c1 + c2x+ c3e
x − 3x2.

25. The auxiliary equation is m2−2m+2 = [m−(1+i)][m−(1−i)] = 0, so yc = c1e
x sinx+c2e

x cosx

and the Wronskian is W = −e2x. Identifying f(x) = ex tanx we obtain

u′1 = −(ex cosx)(ex tanx)

−e2x
= sinx

u′2 =
(ex sinx)(ex tanx)

−e2x
= −sin2 x

cosx
= cosx− secx.

Then u1 = − cosx, u2 = sinx− ln | secx+ tanx|, and

y = c1e
x sinx+ c2e

x cosx− ex sinx cosx+ ex sinx cosx− ex cosx ln | secx+ tanx|

= c1e
x sinx+ c2e

x cosx− ex cosx ln | secx+ tanx|.

26. The auxiliary equation is m2 − 1 = 0, so yc = c1e
x + c2e

−x and the Wronskian is W = −2.

Identifying f(x) = 2ex/(ex + e−x) we obtain

u′1 =
1

ex + e−x
=

ex

1 + e2x

u′2 = − e2x

ex + e−x
= − e3x

1 + e2x
= −ex +

ex

1 + e2x
.

Then u1 = tan−1 ex, u2 = −ex + tan−1 ex, and

y = c1e
x + c2e

−x + ex tan−1 ex − 1 + e−x tan−1 ex.

27. The auxiliary equation is 6m2 −m− 1 = 0 so that

y = c1x
1/2 + c2x

−1/3.

28. The auxiliary equation is 2m3 + 13m2 + 24m+ 9 = (m+ 3)2(m+ 1/2) = 0 so that

y = c1x
−3 + c2x

−3 lnx+ c3x
−1/2.

29. The auxiliary equation is m2 − 5m + 6 = (m − 2)(m − 3) = 0 and a particular solution is

yp = x4 − x2 lnx so that

y = c1x
2 + c2x

3 + x4 − x2 lnx.
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4.R Chapter 4 in Reviewq

30. The auxiliary equation is m2− 2m+ 1 = (m− 1)2 = 0 and a particular solution is yp = 1
4x

3 so

that

y = c1x+ c2x lnx+
1

4
x3.

31. (a) The auxiliary equation is m2 + ω2 = 0, so yc = c1 cosωx + c2 sinωx. When ω 6= α,

yp = A cosαx+B sinαx and

y = c1 cosωx+ c2 sinωx+A cosαx+B sinαx.

When ω = α, yp = Ax cosωx+Bx sinωx and

y = c1 cosωx+ c2 sinωx+Ax cosωx+Bx sinωx.

(b) The auxiliary equation is m2 − ω2 = 0, so yc = c1e
ωx + c2e

−ωx. When ω 6= α, yp = Aeαx

and

y = c1e
ωx + c2e

−ωx +Aeαx.

When ω = α, yp = Axeωx and

y = c1e
ωx + c2e

−ωx +Axeωx.

32. (a) If y = sinx is a solution then so is y = cosx and m2+1 is a factor of the auxiliary equation

m4 + 2m3 + 11m2 + 2m + 10 = 0. Dividing by m2 + 1 we get m2 + 2m + 10, which has

roots −1± 3i. The general solution of the differential equation is

y = c1 cosx+ c2 sinx+ e−x(c3 cos 3x+ c4 sin 3x).

(b) The auxiliary equation is m(m + 1) = m2 + m = 0, so the associated homogeneous

differential equation is y′′+y′ = 0. Letting y = c1+c2e
−x+ 1

2x
2−x and computing y′′+y′

we get x. Thus, the differential equation is y′′ + y′ = x.

33. (a) The auxiliary equation is m4 − 2m2 + 1 = (m2 − 1)2 = 0, so the general solution of the

differential equation is

y = c1 sinhx+ c2 coshx+ c3x sinhx+ c4x coshx.

(b) Since both sinhx and x sinhx are solutions of the associated homogeneous differential

equation, a particular solution of y(4) − 2y′′ + y = sinhx has the form

yp = Ax2 sinhx+Bx2 coshx.
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CHAPTER 4 HIGHER-ORDER DIFFERENTIAL EQUATIONS

34. Since y′1 = 1 and y′′1 = 0, x2y′′1 − (x2 + 2x)y′1 + (x+ 2)y1 = −x2− 2x+ x2 + 2x = 0, and y1 = x

is a solution of the associated homogeneous equation. Using the method of reduction of order,

we let y = ux. Then y′ = xu′ + u and y′′ = xu′′ + 2u′, so

x2y′′ − (x2 + 2x)y′ + (x+ 2)y = x3u′′ + 2x2u′ − x3u′ − 2x2u′ − x2u− 2xu+ x2u+ 2xu

= x3u′′ − x3u′ = x3(u′′ − u′).

To find a second solution of the homogeneous equation we note that u = ex is a solution of

u′′−u′ = 0. Thus, yc = c1x+c2xe
x. To find a particular solution we set x3(u′′−u′) = x3 so that

u′′ − u′ = 1. This differential equation has a particular solution of the form Ax. Substituting,

we find A = −1, so a particular solution of the original differential equation is yp = −x2 and

the general solution is y = c1x+ c2xe
x − x2.

35. The auxiliary equation is m2 − 2m + 2 = 0 so that m = 1 ± i and y = ex(c1 cosx + c2 sinx).

Setting y(π/2) = 0 and y(π) = −1 we obtain c1 = e−π and c2 = 0. Thus, y = ex−π cosx.

36. The auxiliary equation is m2 + 2m + 1 = (m + 1)2 = 0, so that y = c1e
−x + c2xe

−x. Setting

y(−1) = 0 and y′(0) = 0 we get c1e − c2e = 0 and −c1 + c2 = 0. Thus c1 = c2 and

y = c1(e
−x + xe−x) is a solution of the boundary-value problem for any real number c1.

37. The auxiliary equation is m2 − 1 = (m− 1)(m+ 1) = 0 so that m = ±1 and y = c1e
x + c2e

−x.

Assuming yp = Ax+B+C sinx and substituting into the differential equation we find A = −1,

B = 0, and C = −1
2 . Thus yp = −x− 1

2 sinx and

y = c1e
x + c2e

−x − x− 1

2
sinx.

Setting y(0) = 2 and y′(0) = 3 we obtain

c1 + c2 = 2

c1 − c2 −
3

2
= 3.

Solving this system we find c1 = 13
4 and c2 = −5

4 . The solution of the initial-value problem is

y =
13

4
ex − 5

4
e−x − x− 1

2
sinx.

38. The auxiliary equation is m2 + 1 = 0, so yc = c1 cosx+ c2 sinx and the Wronskian is W = 1.

Identifying f(x) = sec3 x we obtain

u′1 = − sinx sec3 x = − sinx

cos3 x

u′2 = cosx sec3 x = sec2 x.

Then

u1 = −1

2

1

cos2 x
= −1

2
sec2 x

u2 = tanx.
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4.R Chapter 4 in Reviewq

Thus

y = c1 cosx+ c2 sinx− 1

2
cosx sec2 x+ sinx tanx

= c1 cosx+ c2 sinx− 1

2
secx+

1− cos2 x

cosx

= c3 cosx+ c2 sinx+
1

2
secx.

and

y′ = −c3 sinx+ c2 cosx+
1

2
secx tanx.

The initial conditions imply

c3 +
1

2
= 1

c2 =
1

2
.

Thus c3 = c2 = 1/2 and

y =
1

2
cosx+

1

2
sinx+

1

2
secx.

39. Let u = y′ so that u′ = y′′. The equation becomes u du/dx = 4x. Separating variables we

obtain

u du = 4x dx =⇒ 1

2
u2 = 2x2 + c1 =⇒ u2 = 4x2 + c2.

When x = 1, y′ = u = 2, so 4 = 4 + c2 and c2 = 0. Then

u2 = 4x2 =⇒ dy

dx
= 2x or

dy

dx
= −2x

=⇒ y = x2 + c3 or y = −x2 + c4.

When x = 1, y = 5, so 5 = 1+c3 and 5 = −1+c4. Thus c3 = 4 and c4 = 6. We have y = x2 +4

and y = −x2 + 6. Note however that when y = −x2 + 6, y′ = −2x and y′(1) = −2 6= 2. Thus,

the solution of the initial-value problem is y = x2 + 4.

40. Let u = y′ so that y′′ = u du/dy. The equation becomes 2u du/dy = 3y2. Separating variables

we obtain

2u du = 3y2 dy =⇒ u2 = y3 + c1.

When x = 0, y = 1 and y′ = u = 1 so 1 = 1 + c1 and c1 = 0. Then

u2 = y3 =⇒
(
dy

dx

)2

= y3 =⇒ dy

dx
= y3/2 =⇒ y−3/2 dy = dx

=⇒ −2y−1/2 = x+ c2 =⇒ y =
4

(x+ c2)2
.

When x = 0, y = 1, so 1 = 4/c22 and c2 = ±2. Thus, y = 4/(x+ 2)2 and y = 4/(x− 2)2. Note,

however, that when y = 4/(x+ 2)2, y′ = −8/(x+ 2)3 and y′(0) = −1 6= 1. Thus, the solution

of the initial-value problem is y = 4/(x− 2)2.
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CHAPTER 4 HIGHER-ORDER DIFFERENTIAL EQUATIONS

41. (a) The auxiliary equation is 12m4 + 64m3 + 59m2− 23m− 12 = 0 and has roots −4, −3
2 , −1

3 ,

and 1
2 . The general solution is

y = c1e
−4x + c2e

−3x/2 + c3e
−x/3 + c4e

x/2.

(b) The system of equations is

c1 + c2 + c3 + c4 = −1

−4c1 −
3

2
c2 −

1

3
c3 +

1

2
c4 = 2

16c1 +
9

4
c2 +

1

9
c3 +

1

4
c4 = 5

−64c1 −
27

8
c2 −

1

27
c3 +

1

8
c4 = 0.

Using a CAS we find c1 = − 73
495 , c2 = 109

35 , c3 = −3726
385 , and c4 = 257

45 . The solution of

the initial-value problem is

y = − 73

495
e−4x +

109

35
e−3x/2 − 3726

385
e−x/3 +

257

45
ex/2.

42. Consider xy′′+y′ = 0 and look for a solution of the form y = xm.

Substituting into the differential equation we have

xy′′ + y′ = m(m− 1)xm−1 +mxm−1 = m2xm−1.

Thus, the general solution of xy′′ + y′ = 0 is yc = c1 + c2 lnx.

To find a particular solution of xy′′ + y′ = −
√
x we use vari-

ation of parameters. The Wronskian is W = 1/x. Identifying

f(x) = −x−1/2 we obtain

u′1 =
x−1/2 lnx

1/x
=
√
x lnx and u′2 =

−x−1/2

1/x
= −
√
x ,

so that

u1 = x3/2
(2

3
lnx− 4

9

)
and u2 = −2

3
x3/2.

Then

yp = x3/2
(2

3
lnx− 4

9

)
− 2

3
x3/2 lnx = −4

9
x3/2

and the general solution of the differential equation is

y = c1 + c2 lnx− 4

9
x3/2.

The initial conditions are y(1) = 0 and y′(1) = 0. These imply that c1 = 4
9 and c2 = 2

3 . The

solution of the initial-value problem is

y =
4

9
+

2

3
lnx− 4

9
x3/2.

The graph is shown above.
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4.R Chapter 4 in Reviewq

43. From (D − 2)x+ (D − 2)y = 1 and Dx+ (2D − 1)y = 3 we obtain (D − 1)(D − 2)y = −6 and

Dx = 3− (2D − 1)y. Then

y = c1e
2t + c2e

t − 3 and x = −c2et −
3

2
c1e

2t + c3.

Substituting into (D − 2)x+ (D − 2)y = 1 gives c3 = 5
2 so that

x = −c2et −
3

2
c1e

2t +
5

2
.

44. From (D − 2)x − y = t − 2 and −3x + (D − 4)y = −4t we obtain (D − 1)(D − 5)x = 9 − 8t.

Then

x = c1e
t + c2e

5t − 8

5
t− 3

25

and

y = (D − 2)x− t+ 2 = −c1et + 3c2e
5t +

16

25
+

11

25
t.

45. From (D − 2)x− y = −et and −3x + (D − 4)y = −7et we obtain (D − 1)(D − 5)x = −4et so

that

x = c1e
t + c2e

5t + tet.

Then

y = (D − 2)x+ et = −c1et + 3c2e
5t − tet + 2et.

46. From (D + 2)x + (D + 1)y = sin 2t and 5x + (D + 3)y = cos 2t we obtain (D2 + 5)y =

2 cos 2t− 7 sin 2t. Then

y = c1 cos t+ c2 sin t− 2

3
cos 2t+

7

3
sin 2t

and

x = −1

5
(D + 3)y +

1

5
cos 2t

=

(
1

5
c1 −

3

5
c2

)
sin t+

(
−1

5
c2 −

3

5
c1

)
cos t− 5

3
sin 2t− 1

3
cos 2t.
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Chapter 5

MODELING WITH HIGHER-ORDER DIFFERENTIAL EQUATIONS

5.1 Linear Models: Initial-Value Problemsq

Modeling with Higher-Order

Differential Equations5
5.1 Linear Models: Initial-Value Problemsq

5.1.1 Spring/Mass Systems: Free Undamped Motion

1. From 1
8x
′′ + 16x = 0 we obtain

x = c1 cos 8
√

2 t+ c2 sin 8
√

2 t

so that the period of motion is 2π/8
√

2 =
√

2π/8 seconds.

2. From 20x′′ + kx = 0 we obtain

x = c1 cos
1

2

√
k

5
t+ c2 sin

1

2

√
k

5
t

so that the frequency 2/π = 1
4

√
k/5π and k = 320 N/m. If 80x′′ + 320x = 0 then

x = c1 cos 2t+ c2 sin 2t

so that the frequency is 2/2π = 1/π cycles/s.

3. From 3
4x
′′ + 72x = 0, x(0) = −1/4, and x′(0) = 0 we obtain x = −1

4 cos 4
√

6 t.

4. From 3
4x
′′ + 72x = 0, x(0) = 0, and x′(0) = 2 we obtain x =

√
6

12 sin 4
√

6 t.

5. From 5
8x
′′ + 40x = 0, x(0) = 1/2, and x′(0) = 0 we obtain x = 1

2 cos 8t.

(a) x(π/12) = −1/4, x(π/8) = −1/2, x(π/6) = −1/4, x(π/4) = 1/2, x(9π/32) =
√

2/4.

(b) x′ = −4 sin 8t so that x′(3π/16) = 4 ft/s directed downward.

(c) If x = 1
2 cos 8t = 0 then t = (2n+ 1)π/16 for n = 0, 1, 2, . . . .

6. From 50x′′+ 200x = 0, x(0) = 0, and x′(0) = −10 we obtain x = −5 sin 2t and x′ = −10 cos 2t.

7. From 20x′′ + 20x = 0, x(0) = 0, and x′(0) = −10 we obtain x = −10 sin t and x′ = −10 cos t.

(a) The 20 kg mass has the larger amplitude.

(b) 20 kg: x′(π/4) = −5
√

2 m/s, x′(π/2) = 0 m/s; 50 kg: x′(π/4) = 0 m/s,

x′(π/2) = 10 m/s
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5.1 Linear Models: Initial-Value Problemsq

(c) If −5 sin 2t = −10 sin t then sin t(cos t− 1) = 0 so that t = nπ for n = 0, 1, 2, . . ., placing

both masses at the equilibrium position. The 50 kg mass is moving upward; the 20 kg

mass is moving upward when n is even and downward when n is odd.

8. From x′′ + 16x = 0, x(0) = −1, and x′(0) = −2 we obtain

x = − cos 4t− 1

2
sin 4t =

√
5

2
sin(4t+ 4.249).

The period is π/2 seconds and the amplitude is
√

5/2 feet. In 4π seconds it will make 8 complete

cycles.

9. (a) Since the weight is 8 pounds the mass is 8/32=1/4 slug. The spring constant is k = 1 so

ω2 = 1/14 = 4 and the equation of motion is

1

4
x′′ + x = 0 or x′′ + 4x = 0.

From the initial conditions we have x(0) = 6 in = 1
2 ft and x′(0) = 3

2 ft/sec. By (3) in the

text the form of the equation of motion is

x(t) = c1 cos 2t+ c2 sin 2t.

The initial conditions imply that c1 = 1
2 and c2 = 3

4 . Thus the equation of motion of the

system is

x(t) =
1

2
cos 2t+

3

4
sin 2t.

(b) To write the solution in the form x(t) = A sin(ωt+ φ) we note that

A =

√(
1

2

)2

+

(
3

4

)2

=
1

4

√
4 + 9 =

√
13

4
,

and, initially at least,

φ = tan−1
c1
c2

= tan−1
1/2

3/4
= tan−1

2

3
≈ 0.5880 rad.

Since sinφ > 0 and cosφ > 0, φ is in the first quadrant and

x(t) =

√
13

4
sin(2t+ 0.5880).

(c) To write the system in the form x(t) = A cos(ωt− φ) we note that A =
√

13/4 as in part

(b) and

φ = tan−1
3/4

1/2
=

3

2
≈ 0.9828.

Since cosφ > 0 and sinφ > 0, φ is in the first quadrant and

x(t) =

√
13

4
cos(2t− 0.9828).
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CHAPTER 5 MODELING WITH HIGHER-ORDER DIFFERENTIAL EQUATIONS

10. (a) The spring constant is k = 10/14 = 40. From ω2 = k/m we see that ω2 = 40/1.6 = 25, so

the equation of motion is

x′′ + 25x = 0.

From the initial conditions we have x(0) = −1
3 and x′(0) = 5

4 . By (3) in the text the

equation of motion has the form

x(t) = c1 cosωt+ c2 sinωt,

so the initial conditions imply

x(t) = −1

3
cos 5t+

1

4
sin 5t.

To write this equation in the form x(t) = A sin(ωt+ φ) we note that

A =

√(
−1

3

)2

+

(
1

4

)2

=

√
1

9
+

1

16
=

5

12
.

and, initially at least,

φ = tan−1
−1/3

1/4
= tan−1

(
−4

3

)
≈ −0.9273.

Since sinφ < 0 and cosφ > 0 we see that φ is a fourth quadrant angle. Thus, φ ≈ −0.9273

and

x(t) =
5

12
sin(5t− 0.9273).

(b) To write the system in the form x(t) = A cos(ωt − φ) we note that A = 5/12 as in part

(a) and, initially at least,

φ = tan1
1/4

−1/3
= tan−1

(
−3

4

)
) ≈ −0.6435.

Since cosφ < 0 and sinφ > 0, φ is in the second quadrant and

x(t) =
5

12
cos(5t− 2.4981).

(c) The amplitude of motion is 5/12 so we want to find t such that

5

12
sin(5t− 0.9273) =

5

24
or sin(5t− 0.9273) = 0.5.

This gives

5t− 0.9273 =
π

6
or t = 0.2902

5t− 0.9273 =
5π

6
or t = 0.7091.

By periodicity the mass will pass through the same two points at t = 0.2902 + 2nπ and

t = 0.7091 + 2nπ, where n is a positive integer and time is measured in seconds.
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5.1 Linear Models: Initial-Value Problemsq

11. From 2x′′ + 200x = 0, x(0) = −2/3, and x′(0) = 5 we obtain

(a) x = −2
3 cos 10t+ 1

2 sin 10t = 5
6 sin(10t− 0.927).

(b) The amplitude is 5/6 ft and the period is 2π/10 = π/5

(c) 3π = πk/5 and k = 15 cycles.

(d) If x = 0 and the weight is moving downward for the second time, then 10t − 0.927 = 2π

or t = 0.721 s.

(e) If x′ = 25
3 cos(10t− 0.927) = 0 then 10t− 0.927 = π/2 + nπ or t = (2n+ 1)π/20 + 0.0927

for n = 0, 1, 2, . . . .

(f) x(3) = −0.597 ft

(g) x′(3) = −5.814 ft/s

(h) x′′(3) = 59.702 ft/s2

(i) If x = 0 then t = 1
10(0.927 + nπ) for n = 0, 1, 2, . . .. The velocity at these times is

x′ = ±8.33 ft/s.

(j) If x = 5/12 then t = 1
10(π/6 + 0.927 + 2nπ) and t = 1

10(5π/6 + 0.927 + 2nπ) for n = 0, 1,

2, . . . .

(k) If x = 5/12 and x′ < 0 then t = 1
10(5π/6 + 0.927 + 2nπ) for n = 0, 1, 2, . . . .

12. From x′′ + 9x = 0, x(0) = −1, and x′(0) = −
√

3 we obtain

x = − cos 3t−
√

3

3
sin 3t =

2√
3

sin

(
3t+

4π

3

)
and x′ = 2

√
3 cos(3t + 4π/3). If x′ = 3 then t = −7π/18 + 2nπ/3 and t = −π/2 + 2nπ/3 for

n = 1, 2, 3, . . . .

13. From k1 = 40 and k2 = 120 we compute the effective spring constant k = 4(40)(120)/160 = 120.

Now, m = 20/32 so k/m = 120(32)/20 = 192 and x′′+192x = 0. Using x(0) = 0 and x′(0) = 2

we obtain x(t) =
√
3

12 sin 8
√

3 t.

14. Let m be the mass and k1 and k2 the spring constants. Then k = 4k1k2/(k1 + k2) is the

effective spring constant of the system. Since the initial mass stretches one spring 1
3 foot and

another spring 1
2 foot, using F = ks, we have 1

3k1 = 1
2k2 or 2k1 = 3k2. The given period of the

combined system is 2π/ω = π/15, so ω = 30. Since a mass weighing 8 pounds is 1
4 slug, we

have from w2 = k/m

302 =
k

1/4
= 4k or k = 225.
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CHAPTER 5 MODELING WITH HIGHER-ORDER DIFFERENTIAL EQUATIONS

We now have the system of equations

4k1k2
k1 + k2

= 225

2k1 = 3k2.

Solving the second equation for k1 and substituting in the first equation, we obtain

4(3k2/2)k2
3k2/2 + k2

=
12k22
5k2

=
12k2

5
= 225.

Thus, k2 = 375/4 and k1 = 1125/8. Finally, the weight of the first mass is

32m =
k1
3

=
1125/8

3
=

375

8
≈ 46.88 lb.

15. For large values of t the differential equation is approximated by x′′ = 0. The solution of this

equation is the linear function x = c1t+ c2. Thus, for large time, the restoring force will have

decayed to the point where the spring is incapable of returning the mass, and the spring will

simply keep on stretching.

16. As t becomes larger the spring constant increases; that is, the spring is stiffening. It would

seem that the oscillations would become periodic and the spring would oscillate more rapidly.

It is likely that the amplitudes of the oscillations would decrease as t increases.

5.1.2 Spring/Mass Systems: Free Damped Motion

17. (a) above (b) heading upward

18. (a) below (b) from rest

19. (a) below (b) heading upward

20. (a) above (b) heading downward

21. From 1
8x
′′ + x′ + 2x = 0, x(0) = −1, and x′(0) = 8 we obtain x = 4te−4t − e−4t and

x′ = 8e−4t − 16te−4t. If x = 0 then t = 1/4 second. If x′ = 0 then t = 1/2 second and

the extreme displacement is x = e−2 feet.

22. From 1
4x
′′ +
√

2x′ + 2x = 0, x(0) = 0, and x′(0) = 5 we obtain x = 5te−2
√
2 t and

x′ = 5e−2
√
2 t
(
1− 2

√
2 t
)
. If x′ = 0 then t =

√
2/4 second and the extreme displacement is

x = 5
√

2 e−1/4 feet.

23. (a) From x′′ + 10x′ + 16x = 0, x(0) = 1, and x′(0) = 0 we obtain x = 4
3e
−2t − 1

3e
−8t.

(b) From x′′ + x′ + 16x = 0, x(0) = 1, and x′(0) = −12 then x = −2
3e
−2t + 5

3e
−8t.
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5.1 Linear Models: Initial-Value Problemsq

24. (a) x = 1
3e
−8t (4e6t − 1

)
is not zero for t ≥ 0; the extreme displacement is x(0) = 1 meter.

(b) x = 1
3e
−8t (5− 2e6t

)
= 0 when t = 1

6 ln 5
2 ≈ 0.153 second; if x′ = 4

3e
−8t (e6t − 10

)
= 0 then

t = 1
6 ln 10 ≈ 0.384 second and the extreme displacement is x = −0.232 meter.

25. (a) From 0.1x′′+0.4x′+2x = 0, x(0) = −1, and x′(0) = 0 we obtain x = e−2t
[
− cos 4t− 1

2 sin 4t
]
.

(b) x =

√
5

2
e−2t sin(4t+ 4.25)

(c) If x = 0 then 4t+ 4.25 = 2π, 3π, 4π, . . . so that the first time heading upward is

t = 1.294 seconds.

26. (a) From 1
4x
′′+x′+ 5x = 0, x(0) = 1/2, and x′(0) = 1 we obtain x = e−2t

(
1
2 cos 4t+ 1

2 sin 4t
)
.

(b) x =
1√
2
e−2t sin

(
4t+

π

4

)
.

(c) x =
1√
2
e−2t sin

(
4t+

π

4

)
.

(d) x

27. From 5
16x
′′ + βx′ + 5x = 0 we find that the roots of the auxiliary equation are

m = −8

5
β ± 4

5

√
4β2 − 25 .

(a) If 4β2 − 25 > 0 then β > 5/2.

(b) If 4β2 − 25 = 0 then β = 5/2.

(c) If 4β2 − 25 < 0 then 0 < β < 5/2.

28. From 0.75x′′ + βx′ + 6x = 0 and β > 3
√

2 we find that the roots of the auxiliary equation are

m = −2
3β ±

2
3

√
β2 − 18 and

x = e−2βt/3
[
c1 cosh

2

3

√
β2 − 18 t+ c2 sinh

2

3

√
β2 − 18 t

]
.

If x(0) = 0 and x′(0) = −2 then c1 = 0 and c2 = −3/
√
β2 − 18.
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CHAPTER 5 MODELING WITH HIGHER-ORDER DIFFERENTIAL EQUATIONS

5.1.3 Spring/Mass Systems: Driven Motion

29. If 1
2x
′′ + 1

2x
′ + 6x = 10 cos 3t, x(0) = 2, and x′(0) = 0 then

xc = e−t/2

(
c1 cos

√
47

2
t+ c2 sin

√
47

2
t

)

and xp = 10
3 (cos 3t+ sin 3t) so that the equation of motion is

x = e−t/2

(
−4

3
cos

√
47

2
t− 64

3
√

47
sin

√
47

2
t

)
+

10

3
(cos 3t+ sin 3t).

30. (a) If x′′ + 2x′ + 5x = 12 cos 2t+ 3 sin 2t, x(0) = 1, and x′(0) = 5 then

xc = e−t(c1 cos 2t+ c2 sin 2t) and xp = 3 sin 2t

so that the equation of motion is x = e−t cos 2t+ 3 sin 2t.

(b) x (c) x

31. From x′′ + 8x′ + 16x = 8 sin 4t, x(0) = 0, and x′(0) = 0 we obtain xc = c1e
−4t + c2te

−4t and

xp = −1
4 cos 4t so that the equation of motion is

x =
1

4
e−4t + te−4t − 1

4
cos 4t.

32. From x′′ + 8x′ + 16x = e−t sin 4t, x(0) = 0, and x′(0) = 0 we obtain xc = c1e
−4t + c2te

−4t and

xp = − 24
625e

−t cos 4t− 7
625e

−t sin 4t so that

x =
1

625
e−4t(24 + 100t)− 1

625
e−t(24 cos 4t+ 7 sin 4t).

As t→∞ the displacement x→ 0.

33. From 2x′′+ 32x = 68e−2t cos 4t, x(0) = 0, and x′(0) = 0 we obtain xc = c1 cos 4t+ c2 sin 4t and

xp = 1
2e
−2t cos 4t− 2e−2t sin 4t so that

x = −1

2
cos 4t+

9

4
sin 4t+

1

2
e−2t cos 4t− 2e−2t sin 4t.

34. Since x =
√
85
4 sin(4t − 0.219) −

√
17
2 e−2t sin(4t − 2.897), the amplitude approaches

√
85/4 as

t→∞.
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5.1 Linear Models: Initial-Value Problemsq

35. (a) By Hooke’s law the external force is F (t) = kh(t) so that mx′′ + βx′ + kx = kh(t).

(b) From 1
2x
′′ + 2x′ + 4x = 20 cos t, x(0) = 0, and x′(0) = 0 we obtain

xc = e−2t(c1 cos 2t+ c2 sin 2t) and xp =
56

13
cos t+

32

13
sin t

so that

x = e−2t
(
−56

13
cos 2t− 72

13
sin 2t

)
+

56

13
cos t+

32

13
sin t.

36. (a) From 100x′′+1600x = 1600 sin 8t, x(0) = 0, and x′(0) = 0 we obtain xc = c1 cos 4t+c2 sin 4t

and xp = −1
3 sin 8t so that by a trig identity

x =
2

3
sin 4t− 1

3
sin 8t =

2

3
sin 4t− 2

3
sin 4t cos 4t.

(b) If x = 1
3 sin 4t(2− 2 cos 4t) = 0 then t = nπ/4 for n = 0, 1, 2, . . . .

(c) If x′ = 8
3 cos 4t − 8

3 cos 8t = 8
3(1 − cos 4t)(1 + 2 cos 4t) = 0 then t = π/3 + nπ/2 and

t = π/6 + nπ/2 for n = 0, 1, 2, . . . at the extreme values. There are many other values of

t for which x′ = 0.

(d) x(π/6 + nπ/2) =
√

3/2 cm and x(π/3 + nπ/2) = −
√

3/2 cm

(e) x

37. From x′′+4x = −5 sin 2t+3 cos 2t, x(0) = −1, and x′(0) = 1 we obtain xc = c1 cos 2t+c2 sin 2t,

xp = 3
4 t sin 2t+ 5

4 t cos 2t, and

x = − cos 2t− 1

8
sin 2t+

3

4
t sin 2t+

5

4
t cos 2t.

38. From x′′ + 9x = 5 sin 3t, x(0) = 2, and x′(0) = 0 we obtain xc = c1 cos 3t + c2 sin 3t,

xp = −5
6 t cos 3t, and

x = 2 cos 3t+
5

18
sin 3t− 5

6
t cos 3t.

39. (a) From x′′ + ω2x = F0 cos γt, x(0) = 0, and x′(0) = 0 we obtain xc = c1 cosωt + c2 sinωt

and xp = (F0 cos γt)/
(
ω2 − γ2

)
so that

x = − F0

ω2 − γ2
cosωt+

F0

ω2 − γ2
cos γt.
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CHAPTER 5 MODELING WITH HIGHER-ORDER DIFFERENTIAL EQUATIONS

(b) lim
γ→ω

F0

ω2 − γ2
(cos γt− cosωt) = lim

γ→ω

−F0t sin γt

−2γ
=
F0

2ω
t sinωt.

40. From x′′ + ω2x = F0 cosωt, x(0) = 0, and x′(0) = 0 we obtain xc = c1 cosωt + c2 sinωt and

xp = (F0t/2ω) sinωt so that x = (F0t/2ω) sinωt.

41. (a) From cos(u−v) = cosu cos v+sinu sin v and cos(u+v) = cosu cos v− sinu sin v we obtain

sinu sin v = 1
2 [cos(u − v) − cos(u + v)]. Letting u = 1

2(γ − ω)t and v = 1
2(γ + ω)t, the

result follows.

(b) If ε = 1
2(γ − ω) then γ ≈ ω so that x = (F0/2εγ) sin εt sin γt.

Computer Lab Assignments

42. See the article “Distinguished Oscillations of a Forced Harmonic Oscillator” by T.G. Procter

in The College Mathematics Journal, March, 1995. In this article the author illustrates that

for F0 = 1, λ = 0.01, γ = 22/9, and ω = 2 the system exhibits beats oscillations on the interval

[0, 9π], but that this phenomenon is transient as t→∞.

43. (a) The general solution of the homogeneous equation is

xc(t) = c1e
−λt cos(

√
ω2 − λ2 t) + c2e

−λt sin(
√
ω2 − λ2 t)

= Ae−λt sin[
√
ω2 − λ2 t+ φ],

where A =
√
c21 + c22 , sinφ = c1/A, and cosφ = c2/A. Now

xp(t) =
F0(ω

2 − γ2)
(ω2 − γ2)2 + 4λ2γ2

sin γt+
F0(−2λγ)

(ω2 − γ2)2 + 4λ2γ2
cos γt = A sin(γt+ θ),

where

sin θ =

F0(−2λγ)

(ω2 − γ2)2 + 4λ2γ2

F0√
ω2 − γ2 + 4λ2γ2

=
−2λγ√

(ω2 − γ2)2 + 4λ2γ2

and

cos θ =

F0(ω
2 − γ2)

(ω2 − γ2)2 + 4λ2γ2

F0√
(ω2 − γ2)2 + 4λ2γ2

=
ω2 − γ2√

(ω2 − γ2)2 + 4λ2γ2
.
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5.1 Linear Models: Initial-Value Problemsq

(b) If g′(γ) = 0 then γ
(
γ2 + 2λ2 − ω2

)
= 0 so that γ = 0 or γ =

√
ω2 − 2λ2. The first

derivative test shows that g has a maximum value at γ =
√
ω2 − 2λ2 . The maximum

value of g is

g
(√

ω2 − 2λ2
)

= F0/2λ
√
ω2 − λ2.

(c) We identify ω2 = k/m = 4, λ = β/2, and γ1 =
√
ω2 − 2λ2 =

√
4− β2/2 . As β → 0,

γ1 → 2 and the resonance curve grows without bound at γ1 = 2. That is, the system

approaches pure resonance.

44. (a) For n = 2, sin2 γt = 1
2(1− cos 2γt). The system is in pure resonance when 2γ1/2π = ω/2π,

or when γ1 = ω/2.

(b) Note that

sin3 γt = sin γt sin2 γt =
1

2
[sin γt− sin γt cos 2γt].

Now

sin(A+B) + sin(A−B) = 2 sinA cosB

so

sin γt cos 2γt =
1

2
[sin 3γt− sin γt]

and

sin3 γt =
3

4
sin γt− 1

4
sin 3γt.

Thus

x′′ + ω2x =
3

4
sin γt− 1

4
sin 3γt.

The frequency of free vibration is ω/2π. Thus, when γ1/2π = ω/2π or γ1 = ω, and when

3γ2/2π = ω/2π or 3γ2 = ω or γ3 = ω/3, the system will be in pure resonance.
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CHAPTER 5 MODELING WITH HIGHER-ORDER DIFFERENTIAL EQUATIONS

(c) x

5.1.4 Series Circuit Analogue

45. Solving 1
20q
′′+2q′+100q = 0 we obtain q(t) = e−20t(c1 cos 40t+c2 sin 40t). The initial conditions

q(0) = 5 and q′(0) = 0 imply c1 = 5 and c2 = 5/2. Thus

q(t) = e−20t
(

5 cos 40t+
5

2
sin 40t

)
=
√

25 + 25/4 e−20t sin(40t+ 1.1071)

and q(0.01) ≈ 4.5676 coulombs. The charge is zero for the first time when 40t+ 1.1071 = π or

t ≈ 0.0509 second.

46. Solving 1
4q
′′+20q′+300q = 0 we obtain q(t) = c1e

−20t+c2e
−60t. The initial conditions q(0) = 4

and q′(0) = 0 imply c1 = 6 and c2 = −2. Thus

q(t) = 6e−20t − 2e−60t.

Setting q = 0 we find e40t = 1/3 which implies t < 0. Therefore the charge is not 0 for t ≥ 0.

47. Solving 5
3q
′′ + 10q′ + 30q = 300 we obtain q(t) = e−3t(c1 cos 3t + c2 sin 3t) + 10. The initial

conditions q(0) = q′(0) = 0 imply c1 = c2 = −10. Thus

q(t) = 10− 10e−3t(cos 3t+ sin 3t) and i(t) = 60e−3t sin 3t.

Solving i(t) = 0 we see that the maximum charge occurs when t = π/3 and q(π/3) ≈ 10.432.

48. Solving q′′ + 100q′ + 2500q = 30 we obtain q(t) = c1e
−50t + c2te

−50t + 0.012. The initial

conditions q(0) = 0 and q′(0) = 2 imply c1 = −0.012 and c2 = 1.4. Thus, using i(t) = q′(t) we

get

q(t) = −0.012e−50t + 1.4te−50t + 0.012 and i(t) = 2e−50t − 70te−50t.

Solving i(t) = 0 we see that the maximum charge occurs when t = 1/35 second and

q(1/35) ≈ 0.01871 coulomb.

49. Solving q′′+ 2q′+ 4q = 0 we obtain qc = e−t
(
cos
√

3 t+ sin
√

3 t
)
. The steady-state charge has

the form qp = A cos t+B sin t. Substituting into the differential equation we find

(3A+ 2B) cos t+ (3B − 2A) sin t = 50 cos t.
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5.1 Linear Models: Initial-Value Problemsq

Thus, A = 150/13 and B = 100/13. The steady-state charge is

qp(t) =
150

13
cos t+

100

13
sin t

and the steady-state current is

ip(t) = −150

13
sin t+

100

13
cos t.

50. From

ip(t) =
E0

Z

(
R

Z
sin γt− X

Z
cos γt

)
and Z =

√
X2 +R2 we see that the amplitude of ip(t) is

A =

√
E2

0R
2

Z4
+
E2

0X
2

Z4
=
E0

Z2

√
R2 +X2 =

E0

Z
.

51. The differential equation is 1
2q
′′+ 20q′+ 1000q = 100 sin 60t. To use Example 10 in the text we

identify E0 = 100 and γ = 60. Then

X = Lγ − 1

cγ
=

1

2
(60)− 1

0.001(60)
≈ 13.3333,

Z =
√
X2 +R2 =

√
X2 + 400 ≈ 24.0370,

and

E0

Z
=

100

Z
≈ 4.1603.

From Problem 50, then

ip(t) ≈ 4.1603 sin(60t+ φ)

where sinφ = −X/Z and cosφ = R/Z. Thus tanφ = −X/R ≈ −0.6667 and φ is a fourth

quadrant angle. Now φ ≈ −0.5880 and

ip(t) = 4.1603 sin(60t− 0.5880).

52. Solving 1
2q
′′+ 20q′+ 1000q = 0 we obtain qc(t) = e−20t(c1 cos 40t+ c2 sin 40t). The steady-state

charge has the form qp(t) = A sin 60t+B cos 60t+ C sin 40t+D cos 40t. Substituting into the

differential equation we find

(−1600A− 2400B) sin 60t+ (2400A− 1600B) cos 60t

+ (400C − 1600D) sin 40t+ (1600C + 400D) cos 40t

= 200 sin 60t+ 400 cos 40t.

Equating coefficients we obtain A = −1/26, B = −3/52, C = 4/17, and D = 1/17. The

steady-state charge is

qp(t) = − 1

26
sin 60t− 3

52
cos 60t+

4

17
sin 40t+

1

17
cos 40t

and the steady-state current is

ip(t) = −30

13
cos 60t+

45

13
sin 60t+

160

17
cos 40t− 40

17
sin 40t.
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CHAPTER 5 MODELING WITH HIGHER-ORDER DIFFERENTIAL EQUATIONS

53. Solving 1
2q
′′+ 10q′+ 100q = 150 we obtain q(t) = e−10t(c1 cos 10t+ c2 sin 10t) + 3/2. The initial

conditions q(0) = 1 and q′(0) = 0 imply c1 = c2 = −1/2. Thus

q(t) = −1

2
e−10t(cos 10t+ sin 10t) +

3

2
.

As t→∞, q(t)→ 3/2.

54. In Problem 50 it is shown that the amplitude of the steady-state current is E0/Z, where

Z =
√
X2 +R2 and X = Lγ − 1/Cγ. Since E0 is constant the amplitude will be a maximum

when Z is a minimum. Since R is constant, Z will be a minimum when X = 0. Solving

Lγ − 1/Cγ = 0 for γ we obtain γ = 1/
√
LC . The maximum amplitude will be E0/R.

55. By Problem 50 the amplitude of the steady-state current is E0/Z, where Z =
√
X2 +R2 and

X = Lγ−1/Cγ. Since E0 is constant the amplitude will be a maximum when Z is a minimum.

Since R is constant, Z will be a minimum when X = 0. Solving Lγ − 1/Cγ = 0 for C we

obtain C = 1/Lγ2.

56. Solving 0.1q′′ + 10q = 100 sin γt we obtain

q(t) = c1 cos 10t+ c2 sin 10t+ qp(t)

where qp(t) = A sin γt+B cos γt. Substituting qp(t) into the differential equation we find

(100− γ2)A sin γt+ (100− γ2)B cos γt = 100 sin γt.

Equating coefficients we obtain A = 100/(100− γ2) and B = 0. Thus, qp(t) =
100

100− γ2
sin γt.

The initial conditions q(0) = q′(0) = 0 imply c1 = 0 and c2 = −10γ/(100− γ2). The charge is

q(t) =
10

100− γ2
(10 sin γt− γ sin 10t)

and the current is

i(t) =
100γ

100− γ2
(cos γt− cos 10t).

57. In an LC-series circuit there is no resistor, so the differential equation is

L
d2q

dt2
+

1

C
q = E(t).

Then q(t) = c1 cos
(
t/
√
LC

)
+ c2 sin

(
t/
√
LC

)
+ qp(t) where qp(t) = A sin γt + B cos γt.

Substituting qp(t) into the differential equation we find(
1

C
− Lγ2

)
A sin γt+

(
1

C
− Lγ2

)
B cos γt = E0 cos γt.

Equating coefficients we obtain A = 0 and B = E0C/(1− LCγ2). Thus, the charge is

q(t) = c1 cos
1√
LC

t+ c2 sin
1√
LC

t+
E0C

1− LCγ2
cos γt.
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The initial conditions q(0) = q0 and q′(0) = i0 imply c1 = q0 − E0C/(1 − LCγ2) and c2 = i0
√

LC .

The current is i(t) = q′(t) or

i(t) = − c1√
LC

sin
1√
LC

t +
c2√
LC

cos
1√
LC

t − E0Cγ

1 − LCγ2 sin γt

= i0 cos
1√
LC

t − 1√
LC

(

q0 −
E0C

1 − LCγ2

)

sin
1√
LC

t − E0Cγ

1 − LCγ2 sin γt.

58. When the circuit is in resonance the form of qp(t) is qp(t) = At cos kt+Bt sin kt where k = 1/
√

LC .

Substituting qp(t) into the differential equation we find

q′′p + k2qp = −2kA sin kt + 2kB cos kt =
E0

L
cos kt.

Equating coefficients we obtain A = 0 and B = E0/2kL. The charge is

q(t) = c1 cos kt + c2 sin kt +
E0

2kL
t sin kt.

The initial conditions q(0) = q0 and q′(0) = i0 imply c1 = q0 and c2 = i0/k. The current is

i(t) = −c1k sin kt + c2k cos kt +
E0

2kL
(kt cos kt + sin kt)

=
(

E0

2kL
− q0k

)
sin kt + i0 cos kt +

E0

2L
t cos kt.

1. (a) The general solution is

y(x) = c1 + c2x + c3x
2 + c4x

3 +
w0

24EI
x4.

The boundary conditions are y(0) = 0, y′(0) = 0, y′′(L) = 0, y′′′(L) = 0. The first two

conditions give c1 = 0 and c2 = 0. The conditions at x = L give the system

2c3 + 6c4L +
w0

2EI
L2 = 0

6c4 +
w0

EI
L = 0.

Solving, we obtain c3 = w0L2/4EI and c4 = −w0L/6EI. The deflection is

y(x) =
w0

24EI
(6L2x2 − 4Lx3 + x4).
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(b)

2. (a) The general solution is

y(x) = c1 + c2x + c3x
2 + c4x

3 +
w0

24EI
x4.

The boundary conditions are y(0) = 0, y′′(0) = 0, y(L) = 0, y′′(L) = 0. The first two conditions

give c1 = 0 and c3 = 0. The conditions at x = L give the system

c2L + c4L
3 +

w0

24EI
L4 = 0

6c4L +
w0

2EI
L2 = 0.

Solving, we obtain c2 = w0L3/24EI and c4 = −w0L/12EI. The deflection is

y(x) =
w0

24EI
(L3x − 2Lx3 + x4).

(b)

3. (a) The general solution is

y(x) = c1 + c2x + c3x
2 + c4x

3 +
w0

24EI
x4.

The boundary conditions are y(0) = 0, y′(0) = 0, y(L) = 0, y′′(L) = 0. The first two conditions

give c1 = 0 and c2 = 0. The conditions at x = L give the system

c3L
2 + c4L

3 +
w0

24EI
L4 = 0

2c3 + 6c4L +
w0

2EI
L2 = 0.

Solving, we obtain c3 = w0L2/16EI and c4 = −5w0L/48EI. The deflection is

y(x) =
w0

48EI
(3L2x2 − 5Lx3 + 2x4).
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(b)

4. (a) The general solution is

y(x) = c1 + c2x + c3x
2 + c4x

3 +
w0L4

EIπ4 sin
π

L
x.

The boundary conditions are y(0) = 0, y′(0) = 0, y(L) = 0, y′′(L) = 0. The first two conditions

give c1 = 0 and c2 = −w0L3/EIπ3. The conditions at x = L give the system

c3L
2 + c4L

3 +
w0

EIπ3L4 = 0

2c3 + 6c4L = 0.

Solving, we obtain c3 = 3w0L2/2EIπ3 and c4 = −w0L/2EIπ3. The deflection is

y(x) =
w0L

2EIπ3

(

−2L2x + 3Lx2 − x3 +
2L3

π
sin

π

L
x

)

.

(b)

(c) Using a CAS we find the maximum deflection to be 0.270806 when x = 0.572536.

5. (a) The general solution is

y(x) = c1 + c2x + c3x
2 + c4x

3 +
w0

120EI
x5.

The boundary conditions are y(0) = 0, y′′(0) = 0, y(L) = 0, y′′(L) = 0. The first two conditions

give c1 = 0 and c3 = 0. The conditions at x = L give the system

c2L + c4L
3 +

w0

120EI
L5 = 0

6c4L +
w0

6EI
L3 = 0.
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Solving, we obtain c2 = 7w0L4/360EI and c4 = −w0L2/36EI. The deflection is

y(x) =
w0

360EI
(7L4x − 10L2x3 + 3x5).

(b)

(c) Using a CAS we find the maximum deflection to be 0.234799 when x = 0.51933.

6. (a) ymax = y(L) = w0L4/8EI

(b) Replacing both L and x by L/2 in y(x) we obtain w0L4/128EI, which is 1/16 of the maximum

deflection when the length of the beam is L.

(c) ymax = y(L/2) = 5w0L4/384EI

(d) The maximum deflection in Example 1 is y(L/2) = (w0/24EI)L4/16 = w0L4/384EI, which is

1/5 of the maximum displacement of the beam in part (c).

7. The general solution of the differential equation is

y = c1 cosh

√
P

EI
x + c2 sinh

√
P

EI
x +

w0

2P
x2 +

w0EI

P 2 .

Setting y(0) = 0 we obtain c1 = −w0EI/P 2, so that

y = −w0EI

P 2 cosh

√
P

EI
x + c2 sinh

√
P

EI
x +

w0

2P
x2 +

w0EI

P 2 .

Setting y′(L) = 0 we find

c2 =




√

P

EI

w0EI

P 2 sinh

√
P

EI
L − w0L

P




/ √

P

EI
cosh

√
P

EI
L.

8. The general solution of the differential equation is

y = c1 cos

√
P

EI
x + c2 sin

√
P

EI
x +

w0

2P
x2 +

w0EI

P 2 .

Setting y(0) = 0 we obtain c1 = −w0EI/P 2, so that

y = −w0EI

P 2 cos

√
P

EI
x + c2 sin

√
P

EI
x +

w0

2P
x2 +

w0EI

P 2 .
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Setting y′(L) = 0 we find

c2 =



−
√

P

EI

w0EI

P 2 sin

√
P

EI
L − w0L

P




/ √

P

EI
cos

√
P

EI
L.

9. This is Example 2 in the text with L = π. The eigenvalues are λn = n2π2/π2 = n2, n = 1, 2, 3, . . .

and the corresponding eigenfunctions are yn = sin(nπx/π) = sin nx, n = 1, 2, 3, . . . .

10. This is Example 2 in the text with L = π/4. The eigenvalues are λn = n2π2/(π/4)2 = 16n2, n = 1,

2, 3, . . . and the eigenfunctions are yn = sin(nπx/(π/4)) = sin 4nx, n = 1, 2, 3, . . . .

11. For λ ≤ 0 the only solution of the boundary-value problem is y = 0. For λ = α2 > 0 we have

y = c1 cos αx + c2 sin αx.

Now

y′(x) = −c1α sin αx + c2α cos αx

and y′(0) = 0 implies c2 = 0, so

y(L) = c1 cos αL = 0

gives

αL =
(2n − 1)π

2
or λ = α2 =

(2n − 1)2π2

4L2 , n = 1, 2, 3, . . . .

The eigenvalues (2n − 1)2π2/4L2 correspond to the eigenfunctions cos
(2n − 1)π

2L
x for

n = 1, 2, 3, . . . .

12. For λ ≤ 0 the only solution of the boundary-value problem is y = 0. For λ = α2 > 0 we have

y = c1 cos αx + c2 sin αx.

Since y(0) = 0 implies c1 = 0, y = c2 sin x dx. Now

y′
(

π

2

)
= c2α cos α

π

2
= 0

gives

α
π

2
=

(2n − 1)π

2
or λ = α2 = (2n − 1)2, n = 1, 2, 3, . . . .

The eigenvalues λn = (2n − 1)2 correspond to the eigenfunctions yn = sin(2n − 1)x.

13. For λ = −α2 < 0 the only solution of the boundary-value problem is y = 0. For λ = 0 we have

y = c1x + c2. Now y′ = c1 and y′(0) = 0 implies c1 = 0. Then y = c2 and y′(π) = 0. Thus, λ = 0 is

an eigenvalue with corresponding eigenfunction y = 1.

For λ = α2 > 0 we have

y = c1 cos αx + c2 sin αx.
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Now

y′(x) = −c1α sin αx + c2α cos αx

and y′(0) = 0 implies c2 = 0, so

y′(π) = −c1α sin απ = 0

gives

απ = nπ or λ = α2 = n2, n = 1, 2, 3, . . . .

The eigenvalues n2 correspond to the eigenfunctions cos nx for n = 0, 1, 2, . . . .

14. For λ ≤ 0 the only solution of the boundary-value problem is y = 0. For λ = α2 > 0 we have

y = c1 cos αx + c2 sin αx.

Now y(−π) = y(π) = 0 implies

c1 cos απ − c2 sin απ = 0

c1 cos απ + c2 sin απ = 0.
(1)

This homogeneous system will have a nontrivial solution when
∣∣∣∣∣
cos απ − sin απ

cos απ sin απ

∣∣∣∣∣ = 2 sin απ cos απ = sin 2απ = 0.

Then

2απ = nπ or λ = α2 =
n2

4
; n = 1, 2, 3, . . . .

When n = 2k − 1 is odd, the eigenvalues are (2k − 1)2/4. Since cos(2k − 1)π/2 = 0 and

sin(2k − 1)π/2 $= 0, we see from either equation in (1) that c2 = 0. Thus, the eigenfunctions

corresponding to the eigenvalues (2k − 1)2/4 are y = cos(2k − 1)x/2 for k = 1, 2, 3, . . . . Similarly,

when n = 2k is even, the eigenvalues are k2 with corresponding eigenfunctions y = sin kx for

k = 1, 2, 3, . . . .

15. The auxiliary equation has solutions

m =
1

2

(
−2 ±

√
4 − 4(λ + 1)

)
= −1 ± α.

For λ = −α2 < 0 we have

y = e−x (c1 cosh αx + c2 sinh αx) .

The boundary conditions imply

y(0) = c1 = 0

y(5) = c2e
−5 sinh 5α = 0

so c1 = c2 = 0 and the only solution of the boundary-value problem is y = 0.
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For λ = 0 we have

y = c1e
−x + c2xe−x

and the only solution of the boundary-value problem is y = 0.

For λ = α2 > 0 we have

y = e−x (c1 cos αx + c2 sin αx) .

Now y(0) = 0 implies c1 = 0, so

y(5) = c2e
−5 sin 5α = 0

gives

5α = nπ or λ = α2 =
n2π2

25
, n = 1, 2, 3, . . . .

The eigenvalues λn =
n2π2

25
correspond to the eigenfunctions yn = e−x sin

nπ

5
x for n = 1, 2, 3, . . . .

16. For λ < −1 the only solution of the boundary-value problem is y = 0. For λ = −1 we have

y = c1x + c2. Now y′ = c1 and y′(0) = 0 implies c1 = 0. Then y = c2 and y′(1) = 0. Thus, λ = −1

is an eigenvalue with corresponding eigenfunction y = 1.

For λ > −1 or λ + 1 = α2 > 0 we have

y = c1 cos αx + c2 sin αx.

Now

y′ = −c1α sin αx + c2α cos αx

and y′(0) = 0 implies c2 = 0, so

y′(1) = −c1α sin α = 0

gives

α = nπ, λ + 1 = α2 = n2π2, or λ = n2π2 − 1, n = 1, 2, 3, . . . .

The eigenvalues n2π2 − 1 correspond to the eigenfunctions cosnπx for n = 0, 1, 2, . . . .

17. For λ = α2 > 0 a general solution of the given differential equation is

y = c1 cos(α ln x) + c2 sin(α ln x).

Since ln 1 = 0, the boundary condition y(1) = 0 implies c1 = 0. Therefore

y = c2 sin(α ln x).

Using ln eπ = π we find that y (eπ) = 0 implies

c2 sin απ = 0

or απ = nπ, n = 1, 2, 3, . . . . The eigenvalues and eigenfunctions are, in turn,

λ = α2 = n2, n = 1, 2, 3, . . . and y = sin(n ln x).
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For λ ≤ 0 the only solution of the boundary-value problem is y = 0.

18. For λ = 0 the general solution is y = c1 + c2 ln x. Now y′ = c2/x, so y′(e−1) = c2e = 0 implies

c2 = 0. Then y = c1 and y(1) = 0 gives c1 = 0. Thus y(x) = 0.

For λ = −α2 < 0, y = c1x−α + c2xα. The boundary conditions give c2 = c1e2α and c1 = 0, so that

c2 = 0 and y(x) = 0.

For λ = α2 > 0, y = c1 cos(α ln x) + c2 sin(α ln x). From y(1) = 0 we obtain c1 = 0 and y =

c2 sin(α ln x). Now y′ = c2(α/x) cos(α ln x), so y′(e−1) = c2eα cos α = 0 implies cos α = 0 or

α = (2n−1)π/2 and λ = α2 = (2n−1)2π2/4 for n = 1, 2, 3, . . . . The corresponding eigenfunctions

are

yn = sin
(

2n − 1

2
π ln x

)
.

19. For λ = α4, α > 0, the general solution of the boundary-value problem

y(4) − λy = 0, y(0) = 0, y′′(0) = 0, y(1) = 0, y′′(1) = 0

is

y = c1 cos αx + c2 sin αx + c3 cosh αx + c4 sinh αx.

The boundary conditions y(0) = 0, y′′(0) = 0 give c1 + c3 = 0 and −c1α2 + c3α2 = 0, from which

we conclude c1 = c3 = 0. Thus, y = c2 sin αx + c4 sinh αx. The boundary conditions y(1) = 0,

y′′(1) = 0 then give

c2 sin α + c4 sinh α = 0

−c2α
2 sin α + c4α

2 sinh α = 0.

In order to have nonzero solutions of this system, we must have the determinant of the coefficients

equal zero, that is,
∣∣∣∣∣

sin α sinh α

−α2 sin α α2 sinh α

∣∣∣∣∣ = 0 or 2α2 sinh α sin α = 0.

But since α > 0, the only way that this is satisfied is to have sinα = 0 or α = nπ. The system

is then satisfied by choosing c2 $= 0, c4 = 0, and α = nπ. The eigenvalues and corresponding

eigenfunctions are then

λn = α4 = (nπ)4, n = 1, 2, 3, . . . and y = sin nπx.

20. For λ = α4, α > 0, the general solution of the differential equation is

y = c1 cos αx + c2 sin αx + c3 cosh αx + c4 sinh αx.

The boundary conditions y′(0) = 0, y′′′(0) = 0 give c2α+c4α = 0 and −c2α3 +c4α3 = 0 from which

we conclude c2 = c4 = 0. Thus, y = c1 cos αx + c3 cosh αx. The boundary conditions y(π) = 0,
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y′′(π) = 0 then give

c2 cos απ + c4 cosh απ = 0

−c2λ
2 cos απ + c4λ

2 cosh απ = 0.

The determinant of the coefficients is 2α2 cosh α cos α = 0. But since α > 0, the only way that

this is satisfied is to have cos απ = 0 or α = (2n − 1)/2, n = 1, 2, 3, . . . . The eigenvalues and

corresponding eigenfunctions are

λn = α4 =
(

2n − 1

2

)4

, n = 1, 2, 3, . . . and y = cos
(

2n − 1

2

)
x.

21. If restraints are put on the column at x = L/4, x = L/2, and x = 3L/4, then the critical

load will be P4.

22. (a) The general solution of the differential equation is

y = c1 cos

√
P

EI
x + c2 sin

√
P

EI
x + δ.

Since the column is embedded at x = 0, the boundary conditions are y(0) = y′(0) = 0. If δ = 0

this implies that c1 = c2 = 0 and y(x) = 0. That is, there is no deflection.

(b) If δ $= 0, the boundary conditions give, in turn, c1 = −δ and c2 = 0. Then

y = δ



1 − cos

√
P

EI
x



 .

In order to satisfy the boundary condition y(L) = δ we must have

δ = δ



1 − cos

√
P

EI
L



 or cos

√
P

EI
L = 0.

This gives
√

P/EI L = nπ/2 for n = 1, 2, 3, . . . . The smallest value of Pn, the Euler load, is

then √
P1

EI
L =

π

2
or P1 =

1

4

(
π2EI

L2

)

.

23. If λ = α2 = P/EI, then the solution of the differential equation is

y = c1 cos αx + c2 sin αx + c3x + c4.
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The conditions y(0) = 0, y′′(0) = 0 yield, in turn, c1 + c4 = 0 and c1 = 0. With c1 = 0 and c4 = 0

the solution is y = c2 sin αx + c3x. The conditions y(L) = 0, y′′(L) = 0, then yield

c2 sin αL + c3L = 0 and c2 sin αL = 0.

Hence, nontrivial solutions of the problem exist only if sinαL = 0. From this point on, the analysis

is the same as in Example 3 in the text.

24. (a) The boundary-value problem is

d4y

dx4 + λ
d2y

dx2 = 0, y(0) = 0, y′′(0) = 0, y(L) = 0, y′(L) = 0,

where λ = α2 = P/EI. The solution of the differential equation is y = c1 cos αx + c2 sin αx +

c3x + c4 and the conditions y(0) = 0, y′′(0) = 0 yield c1 = 0 and c4 = 0. Next, by applying

y(L) = 0, y′(L) = 0 to y = c2 sin αx + c3x we get the system of equations

c2 sin αL + c3L = 0

αc2 cos αL + c3 = 0.

To obtain nontrivial solutions c2, c3, we must have the determinant of the coefficients equal to

zero: ∣∣∣∣∣
sin αL L

α cos αL 1

∣∣∣∣∣ = 0 or tanβ = β,

where β = αL. If βn denotes the positive roots of the last equation, then the eigenvalues are

found from βn = αnL =
√

λn L or λn = (βn/L)2. From λ = P/EI we see that the critical loads

are Pn = β2
nEI/L2. With the aid of a CAS we find that the first positive root of tanβ = β

is (approximately) β1 = 4.4934, and so the Euler load is (approximately) P1 = 20.1907EI/L2.

Finally, if we use c3 = −c2α cos αL, then the deflection curves are

yn(x) = c2 sin αnx + c3x = c2

[

sin

(
βn

L
x

)

−
(

βn

L
cos βn

)

x

]

.

(b) With L = 1 and c2 appropriately chosen, the general shape of the first buckling mode,

y1(x) = c2

[
sin

(
4.4934

L
x

)
−

(
4.4934

L
cos(4.4934)

)
x

]
,

is shown below.

25. The general solution is

y = c1 cos
√

ρ

T
ωx + c2 sin

√
ρ

T
ωx.
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From y(0) = 0 we obtain c1 = 0. Setting y(L) = 0 we find
√

ρ/T ωL = nπ, n = 1, 2, 3, . . . . Thus,

critical speeds are ωn = nπ
√

T/L
√

ρ , n = 1, 2, 3, . . . . The corresponding deflection curves are

y(x) = c2 sin
nπ

L
x, n = 1, 2, 3, . . . ,

where c2 $= 0.

26. (a) When T (x) = x2 the given differential equation is the Cauchy-Euler equation

x2y′′ + 2xy′ + ρω2y = 0.

The solutions of the auxiliary equation

m(m − 1) + 2m + ρω2 = m2 + m + ρω2 = 0

are

m1 = −1

2
− 1

2

√
4ρω2 − 1 i, m2 = −1

2
+

1

2

√
4ρω2 − 1 i

when ρω2 > 0.25. Thus

y = c1x
−1/2 cos(λ ln x) + c2x

−1/2 sin(λ ln x)

where λ = 1
2

√
4ρω2 − 1. Applying y(1) = 0 gives c1 = 0 and consequently

y = c2x
−1/2 sin(λ ln x).

The condition y(e) = 0 requires c2e−1/2 sin λ = 0. We obtain a nontrivial solution when

λn = nπ, n = 1, 2, 3, . . . . But

λn =
1

2

√
4ρω2

n − 1 = nπ.

Solving for ωn gives

ωn =
1

2

√
(4n2π2 + 1)/ρ .

The corresponding solutions are

yn(x) = c2x
−1/2 sin(nπ ln x).

(b)

27. The auxiliary equation is m2 + m = m(m + 1) = 0 so that u(r) = c1r−1 + c2. The boundary

conditions u(a) = u0 and u(b) = u1 yield the system c1a−1 + c2 = u0, c1b−1 + c2 = u1. Solving gives

c1 =
(

u0 − u1

b − a

)
ab and c2 =

u1b − u0a

b − a
.
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Thus

u(r) =
(

u0 − u1

b − a

)
ab

r
+

u1b − u0a

b − a
.

28. The auxiliary equation is m2 = 0 so that u(r) = c1 + c2 ln r. The boundary conditions u(a) = u0

and u(b) = u1 yield the system c1 + c2 ln a = u0, c1 + c2 ln b = u1. Solving gives

c1 =
u1 ln a − u0 ln b

ln(a/b)
and c2 =

u0 − u1

ln(a/b)
.

Thus

u(r) =
u1 ln a − u0 ln b

ln(a/b)
+

u0 − u1

ln(a/b)
ln r =

u0 ln(r/b) − u1 ln(r/a)

ln(a/b)
.

29. The solution of the initial-value problem

x′′ + ω2x = 0, x(0) = 0, x′(0) = v0, ω2 = 10/m

is x(t) = (v0/ω) sin ωt. To satisfy the additional boundary condition x(1) = 0 we require that

ω = nπ, n = 1, 2, 3, . . . . The eigenvalues λ = ω2 = n2π2 and eigenfunctions of the problem

are then x(t) = (v0/nπ) sin nπt. Using ω2 = 10/m we find that the only masses that can pass

through the equilibrium position at t = 1 are mn = 10/n2π2. Note for n = 1, the heaviest mass

m1 = 10/π2 will not pass through the equilibrium position on the interval 0 < t < 1 (the period

of x(t) = (v0/π) sin πt is T = 2, so on 0 ≤ t ≤ 1 its graph passes through x = 0 only at t = 0 and

t = 1). Whereas for n > 1, masses of lighter weight will pass through the equilibrium position n−1

times prior to passing through at t = 1. For example, if n = 2, the period of x(t) = (v0/2π) sin 2πt

is 2π/2π = 1, the mass will pass through x = 0 only once (t = 1
2 ) prior to t = 1; if n = 3, the

period of x(t) = (v0/3π) sin 3πt is 2
3 , the mass will pass through x = 0 twice (t = 1

3 and t = 2
3)

prior to t = 1; and so on.

30. The initial-value problem is

x′′ +
2

m
x′ +

k

m
x = 0, x(0) = 0, x′(0) = v0.

With k = 10, the auxiliary equation has roots γ = −1/m±
√

1 − 10m/m. Consider the three cases:

(i) m = 1
10 . The roots are γ1 = γ2 = 10 and the solution of the differential equation is

x(t) = c1e−10t + c2te−10t. The initial conditions imply c1 = 0 and c2 = v0 and so x(t) = v0te−10t.

The condition x(1) = 0 implies v0e−10 = 0 which is impossible because v0 $= 0.

(ii) 1 − 10m > 0 or 0 < m < 1
10 . The roots are

γ1 = − 1

m
− 1

m

√
1 − 10m and γ2 = − 1

m
+

1

m

√
1 − 10m

and the solution of the differential equation is x(t) = c1eγ1t + c2eγ2t. The initial conditions imply

c1 + c2 = 0

γ1c1 + γ2c2 = v0
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so c1 = v0/(γ1 − γ2), c2 = −v0/(γ1 − γ2), and

x(t) =
v0

γ1 − γ2
(eγ1t − eγ2t).

Again, x(1) = 0 is impossible because v0 $= 0.

(iii) 1 − 10m < 0 or m > 1
10 . The roots of the auxiliary equation are

γ1 = − 1

m
− 1

m

√
10m − 1 i and γ2 = − 1

m
+

1

m

√
10m − 1 i

and the solution of the differential equation is

x(t) = c1e
−t/m cos

1

m

√
10m − 1 t + c2e

−t/m sin
1

m

√
10m − 1 t.

The initial conditions imply c1 = 0 and c2 = mv0/
√

10m − 1, so that

x(t) =
mv0√

10m − 1
e−t/m sin

(
1

m

√
10m − 1 t

)
,

The condition x(1) = 0 implies

mv0√
10m − 1

e−1/m sin
1

m

√
10m − 1 = 0

sin
1

m

√
10m − 1 = 0

1

m

√
10m − 1 = nπ

10m − 1

m2 = n2π2, n = 1, 2, 3, . . .

(n2π2)m2 − 10m + 1 = 0

m =
10
√

100 − 4n2π2

2n2π2 =
5 ±

√
25 − n2π2

n2π2 .

Since m is real, 25 − n2π2 ≥ 0. If 25 − n2π2 = 0, then n2 = 25/π2, and n is not an integer. Thus,

25− n2π2 = (5− nπ)(5 + nπ) > 0 and since n > 0, 5 + nπ > 0, so 5− nπ > 0 also. Then n < 5/π,

and so n = 1. Therefore, the mass m will pass through the equilibrium position when t = 1 for

m1 =
5 +

√
25 − π2

π2 and m2 =
5 −

√
25 − π2

π2 .

31. (a) The general solution of the differential equation is y = c1 cos 4x+c2 sin 4x. From y0 = y(0) = c1

we see that y = y0 cos 4x + c2 sin 4x. From y1 = y(π/2) = y0 we see that any solution must

satisfy y0 = y1. We also see that when y0 = y1, y = y0 cos 4x + c2 sin 4x is a solution of the

boundary-value problem for any choice of c2. Thus, the boundary-value problem does not have

a unique solution for any choice of y0 and y1.

(b) Whenever y0 = y1 there are infinitely many solutions.
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(c) When y0 $= y1 there will be no solutions.

(d) The boundary-value problem will have the trivial solution when y0 = y1 = 0. This solution

will not be unique.

32. (a) The general solution of the differential equation is y = c1 cos 4x+ c2 sin 4x. From 1 = y(0) = c1

we see that y = cos 4x + c2 sin 4x. From 1 = y(L) = cos 4L + c2 sin 4L we see that

c2 = (1 − cos 4L)/ sin 4L. Thus,

y = cos 4x +
(

1 − cos 4L

sin 4L

)
sin 4x

will be a unique solution when sin 4L $= 0; that is, when L $= kπ/4 where k = 1, 2, 3, . . . .

(b) There will be infinitely many solutions when sin 4L = 0 and 1 − cos 4L = 0; that is, when

L = kπ/2 where k = 1, 2, 3, . . . .

(c) There will be no solution when sin 4L $= 0 and 1 − cos 4L $= 0; that is, when L = kπ/4 where

k = 1, 3, 5, . . . .

(d) There can be no trivial solution since it would fail to satisfy the boundary conditions.

33. (a) A solution curve has the same y-coordinate at both ends of the interval [−π, π] and the tangent

lines at the endpoints of the interval are parallel.

(b) For λ = 0 the solution of y′′ = 0 is y = c1x + c2. From the first boundary condition we have

y(−π) = −c1π + c2 = y(π) = c1π + c2

or 2c1π = 0. Thus, c1 = 0 and y = c2. This constant solution is seen to satisfy the boundary-

value problem.

For λ = −α2 < 0 we have y = c1 cosh αx+ c2 sinh αx. In this case the first boundary condition

gives

y(−π) = c1 cosh(−απ) + c2 sinh(−απ)

= c1 cosh απ − c2 sinh απ

= y(π) = c1 cosh απ + c2 sinh απ

or 2c2 sinh απ = 0. Thus c2 = 0 and y = c1 cosh αx. The second boundary condition implies in

a similar fashion that c1 = 0. Thus, for λ < 0, the only solution of the boundary-value problem

is y = 0.

For λ = α2 > 0 we have y = c1 cos αx + c2 sin αx. The first boundary condition implies

y(−π) = c1 cos(−απ) + c2 sin(−απ)

= c1 cos απ − c2 sin απ

= y(π) = c1 cos απ + c2 sin απ
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or 2c2 sin απ = 0. Similarly, the second boundary condition implies 2c1α sin απ = 0. If

c1 = c2 = 0 the solution is y = 0. However, if c1 $= 0 or c2 $= 0, then sin απ = 0, which implies

that α must be an integer, n. Therefore, for c1 and c2 not both 0, y = c1 cos nx + c2 sin nx is a

nontrivial solution of the boundary-value problem. Since cos(−nx) = cos nx and sin(−nx) =

− sin nx, we may assume without loss of generality that the eigenvalues are λn = α2 = n2, for

n a positive integer. The corresponding eigenfunctions are yn = cos nx and yn = sin nx.

(c)

y = 2 sin 3x y = sin 4x − 2 cos 3x

34. For λ = α2 > 0 the general solution is y = c1 cos
√

α x + c2 sin
√

α x. Setting y(0) = 0 we find

c1 = 0, so that y = c2 sin
√

α x. The boundary condition y(1) + y′(1) = 0 implies

c2 sin
√

α + c2
√

α cos
√

α = 0.

Taking c2 $= 0, this equation is equivalent to tan
√

α = −
√

α . Thus, the eigenvalues are λn = α2
n =

x2
n, n = 1, 2, 3, . . . , where the xn are the consecutive positive roots of tan

√
α = −

√
α .

35. We see from the graph that tanx = −x has infinitely many roots.

Since λn = α2
n, there are no new eigenvalues when αn < 0. For λ = 0,

the differential equation y′′ = 0 has general solution y = c1x+c2. The

boundary conditions imply c1 = c2 = 0, so y = 0.

36. Using a CAS we find that the first four nonnegative roots of tanx = −x are approximately

2.02876, 4.91318, 7.97867, and 11.0855. The corresponding eigenvalues are 4.11586, 24.1393,

63.6591, and 122.889, with eigenfunctions sin(2.02876x), sin(4.91318x), sin(7.97867x), and

sin(11.0855x).
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37. In the case when λ = −α2 < 0, the solution of the differential

equation is y = c1 cosh αx + c2 sinh αx. The condition y(0) = 0

gives c1 = 0. The condition y(1) − 1
2y′(1) = 0 applied to

y = c2 sinh αx gives c2(sinh α− 1
2α cosh α) = 0 or tanhα = 1

2α. As

can be seen from the figure, the graphs of y = tanh x and y = 1
2x in-

tersect at a single point with approximate x-coordinate α1 = 1.915.

Thus, there is a single negative eigenvalue λ1 = −α2
1 ≈ −3.667 and

the corresponding eigenfuntion is y1 = sinh 1.915x.

For λ = 0 the only solution of the boundary-value problem is y = 0.

For λ = α2 > 0 the solution of the differential equation is y = c1 cos αx + c2 sin αx. The condition

y(0) = 0 gives c1 = 0, so y = c2 sin αx. The condition y(1)− 1
2y′(1) = 0 gives c2(sin α− 1

2α cos α) = 0,

so the eigenvalues are λn = α2
n when αn, n = 2, 3, 4, . . . , are the positive roots of tanα = 1

2α. Using

a CAS we find that the first three values of α are α2 = 4.27487, α3 = 7.59655, and α4 = 10.8127.

The first three eigenvalues are then λ2 = α2
2 = 18.2738, λ3 = α2

3 = 57.7075, and λ4 = α2
4 = 116.9139

with corresponding eigenfunctions y2 = sin 4.27487x, y3 = sin 7.59655x, and y4 = sin 10.8127x.

38. For λ = α4, α > 0, the solution of the differential equation is

y = c1 cos αx + c2 sin αx + c3 cosh αx + c4 sinh αx.

The boundary conditions y(0) = 0, y′(0) = 0, y(1) = 0, y′(1) = 0

give, in turn,

c1 + c3 = 0

αc2 + αc4 = 0,

c1 cos α + c2 sin α + c3 cosh α + c4 sinh α = 0

−c1α sin α + c2α cos α + c3α sinh α + c4α cosh α = 0.

The first two equations enable us to write

c1(cos α − cosh α) + c2(sin α − sinh α) = 0

c1(− sin α − sinh α) + c2(cos α − cosh α) = 0.

The determinant ∣∣∣∣∣
cos α − cosh α sin α − sinh α

− sin α − sinh α cos α − cosh α

∣∣∣∣∣ = 0

simplifies to cos α cosh α = 1. From the figure showing the graphs of 1/ cosh x and cos x, we see
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that this equation has an infinite number of positive roots. With the aid of a CAS the first four roots

are found to be α1 = 4.73004, α2 = 7.8532, α3 = 10.9956, and α4 = 14.1372, and the corresponding

eigenvalues are λ1 = 500.5636, λ2 = 3803.5281, λ3 = 14,617.5885, and λ4 = 39,944.1890. Using the

third equation in the system to eliminate c2, we find that the eigenfunctions are

yn = (− sin αn + sinh αn)(cos αnx − cosh αnx) + (cos αn − cosh αn)(sin αnx − sinh αnx).

q

5.3 Nonlinear Modelsq

Nonlinear Springs

1. The period corresponding to x(0) = 1, x′(0) = 1

is approximately 5.6. The period corresponding to

x(0) = 1/2, x′(0) = −1 is approximately 6.2.

2. The solutions are not periodic.

3. The period corresponding to x(0) = 1, x′(0) = 1 is

approximately 5.8. The second initial-value problem

does not have a periodic solution.

4. Both solutions have periods of approximately 6.3.

B y 2855.3 Nonlinear Models
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CHAPTER 5 MODELING WITH HIGHER-ORDER DIFFERENTIAL EQUATIONS

5. From the graph we see that |x1| ≈ 1.2.

6. From the graphs we see that the interval is

approximately (−0.8, 1.1).

7. Since

xe0.01x = x[1 + 0.01x+
1

2!
(0.01x)2 + · · · ] ≈ x

for small values of x, a linearization is
d2x

dt2
+ x = 0.

8. x

For x(0) = 1 and x′(0) = 1 the oscillations are symmetric about the line x = 0 with amplitude

slightly greater than 1.

For x(0) = −2 and x′(0) = 0.5 the oscillations are symmetric about the line x = −2 with small

amplitude.

For x(0) =
√

2 and x′(0) = 1 the oscillations are symmetric about the line x = 0 with amplitude

a little greater than 2.

For x(0) = 2 and x′(0) = 0.5 the oscillations are symmetric about the line x = 2 with small

amplitude.
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5.3 Nonlinear Modelsq

For x(0) = −2 and x′(0) = 0 there is no oscillation; the solution is constant.

For x(0) = −
√

2 and x′(0) = −1 the oscillations are symmetric about the line x = 0 with

amplitude a little greater than 2.

9. This is a damped hard spring, so x will approach 0 as t

approaches ∞.

10. This is a damped soft spring, so we might expect no oscillatory solutions.

However, if the initial conditions are sufficiently small the spring can

oscillate.

11. x

When k1 is very small the effect of the nonlinearity is greatly diminished, and the system is

close to pure resonance.
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CHAPTER 5 MODELING WITH HIGHER-ORDER DIFFERENTIAL EQUATIONS

12. (a) x

The system appears to be oscillatory for −0.000465 ≤ k1 < 0 and nonoscillatory for

k1 ≤ −0.000466.

(b) x

The system appears to be oscillatory for −0.3493 ≤ k1 < 0 and nonoscillatory for

k1 ≤ −0.3494.

Nonlinear Pendulum

13. For λ2−ω2 > 0 we choose λ = 2 and ω = 1 with

x(0) = 1 and x′(0) = 2. For λ2 − ω2 < 0 we

choose λ = 1/3 and ω = 1 with x(0) = −2 and

x′(0) = 4. In both cases the motion corresponds

to the overdamped and underdamped cases for

spring/mass systems.

Rocket Motion

14. (a) Setting dy/dt = v, the differential equation in (13) becomes dv/dt = −gR2/y2. But, by

the chain rule, dv/dt = (dv/dy)(dy/dt) = v dv/dt, so v dv/dy = −gR2/y2. Separating

variables and integrating we obtain

v dv = −gR2dy

y2
and

1

2
v2 =

gR2

y
+ c.
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5.3 Nonlinear Modelsq

Setting v = v0 and y = R we find c = −gR+ 1
2v

2
0 and

v2 = 2g
R2

y
− 2gR+ v20.

(b) As y →∞ we assume that v → 0+. Then v20 = 2gR and v0 =
√

2gR .

(c) Using g = 32 ft/s and R = 4000(5280) ft we find

v0 =
√

2(32)(4000)(5280) ≈ 36765.2 ft/s ≈ 25067 mi/hr.

(d) v0 =
√

2(0.165)(32)(1080) ≈ 7760 ft/s ≈ 5291 mi/hr

Variable Mass

15. (a) Intuitively, one might expect that only half of a 10-pound chain could be lifted by a 5-pound

vertical force.

(b) Since x = 0 when t = 0, and v = dx/dt =
√

160− 64x/3 , we have v(0) =
√

160 ≈
12.65 ft/s.

(c) Since x should always be positive, we solve x(t) = 0, getting t = 0 and t = 3
2

√
5/2 ≈

2.3717. Since the graph of x(t) is a parabola, the maximum value occurs at tm = 3
4

√
5/2 .

This can also be obtained by solving x′(t) = 0. At this time the height of the chain is

x(tm) ≈ 7.5 ft. This is higher than predicted because of the momentum generated by the

force. When the chain is 5 feet high it still has a positive velocity of about 7.3 ft/s, which

keeps it going higher for a while.

(d) As discussed in the solution to part (c) of this problem, the chain has momentum generated

by the force applied to it that will cause it to go higher than expected. It will then fall

back to below the expected maximum height, again due to momentum. This, in turn, will

cause it to next go higher than expected, and so on.

16. (a) Setting dx/dt = v, the differential equation becomes (L− x)dv/dt− v2 = Lg. But, by the

Chain Rule, dv/dt = (dv/dx)(dx/dt) = v dv/dx, so (L− x)v dv/dx− v2 = Lg. Separating

variables and integrating we obtain

v

v2 + Lg
dv =

1

L− x
dx and

1

2
ln(v2 + Lg) = − ln(L− x) + ln c,

so
√
v2 + Lg = c/(L − x). When x = 0, v = 0, and c = L

√
Lg . Solving for v and

simplifying we get

dx

dt
= v(x) =

√
Lg(2Lx− x2)
L− x

.
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CHAPTER 5 MODELING WITH HIGHER-ORDER DIFFERENTIAL EQUATIONS

Again, separating variables and integrating we obtain

L− x√
Lg(2Lx− x2)

dx = dt and

√
2Lx− x2√

Lg
= t+ c1.

Since x(0) = 0, we have c1 = 0 and
√

2Lx− x2/
√
Lg = t. Solving for x we get

x(t) = L−
√
L2 − Lgt2 and v(t) =

dx

dt
=

√
Lgt√

L− gt2
.

(b) The chain will be completely on the ground when x(t) = L or t =
√
L/g .

(c) The predicted velocity of the upper end of the chain when it hits the ground is infinity.

Miscellaneous Mathematical Models

17. (a) Let (x, y) be the coordinates of S2 on the curve C. The slope at (x, y) is then

dy/dx = (v1t− y)/(0− x) = (y − v1t)/x or xy′ − y = −v1t.

(b) Differentiating with respect to x and using r = v1/v2 gives

xy′′ + y′ − y′ = −v1
dt

dx

xy′′ = −v1
dt

ds

ds

dx

xy′′ = −v1
1

v2
(−
√

1 + (y′)2 )

xy′′ = r
√

1 + (y′)2 .

Letting u = y′ and separating variables, we obtain

x
du

dx
= r
√

1 + u2

du√
1 + u2

=
r

x
dx

sinh−1 u = r lnx+ ln c = ln(cxr)

u = sinh(ln cxr)

dy

dx
=

1

2

(
cxr − 1

cxr

)
.

At t = 0, dy/dx = 0 and x = a, so 0 = car − 1/car. Thus c = 1/ar and

dy

dx
=

1

2

[(x
a

)r
−
(a
x

)r]
=

1

2

[(x
a

)r
−
(x
a

)−r]
.

If r > 1 or r < 1, integrating gives

y =
a

2

[
1

1 + r

(x
a

)1+r
− 1

1− r

(x
a

)1−r]
+ c1.
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5.3 Nonlinear Modelsq

When t = 0, y = 0 and x = a, so 0 = (a/2)[1/(1+r)−1/(1−r)]+c1. Thus c1 = ar/(1−r2)
and

y =
a

2

[
1

1 + r

(x
a

)1+r
− 1

1− r

(x
a

)1−r]
+

ar

1− r2
.

(c) To see if the paths ever intersect we first note that if r > 1, then v1 > v2 and y → ∞
as x → 0+. In other words, S2 always lags behind S1. Next, if r < 1, then v1 < v2 and

y = ar/(1− r2) when x = 0. In other words, when the submarine’s speed is greater than

the ship’s, their paths will intersect at the point (0, ar/(1− r2)).
Finally, if r = 1, then integration gives

y =
1

2

[
x2

2a
− 1

a
lnx

]
+ c2.

When t = 0, y = 0 and x = a, so 0 = (1/2)[a/2− (1/a) ln a] + c2. Thus

c2 = −(1/2)[a/2− (1/a) ln a] and

y =
1

2

[
x2

2a
− 1

a
lnx

]
− 1

2

[
a

2
− 1

a
ln a

]
=

1

2

[
1

2a
(x2 − a2) +

1

a
ln
a

x

]
.

Since y →∞ as x→ 0+, S2 will never catch up with S1.

18. (a) Let (r, θ) denote the polar coordinates of the destroyer S1. When S1 travels the 6 miles

from (9, 0) to (3, 0) it stands to reason, since S2 travels half as fast as S1, that the polar

coordinates of S2 are (3, θ2), where θ2 is unknown. In other words, the distances of the

ships from (0, 0) are the same and r(t) = 15t then gives the radial distance of both ships.

This is necessary if S1 is to intercept S2.

(b) The differential of arc length in polar coordinates is (ds)2 = (r dθ)2 + (dr)2, so that(
ds

dt

)2

= r2
(
dθ

dt

)2

+

(
dr

dt

)2

.

Using ds/dt = 30 and dr/dt = 15 then gives

900 = 225t2
(
dθ

dt

)2

+ 225

675 = 225t2
(
dθ

dt

)2

dθ

dt
=

√
3

t

θ(t) =
√

3 ln t+ c =
√

3 ln
r

15
+ c.

When r = 3, θ = 0, so c = −
√

3 ln 1
5 and

θ(t) =
√

3

(
ln

r

15
− ln

1

5

)
=
√

3 ln
r

3
.

Thus r = 3eθ/
√
3, whose graph is a logarithmic spiral.
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CHAPTER 5 MODELING WITH HIGHER-ORDER DIFFERENTIAL EQUATIONS

(c) The time for S1 to go from (9, 0) to (3, 0) = 1
5 hour. Now S1 must intercept the path of S2

for some angle β, where 0 < β < 2π. At the time of interception t2 we have 15t2 = 3eβ/
√
3

or t = 1
5e
β/
√
3. The total time is then

t =
1

5
+

1

5
eβ/
√
3 <

1

5
(1 + e2π/

√
3).

19. (a) The auxiliary equation is m2 + g/` = 0, so the general solution of the differential equation

is

θ(t) = c1 cos

√
g

`
t+ c2 sin

√
g

`
t.

The initial condition θ(0) = 0 implies c1 = 0 and θ′(0) = ω0 implies c2 = ω0

√
`/g . Thus,

θ(t) = ω0

√
`

g
sin

√
g

`
t.

(b) At θmax, sin
√
g/` t = 1, so

θmax = ω0

√
`

g
=

mb

mw +mb

vb
`

√
`

g
=

mb

mw +mb

vb√
`g

and

vb =
mw +mb

mb

√
`g θmax.

(c) We have cos θmax = (`− h)/` = 1− h/`. Then

cos θmax ≈ 1− 1

2
θ2max = 1− h

`

and

θ2max =
2h

`
or θmax =

√
2h

`
.

Thus

vb =
mw +mb

mb

√
`g

√
2h

`
=
mw +mb

mb

√
2gh .

(d) When mb = 5 g, mw = 1 kg, and h = 6 cm, we have

vb =
1005

5

√
2(980)(6) ≈ 21, 797 cm/s.

20. (a) Substituting u = dx/dt into

m
d2x

dt2
= −k

(
dx

dt

)2

, x(0) = 0, x′(0) = v0

gives
du

dt
= − k

m
u2 or u−1 =

k

m
t+ c1.
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5.3 Nonlinear Modelsq

The initial conditions imply c1 = 1/v0, so

u =
dx

dt
=

1

k/m+ 1/v0
=

v0
kv0/m+ 1

.

Integrating and applying the initial conditions gives

x(t) =
m

k
ln

∣∣∣∣kv0m t+ 1

∣∣∣∣+ c2 =
m

k
ln

∣∣∣∣kv0m t+ 1

∣∣∣∣ .
Similarly, substituting u = dy/dt into

m
d2y

dt2
= mg − k

(
dy

dt

)2

, y(0) = 0, y′(0) = 0

gives
du

dt
= g − k

m
u2 or

m

k

du

mg/k − u2
= dt.

Integrating, we obtain

m

k

1√
mg/k

tanh−1
u√
mg/k

= t+ c3.

The initial conditions imply c3 = 0 so

dy

dt
= u =

√
mg

k
tanh

√
kg

m
t.

Integrating and applying the initial conditions gives

y(t) =

√
mg

k

√
m

kg
ln

(
cosh

√
kg

m
t

)
+ c4 =

m

k
ln

(
cosh

√
kg

m
t

)
.

(b) Using the fact that 256 lbs is equivalent to 8 slugs of mass, we solve (using a numerical

procedure)

1000 =
8

0.0053
ln

(
cosh

√
0.0053(32)

8
t

)
,

which gives t = 8.8 seconds. Then x(8.8) = 1919 ft is the horizontal distance travelled by

the supply pack.

Discussion Problems

21. Since (dx/dt)2 is always positive, it is necessary to use |dx/dt|(dx/dt) in order to account for

the fact that the motion is oscillatory and the velocity (or its square) should be negative when

the spring is contracting.
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CHAPTER 5 MODELING WITH HIGHER-ORDER DIFFERENTIAL EQUATIONS

22. (a) From the graph we see that the approximations

appears to be quite good for 0 ≤ x ≤ 0.4. Using

an equation solver to solve sinx − x = 0.05 and

sinx−x = 0.005, we find that the approximation

is accurate to one decimal place for θ1 = 0.67 and

to two decimal places for θ1 = 0.31.

(b) x

23. (a) Write the differential equation as

d2θ

dt2
+ ω2 sin θ = 0,

where ω2 = g/l. To test for differences

between the Earth (blue) and the Moon

(red) we take l = 3, θ(0) = 1, and

θ′(0) = 2. Using g = 32 on the Earth and

Moon

Earth

2 4 6 8
Θ

-2

-1

1

2

y

g = 0.165× 32 on the Moon we obtain the graphs shown in the figure.

(b) Comparing the apparent periods of the graphs, we see that the pendulum oscillates faster

on the Earth than on the Moon and the amplitude is greater on the Moon than on the

Earth.

24. The linear model is

d2θ

dt2
+ ω2θ = 0,

where ω2 = g/l. When g = 3, l = 3, θ(0) = 1,

and θ′(0) = 2, the solution is

θ(t) = cos 3.2660t+ 0.6124 sin 3.2660t.

Moon

Earth

2 4 6 8
Θ

-2

-1

1

2

y

When g = 32× 0.1652 the solution is

θ(t) = cos 1.3267t+ 1.5076 sin 1.3267t.

294

© 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part, except for use as permitted in a license distributed 
with a certain product or service or otherwise on a password-protected website for classroom use. 

Not For Sale

©
 C

en
ga

ge
 L

ea
rn

in
g.

 A
ll 

rig
ht

s r
es

er
ve

d.
 N

o 
di

st
rib

ut
io

n 
al

lo
w

ed
 w

ith
ou

t e
xp

re
ss

 a
ut

ho
riz

at
io

n.



5.3 Nonlinear Modelsq

As in the nonlinear case, the pendulum oscillates faster on the Earth than on the Moon and

still has greater amplitude on the Moon.

Computer Lab Assignments

25. (a) The general solution of
d2θ

dt2
+ θ = 0

is θ(t) = c1 cos t+ c2 sin t. From θ(0) = π/12 and θ′(0) = −1/3 we find

θ(t) = (π/12) cos t− (1/3) sin t.

Setting θ(t) = 0 we have tan t = π/4 which implies t1 = tan−1(π/4) ≈ 0.66577.

(b) We set θ(t) = θ(0) + θ′(0)t+ 1
2θ
′′(0)t2 + 1

6θ
′′′(0)t3 + · · · and use θ′′(t) = − sin θ(t) together

with θ(0) = π/12 and θ′(0) = −1/3. Then

θ′′(0) = − sin(π/12) = −
√

2 (
√

3− 1)/4

and

θ′′′(0) = − cos θ(0) · θ′(0) = − cos(π/12)(−1/3) =
√

2 (
√

3 + 1)/12.

Thus

θ(t) =
π

12
− 1

3
t−
√

2 (
√

3− 1)

8
t2 +

√
2 (
√

3 + 1)

72
t3 + · · · .

(c) Setting π/12− t/3 = 0 we obtain t1 = π/4 ≈ 0.785398.

(d) Setting

π

12
− 1

3
t−
√

2 (
√

3− 1)

8
t2 = 0

and using the positive root we obtain t1 ≈ 0.63088.

(e) Setting

π

12
− 1

3
t−
√

2 (
√

3− 1)

8
t2 +

√
2 (
√

3 + 1)

72
t3 = 0

we find with the help of a CAS that t1 ≈ 0.661973 is the first positive root.

(f) From the output we see that y(t) is an interpolating

function on the interval 0 ≤ t ≤ 5, whose graph is

shown. The positive root of y(t) = 0 near t = 1 is

t1 = 0.666404.
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CHAPTER 5 MODELING WITH HIGHER-ORDER DIFFERENTIAL EQUATIONS

(g) To find the next two positive roots we change the interval

used in NDSolve and Plot from {t,0,5} to {t,0,10}.
We see from the graph that the second and third pos-

itive roots are near 4 and 7, respectively. Replacing

{t,1} in FindRoot with {t,4} and then {t,7} we obtain

t2 = 3.84411 and t3 = 7.0218.

26. From the table below we see that the pendulum first passes the vertical position between 1.7

and 1.8 seconds. To refine our estimate of t1 we estimate the solution of the differential equation

on [1.7, 1.8] using a step size of h = 0.01. From the resulting table we see that t1 is between

1.76 and 1.77 seconds. Repeating the process with h = 0.001 we conclude that t1 ≈ 1.767.

Then the period of the pendulum is approximately 4t1 = 7.068. The error when using t1 = 2π

is 7.068− 6.283 = 0.785 and the percentage relative error is (0.785/7.068)100 = 11.1.
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Chapter 5

MODELING WITH HIGHER-ORDER DIFFERENTIAL EQUATIONS
5.1 Chapter 5 in Reviewq

5.R Chapter 5 in Reviewq

1. 8 ft, since k = 4

2. 2π/5, since 1
4x
′′ + 6.25x = 0

3. 5/4 m, since x = − cos 4t+ 3
4 sin 4t

4. True

5. False; since an external force may exist

6. False; since the equation of motion in this case is x(t) = e−λt(c1 + c2t) and x(t) = 0 can have

at most one real solution

7. overdamped

8. From x(0) = (
√

2/2) sinφ = −1/2 we see that sinφ = −1/
√

2 , so φ is an angle in the third or

fourth quadrant. Since x′(t) =
√

2 cos(2t + φ), x′(0) =
√

2 cosφ = 1 and cosφ > 0. Thus φ is

in the fourth quadrant and φ = −π/4.

9. y = 0 because λ = 8 is not an eigenvalue

10. y = cos 6x because λ = (6)2 = 36 is an eigenvalue

11. The period of a spring/mass system is given by T = 2π/ω where ω2 = k/m = kg/W , where

k is the spring constant, W is the weight of the mass attached to the spring, and g is the

acceleration due to gravity. Thus, the period of oscillation is T = (2π/
√
kg )
√
W . If the weight

of the original mass is W , then (2π/
√
kg )
√
W = 3 and (2π/

√
kg )
√
W − 8 = 2. Dividing, we

get
√
W/
√
W − 8 = 3/2 or W = 9

4(W − 8). Solving for W we find that the weight of the

original mass was 14.4 pounds.

12. (a) Solving 3
8x
′′ + 6x = 0 subject to x(0) = 1 and x′(0) = −4 we obtain

x = cos 4t− sin 4t =
√

2 sin (4t+ 3π/4) .

(b) The amplitude is
√

2, period is π/2, and frequency is 2/π.
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CHAPTER 5 MODELING WITH HIGHER-ORDER DIFFERENTIAL EQUATIONS

(c) If x = 1 then t = nπ/2 and t = −π/8 + nπ/2 for n = 1, 2, 3, . . . .

(d) If x = 0 then t = π/16 + nπ/4 for n = 0, 1, 2, . . .. The motion is upward for n even and

downward for n odd.

(e) x′(3π/16) = 0

(f) If x′ = 0 then 4t+ 3π/4 = π/2 + nπ or t = 3π/16 + nπ.

13. We assume that the spring is initially compressed by 4 inches and that the positive direction

on the x-axis is in the direction of elongation of the spring. Then, from 1
4x
′′ + 3

2x
′ + 2x = 0,

x(0) = −1/3, and x′(0) = 0 we obtain x = −2
3e
−2t + 1

3e
−4t.

14. From x′′ + βx′ + 64x = 0 we see that oscillatory motion results if β2 − 256 < 0 or 0 ≤ β < 16.

15. From mx′′+4x′+2x = 0 we see that nonoscillatory motion results if 16−8m ≥ 0 or 0 < m ≤ 2.

16. From 1
4x
′′ + x′ + x = 0, x(0) = 4, and x′(0) = 2 we obtain x = 4e−2t + 10te−2t. If x′(t) = 0,

then t = 1/10, so that the maximum displacement is x = 5e−0.2 ≈ 4.094.

17. Writing 1
8x
′′+ 8

3x = cos γt+sin γt in the form x′′+ 64
3 x = 8 cos γt+8 sin γt we identify ω2 = 64

3 .

The system is in a state of pure resonance when γ = ω =
√

64/3 = 8/
√

3 .

18. Clearly xp = A/ω2 suffices.

19. From 1
8x
′′+x′+3x = e−t, x(0) = 2, and x′(0) = 0 we obtain xc = e−4t

(
c1 cos 2

√
2 t+ c2 sin 2

√
2 t
)
,

xp = 8
17e
−t, and

x = e−4t

(
26

17
cos 2

√
2 t+

28
√

2

17
sin 2
√

2 t

)
+

8

17
e−t.

20. (a) Let k be the effective spring constant and x1 and x2 the elongation of springs k1 and k2.

The restoring forces satisfy k1x1 = k2x2 so x2 = (k1/k2)x1. From k(x1 + x2) = k1x1 we

have

k

(
x1 +

k1
k2
x2

)
= k1x1

k

(
k2 + k1
k2

)
= k1

k =
k1k2
k1 + k2

1

k
=

1

k1
+

1

k2
.
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5.R Chapter 5 in Reviewq

(b) From k1 = 2W and k2 = 4W we find 1/k = 1/2W + 1/4W = 3/4W . Then k = 4W/3 =

4mg/3. The differential equation mx′′ + kx = 0 then becomes x′′ + (4g/3)x = 0. The

solution is

x(t) = c1 cos 2

√
g

3
t+ c2 sin 2

√
g

3
t.

The initial conditions x(0) = 1 and x′(0) = 2/3 imply c1 = 1 and c2 = 1/
√

3g .

(c) To compute the maximum speed of the mass we compute

x′(t) = 2

√
g

3
sin 2

√
g

3
t+

2

3
cos 2

√
g

3
t and |x′(t)| =

√
4
g

3
+

4

9
=

2

3

√
3g + 1 .

21. From q′′ + 104q = 100 sin 50t, q(0) = 0, and q′(0) = 0 we obtain qc = c1 cos 100t + c2 sin 100t,

qp = 1
75 sin 50t, and

(a) q = − 1
150 sin 100t+ 1

75 sin 50t,

(b) i = −2
3 cos 100t+ 2

3 cos 50t, and

(c) q = 0 when sin 50t(1− cos 50t) = 0 or t = nπ/50 for n = 0, 1, 2, . . . .

22. (a) By Kirchhoff’s second law,

L
d2q

dt2
+R

dq

dt
+

1

C
q = E(t).

Using q′(t) = i(t) we can write the differential equation in the form

L
di

dt
+Ri+

1

C
q = E(t).

Then differentiating we obtain

L
d2i

dt2
+R

di

dt
+

1

C
i = E′(t).

(b) From Li′(t) +Ri(t) + (1/C)q(t) = E(t) we find

Li′(0) +Ri(0) + (1/C)q(0) = E(0)

or

Li′(0) +Ri0 + (1/C)q0 = E(0).

Solving for i′(0) we get

i′(0) =
1

L

[
E(0)− 1

C
q0 −Ri0

]
.
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CHAPTER 5 MODELING WITH HIGHER-ORDER DIFFERENTIAL EQUATIONS

23. For λ = α2 > 0 the general solution is y = c1 cosαx+ c2 sinαx. Now

y(0) = c1 and y(2π) = c1 cos 2πα+ c2 sin 2πα,

so the condition y(0) = y(2π) implies

c1 = c1 cos 2πα+ c2 sin 2πα

which is true when α =
√
λ = n or λ = n2 for n = 1, 2, 3, . . . . Since

y′ = −αc1 sinαx+ αc2 cosαx = −nc1 sinnx+ nc2 cosnx,

we see that y′(0) = nc2 = y′(2π) for n = 1, 2, 3, . . . . Thus, the eigenvalues are n2 for n = 1, 2,

3, . . . , with corresponding eigenfunctions cosnx and sinnx. When λ = 0, the general solution

is y = c1x+ c2 and the corresponding eigenfunction is y = 1.

For λ = −α2 < 0 the general solution is y = c1 coshαx+ c2 sinhαx. In this case y(0) = c1 and

y(2π) = c1 cosh 2πα+ c2 sinh 2πα, so y(0) = y(2π) can only be valid for α = 0. Thus, there are

no eigenvalues corresponding to λ < 0.

24. (a) The differential equation is d2r/dt2−ω2r = −g sinωt. The auxiliary equation is m2−ω2 =

0, so rc = c1e
ωt + c2e

−ωt. A particular solution has the form rp = A sinωt + B cosωt.

Substituting into the differential equation we find −2Aω2 sinωt−2Bω2 cosωt = −g sinωt.

Thus, B = 0, A = g/2ω2, and rp = (g/2ω2) sinωt. The general solution of the differential

equation is r(t) = c1e
ωt+c2e

−ωt+(g/2ω2) sinωt. The initial conditions imply c1 +c2 = r0

and g/2ω − ωc1 + ωc2 = v0. Solving for c1 and c2 we get

c1 = (2ω2r0 + 2ωv0 − g)/4ω2 and c2 = (2ω2r0 − 2ωv0 + g)/4ω2,

so that

r(t) =
2ω2r0 + 2ωv0 − g

4ω2
eωt +

2ω2r0 − 2ωv0 + g

4ω2
e−ωt +

g

2ω2
sinωt.

(b) The bead will exhibit simple harmonic motion when the exponential terms are missing.

Solving c1 = 0, c2 = 0 for r0 and v0 we find r0 = 0 and v0 = g/2ω.

To find the minimum length of rod that will accommodate simple harmonic motion we

determine the amplitude of r(t) and double it. Thus L = g/ω2.

(c) As t increases, eωt approaches infinity and e−ωt approaches 0. Since sinωt is bounded, the

distance, r(t), of the bead from the pivot point increases without bound and the distance

of the bead from P will eventually exceed L/2.
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5.R Chapter 5 in Reviewq

(d) x

(e) For each v0 we want to find the smallest value of t for which r(t) = ±20. Whether we look

for r(t) = −20 or r(t) = 20 is determined by looking at the graphs in part (d). The total

times that the bead stays on the rod is shown in the table below.

When v0 = 16 the bead never leaves the rod.

25. Unlike the derivation given in (1) of Section 5.1 in the text, the weight mg of the mass m does

not appear in the net force since the spring is not stretched by the weight of the mass when

it is in the equilibrium position (i.e. there is no mg − ks term in the net force). The only

force acting on the mass when it is in motion is the restoring force of the spring. By Newton’s

second law,

m
d2x

dt2
= −kx or

d2x

dt2
+
k

m
x = 0.

26. By Newton’s second law of motion

m
d2x

dt2
= −k1x− k2x or m

d2x

dt2
+ (k1 + k2)x = 0.

Here −k1x is the force to the left due to the elongation x of the spring with constant k1, and

−k2x is the force to the left due to the compression x of the spring with constant k2.

27. The force of kinetic friction opposing the motion of the mass in µN , where µ is the coefficient of

sliding friction and N is the normal component of the weight. Since friction is a force opposite

to the direction of motion and since N is pointed directly downward (it is simply the weight

of the mass), Newton’s second law gives, for motion to the right (x′ > 0) ,

m
d2x

dt2
= −kx− µmg,

and for motion to the left (x′ < 0),

m
d2x

dt2
= −kx+ µmg.
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CHAPTER 5 MODELING WITH HIGHER-ORDER DIFFERENTIAL EQUATIONS

Traditionally, these two equations are written as one expression

m
d2x

dt2
+ fk sgn(x′) + kx = 0,

where fk = µmg and

sgn(x′) =

{
−1, x′ > 0

−1, x′ < 0.

28. (a) The differential equation is x′′ + sgn(x′) + x = 0 or

x′′ + x =

{
−1, motion to the left

−1, motion to the right.

Correspondingly

x(t) =

{
c3 cos t+ c4 sin t+ 1,motion to the left

c1 cos t+ c2 sin t− 1,motion to the right.

For motion to the left x′′ + x = 1, x(0) = 5.5, x′(0) = 0 gives x(t) = 4.5 cos t + 1. From

x′(t) = −4.5 sin t we see that the mass is at rest
(
x′(t) = 0

)
at t = π so the interval of

definition is [0, π ]. Note that x′(t) < 0 for 0 < t < π. The mass is now on the left at

x(π) = −3.5.

(b) For motion to the right we solve the initial-value problem

x′′ + x = −1, x(π) = −3.5, x′(π) = 0,

obtaining x(t) = 2.5 cos t− 1. From x′(t) = −2.5 sin t we see that the velocity is 0 next at

t = 2π, so the interval of definition is [π, 2π ]. Note that x′(t) > 0 for π < t < 2π. The

mass is once again on the right at x(2π) = 1.5.

(c) For motion to the left we solve the initial-value problem

x′′ + x = 1, x(2π) = 1.5, x′(2π) = 0,

obtaining x(t) = 0.5 cos t+ 1. From x′(t) = −0.5 sin t we see that the velocity is 0 next at

t = 3π, so the interval of definition is [2π, 3π ]. Note that x′(t) < 0 for 2π < t < 3π. The

mass is still on the right at x(3π) = 0.5.

(d) Now if there is further motion to the right we solve the initial-value problem

x′′ + x = −1, x(3π) = 0.5, x′(3π) = 0,

obtaining x(t) = −1.5 cos t− 1. From x′(t) = 1.5 sin t we see that the velocity is 0 next at

t = 4π, so the interval of definition is [3π, 4π ] x′(t) < 0, which contradicts the assumption

of motion to the right. This indicates that the solution x(t) = c1 cos t + c2 sin t − 1 is no

longer applicable. The other solution for motion to the left is also not applicable since it

implies x′(t) > 0. The mass has undoubtedly stopped at x(3π) = 0.5.
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5.R Chapter 5 in Reviewq

(e) Motion on the interval [0, 3π ]:

Π 2 Π 3 Π

t

-3
-2
-1

1
2
3
4
5

x

where

x(t) =


4.5 cos t+ 1, 0 ≤ t < π

2.5 cos t− 1, π ≤ t < 2π

0.5 cos t+ 1, 2π ≤ t < 3π

0, t ≥ 3π.

303

© 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part, except for use as permitted in a license distributed 
with a certain product or service or otherwise on a password-protected website for classroom use. Not For Sale

©
 C

en
ga

ge
 L

ea
rn

in
g.

 A
ll 

rig
ht

s r
es

er
ve

d.
 N

o 
di

st
rib

ut
io

n 
al

lo
w

ed
 w

ith
ou

t e
xp

re
ss

 a
ut

ho
riz

at
io

n.



Chapter 6

SERIES SOLUTIONS OF LINEAR EQUATIONS

6.1 Review of Power Seriesq

Series Solutions

of Linear Equations6
6.1 Review of Power Seriesq

1. lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ = lim
n→∞

∣∣∣∣xn+1/(n+ 1)

xn/n

∣∣∣∣ = lim
n→∞

n

n+ 1
|x| = |x|

The series is absolutely convergent on (−1, 1). At x = −1, the series

∞∑
k=1

1

k
is the harmonic

series which diverges. At x = 1, the series

∞∑
k=1

(−1)k

k
converges by the alternating series test.

Thus, the given series converges on (−1, 1], and the radius of convergence is 1.

2. lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ = lim
n→∞

∣∣∣∣xn+1/(n+ 1)2

xn/n2

∣∣∣∣ = lim
n→∞

(
n

n+ 1

)2

|x| = |x|

The series is absolutely convergent on (−1, 1). At x = −1, the series
∞∑
k=1

(−1)k

k2
converges by

the alternating series test. At x = 1, the series
∞∑
k=1

1

k2
is a convergent p-series. Thus, the given

series converges on [−1, 1], and the radius of convergence is 1.

3. lim
n→∞

∣∣∣∣2n+1xn+1/(n+ 1)

2nxn/n

∣∣∣∣ = lim
n→∞

2n

n+ 1
|x| = 2|x|

The series is absolutely convergent for 2|x| < 1 or |x| < 1
2 . The radius of convergence is R = 1

2 .

At x = −1
2 , the series

∞∑
n=1

(−1)n/n converges by the alternating series test. At x = 1
2 , the series

∞∑
n=1

1/n is the harmonic series which diverges. Thus, the given series converges on [−1
2 ,

1
2), and

the radius of convergence is 1
2 .

4. lim
n→∞

∣∣∣∣5n+1xn+1/(n+ 1)!

5nxn/n!

∣∣∣∣ = lim
n→∞

5

n+ 1
|x| = 0

The radius of convergence is R =∞. The series is absolutely convergent on (−∞,∞), and the

radius of convergence is infinite.

5. By the ratio test,

lim
k→∞

∣∣∣∣(x− 5)k+1/10k+1

(x− 5)k/10k

∣∣∣∣ = lim
k→∞

1

10
|x− 5| = 1

10
|x− 5|.
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6.1 Review of Power Seriesq

The series is absolutely convergent for 1
10 |x− 5| < 1, |x− 5| < 10, or on (−5, 15). The radius

of convergence is R = 10. At x = −5, the series

∞∑
k=1

(−1)k(−10)k/10k =

∞∑
k=1

1 diverges by the

nth term test. At x = 15, the series

∞∑
k=1

(−1)k10k/10k =

∞∑
k=1

(−1)k diverges by the nth term

test. Thus, the series converges on (−5, 15), and the radius of convergence is 10.

6. lim
k→∞

∣∣∣∣(k + 1)!(x− 1)k+1

k!(x− 1)k

∣∣∣∣ = lim
k→∞

(k + 1)|x− 1| =

{
∞, x 6= 1

0, x = 1

The radius of convergence is R = 0 and the series converges only for x = 1.

7. lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ = lim
n→∞

∣∣∣∣(3x− 1)n+1/[(n+ 1)2 + (n+ 1)]

(3x− 1)n/(n2 + n)

∣∣∣∣ = lim
n→∞

n2 + n

n2 + 3n+ 2
|3x− 1| = |3x− 1|

The series is absolutely convergent for |3x−1| < 1 or on (0, 2/3). At x = 0, the series

∞∑
k=1

(−1)k

k2 + k

converges by the alternating series test. At x = 2/3, the series

∞∑
k=1

1

k2 + k
converges by

comparison with the p-series

∞∑
k=1

1

k2
. Thus, the given series converges on [0, 2/3], and the

radius of convergence is 1/3.

8. lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ = lim
n→∞

∣∣∣∣(4x− 5)n+1/3n+1

(4x− 5)n/3n

∣∣∣∣ = lim
n→∞

1

3
|4x− 5| = 1

3
|4x− 5|

The series is absolutely convergent for 1
3 |4x− 5| < 1, |4x− 5| < 3, or on (1/2, 2). At x = 1

2 , the

series

∞∑
k=1

(−3)k

3k
=

∞∑
k=0

(−1)k diverges by the n-th term test. At x = 2, the series

∞∑
k=0

3k

3k
=

∞∑
k=0

1

diverges by the n-th term test. Thus,the given series converges on (1/2, 2), and the radius of

convergence is 5/4.

9. Write the series as

∞∑
k=1

(
32

75

)k
xk. Then

lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ = lim
n→∞

∣∣∣∣(32/75)n+1xn+1

(32/75)nxn

∣∣∣∣ = lim
n→∞

∣∣∣∣32

75
x

∣∣∣∣ =
32

75
|x|.

The series is absolutely convergent for
32

75
|x| < 1, or on (−75/32, 75/32). At x = −75/32 the

series
∞∑
k=1

(−1)k diverges by the n-th term test. At x = 75/32 the series
∞∑
k=1

1 diverges by

the n-th term test. Thus, the given series converges on (−75/32, 75/32), and the radius of

convergence is 75/32.
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CHAPTER 6 SERIES SOLUTIONS OF LINEAR EQUATIONS

10. lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ = lim
n→∞

∣∣∣∣∣x2(n+1)+1/9n+1

x2n+1/9n

∣∣∣∣∣ = lim
n→∞

1

9
x2 =

1

9
x2

The series is absolutely convergent for
1

9
x2 < 1 or on (−3, 3).At x = −3 the series

∞∑
k=0

(−1)k(−3)

diverges by the n-th term test. At x = 3 the series
∞∑
k=0

(−1)k3 diverges by the n-th term test.

Thus, the given series converges on (−3, 3), and the radius of convergence is 3.

11. We replace x by −x/2 in the Maclaurin series of ex.

e−x/2 =

∞∑
n=0

1

n!

(
−x
2

)n
=

∞∑
n=0

(−1)n

n!2n
xn

12. We replace x by 3x in the Maclaurin series of ex and multiply the result by x.

xe3x = x ·
∞∑
n=0

1

n!
(3x)n =

∞∑
n=0

3n

n!
xn+1

13. We factor out a
1

2
and replace x by −x

2
in the Maclaurin series of

1

1− x
.

1

2 + x
=

1

2
· 1

1− (−x/2)
=

1

2

[
1 +

(
−x

2

)
+
(
−x

2

)2
+ · · ·

]
=

1

2

[
1− x

2
+
x2

22
− · · ·

]

=
1

2
− x

22
+
x2

23
− · · · =

∞∑
n=0

(−1)n

2n+1
xn

14. We replace x by −x2 in the Maclaurin series of
1

1− x
and multiply the result by x.

x

1 + x2
= x · 1

1− (−x2)
= x

[
1 +

(
−x2

)
+
(
−x2

)2
=
(
−x2

)3
+ · · ·

]
= x− x3 + x5 − x7 + · · · =

∞∑
n=0

(−1)nx2n+1

15. We replace x by −x in the Maclaurin series of ln(1 + x).

ln(1− x) = −x− (−x)2

2
+

(−x)3

3
+ · · · = −x− x2

2
− x3

3
− · · · =

∞∑
n=1

−1

n
xn

16. We replace x by x2 in the Maclaurin series of sinx.

sinx2 =

∞∑
n=0

(−1)n

(2n+ 1)!
(x2)2n+1 =

∞∑
n=0

(−1)n

(2n+ 1)!
x4n+2
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6.1 Review of Power Seriesq

17. By periodicity sinx = sin[(x− 2π) + 2π] = sin(x− 2π), so

sinx = sin(x− 2π) =

∞∑
n=0

(−1)n

(2n+ 1)!
(x− 2π)2n+1

18. We first note that

lnx = ln

[
2

(
1 +

x− 2

2

)]
= ln 2 + ln

(
1 +

x− 2

2

)
.

Next use the Maclaurin series of ln(1 + x) with x replaced by
x− 2

2
.

lnx = ln 2 +
x− 2

2
− 1

2

(
x− 2

2

)2

+
1

3

(
x− 2

2

)3

− 1

4

(
x− 2

2

)4

+ · · ·

= ln 2 +
∞∑
n=1

(−1)n+1

n2n
(x− 2)n

19. sinx cosx =

(
x− x3

6
+

x5

120
− x7

5040
+ · · ·

)(
1− x2

2
+
x4

24
− x6

720
+ · · ·

)
sinx cosx = x− 2x3

3
+

2x5

15
− 4x7

315
+ · · ·

20. e−x cosx =

(
1− x+

x2

2
− x3

6
+
x4

24
− · · ·

)(
1− x2

2
+
x4

24
− · · ·

)
= 1− x+

x3

3
− x4

6
+ · · ·

21. secx =
1

cosx
=

1

1− x2

2
+ x4

4!
− x6

6!
+ · · ·

= 1 +
x2

2
+

5x4

4!
+

61x6

6!
+ · · ·

Since cos(π/2) = cos(−π/2) = 0, the series converges on (−π/2, π/2).

22. tanx =
sinx

cosx
=
x− x3

6
+

x5

120
− x7

5040
+ · · ·

1− x2

2
+
x4

24
− x6

720
+ · · ·

= x+
1

3
x3 +

2

15
x5 +

17

315
+ · · ·

23. Let k = n+ 2 so that n = k − 2 and

∞∑
n=1

ncnx
n+2 =

∞∑
k=3

(k − 2)ck−2x
k.

24. Let k = n− 3 so that n = k + 3 and

∞∑
n=3

(2n− 1)cnx
n−3 =

∞∑
k=0

(2k + 5)ck+3x
k.

25. In the first summation let k = n− 1 so that n = k + 1 and

∞∑
n=1

ncnx
n−1 −

∞∑
n=0

cnx
n =

∞∑
k=0

(k + 1)ck+1x
k −

∞∑
k=0

ckx
k =

∞∑
k=0

[
(k + 1)ck+1 − ck

]
xk.
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CHAPTER 6 SERIES SOLUTIONS OF LINEAR EQUATIONS

26. In the first summation let k = n−1 and in the second summation let k = n+2. Then n = k+1

in the first summation, n = k − 2 in the second summation, and

∞∑
n=1

ncnx
n−1 + 3

∞∑
n=0

cnx
n+2 =

∞∑
k=0

(k + 1)ck+1x
k + 3

∞∑
k=2

ck−2x
k

= c1 + 2c2x+

∞∑
k=2

(k + 1)ck+1x
k + 3

∞∑
k=2

ck−2x
k

= c1 + 2c2x+
∞∑
k=2

[
(k + 1)ck+1 + 3ck−2

]
xk.

27. In the first summation let k = n−1 and in the second summation let k = n+1. Then n = k+1

in the first summation, n = k − 1 in the second summation, and

∞∑
n=1

2ncnx
n−1 +

∞∑
n=0

6cnx
n+1 = 2 · 1 · c1x0 +

∞∑
n=2

2ncnx
n−1 +

∞∑
n=0

6cnx
n+1

= 2c1 +
∞∑
k=1

2(k + 1)ck+1x
k +

∞∑
k=1

6ck−1x
k

= 2c1 +
∞∑
k=1

[
2(k + 1)ck+1 + 6ck−1

]
xk.

28. In the first summation let k = n−2 and in the second summation let k = n+2. Then n = k+2

in the first summation, n = k − 2 in the second summation, and

∞∑
n=2

n(n− 1)cnx
n−2 +

∞∑
n=0

cnx
n+2 =

∞∑
k=0

(k + 2)(k + 1)ck+2x
k +

∞∑
k=2

ck−2x
k

= 2c2x
0 + 6c3x+

∞∑
k=2

(k + 2)(k + 1)ck+2x
k +

∞∑
k=2

ck−2x
k

= 2c2 + 6c3x+
∞∑
k=2

[
(k + 2)(k + 1)ck+2 + ck−2

]
xk.

29.
∞∑
n=2

n(n− 1)cnx
n−2

︸ ︷︷ ︸
k=n−2

− 2x

∞∑
n=1

cnx
n−1

︸ ︷︷ ︸
k=n

+

∞∑
n=0

cnx
n

︸ ︷︷ ︸
k=n

=

∞∑
k=0

(k + 2)(k + 1)ck+2x
k −

∞∑
k=1

2kckx
k +

∞∑
k=0

ckx
k

= c0 + 2c2 +

∞∑
k=1

[(k + 2)(k + 1)ck+2 − (2k − 1)ck]x
k = 0
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6.1 Review of Power Seriesq

30. In the first and third summations let k = n and in the second summation let k = n− 2. Then

n = k in the first and third summations, n = k + 2 in the second summation, and

∞∑
n=2

n(n− 1)cnx
n + 2

∞∑
n=2

n(n− 1)cnx
n−2 + 3

∞∑
n=1

ncnx
n

= 2 · 2 · 1c2x0 + 2 · 3 · 2c3x1 + 3 · 1 · c1x1 +

∞∑
n=2

n(n− 1)cnx
n + 2

∞∑
n=4

n(n− 1)cnx
n−2 + 3

∞∑
n=2

ncnx
n

= 4c2 + (3c1 + 12c3)x+
∞∑
k=2

k(k − 1)ckx
k + 2

∞∑
k=2

(k + 2)(k + 1)ck+2x
k + 3

∞∑
k=2

kckx
k

= 4c2 + (3c1 + 12c3)x+
∞∑
k=2

[(
k(k − 1) + 3k

)
ck + 2(k + 2)(k + 1)ck+2

]
xk

= 4c2 + (3c1 + 12c3)x+

∞∑
k=2

[
k(k + 2)ck + 2(k + 1)(k + 2)ck+2

]
xk

31. Since y′ =

∞∑
n=1

(−1)n2n

n!
x2n−1, we have

y′ + 2xy =
∞∑
n=1

(−1)n2n

n!
x2n−1 + 2x

∞∑
n=0

(−1)n

n!
x2n

= 2

[ ∞∑
n=1

(−1)n

(n− 1)!
x2n−1︸ ︷︷ ︸

k=n

+
∞∑
n=0

(−1)n

n!
x2n+1

︸ ︷︷ ︸
k=n+1

]

= 2

[ ∞∑
k=1

(−1)k

k − 1)!
x2k−1 +

∞∑
k=1

(−1)k−1

(k − 1)!
x2k−1

]

= 2
∞∑
k=1

[
(−1)k

k − 1)!
+

(−1)k−1

(k − 1)!

]
x2k−1

= 2
∞∑
k=1

[
(−1)k

k − 1)!
− (−1)k

(k − 1)!

]
x2k−1 = 0.

32. Since y′ =

∞∑
n=1

(−1)n2nx2n−1, we have

(1 + x2)y′ + 2xy = (1 + x2)
∞∑
n=1

(−1)n2nx2n−1 + 2x
∞∑
n=0

(−1)nx2n

=

∞∑
n=1

(−1)n2nx2n−1 +

∞∑
n=1

(−1)n2nx2n+1 + 2x

∞∑
n=0

(−1)nx2n
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CHAPTER 6 SERIES SOLUTIONS OF LINEAR EQUATIONS

=
∞∑
n=1

(−1)n2nx2n−1︸ ︷︷ ︸
k=n

+
∞∑
n=1

(−1)n2nx2n+1

︸ ︷︷ ︸
k=n+1

+
∞∑
n=1

2(−1)nx2n+1

︸ ︷︷ ︸
k=n+1

=

∞∑
k=1

(−1)k2kx2k−1 +

∞∑
k=2

(−1)k−1(2k − 2)x2k−1 +

∞∑
k=1

2(−1)k−1x2k−1

= −2x+

∞∑
k=2

(−1)k2kx2k−1 +

∞∑
k=2

(−1)k−1(2k − 2)x2k−1 + 2x+
∞∑
k=2

2(−1)k−1x2k−1

=
∞∑
k=2

[
(−1)k2k + (−1)k−12k

]
x2k−1 =

∞∑
k=2

[
(−1)k2k − (−1)k2k

]
x2k−1 = 0.

33. In this problem we must take special care with starting values for the indices of summation.

Normally when a power series is given in summation notation, successive derivatives of the

power series of the unknown function start with an index that is one higher than the preceding

one. In this case, the power series starts with n = 1 to avoid division by zero. From the first

derivative on this is no longer necessary and the index of summation starts again with n = 1

for y′. To justify this to yourself you could simply write out the first few term of the power

series for y.

Since

y′ =

∞∑
n=1

(−1)n+1xn−1 and y′′ =

∞∑
n=2

(−1)n+1(n− 1)xn−2,

we have

(x+ 1)y′′ + y′ = (x+ 1)
∞∑
n=2

(−1)n+1(n− 1)xn−2 +
∞∑
n=1

(−1)n+1xn−1

=

∞∑
n=2

(−1)n+1(n− 1)xn−1 +

∞∑
n=2

(−1)n+1(n− 1)xn−2 +

∞∑
n=1

(−1)n+1xn−1

=

∞∑
n=2

(−1)n+1(n− 1)xn−1︸ ︷︷ ︸
k=n−1

+

∞∑
n=2

(−1)n+1(n− 1)xn−2︸ ︷︷ ︸
k=n−2

+

∞∑
n=1

(−1)n+1xn−1︸ ︷︷ ︸
k=n−1

=

∞∑
k=1

(−1)k+2kxk +

∞∑
k=0

(−1)k+3(k + 1)xk +

∞∑
k=0

(−1)k+2xk

= −x0 + x0 +
∞∑
k=2

[
(−1)k+2k − (−1)k+2k − (−1)k+2 + (−1)k+2

]
xk = 0.
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6.1 Review of Power Seriesq

34. Since y′ =
∞∑
n=1

(−1)n2n

22n(n!)2
x2n−1 and y′′ =

∞∑
n=1

(−1)n2n(2n− 1)

22n(n!)2
x2n−2, we have

xy′′ + y′ + xy =

∞∑
n=1

(−1)n2n(2n− 1)

22n(n!)2
x2n−1︸ ︷︷ ︸

k=n

+

∞∑
n=1

(−1)n2n

22n(n!)2
x2n−1︸ ︷︷ ︸

k=n

+

∞∑
n=0

(−1)n

22n(n!)2
x2n+1

︸ ︷︷ ︸
k=n+1

=
∞∑
k=1

[
(−1)k2k(2k − 1)

22k(k!)2
+

(−1)k2k

22k(k!)2
+

(−1)k−1

22k−2[(k − 1)!]2

]
x2k−1

=
∞∑
k=1

[
(−1)k(2k)2

22k(k!)2
− (−1)k

22k−2[(k − 1)!]2

]
x2k−1

=

∞∑
k=1

(−1)k
[

(2k)2 − 22k2

22k(k!)2

]
x2k−1 = 0.

In Problems 35–38 we start with the assumption that y =

∞∑
n=0

cnx
n, substitute into the differential

equation, and finally find some values of cn. The solution is then written in terms of elementary

functions. (One of the points of power series solutions of differential equations however is that it

won’t always be possible to express the power series in terms of elementary functions.)

35. Substituting into the differential equation we have

y′ − 5y =
∞∑
n=1

ncnx
n−1 −

∞∑
n=0

5cnx
n =

∞∑
k=0

(k + 1)ck+1x
k −

∞∑
k=0

5ckx
k

=
∞∑
k=0

[
(k + 1)ck+1 − 5ck

]
xk = 0.

Thus ck+1 =
5

k + 1
ck, for k = 0, 1, 2, . . . , and

c1 =
5

1
c0 = 5c0

c2 =
5

2
c1 =

52

2
c0

c3 =
5

3
c2 =

53

3 · 2
c0

c4 =
5

4
c3 =

54

4 · 3 · 2
c0

...

Hence,

y = c0 + 5c0x+
52

2
c0x

2 +
53

3 · 2
c0x

3 +
54

4 · 3 · 2
c0x

4 + · · ·
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CHAPTER 6 SERIES SOLUTIONS OF LINEAR EQUATIONS

and

y = c0

∞∑
k=0

1

k!
(5x)k = c0e

5x.

36. Substituting into the differential equation we have

4y′ + y = 4

∞∑
n=1

ncnx
n−1 +

∞∑
n=0

cnx
n = 4

∞∑
k=0

(k + 1)ck+1x
k +

∞∑
k=0

ckx
k

=

∞∑
k=0

[
4(k + 1)ck+1 + ck

]
xk = 0.

Thus ck+1 = − 1

4(k + 1)
ck, for k = 0, 1, 2, . . . , and

c1 = − 1

4 · 1
c0

c2 = − 1

4 · 2
c1 =

1

42 · 1 · 2
c0

c3 = − 1

4 · 3
c2 = − 1

43 · 1 · 2 · 3
c0

c4 = − 1

4 · 4
c3 =

1

44 · 1 · 2 · 3 · 4
c0

...

Hence,

y = c0 −
1

4 · 1
c0x+

1

42 · 1 · 2
c0x

2 − 1

43 · 1 · 2 · 3
c0x

3 +
1

44 · 1 · 2 · 3 · 4
c0x

4 − · · ·

and

y = c0

∞∑
k=0

(−1)k

4kk!
xk = c0

∞∑
k=0

(−1k

k!

(x
4

)k
= c0e

−x/4.

37. Substituting into the differential equation we have

y′ − xy =
∞∑
n=1

ncnx
n−1 −

∞∑
n=0

cnx
n+1 =

∞∑
k=0

(k + 1)ck+1x
k −

∞∑
k=1

ck−1x
k

= c1 +

∞∑
k=1

(k + 1)ck+1x
k −

∞∑
k=1

ck−1x
k

= c1 +
∞∑
k=1

[
(k + 1)ck+1 − ck−1

]
xk = 0.
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6.1 Review of Power Seriesq

Thus c1 = 0 and ck+1 =
1

k + 1
ck, for k = 0, 1, 2, . . . , so

c2 =
1

2
c0

c3 =
1

3
c1 = 0

c4 =
1

4
c2 =

1

4

(
1

2
c0

)
=

1

222!
c0

c5 =
1

5
c3 = 0

c6 =
1

6
c4 =

1

6

(
1

222!
c0

)
=

1

233!
c0

c7 =
1

7
c5 = 0

c8 =
1

8
c6 =

1

8

(
1

233!
c0

)
=

1

244!
c0

...

Hence,

y = c0 +
1

2
c0x

2 +
1

222!
c0x

4 +
1

233!
c0x

6 +
1

244!
c0x

8 + · · ·

= c0

[
1 +

(
x2

2

)
+

1

2!

(
x2

2

)2

+
1

3!

(
x2

2

)3

+
1

4!

(
x2

2

)4

+ · · ·

]
,

and

y = c0

∞∑
k=0

1

k!

(
x2

2

)k
= c0e

x2/2.

38. Substituting into the differential equation we have

(1 + x)y′ + y =

∞∑
n=1

ncnx
n−1 +

∞∑
n=1

cnnx
n +

∞∑
n=0

cnx
n

=

∞∑
k=0

(k + 1)ck+1x
k +

∞∑
k=1

ckx
k +

∞∑
k=0

ckx
k

= c1 + c0 +

∞∑
k=1

(k + 1)ck+1x
k +

∞∑
k=1

ckkx
k +

∞∑
k=1

ckx
k

= c1 + c0 +
∞∑
k=1

[
(k + 1)ck+1 + (k + 1)ck

]
xk = 0.
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CHAPTER 6 SERIES SOLUTIONS OF LINEAR EQUATIONS

Thus c1 + c0 = 0 and ck+1 = −ck, for k = 1, 2, 3, . . . , so

c1 = −c0
c2 = −c1 = c0

c3 = −c2 = −c0
c4 = −c3 = c0

...

Hence,

y = c0 − c0x+ c0x
2 − c0x3 + c0x

4 − · · · = c0
[
1− x+ x2 − x3 + x4 − · · ·

]
,

and

y = c0

∞∑
k=0

(−1)kxk =
c0

1 + x
.

Discussion Problems

39. From the double-angle formula

sin 2x = 2 sinx cosx and sinx cosx =
1

2
sin 2x.

Therefore we replace x by 2x in the Maclaurin series for sinx. This gives

sinx cosx =
1

2
sin 2x =

1

2

∞∑
n=0

(−1)n

(2n+ 1)!
(2x)2n+1

=
∞∑
n=0

(−4)n

(2n+ 1)!
x2n+1 = x− 2

3
x3 +

2

15
x5 − · · · .

40. Even though the interval of convergence of cosx is (−∞, ∞), the power series for secx cannot

converge on that interval because secx = 1/ cosx is discontinuous at odd integer multiples of

π/2. Since the series is centered at 0 it makes sense, and can be proved, that the interval of

convergence is the open finite interval
(
− π/2, π/2

)
.
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6.2 Solutions About Ordinary Pointsq

6.2 Solutions About Ordinary Pointsq

6.2 Solutions About Ordinary Pointsq

1. The singular points of (x2 − 25)y′′ + 2xy′ + y = 0 are −5 and 5. The distance from 0 to either

of these points is 5. The distance from 1 to the closest of these points is 4.

2. The singular points of (x2− 2x+ 10)y′′+xy′− 4y = 0 are 1 + 3i and 1− 3i. The distance from

0 to either of these points is
√

10 . The distance from 1 to either of these points is 3.

In Problems 3–6 we use

y =
∞∑
n=0

cnx
n, y′ =

∞∑
n=1

ncnx
n−1, and y′′ =

∞∑
n=2

n(n− 1)cnx
n−2.

3. We have

y′′ + y =
∞∑
n=2

n(n− 1)cnx
n−2

︸ ︷︷ ︸
k=n−2

+
∞∑
n=0

cnx
n

︸ ︷︷ ︸
k=n

=

∞∑
k=0

(k + 2)(k + 1)ck+2x
k +

∞∑
k=0

ckx
k

=

∞∑
k=0

[
(k + 2)(k + 1)ck+2 + ck

]
xk = 0.

Thus ck+2 = − ck
(k + 2)(k + 1)

, for k = 0, 1, 2, . . . , and for k = 0, 2, 4, 6, . . . we get

c2 = −c0
2!

c4 =
c0
4!

c6 = −c0
6!

... .

For k = 1, 3, 5, 7, . . . we get

c3 = −c1
3!

c5 =
c1
5!

c7 = −c1
7!

... .
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CHAPTER 6 SERIES SOLUTIONS OF LINEAR EQUATIONS

Hence,

y1(x) = c0

[
1− 1

2!
x2 +

1

4!
x4 − 1

6!
x6 + · · ·

]
and

y2(x) = c1

[
x− 1

3!
x3 +

1

5!
x5 − 1

7!
x7 + · · ·

]
.

The solution y1(x) is recognized as y1(x) = c0 cosx, and the solution y2(x) is recognized as

y2(x) = c1 sinx

4. We have

y′′ − y =

∞∑
n=2

n(n− 1)cnx
n−2

︸ ︷︷ ︸
k=n−2

−
∞∑
n=0

cnx
n

︸ ︷︷ ︸
k=n

=

∞∑
k=0

(k + 2)(k + 1)ck+2x
k −

∞∑
k=0

ckx
k

=

∞∑
k=0

[
(k + 2)(k + 1)ck+2 − ck

]
xk = 0.

Thus ck+2 =
ck

(k + 2)(k + 1)
, for k = 0, 1, 2, . . . , and for k = 0, 2, 4, 6, . . . we get

c2 =
c0
2!

c4 =
c0
4!

c6 =
c0
6!

... .

For k = 1, 3, 5, 7, . . . we get

c3 =
c1
3!

c5 =
c1
5!

c7 =
c1
7!

... .

Hence,

y1(x) = c0

[
1 +

1

2!
x2 +

1

4!
x4 +

1

6!
x6 + · · ·

]
and

y2(x) = c1

[
x+

1

3!
x3 +

1

5!
x5 +

1

7!
x7 + · · ·

]
.
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6.2 Solutions About Ordinary Pointsq

The solution y1(x) is recognized as y1(x) = c0 coshx, and the solution y2(x) is recognized as

y2(x) = c1 sinhx

5. We have

y′′ − y′ =
∞∑
n=2

n(n− 1)cnx
n−2

︸ ︷︷ ︸
k=n−2

−
∞∑
n=1

ncnx
n−1

︸ ︷︷ ︸
k=n−1

=
∞∑
k=0

(k + 2)(k + 1)ck+2x
k −

∞∑
k=0

(k + 1)ck+1x
k

=

∞∑
k=0

[
(k + 2)(k + 1)ck+2 − (k + 1)ck+1

]
xk = 0.

Thus ck+2 =
(k + 1)ck+1

(k + 2)(k + 1)
=

ck+1

k + 2
, for k = 0, 1, 2, . . . , so

c2 =
c1
2!

c3 =
c2
3

=
c1
3!

c4 =
c3
4

=
c1
4!

... .

Hence, the solution of the differential equation is

y(x) = y1(x) + y2(x) = c0 + c1

[
x+

1

2!
x2 +

1

3!
x3 +

1

4!
x4 + · · ·

]
= c0 + c1

[
−1 + 1 + x+

1

2!
x2 +

1

3!
x3 +

1

4!
x4 + · · ·

]
= c0 − c1 + c1

∞∑
k=0

1

k!
xk.

The solutions y1(x) and y2(x) are recognized as

y1(x) = c0 and y2(x) = −c1 + c1e
x.

6. We have

y′′ + 2y′ =

∞∑
n=2

n(n− 1)cnx
n−2

︸ ︷︷ ︸
k=n−2

+ 2

∞∑
n=1

ncnx
n−1

︸ ︷︷ ︸
k=n−1

=

∞∑
k=0

(k + 2)(k + 1)ck+2x
k +

∞∑
k=0

2(k + 1)ck+1x
k

=
∞∑
k=0

[
(k + 2)(k + 1)ck+2 + 2(k + 1)ck+1

]
xk = 0.
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CHAPTER 6 SERIES SOLUTIONS OF LINEAR EQUATIONS

Thus ck+2 = − 2(k + 1)ck+1

(k + 2)(k + 1)
= −2ck+1

k + 2
, for k = 0, 1, 2, . . . , so

c2 = −2c1
2!

c3 =
22c2

3
=

22c1
3!

c4 = −23c3
4

= −23c1
4!

... .

Hence, the solution of the differential equation is

y(x) = y1(x) + y2(x) = c0 + c1

[
x− 2

2!
x2 +

22

3!
x3 − 23

4!
x4 + · · ·

]

= c0 +
1

2
c1

[
2x− 22

2!
x2 +

23

3!
x3 − 24

4!
x4 + · · ·

]

= c0 +
1

2
c1

[
1− 12x− 22

2!
x2 +

23

3!
x3 − 24

4!
x4 + · · ·

]
= c0 +

1

2
c1 −

1

2
c1

∞∑
k=0

1

k!
(2x)k.

The solutions y1(x) and y2(x) are recognized as

y1(x) = c0 and y2(x) =
1

2
c1 −

1

2
c1e
−2x.

7. Substituting y =
∑∞

n=0 cnx
n into the differential equation we have

y′′ − xy =

∞∑
n=2

n(n− 1)cnx
n−2

︸ ︷︷ ︸
k=n−2

−
∞∑
n=0

cnx
n+1

︸ ︷︷ ︸
k=n+1

=

∞∑
k=0

(k + 2)(k + 1)ck+2x
k −

∞∑
k=1

ck−1x
k

= 2c2 +

∞∑
k=1

[(k + 2)(k + 1)ck+2 − ck−1]xk = 0.

Thus

c2 = 0

(k + 2)(k + 1)ck+2 − ck−1 = 0

and

ck+2 =
1

(k + 2)(k + 1)
ck−1, k = 1, 2, 3, . . . .
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6.2 Solutions About Ordinary Pointsq

Choosing c0 = 1 and c1 = 0 we find

c3 =
1

6
c4 = c5 = 0

c6 =
1

180

and so on. For c0 = 0 and c1 = 1 we obtain

c3 = 0

c4 =
1

12
c5 = c6 = 0

c7 =
1

504

and so on. Thus, two solutions are

y1 = 1 +
1

6
x3 +

1

180
x6 + · · · and y2 = x+

1

12
x4 +

1

504
x7 + · · · .

8. Substituting y =
∑∞

n=0 cnx
n into the differential equation we have

y′′ + x2y =

∞∑
n=2

n(n− 1)cnx
n−2

︸ ︷︷ ︸
k=n−2

+

∞∑
n=0

cnx
n+2

︸ ︷︷ ︸
k=n+2

=

∞∑
k=0

(k + 2)(k + 1)ck+2x
k +

∞∑
k=2

ck−2x
k

= 2c2 + 6c3x+

∞∑
k=2

[(k + 2)(k + 1)ck+2 + ck−2]x
k = 0.

Thus

c2 = c3 = 0

(k + 2)(k+1)ck+2 + ck−2 = 0

and

ck+2 = − 1

(k + 2)(k + 1)
ck−2, k = 2, 3, 4, . . . .

Choosing c0 = 1 and c1 = 0 we find

c4 = − 1

12
c5 = c6 = c7 = 0

c8 =
1

672
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CHAPTER 6 SERIES SOLUTIONS OF LINEAR EQUATIONS

and so on. For c0 = 0 and c1 = 1 we obtain

c4 = 0

c5 = − 1

20
c6 = c7 = c8 = 0

c9 =
1

1440

and so on. Thus, two solutions are

y1 = 1− 1

12
x4 +

1

672
x8 − · · · and y2 = x− 1

20
x5 +

1

1440
x9 − · · · .

9. Substituting y =
∑∞

n=0 cnx
n into the differential equation we have

y′′ − 2xy′ + y =
∞∑
n=2

n(n− 1)cnx
n−2

︸ ︷︷ ︸
k=n−2

− 2
∞∑
n=1

ncnx
n

︸ ︷︷ ︸
k=n

+
∞∑
n=0

cnx
n

︸ ︷︷ ︸
k=n

=
∞∑
k=0

(k + 2)(k + 1)ck+2x
k − 2

∞∑
k=1

kckx
k +

∞∑
k=0

ckx
k

= 2c2 + c0 +

∞∑
k=1

[(k + 2)(k + 1)ck+2 − (2k − 1)ck]x
k = 0.

Thus

2c2 + c0 = 0

(k + 2)(k+1)ck+2 − (2k − 1)ck = 0

and

c2 = −1

2
c0

ck+2 =
2k − 1

(k + 2)(k + 1)
ck, k = 1, 2, 3, . . . .

Choosing c0 = 1 and c1 = 0 we find

c2 = −1

2

c3 = c5 = c7 = · · · = 0

c4 = −1

8

c6 = − 7

240
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6.2 Solutions About Ordinary Pointsq

and so on. For c0 = 0 and c1 = 1 we obtain

c2 = c4 = c6 = · · · = 0

c3 =
1

6

c5 =
1

24

c7 =
1

112

and so on. Thus, two solutions are

y1 = 1− 1

2
x2 − 1

8
x4 − 7

240
x6 − · · · and y2 = x+

1

6
x3 +

1

24
x5 +

1

112
x7 + · · · .

10. Substituting y =
∑∞

n=0 cnx
n into the differential equation we have

y′′ − xy′ + 2y =

∞∑
n=2

n(n− 1)cnx
n−2

︸ ︷︷ ︸
k=n−2

−
∞∑
n=1

ncnx
n

︸ ︷︷ ︸
k=n

+ 2

∞∑
n=0

cnx
n

︸ ︷︷ ︸
k=n

=

∞∑
k=0

(k + 2)(k + 1)ck+2x
k −

∞∑
k=1

kckx
k + 2

∞∑
k=0

ckx
k

= 2c2 + 2c0 +

∞∑
k=1

[(k + 2)(k + 1)ck+2 − (k − 2)ck]x
k = 0.

Thus

2c2 + 2c0 = 0

(k + 2)(k + 1)ck+2 − (k − 2)ck = 0

and

c2 = −c0

ck+2 =
k − 2

(k + 2)(k + 1)
ck, k = 1, 2, 3, . . . .

Choosing c0 = 1 and c1 = 0 we find

c2 = −1

c3 = c5 = c7 = · · · = 0

c4 = 0

c6 = c8 = c10 = · · · = 0.
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CHAPTER 6 SERIES SOLUTIONS OF LINEAR EQUATIONS

For c0 = 0 and c1 = 1 we obtain

c2 = c4 = c6 = · · · = 0

c3 = −1

6

c5 = − 1

120

and so on. Thus, two solutions are

y1 = 1− x2 and y2 = x− 1

6
x3 − 1

120
x5 − · · · .

11. Substituting y =
∑∞

n=0 cnx
n into the differential equation we have

y′′ + x2y′ + xy =

∞∑
n=2

n(n− 1)cnx
n−2

︸ ︷︷ ︸
k=n−2

+

∞∑
n=1

ncnx
n+1

︸ ︷︷ ︸
k=n+1

+

∞∑
n=0

cnx
n+1

︸ ︷︷ ︸
k=n+1

=

∞∑
k=0

(k + 2)(k + 1)ck+2x
k +

∞∑
k=2

(k − 1)ck−1x
k +

∞∑
k=1

ck−1x
k

= 2c2 + (6c3 + c0)x+

∞∑
k=2

[(k + 2)(k + 1)ck+2 + kck−1]x
k = 0.

Thus

c2 = 0

6c3 + c0 = 0

(k + 2)(k + 1)ck+2 + kck−1 = 0

and

c2 = 0

c3 = −1

6
c0

ck+2 = − k

(k + 2)(k + 1)
ck−1, k = 2, 3, 4, . . . .

Choosing c0 = 1 and c1 = 0 we find

c3 = −1

6
c4 = c5 = 0

c6 =
1

45

322
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6.2 Solutions About Ordinary Pointsq

and so on. For c0 = 0 and c1 = 1 we obtain

c3 = 0

c4 = −1

6
c5 = c6 = 0

c7 =
5

252

and so on. Thus, two solutions are

y1 = 1− 1

6
x3 +

1

45
x6 − · · · and y2 = x− 1

6
x4 +

5

252
x7 − · · · .

12. Substituting y =
∑∞

n=0 cnx
n into the differential equation we have

y′′ + 2xy′ + 2y =
∞∑
n=2

n(n− 1)cnx
n−2

︸ ︷︷ ︸
k=n−2

+ 2
∞∑
n=1

ncnx
n

︸ ︷︷ ︸
k=n

+ 2
∞∑
n=0

cnx
n

︸ ︷︷ ︸
k=n

=
∞∑
k=0

(k + 2)(k + 1)ck+2x
k + 2

∞∑
k=1

kckx
k + 2

∞∑
k=0

ckx
k

= 2c2 + 2c0 +

∞∑
k=1

[(k + 2)(k + 1)ck+2 + 2(k + 1)ck]x
k = 0.

Thus

2c2 + 2c0 = 0

(k + 2)(k + 1)ck+2 + 2(k + 1)ck = 0

and

c2 = −c0

ck+2 = − 2

k + 2
ck, k = 1, 2, 3, . . . .

Choosing c0 = 1 and c1 = 0 we find

c2 = −1
1

2

c3 = c5 = c7 = · · · = 0
1

2

c4 =
1

2

c6 = −1

6

323
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CHAPTER 6 SERIES SOLUTIONS OF LINEAR EQUATIONS

and so on. For c0 = 0 and c1 = 1 we obtain

c2 = c4 = c6 = · · · = 0

c3 = −2

3

c5 =
4

15

c7 = − 8

105

and so on. Thus, two solutions are

y1 = 1− x2 +
1

2
x4 − 1

6
x6 + · · · and y2 = x− 2

3
x3 +

4

15
x5 − 8

105
x7 + · · · .

13. Substituting y =
∑∞

n=0 cnx
n into the differential equation we have

(x− 1)y′′ + y′ =

∞∑
n=2

n(n− 1)cnx
n−1

︸ ︷︷ ︸
k=n−1

−
∞∑
n=2

n(n− 1)cnx
n−2

︸ ︷︷ ︸
k=n−2

+

∞∑
n=1

ncnx
n−1

︸ ︷︷ ︸
k=n−1

=

∞∑
k=1

(k + 1)kck+1x
k −

∞∑
k=0

(k + 2)(k + 1)ck+2x
k +

∞∑
k=0

(k + 1)ck+1x
k

= −2c2 + c1 +

∞∑
k=1

[(k + 1)kck+1 − (k + 2)(k + 1)ck+2 + (k + 1)ck+1]x
k = 0.

Thus

−2c2 + c1 = 0

(k + 1)2ck+1 − (k + 2)(k + 1)ck+2 = 0

and

c2 =
1

2
c1

ck+2 =
k + 1

k + 2
ck+1, k = 1, 2, 3, . . . .

Choosing c0 = 1 and c1 = 0 we find c2 = c3 = c4 = · · · = 0. For c0 = 0 and c1 = 1 we obtain

c2 =
1

2
, c3 =

1

3
, c4 =

1

4
,

and so on. Thus, two solutions are

y1 = 1 and y2 = x+
1

2
x2 +

1

3
x3 +

1

4
x4 + · · · .
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6.2 Solutions About Ordinary Pointsq

14. Substituting y =
∑∞

n=0 cnx
n into the differential equation we have

(x+ 2)y′′ + xy′ − y =

∞∑
n=2

n(n− 1)cnx
n−1

︸ ︷︷ ︸
k=n−1

+

∞∑
n=2

2n(n− 1)cnx
n−2

︸ ︷︷ ︸
k=n−2

+

∞∑
n=1

ncnx
n

︸ ︷︷ ︸
k=n

−
∞∑
n=0

cnx
n

︸ ︷︷ ︸
k=n

=

∞∑
k=1

(k + 1)kck+1x
k +

∞∑
k=0

2(k + 2)(k + 1)ck+2x
k +

∞∑
k=1

kckx
k −

∞∑
k=0

ckx
k

= 4c2 − c0 +

∞∑
k=1

[
(k + 1)kck+1 + 2(k + 2)(k + 1)ck+2 + (k − 1)ck

]
xk = 0.

Thus

4c2 − c0 = 0

(k + 1)kck+1 + 2(k + 2)(k + 1)ck+2 + (k − 1)ck = 0, k = 1, 2, 3, . . .

and

c2 =
1

4
c0

ck+2 = −(k + 1)kck+1 + (k − 1)ck
2(k + 2)(k + 1)

, k = 1, 2, 3, . . . .

Choosing c0 = 1 and c1 = 0 we find

c1 = 0, c2 =
1

4
, c3 = − 1

24
, c4 = 0, c5 =

1

480

and so on. For c0 = 0 and c1 = 1 we obtain

c2 = 0

c3 = 0

c4 = c5 = c6 = · · · = 0.

Thus, two solutions are

y1 = 1 +
1

4
x2 − 1

24
x3 +

1

480
x5 + · · · and y2 = x.

15. Substituting y =
∑∞

n=0 cnx
n into the differential equation we have

y′′ − (x+ 1)y′ − y =
∞∑
n=2

n(n− 1)cnx
n−2

︸ ︷︷ ︸
k=n−2

−
∞∑
n=1

ncnx
n

︸ ︷︷ ︸
k=n

−
∞∑
n=1

ncnx
n−1

︸ ︷︷ ︸
k=n−1

−
∞∑
n=0

cnx
n

︸ ︷︷ ︸
k=n

=
∞∑
k=0

(k + 2)(k + 1)ck+2x
k −

∞∑
k=1

kckx
k −

∞∑
k=0

(k + 1)ck+1x
k −

∞∑
k=0

ckx
k

= 2c2 − c1 − c0 +
∞∑
k=1

[(k + 2)(k + 1)ck+2 − (k + 1)ck+1 − (k + 1)ck]x
k = 0.
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CHAPTER 6 SERIES SOLUTIONS OF LINEAR EQUATIONS

Thus

2c2 − c1 − c0 = 0

(k + 2)(k + 1)ck+2 − (k + 1)(ck+1 + ck) = 0

and

c2 =
c1 + c0

2

ck+2 =
ck+1 + ck
k + 2

, k = 1, 2, 3, . . . .

Choosing c0 = 1 and c1 = 0 we find

c2 =
1

2
, c3 =

1

6
, c4 =

1

6
,

and so on. For c0 = 0 and c1 = 1 we obtain

c2 =
1

2
, c3 =

1

2
, c4 =

1

4
,

and so on. Thus, two solutions are

y1 = 1 +
1

2
x2 +

1

6
x3 +

1

6
x4 + · · · and y2 = x+

1

2
x2 +

1

2
x3 +

1

4
x4 + · · · .

16. Substituting y =
∑∞

n=0 cnx
n into the differential equation we have

(
x2 + 1

)
y′′ − 6y =

∞∑
n=2

n(n− 1)cnx
n

︸ ︷︷ ︸
k=n

+

∞∑
n=2

n(n− 1)cnx
n−2

︸ ︷︷ ︸
k=n−2

− 6

∞∑
n=0

cnx
n

︸ ︷︷ ︸
k=n

=

∞∑
k=2

k(k − 1)ckx
k +

∞∑
k=0

(k + 2)(k + 1)ck+2x
k − 6

∞∑
k=0

ckx
k

= 2c2 − 6c0 + (6c3 − 6c1)x+

∞∑
k=2

[(
k2 − k − 6

)
ck + (k + 2)(k + 1)ck+2

]
xk = 0.

Thus

2c2 − 6c0 = 0

6c3 − 6c1 = 0

(k − 3)(k + 2)ck + (k + 2)(k + 1)ck+2 = 0

and

c2 = 3c0

c3 = c1

ck+2 = −k − 3

k + 1
ck, k = 2, 3, 4, . . . .
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6.2 Solutions About Ordinary Pointsq

Choosing c0 = 1 and c1 = 0 we find

c2 = 3

c3 = c5 = c7 = · · · = 0

c4 = 1

c6 = −1

5

and so on. For c0 = 0 and c1 = 1 we obtain

c2 = c4 = c6 = · · · = 0

c3 = 1

c5 = c7 = c9 = · · · = 0.

Thus, two solutions are

y1 = 1 + 3x2 + x4 − 1

5
x6 + · · · and y2 = x+ x3.

17. Substituting y =
∑∞

n=0 cnx
n into the differential equation we have

(
x2 + 2

)
y′′ + 3xy′ − y =

∞∑
n=2

n(n− 1)cnx
n

︸ ︷︷ ︸
k=n

+ 2
∞∑
n=2

n(n− 1)cnx
n−2

︸ ︷︷ ︸
k=n−2

+ 3
∞∑
n=1

ncnx
n

︸ ︷︷ ︸
k=n

−
∞∑
n=0

cnx
n

︸ ︷︷ ︸
k=n

=
∞∑
k=2

k(k − 1)ckx
k + 2

∞∑
k=0

(k + 2)(k + 1)ck+2x
k + 3

∞∑
k=1

kckx
k −

∞∑
k=0

ckx
k

= (4c2 − c0) + (12c3 + 2c1)x+

∞∑
k=2

[
2(k + 2)(k + 1)ck+2 +

(
k2 + 2k − 1

)
ck
]
xk = 0.

Thus

4c2 − c0 = 0

12c3 + 2c1 = 0

2(k + 2)(k + 1)ck+2 +
(
k2 + 2k − 1

)
ck = 0

and

c2 =
1

4
c0

c3 = −1

6
c1

ck+2 = − k2 + 2k − 1

2(k + 2)(k + 1)
ck, k = 2, 3, 4, . . .
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CHAPTER 6 SERIES SOLUTIONS OF LINEAR EQUATIONS

Choosing c0 = 1 and c1 = 0 we find

c2 =
1

4
c3 = c5 = c7 = · · · = 0

c4 = − 7

96

and so on. For c0 = 0 and c1 = 1 we obtain

c2 = c4 = c6 = · · · = 0

c3 = −1

6

c5 =
7

120

and so on. Thus, two solutions are

y1 = 1 +
1

4
x2 − 7

96
x4 + · · · and y2 = x− 1

6
x3 +

7

120
x5 − · · · .

18. Substituting y =
∑∞

n=0 cnx
n into the differential equation we have

(
x2 − 1

)
y′′ + xy′ − y =

∞∑
n=2

n(n− 1)cnx
n

︸ ︷︷ ︸
k=n

−
∞∑
n=2

n(n− 1)cnx
n−2

︸ ︷︷ ︸
k=n−2

+

∞∑
n=1

ncnx
n

︸ ︷︷ ︸
k=n

−
∞∑
n=0

cnx
n

︸ ︷︷ ︸
k=n

=

∞∑
k=2

k(k − 1)ckx
k −

∞∑
k=0

(k + 2)(k + 1)ck+2x
k +

∞∑
k=1

kckx
k −

∞∑
k=0

ckx
k

= (−2c2 − c0)− 6c3x+

∞∑
k=2

[
−(k + 2)(k + 1)ck+2 +

(
k2 − 1

)
ck
]
xk = 0.

Thus

−2c2 − c0 = 0

−6c3 = 0

−(k + 2)(k + 1)ck+2 + (k − 1)(k + 1)ck = 0

and

c2 = −1

2
c0

c3 = 0

ck+2 =
k − 1

k + 2
ck, k = 2, 3, 4, . . . .
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6.2 Solutions About Ordinary Pointsq

Choosing c0 = 1 and c1 = 0 we find

c2 = −1

2
c3 = c5 = c7 = · · · = 0

c4 = −1

8

and so on. For c0 = 0 and c1 = 1 we obtain

c2 = c4 = c6 = · · · = 0

c3 = c5 = c7 = · · · = 0.

Thus, two solutions are

y1 = 1− 1

2
x2 − 1

8
x4 − · · · and y2 = x.

19. Substituting y =
∑∞

n=0 cnx
n into the differential equation we have

(x− 1)y′′ − xy′ + y =
∞∑
n=2

n(n− 1)cnx
n−1

︸ ︷︷ ︸
k=n−1

−
∞∑
n=2

n(n− 1)cnx
n−2

︸ ︷︷ ︸
k=n−2

−
∞∑
n=1

ncnx
n

︸ ︷︷ ︸
k=n

+
∞∑
n=0

cnx
n

︸ ︷︷ ︸
k=n

xxxxxxxx =

∞∑
k=1

(k + 1)kck+1x
k −

∞∑
k=0

(k + 2)(k + 1)ck+2x
k −

∞∑
k=1

kckx
k +

∞∑
k=0

ckx
k

= −2c2 + c0 +

∞∑
k=1

[−(k + 2)(k + 1)ck+2 + (k + 1)kck+1 − (k − 1)ck]x
k = 0.

Thus

−2c2 + c0 = 0

−(k + 2)(k + 1)ck+2 + (k + 1)kck+1 − (k − 1)ck = 0

and

c2 =
1

2
c0

ck+2 =
kck+1

k + 2
− (k − 1)ck

(k + 2)(k + 1)
, k = 1, 2, 3, . . . .

Choosing c0 = 1 and c1 = 0 we find

c2 =
1

2
, c3 =

1

6
, c4 =

1

24
,

and so on. For c0 = 0 and c1 = 1 we obtain c2 = c3 = c4 = · · · = 0. Thus,

y = C1

(
1 +

1

2
x2 +

1

6
x3 + · · ·

)
+ C2x
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CHAPTER 6 SERIES SOLUTIONS OF LINEAR EQUATIONS

and

y′ = C1

(
x+

1

2
x2 + · · ·

)
+ C2.

The initial conditions imply C1 = −2 and C2 = 6, so

y = −2

(
1 +

1

2
x2 +

1

6
x3 + · · ·

)
+ 6x = 6x− 2ex .

20. Substituting y =
∑∞

n=0 cnx
n into the differential equation we have

(x+1)y′′ − (2− x)y′ + y

=
∞∑
n=2

n(n− 1)cnx
n−1

︸ ︷︷ ︸
k=n−1

+
∞∑
n=2

n(n− 1)cnx
n−2

︸ ︷︷ ︸
k=n−2

− 2
∞∑
n=1

ncnx
n−1

︸ ︷︷ ︸
k=n−1

+
∞∑
n=1

ncnx
n

︸ ︷︷ ︸
k=n

+
∞∑
n=0

cnx
n

︸ ︷︷ ︸
k=n

=

∞∑
k=1

(k + 1)kck+1x
k +

∞∑
k=0

(k + 2)(k + 1)ck+2x
k − 2

∞∑
k=0

(k + 1)ck+1x
k +

∞∑
k=1

kckx
k +

∞∑
k=0

ckx
k

= 2c2 − 2c1 + c0 +
∞∑
k=1

[(k + 2)(k + 1)ck+2 − (k + 1)ck+1 + (k + 1)ck]x
k = 0.

Thus

2c2 − 2c1 + c0 = 0

(k + 2)(k + 1)ck+2 − (k + 1)ck+1 + (k + 1)ck = 0

and

c2 = c1 −
1

2
c0

ck+2 =
1

k + 2
ck+1 −

1

k + 2
ck, k = 1, 2, 3, . . . .

Choosing c0 = 1 and c1 = 0 we find

c2 = −1

2
, c3 = −1

6
, c4 =

1

12
,

and so on. For c0 = 0 and c1 = 1 we obtain

c2 = 1, c3 = 0, c4 = −1

4
,

and so on. Thus,

y = C1

(
1− 1

2
x2 − 1

6
x3 +

1

12
x4 + · · ·

)
+ C2

(
x+ x2 − 1

4
x4 + · · ·

)
and

y′ = C1

(
−x− 1

2
x2 +

1

3
x3 + · · ·

)
+ C2

(
1 + 2x− x3 + · · ·

)
.
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6.2 Solutions About Ordinary Pointsq

The initial conditions imply C1 = 2 and C2 = −1, so

y = 2

(
1− 1

2
x2 − 1

6
x3 +

1

12
x4 + · · ·

)
−
(
x+ x2 − 1

4
x4 + · · ·

)
= 2− x− 2x2 − 1

3
x3 +

5

12
x4 + · · · .

21. Substituting y =
∑∞

n=0 cnx
n into the differential equation we have

y′′ − 2xy′ + 8y =

∞∑
n=2

n(n− 1)cnx
n−2

︸ ︷︷ ︸
k=n−2

− 2

∞∑
n=1

ncnx
n

︸ ︷︷ ︸
k=n

+ 8

∞∑
n=0

cnx
n

︸ ︷︷ ︸
k=n

=

∞∑
k=0

(k + 2)(k + 1)ck+2x
k − 2

∞∑
k=1

kckx
k + 8

∞∑
k=0

ckx
k

= 2c2 + 8c0 +

∞∑
k=1

[(k + 2)(k + 1)ck+2 + (8− 2k)ck]x
k = 0.

Thus

2c2 + 8c0 = 0

(k + 2)(k + 1)ck+2 + (8− 2k)ck = 0

and

c2 = −4c0

ck+2 =
2(k − 4)

(k + 2)(k + 1)
ck, k = 1, 2, 3, . . . .

Choosing c0 = 1 and c1 = 0 we find

c2 = −4

c3 = c5 = c7 = · · · = 0

c4 =
4

3
c6 = c8 = c10 = · · · = 0.

For c0 = 0 and c1 = 1 we obtain

c2 = c4 = c6 = · · · = 0

c3 = −1

c5 =
1

10

and so on. Thus,

y = C1

(
1− 4x2 +

4

3
x4
)

+ C2

(
x− x3 +

1

10
x5 + · · ·

)
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CHAPTER 6 SERIES SOLUTIONS OF LINEAR EQUATIONS

and

y′ = C1

(
−8x+

16

3
x3
)

+ C2

(
1− 3x2 +

1

2
x4 + · · ·

)
.

The initial conditions imply C1 = 3 and C2 = 0, so

y = 3

(
1− 4x2 +

4

3
x4
)

= 3− 12x2 + 4x4.

22. Substituting y =
∑∞

n=0 cnx
n into the differential equation we have

(x2 + 1)y′′ + 2xy′ =
∞∑
n=2

n(n− 1)cnx
n

︸ ︷︷ ︸
k=n

+
∞∑
n=2

n(n− 1)cnx
n−2

︸ ︷︷ ︸
k=n−2

+
∞∑
n=1

2ncnx
n

︸ ︷︷ ︸
k=n

=
∞∑
k=2

k(k − 1)ckx
k +

∞∑
k=0

(k + 2)(k + 1)ck+2x
k +

∞∑
k=1

2kckx
k

= 2c2 + (6c3 + 2c1)x+
∞∑
k=2

[
k(k + 1)ck + (k + 2)(k + 1)ck+2

]
xk = 0.

Thus

2c2 = 0

6c3 + 2c1 = 0

k(k + 1)ck + (k + 2)(k + 1)ck+2 = 0

and

c2 = 0

c3 = −1

3
c1

ck+2 = − k

k + 2
ck, k = 2, 3, 4, . . . .

Choosing c0 = 1 and c1 = 0 we find c3 = c4 = c5 = · · · = 0. For c0 = 0 and c1 = 1 we obtain

c3 = −1

3
c4 = c6 = c8 = · · · = 0

c5 = −1

5

c7 =
1

7

and so on. Thus

y = C0 + C1

(
x− 1

3
x3 +

1

5
x5 − 1

7
x7 + · · ·

)
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6.2 Solutions About Ordinary Pointsq

and

y′ = C1

(
1− x2 + x4 − x6 + · · ·

)
.

The initial conditions imply C0 = 0 and C1 = 1, so

y = x− 1

3
x3 +

1

5
x5 − 1

7
x7 + · · · .

23. Substituting y =
∑∞

n=0 cnx
n into the differential equation we have

y′′ + (sinx)y =

∞∑
n=2

n(n− 1)cnx
n−2 +

(
x− 1

6
x3 +

1

120
x5 − · · ·

)(
c0 + c1x+ c2x

2 + · · ·
)

=
[
2c2 + 6c3x+ 12c4x

2 + 20c5x
3 + · · ·

]
+

[
c0x+ c1x

2 +

(
c2 −

1

6
c0

)
x3 + · · ·

]
= 2c2 + (6c3 + c0)x+ (12c4 + c1)x

2 +

(
20c5 + c2 −

1

6
c0

)
x3 + · · · = 0.

Thus

2c2 = 0

6c3 + c0 = 0

12c4 + c1 = 0

20c5 + c2 −
1

6
c0 = 0

and

c2 = 0

c3 = −1

6
c0

c4 = − 1

12
c1

c5 = − 1

20
c2 +

1

120
c0.

Choosing c0 = 1 and c1 = 0 we find

c2 = 0, c3 = −1

6
, c4 = 0, c5 =

1

120

and so on. For c0 = 0 and c1 = 1 we obtain

c2 = 0, c3 = 0, c4 = − 1

12
, c5 = 0

and so on. Thus, two solutions are

y1 = 1− 1

6
x3 +

1

120
x5 + · · · and y2 = x− 1

12
x4 + · · · .
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CHAPTER 6 SERIES SOLUTIONS OF LINEAR EQUATIONS

24. Substituting y =
∑∞

n=0 cnx
n into the differential equation we have

y′′ + exy′ − y =

∞∑
n=2

n(n− 1)cnx
n−2

+

(
1 + x+

1

2
x2 +

1

6
x3 + · · ·

)(
c1 + 2c2x+ 3c3x

2 + 4c4x
3 + · · ·

)
−
∞∑
n=0

cnx
n

=
[
2c2 + 6c3x+ 12c4x

2 + 20c5x
3 + · · ·

]
+

[
c1 + (2c2 + c1)x+

(
3c3 + 2c2 +

1

2
c1

)
x2 + · · ·

]
− [c0 + c1x+ c2x

2 + · · · ]

= (2c2 + c1 − c0) + (6c3 + 2c2)x+

(
12c4 + 3c3 + c2 +

1

2
c1

)
x2 + · · · = 0.

Thus

2c2 + c1 − c0 = 0

6c3 + 2c2 = 0

12c4 + 3c3 + c2 +
1

2
c1 = 0

and

c2 =
1

2
c0 −

1

2
c1

c3 = −1

3
c2

c4 = −1

4
c3 +

1

12
c2 −

1

24
c1.

Choosing c0 = 1 and c1 = 0 we find

c2 =
1

2
, c3 = −1

6
, c4 = 0

and so on. For c0 = 0 and c1 = 1 we obtain

c2 = −1

2
, c3 =

1

6
, c4 = − 1

24

and so on. Thus, two solutions are

y1 = 1 +
1

2
x2 − 1

6
x3 + · · · and y2 = x− 1

2
x2 +

1

6
x3 − 1

24
x4 + · · · .

Discussion Problems

25. The singular points of (cosx)y′′ + y′ + 5y = 0 are odd integer multiples of π/2. The distance

from 0 to either ±π/2 is π/2. The singular point closest to 1 is π/2. The distance from 1 to

the closest singular point is then π/2− 1.
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6.2 Solutions About Ordinary Pointsq

26. Substituting y =
∑∞

n=0 cnx
n into the first differential equation leads to

y′′ − xy =

∞∑
n=2

n(n− 1)cnx
n−2

︸ ︷︷ ︸
k=n−2

−
∞∑
n=0

cnx
n+1

︸ ︷︷ ︸
k=n+1

=

∞∑
k=0

(k + 2)(k + 1)ck+2x
k −

∞∑
k=1

ck−1x
k

= 2c2 +

∞∑
k=1

[(k + 2)(k + 1)ck+2 − ck−1]xk = 1.

Thus

2c2 = 1

(k + 2)(k+1)ck+2 − ck−1 = 0

and

c2 =
1

2

ck+2 =
ck−1

(k + 2)(k + 1)
, k = 1, 2, 3, . . . .

Let c0 and c1 be arbitrary and iterate to find

c2 =
1

2

c3 =
1

6
c0

c4 =
1

12
c1

c5 =
1

20
c2 =

1

40

and so on. The solution is

y = c0 + c1x+
1

2
x2 +

1

6
c0x

3 +
1

12
c1x

4 +
1

40
c5 + · · ·

= c0

(
1 +

1

6
x3 + · · ·

)
+ c1

(
x+

1

12
x4 + · · ·

)
+

1

2
x2 +

1

40
x5 + · · · .

Substituting y =
∑∞

n=0 cnx
n into the second differential equation leads to

y′′ − 4xy′ − 4y =

∞∑
n=2

n(n− 1)cnx
n−2

︸ ︷︷ ︸
k=n−2

−
∞∑
n=1

4ncnx
n

︸ ︷︷ ︸
k=n

−
∞∑
n=0

4cnx
n

︸ ︷︷ ︸
k=n

=

∞∑
k=0

(k + 2)(k + 1)ck+2x
k −

∞∑
k=1

4kckx
k −

∞∑
k=0

4ckx
k

= 2c2 − 4c0 +
∞∑
k=1

[
(k + 2)(k + 1)ck+2 − 4(k + 1)ck

]
xk

= ex = 1 +
∞∑
k=1

1

k!
xk.
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CHAPTER 6 SERIES SOLUTIONS OF LINEAR EQUATIONS

Thus

2c2 − 4c0 = 1

(k + 2)(k+1)ck+2 − 4(k + 1)ck =
1

k!

and

c2 =
1

2
+ 2c0

ck+2 =
1

(k + 2)!
+

4

k + 2
ck, k = 1, 2, 3, . . . .

Let c0 and c1 be arbitrary and iterate to find

c2 =
1

2
+ 2c0

c3 =
1

3!
+

4

3
c1 =

1

3!
+

4

3
c1

c4 =
1

4!
+

4

4
c2 =

1

4!
+

1

2
+ 2c0 =

13

4!
+ 2c0

c5 =
1

5!
+

4

5
c3 =

1

5!
+

4

5 · 3!
+

16

15
c1 =

17

5!
+

16

15
c1

c6 =
1

6!
+

4

6
c4 =

1

6!
+

4 · 13

6 · 4!
+

8

6
c0 =

261

6!
+

4

3
c0

c7 =
1

7!
+

4

7
c5 =

1

7!
+

4 · 17

7 · 5!
+

64

105
c1 =

409

7!
+

64

105
c1

and so on. The solution is

y = c0 + c1x+

(
1

2
+ 2c0

)
x2 +

(
1

3!
+

4

3
c1

)
x3 +

(
13

4!
+ 2c0

)
x4 +

(
17

5!
+

16

15
c1

)
x5

+

(
261

6!
+

4

3
c0

)
x6 +

(
409

7!
+

64

105
c1

)
x7 + · · ·

= c0

[
1 + 2x2 + 2x4 +

4

3
x6 + · · ·

]
+ c1

[
x+

4

3
x3 +

16

15
x5 +

64

105
x7 + · · ·

]
+

1

2
x2 +

1

3!
x3 +

13

4!
x4 +

17

5!
x5 +

261

6!
x6 +

409

7!
x7 + · · · .

27. We identify P (x) = 0 and Q(x) = sinx/x. The Taylor series representation for sinx/x is

1− x2/3! + x4/5!− · · · , for |x| <∞. Thus, Q(x) is analytic at x = 0 and x = 0 is an ordinary

point of the differential equation.

28. Since
√
x is continuous at x = 0, but derivatives of all orders are discontinuous at this point,

x = 0 is a singular point of the differential equation; not an ordinary point.
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6.2 Solutions About Ordinary Pointsq

Computer Lab Assignments

29. (a) Substituting y =
∑∞

n=0 cnx
n into the differential equation we have

y′′ + xy′ + y =
∞∑
n=2

n(n− 1)cnx
n−2

︸ ︷︷ ︸
k=n−2

+
∞∑
n=1

ncnx
n

︸ ︷︷ ︸
k=n

+
∞∑
n=0

cnx
n

︸ ︷︷ ︸
k=n

=
∞∑
k=0

(k + 2)(k + 1)ck+2x
k +

∞∑
k=1

kckx
k +

∞∑
k=0

ckx
k

= (2c2 + c0) +
∞∑
k=1

[
(k + 2)(k + 1)ck+2 + (k + 1)ck

]
xk = 0.

Thus

2c2 + c0 = 0

(k + 2)(k + 1)ck+2 + (k + 1)ck = 0

and

c2 = −1

2
c0

ck+2 = − 1

k + 2
ck, k = 1, 2, 3, . . . .

Choosing c0 = 1 and c1 = 0 we find

c2 = −1

2

c3 = c5 = c7 = · · · = 0

c4 = −1

4

(
−1

2

)
=

1

22 · 2

c6 = −1

6

( 1

22 · 2

)
= − 1

23 · 3!

and so on. For c0 = 0 and c1 = 1 we obtain

c2 = c4 = c6 = · · · = 0

c3 = −1

3
= − 2

3!

c5 = −1

5

(
−1

3

)
=

1

5 · 3
=

4 · 2
5!

c7 = −1

7

(4 · 2
5!

)
= −6 · 4 · 2

7!

and so on. Thus, two solutions are

y1 =
∞∑
k=0

(−1)k

2k · k!
x2k and y2 =

∞∑
k=0

(−1)k2kk!

(2k + 1)!
x2k+1.
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CHAPTER 6 SERIES SOLUTIONS OF LINEAR EQUATIONS

(b) For y1, S3 = S2 and S5 = S4, so we plot S2, S4, S6, S8, and S10.

For y2, S3 = S4 and S5 = S6, so we plot S2, S4, S6, S8, and S10.

(c) x

The graphs of y1 and y2 obtained from a numerical solver are shown. We see that the

partial sum representations indicate the even and odd natures of the solution, but don’t

really give a very accurate representation of the true solution. Increasing N to about 20

gives a much more accurate representation on [−4, 4].

(d) From ex =
∑∞

k=0 x
k/k! we see that e−x

2/2 =
∑∞

k=0(−x2/2)k/k! =
∑∞

k=0(−1)kx2k/2kk! .

From (5) of Section 4.2 we have

y2 = y1

∫
e−

∫
x dx

y21
dx = e−x

2/2

∫
e−x

2/2

(e−x2/2)2
dx = e−x

2/2

∫
e−x

2/2

e−x2
dx = e−x

2/2

∫
ex

2/2dx

=

∞∑
k=0

(−1)k

2kk!
x2k

∫ ∞∑
k=0

1

2kk!
x2k dx =

( ∞∑
k=0

(−1)k

2kk!
x2k

)( ∞∑
k=0

∫
1

2kk!
x2k dx

)

=

( ∞∑
k=0

(−1)k

2kk!
x2k

)( ∞∑
k=0

1

(2k + 1)2kk!
x2k+1

)

=
(

1− 1

2
x2 +

1

22 · 2
x4 − 1

23 · 3!
x6 + · · ·

)(
x+

1

3 · 2
x3 +

1

5 · 22 · 2
x5 +

1

7 · 23 · 3!
x7 + · · ·

)
= x− 2

3!
x3 +

4 · 2
5!

x5 − 6 · 4 · 2
7!

x7 + · · · =
∞∑
k=0

(−1)k2kk!

(2k + 1)!
x2k+1.
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6.2 Solutions About Ordinary Pointsq

30. (a) We have

y′′ + (cosx)y = 2c2 + 6c3x+ 12c4x
2 + 20c5x

3 + 30c6x
4 + 42c7x

5 + · · ·

+
(

1− x2

2!
+
x4

4!
− x6

6!
+ · · ·

)
(c0 + c1x+ c2x

2 + c3x
3 + c4x

4 + c5x
5 + · · · )

= (2c2 + c0) + (6c3 + c1)x+
(

12c4 + c2 −
1

2
c0

)
x2 +

(
20c5 + c3 −

1

2
c1

)
x3

+
(

30c6 + c4 +
1

24
c0 −

1

2
c2

)
x4 +

(
42c7 + c5 +

1

24
c1 −

1

2
c3

)
x5 + · · · .

Then

30c6 + c4 +
1

24
c0 −

1

2
c2 = 0 and 42c7 + c5 +

1

24
c1 −

1

2
c3 = 0,

which gives c6 = −c0/80 and c7 = −19c1/5040. Thus

y1(x) = 1− 1

2
x2 +

1

12
x4 − 1

80
x6 + · · ·

and

y2(x) = x− 1

6
x3 +

1

30
x5 − 19

5040
x7 + · · · .

(b) From part (a) the general solution of the differential equation is y = C1y1 + C2y2. Then

y(0) = C1 + C2 · 0 = C1 and y′(0) = C1 · 0 + C2 = C2, so the solution of the initial-value

problem is

y = y1 + y2 = 1 + x− 1

2
x2 − 1

6
x3 +

1

12
x4 +

1

30
x5 − 1

80
x6 − 19

5040
x7 + · · · .

(c) x
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CHAPTER 6 SERIES SOLUTIONS OF LINEAR EQUATIONS

(d) x

6.3 Solutions About Singular Pointsq

6.3 Solutions About Singular Pointsq

1. Irregular singular point: x = 0

2. Regular singular points: x = 0, −3

3. Irregular singular point: x = 3; regular singular point: x = −3

4. Irregular singular point: x = 1; regular singular point: x = 0

5. Regular singular points: x = 0, ±2i

6. Irregular singular point: x = 5; regular singular point: x = 0

7. Regular singular points: x = −3, 2

8. Regular singular points: x = 0, ±i

9. Irregular singular point: x = 0; regular singular points: x = 2, ±5

10. Irregular singular point: x = −1; regular singular points: x = 0, 3

11. Writing the differential equation in the form

y′′ +
5

x− 1
y′ +

x

x+ 1
y = 0

we see that x0 = 1 and x0 = −1 are regular singular points. For x0 = 1 the differential equation

can be put in the form

(x− 1)2y′′ + 5(x− 1)y′ +
x(x− 1)2

x+ 1
y = 0.

In this case p(x) = 5 and q(x) = x(x− 1)2/(x+ 1). For x0 = −1 the differential equation can

be put in the form

(x+ 1)2y′′ + 5(x+ 1)
x+ 1

x− 1
y′ + x(x+ 1)y = 0.

In this case p(x) = 5(x+ 1)/(x− 1) and q(x) = x(x+ 1).
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6.3 Solutions About Singular Pointsq

12. Writing the differential equation in the form

y′′ +
x+ 3

x
y′ + 7xy = 0

we see that x0 = 0 is a regular singular point. Multiplying by x2, the differential equation can

be put in the form

x2y′′ + x(x+ 3)y′ + 7x3y = 0.

We identify p(x) = x+ 3 and q(x) = 7x3.

13. We identify P (x) = 5/3x + 1 and Q(x) = −1/3x2, so that p(x) = xP (x) = 5
3 + x and

q(x) = x2Q(x) = −1
3 . Then a0 = 5

3 , b0 = −1
3 , and the indicial equation is

r(r − 1) +
5

3
r − 1

3
= r2 +

2

3
r − 1

3
=

1

3
(3r2 + 2r − 1) =

1

3
(3r − 1)(r + 1) = 0.

The indicial roots are 1
3 and −1. Since these do not differ by an integer we expect to find two

series solutions using the method of Frobenius.

14. We identify P (x) = 1/x and Q(x) = 10/x, so that p(x) = xP (x) = 1 and q(x) = x2Q(x) = 10x.

Then a0 = 1, b0 = 0, and the indicial equation is

r(r − 1) + r = r2 = 0.

The indicial roots are 0 and 0. Since these are equal, we expect the method of Frobenius to

yield a single series solution.

15. Substituting y =
∑∞

n=0 cnx
n+r into the differential equation and collecting terms, we obtain

2xy′′ − y′ + 2y =
(
2r2 − 3r

)
c0x

r−1 +

∞∑
k=1

[2(k+ r− 1)(k+ r)ck − (k+ r)ck + 2ck−1]x
k+r−1 = 0,

which implies

2r2 − 3r = r(2r − 3) = 0

and

(k + r)(2k + 2r − 3)ck + 2ck−1 = 0.

The indicial roots are r = 0 and r = 3/2. For r = 0 the recurrence relation is

ck = − 2ck−1
k(2k − 3)

, k = 1, 2, 3, . . . ,

and

c1 = 2c0, c2 = −2c0, c3 =
4

9
c0,

and so on. For r = 3/2 the recurrence relation is

ck = − 2ck−1
(2k + 3)k

, k = 1, 2, 3, . . . ,
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CHAPTER 6 SERIES SOLUTIONS OF LINEAR EQUATIONS

and

c1 = −2

5
c0, c2 =

2

35
c0, c3 = − 4

945
c0,

and so on. The general solution on (0,∞) is

y = C1

(
1 + 2x− 2x2 +

4

9
x3 + · · ·

)
+ C2x

3/2

(
1− 2

5
x+

2

35
x2 − 4

945
x3 + · · ·

)
.

16. Substituting y =
∑∞

n=0 cnx
n+r into the differential equation and collecting terms, we obtain

2xy′′ + 5y′ + xy =
(
2r2 + 3r

)
c0x

r−1 +
(
2r2 + 7r + 5

)
c1x

r

+
∞∑
k=2

[2(k + r)(k + r − 1)ck + 5(k + r)ck + ck−2]x
k+r−1

= 0,

which implies

2r2 + 3r = r(2r + 3) = 0,(
2r2 + 7r + 5

)
c1 = 0,

and

(k + r)(2k + 2r + 3)ck + ck−2 = 0.

The indicial roots are r = −3/2 and r = 0, so c1 = 0 . For r = −3/2 the recurrence relation is

ck = − ck−2
(2k − 3)k

, k = 2, 3, 4, . . . ,

and

c2 = −1

2
c0, c3 = 0, c4 =

1

40
c0,

and so on. For r = 0 the recurrence relation is

ck = − ck−2
k(2k + 3)

, k = 2, 3, 4, . . . ,

and

c2 = − 1

14
c0, c3 = 0, c4 =

1

616
c0,

and so on. The general solution on (0,∞) is

y = C1x
−3/2

(
1− 1

2
x2 +

1

40
x4 + · · ·

)
+ C2

(
1− 1

14
x2 +

1

616
x4 + · · ·

)
.
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6.3 Solutions About Singular Pointsq

17. Substituting y =
∑∞

n=0 cnx
n+r into the differential equation and collecting terms, we obtain

4xy′′ +
1

2
y′ + y =

(
4r2 − 7

2
r

)
c0x

r−1 +
∞∑
k=1

[
4(k + r)(k + r − 1)ck +

1

2
(k + r)ck + ck−1

]
xk+r−1

= 0,

which implies

4r2 − 7

2
r = r

(
4r − 7

2

)
= 0

and
1

2
(k + r)(8k + 8r − 7)ck + ck−1 = 0.

The indicial roots are r = 0 and r = 7/8. For r = 0 the recurrence relation is

ck = − 2ck−1
k(8k − 7)

, k = 1, 2, 3, . . . ,

and

c1 = −2c0, c2 =
2

9
c0, c3 = − 4

459
c0,

and so on. For r = 7/8 the recurrence relation is

ck = − 2ck−1
(8k + 7)k

, k = 1, 2, 3, . . . ,

and

c1 = − 2

15
c0, c2 =

2

345
c0, c3 = − 4

32,085
c0,

and so on. The general solution on (0,∞) is

y = C1

(
1− 2x+

2

9
x2 − 4

459
x3 + · · ·

)
+ C2x

7/8

(
1− 2

15
x+

2

345
x2 − 4

32,085
x3 + · · ·

)
.

18. Substituting y =
∑∞

n=0 cnx
n+r into the differential equation and collecting terms, we obtain

2x2y′′ − xy′ +
(
x2 + 1

)
y =

(
2r2 − 3r + 1

)
c0x

r +
(
2r2 + r

)
c1x

r+1

+
∞∑
k=2

[2(k + r)(k + r − 1)ck − (k + r)ck + ck + ck−2]x
k+r

= 0,

which implies

2r2 − 3r + 1 = (2r − 1)(r − 1) = 0,(
2r2 + r

)
c1 = 0,

and

[(k + r)(2k + 2r − 3) + 1]ck + ck−2 = 0.
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CHAPTER 6 SERIES SOLUTIONS OF LINEAR EQUATIONS

The indicial roots are r = 1/2 and r = 1, so c1 = 0. For r = 1/2 the recurrence relation is

ck = − ck−2
k(2k − 1)

, k = 2, 3, 4, . . . ,

and

c2 = −1

6
c0, c3 = 0, c4 =

1

168
c0,

and so on. For r = 1 the recurrence relation is

ck = − ck−2
k(2k + 1)

, k = 2, 3, 4, . . . ,

and

c2 = − 1

10
c0, c3 = 0, c4 =

1

360
c0,

and so on. The general solution on (0,∞) is

y = C1x
1/2

(
1− 1

6
x2 +

1

168
x4 + · · ·

)
+ C2x

(
1− 1

10
x2 +

1

360
x4 + · · ·

)
.

19. Substituting y =
∑∞

n=0 cnx
n+r into the differential equation and collecting terms, we obtain

3xy′′ + (2− x)y′ − y =
(
3r2 − r

)
c0x

r−1

+
∞∑
k=1

[3(k + r − 1)(k + r)ck + 2(k + r)ck − (k + r)ck−1]x
k+r−1

= 0,

which implies

3r2 − r = r(3r − 1) = 0

and

(k + r)(3k + 3r − 1)ck − (k + r)ck−1 = 0.

The indicial roots are r = 0 and r = 1/3. For r = 0 the recurrence relation is

ck =
ck−1

3k − 1
, k = 1, 2, 3, . . . ,

and

c1 =
1

2
c0, c2 =

1

10
c0, c3 =

1

80
c0,

and so on. For r = 1/3 the recurrence relation is

ck =
ck−1
3k

, k = 1, 2, 3, . . . ,

and

c1 =
1

3
c0, c2 =

1

18
c0, c3 =

1

162
c0,

and so on. The general solution on (0,∞) is

y = C1

(
1 +

1

2
x+

1

10
x2 +

1

80
x3 + · · ·

)
+ C2x

1/3

(
1 +

1

3
x+

1

18
x2 +

1

162
x3 + · · ·

)
.
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6.3 Solutions About Singular Pointsq

20. Substituting y =
∑∞

n=0 cnx
n+r into the differential equation and collecting terms, we obtain

x2y′′ −
(
x− 2

9

)
y =

(
r2 − r +

2

9

)
c0x

r +
∞∑
k=1

[
(k + r)(k + r − 1)ck +

2

9
ck − ck−1

]
xk+r

= 0,

which implies

r2 − r +
2

9
=

(
r − 2

3

)(
r − 1

3

)
= 0

and [
(k + r)(k + r − 1) +

2

9

]
ck − ck−1 = 0.

The indicial roots are r = 2/3 and r = 1/3. For r = 2/3 the recurrence relation is

ck =
3ck−1

3k2 + k
, k = 1, 2, 3, . . . ,

and

c1 =
3

4
c0, c2 =

9

56
c0, c3 =

9

560
c0,

and so on. For r = 1/3 the recurrence relation is

ck =
3ck−1

3k2 − k
, k = 1, 2, 3, . . . ,

and

c1 =
3

2
c0, c2 =

9

20
c0, c3 =

9

160
c0,

and so on. The general solution on (0,∞) is

y = C1x
2/3

(
1 +

3

4
x+

9

56
x2 +

9

560
x3 + · · ·

)
+ C2x

1/3

(
1 +

3

2
x+

9

20
x2 +

9

160
x3 + · · ·

)
.

21. Substituting y =
∑∞

n=0 cnx
n+r into the differential equation and collecting terms, we obtain

2xy′′ − (3 + 2x)y′ + y =
(
2r2 − 5r

)
c0x

r−1 +

∞∑
k=1

[2(k + r)(k + r − 1)ck

− 3(k + r)ck − 2(k + r − 1)ck−1 + ck−1]x
k+r−1

= 0,

which implies

2r2 − 5r = r(2r − 5) = 0

and

(k + r)(2k + 2r − 5)ck − (2k + 2r − 3)ck−1 = 0.

The indicial roots are r = 0 and r = 5/2. For r = 0 the recurrence relation is

ck =
(2k − 3)ck−1
k(2k − 5)

, k = 1, 2, 3, . . . ,
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CHAPTER 6 SERIES SOLUTIONS OF LINEAR EQUATIONS

and

c1 =
1

3
c0, c2 = −1

6
c0, c3 = −1

6
c0,

and so on. For r = 5/2 the recurrence relation is

ck =
2(k + 1)ck−1
k(2k + 5)

, k = 1, 2, 3, . . . ,

and

c1 =
4

7
c0, c2 =

4

21
c0, c3 =

32

693
c0,

and so on. The general solution on (0,∞) is

y = C1

(
1 +

1

3
x− 1

6
x2 − 1

6
x3 + · · ·

)
+ C2x

5/2

(
1 +

4

7
x+

4

21
x2 +

32

693
x3 + · · ·

)
.

22. Substituting y =
∑∞

n=0 cnx
n+r into the differential equation and collecting terms, we obtain

x2y′′ + xy′ +

(
x2 − 4

9

)
y =

(
r2 − 4

9

)
c0x

r +

(
r2 + 2r +

5

9

)
c1x

r+1

+

∞∑
k=2

[
(k + r)(k + r − 1)ck + (k + r)ck −

4

9
ck + ck−2

]
xk+r

= 0,

which implies

r2 − 4

9
=

(
r +

2

3

)(
r − 2

3

)
= 0,(

r2 + 2r +
5

9

)
c1 = 0,

and [
(k + r)2 − 4

9

]
ck + ck−2 = 0.

The indicial roots are r = −2/3 and r = 2/3, so c1 = 0. For r = −2/3 the recurrence relation

is

ck = − 9ck−2
3k(3k − 4)

, k = 2, 3, 4, . . . ,

and

c2 = −3

4
c0, c3 = 0, c4 =

9

128
c0,

and so on. For r = 2/3 the recurrence relation is

ck = − 9ck−2
3k(3k + 4)

, k = 2, 3, 4, . . . ,

and

c2 = − 3

20
c0, c3 = 0, c4 =

9

1,280
c0,

and so on. The general solution on (0,∞) is

y = C1x
−2/3

(
1− 3

4
x2 +

9

128
x4 + · · ·

)
+ C2x

2/3

(
1− 3

20
x2 +

9

1,280
x4 + · · ·

)
.
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6.3 Solutions About Singular Pointsq

23. Substituting y =
∑∞

n=0 cnx
n+r into the differential equation and collecting terms, we obtain

9x2y′′ + 9x2y′ + 2y =
(
9r2 − 9r + 2

)
c0x

r

+

∞∑
k=1

[9(k + r)(k + r − 1)ck + 2ck + 9(k + r − 1)ck−1]x
k+r

= 0,

which implies

9r2 − 9r + 2 = (3r − 1)(3r − 2) = 0

and

[9(k + r)(k + r − 1) + 2]ck + 9(k + r − 1)ck−1 = 0.

The indicial roots are r = 1/3 and r = 2/3. For r = 1/3 the recurrence relation is

ck = −(3k − 2)ck−1
k(3k − 1)

, k = 1, 2, 3, . . . ,

and

c1 = −1

2
c0, c2 =

1

5
c0, c3 = − 7

120
c0,

and so on. For r = 2/3 the recurrence relation is

ck = −(3k − 1)ck−1
k(3k + 1)

, k = 1, 2, 3, . . . ,

and

c1 = −1

2
c0, c2 =

5

28
c0, c3 = − 1

21
c0,

and so on. The general solution on (0,∞) is

y = C1x
1/3

(
1− 1

2
x+

1

5
x2 − 7

120
x3 + · · ·

)
+ C2x

2/3

(
1− 1

2
x+

5

28
x2 − 1

21
x3 + · · ·

)
.

24. Substituting y =
∑∞

n=0 cnx
n+r into the differential equation and collecting terms, we obtain

2x2y′′ + 3xy′ + (2x− 1)y =
(
2r2 + r − 1

)
c0x

r

+

∞∑
k=1

[2(k + r)(k + r − 1)ck + 3(k + r)ck − ck + 2ck−1]x
k+r

= 0,

which implies

2r2 + r − 1 = (2r − 1)(r + 1) = 0

and

[(k + r)(2k + 2r + 1)− 1]ck + 2ck−1 = 0.
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CHAPTER 6 SERIES SOLUTIONS OF LINEAR EQUATIONS

The indicial roots are r = −1 and r = 1/2. For r = −1 the recurrence relation is

ck = − 2ck−1
k(2k − 3)

, k = 1, 2, 3, . . . ,

and

c1 = 2c0, c2 = −2c0, c3 =
4

9
c0,

and so on. For r = 1/2 the recurrence relation is

ck = − 2ck−1
k(2k + 3)

, k = 1, 2, 3, . . . ,

and

c1 = −2

5
c0, c2 =

2

35
c0, c3 = − 4

945
c0,

and so on. The general solution on (0,∞) is

y = C1x
−1
(

1 + 2x− 2x2 +
4

9
x3 + · · ·

)
+ C2x

1/2

(
1− 2

5
x+

2

35
x2 − 4

945
x3 + · · ·

)
.

25. Substituting y =
∑∞

n=0 cnx
n+r into the differential equation and collecting terms, we obtain

xy′′ + 2y′ − xy =
(
r2 + r

)
c0x

r−1 +
(
r2 + 3r + 2

)
c1x

r

+

∞∑
k=2

[(k + r)(k + r − 1)ck + 2(k + r)ck − ck−2]xk+r−1

= 0,

which implies

r2 + r = r(r + 1) = 0,(
r2 + 3r + 2

)
c1 = 0,

and

(k + r)(k + r + 1)ck − ck−2 = 0.

The indicial roots are r1 = 0 and r2 = −1, so c1 = 0. For r1 = 0 the recurrence relation is

ck =
ck−2

k(k + 1)
, k = 2, 3, 4, . . . ,

and

c2 =
1

3!
c0

c3 = c5 = c7 = · · · = 0

c4 =
1

5!
c0

c2n =
1

(2n+ 1)!
c0.
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6.3 Solutions About Singular Pointsq

For r2 = −1 the recurrence relation is

ck =
ck−2

k(k − 1)
, k = 2, 3, 4, . . . ,

and

c2 =
1

2!
c0

c3 = c5 = c7 = · · · = 0

c4 =
1

4!
c0

c2n =
1

(2n)!
c0.

The general solution on (0,∞) is

y = C1

∞∑
n=0

1

(2n+ 1)!
x2n + C2x

−1
∞∑
n=0

1

(2n)!
x2n

=
1

x

[
C1

∞∑
n=0

1

(2n+ 1)!
x2n+1 + C2

∞∑
n=0

1

(2n)!
x2n

]

=
1

x
[C1 sinhx+ C2 coshx].

26. Substituting y =
∑∞

n=0 cnx
n+r into the differential equation and collecting terms, we obtain

x2y′′ + xy′ +

(
x2 − 1

4

)
y =

(
r2 − 1

4

)
c0x

r +

(
r2 + 2r +

3

4

)
c1x

r+1

+

∞∑
k=2

[
(k + r)(k + r − 1)ck + (k + r)ck −

1

4
ck + ck−2

]
xk+r

= 0,

which implies

r2 − 1

4
=

(
r − 1

2

)(
r +

1

2

)
= 0,(

r2 + 2r +
3

4

)
c1 = 0,

and [
(k + r)2 − 1

4

]
ck + ck−2 = 0.

The indicial roots are r1 = 1/2 and r2 = −1/2, so c1 = 0. For r1 = 1/2 the recurrence relation

is

ck = − ck−2
k(k + 1)

, k = 2, 3, 4, . . . ,
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CHAPTER 6 SERIES SOLUTIONS OF LINEAR EQUATIONS

and

c2 = − 1

3!
c0

c3 = c5 = c7 = · · · = 0

c4 =
1

5!
c0

c2n =
(−1)n

(2n+ 1)!
c0.

For r2 = −1/2 the recurrence relation is

ck = − ck−2
k(k − 1)

, k = 2, 3, 4, . . . ,

and

c2 = − 1

2!
c0

c3 = c5 = c7 = · · · = 0

c4 =
1

4!
c0

c2n =
(−1)n

(2n)!
c0.

The general solution on (0,∞) is

y = C1x
1/2

∞∑
n=0

(−1)n

(2n+ 1)!
x2n + C2x

−1/2
∞∑
n=0

(−1)n

(2n)!
x2n

= C1x
−1/2

∞∑
n=0

(−1)n

(2n+ 1)!
x2n+1 + C2x

−1/2
∞∑
n=0

(−1)n

(2n)!
x2n

= x−1/2[C1 sinx+ C2 cosx].

27. Substituting y =
∑∞

n=0 cnx
n+r into the differential equation and collecting terms, we obtain

xy′′ − xy′ + y =
(
r2 − r

)
c0x

r−1 +
∞∑
k=0

[(k + r + 1)(k + r)ck+1 − (k + r)ck + ck]x
k+r = 0

which implies

r2 − r = r(r − 1) = 0

and

(k + r + 1)(k + r)ck+1 − (k + r − 1)ck = 0.

The indicial roots are r1 = 1 and r2 = 0. For r1 = 1 the recurrence relation is

ck+1 =
kck

(k + 2)(k + 1)
, k = 0, 1, 2, . . . ,
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6.3 Solutions About Singular Pointsq

so c1 = c2 = c3 = · · · = 0 and one solution is y1 = c0x. A second solution is

y2 = x

∫
e−

∫
(−1) dx

x2
dx = x

∫
ex

x2
dx = x

∫
1

x2

(
1 + x+

1

2
x2 +

1

3!
x3 + · · ·

)
dx

= x

∫ (
1

x2
+

1

x
+

1

2
+

1

3!
x+

1

4!
x2 + · · ·

)
dx = x

[
−1

x
+ lnx+

1

2
x+

1

12
x2 +

1

72
x3 + · · ·

]
= x lnx− 1 +

1

2
x2 +

1

12
x3 +

1

72
x4 + · · · .

The general solution on (0,∞) is

y = C1x+ C2y2(x).

28. Substituting y =
∑∞

n=0 cnx
n+r into the differential equation and collecting terms, we obtain

y′′ +
3

x
y′ − 2y =

(
r2 + 2r

)
c0x

r−2 +
(
r2 + 4r + 3

)
c1x

r−1

+

∞∑
k=2

[(k + r)(k + r − 1)ck + 3(k + r)ck − 2ck−2]x
k+r−2

= 0,

which implies

r2 + 2r = r(r + 2) = 0(
r2 + 4r + 3

)
c1 = 0

(k + r)(k + r + 2)ck − 2ck−2 = 0.

The indicial roots are r1 = 0 and r2 = −2, so c1 = 0. For r1 = 0 the recurrence relation is

ck =
2ck−2
k(k + 2)

, k = 2, 3, 4, . . . ,

and

c2 =
1

4
c0

c3 = c5 = c7 = · · · = 0

c4 =
1

48
c0

c6 =
1

1,152
c0.

The result is

y1 = c0

(
1 +

1

4
x2 +

1

48
x4 +

1

1,152
x6 + · · ·

)
.
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CHAPTER 6 SERIES SOLUTIONS OF LINEAR EQUATIONS

A second solution is

y2 = y1

∫
e−

∫
(3/x)dx

y21
dx = y1

∫
dx

x3
(
1 + 1

4x
2 + 1

48x
4 + · · ·

)2
= y1

∫
dx

x3
(
1 + 1

2x
2 + 5

48x
4 + 7

576x
6 + · · ·

) = y1

∫
1

x3

(
1− 1

2
x2 +

7

48
x4 +

19

576
x6 + · · ·

)
dx

= y1

∫ (
1

x3
− 1

2x
+

7

48
x− 19

576
x3 + · · ·

)
dx = y1

[
− 1

2x2
− 1

2
lnx+

7

96
x2 − 19

2,304
x4 + · · ·

]
= −1

2
y1 lnx+ y

[
− 1

2x2
+

7

96
x2 − 19

2,304
x4 + · · ·

]
.

The general solution on (0,∞) is

y = C1y1(x) + C2y2(x).

29. Substituting y =
∑∞

n=0 cnx
n+r into the differential equation and collecting terms, we obtain

xy′′ + (1− x)y′ − y = r2c0x
r−1 +

∞∑
k=1

[(k+ r)(k+ r− 1)ck + (k+ r)ck − (k+ r)ck−1]x
k+r−1 = 0,

which implies r2 = 0 and

(k + r)2ck − (k + r)ck−1 = 0.

The indicial roots are r1 = r2 = 0 and the recurrence relation is

ck =
ck−1
k

, k = 1, 2, 3, . . . .

One solution is

y1 = c0

(
1 + x+

1

2
x2 +

1

3!
x3 + · · ·

)
= c0e

x.

A second solution is

y2 = y1

∫
e−

∫
(1/x−1)dx

e2x
dx = ex

∫
ex/x

e2x
dx = ex

∫
1

x
e−xdx

= ex
∫

1

x

(
1− x+

1

2
x2 − 1

3!
x3 + · · ·

)
dx = ex

∫ (
1

x
− 1 +

1

2
x− 1

3!
x2 + · · ·

)
dx

= ex
[
lnx− x+

1

2 · 2
x2 − 1

3 · 3!
x3 + · · ·

]
= ex lnx− ex

∞∑
n=1

(−1)n+1

n · n!
xn.

The general solution on (0,∞) is

y = C1e
x + C2e

x

(
lnx−

∞∑
n=1

(−1)n+1

n · n!
xn

)
.
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6.3 Solutions About Singular Pointsq

30. Substituting y =
∑∞

n=0 cnx
n+r into the differential equation and collecting terms, we obtain

xy′′ + y′ + y = r2c0x
r−1 +

∞∑
k=1

[(k + r)(k + r − 1)ck + (k + r)ck + ck−1]x
k+r−1 = 0

which implies r2 = 0 and

(k + r)2ck + ck−1 = 0.

The indicial roots are r1 = r2 = 0 and the recurrence relation is

ck = −ck−1
k2

, k = 1, 2, 3, . . . .

One solution is

y1 = c0

(
1− x+

1

22
x2 − 1

(3!)2
x3 +

1

(4!)2
x4 − · · ·

)
= c0

∞∑
n=0

(−1)n

(n!)2
xn.

A second solution is

y2 = y1

∫
e−

∫
(1/x)dx

y21
dx = y1

∫
dx

x
(
1− x+ 1

4x
2 − 1

36x
3 + · · ·

)2
= y1

∫
dx

x
(
1− 2x+ 3

2x
2 − 5

9x
3 + 35

288x
4 − · · ·

)
= y1

∫
1

x

(
1 + 2x+

5

2
x2 +

23

9
x3 +

677

288
x4 + · · ·

)
dx

= y1

∫ (
1

x
+ 2 +

5

2
x+

23

9
x2 +

677

288
x3 + · · ·

)
dx

= y1

[
lnx+ 2x+

5

4
x2 +

23

27
x3 +

677

1,152
x4 + · · ·

]

= y1 lnx+ y1

(
2x+

5

4
x2 +

23

27
x3 +

677

1,152
x4 + · · ·

)
.

The general solution on (0,∞) is

y = C1y1(x) + C2y2(x).

31. Substituting y =
∑∞

n=0 cnx
n+r into the differential equation and collecting terms, we obtain

xy′′ + (x− 6)y′ − 3y = (r2 − 7r)c0x
r−1 +

∞∑
k=1

[
(k + r)(k + r − 1)ck + (k + r − 1)ck−1

− 6(k + r)ck − 3ck−1
]
xk+r−1 = 0,

which implies

r2 − 7r = r(r − 7) = 0
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CHAPTER 6 SERIES SOLUTIONS OF LINEAR EQUATIONS

and

(k + r)(k + r − 7)ck + (k + r − 4)ck−1 = 0.

The indicial roots are r1 = 7 and r2 = 0. For r1 = 7 the recurrence relation is

(k + 7)kck + (k + 3)ck−1 = 0, k = 1, 2, 3, . . . ,

or

ck = − k + 3

k(k + 7)
ck−1 , k = 1, 2, 3, . . . .

Taking c0 6= 0 we obtain

c1 = −1

2
c0

c2 =
5

18
c0

c3 = −1

6
c0,

and so on. Thus, the indicial root r1 = 7 yields a single solution. Now, for r2 = 0 the recurrence

relation is

k(k − 7)ck + (k − 4)ck−1 = 0, k = 1, 2, 3, . . . .

Then

−6c1 − 3c0 = 0

−10c2 − 2c1 = 0

−12c3 − c2 = 0

−12c4 + 0c3 = 0 =⇒ c4 = 0

−10c5 + c4 = 0 =⇒ c5 = 0

−6c6 + 2c5 = 0 =⇒ c6 = 0

0c7 + 3c6 = 0 =⇒ c7 is arbitrary

and

ck = − k − 4

k(k − 7)
ck−1, k = 8, 9, 10, . . . .

Taking c0 6= 0 and c7 = 0 we obtain

c1 = −1

2
c0

c2 =
1

10
c0

c3 = − 1

120
c0

c4 = c5 = c6 = · · · = 0.
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6.3 Solutions About Singular Pointsq

Taking c0 = 0 and c7 6= 0 we obtain

c1 = c2 = c3 = c4 = c5 = c6 = 0

c8 = −1

2
c7

c9 =
5

36
c7

c10 = − 1

36
c7,

and so on. In this case we obtain the two solutions

y1 = 1− 1

2
x+

1

10
x2 − 1

120
x3 and y2 = x7 − 1

2
x8 +

5

36
x9 − 1

36
x10 + · · · .

32. Substituting y =
∑∞

n=0 cnx
n+r into the differential equation and collecting terms, we obtain

x(x− 1)y′′ + 3y′ − 2y

=
(
4r − r2

)
c0x

r−1 +

∞∑
k=1

[(k + r − 1)(k + r − 12)ck−1 − (k + r)(k + r − 1)ck

+ 3(k + r)ck − 2ck−1]x
k+r−1

= 0,

which implies

4r − r2 = r(4− r) = 0

and

−(k + r)(k + r − 4)ck + [(k + r − 1)(k + r − 2)− 2]ck−1 = 0.

The indicial roots are r1 = 4 and r2 = 0. For r1 = 4 the recurrence relation is

−(k + 4)kck + [(k + 3)(k + 2)− 2]ck−1 = 0

or

ck =
k + 1

k
ck−1, k = 1, 2, 3, . . . .

Taking c0 6= 0 we obtain

c1 = 2c0

c2 = 3c0

c3 = 4c0,

and so on. Thus, the indicial root r1 = 4 yields a single solution. For r2 = 0 the recurrence

relation is

−k(k − 4)ck + k(k − 3)ck−1 = 0, k = 1, 2, 3, . . . ,
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CHAPTER 6 SERIES SOLUTIONS OF LINEAR EQUATIONS

or

−(k − 4)ck + (k − 3)ck−1 = 0, k = 1, 2, 3, . . . .

Then

3c1 − 2c0 = 0

2c2 − c1 = 0

c3 + 0c2 = 0 ⇒ c3 = 0

0c4 + c3 = 0 ⇒ c4 is arbitrary

and

ck =
(k − 3)ck−1

k − 4
, k = 5, 6, 7, . . . .

Taking c0 6= 0 and c4 = 0 we obtain

c1 =
2

3
c0

c2 =
1

3
c0

c3 = c4 = c5 = · · · = 0.

Taking c0 = 0 and c4 6= 0 we obtain

c1 = c2 = c3 = 0

c5 = 2c4

c6 = 3c4

c7 = 4c4,

and so on. In this case we obtain the two solutions

y1 = 1 +
2

3
x+

1

3
x2 and y2 = x4 + 2x5 + 3x6 + 4x7 + · · · .

33. (a) From t = 1/x we have dt/dx = −1/x2 = −t2. Then

dy

dx
=
dy

dt

dt

dx
= −t2 dy

dt

and

d2y

dx2
=

d

dx

(
dy

dx

)
=

d

dx

(
−t2 dy

dt

)
= −t2 d

2y

dt2
dt

dx
− dy

dt

(
2t
dt

dx

)
= t4

d2y

dt2
+ 2t3

dy

dt
.

Now

x4
d2y

dx2
+ λy =

1

t4

(
t4
d2y

dt2
+ 2t3

dy

dt

)
+ λy =

d2y

dt2
+

2

t

dy

dt
+ λy = 0

becomes

t
d2y

dt2
+ 2

dy

dt
+ λty = 0.
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6.3 Solutions About Singular Pointsq

(b) Substituting y =
∑∞

n=0 cnt
n+r into the differential equation and collecting terms, we obtain

t
d2y

dt2
+ 2

dy

dt
+ λty = (r2 + r)c0t

r−1 + (r2 + 3r + 2)c1t
r

+
∞∑
k=2

[(k + r)(k + r − 1)ck + 2(k + r)ck + λck−2]t
k+r−1

= 0,

which implies

r2 + r = r(r + 1) = 0,(
r2 + 3r + 2

)
c1 = 0,

and

(k + r)(k + r + 1)ck + λck−2 = 0.

The indicial roots are r1 = 0 and r2 = −1, so c1 = 0. For r1 = 0 the recurrence relation is

ck = − λck−2
k(k + 1)

, k = 2, 3, 4, . . . ,

and

c2 = − λ
3!
c0

c3 = c5 = c7 = · · · = 0

c4 =
λ2

5!
c0

...

c2n = (−1)n
λn

(2n+ 1)!
c0.

For r2 = −1 the recurrence relation is

ck = − λck−2
k(k − 1)

, k = 2, 3, 4, . . . ,

and

c2 = − λ
2!
c0

c3 = c5 = c7 = · · · = 0

c4 =
λ2

4!
c0

...

c2n = (−1)n
λn

(2n)!
c0.
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CHAPTER 6 SERIES SOLUTIONS OF LINEAR EQUATIONS

The general solution on (0,∞) is

y(t) = c1

∞∑
n=0

(−1)n

(2n+ 1)!
(
√
λ t)2n + c2t

−1
∞∑
n=0

(−1)n

(2n)!
(
√
λ t)2n

=
1

t

[
C1

∞∑
n=0

(−1)n

(2n+ 1)!
(
√
λ t)2n+1 + C2

∞∑
n=0

(−1)n

(2n)!
(
√
λ t)2n

]

=
1

t
[C1 sin

√
λ t+ C2 cos

√
λ t ].

(c) Using t = 1/x, the solution of the original equation is

y(x) = C1x sin

√
λ

x
+ C2x cos

√
λ

x
.

Mathematical Model

34. (a) From the boundary conditions y(a) = 0, y(b) = 0 we find

C1 sin

√
λ

a
+ C2 cos

√
λ

a
= 0

C1 sin

√
λ

b
+ C2 cos

√
λ

b
= 0.

Since this is a homogeneous system of linear equations, it will have nontrivial solutions

for C1 and C2 if

∣∣∣∣∣∣∣∣∣
sin

√
λ

a
cos

√
λ

a

sin

√
λ

b
cos

√
λ

b

∣∣∣∣∣∣∣∣∣ = sin

√
λ

a
cos

√
λ

b
− cos

√
λ

a
sin

√
λ

b

= sin

(√
λ

a
−
√
λ

b

)
= sin

(√
λ
b− a
ab

)
= 0.

This will be the case if

√
λ

(
b− a
ab

)
= nπ or

√
λ =

nπab

b− a
=
nπab

L
, n = 1, 2, . . . ,

or, if

λn =
n2π2a2b2

L2
=
Pnb

4

EI
.
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6.3 Solutions About Singular Pointsq

The critical loads are then Pn = n2π2(a/b)2EI0/L
2. Using C2 = −C1 sin(

√
λ/a)/ cos(

√
λ/a)

we have

y = C1x

[
sin

√
λ

x
− sin(

√
λ/a)

cos(
√
λ/a)

cos

√
λ

x

]

= C3x

[
sin

√
λ

x
cos

√
λ

a
− cos

√
λ

x
sin

√
λ

a

]
= C3x sin

√
λ

(
1

x
− 1

a

)
,

and

yn(x) = C3x sin
nπab

L

(
1

x
− 1

a

)
= C3x sin

nπab

La

(a
x
− 1
)

= C4x sin
nπab

L

(
1− a

x

)
.

(b) When n = 1, b = 11, and a = 1, we have, for
C4 = 1,

y1(x) = x sin 1.1π

(
1− 1

x

)
.

Discussion Problems

35. Express the differential equation in standard form:

y′′′ + P (x)y′′ +Q(x)y′ +R(x)y = 0.

Suppose x0 is a singular point of the differential equation. Then we say that x0 is a regular

singular point if (x− x0)P (x), (x− x0)2Q(x), and (x− x0)3R(x) are analytic at x = x0.

36. Substituting y =
∑∞

n=0 cnx
n+r into the first differential equation and collecting terms, we

obtain

x3y′′ + y = c0x
r +

∞∑
k=1

[ck + (k + r − 1)(k + r − 2)ck−1]x
k+r = 0.

It follows that c0 = 0 and

ck = −(k + r − 1)(k + r − 2)ck−1.

The only solution we obtain is y(x) = 0.

Substituting y =
∑∞

n=0 cnx
n+r into the second differential equation and collecting terms, we

obtain

x2y′′ + (3x− 1)y′ + y = −rc0 +

∞∑
k=0

[(k + r + 1)2ck − (k + r + 1)ck+1]x
k+r = 0,
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CHAPTER 6 SERIES SOLUTIONS OF LINEAR EQUATIONS

which implies

−rc0 = 0

(k + r + 1)2ck − (k + r + 1)ck+1 = 0.

If c0 = 0, then the solution of the differential equation is y = 0. Thus, we take r = 0, from

which we obtain

ck+1 = (k + 1)ck, k = 0, 1, 2, . . . .

Letting c0 = 1 we get c1 = 2, c2 = 3!, c3 = 4!, and so on. The solution of the differential

equation is then y =
∑∞

n=0(n+ 1)!xn, which converges only at x = 0.

37. We write the differential equation in the form x2y′′+(b/a)xy′+(c/a)y = 0 and identify a0 = b/a

and b0 = c/a as in (12) in the text. Then the indicial equation is

r(r − 1) +
b

a
r +

c

a
= 0 or ar2 + (b− a)r + c = 0,

which is also the auxiliary equation of ax2y′′ + bxy′ + cy = 0.

6.4 Special Functionsq

6.4 Special Functionsq

Bessel’s Equation

1. Since ν2 = 1/9 the general solution is y = c1J1/3(x) + c2J−1/3(x).

2. Since ν2 = 1 the general solution is y = c1J1(x) + c2Y1(x).

3. Since ν2 = 25/4 the general solution is y = c1J5/2(x) + c2J−5/2(x).

4. Since ν2 = 1/16 the general solution is y = c1J1/4(x) + c2J−1/4(x).

5. Since ν2 = 0 the general solution is y = c1J0(x) + c2Y0(x).

6. Since ν2 = 4 the general solution is y = c1J2(x) + c2Y2(x).

7. We identify α = 3 and ν = 2. Then the general solution is y = c1J2(3x) + c2Y2(3x).

8. We identify α = 6 and ν = 1
2 . Then the general solution is y = c1J1/2(6x) + c2J−1/2(6x).

9. We identify α = 5 and ν = 2
3 . Then the general solution is y = c1J2/3(5x) + c2J−2/3(5x).

10. We identify α =
√

2 and ν = 8. Then the general solution is y = c1J8(
√

2x) + c2Y8(
√

2x).
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6.4 Special Functionsq

11. If y = x−1/2v(x) then

y′ = x−1/2v′(x)− 1

2
x−3/2v(x),

y′′ = x−1/2v′′(x)− x−3/2v′(x) +
3

4
x−5/2v(x),

and

x2y′′ + 2xy′ + α2x2y = x3/2v′′(x) + x1/2v′(x) +

(
α2x3/2 − 1

4
x−1/2

)
v(x) = 0.

Multiplying by x1/2 we obtain

x2v′′(x) + xv′(x) +

(
α2x2 − 1

4

)
v(x) = 0,

whose solution is v = c1J1/2(αx)+c2J−1/2(αx). Then y = c1x
−1/2J1/2(αx)+c2x

−1/2J−1/2(αx).

12. If y =
√
x v(x) then

y′ = x1/2v′(x) +
1

2
x−1/2v(x)

y′′ = x1/2v′′(x) + x−1/2v′(x)− 1

4
x−3/2v(x)

and

x2y′′ +

(
α2x2 − ν2 +

1

4

)
y = x5/2v′′(x) + x3/2v′(x)− 1

4
x1/2v(x) +

(
α2x2 − ν2 +

1

4

)
x1/2v(x)

= x5/2v′′(x) + x3/2v′(x) + (α2x5/2 − ν2x1/2)v(x) = 0.

Multiplying by x−1/2 we obtain

x2v′′(x) + xv′(x) + (α2x2 − ν2)v(x) = 0,

whose solution is v(x) = c1Jν(αx) + c2Yν(αx). Then y = c1
√
xJν(αx) + c2

√
xYν(αx).

13. Write the differential equation in the form y′′ + (2/x)y′ + (4/x)y = 0. This is the form of (18)

in the text with a = −1
2 , c = 1

2 , b = 4, and p = 1, so, by (19) in the text, the general solution

is

y = x−1/2[c1J1(4x
1/2) + c2Y1(4x

1/2)].

14. Write the differential equation in the form y′′+ (3/x)y′+ y = 0. This is the form of (18) in the

text with a = −1, c = 1, b = 1, and p = 1, so, by (19) in the text, the general solution is

y = x−1[c1J1(x) + c2Y1(x)].

15. Write the differential equation in the form y′′− (1/x)y′+ y = 0. This is the form of (18) in the

text with a = 1, c = 1, b = 1, and p = 1, so, by (19) in the text, the general solution is

y = x[c1J1(x) + c2Y1(x)].
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CHAPTER 6 SERIES SOLUTIONS OF LINEAR EQUATIONS

16. Write the differential equation in the form y′′− (5/x)y′+ y = 0. This is the form of (18) in the

text with a = 3, c = 1, b = 1, and p = 2, so, by (19) in the text, the general solution is

y = x3[c1J3(x) + c2Y3(x)].

17. Write the differential equation in the form y′′ + (1 − 2/x2)y = 0. This is the form of (18) in

the text with a = 1
2 , c = 1, b = 1, and p = 3

2 , so, by (19) in the text, the general solution is

y = x1/2[c1J3/2(x) + c2Y3/2(x)].

18. Write the differential equation in the form y′′ + (4 + 1/4x2)y = 0. This is the form of (18) in

the text with a = 1
2 , c = 1, b = 2, and p = 0, so, by (19) in the text, the general solution is

y = x1/2[c1J0(2x) + c2Y0(2x)].

19. Write the differential equation in the form y′′ + (3/x)y′ + x2y = 0. This is the form of (18) in

the text with a = −1, c = 2, b = 1
2 , and p = 1

2 , so, by (19) in the text, the general solution is

y = x−1
[
c1J1/2

(
1

2
x2
)

+ c2Y1/2

(
1

2
x2
)]

or

y = x−1
[
C1J1/2

(
1

2
x2
)

+ C2J−1/2

(
1

2
x2
)]

.

20. Write the differential equation in the form y′′ + (1/x)y′ + (19x
4 − 4/x2)y = 0. This is the form

of (18) in the text with a = 0, c = 3, b = 1
9 , and p = 2

3 , so, by (19) in the text, the general

solution is

y = c1J2/3

(
1

9
x3
)

+ c2Y2/3

(
1

9
x3
)

or

y = C1J2/3

(
1

9
x3
)

+ C2J−2/3

(
1

9
x3
)
.

21. Using the fact that i2 = −1, along with the definition of Jν(x) in (7) in the text, we have

Iν(x) = i−νJν(ix) = i−ν
∞∑
n=0

(−1)n

n!Γ(1 + ν + n)

(
ix

2

)2n+ν

=
∞∑
n=0

(−1)n

n!Γ(1 + ν + n)
i2n+ν−ν

(x
2

)2n+ν
=
∞∑
n=0

(−1)n

n!Γ(1 + ν + n)
(i2)n

(x
2

)2n+ν
=

∞∑
n=0

(−1)2n

n!Γ(1 + ν + n)

(x
2

)2n+ν
=

∞∑
n=0

1

n!Γ(1 + ν + n)

(x
2

)2n+ν
,

which is a real function.

362

© 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part, except for use as permitted in a license distributed 
with a certain product or service or otherwise on a password-protected website for classroom use. 

Not For Sale

©
 C

en
ga

ge
 L

ea
rn

in
g.

 A
ll 

rig
ht

s r
es

er
ve

d.
 N

o 
di

st
rib

ut
io

n 
al

lo
w

ed
 w

ith
ou

t e
xp

re
ss

 a
ut

ho
riz

at
io

n.



6.4 Special Functionsq

22. (a) The differential equation has the form of (18) in the text with

1− 2a = 0 =⇒ a =
1

2

2c− 2 = 2 =⇒ c = 2

b2c2 = −β2c2 = −1 =⇒ β =
1

2
and b =

1

2
i

a2 − p2c2 = 0 =⇒ p =
1

4
.

Then, by (19) in the text,

y = x1/2
[
c1J1/4

(
1

2
ix2
)

+ c2J−1/4

(
1

2
ix2
)]

.

In terms of real functions the general solution can be written

y = x1/2
[
C1I1/4

(
1

2
x2
)

+ C2K1/4

(
1

2
x2
)]

.

(b) Write the differential equation in the form y′′ + (1/x)y′ − 7x2y = 0. This is the form of

(18) in the text with

1− 2a = 1 =⇒ a = 0

2c− 2 = 2 =⇒ c = 2

b2c2 = −β2c2 = −7 =⇒ β =
1

2

√
7 and b =

1

2

√
7 i

a2 − p2c2 = 0 =⇒ p = 0.

Then, by (19) in the text,

y = c1J0

(
1

2

√
7 ix2

)
+ c2Y0

(
1

2

√
7 ix2

)
.

In terms of real functions the general solution can be written

y = C1I0

(
1

2

√
7x2
)

+ C2K0

(
1

2

√
7x2
)
.

23. The differential equation has the form of (18) in the text with

1− 2a = 0 =⇒ a =
1

2
2c− 2 = 0 =⇒ c = 1

b2c2 = 1 =⇒ b = 1

a2 − p2c2 = 0 =⇒ p =
1

2
.

Then, by (19) in the text,

y = x1/2[c1J1/2(x) + c2J−1/2(x)] = x1/2

[
c1

√
2

πx
sinx+ c2

√
2

πx
cosx

]
= C1 sinx+ C2 cosx.
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CHAPTER 6 SERIES SOLUTIONS OF LINEAR EQUATIONS

24. Write the differential equation in the form y′′ + (4/x)y′ + (1 + 2/x2)y = 0. This is the form of

(18) in the text with

1− 2a = 4 =⇒ a = −3

2
2c− 2 = 0 =⇒ c = 1

b2c2 = 1 =⇒ b = 1

a2 − p2c2 = 2 =⇒ p =
1

2
.

Then, by (19), (23), and (24) in the text,

y = x−3/2[c1J1/2(x) + c2J−1/2(x)] = x−3/2

[
c1

√
2

πx
sinx+ c2

√
2

πx
cosx

]
= C1

1

x2
sinx+ C2

1

x2
cosx.

25. Write the differential equation in the form y′′+(2/x)y′+( 1
16x

2−3/4x2)y = 0. This is the form

of (18) in the text with

1− 2a = 2 =⇒ a = −1

2
2c− 2 = 2 =⇒ c = 2

b2c2 =
1

16
=⇒ b =

1

8

a2 − p2c2 = −3

4
=⇒ p =

1

2
.

Then, by (19) in the text,

y = x−1/2
[
c1J1/2

(
1

8
x2
)

+ c2J−1/2

(
1

8
x2
)]

= x−1/2

[
c1

√
16

πx2
sin

(
1

8
x2
)

+ c2

√
16

πx2
cos

(
1

8
x2
)]

= C1x
−3/2 sin

(
1

8
x2
)

+ C2x
−3/2 cos

(
1

8
x2
)
.

26. Write the differential equation in the form y′′ − (1/x)y′ + (4 + 3/4x2)y = 0. This is the form

of (18) in the text with

1− 2a = −1 =⇒ a = 1

2c− 2 = 0 =⇒ c = 1

b2c2 = 4 =⇒ b = 2

a2 − p2c2 =
3

4
=⇒ p =

1

2
.
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6.4 Special Functionsq

Then, by (19) in the text,

y = x[c1J1/2(2x) + c2J−1/2(2x)] = x

[
c1

√
2

π2x
sin 2x+ c2

√
2

π2x
cos 2x

]
= C1x

1/2 sin 2x+ C2x
1/2 cos 2x.

27. (a) The recurrence relation follows from

−νJν(x) + xJν−1(x) = −
∞∑
n=0

(−1)nν

n!Γ(1 + ν + n)

(x
2

)2n+ν
+ x

∞∑
n=0

(−1)n

n!Γ(ν + n)

(x
2

)2n+ν−1
= −

∞∑
n=0

(−1)nν

n!Γ(1 + ν + n)

(x
2

)2n+ν
+

∞∑
n=0

(−1)n(ν + n)

n!Γ(1 + ν + n)
· 2
(x

2

)(x
2

)2n+ν−1
=
∞∑
n=0

(−1)n(2n+ ν)

n!Γ(1 + ν + n)

(x
2

)2n+ν
= xJ ′ν(x).

(b) The formula in part (a) is a linear first-order differential equation in Jν(x). An integrating

factor for this equation is xν , so

d

dx
[xνJν(x)] = xνJν−1(x).

28. Subtracting the formula in part (a) of Problem 27 from the formula in Example 5 we obtain

0 = 2νJν(x)− xJν+1(x)− xJν−1(x) or 2νJν(x) = xJν+1(x) + xJν−1(x).

29. Letting ν = 1 in (21) in the text we have

xJ0(x) =
d

dx
[xJ1(x)] so

∫ x

0
rJ0(r) dr = rJ1(r)

∣∣∣r=x
r=0

= xJ1(x).

30. From (20) we obtain J ′0(x) = −J1(x), and from (21) we obtain J ′0(x) = J−1(x). Thus

J ′0(x) = J−1(x) = −J1(x).

31. Since Γ(12) =
√
π and

Γ

(
1− 1

2
+ n

)
=

(2n− 1)!

(n− 1)!22n−1
√
π n = 1, 2, 3, . . . ,

we obtain

J−1/2(x) =
∞∑
n=0

(−1)n

n!Γ(1− 1
2 + n)

(x
2

)2n−1/2
=

1

Γ(12)

(x
2

)−1/2
+
∞∑
n=1

(−1)n(n− 1)!22n−1x2n−1/2

n!(2n− 1)!22n−1/2
√
π

=
1√
π

√
2

x
+

∞∑
n=1

(−1)n21/2x−1/2

2n(2n− 1)!
√
π
x2n =

√
2

πx
+

√
2

πx

∞∑
n=1

(−1)n

(2n)!
x2n =

√
2

πx
cosx.
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CHAPTER 6 SERIES SOLUTIONS OF LINEAR EQUATIONS

32. In this problem we use formulas (23) for J1/2(x) and (24) for J−1/2(x) in this section of the

text. By Problem 28, with ν = 1/2, we obtain J1/2(x) = xJ3/2(x) + xJ−1/2(x) so that

J3/2(x) =

√
2

πx

(
sinx

x
− cosx

)
;

with ν = −1/2 we obtain −J−1/2(x) = xJ1/2(x) + x−3/2(x) so that

J−3/2(x) = −
√

2

πx

(cosx

x
+ sinx

)
;

with ν = 3/2 we obtain 3J3/2(x) = xJ5/2(x) + xJ1/2(x) so that

J5/2(x) =

√
2

πx

(
3 sinx

x2
− 3 cosx

x
− sinx

)
.

and with ν = −3/2 we obtain −3J−3/2(x) = xJ−1/2(x) + xJ−5/2(x) so that

J−5/2(x) =

√
2

πx

(
3 cosx

x2
+

3 sinx

x
− cosx

)
.

33. Letting

s =
2

α

√
k

m
e−αt/2,

we have
dx

dt
=
dx

ds

ds

dt
=
dx

dt

[
2

α

√
k

m

(
−α

2

)
e−αt/2

]
=
dx

ds

(
−
√
k

m
e−αt/2

)
and

d2x

dt2
=

d

dt

(
dx

dt

)
=
dx

ds

(
α

2

√
k

m
e−αt/2

)
+
d

dt

(
dx

ds

)(
−
√
k

m
e−αt/2

)

=
dx

ds

(
α

2

√
k

m
e−αt/2

)
+
d2x

ds2
ds

dt

(
−
√
k

m
e−αt/2

)

=
dx

ds

(
α

2

√
k

m
e−αt/2

)
+
d2x

ds2

(
k

m
e−αt

)
.

Then

m
d2x

dt2
+ ke−αtx = ke−αt

d2x

ds2
+
mα

2

√
k

m
e−αt/2

dx

ds
+ ke−αtx = 0.

Multiplying by 22/α2m we have

22

α2

k

m
e−αt

d2x

ds2
+

2

α

√
k

m
e−αt/2

dx

ds
+

22

α2

k

m
e−αtx = 0

or, since s = (2/α)
√
k/me−αt/2,

s2
d2x

ds2
+ s

dx

ds
+ s2x = 0.
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6.4 Special Functionsq

34. Differentiating y = x1/2w
(
2
3αx

3/2
)

with respect to 2
3αx

3/2 we obtain

y′ = x1/2w′
(

2

3
αx3/2

)
αx1/2 +

1

2
x−1/2w

(
2

3
αx3/2

)
and

y′′ = αxw′′
(

2

3
αx3/2

)
αx1/2 + αw′

(
2

3
αx3/2

)
+

1

2
αw′

(
2

3
αx3/2

)
− 1

4
x−3/2w

(
2

3
αx3/2

)
.

Then, after combining terms and simplifying, we have

y′′ + α2xy = α

[
αx3/2w′′ +

3

2
w′ +

(
αx3/2 − 1

4αx3/2

)
w

]
= 0.

Letting t = 2
3αx

3/2 or αx3/2 = 3
2 t this differential equation becomes

3

2

α

t

[
t2w′′(t) + tw′(t) +

(
t2 − 1

9

)
w(t)

]
= 0, t > 0.

35. (a) By Problem 34, a solution of Airy’s equation is y = x1/2w(23αx
3/2), where

w(t) = c1J1/3(t) + c2J−1/3(t)

is a solution of Bessel’s equation of order 1
3 . Thus, the general solution of Airy’s equation

for x > 0 is

y = x1/2w

(
2

3
αx3/2

)
= c1x

1/2J1/3

(
2

3
αx3/2

)
+ c2x

1/2J−1/3

(
2

3
αx3/2

)
.

(b) Airy’s equation, y′′ + α2xy = 0, has the form of (18) in the text with

1− 2a = 0 =⇒ a =
1

2

2c− 2 = 1 =⇒ c =
3

2

b2c2 = α2 =⇒ b =
2

3
α

a2 − p2c2 = 0 =⇒ p =
1

3
.

Then, by (19) in the text,

y = x1/2
[
c1J1/3

(
2

3
αx3/2

)
+ c2J−1/3

(
2

3
αx3/2

)]
.

36. The general solution of the differential equation is

y(x) = c1J0(αx) + c2Y0(αx).
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CHAPTER 6 SERIES SOLUTIONS OF LINEAR EQUATIONS

In order to satisfy the conditions that limx→0+ y(x) and limx→0+ y
′(x) are finite we are forced

to define c2 = 0. Thus, y(x) = c1J0(αx). The second boundary condition, y(2) = 0, implies

c1 = 0 or J0(2α) = 0. In order to have a nontrivial solution we require that J0(2α) = 0. From

Table 6.1, the first three positive zeros of J0 are found to be

2α1 = 2.4048, 2α2 = 5.5201, 2α3 = 8.6537

and so α1 = 1.2024, α2 = 2.7601, α3 = 4.3269. The eigenfunctions corresponding to the

eigenvalues λ1 = α2
1, λ2 = α2

2, λ3 = α2
3 are J0(1.2024x), J0(2.7601x), and J0(4.3269x).

37. (a) The differential equation y′′ + (λ/x)y = 0 has the form of (18) in the text with

1− 2a = 0 =⇒ a =
1

2

2c− 2 = −1 =⇒ c =
1

2

b2c2 = λ =⇒ b = 2
√
λ

a2 − p2c2 = 0 =⇒ p = 1.

Then, by (19) in the text,

y = x1/2[c1J1(2
√
λx ) + c2Y1(2

√
λx )].

(b) We first note that y = J1(t) is a solution of Bessel’s equation, t2y′′ + ty′ + (t2 − 1)y = 0,

with ν = 1. That is,

t2J ′′1 (t) + tJ ′1(t) + (t2 − 1)J1(t) = 0,

or, letting t = 2
√
x ,

4xJ ′′1 (2
√
x ) + 2

√
xJ ′1(2

√
x ) + (4x− 1)J1(2

√
x ) = 0.

Now, if y =
√
xJ1(2

√
x ), we have

y′ =
√
xJ ′1(2

√
x )

1√
x

+
1

2
√
x
J1(2
√
x ) = J ′1(2

√
x ) +

1

2
x−1/2J1(2

√
x )

and

y′′ = x−1/2J ′′1 (2
√
x ) +

1

2x
J ′1(2
√
x )− 1

4
x−3/2J1(2

√
x ).

Then

xy′′ + y =
√
xJ ′′1 2

√
x+

1

2
J ′1(2
√
x )− 1

4
x−1/2J1(2

√
x ) +

√
xJ(2

√
x )

=
1

4
√
x

[4xJ ′′1 (2
√
x ) + 2

√
xJ ′1(2

√
x )− J1(2

√
x ) + 4xJ(2

√
x )]

= 0,

and y =
√
xJ1(2

√
x ) is a solution of Airy’s differential equation.
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6.4 Special Functionsq

Computer Lab Assignments

38.

5 10 15 20
x

-1

-0.5

0.5

1

y

5 10 15 20
x

-1

-0.5

0.5

1

y

x ν = 3/2 ν = −3/2

5 10 15 20
x

-1

-0.5

0.5

1

y

5 10 15 20
x

-1

-0.5

0.5

1

y

x ν = 5/2 ν = −5/2

39. (a) We identify m = 4, k = 1, and α = 0.1. Then

x(t) = c1J0(10e−0.05t) + c2Y0(10e−0.05t)

and

x′(t) = −0.5c1J
′
0(10e−0.05t)− 0.5c2Y

′
0(10e−0.05t).

Now x(0) = 1 and x′(0) = −1/2 imply

c1J0(10) + c2Y0(10) = 1

c1J
′
0(10) + c2Y

′
0(10) = 1.

Using Cramer’s rule we obtain

c1 =
Y ′0(10)− Y0(10)

J0(10)Y ′0(10)− J ′0(10)Y0(10)

and

c2 =
J0(10)− J ′0(10)

J0(10)Y ′0(10)− J ′0(10)Y0(10)
.

Using Y ′0 = −Y1 and J ′0 = −J1 and Table 6.2 we find c1 = −4.7860 and c2 = −3.1803.

Thus

x(t) = −4.7860J0(10e−0.05t)− 3.1803Y0(10e−0.05t).

(b) x
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CHAPTER 6 SERIES SOLUTIONS OF LINEAR EQUATIONS

40. (a) Identifying α = 1
2 , the general solution of x′′ + 1

4 tx = 0 is

x(t) = c1x
1/2J1/3

(
1

3
x3/2

)
+ c2x

1/2J−1/3

(
1

3
x3/2

)
.

Solving the system x(0.1) = 1, x′(0.1) = −1
2 we find c1 = −0.809264 and c2 = 0.782397.

(b) x

41. (a) Letting t = L− x, the boundary-value problem becomes

d2θ

dt2
+ α2tθ = 0, θ′(0) = 0, θ(L) = 0,

where α2 = δg/EI. This is Airy’s differential equation, so by Problem 35 its solution is

y = c1t
1/2J1/3

(
2

3
αt3/2

)
+ c2t

1/2J−1/3

(
2

3
αt3/2

)
= c1θ1(t) + c2θ2(t).

(b) Looking at the series forms of θ1 and θ2 we see that θ′1(0) 6= 0, while θ′2(0) = 0. Thus, the

boundary condition θ′(0) = 0 implies c1 = 0, and so

θ(t) = c2
√
t J−1/3

(
2

3
αt3/2

)
.

From θ(L) = 0 we have

c2
√
LJ−1/3

(
2

3
αL3/2

)
= 0,

so either c2 = 0, in which case θ(t) = 0, or J−1/3(
2
3αL

3/2) = 0. The column will just start

to bend when L is the length corresponding to the smallest positive zero of J−1/3.

(c) Using Mathematica, the first positive root of J−1/3(x) is x1 ≈ 1.86635. Thus
2
3αL

3/2 = 1.86635 implies

L =

(
3(1.86635)

2α

)2/3

=

[
9EI

4δg
(1.86635)2

]1/3

=

[
9(2.6× 107)π(0.05)4/4

4(0.28)π(0.05)2
(1.86635)2

]1/3
≈ 76.9 in.
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6.4 Special Functionsq

42. (a) Writing the differential equation in the form xy′′+ (PL/M)y = 0, we identify λ = PL/M .

From Problem 37 the solution of this differential equation is

y = c1
√
xJ1

(
2
√
PLx/M

)
+ c2
√
xY1

(
2
√
PLx/M

)
.

Now J1(0) = 0, so y(0) = 0 implies c2 = 0 and

y = c1
√
xJ1

(
2
√
PLx/M

)
.

(b) From y(L) = 0 we have y = J1(2L
√
PM ) = 0. The first positive zero of J1 is 3.8317 so,

solving 2L
√
P1/M = 3.8317, we find P1 = 3.6705M/L2. Therefore,

y1(x) = c1
√
xJ1

(
2

√
3.6705x

L

)
= c1
√
xJ1

(
3.8317√

L

√
x

)
.

(c) For c1 = 1 and L = 1 the graph of

y1 =
√
xJ1(3.8317

√
x ) is shown.

43. (a) Since l′ = v, we integrate to obtain l(t) = vt + c. Now l(0) = l0 implies c = l0, so

l(t) = vt+ l0. Using sin θ ≈ θ in l d2θ/dt2 + 2l′ dθ/dt+ g sin θ = 0 gives

(l0 + vt)
d2θ

dt2
+ 2v

dθ

dt
+ gθ = 0.

(b) Dividing by v, the differential equation in part (a) becomes

l0 + vt

v

d2θ

dt2
+ 2

dθ

dt
+
g

v
θ = 0.

Letting x = (l0 + vt)/v = t+ l0/v we have dx/dt = 1, so

dθ

dt
=
dθ

dx

dx

dt
=
dθ

dx

and
d2θ

dt2
=
d(dθ/dt)

dt
=
d(dθ/dx)

dx

dx

dt
=
d2θ

dx2
.

Thus, the differential equation becomes

x
d2θ

dx2
+ 2

dθ

dx
+
g

v
θ = 0 or

d2θ

dx2
+

2

x

dθ

dx
+

g

vx
θ = 0.
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CHAPTER 6 SERIES SOLUTIONS OF LINEAR EQUATIONS

(c) The differential equation in part (b) has the form of (18) in the text with

1− 2a = 2 =⇒ a = −1

2

2c− 2 = −1 =⇒ c =
1

2

b2c2 =
g

v
=⇒ b = 2

√
g

v

a2 − p2c2 = 0 =⇒ p = 1.

Then, by (19) in the text,

θ(x) = x−1/2
[
c1J1

(
2

√
g

v
x1/2

)
+ c2Y1

(
2

√
g

v
x1/2

)]

or

θ(t) =

√
v

l0 + vt

[
c1J1

(
2

v

√
g(l0 + vt)

)
+ c2Y1

(
2

v

√
g(l0 + vt)

)]
.

(d) To simplify calculations, let

u =
2

v

√
g(l0 + vt) = 2

√
g

v
x1/2,

and at t = 0 let u0 = 2
√
gl0/v. The general solution for θ(t) can then be written

θ = C1u
−1J1(u) + C2u

−1Y1(u). (1)

Before applying the initial conditions, note that

dθ

dt
=
dθ

du

du

dt

so when dθ/dt = 0 at t = 0 we have dθ/du = 0 at u = u0. Also,

dθ

du
= C1

d

du
[u−1J1(u)] + C2

d

du
[u−1Y1(u)]

which, in view of (20) in the text, is the same as

dθ

du
= −C1u

−1J2(u)− C2u
−1Y2(u). (2)

Now at t = 0, or u = u0, (1) and (2) give the system

C1u
−1
0 J1(u0) + C2u

−1
0 Y1(u0) = θ0

C1u
−1
0 J2(u0) + C2u

−1
0 Y2(u0) = 0

whose solution is easily obtained using Cramer’s rule:

C1 =
u0θ0Y2(u0)

J1(u0)Y2(u0)− J2(u0)Y1(u0)
, C2 =

−u0θ0J2(u0)
J1(u0)Y2(u0)− J2(u0)Y1(u0)

.
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6.4 Special Functionsq

In view of the given identity these results simplify to

C1 = −π
2
u20θ0Y2(u0) and C2 =

π

2
u20θ0J2(u0).

The solution is then

θ =
π

2
u20θ0

[
−Y2(u0)

J1(u)

u
+ J2(u0)

Y1(u)

u

]
.

Returning to u = (2/v)
√
g(l0 + vt) and u0 = (2/v)

√
gl0 , we have

θ(t) =
π
√
gl0 θ0
v

−Y2(2

v

√
gl0

) J1

(
2

v

√
g(l0 + vt)

)
√
l0 + vt

+ J2

(
2

v

√
gl0

) Y1

(
2

v

√
g(l0 + vt)

)
√
l0 + vt

 .
(e) When l0 = 1 ft, θ0 = 1

10 radian, and v = 1
60 ft/s, the above function is

θ(t) = −1.69045
J1(480

√
2(1 + t/60))√

1 + t/60
− 2.79381

Y1(480
√

2(1 + t/60))√
1 + t/60

.

The plots of θ(t) on [0, 10], [0, 30], and [0, 60] are

(f) The graphs indicate that θ(t) decreases as l

increases. The graph of θ(t) on [0, 300] is

shown.

Legendre’s Equation

44. (a) From (29) in the text, we have

P6(x) = c0

(
1− 6 · 7

2!
x2 +

4 · 6 · 7 · 9
4!

x4 =
2 · 4 · 6 · 7 · 9 · 11

6!
x6
)
,
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CHAPTER 6 SERIES SOLUTIONS OF LINEAR EQUATIONS

where

c0 = (−1)3
1 · 3 · 5
2 · 4 · 6

= − 5

16
.

Thus,

P6(x) = − 5

16

(
1− 21x2 + 63x4 − 231

5
x6
)

=
1

16
(231x6 − 315x4 + 105x2 − 5).

Also, from (29) in the text we have

P7(x) = c1

(
x− 6 · 9

3!
x3 +

4 · 6 · 9 · 11

5!
x5 − 2 · 4 · 6 · 9 · 11 · 13

7!
x7
)

where

c1 = (−1)3
1 · 3 · 5 · 7

2 · 4 · 6
= −35

16
.

Thus

P7(x) = −35

16

(
x− 9x3 +

99

5
x5 − 429

35
x7
)

=
1

16
(429x7 − 693x5 + 315x3 − 35x).

(b) P6(x) satisfies
(
1− x2

)
y′′−2xy′+42y = 0 and P7(x) satisfies

(
1− x2

)
y′′−2xy′+56y = 0.

45. The recurrence relation can be written

Pk+1(x) =
2k + 1

k + 1
xPk(x)− k

k + 1
Pk−1(x), k = 2, 3, 4, . . . .

k = 1: P2(x) =
3

2
x2 − 1

2

k = 2: P3(x) =
5

3
x

(
3

2
x2 − 1

2

)
− 2

3
x =

5

2
x3 − 3

2
x

k = 3: P4(x) =
7

4
x

(
5

2
x3 − 3

2
x

)
− 3

4

(
3

2
x2 − 1

2

)
=

35

8
x4 − 30

8
x2 +

3

8

k = 4: P5(x) =
9

5
x

(
35

8
x4 − 30

8
x2 +

3

8

)
− 4

5

(
5

2
x3 − 3

2
x

)
=

63

8
x5 − 35

4
x3 +

15

8
x

k = 5: P6(x) =
11

6
x

(
63

8
x5 − 35

4
x3 +

15

8
x

)
− 5

6

(
35

8
x4 − 30

8
x2 +

3

8

)
k = 5 : P6(x) =

231

16
x6 − 315

16
x4 +

105

16
x2 − 5

16

k = 6: P7(x) =
13

7
x

(
231

16
x6 − 315

16
x4 +

105

16
x2 − 5

16

)
− 6

7

(
63

8
x5 − 35

4
x3 +

15

8
x

)
k = 6 : P7(x) =

429

16
x7 − 693

16
x5 +

315

16
x3 − 35

16
x
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6.4 Special Functionsq

46. If x = cos θ then

dy

dθ
= − sin θ

dy

dx
,

d2y

dθ2
= sin2 θ

d2y

dx2
− cos θ

dy

dx
,

and

sin θ
d2y

dθ2
+ cos θ

dy

dθ
+ n(n+ 1)(sin θ)y = sin θ

[(
1− cos2 θ

) d2y
dx2
− 2 cos θ

dy

dx
+ n(n+ 1)y

]
= 0.

That is, (
1− x2

) d2y
dx2
− 2x

dy

dx
+ n(n+ 1)y = 0.

47. The only solutions bounded on [−1, 1] are y = cPn(x), c a constant and n = 0, 1, 2, . . . . By

(iv) of the properties of the Legendre polynomials, y(0) = 0 or Pn(0) = 0 implies n must be

odd. Thus the first three positive eigenvalues correspond to n = 1, 3, and 5 or λ1 = 1 · 2,

λ2 = 3 · 4 = 12, and λ3 = 5 · 6 = 30. We can take the eigenfunctions to be y1 = P1(x),

y2 = P3(x), and y3 = P5(x).

Computer Lab Assignments

48. Using a CAS we find

P1(x) =
1

2

d

dx
(x2 − 1)1 = x

P2(x) =
1

222!

d2

dx2
(x2 − 1)2 =

1

2
(3x2 − 1)

P3(x) =
1

233!

d3

dx3
(x2 − 1)3 =

1

2
(5x3 − 3x)

P4(x) =
1

244!

d4

dx4
(x2 − 1)4 =

1

8
(35x4 − 30x2 + 3)

P5(x) =
1

255!

d5

dx5
(x2 − 1)5 =

1

8
(63x5 − 70x3 + 15x)

P6(x) =
1

266!

d6

dx6
(x2 − 1)6 =

1

16
(231x6 − 315x4 + 105x2 − 5)

P7(x) =
1

277!

d7

dx7
(x2 − 1)7 =

1

16
(429x7 − 693x5 + 315x3 − 35x).
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CHAPTER 6 SERIES SOLUTIONS OF LINEAR EQUATIONS

49. x

50. Zeros of Legendre polynomials for n ≥ 1 are

P1(x) : 0

P2(x) : ±0.57735

P3(x) : 0, ±0.77460

P4(x) : ±0.33998, ±0.86115

P5(x) : 0, ±0.53847, ±0.90618

P6(x) : ±0.23862, ±0.66121, ±0.93247

P7(x) : 0, ±0.40585, ±0.74153 ,±0.94911

P10(x) : ±0.14887, ±0.43340, ±0.67941, ±0.86506, ±0.097391

The zeros of any Legendre polynomial are in the interval (−1, 1) and are symmetric with respect

to 0.

Miscellaneous Differential Equations

51. Letting y =

∞∑
n=0

cnx
n we have

y′ =
∞∑
n=1

ncnx
n−1 and y′′ =

∞∑
n=2

n(n+ 1)cnx
n−2.

Then, with appropriate substitutions, we have

y′′ − 2xy′ + 2αy =

∞∑
k=0

[
(k + 2)(k + 1)ck+2 + (2α− 2k)ck

]
xk = 0.

376

© 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part, except for use as permitted in a license distributed 
with a certain product or service or otherwise on a password-protected website for classroom use. 

Not For Sale

©
 C

en
ga

ge
 L

ea
rn

in
g.

 A
ll 

rig
ht

s r
es

er
ve

d.
 N

o 
di

st
rib

ut
io

n 
al

lo
w

ed
 w

ith
ou

t e
xp

re
ss

 a
ut

ho
riz

at
io

n.



6.4 Special Functionsq

This leads to the recurrence relation

ck+2 = − 2α− 2k

(k + 2)(k + 1)
ck, for k = 0, 1, 2, 3, . . . .

Thus

c2 = −2α

2!
c0

c3 = −2α− 2

3!
c1

c4 = −2α− 4

4 · 3
c2 =

22α(α− 2)

4!
c0

c5 = −2α− 6

5 · 4
c3 =

22(α− 1)(α− 3)

5!
c1

c5
...

Then two solutions are

y1(x) = 1− 2α

2!
x2 +

22α(α− 2)

4!
x4 − · · · = 1 +

∞∑
k=1

(−1)k2kα(α− 2) · · · (α− 2k + 2)

(2k)!
x2k

and

y2(x) = x− 2α− 2

3!
x3 +

22(α− 1)(α− 3)

5!
x5 − · · ·

= 1 +

∞∑
k=1

(−1)k2k(α− 1)(α− 3) · · · (α− 2k + 1)

(2k + 1)!
x2k+1,

and the general solution is y(x) = c0y1(x) + c1y2(x).

52. (a) For α = n = 0, 2, and 4, y1(x) in Problem 51 gives, in turn,

y1 = 1, y1 = 1− 2x2, and y1 = 1− 4x2 +
4

3
x4.

For α = n = 1, 3, and 5, y2(x) in Problem 51 gives, in turn,

y2 = x, y2 = x− 2

3
x3, and y2 = x− 4x2 +

4

3
x3 +

4

15
x5.

(b) The corresponding Hermite polynomials are

H0(x) = 20(1) = 1,

H1(x) = 21 · x = 2x,

H2(x) = −2(1− 2x2) = 4x2 − 2,

H3(x) = −22 · 3
(

2

3
x3
)

= 8x3 − 12x,

H4(x) = 4 · 3
(

1− 4x2 +
4

3
x4
)

= 16x4 − 48x2 + 12,

H5(x) = 120

(
x− 4

3
x3 +

4

15
x5
)

= 32x5 − 160x3 + 120x.
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CHAPTER 6 SERIES SOLUTIONS OF LINEAR EQUATIONS

53. The usual method gives

c2 = −α
2

2!
c0

c3 =
1− α2

3!
c1

and

ck+2 =
k2 − α2

(k + 2)(k + 1)
ck, k = 2, 3, 4, . . . .

From y(x) = c0y1(x) + c1y2(x) two power series solutions are

y1(x) = 1− α2

2!
x2 − (22 − α2)α2

4!
x4 − (42 − α2)(22 − α2)α2

6!
x6 = · · ·

and

y2(x) = x+
1− α2

3!
x3 +

(32 − α2)(1− α2)

5!
x5 +

(52 − α2)(32 − α2)(1− α2)

7!
x7 + · · · .

When α = n is a nonnegative even integer y1(x) terminates at xn, and when α = n is a positive

odd integer y2(x) terminates at xn. With α = n = 5, y2(x) yields the fifth degree polynomial

solution y = x− 4x3 + 16
5 x

5.

54. With R(x) = (αx)−1/2Z(z) the product rule gives:

R′ = α−1/2
(
x−1/2Z ′ − 1

2
x−3/2Z

)
and

R′′ = α−1/2
(
x−1/2Z ′′ − 1

2
x−3/2Z ′ − 1

2
x−3/2Z ′ +

3

4
x−5/2Z

)
= α−1/2

(
x−1/2Z ′′ − x−3/2Z ′ + 3

4
x−5/2Z

)
.

The differential equation then becomes

α−1/2x2
(
x−1/2Z ′′ − x−3/2Z ′ + 3

4
x−5/2Z

)
+ α−1/22x

(
x−1/2Z ′ − 1

2
x−3/2Z

)
+
[
α2x2 − n(n+ 1)

]
α−1/2x−1/2Z(x) = 0

or

x2Z ′′ + xZ ′ +

[
α2x2 −

(
n2 + n+

1

4

)]
Z = 0.

This is equivalent to

x2Z ′′ + xZ ′ +

[
α2x2 −

(
n+

1

2

)2
]
Z = 0,

which is the parametric Bessel equation, so

Z(x) = C1Jn+1/2(αx) + C2Yn+1/2(αx),
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6.R Chapter 6 in Reviewq

and

R(x) = α−1/2x1/2Z(x) = α−1/2x−1/2
[
C1Jn+1/2(αx) + C2Yn+1/2(αx)

]
.

Renaming C1 and C2 this becomes

R(x) =

(
c1

√
π

2

)
Jn+1/2(αx)
√
αx

+

(
c2

√
π

2

)
Yn+1/2(αx)
√
αx

= c1

√
π

2αx
Jn+1/2(αx) + c2

√
π

2αx
Yn+1/2(αx)

= c1jn(αx) + c2yn(αx),

where jn(αx) and yn(αx) are the spherical Bessel functions of the first and second kind defined

in the text.

6.5 Chapter 6 in Reviewq

6.R Chapter 6 in Reviewq

1. False; J1(x) and J−1(x) are not linearly independent when ν is a positive integer. (In this case

ν = 1). The general solution of x2y′′ + xy′ + (x2 − 1)y = 0 is y = c1J1(x) + c2Y1(x).

2. False; y = x is a solution that is analytic at x = 0.

3. x = −1 is the nearest singular point to the ordinary point x = 0. Theorem 6.2.1 guarantees

the existence of two power series solutions y =
∑∞

n=1 cnx
n of the differential equation that

converge at least for −1 < x < 1. Since −1
2 ≤ x ≤ 1

2 is properly contained in −1 < x < 1,

both power series must converge for all points contained in −1
2 ≤ x ≤

1
2 .

4. The easiest way to solve the system

2c2 + 2c1 + c0 = 0

6c3 + 4c2 + c1 = 0

12c4 + 6c3 −
1

3
c1 + c2 = 0

20c5 + 8c4 −
2

3
c2 + c3 = 0

is to choose, in turn, c0 6= 0, c1 = 0 and c0 = 0, c1 6= 0. Assuming that c0 6= 0, c1 = 0, we have

c2 = −1

2
c0

c3 = −2

3
c2 =

1

3
c0

c4 = −1

2
c3 −

1

12
c2 = −1

8
c0

c5 = −2

5
c4 +

1

30
c2 −

1

20
c3 =

1

60
c0;
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CHAPTER 6 SERIES SOLUTIONS OF LINEAR EQUATIONS

whereas the assumption that c0 = 0, c1 6= 0 implies

c2 = −c1

c3 = −2

3
c2 −

1

6
c1 =

1

2
c1

c4 = −1

2
c3 +

1

36
c1 −

1

12
c2 = − 5

36
c1

c5 = −2

5
c4 +

1

30
c2 −

1

20
c3 = − 1

360
c1.

Five terms of two power series solutions are then

y1(x) = c0

[
1− 1

2
x2 +

1

3
x3 − 1

8
x4 +

1

60
x5 + · · ·

]
and

y2(x) = c1

[
x− x2 +

1

2
x3 − 5

36
x4 − 1

360
x5 + · · ·

]
.

5. The interval of convergence is centered at 4. Since the series converges at −2, it converges

at least on the interval [−2, 10). Since it diverges at 13, it converges at most on the interval

[−5, 13). Thus, at −7 it does not converge, at 0 and 7 it does converge, and at 10 and 11 it

might converge.

6. We have

f(x) =
sinx

cosx
=
x− x3

6
+

x5

120
− · · ·

1− x2

2
+
x4

24
− · · ·

= x+
x3

3
+

2x5

15
+ · · · .

7. The differential equation (x3 − x2)y′′ + y′ + y = 0 has a regular singular point at x = 1 and an

irregular singular point at x = 0.

8. The differential equation (x − 1)(x + 3)y′′ + y = 0 has regular singular points at x = 1 and

x = −3.

9. Substituting y =
∑∞

n=0 cnx
n+r into the differential equation we obtain

2xy′′ + y′ + y =
(
2r2 − r

)
c0x

r−1 +

∞∑
k=1

[2(k + r)(k + r − 1)ck + (k + r)ck + ck−1]x
k+r−1 = 0

which implies

2r2 − r = r(2r − 1) = 0

and

(k + r)(2k + 2r − 1)ck + ck−1 = 0.

The indicial roots are r = 0 and r = 1/2. For r = 0 the recurrence relation is

ck = − ck−1
k(2k − 1)

, k = 1, 2, 3, . . . ,
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6.R Chapter 6 in Reviewq

so

c1 = −c0, c2 =
1

6
c0, c3 = − 1

90
c0.

For r = 1/2 the recurrence relation is

ck = − ck−1
k(2k + 1)

, k = 1, 2, 3, . . . ,

so

c1 = −1

3
c0, c2 =

1

30
c0, c3 = − 1

630
c0.

Two linearly independent solutions are

y1 = 1− x+
1

6
x2 − 1

90
x3 + · · ·

and
y2 = x1/2

(
1− 1

3
x+

1

30
x2 − 1

630
x3 + · · ·

)
.

10. Substituting y =
∑∞

n=0 cnx
n into the differential equation we have

y′′ − xy′ − y =
∞∑
n=2

n(n− 1)cnx
n−2

︸ ︷︷ ︸
k=n−2

−
∞∑
n=1

ncnx
n

︸ ︷︷ ︸
k=n

−
∞∑
n=0

cnx
n

︸ ︷︷ ︸
k=n

=

∞∑
k=0

(k + 2)(k + 1)ck+2x
k −

∞∑
k=1

kckx
k −

∞∑
k=0

ckx
k

= 2c2 − c0 +

∞∑
k=1

[(k + 2)(k + 1)ck+2 − (k + 1)ck]x
k = 0.

Thus

2c2 − c0 =0

(k + 2)(k + 1)ck+2 − (k + 1)ck = 0

and

c2 =
1

2
c0

ck+2 =
1

k + 2
ck, k = 1, 2, 3, . . . .

Choosing c0 = 1 and c1 = 0 we find

c2 =
1

2

c3 = c5 = c7 = · · · = 0

c4 =
1

8

c6 =
1

48
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CHAPTER 6 SERIES SOLUTIONS OF LINEAR EQUATIONS

and so on. For c0 = 0 and c1 = 1 we obtain

c2 = c4 = c6 = · · · = 0

c3 =
1

3

c5 =
1

15

c7 =
1

105

and so on. Thus, two solutions are

y1 = 1 +
1

2
x2 +

1

8
x4 +

1

48
x6 + · · ·

and

y2 = x+
1

3
x3 +

1

15
x5 +

1

105
x7 + · · · .

11. Substituting y =
∑∞

n=0 cnx
n into the differential equation we obtain

(x− 1)y′′ + 3y = (−2c2 + 3c0) +
∞∑
k=1

[(k + 1)kck+1 − (k + 2)(k + 1)ck+2 + 3ck]x
k = 0

which implies c2 = 3c0/2 and

ck+2 =
(k + 1)kck+1 + 3ck

(k + 2)(k + 1)
, k = 1, 2, 3, . . . .

Choosing c0 = 1 and c1 = 0 we find

c2 =
3

2
, c3 =

1

2
, c4 =

5

8

and so on. For c0 = 0 and c1 = 1 we obtain

c2 = 0, c3 =
1

2
, c4 =

1

4

and so on. Thus, two solutions are

y1 = 1 +
3

2
x2 +

1

2
x3 +

5

8
x4 + · · ·

and

y2 = x+
1

2
x3 +

1

4
x4 + · · · .

12. Substituting y =
∑∞

n=0 cnx
n into the differential equation we obtain

y′′ − x2y′ + xy = 2c2 + (6c3 + c0)x+

∞∑
k=1

[(k + 3)(k + 2)ck+3 − (k − 1)ck]x
k+1 = 0
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6.R Chapter 6 in Reviewq

which implies c2 = 0, c3 = −c0/6, and

ck+3 =
k − 1

(k + 3)(k + 2)
ck, k = 1, 2, 3, . . . .

Choosing c0 = 1 and c1 = 0 we find

c3 = −1

6

c4 = c7 = c10 = · · · = 0

c5 = c8 = c11 = · · · = 0

c6 = − 1

90

and so on. For c0 = 0 and c1 = 1 we obtain

c3 = c6 = c9 = · · · = 0

c4 = c7 = c10 = · · · = 0

c5 = c8 = c11 = · · · = 0

and so on. Thus, two solutions are

y1 = 1− 1

6
x3 − 1

90
x6 − · · · and y2 = x.

13. Substituting y =
∑∞

n=0 cnx
n+r into the differential equation we obtain

xy′′ − (x+ 2)y′ + 2y = (r2 − 3r)c0x
r−1 +

∞∑
k=1

[(k + r)(k + r − 3)ck

− (k + r − 3)ck−1]x
k+r−1 = 0,

which implies

r2 − 3r = r(r − 3) = 0
and

(k + r)(k + r − 3)ck − (k + r − 3)ck−1 = 0.

The indicial roots are r1 = 3 and r2 = 0. For r2 = 0 the recurrence relation is

k(k − 3)ck − (k − 3)ck−1 = 0, k = 1, 2, 3, . . . .

Then

c1 − c0 = 0

2c2 − c1 = 0

0c3 − 0c2 = 0 =⇒ c3 is arbitrary
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CHAPTER 6 SERIES SOLUTIONS OF LINEAR EQUATIONS

and

ck =
1

k
ck−1, k = 4, 5, 6, . . . .

Taking c0 6= 0 and c3 = 0 we obtain

c1 = c0

c2 =
1

2
c0

c3 = c4 = c5 = · · · = 0.

Taking c0 = 0 and c3 6= 0 we obtain

c0 = c1 = c2 = 0

c4 =
1

4
c3 =

6

4!
c3

c5 =
1

5 · 4
c3 =

6

5!
c3

c6 =
1

6 · 5 · 4
c3 =

6

6!
c3,

and so on. In this case we obtain the two solutions

y1 = 1 + x+
1

2
x2

and
y2 = x3 +

6

4!
x4 +

6

5!
x5 +

6

6!
x6 + · · · = 6ex − 6

(
1 + x+

1

2
x2
)
.

14. Substituting y =
∑∞

n=0 cnx
n into the differential equation we have

(cosx)y′′ + y

=

(
1− 1

2
x2 +

1

24
x4 − 1

720
x6 + · · ·

)
(2c2 + 6c3x+ 12c4x

2 + 20c5x
3 + 30c6x

4 + · · · ) +

∞∑
n=0

cnx
n

=

[
2c2 + 6c3x+ (12c4 − c2)x2 + (20c5 − 3c3)x

3 +

(
30c6 − 6c4 +

1

12
c2

)
x4 + · · ·

]
+ [c0 + c1x+ c2x

2 + c3x
3 + c4x

4 + · · · ]

= (c0 + 2c2) + (c1 + 6c3)x+ 12c4x
2 + (20c5 − 2c3)x

3 +

(
30c6 − 5c4 +

1

12
c2

)
x4 + · · ·

= 0.

Thus

c0 + 2c2 = 0

c1 + 6c3 = 0

12c4 = 0

20c5 − 2c3 = 0

30c6 − 5c4 +
1

12
c2 = 0
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6.R Chapter 6 in Reviewq

and

c2 = −1

2
c0

c3 = −1

6
c1

c4 = 0

c5 =
1

10
c3

c6 =
1

6
c4 −

1

360
c2.

Choosing c0 = 1 and c1 = 0 we find

c2 = −1

2
, c3 = 0, c4 = 0, c5 = 0, c6 =

1

720

and so on. For c0 = 0 and c1 = 1 we find

c2 = 0, c3 = −1

6
, c4 = 0, c5 = − 1

60
, c6 = 0

and so on. Thus, two solutions are

y1 = 1− 1

2
x2 +

1

720
x6 + · · · and y2 = x− 1

6
x3 − 1

60
x5 + · · · .

15. Substituting y =
∑∞

n=0 cnx
n into the differential equation we have

y′′ + xy′ + 2y =

∞∑
n=2

n(n− 1)cnx
n−2

︸ ︷︷ ︸
k=n−2

+

∞∑
n=1

ncnx
n

︸ ︷︷ ︸
k=n

+ 2

∞∑
n=0

cnx
n

︸ ︷︷ ︸
k=n

=

∞∑
k=0

(k + 2)(k + 1)ck+2x
k +

∞∑
k=1

kckx
k + 2

∞∑
k=0

ckx
k

= 2c2 + 2c0 +

∞∑
k=1

[(k + 2)(k + 1)ck+2 + (k + 2)ck]x
k = 0.

Thus

2c2 + 2c0 = 0

(k + 2)(k+1)ck+2 + (k + 2)ck = 0

and

c2 = −c0

ck+2 = − 1

k + 1
ck, k = 1, 2, 3, . . . .

385

© 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part, except for use as permitted in a license distributed 
with a certain product or service or otherwise on a password-protected website for classroom use. Not For Sale

©
 C

en
ga

ge
 L

ea
rn

in
g.

 A
ll 

rig
ht

s r
es

er
ve

d.
 N

o 
di

st
rib

ut
io

n 
al

lo
w

ed
 w

ith
ou

t e
xp

re
ss

 a
ut

ho
riz

at
io

n.



CHAPTER 6 SERIES SOLUTIONS OF LINEAR EQUATIONS

Choosing c0 = 1 and c1 = 0 we find

c2 = −1

c3 = c5 = c7 = · · · = 0

c4 =
1

3

c6 = − 1

15

and so on. For c0 = 0 and c1 = 1 we obtain

c2 = c4 = c6 = · · · = 0

c3 = −1

2

c5 =
1

8

c7 = − 1

48

and so on. Thus, the general solution is

y = C0

(
1− x2 +

1

3
x4 − 1

15
x6 + · · ·

)
+ C1

(
x− 1

2
x3 +

1

8
x5 − 1

48
x7 + · · ·

)
and

y′ = C0

(
−2x+

4

3
x3 − 2

5
x5 + · · ·

)
+ C1

(
1− 3

2
x2 +

5

8
x4 − 7

48
x6 + · · ·

)
.

Setting y(0) = 3 and y′(0) = −2 we find c0 = 3 and c1 = −2. Therefore, the solution of the

initial-value problem is

y = 3− 2x− 3x2 + x3 + x4 − 1

4
x5 − 1

5
x6 +

1

24
x7 + · · · .

16. Substituting y =
∑∞

n=0 cnx
n into the differential equation we have

(x+ 2)y′′ + 3y =

∞∑
n=2

n(n− 1)cnx
n−1

︸ ︷︷ ︸
k=n−1

+ 2

∞∑
n=2

n(n− 1)cnx
n−2

︸ ︷︷ ︸
k=n−2

+ 3

∞∑
n=0

cnx
n

︸ ︷︷ ︸
k=n

=

∞∑
k=1

(k + 1)kck+1x
k + 2

∞∑
k=0

(k + 2)(k + 1)ck+2x
k + 3

∞∑
k=0

ckx
k

= 4c2 + 3c0 +

∞∑
k=1

[(k + 1)kck+1 + 2(k + 2)(k + 1)ck+2 + 3ck]x
k = 0.

Thus

4c2+3c0 = 0

(k + 1)kck+1 + 2(k+2)(k + 1)ck+2 + 3ck = 0
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6.R Chapter 6 in Reviewq

and

c2 = −3

4
c0

ck+2 = − k

2(k + 2)
ck+1 −

3

2(k + 2)(k + 1)
ck, k = 1, 2, 3, . . . .

Choosing c0 = 1 and c1 = 0 we find

c2 = −3

4

c3 =
1

8

c4 =
1

16

c5 = − 9

320

and so on. For c0 = 0 and c1 = 1 we obtain

c2 = 0

c3 = −1

4

c4 =
1

16

c5 = 0

and so on. Thus, the general solution is

y = C0

(
1− 3

4
x2 +

1

8
x3 +

1

16
x4 − 9

320
x5 + · · ·

)
+ C1

(
x− 1

4
x3 +

1

16
x4 + · · ·

)
and

y′ = C0

(
−3

2
x+

3

8
x2 +

1

4
x3 − 9

64
x4 + · · ·

)
+ C1

(
1− 3

4
x2 +

1

4
x3 + · · ·

)
.

Setting y(0) = 0 and y′(0) = 1 we find c0 = 0 and c1 = 1. Therefore, the solution of the

initial-value problem is

y = x− 1

4
x3 +

1

16
x4 + · · · .

17. The singular point of (1 − 2 sinx)y′′ + xy = 0 closest to x = 0 is π/6. Thus a lower bound is

π/6.

18. While we can find two solutions of the form

y1 = c0[1 + · · · ] and y2 = c1[x+ · · · ],
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CHAPTER 6 SERIES SOLUTIONS OF LINEAR EQUATIONS

the initial conditions at x = 1 give solutions for c0 and c1 in terms of infinite series. Letting

t = x− 1 the initial-value problem becomes

d2y

dt2
+ (t+ 1)

dy

dt
+ y = 0, y(0) = −6, y′(0) = 3.

Substituting y =
∑∞

n=0 cnt
n into the differential equation we have

d2y

dt2
+ (t+ 1)

dy

dt
+ y =

∞∑
n=2

n(n− 1)cnt
n−2

︸ ︷︷ ︸
k=n−2

+

∞∑
n=1

ncnt
n

︸ ︷︷ ︸
k=n

+

∞∑
n=1

ncnt
n−1

︸ ︷︷ ︸
k=n−1

+

∞∑
n=0

cnt
n

︸ ︷︷ ︸
k=n

=
∞∑
k=0

(k + 2)(k + 1)ck+2t
k +

∞∑
k=1

kckt
k +

∞∑
k=0

(k + 1)ck+1t
k +

∞∑
k=0

ckt
k

= 2c2 + c1 + c0 +
∞∑
k=1

[(k + 2)(k + 1)ck+2 + (k + 1)ck+1 + (k + 1)ck]t
k = 0.

Thus

2c2 + c1+c0 = 0

(k + 2)(k + 1)ck+2 + (k+1)ck+1 + (k + 1)ck = 0

and

c2 = −c1 + c0
2

ck+2 = −ck+1 + ck
k + 2

, k = 1, 2, 3, . . . .

Choosing c0 = 1 and c1 = 0 we find

c2 = −1

2
, c3 =

1

6
, c4 =

1

12
,

and so on. For c0 = 0 and c1 = 1 we find

c2 = −1

2
, c3 = −1

6
, c4 =

1

6
,

and so on. Thus, the general solution is

y = c0

[
1− 1

2
t2 +

1

6
t3 +

1

12
t4 + · · ·

]
+ c1

[
t− 1

2
t2 − 1

6
t3 +

1

6
t4 + · · ·

]
.

The initial conditions then imply c0 = −6 and c1 = 3. Thus the solution of the initial-value

problem is

y = −6

[
1− 1

2
(x− 1)2 +

1

6
(x− 1)3 +

1

12
(x− 1)4 + · · ·

]
+ 3

[
(x− 1)− 1

2
(x− 1)2 − 1

6
(x− 1)3 +

1

6
(x− 1)4 + · · ·

]
.
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6.R Chapter 6 in Reviewq

19. Writing the differential equation in the form

y′′ +

(
1− cosx

x

)
y′ + xy = 0,

and noting that

1− cosx

x
=
x

2
− x3

24
+

x5

720
− · · ·

is analytic at x = 0, we conclude that x = 0 is an ordinary point of the differential equation.

20. Writing the differential equation in the form

y′′ +

(
x

ex − 1− x

)
y = 0

and noting that

x

ex − 1− x
=

2

x
− 2

3
+

x

18
+

x2

270
− · · ·

we see that x = 0 is a singular point of the differential equation. Since

x2
(

x

ex − 1− x

)
= 2x− 2x2

3
+
x3

18
+

x4

270
− · · · ,

we conclude that x = 0 is a regular singular point.

21. Substituting y =
∑∞

n=0 cnx
n into the differential equation we have

y′′ + x2y′ + 2xy =

∞∑
n=2

n(n− 1)cnx
n−2

︸ ︷︷ ︸
k=n−2

+

∞∑
n=1

ncnx
n+1

︸ ︷︷ ︸
k=n+1

+2

∞∑
n=0

cnx
n+1

︸ ︷︷ ︸
k=n+1

=

∞∑
k=0

(k + 2)(k + 1)ck+2x
k +

∞∑
k=2

(k − 1)ck−1x
k + 2

∞∑
k=1

ck−1x
k

= 2c2 + (6c3 + 2c0)x+

∞∑
k=2

[(k + 2)(k + 1)ck+2 + (k + 1)ck−1]x
k

= 5− 2x+ 10x3.

Thus, equating coefficients of like powers of x gives

2c2 = 5

6c3 + 2c0 = −2

12c4 + 3c1 = 0

20c5 + 4c2 = 10

(k + 2)(k + 1)ck+2 + (k + 1)ck−1 = 0, k = 4, 5, 6, . . . ,
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CHAPTER 6 SERIES SOLUTIONS OF LINEAR EQUATIONS

and

c2 =
5

2

c3 = −1

3
c0 −

1

3

c4 = −1

4
c1

c5 =
1

2
− 1

5
c2 =

1

2
− 1

5

(
5

2

)
= 0

ck+2 = − 1

k + 2
ck−1.

Using the recurrence relation, we find

c6 = −1

6
c3 =

1

3 · 6
(c0 + 1) =

1

32 · 2!
c0 +

1

32 · 2!

c7 = −1

7
c4 =

1

4 · 7
c1

c8 = c11 = c14 = · · · = 0

c9 = −1

9
c6 = − 1

33 · 3!
c0 −

1

33 · 3!

c10 = − 1

10
c7 = − 1

4 · 7 · 10
c1

c12 = − 1

12
c9 =

1

34 · 4!
c0 +

1

34 · 4!

c13 = − 1

13
c0 =

1

4 · 7 · 10 · 13
c1

and so on. Thus

y = c0

[
1− 1

3
x3 +

1

32 · 2!
x6 − 1

33 · 3!
x9 +

1

34 · 4!
x12 − · · ·

]
+ c1

[
x− 1

4
x4 +

1

4 · 7
x7 − 1

4 · 7 · 10
x10 +

1

4 · 7 · 10 · 13
x13 − · · ·

]
+

[
5

2
x2 − 1

3
x3 +

1

32 · 2!
x6 − 1

33 · 3!
x9 +

1

34 · 4!
x12 − · · ·

]
.

22. (a) From y = −1

u

du

dx
we obtain

dy

dx
= −1

u

d2u

dx2
+

1

u2

(
du

dx

)2

.

Then dy/dx = x2 + y2 becomes

−1

u

d2u

dx2
+

1

u2

(
du

dx

)2

= x2 +
1

u2

(
du

dx

)2

,

so
d2u

dx2
+ x2u = 0.
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6.R Chapter 6 in Reviewq

(b) The differential equation u′′+ x2u = 0 has the form of (18) in Section 6.4 in the text with

1− 2a = 0 =⇒ a =
1

2

2c− 2 = 2 =⇒ c = 2

b2c2 = 1 =⇒ b =
1

2

a2 − p2c2 = 0 =⇒ p =
1

4
.

Then, by (19) of Section 6.4 in the text,

u = x1/2
[
c1J1/4

(
1

2
x2
)

+ c2J−1/4

(
1

2
x2
)]

.

(c) We have

y = −1

u

du

dx
= − 1

x1/2w(t)

d

dx
x1/2w(t)

= − 1

x1/2w

[
x1/2

dw

dt

dt

dx
+

1

2
x−1/2w

]
= − 1

x1/2w

[
x3/2

dw

dt
+

1

2x1/2
w

]
= − 1

2xw

[
2x2

dw

dt
+ w

]
= − 1

2xw

[
4t
dw

dt
+ w

]
.

Now

4t
dw

dt
+ w = 4t

d

dt
[c1J1/4(t) + c2J−1/4(t)] + c1J1/4(t) + c2J−1/4(t)

= 4t

[
c1

(
J−3/4(t)−

1

4t
J1/4(t)

)
+ c2

(
− 1

4t
J−1/4(t)− J3/4(t)

)]
+ c1J1/4(t) + c2J−1/4(t)

= 4c1tJ−3/4(t)− 4c2tJ3/4(t)

= 2c1x
2J−3/4

(
1

2
x2
)
− 2c2x

2J3/4

(
1

2
x2
)
,

so

y = −
2c1x

2J−3/4(
1
2x

2)− 2c2x
2J3/4(

1
2x

2)

2x[c1J1/4(
1
2x

2) + c2J−1/4(
1
2x

2)]

= x
−c1J−3/4(12x

2) + c2J3/4(
1
2x

2)

c1J1/4(
1
2x

2) + c2J−1/4(
1
2x

2)
.

Letting c = c1/c2 we have

y = x
J3/4(

1
2x

2)− cJ−3/4(12x
2)

cJ1/4(
1
2x

2) + J−1/4(
1
2x

2)
.
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CHAPTER 6 SERIES SOLUTIONS OF LINEAR EQUATIONS

23. (a) From (10) of Section 6.4, with n = 3
2 , we have

Y3/2(x) =
−J−3/2(x)

−1
= J−3/2(x).

Then from the solutions of Problems 28 and 32 in Section 6.4 we have

J−3/2(x) = −
√

2

πx

(cosx

x
+ sinx

)
so Y3/2(x) = −

√
2

πx

(cosx

x
+ sinx

)
(b) From (15) of Section 6.4 in the text

I1/2(x) = i−1/2J1/2(ix) and I−1/2(x) = i1/2J−1/2(ix)

so

I1/2(x) =

√
2

πx

∞∑
n=0

1

(2n+ 1)!
x2n+1 =

√
2

πx
sinhx

and

I−1/2(x) =

√
2

πx

∞∑
n=0

1

(2n)!
x2n =

√
2

πx
coshx.

(c) Equation (16) of Section 6.4 in the text and part (b) imply

K1/2(x) =
π

2

I−1/2(x)− I1/2(x)

sin π
2

=
π

2

[√
2

πx
coshx−

√
2

πx
sinhx

]

=

√
π

2x

[
ex + e−x

2
− ex − e−x

2

]
=

√
π

2x
e−x.

24. (a) Using formula (5) of Section 4.2 in the text, we find that a second solution of

(1− x2)y′′ − 2xy′ = 0 is

y2(x) = 1 ·
∫
e
∫
2x dx/(1−x2)

12
dx =

∫
e− ln(1−x2) dx

=

∫
dx

1− x2
=

1

2
ln

(
1 + x

1− x

)
,

where partial fractions was used to obtain the last integral.

(b) Using formula (5) of Section 4.2 in the text, we find that a second solution of

(1− x2)y′′ − 2xy′ + 2y = 0 is

y2(x) = x ·
∫
e
∫
2x dx/(1−x2)

x2
dx = x

∫
e− ln(1−x2)

x2
dx

= x

∫
dx

x2(1− x2)
dx = x

[
1

2
ln

(
1 + x

1− x

)
− 1

x

]

=
x

2
ln

(
1 + x

1− x

)
− 1,

where partial fractions was used to obtain the last integral.
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6.R Chapter 6 in Reviewq

(c) x

y2(x) =
1

2
ln

(
1 + x

1− x

)
y2 =

x

2
ln

(
1 + x

1− x

)
− 1

25. (a) By the binomial theorem we have[
1 +

(
t2 − 2xt

)]−1/2
= 1− 1

2

(
t2 − 2xt

)
+

(−1/2)(−3/2)

2!
(t2 − 2xt)2

+
(−1/2)(−3/2)(−5/2)

3!
(t2 − 2xt)3 + · · ·

= 1− 1

2
(t2 − 2xt) +

3

8
(t2 − 2xt)2 − 5

16
(t2 − 2xt)3 + · · ·

= 1 + xt+
1

2
(3x2 − 1)t2 +

1

2
(5x3 − 3x)t3 + · · ·

=

∞∑
n=0

Pn(x)tn.

(b) Letting x = 1 in (1− 2xt+ t2)−1/2, we have

(1− 2t+ t2)−1/2 = (1− t)−1 =
1

1− t
= 1 + t+ t2 + t3 + . . . (|t| < 1)

=

∞∑
n=0

tn.

From part (a) we have

∞∑
n=0

Pn(1)tn = (1− 2t+ t2)−1/2 =

∞∑
n=0

tn.

Equating the coefficients of corresponding terms in the two series, we see that Pn(1) = 1.

Similarly, letting x = −1 we have

(1 + 2t+ t2)−1/2 = (1 + t)−1 =
1

1 + t
= 1− t+ t2 − 3t3 + . . . (|t| < 1)

=
∞∑
n=0

(−1)ntn =
∞∑
n=0

Pn(−1)tn,

so that Pn(−1) = (−1)n.
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Chapter 7

THE LAPLACE TRANSFORM

7.1 Definition of the Laplace Transformq

The Laplace Transform7
7.1 Definition of the Laplace Transformq

1. L {f(t)} =

∫ 1

0
−e−stdt+

∫ ∞
1

e−stdt =
1

s
e−st

∣∣∣∣1
0

−1

s
e−st

∣∣∣∣∞
1

L {f(t)} =
1

s
e−s − 1

s
−
(

0− 1

s
e−s
)

=
2

s
e−s − 1

s
, s > 0.

2. L {f(t)} =

∫ 2

0
4e−stdt = −4

s
e−st

∣∣∣∣2
0

= −4

s
(e−2s − 1), s > 0

3. L {f(t)} =

∫ 1

0
te−stdt+

∫ ∞
1

e−stdt =

(
−1

s
te−st − 1

s2
e−st

) ∣∣∣∣1
0

−1

s
e−st

∣∣∣∣∞
1

L {f(t)} =

(
−1

s
e−s − 1

s2
e−s
)
−
(

0− 1

s2

)
− 1

s
(0− e−s) =

1

s2
(1− e−s), s > 0

4. L {f(t)} =

∫ 1

0
(2t+ 1)e−stdt =

(
−2

s
te−st − 2

s2
e−st − 1

s
e−st

) ∣∣∣∣1
0

L {f(t)} =

(
−2

s
e−s − 2

s2
e−s − 1

s
e−s
)
−
(

0− 2

s2
− 1

s

)
=

1

s
(1− 3e−s) +

2

s2
(1− e−s), s > 0

5. L {f(t)} =

∫ π

0
(sin t)e−stdt =

(
− s

s2 + 1
e−st sin t− 1

s2 + 1
e−st cos t

) ∣∣∣∣π
0

L {f(t)} =

(
0 +

1

s2 + 1
e−πs

)
−
(

0− 1

s2 + 1

)
=

1

s2 + 1
(e−πs + 1), s > 0

6. L {f(t)} =

∫ ∞
π/2

(cos t)e−stdt =

(
− s

s2 + 1
e−st cos t+

1

s2 + 1
e−st sin t

) ∣∣∣∣∞
π/2

L {f(t)} = 0−
(

0 +
1

s2 + 1
e−πs/2

)
= − 1

s2 + 1
e−πs/2, s > 0

7.

{
0, 0 < t < 1

t, t > 1

L {f(t)} =

∫ ∞
1

te−st dt =

(
−1

s
te−st − 1

s2
e−st

) ∣∣∣∣∞
1

=
1

s
e−s +

1

s2
e−s, s > 0
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7.1 Definition of the Laplace Transformq

8.

{
0, 0 < t < 1

2t− 2, t > 1

L {f(t)} = 2

∫ ∞
1

(t− 1)e−st dt = 2

(
−1

s
(t− 1)e−st − 1

s2
e−st

) ∣∣∣∣∞
1

=
2

s2
e−s, s > 0

9. The function is f(t) =

{
1− t, 0 < t < 1

0, t > 1
so

L {f(t)} =

∫ 1

0
(1− t)e−st dt+

∫ ∞
1

0e−st dt =

∫ 1

0
(1− t)e−st dt =

(
−1

s
(1− t)e−st +

1

s2
e−st

) ∣∣∣∣1
0

L {f(t)} =
1

s2
e−s +

1

s
− 1

s2
, s > 0

10.


0, 0 < t < a

c, a < t < b ;

0, t > b

L {f(t)} =

∫ b

a
ce−st dt = −c

s
e−st

∣∣∣∣b
a

=
c

s
(e−sa − e−sb), s > 0

11. L {f(t)} =

∫ ∞
0

et+7e−stdt = e7
∫ ∞
0

e(1−s)tdt =
e7

1− s
e(1−s)t

∣∣∣∣∞
0

= 0− e7

1− s
=

e7

s− 1
, s > 1

12. L {f(t)} =

∫ ∞
0

e−2t−5e−stdt = e−5
∫ ∞
0

e−(s+2)tdt = − e−5

s+ 2
e−(s+2)t

∣∣∣∣∞
0

=
e−5

s+ 2
, s > −2

13. L {f(t)} =

∫ ∞
0

te4te−stdt =

∫ ∞
0

te(4−s)tdt =

(
1

4− s
te(4−s)t − 1

(4− s)2
e(4−s)t

) ∣∣∣∣∞
0

L {f(t)} =
1

(4− s)2
, s > 4

14. L {f(t)} =

∫ ∞
0

t2e−2te−st dt =

∫ ∞
0

t2e−(s+2)tdt

L {{} f(t)}=
(
− 1

s+ 2
t2e−(s+2)t− 2

(s+ 2)2
te−(s+2)t− 2

(s+ 2)3
e−(s+2)t

) ∣∣∣∣∞
0

=
2

(s+ 2)3
, s > −2

15. L {f(t)} =

∫ ∞
0

e−t(sin t)e−stdt =

∫ ∞
0

(sin t)e−(s+1)tdt

L {{} f(t)} =

(
−(s+ 1)

(s+ 1)2 + 1
e−(s+1)t sin t− 1

(s+ 1)2 + 1
e−(s+1)t cos t

) ∣∣∣∣∞
0

L {{} f(t)} =
1

(s+ 1)2 + 1
=

1

s2 + 2s+ 2
, s > −1
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CHAPTER 7 THE LAPLACE TRANSFORM

16. L {f(t)} =

∫ ∞
0

et(cos t)e−stdt =

∫ ∞
0

(cos t)e(1−s)tdt

L {{} f(t)} =

(
1− s

(1− s)2 + 1
e(1−s)t cos t+

1

(1− s)2 + 1
e(1−s)t sin t

) ∣∣∣∣∞
0

L {{} f(t)} = − 1− s
(1− s)2 + 1

=
s− 1

s2 − 2s+ 2
, s > 1

17. L {f(t)} =

∫ ∞
0

t(cos t)e−stdt

L {{} f(t)} =

[(
− st

s2 + 1
− s2 − 1

(s2 + 1)2

)
(cos t)e−st +

(
t

s2 + 1
+

2s

(s2 + 1)2

)
(sin t)e−st

]∞
0

L {{} f(t)} =
s2 − 1

(s2 + 1)2
, s > 0

18. L {f(t)} =

∫ ∞
0

t(sin t)e−stdt

L {{} f(t)} =

[(
− t

s2 + 1
− 2s

(s2 + 1)2

)
(cos t)e−st −

(
st

s2 + 1
+

s2 − 1

(s2 + 1)2

)
(sin t)e−st

]∞
0

L {{} f(t)} =
2s

(s2 + 1)2
, s > 0

19. L
{

2t4
}

= 2
4!

s5
20. L

{
t5
}

=
5!

s6

21. L {4t− 10} =
4

s2
− 10

s
22. L {7t+ 3} =

7

s2
+

3

s

23. L
{
t2 + 6t− 3

}
=

2

s3
+

6

s2
− 3

s
24. L

{
−4t2 + 16t+ 9

}
= −4

2

s3
+

16

s2
+

9

s

25. L
{
t3 + 3t2 + 3t+ 1

}
=

3!

s4
+ 3

2

s3
+ 3

1

s2
+

1

s

26. L
{

8t3 − 12t2 + 6t− 1
}

= 8
3!

s4
− 12

2

s3
+

6

s2
− 1

s

27. L
{

1 + e4t
}

=
1

s
+

1

s− 4
28. L

{
t2 − e−9t + 5

}
=

2

s3
− 1

s+ 9
+

5

s

29. L
{

1 + 2e2t + e4t
}

=
1

s
+

2

s− 2
+

1

s− 4
30. L

{
e2t − 2 + e−2t

}
=

1

s− 2
− 2

s
+

1

s+ 2

31. L
{

4t2 − 5 sin 3t
}

= 4
2

s3
− 5

3

s2 + 9
32. L {cos 5t+ sin 2t} =

s

s2 + 25
+

2

s2 + 4
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7.1 Definition of the Laplace Transformq

33. L {sinh kt} =
1

2
L
{
ekt − e−kt

}
=

1

2

[
1

s− k
− 1

s+ k

]
=

k

s2 − k2

34. L {cosh kt} =
1

2
L
{
ekt + ekt

}
=

s

s2 − k2

35. L
{
et sinh t

}
= L

{
et
et − e−t

2

}
= L

{
1

2
e2t − 1

2

}
=

1

2(s− 2)
− 1

2s

36. L
{
e−t cosh t

}
= L

{
e−t

et + e−t

2

}
= L

{
1

2
+

1

2
e−2t

}
=

1

2s
+

1

2(s+ 2)

37. L {sin 2t cos 2t} = L

{
1

2
sin 4t

}
=

2

s2 + 16

38. L
{

cos2 t
}

= L

{
1

2
+

1

2
cos 2t

}
=

1

2s
+

1

2

s

s2 + 4

39. From the addition formula for the sine function, sin(4t+ 5) = (sin 4t)(cos 5) + (cos 4t)(sin 5) so

L {sin(4t+ 5)} = (cos 5)L {sin 4t}+ (sin 5)L {cos 4t}

= (cos 5)
4

s2 + 16
+ (sin 5)

s

s2 + 16

=
4 cos 5 + (sin 5)s

s2 + 16
.

40. From the addition formula for the cosine function,

cos
(
t− π

6

)
= cos t cos

π

6
+ sin t sin

π

6
=

√
3

2
cos t+

1

2
sin t

so

L
{

cos
(
t− π

6

)}
=

√
3

2
L {cos t}+

1

2
L {sin t}

=

√
3

2

s

s2 + 1
+

1

2

1

s2 + 1
=

1

2

√
3 s+ 1

s2 + 1
.

41. Using integration by parts for α > 0,

Γ(α+ 1) =

∫ ∞
0

tαe−t dt = −tαe−t
∣∣∣∞
0

+ α

∫ ∞
0

tα−1e−t dt = αΓ(α).

42. Let u = st so that du = s dt. Then

L {tα} =

∫ ∞
0

e−sttαdt =

∫ ∞
0

e−u
(u
s

)α 1

s
du =

1

sα+1
Γ(α+ 1), α > −1.
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CHAPTER 7 THE LAPLACE TRANSFORM

43. L
{
t−1/2

}
=

Γ(1/2)

s1/2
=

√
π

s

44. L
{
t1/2
}

=
Γ(3/2)

s3/2
=

√
π

2s3/2

45. L
{
t3/2
}

=
Γ(5/2)

s5/2
=

3
√
π

4s5/2

46. The Laplace transform of f(t) = 2t1/2 + 8t5/2 is

L
{

2t1/2 + 8t5/2
}

= 2L
{
t1/2
}

+ 8L
{
t5/2
}
,

where

L
{
t1/2
}

=

√
π

2s3/2

by Problem 44. From Problem 42 we have

L
{
t5/2
}

=
Γ
(
5
2 + 1

)
s7/2

.

Since

Γ

(
5

2
+ 1

)
=

5

2
Γ

(
5

2

)
=

5

2
· 3

2
Γ

(
3

2

)
=

5

2
· 3

2
· 1

2
Γ

(
1

2

)
=

15

8

√
π,

we have

L
{
t5/2
}

=
15
√
π

8s7/2

and therefore

L
{

2t1/2 + 8t5/2
}

=

√
π

s3/2
+ 15

√
π

s7/2
.

Discussion Problems

47. Let F (t) = t1/3. Then F (t) is of exponential order, but f(t) = F ′(t) = 1
3 t
−2/3 is unbounded

near t = 0 and hence is not of exponential order. Let

f(t) = 2tet
2

cos et
2

=
d

dt
sin et

2
.

This function is not of exponential order, but we can show that its Laplace transform exists.

Using integration by parts we have

L
{

2tet
2

cos et
2
}

=

∫ ∞
0

e−st
(
d

dt
sin et

2

)
dt = lim

a→∞

[
e−st sin et

2
∣∣∣a
0

+ s

∫ a

0
e−st sin et

2
dt

]

= − sin 1 + s

∫ ∞
0

e−st sin et
2
dt = sL

{
sin et

2
}
− sin 1.

Since sin et
2

is continuous and of exponential order, L
{

sin et
2
}

exists, and therefore L
{

2tet
2

cos et
2
}

exists.
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7.1 Definition of the Laplace Transformq

48. The relation will be valid when s is greater than the maximum of c1 and c2.

49. Since et is an increasing function and t2 > lnM + ct for M > 0 we have et
2
> elnM+ct = Mect

for t sufficiently large and for any c. Thus, et
2

is not of exponential order.

50. Assuming that (c) of Theorem 7.1.1 is applicable with a complex exponent, we have

L
{
e(a+ib)t

}
=

1

s− (a+ ib)
=

1

(s− a)− ib
(s− a) + ib

(s− a) + ib
=

s− a+ ib

(s− a)2 + b2
.

By Euler’s formula, eiθ = cos θ + i sin θ, so

L
{
e(a+ib)t

}
= L

{
eateibt

}
= L

{
eat(cos bt+ i sin bt)

}
= L

{
eat cos bt

}
+ iL

{
eat sin bt

}
=

s− a
(s− a)2 + b2

+ i
b

(s− a)2 + b2
.

Equating real and imaginary parts we get

L
{
eat cos bt

}
=

s− a
(s− a)2 + b2

and L
{
eat sin bt

}
=

b

(s− a)2 + b2
.

51. We want f(αx+ βy) = αf(x) + βf(y) or

m(αx+ βy) + b = α(mx+ b) + β(my + b) = m(αx+ βy) + (α+ β)b

for all real numbers α and β. Taking α = β = 1 we see that b = 2b, so b = 0. Thus,

f(x) = mx+ b will be a linear transformation when b = 0.

52. The function f is not bounded on the interval [4, 6] because of the infinite discontinuity at

x = 5.

53. If we attempt to compute the Laplace transform of 1/t2 we obtain

L
{

1/t2
}

=

∫ 1

0

1

t2
e−stdt+

∫ ∞
1

1

t2
e−stdt.

If s = 0 then ∫ 1

0

1

t2
e−stdt =

∫ 1

0

1

t2
dt,

which diverges. If s < 0 then ∫ 1

0

1

t2
e−stdt >

∫ 1

0

1

t2
dt,

which diverges. If s > 0 then ∫ 1

0

1

t2
e−stdt > e−s

∫ 1

0

1

t2
dt,

which diverges. Thus, the Laplace transform of 1/t2 does not exist.
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CHAPTER 7 THE LAPLACE TRANSFORM

54. Integrating by parts gives

L
{

2tet
2

cos et
2
}

=

∫ ∞
0

e−st

derivative of

sin et
2︷ ︸︸ ︷

2tet
2

cos et
2
dt = e−st sin et

2

∣∣∣∣∞
0

+ s

∫ ∞
0

e−st sin et
2
dt

= − sin 1 + s

∫ ∞
0

e−st sin et
2
dt.

The last integral exists for s > 0 since sin et
2

is piecewise continuous on (0, ∞) and of expo-

nential order. Alternatively, for s > 0∫ ∞
0

∣∣∣e−st sin et
2
∣∣∣ dt ≥ 1 ·

∫ ∞
0

e−stdt =
1

s
.

The absolute convergence of the integral

∫ ∞
0

e−st sin et
2
dt implies the convergence of the

integral.

55. Using t = au so that dt = adu we have

F
( s
a

)
=

∫ ∞
0

e−(s/a)tf(t)dt = a

∫ ∞
0

e−suf(au)du = aL {f(at)} ,

which implies that

L {f(at} =
1

a
F
( s
a

)
.

56. (a) L
{
eat
}

=
1

a
· 1

s/a− 1
=

1

a
· a

s− a
=

1

s− a

(b) L {sin kt} =
1

k
· 1

(s/k)2 + 1
=

1

k
· k2

s2 + k2
=

k

s2 + k2

(c) L {1− cos kt} =
1

k
· 1

(s/k)
[
(s/k)2 + 1

] =
1

k
· k3

s(s2 + k2)
=

k2

s(s2 + k2)

(d) L {sin kt sinh kt} =
1

k
· 2(s/k)

(s/k)4 + 4
=

1

k
· 2sk3

s4 + 4k4
=

2k2s

s4 + 4k4
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1.
{

1

s3

}
=

1

2

{
2

s3

}
=

1

2
t2

2.
{

1

s4

}
=

1

6

{
3!

s4

}

=
1

6
t3

3.
{

1

s2 − 48

s5

}
=

{
1

s2 − 48

24
· 4!

s5

}

= t − 2t4

4.

{(
2

s
− 1

s3

)2
}

=

{

4 · 1

s2 − 4

6
· 3!

s4 +
1

120
· 5!

s6

}

= 4t − 2

3
t3 +

1

120
t5

5.

{
(s + 1)3

s4

}

=

{
1

s
+ 3 · 1

s2 +
3

2
· 2

s3 +
1

6
· 3!

s4

}

= 1 + 3t +
3

2
t2 +

1

6
t3

6.

{
(s + 2)2

s3

}

=
{

1

s
+ 4 · 1

s2 + 2 · 2

s3

}
= 1 + 4t + 2t2

7.
{

1

s2 − 1

s
+

1

s − 2

}
= t − 1 + e2t

8.
{

4

s
+

6

s5 − 1

s + 8

}
=

{

4 · 1

s
+

1

4
· 4!

s5 − 1

s + 8

}

= 4 +
1

4
t4 − e−8t

9.
{

1

4s + 1

}
=

1

4

{
1

s + 1/4

}

=
1

4
e−t/4

10.
{

1

5s − 2

}
=

{
1

5
· 1

s − 2/5

}

=
1

5
e2t/5

11.
{

5

s2 + 49

}
=

{
5

7
· 7

s2 + 49

}
=

5

7
sin 7t

12.
{

10s

s2 + 16

}
= 10 cos 4t

13.
{

4s

4s2 + 1

}
=

{
s

s2 + 1/4

}

= cos
1

2
t

14.
{

1

4s2 + 1

}
=

{
1

2
· 1/2

s2 + 1/4

}

=
1

2
sin

1

2
t

q

7.2 Inverse Transforms and Transforms of Derivativesq
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15.
{

2s − 6

s2 + 9

}
=

{
2 · s

s2 + 9
− 2 · 3

s2 + 9

}
= 2 cos 3t − 2 sin 3t

16.
{

s + 1

s2 + 2

}
=

{
s

s2 + 2
+

1√
2

√
2

s2 + 2

}

= cos
√

2t +

√
2

2
sin

√
2 t

17.
{

1

s2 + 3s

}
=

{
1

3
· 1

s
− 1

3
· 1

s + 3

}
=

1

3
− 1

3
e−3t

18.
{

s + 1

s2 − 4s

}
=

{
−1

4
· 1

s
+

5

4
· 1

s − 4

}
= −1

4
+

5

4
e4t

19.
{

s

s2 + 2s − 3

}
=

{
1

4
· 1

s − 1
+

3

4
· 1

s + 3

}
=

1

4
et +

3

4
e−3t

20.
{

1

s2 + s − 20

}
=

{
1

9
· 1

s − 4
− 1

9
· 1

s + 5

}
=

1

9
e4t − 1

9
e−5t

21.

{
0.9s

(s − 0.1)(s + 0.2)

}

=
{
(0.3) · 1

s − 0.1
+ (0.6) · 1

s + 0.2

}
= 0.3e0.1t + 0.6e−0.2t

22.

{
s − 3

(s −
√

3 )(s +
√

3 )

}

=

{
s

s2 − 3
−

√
3 ·

√
3

s2 − 3

}

= cosh
√

3 t −
√

3 sinh
√

3 t

23.

{
s

(s − 2)(s − 3)(s − 6)

}

=
{

1

2
· 1

s − 2
− 1

s − 3
+

1

2
· 1

s − 6

}
=

1

2
e2t − e3t +

1

2
e6t

24.

{
s2 + 1

s(s − 1)(s + 1)(s − 2)

}

=
{

1

2
· 1

s
− 1

s − 1
− 1

3
· 1

s + 1
+

5

6
· 1

s − 2

}

=
1

2
− et − 1

3
e−t +

5

6
e2t

25.
{

1

s3 + 5s

}
=

{
1

s(s2 + 5)

}

=
{

1

5
· 1

s
− 1

5

s

s2 + 5

}
=

1

5
− 1

5
cos

√
5t

26.

{
s

(s2 + 4)(s + 2)

}

=
{

1

4
· s

s2 + 4
+

1

4
· 2

s2 + 4
− 1

4
· 1

s + 2

}
=

1

4
cos 2t +

1

4
sin 2t − 1

4
e−2t

27.

{
2s − 4

(s2 + s)(s2 + 1)

}

=

{
2s − 4

s(s + 1)(s2 + 1)

}

=
{
−4

s
+

3

s + 1
+

s

s2 + 1
+

3

s2 + 1

}

= −4 + 3e−t + cos t + 3 sin t

28.
{

1

s4 − 9

}
=

{
1

6
√

3
·

√
3

s2 − 3
− 1

6
√

3
·

√
3

s2 + 3

}

=
1

6
√

3
sinh

√
3 t − 1

6
√

3
sin

√
3 t
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29.

{
1

(s2 + 1)(s2 + 4)

}

=
{

1

3
· 1

s2 + 1
− 1

3
· 1

s2 + 4

}

=
{

1

3
· 1

s2 + 1
− 1

6
· 2

s2 + 4

}

=
1

3
sin t − 1

6
sin 2t

30.

{
6s + 3

(s2 + 1)(s2 + 4)

}

=
{
2 · s

s2 + 1
+

1

s2 + 1
− 2 · s

s2 + 4
− 1

2
· 2

s2 + 4

}

= 2 cos t + sin t − 2 cos 2t − 1

2
sin 2t

31. The Laplace transform of the initial-value problem is

s {y}− y(0) − {y} =
1

s
.

Solving for {y} we obtain

{y} = −1

s
+

1

s − 1
.

Thus

y = −1 + et.

32. The Laplace transform of the initial-value problem is

2s {y}− 2y(0) + {y} = 0.

Solving for {y} we obtain

{y} =
6

2s + 1
=

3

s + 1/2
.

Thus

y = 3e−t/2.

33. The Laplace transform of the initial-value problem is

s {y}− y(0) + 6 {y} =
1

s − 4
.

Solving for {y} we obtain

{y} =
1

(s − 4)(s + 6)
+

2

s + 6
=

1

10
· 1

s − 4
+

19

10
· 1

s + 6
.

Thus

y =
1

10
e4t +

19

10
e−6t.

34. The Laplace transform of the initial-value problem is

s {y}− {y} =
2s

s2 + 25
.
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Solving for {y} we obtain

{y} =
2s

(s − 1)(s2 + 25)
=

1

13
· 1

s − 1
− 1

13

s

s2 + 25
+

5

13
· 5

s2 + 25
.

Thus

y =
1

13
et − 1

13
cos 5t +

5

13
sin 5t.

35. The Laplace transform of the initial-value problem is

s2 {y}− sy(0) − y′(0) + 5 [s {y}− y(0)] + 4 {y} = 0.

Solving for {y} we obtain

{y} =
s + 5

s2 + 5s + 4
=

4

3

1

s + 1
− 1

3

1

s + 4
.

Thus

y =
4

3
e−t − 1

3
e−4t.

36. The Laplace transform of the initial-value problem is

s2 {y}− sy(0) − y′(0) − 4 [s {y}− y(0)] =
6

s − 3
− 3

s + 1
.

Solving for {y} we obtain

{y} =
6

(s − 3)(s2 − 4s)
− 3

(s + 1)(s2 − 4s)
+

s − 5

s2 − 4s

=
5

2
· 1

s
− 2

s − 3
− 3

5
· 1

s + 1
+

11

10
· 1

s − 4
.

Thus

y =
5

2
− 2e3t − 3

5
e−t +

11

10
e4t .

37. The Laplace transform of the initial-value problem is

s2 {y}− sy(0) + {y} =
2

s2 + 2
.

Solving for {y} we obtain

{y} =
2

(s2 + 1)(s2 + 2)
+

10s

s2 + 1
=

10s

s2 + 1
+

2

s2 + 1
− 2

s2 + 2
.

Thus

y = 10 cos t + 2 sin t −
√

2 sin
√

2 t.

38. The Laplace transform of the initial-value problem is

s2 {y} + 9 {y} =
1

s − 1
.
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Solving for {y} we obtain

{y} =
1

(s − 1)(s2 + 9)
=

1

10
· 1

s − 1
− 1

10
· 1

s2 + 9
− 1

10
· s

s2 + 9
.

Thus

y =
1

10
et − 1

30
sin 3t − 1

10
cos 3t.

39. The Laplace transform of the initial-value problem is

2
[
s3 {y}− s2y(0) − sy′(0) − y′′(0)

]
+3[s2 {y}−sy(0)−y′(0)]−3[s {y}−y(0)]−2 {y} =

1

s + 1
.

Solving for {y} we obtain

{y} =
2s + 3

(s + 1)(s − 1)(2s + 1)(s + 2)
=

1

2

1

s + 1
+

5

18

1

s − 1
− 8

9

1

s + 1/2
+

1

9

1

s + 2
.

Thus

y =
1

2
e−t +

5

18
et − 8

9
e−t/2 +

1

9
e−2t.

40. The Laplace transform of the initial-value problem is

s3 {y}− s2(0)− sy′(0)− y′′(0) + 2[s2 {y}− sy(0)− y′(0)]− [s {y}− y(0)]− 2 {y} =
3

s2 + 9
.

Solving for {y} we obtain

{y} =
s2 + 12

(s − 1)(s + 1)(s + 2)(s2 + 9)

=
13

60

1

s − 1
− 13

20

1

s + 1
+

16

39

1

s + 2
+

3

130

s

s2 + 9
− 1

65

3

s2 + 9
.

Thus

y =
13

60
et − 13

20
e−t +

16

39
e−2t +

3

130
cos 3t − 1

65
sin 3t.

41. The Laplace transform of the initial-value problem is

s {y} + {y} =
s + 3

s2 + 6s + 13
.

Solving for {y} we obtain

{y} =
s + 3

(s + 1)(s2 + 6s + 13)
=

1

4
· 1

s + 1
− 1

4
· s + 1

s2 + 6s + 13

=
1

4
· 1

s + 1
− 1

4

(
s + 3

(s + 3)2 + 4
− 2

(s + 3)2 + 4

)

.

Thus

y =
1

4
e−t − 1

4
e−3t cos 2t +

1

4
e−3t sin 2t.
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42. The Laplace transform of the initial-value problem is

s2 {y}− s · 1 − 3 − 2[s {y}− 1] + 5 {y} = (s2 − 2s + 5) {y}− s − 1 = 0.

Solving for {y} we obtain

{y} =
s + 1

s2 − 2s + 5
=

s − 1 + 2

(s − 1)2 + 22 =
s − 1

(s − 1)2 + 22 +
2

(s − 1)2 + 22 .

Thus

y = et cos 2t + et sin 2t.

43. (a) Differentiating f(t) = teat we get f ′(t) = ateat + eat so {ateat + eat} = s {teat}, where we

have used f(0) = 0. Writing the equation as

a {teat} + {eat} = s {teat}

and solving for {teat} we get

{teat} =
1

s − a
{eat} =

1

(s − a)2
.

(b) Starting with f(t) = t sin kt we have

f ′(t) = kt cos kt + sin kt

f ′′(t) = −k2t sin kt + 2k cos kt.

Then

{−k2t sin t + 2k cos kt} = s2 {t sin kt}

where we have used f(0) = 0 and f ′(0) = 0. Writing the above equation as

−k2 {t sin kt} + 2k {cos kt} = s2 {t sin kt}

and solving for {t sin kt} gives

{t sin kt} =
2k

s2 + k2 {cos kt} =
2k

s2 + k2

s

s2 + k2 =
2ks

(s2 + k2)2
.

44. Let f1(t) = 1 and f2(t) =

{
1, t ≥ 0, t $= 1

0, t = 1
. Then {f1(t)} = {f2(t)} = 1/s, but f1(t) $= f2(t).

45. For y′′ − 4y′ = 6e3t − 3e−t the transfer function is W (s) = 1/(s2 − 4s). The zero-input response is

y0(t) =
{

s − 5

s2 − 4s

}
=

{
5

4
· 1

s
− 1

4
· 1

s − 4

}
=

5

4
− 1

4
e4t ,
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and the zero-state response is

y1(t) =

{
6

(s − 3)(s2 − 4s)
− 3

(s + 1)(s2 − 4s)

}

=
{

27

20
· 1

s − 4
− 2

s − 3
+

5

4
· 1

s
− 3

5
· 1

s + 1

}

=
27

20
e4t − 2e3t +

5

4
− 3

5
e−t .

46. From Theorem 7.2.2, if f and f ′ are continuous and of exponential order, {f ′(t)} = sF (s)−f(0).

From Theorem 7.1.3, lims→∞ {f ′(t)} = 0 so

lim
s→∞[sF (s) − f(0)] = 0 and lim

s→∞F (s) = f(0).

For f(t) = cos kt,

lim
s→∞ sF (s) = lim

s→∞ s
s

s2 + k2 = 1 = f(0).

1.
{
te10t

}
=

1

(s − 10)2

2.
{
te−6t

}
=

1

(s + 6)2

3.
{
t3e−2t

}
=

3!

(s + 2)4

4.
{
t10e−7t

}
=

10!

(s + 7)11

5.
{
t
(
et + e2t

)2
}

=
{
te2t + 2te3t + te4t

}
=

1

(s − 2)2
+

2

(s − 3)2
+

1

(s − 4)2

6.
{
e2t(t − 1)2

}
=

{
t2e2t − 2te2t + e2t

}
=

2

(s − 2)3
− 2

(s − 2)2
+

1

s − 2

7.
{
et sin 3t

}
=

3

(s − 1)2 + 9

8.
{
e−2t cos 4t

}
=

s + 2

(s + 2)2 + 16

7.3 Operational Properties Iq
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9. {(1 − et + 3e−4t) cos 5t} = {cos 5t − et cos 5t + 3e−4t cos 5t}

=
s

s2 + 25
− s − 1

(s − 1)2 + 25
+

3(s + 4)

(s + 4)2 + 25

10.
{
e3t

(
9 − 4t + 10 sin

t

2

)}
=

{
9e3t − 4te3t + 10e3t sin

t

2

}
=

9

s − 3
− 4

(s − 3)2
+

5

(s − 3)2 + 1/4

11.

{
1

(s + 2)3

}

=

{
1

2

2

(s + 2)3

}

=
1

2
t2e−2t

12.

{
1

(s − 1)4

}

=
1

6

{
3!

(s − 1)4

}

=
1

6
t3et

13.
{

1

s2 − 6s + 10

}
=

{
1

(s − 3)2 + 12

}

= e3t sin t

14.
{

1

s2 + 2s + 5

}
=

{
1

2

2

(s + 1)2 + 22

}

=
1

2
e−t sin 2t

15.
{

s

s2 + 4s + 5

}
=

{
s + 2

(s + 2)2 + 12 − 2
1

(s + 2)2 + 12

}

= e−2t cos t − 2e−2t sin t

16.
{

2s + 5

s2 + 6s + 34

}
=

{

2
(s + 3)

(s + 3)2 + 52 − 1

5

5

(s + 3)2 + 52

}

= 2e−3t cos 5t − 1

5
e−3t sin 5t

17.

{
s

(s + 1)2

}

=

{
s + 1 − 1

(s + 1)2

}

=

{
1

s + 1
− 1

(s + 1)2

}

= e−t − te−t

18.

{
5s

(s − 2)2

}

=

{
5(s − 2) + 10

(s − 2)2

}

=

{
5

s − 2
+

10

(s − 2)2

}

= 5e2t + 10te2t

19.

{
2s − 1

s2(s + 1)3

}

=

{
5

s
− 1

s2 − 5

s + 1
− 4

(s + 1)2
− 3

2

2

(s + 1)3

}

= 5−t−5e−t−4te−t−3

2
t2e−t

20.

{
(s + 1)2

(s + 2)4

}

=

{
1

(s + 2)2
− 2

(s + 2)3
+

1

6

3!

(s + 2)4

}

= te−2t − t2e−2t +
1

6
t3e−2t

21. The Laplace transform of the differential equation is

s {y}− y(0) + 4 {y} =
1

s + 4
.

Solving for {y} we obtain

{y} =
1

(s + 4)2
+

2

s + 4
.

Thus

y = te−4t + 2e−4t.
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22. The Laplace transform of the differential equation is

s {y}− {y} =
1

s
+

1

(s − 1)2
.

Solving for {y} we obtain

{y} =
1

s(s − 1)
+

1

(s − 1)3
= −1

s
+

1

s − 1
+

1

(s − 1)3
.

Thus

y = −1 + et +
1

2
t2et.

23. The Laplace transform of the differential equation is

s2 {y}− sy(0) − y′(0) + 2[s {y}− y(0)] + {y} = 0.

Solving for {y} we obtain

{y} =
s + 3

(s + 1)2
=

1

s + 1
+

2

(s + 1)2
.

Thus

y = e−t + 2te−t.

24. The Laplace transform of the differential equation is

s2 {y}− sy(0) − y′(0) − 4 [s {y}− y(0)] + 4 {y} =
6

(s − 2)4
.

Solving for {y} we obtain {y} =
1

20

5!

(s − 2)6
. Thus, y =

1

20
t5e2t.

25. The Laplace transform of the differential equation is

s2 {y}− sy(0) − y′(0) − 6 [s {y}− y(0)] + 9 {y} =
1

s2 .

Solving for {y} we obtain

{y} =
1 + s2

s2(s − 3)2
=

2

27

1

s
+

1

9

1

s2 − 2

27

1

s − 3
+

10

9

1

(s − 3)2
.

Thus

y =
2

27
+

1

9
t − 2

27
e3t +

10

9
te3t.

26. The Laplace transform of the differential equation is

s2 {y}− sy(0) − y′(0) − 4 [s {y}− y(0)] + 4 {y} =
6

s4 .

Solving for {y} we obtain

{y} =
s5 − 4s4 + 6

s4(s − 2)2
=

3

4

1

s
+

9

8

1

s2 +
3

4

2

s3 +
1

4

3!

s4 +
1

4

1

s − 2
− 13

8

1

(s − 2)2
.
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Thus

y =
3

4
+

9

8
t +

3

4
t2 +

1

4
t3 +

1

4
e2t − 13

8
te2t.

27. The Laplace transform of the differential equation is

s2 {y}− sy(0) − y′(0) − 6 [s {y}− y(0)] + 13 {y} = 0.

Solving for {y} we obtain

{y} = − 3

s2 − 6s + 13
= −3

2

2

(s − 3)2 + 22 .

Thus

y = −3

2
e3t sin 2t.

28. The Laplace transform of the differential equation is

2[s2 {y}− sy(0)] + 20[s {y}− y(0)] + 51 {y} = 0.

Solving for {y} we obtain

{y} =
4s + 40

2s2 + 20s + 51
=

2s + 20

(s + 5)2 + 1/2
=

2(s + 5)

(s + 5)2 + 1/2
+

10

(s + 5)2 + 1/2
.

Thus

y = 2e−5t cos(t/
√

2 ) + 10
√

2 e−5t sin(t/
√

2 ).

29. The Laplace transform of the differential equation is

s2 {y}− sy(0) − y′(0) − [s {y}− y(0)] =
s − 1

(s − 1)2 + 1
.

Solving for {y} we obtain

{y} =
1

s(s2 − 2s + 2)
=

1

2

1

s
− 1

2

s − 1

(s − 1)2 + 1
+

1

2

1

(s − 1)2 + 1
.

Thus

y =
1

2
− 1

2
et cos t +

1

2
et sin t.

30. The Laplace transform of the differential equation is

s2 {y}− sy(0) − y′(0) − 2 [s {y}− y(0)] + 5 {y} =
1

s
+

1

s2 .

Solving for {y} we obtain

{y} =
4s2 + s + 1

s2(s2 − 2s + 5)
=

7

25

1

s
+

1

5

1

s2 +
−7s/25 + 109/25

s2 − 2s + 5

=
7

25

1

s
+

1

5

1

s2 − 7

25

s − 1

(s − 1)2 + 22 +
51

25

2

(s − 1)2 + 22 .
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Thus

y =
7

25
+

1

5
t − 7

25
et cos 2t +

51

25
et sin 2t.

31. Taking the Laplace transform of both sides of the differential equation and letting c = y(0) we

obtain

{y′′} + {2y′} + {y} = 0

s2 {y}− sy(0) − y′(0) + 2s {y}− 2y(0) + {y} = 0

s2 {y}− cs − 2 + 2s {y}− 2c + {y} = 0
(
s2 + 2s + 1

)
{y} = cs + 2c + 2

{y} =
cs

(s + 1)2
+

2c + 2

(s + 1)2

= c
s + 1 − 1

(s + 1)2
+

2c + 2

(s + 1)2

=
c

s + 1
+

c + 2

(s + 1)2
.

Therefore,

y(t) = c
{

1

s + 1

}
+ (c + 2)

{
1

(s + 1)2

}

= ce−t + (c + 2)te−t.

To find c we let y(1) = 2. Then 2 = ce−1 + (c + 2)e−1 = 2(c + 1)e−1 and c = e − 1. Thus

y(t) = (e − 1)e−t + (e + 1)te−t.

32. Taking the Laplace transform of both sides of the differential equation and letting c = y′(0) we

obtain

{y′′} + {8y′} + {20y} = 0

s2 {y}− y′(0) + 8s {y} + 20 {y} = 0

s2 {y}− c + 8s {y} + 20 {y} = 0

(s2 + 8s + 20) {y} = c

{y} =
c

s2 + 8s + 20
=

c

(s + 4)2 + 4
.

Therefore,

y(t) =

{
c

(s + 4)2 + 4

}

=
c

2
e−4t sin 2t = c1e

−4t sin 2t.
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To find c we let y′(π) = 0. Then 0 = y′(π) = ce−4π and c = 0. Thus, y(t) = 0. (Since the

differential equation is homogeneous and both boundary conditions are 0, we can see immediately

that y(t) = 0 is a solution. We have shown that it is the only solution.)

33. Recall from Section 5.1 that mx′′ = −kx − βx′. Now m = W/g = 4/32 = 1
8 slug, and 4 = 2k so

that k = 2 lb/ft. Thus, the differential equation is x′′ + 7x′ + 16x = 0. The initial conditions are

x(0) = −3/2 and x′(0) = 0. The Laplace transform of the differential equation is

s2 {x} +
3

2
s + 7s {x} +

21

2
+ 16 {x} = 0.

Solving for {x} we obtain

{x} =
−3s/2 − 21/2

s2 + 7s + 16
= −3

2

s + 7/2

(s + 7/2)2 + (
√

15/2)2
− 7

√
15

10

√
15/2

(s + 7/2)2 + (
√

15/2)2
.

Thus

x = −3

2
e−7t/2 cos

√
15

2
t − 7

√
15

10
e−7t/2 sin

√
15

2
t.

34. The differential equation is

d2q

dt2
+ 20

dq

dt
+ 200q = 150, q(0) = q′(0) = 0.

The Laplace transform of this equation is

s2 {q} + 20s {q} + 200 {q} =
150

s
.

Solving for {q} we obtain

{q} =
150

s(s2 + 20s + 200)
=

3

4

1

s
− 3

4

s + 10

(s + 10)2 + 102 − 3

4

10

(s + 10)2 + 102 .

Thus

q(t) =
3

4
− 3

4
e−10t cos 10t − 3

4
e−10t sin 10t

and

i(t) = q′(t) = 15e−10t sin 10t.

35. The differential equation is

d2q

dt2
+ 2λ

dq

dt
+ ω2q =

E0

L
, q(0) = q′(0) = 0.

The Laplace transform of this equation is

s2 {q} + 2λs {q} + ω2 {q} =
E0

L

1

s
or (

s2 + 2λs + ω2
)

{q} =
E0

L

1

s
.
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Solving for {q} and using partial fractions we obtain

{q} =
E0

L

(
1/ω2

s
− (1/ω2)s + 2λ/ω2

s2 + 2λs + ω2

)

=
E0

Lω2

(
1

s
− s + 2λ

s2 + 2λs + ω2

)

.

For λ > ω we write s2 + 2λs + ω2 = (s + λ)2 −
(
λ2 − ω2

)
, so (recalling that ω2 = 1/LC)

{q} = E0C

(
1

s
− s + λ

(s + λ)2 − (λ2 − ω2)
− λ

(s + λ)2 − (λ2 − ω2)

)

.

Thus for λ > ω,

q(t) = E0C

[

1 − e−λt

(

cosh
√

λ2 − ω2 t − λ√
λ2 − ω2

sinh
√

λ2 − ω2 t

)]

.

For λ < ω we write s2 + 2λs + ω2 = (s + λ)2 +
(
ω2 − λ2

)
, so

{q} = E0C

(
1

s
− s + λ

(s + λ)2 + (ω2 − λ2)
− λ

(s + λ)2 + (ω2 − λ2)

)

.

Thus for λ < ω,

q(t) = E0C

[

1 − e−λt

(

cos
√

ω2 − λ2 t − λ√
ω2 − λ2

sin
√

ω2 − λ2 t

)]

.

For λ = ω, s2 + 2λ + ω2 = (s + λ)2 and

{q} =
E0

L

1

s(s + λ)2
=

E0

L

(
1/λ2

s
− 1/λ2

s + λ
− 1/λ

(s + λ)2

)

=
E0

Lλ2

(
1

s
− 1

s + λ
− λ

(s + λ)2

)

.

Thus for λ = ω,

q(t) = E0C
(
1 − e−λt − λte−λt

)
.

36. The differential equation is

R
dq

dt
+

1

C
q = E0e

−kt, q(0) = 0.

The Laplace transform of this equation is

Rs {q} +
1

C
{q} = E0

1

s + k
.

Solving for {q} we obtain

{q} =
E0C

(s + k)(RCs + 1)
=

E0/R

(s + k)(s + 1/RC)
.

When 1/RC $= k we have by partial fractions

{q} =
E0

R

(
1/(1/RC − k)

s + k
− 1/(1/RC − k)

s + 1/RC

)

=
E0

R

1

1/RC − k

(
1

s + k
− 1

s + 1/RC

)

.

Thus

q(t) =
E0C

1 − kRC

(
e−kt − e−t/RC

)
.
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When 1/RC = k we have

{q} =
E0

R

1

(s + k)2
.

Thus

q(t) =
E0

R
te−kt =

E0

R
te−t/RC .

37. {(t − 1) (t − 1)} =
e−s

s2

38. {e2−t (t − 2)} =
{
e−(t−2) (t − 2)

}
=

e−2s

s + 1

39. {t (t − 2)} = {(t − 2) (t − 2) + 2 (t − 2)} =
e−2s

s2 +
2e−2s

s
Alternatively, (16) of this section in the text could be used:

{t (t − 2)} = e−2s {t + 2} = e−2s
(

1

s2 +
2

s

)
.

40. {(3t + 1) (t − 1)} = 3 {(t − 1) (t − 1)} + 4 { (t − 1)} =
3e−s

s2 +
4e−s

s
Alternatively, (16) of this section in the text could be used:

{(3t + 1) (t − 1)} = e−s {3t + 4} = e−s
(

3

s2 +
4

s

)
.

41. {cos 2t (t − π)} = {cos 2(t − π) (t − π)} =
se−πs

s2 + 4
Alternatively, (16) of this section in the text could be used:

{cos 2t (t − π)} = e−πs {cos 2(t + π)} = e−πs {cos 2t} = e−πs s

s2 + 4
.

42.
{
sin t

(
t − π

2

)}
=

{
cos

(
t − π

2

) (
t − π

2

)}
=

se−πs/2

s2 + 1

Alternatively, (16) of this section in the text could be used:
{
sin t

(
t − π

2

)}
= e−πs/2

{
sin

(
t +

π

2

)}
= e−πs/2 {cos t} = e−πs/2 s

s2 + 1
.

43.

{
e−2s

s3

}

=
{

1

2
· 2

s3 e−2s
}

=
1

2
(t − 2)2 (t − 2)

44.

{
(1 + e−2s)2

s + 2

}

=

{
1

s + 2
+

2e−2s

s + 2
+

e−4s

s + 2

}

= e−2t+2e−2(t−2) (t−2)+e−2(t−4) (t−4)

45.

{
e−πs

s2 + 1

}

= sin(t − π) (t − π) = − sin t (t − π)
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46.

{
se−πs/2

s2 + 4

}

= cos 2
(
t − π

2

) (
t − π

2

)
= − cos 2t

(
t − π

2

)

47.

{
e−s

s(s + 1)

}

=

{
e−s

s
− e−s

s + 1

}

= (t − 1) − e−(t−1) (t − 1)

48.

{
e−2s

s2(s − 1)

}

=

{

−e−2s

s
− e−2s

s2 +
e−2s

s − 1

}

= − (t− 2)− (t− 2) (t− 2) + et−2 (t− 2)

49. (c) 50. (e) 51. (f) 52. (b) 53. (a) 54. (d)

55. {2 − 4 (t − 3)} =
2

s
− 4

s
e−3s

56. {1 − (t − 4) + (t − 5)} =
1

s
− e−4s

s
+

e−5s

s

57.
{
t2 (t − 1)

}
=

{[
(t − 1)2 + 2t − 1

]
(t − 1)

}
=

{[
(t − 1)2 + 2(t − 1) + 1

]
(t − 1)

}

=
(

2

s3 +
2

s2 +
1

s

)
e−s

Alternatively, by (16) of this section in the text,

{t2 (t − 1)} = e−s {t2 + 2t + 1} = e−s
(

2

s3 +
2

s2 +
1

s

)
.

58.
{
sin t

(
t − 3π

2

)}
=

{
− cos

(
t − 3π

2

) (
t − 3π

2

)}
= −se−3πs/2

s2 + 1

59. {t − t (t − 2)} = {t − (t − 2) (t − 2) − 2 (t − 2)} =
1

s2 − e−2s

s2 − 2e−2s

s

60. {sin t − sin t (t − 2π)} = {sin t − sin(t − 2π) (t − 2π)} =
1

s2 + 1
− e−2πs

s2 + 1

61. {f(t)} = { (t − a) − (t − b)} =
e−as

s
− e−bs

s

62. {f(t)} = { (t − 1) + (t − 2) + (t − 3) + · · ·} =
e−s

s
+

e−2s

s
+

e−3s

s
+ · · · =

1

s

e−s

1 − e−s

63. The Laplace transform of the differential equation is

s {y}− y(0) + {y} =
5

s
e−s.

Solving for {y} we obtain

{y} =
5e−s

s(s + 1)
= 5e−s

[
1

s
− 1

s + 1

]
.
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Thus

y = 5 (t − 1) − 5e−(t−1) (t − 1).

64. The Laplace transform of the differential equation is

s {y}− y(0) + {y} =
1

s
− 2

s
e−s.

Solving for {y} we obtain

{y} =
1

s(s + 1)
− 2e−s

s(s + 1)
=

1

s
− 1

s + 1
− 2e−s

[
1

s
− 1

s + 1

]
.

Thus

y = 1 − e−t − 2
[
1 − e−(t−1)

]
(t − 1).

65. The Laplace transform of the differential equation is

s {y}− y(0) + 2 {y} =
1

s2 − e−s s + 1

s2 .

Solving for {y} we obtain

{y} =
1

s2(s + 2)
− e−s s + 1

s2(s + 2)
= −1

4

1

s
+

1

2

1

s2 +
1

4

1

s + 2
− e−s

[
1

4

1

s
+

1

2

1

s2 − 1

4

1

s + 2

]
.

Thus

y = −1

4
+

1

2
t +

1

4
e−2t −

[
1

4
+

1

2
(t − 1) − 1

4
e−2(t−1)

]
(t − 1).

66. The Laplace transform of the differential equation is

s2 {y}− sy(0) − y′(0) + 4 {y} =
1

s
− e−s

s
.

Solving for {y} we obtain

{y} =
1 − s

s(s2 + 4)
− e−s 1

s(s2 + 4)
=

1

4

1

s
− 1

4

s

s2 + 4
− 1

2

2

s2 + 4
− e−s

[
1

4

1

s
− 1

4

s

s2 + 4

]
.

Thus

y =
1

4
− 1

4
cos 2t − 1

2
sin 2t −

[
1

4
− 1

4
cos 2(t − 1)

]
(t − 1).

67. The Laplace transform of the differential equation is

s2 {y}− sy(0) − y′(0) + 4 {y} = e−2πs 1

s2 + 1
.

Solving for {y} we obtain

{y} =
s

s2 + 4
+ e−2πs

[
1

3

1

s2 + 1
− 1

6

2

s2 + 4

]
.

Thus

y = cos 2t +
[
1

3
sin(t − 2π) − 1

6
sin 2(t − 2π)

]
(t − 2π).
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68. The Laplace transform of the differential equation is

s2 {y}− sy(0) − y′(0) − 5 [s {y}− y(0)] + 6 {y} =
e−s

s
.

Solving for {y} we obtain

{y} = e−s 1

s(s − 2)(s − 3)
+

1

(s − 2)(s − 3)

= e−s
[
1

6

1

s
− 1

2

1

s − 2
+

1

3

1

s − 3

]
− 1

s − 2
+

1

s − 3
.

Thus

y =
[
1

6
− 1

2
e2(t−1) +

1

3
e3(t−1)

]
(t − 1) − e2t + e3t.

69. The Laplace transform of the differential equation is

s2 {y}− sy(0) − y′(0) + {y} =
e−πs

s
− e−2πs

s
.

Solving for {y} we obtain

{y} = e−πs
[
1

s
− s

s2 + 1

]
− e−2πs

[
1

s
− s

s2 + 1

]
+

1

s2 + 1
.

Thus

y = [1 − cos(t − π)] (t − π) − [1 − cos(t − 2π)] (t − 2π) + sin t.

70. The Laplace transform of the differential equation is

s2 {y}− sy(0) − y′(0) + 4[s {y}− y(0)] + 3 {y} =
1

s
− e−2s

s
− e−4s

s
+

e−6s

s
.

Solving for {y} we obtain

{y} =
1

3

1

s
− 1

2

1

s + 1
+

1

6

1

s + 3
− e−2s

[
1

3

1

s
− 1

2

1

s + 1
+

1

6

1

s + 3

]

− e−4s
[
1

3

1

s
− 1

2

1

s + 1
+

1

6

1

s + 3

]
+ e−6s

[
1

3

1

s
− 1

2

1

s + 1
+

1

6

1

s + 3

]
.

Thus

y =
1

3
− 1

2
e−t +

1

6
e−3t −

[
1

3
− 1

2
e−(t−2) +

1

6
e−3(t−2)

]
(t − 2)

−
[
1

3
− 1

2
e−(t−4) +

1

6
e−3(t−4)

]
(t − 4) +

[
1

3
− 1

2
e−(t−6) +

1

6
e−3(t−6)

]
(t − 6).

71. Recall from Section 5.1 that mx′′ = −kx + f(t). Now m = W/g = 32/32 = 1 slug, and 32 = 2k

so that k = 16 lb/ft. Thus, the differential equation is x′′ + 16x = f(t). The initial conditions are

x(0) = 0, x′(0) = 0. Also, since

f(t) =

{ 20t, 0 ≤ t < 5

0, t ≥ 5
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and 20t = 20(t − 5) + 100 we can write

f(t) = 20t − 20t (t − 5) = 20t − 20(t − 5) (t − 5) − 100 (t − 5).

The Laplace transform of the differential equation is

s2 {x} + 16 {x} =
20

s2 − 20

s2 e−5s − 100

s
e−5s.

Solving for {x} we obtain

{x} =
20

s2(s2 + 16)
− 20

s2(s2 + 16)
e−5s − 100

s(s2 + 16)
e−5s

=
(

5

4
· 1

s2 − 5

16
· 4

s2 + 16

)
(1 − e−5s) −

(
25

4
· 1

s
− 25

4
· s

s2 + 16

)
e−5s.

Thus

x(t) =
5

4
t − 5

16
sin 4t −

[
5

4
(t − 5) − 5

16
sin 4(t − 5)

]
(t − 5) −

[
25

4
− 25

4
cos 4(t − 5)

]
(t − 5)

=
5

4
t − 5

16
sin 4t − 5

4
t (t − 5) +

5

16
sin 4(t − 5) (t − 5) +

25

4
cos 4(t − 5) (t − 5).

72. Recall from Section 5.1 that mx′′ = −kx + f(t). Now m = W/g = 32/32 = 1 slug, and 32 = 2k

so that k = 16 lb/ft. Thus, the differential equation is x′′ + 16x = f(t). The initial conditions are

x(0) = 0, x′(0) = 0. Also, since

f(t) =

{
sin t, 0 ≤ t < 2π

0, t ≥ 2π

and sin t = sin(t − 2π) we can write

f(t) = sin t − sin(t − 2π) (t − 2π).

The Laplace transform of the differential equation is

s2 {x} + 16 {x} =
1

s2 + 1
− 1

s2 + 1
e−2πs.

Solving for {x} we obtain

{x} =
1

(s2 + 16) (s2 + 1)
− 1

(s2 + 16) (s2 + 1)
e−2πs

=
−1/15

s2 + 16
+

1/15

s2 + 1
−

[
−1/15

s2 + 16
+

1/15

s2 + 1

]

e−2πs.

Thus

x(t) = − 1

60
sin 4t +

1

15
sin t +

1

60
sin 4(t − 2π) (t − 2π) − 1

15
sin(t − 2π) (t − 2π)

=





− 1

60 sin 4t + 1
15 sin t, 0 ≤ t < 2π

0, t ≥ 2π.
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73. The differential equation is

2.5
dq

dt
+ 12.5q = 5 (t − 3).

The Laplace transform of this equation is

s {q} + 5 {q} =
2

s
e−3s.

Solving for {q} we obtain

{q} =
2

s(s + 5)
e−3s =

(
2

5
· 1

s
− 2

5
· 1

s + 5

)
e−3s.

Thus

q(t) =
2

5
(t − 3) − 2

5
e−5(t−3) (t − 3).

74. The differential equation is

10
dq

dt
+ 10q = 30et − 30et (t − 1.5).

The Laplace transform of this equation is

s {q}− q0 + {q} =
3

s − 1
− 3e1.5

s − 1.5
e−1.5s.

Solving for {q} we obtain

{q} =
(
q0 −

3

2

)
· 1

s + 1
+

3

2
· 1

s − 1
− 3e1.5

(
−2/5

s + 1
+

2/5

s − 1.5

)

e−1.5s.

Thus

q(t) =
(
q0 −

3

2

)
e−t +

3

2
et +

6

5
e1.5

(
e−(t−1.5) − e1.5(t−1.5)

)
(t − 1.5).

75. (a) The differential equation is

di

dt
+ 10i = sin t + cos

(
t − 3π

2

) (
t − 3π

2

)
, i(0) = 0.

The Laplace transform of this equation is

s {i} + 10 {i} =
1

s2 + 1
+

se−3πs/2

s2 + 1
.

Solving for {i} we obtain

{i} =
1

(s2 + 1)(s + 10)
+

s

(s2 + 1)(s + 10)
e−3πs/2

=
1

101

(
1

s + 10
− s

s2 + 1
+

10

s2 + 1

)
+

1

101

( −10

s + 10
+

10s

s2 + 1
+

1

s2 + 1

)
e−3πs/2.

7.3                 Operational Properties I 419

© 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part, except for use as permitted in a license distributed 
with a certain product or service or otherwise on a password-protected website for classroom use. Not For Sale

©
 C

en
ga

ge
 L

ea
rn

in
g.

 A
ll 

rig
ht

s r
es

er
ve

d.
 N

o 
di

st
rib

ut
io

n 
al

lo
w

ed
 w

ith
ou

t e
xp

re
ss

 a
ut

ho
riz

at
io

n.



Thus

i(t) =
1

101

(
e−10t − cos t + 10 sin t

)

+
1

101

[
−10e−10(t−3π/2) + 10 cos

(
t − 3π

2

)
+ sin

(
t − 3π

2

)] (
t − 3π

2

)
.

(b)

The maximum value of i(t) is approximately 0.1 at t = 1.7, the minimum is approximately −0.1

at 4.7. [Using Mathematica we see that the maximum value is i(t) is 0.0995037 at t = 1.670465,

and the mininum value is i(3π/2) ≈ −0.0990099 at t = 3π/2.]

76. (a) The differential equation is

50
dq

dt
+

1

0.01
q = E0[ (t − 1) − (t − 3)], q(0) = 0

or

50
dq

dt
+ 100q = E0[ (t − 1) − (t − 3)], q(0) = 0.

The Laplace transform of this equation is

50s {q} + 100 {q} = E0

(
1

s
e−s − 1

s
e−3s

)
.

Solving for {q} we obtain

{q} =
E0

50

[
e−s

s(s + 2)
− e−3s

s(s + 2)

]

=
E0

50

[
1

2

(
1

s
− 1

s + 2

)
e−s − 1

2

(
1

s
− 1

s + 2

)
e−3s

]
.

Thus

q(t) =
E0

100

[(
1 − e−2(t−1)

)
(t − 1) −

(
1 − e−2(t−3)

)
(t − 3)

]
.

(b)

Assuming E0 = 100, the maximum value of q(t) is approximately 1 at t = 3. [Using Mathe-

matica we see that the maximum value of q(t) is 0.981684 at t = 3.]
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77. The differential equation is

EI
d4y

dx4 = w0[1 − (x − L/2)].

Taking the Laplace transform of both sides and using y(0) = y′(0) = 0 we obtain

s4 {y}− sy′′(0) − y′′′(0) =
w0

EI

1

s

(
1 − e−Ls/2

)
.

Letting y′′(0) = c1 and y′′′(0) = c2 we have

{y} =
c1

s3 +
c2

s4 +
w0

EI

1

s5

(
1 − e−Ls/2

)

so that

y(x) =
1

2
c1x

2 +
1

6
c2x

3 +
1

24

w0

EI

[

x4 −
(
x − L

2

)4 (
x − L

2

)]

.

To find c1 and c2 we compute

y′′(x) = c1 + c2x +
1

2

w0

EI

[

x2 −
(
x − L

2

)2 (
x − L

2

)]

and

y′′′(x) = c2 +
w0

EI

[
x −

(
x − L

2

) (
x − L

2

)]
.

Then y′′(L) = y′′′(L) = 0 yields the system

c1 + c2L +
1

2

w0

EI

[

L2 −
(

L

2

)2]

= c1 + c2L +
3

8

w0L2

EI
= 0

c2 +
w0

EI

(
L

2

)
= c2 +

1

2

w0L

EI
= 0.

Solving for c1 and c2 we obtain c1 = 1
8w0L2/EI and c2 = −1

2w0L/EI. Thus

y(x) =
w0

EI

[
1

16
L2x2 − 1

12
Lx3 +

1

24
x4 − 1

24

(
x − L

2

)4 (
x − L

2

)]

.

78. The differential equation is

EI
d4y

dx4 = w0[ (x − L/3) − (x − 2L/3)].

Taking the Laplace transform of both sides and using y(0) = y′(0) = 0 we obtain

s4 {y}− sy′′(0) − y′′′(0) =
w0

EI

1

s

(
e−Ls/3 − e−2Ls/3

)
.

Letting y′′(0) = c1 and y′′′(0) = c2 we have

{y} =
c1

s3 +
c2

s4 +
w0

EI

1

s5

(
e−Ls/3 − e−2Ls/3

)
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so that

y(x) =
1

2
c1x

2 +
1

6
c2x

3 +
1

24

w0

EI

[(
x − L

3

)4 (
x − L

3

)
−

(
x − 2L

3

)4 (
x − 2L

3

)]

.

To find c1 and c2 we compute

y′′(x) = c1 + c2x +
1

2

w0

EI

[(
x − L

3

)2 (
x − L

3

)
−

(
x − 2L

3

)2 (
x − 2L

3

)]

and

y′′′(x) = c2 +
w0

EI

[(
x − L

3

) (
x − L

3

)
−

(
x − 2L

3

) (
x − 2L

3

)]
.

Then y′′(L) = y′′′(L) = 0 yields the system

c1 + c2L +
1

2

w0

EI

[(
2L

3

)2

−
(

L

3

)2]

= c1 + c2L +
1

6

w0L2

EI
= 0

c2 +
w0

EI

[
2L

3
− L

3

]
= c2 +

1

3

w0L

EI
= 0.

Solving for c1 and c2 we obtain c1 = 1
6w0L2/EI and c2 = −1

3w0L/EI. Thus

y(x) =
w0

EI

(
1

12
L2x2 − 1

18
Lx3 +

1

24

[(
x − L

3

)4 (
x − L

3

)
−

(
x − 2L

3

)4 (
x − 2L

3

)])

.

79. The differential equation is

EI
d4y

dx4 =
2w0

L

[
L

2
− x +

(
x − L

2

) (
x − L

2

)]
.

Taking the Laplace transform of both sides and using y(0) = y′(0) = 0 we obtain

s4 {y}− sy′′(0) − y′′′(0) =
2w0

EIL

[
L

2s
− 1

s2 +
1

s2 e−Ls/2
]
.

Letting y′′(0) = c1 and y′′′(0) = c2 we have

{y} =
c1

s3 +
c2

s4 +
2w0

EIL

[
L

2s5 − 1

s6 +
1

s6 e−Ls/2
]

so that

y(x) =
1

2
c1x

2 +
1

6
c2x

3 +
2w0

EIL

[
L

48
x4 − 1

120
x5 +

1

120

(
x − L

2

)5 (
x − L

2

)]

=
1

2
c1x

2 +
1

6
c2x

3 +
w0

60EIL

[
5L

2
x4 − x5 +

(
x − L

2

)5 (
x − L

2

)]

.

To find c1 and c2 we compute

y′′(x) = c1 + c2x +
w0

60EIL

[

30Lx2 − 20x3 + 20
(
x − L

2

)3 (
x − L

2

)]
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and

y′′′(x) = c2 +
w0

60EIL

[

60Lx − 60x2 + 60
(
x − L

2

)2 (
x − L

2

)]

.

Then y′′(L) = y′′′(L) = 0 yields the system

c1 + c2L +
w0

60EIL

[
30L3 − 20L3 +

5

2
L3

]
= c1 + c2L +

5w0L2

24EI
= 0

c2 +
w0

60EIL
[60L2 − 60L2 + 15L2] = c2 +

w0L

4EI
= 0.

Solving for c1 and c2 we obtain c1 = w0L2/24EI and c2 = −w0L/4EI. Thus

y(x) =
w0L2

48EI
x2 − w0L

24EI
x3 +

w0

60EIL

[
5L

2
x4 − x5 +

(
x − L

2

)5 (
x − L

2

)]

.

80. The differential equation is

EI
d4y

dx4 = w0[1 − (x − L/2)].

Taking the Laplace transform of both sides and using y(0) = y′(0) = 0 we obtain

s4 {y}− sy′′(0) − y′′′(0) =
w0

EI

1

s

(
1 − e−Ls/2

)
.

Letting y′′(0) = c1 and y′′′(0) = c2 we have

{y} =
c1

s3 +
c2

s4 +
w0

EI

1

s5

(
1 − e−Ls/2

)

so that

y(x) =
1

2
c1x

2 +
1

6
c2x

3 +
1

24

w0

EI

[

x4 −
(
x − L

2

)4 (
x − L

2

)]

.

To find c1 and c2 we compute

y′′(x) = c1 + c2x +
1

2

w0

EI

[

x2 −
(
x − L

2

)2 (
x − L

2

)]

.

Then y(L) = y′′(L) = 0 yields the system

1

2
c1L

2 +
1

6
c2L

3 +
1

24

w0

EI

[

L4 −
(

L

2

)4]

=
1

2
c1L

2 +
1

6
c2L

3 +
5w0

128EI
L4 = 0

c1 + c2L +
1

2

w0

EI

[

L2 −
(

L

2

)2]

= c1 + c2L +
3w0

8EI
L2 = 0.

Solving for c1 and c2 we obtain c1 = 9
128 w0L2/EI and c2 = − 57

128 w0L/EI. Thus

y(x) =
w0

EI

[
9

256
L2x2 − 19

256
Lx3 +

1

24
x4 − 1

24

(
x − L

2

)4 (
x − L

2

)]

.
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81. (a) The temperature T of the cake inside the oven is modeled by

dT

dt
= k(T − Tm)

where Tm is the ambient temperature of the oven. For 0 ≤ t ≤ 4, we have

Tm = 70 +
300 − 70

4 − 0
t = 70 + 57.5t.

Hence for t ≥ 0,

Tm =

{
70 + 57.5t, 0 ≤ t < 4

300, t ≥ 4.

In terms of the unit step function,

Tm = (70 + 57.5t)[1 − (t − 4)] + 300 (t − 4) = 70 + 57.5t + (230 − 57.5t) (t − 4).

The initial-value problem is then

dT

dt
= k[T − 70 − 57.5t − (230 − 57.5t) (t − 4)], T (0) = 70.

(b) Let t(s) = {T (t)}. Transforming the equation, using 230−57.5t = −57.5(t−4) and

Theorem 7.3.2, gives

st(s) − 70 = k
(
t(s) − 70

s
− 57.5

s2 +
57.5

s2 e−4s
)

or

t(s) =
70

s − k
− 70k

s(s − k)
− 57.5k

s2(s − k)
+

57.5k

s2(s − k)
e−4s.

After using partial functions, the inverse transform is then

T (t) = 70 + 57.5
(

1

k
+ t − 1

k
ekt

)
− 57.5

(
1

k
+ t − 4 − 1

k
ek(t−4)

)
(t − 4).

Of course, the obvious question is: What is k? If the cake is supposed to bake for, say, 20

minutes, then T (20) = 300. That is,

300 = 70 + 57.5
(

1

k
+ 20 − 1

k
e20k

)
− 57.5

(
1

k
+ 16 − 1

k
e16k

)
.

But this equation has no physically meaningful solution. This should be no surprise since the

model predicts the asymptotic behavior T (t) → 300 as t increases. Using T (20) = 299 instead,

we find, with the help of a CAS, that k ≈ −0.3.

82. We use the fact that Theorem 7.3.2 can be written as

{f(t − a) (t − a)} = e−as {f(t)}.

(a) Indentifying a = 1 we have

{(2t + 1) (t − 1)} = {[2(t − 1) + 3] (t − 1)} = e−s {2t + 3} = e−s
(

2

s2 +
3

s

)
.

CHAPTER 7 THE LAPLACE TRANSFORM424

© 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part, except for use as permitted in a license distributed 
with a certain product or service or otherwise on a password-protected website for classroom use. 

Not For Sale

©
 C

en
ga

ge
 L

ea
rn

in
g.

 A
ll 

rig
ht

s r
es

er
ve

d.
 N

o 
di

st
rib

ut
io

n 
al

lo
w

ed
 w

ith
ou

t e
xp

re
ss

 a
ut

ho
riz

at
io

n.



Using (16) in the text we have

{(2t + 1) (t − 1)} = e−s {2(t + 1) + 1} = e−s {2t + 3} = e−s
(

2

s2 +
3

s

)
.

(b) Indentifying a = 5 we have

{et (t − 5)} = {et−5+5 (t − 5)} = e5 {et−5 (t − 5)} = e5e−5s {et} =
e−5(s−1)

s − 1
.

Using (16) in the text we have

{et (t − 5)} = e−5s {et+5} = e−5se5 {et} =
e−5(s−1)

s − 1
.

(c) Indentifying a = π we have

{cos t (t − π)} = − {cos(t − π) (t − π)} = −e−πs {cos t} = − se−πs

s2 + 1
.

Using (16) in the text we have

{cos t (t − π)} = e−πs {cos(t + π)} = −e−πs {cos t} = − se−πs

s2 + 1
.

(d) Indentifying a = 2 we have

{(t2 − 3t) (t − 2)} = {[(t − 2)2 + 4t − 4 − 3t] (t − 2)}

= {[(t − 2)2 + (t − 2) − 2] (t − 2)}

= e−2s {t2 + t − 2} = e−2s
(

2

s3 +
1

s2 − 2

s

)
.

Using (16) in the text we have

{(t2 − 3t) (t − 2)} = e−2s {(t + 2)2 − 3(t + 2)}

= e−2s {t2 + t − 2} = e−2s
(

2

s3 +
1

s2 − 2

s

)
.

83. (a) From Theorem 7.3.1 we have {tekti} = 1/(s − ki)2. Then, using Euler’s formula,

{tekti} = {t cos kt + it sin kt} = {t cos kt} + i {t sin kt}

=
1

(s − ki)2
=

(s + ki)2

(s2 + k2)2
=

s2 − k2

(s2 + k2)2
+ i

2ks

(s2 + k2)2
.

Equating real and imaginary parts we have

{t cos kt} =
s2 − k2

(s2 + k2)2
and {t sin kt} =

2ks

(s2 + k2)2
.
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(b) The Laplace transform of the differential equation is

s2 {x} + ω2 {x} =
s

s2 + ω2 .

Solving for {x} we obtain {x} = s/(s2 + ω2)2. Thus x = (1/2ω)t sin ωt.

7.4 Operational Properties IIq

7.4.1 DERIVATIVES OF A TRANSFORM

1. L
{
te−10t

}
= − d

ds

(
1

s+ 10

)
=

1

(s+ 10)2

2. L
{
t3et

}
= (−1)3

d3

ds3

(
1

s− 1

)
=

6

(s− 1)4

3. L {t cos 2t} = − d

ds

(
s

s2 + 4

)
=

s2 − 4

(s2 + 4)2

4. L {t sinh 3t} = − d

ds

(
3

s2 − 9

)
=

6s

(s2 − 9)2

5. L
{
t2 sinh t

}
=

d2

ds2

(
1

s2 − 1

)
=

6s2 + 2

(s2 − 1)3

6. L
{
t2 cos t

}
=

d2

ds2

(
s

s2 + 1

)
=

d

ds

(
1− s2

(s2 + 1)2

)
=

2s
(
s2 − 3

)
(s2 + 1)3

7. L
{
te2t sin 6t

}
= − d

ds

(
6

(s− 2)2 + 36

)
=

12(s− 2)

[(s− 2)2 + 36]2

8. L
{
te−3t cos 3t

}
= − d

ds

(
s+ 3

(s+ 3)2 + 9

)
=

(s+ 3)2 − 9

[(s+ 3)2 + 9]2

9. The Laplace transform of the differential equation is

sL {y}+ L {y} =
2s

(s2 + 1)2
.

Solving for L {y} we obtain

L {y} =
2s

(s+ 1)(s2 + 1)2
= −1

2

1

s+ 1
− 1

2

1

s2 + 1
+

1

2

s

s2 + 1
+

1

(s2 + 1)2
+

s

(s2 + 1)2
.
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Thus

y(t) = −1

2
e−t − 1

2
sin t+

1

2
cos t+

1

2
(sin t− t cos t) +

1

2
t sin t

= −1

2
e−t +

1

2
cos t− 1

2
t cos t+

1

2
t sin t.

10. The Laplace transform of the differential equation is

sL {y} −L {y} =
2(s− 1)

((s− 1)2 + 1)2
.

Solving for L {y} we obtain

L {y} =
2

((s− 1)2 + 1)2
.

Thus y = et sin t− tet cos t.

11. The Laplace transform of the differential equation is

s2L {y} − sy(0)− y′(0) + 9L {y} =
s

s2 + 9
.

Letting y(0) = 2 and y′(0) = 5 and solving for L {y} we obtain

L {y} =
2s3 + 5s2 + 19s+ 45

(s2 + 9)2
=

2s

s2 + 9
+

5

s2 + 9
+

s

(s2 + 9)2
.

Thus

y = 2 cos 3t+
5

3
sin 3t+

1

6
t sin 3t.

12. The Laplace transform of the differential equation is

s2L {y} − sy(0)− y′(0) + L {y} =
1

s2 + 1
.

Solving for L {y} we obtain

L {y} =
s3 − s2 + s

(s2 + 1)2
=

s

s2 + 1
− 1

s2 + 1
+

1

(s2 + 1)2
.

Thus

y = cos t− sin t+

(
1

2
sin t− 1

2
t cos t

)
= cos t− 1

2
sin t− 1

2
t cos t.

13. The Laplace transform of the differential equation is

s2L {y} − sy(0)− y′(0) + 16L {y} = L {cos 4t− cos 4tU (t− π)}

or by (16) of Section 7.3,

(s2 + 16)L {y} = 1 +
s

s2 + 16
− e−πsL {cos 4(t+ π)}

= 1 +
s

s2 + 16
− e−πsL {cos 4t}

7.4                 Operational Properties II 427

© 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part, except for use as permitted in a license distributed 
with a certain product or service or otherwise on a password-protected website for classroom use. Not For Sale

©
 C

en
ga

ge
 L

ea
rn

in
g.

 A
ll 

rig
ht

s r
es

er
ve

d.
 N

o 
di

st
rib

ut
io

n 
al

lo
w

ed
 w

ith
ou

t e
xp

re
ss

 a
ut

ho
riz

at
io

n.



= 1 +
s

s2 + 16
− s

s2 + 16
e−πs .

Thus

L {y} =
1

s2 + 16
+

s

(s2 + 16)2
− s

(s2 + 16)2
e−πs

and

y =
1

4
sin 4t+

1

8
t sin 4t− 1

8
(t− π) sin 4(t− π)U (t− π) .

14. The Laplace transform of the differential equation is

s2L {y} − sy(0)− y′(0) + L {y} = 1−U
(
t− π

2

)
+ sin tU

(
t− π

2

)

(s2 + 1)L {y} = s+
1

s
− 1

s
e−πs/2 + e−πs/2L

{
sin
(
t+

π

2

)}
or

= s+
1

s
− 1

s
e−πs/2 + e−πs/2L {cos t}

= s+
1

s
− 1

s
e−πs/2 +

s

s2 + 1
e−πs/2.

Thus

L {y} =
s

s2 + 1
+

1

s(s2 + 1)
− 1

s(s2 + 1)
e−πs/2 +

s

(s2 + 1)2
e−πs/2

=
s

s2 + 1
+

1

s
− s

s2 + 1
−
(

1

s
− s

s2 + 1

)
e−πs/2 +

s

(s2 + 1)2
e−πs/2

=
1

s
−
(

1

s
− s

s2 + 1

)
e−πs/2 +

s

(s2 + 1)2
e−πs/2

and

y = 1−
[
1− cos

(
t− π

2

)]
U
(
t− π

2

)
+

1

2

(
t− π

2

)
sin
(
t− π

2

)
U
(
t− π

2

)
= 1− (1− sin t)U

(
t− π

2

)
− 1

2

(
t− π

2

)
cos tU

(
t− π

2

)
.

15. x
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16. x

17. From (7) of Section 7.2 in the text along with Theorem 7.4.1,

L
{
ty′′
}

= − d

ds
L
{
y′′
}

= − d

ds
[s2Y (s)− sy(0)− y′(0)] = −s2 dY

ds
− 2sY + y(0),

so that the transform of the given second-order differential equation is the linear first-order

differential equation in Y (s):

s2Y ′ + 3sY = − 4

s3
or Y ′ +

3

s
Y = − 4

s5
.

The solution of the latter equation is Y (s) = 4/s4 + c/s3, so

y(t) = L −1{Y (s)} =
2

3
t3 +

c

2
t2 =

2

3
t3 + c1t

2 .

18. From Theorem 7.4.1 in the text

L
{
ty′
}

= − d

ds
L
{
y′
}

= − d

ds
[sY (s)− y(0)] = −s dY

ds
− Y

so that the transform of the given second-order differential equation is the linear first-order

differential equation in Y (s):

Y ′ +

(
3

s
− 2s

)
Y = −10

s
.

Using the integrating factor s3e−s
2
, the last equation yields

Y (s) =
5

s3
+

c

s3
es

2
.

But if Y (s) is the Laplace transform of a piecewise-continuous function of exponential order,

we must have, in view of Theorem 7.1.3, lims→∞ Y (s) = 0. In order to obtain this condition

we require c = 0. Hence

y(t) = L −1
{

5

s3

}
=

5

2
t2.

7.4.2 TRANSFORMS OF INTEGRALS

19. L
{

1 ∗ t3
}

=
1

s

3!

s4
=

6

s5
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20. L
{
t2 ∗ tet

}
=

2

s3(s− 1)2

21. L
{
e−t ∗ et cos t

}
=

s− 1

(s+ 1) [(s− 1)2 + 1]

22. L
{
e2t ∗ sin t

}
=

1

(s− 2)(s2 + 1)

23. L

{∫ t

0
eτ dτ

}
=

1

s
L
{
et
}

=
1

s(s− 1)

24. L

{∫ t

0
cos τ dτ

}
=

1

s
L {cos t} =

s

s(s2 + 1)
=

1

s2 + 1

25. L

{∫ t

0
e−τ cos τ dτ

}
=

1

s
L
{
e−t cos t

}
=

1

s

s+ 1

(s+ 1)2 + 1
=

s+ 1

s (s2 + 2s+ 2)

26. L

{∫ t

0
τ sin τ dτ

}
=

1

s
L {t sin t} =

1

s

(
− d

ds

1

s2 + 1

)
= −1

s

−2s

(s2 + 1)2
=

2

(s2 + 1)2

27. L

{∫ t

0
τet−τ dτ

}
= L {t}L

{
et
}

=
1

s2(s− 1)

28. L

{∫ t

0
sin τ cos(t− τ) dτ

}
= L {sin t}L {cos t} =

s

(s2 + 1)2

29. L

{
t

∫ t

0
sin τ dτ

}
= − d

ds
L

{∫ t

0
sin τ dτ

}
= − d

ds

(
1

s

1

s2 + 1

)
=

3s2 + 1

s2 (s2 + 1)2

30. L

{
t

∫ t

0
τe−τdτ

}
= − d

ds
L

{∫ t

0
τe−τdτ

}
= − d

ds

(
1

s

1

(s+ 1)2

)
=

3s+ 1

s2(s+ 1)3

31. L −1
{

1

s(s− 1)

}
= L −1

{
1/(s− 1)

s

}
=

∫ t

0
eτdτ = et − 1

32. L −1
{

1

s2(s− 1)

}
= L −1

{
1/s(s− 1)

s

}
=

∫ t

0
(eτ − 1)dτ = et − t− 1

33. L −1
{

1

s3(s− 1)

}
= L −1

{
1/s2(s− 1)

s

}
=

∫ t

0
(eτ − τ − 1)dτ = et − 1

2
t2 − t− 1

34. Using L −1
{

1

(s− a)2

}
= teat, (8) in the text gives

L −1
{

1

s(s− a)2

}
=

∫ t

0
τeaτ dτ =

1

a2
(ateat − eat + 1).
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35. (a) The result in (4) in the text is L −1{F (s)G(s)} = f ∗ g, so identify

F (s) =
2k3

(s2 + k2)2
and G(s) =

4s

s2 + k2
.

Then

f(t) = sin kt− kt cos kt and g(t) = 4 cos kt

so

L −1
{

8k3s

(s2 + k2)3

}
= L −1{F (s)G(s)} = f ∗ g = 4

∫ t

0
f(τ)g(t− τ)dt

= 4

∫ t

0
(sin kτ − kτ cos kτ) cos k(t− τ)dτ.

Using a CAS to evaluate the integral we get

L −1
{

8k3s

(s2 + k2)3

}
= t sin kt− kt2 cos kt.

(b) Observe from part (a) that

L {t(sin kt− kt cos kt)} =
8k3s

(s2 + k2)3
,

and from Theorem 7.4.1 that L {tf(t)} = −F ′(s). We saw in (5) in the text that

L {sin kt− kt cos kt} = 2k3/(s2 + k2)2,
so

L {t(sin kt− kt cos kt)} = − d

ds

2k3

(s2 + k2)2
=

8k3s

(s2 + k2)3
.

36. The Laplace transform of the differential equa-
tion is

s2L {y}+ L {y} =
1

(s2 + 1)
+

2s

(s2 + 1)2
.

Thus

L {y} =
1

(s2 + 1)2
+

2s

(s2 + 1)3

and, using Problem 35 with k = 1,

y =
1

2
(sin t− t cos t) +

1

4
(t sin t− t2 cos t).

37. The Laplace transform of the given equation is

L {f}+ L {t}L {f} = L {t} .

Solving for L {f} we obtain L {f} =
1

s2 + 1
. Thus, f(t) = sin t.
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38. The Laplace transform of the given equation is

L {f} = L {2t} − 4L {sin t}L {f} .

Solving for L {f} we obtain

L {f} =
2s2 + 2

s2(s2 + 5)
=

2

5

1

s2
+

8

5
√

5

√
5

s2 + 5
.

Thus

f(t) =
2

5
t+

8

5
√

5
sin
√

5 t.

39. The Laplace transform of the given equation is

L {f} = L
{
tet
}

+ L {t}L {f} .

Solving for L {f} we obtain

L {f} =
s2

(s− 1)3(s+ 1)
=

1

8

1

s− 1
+

3

4

1

(s− 1)2
+

1

4

2

(s− 1)3
− 1

8

1

s+ 1
.

Thus

f(t) =
1

8
et +

3

4
tet +

1

4
t2et − 1

8
e−t

40. The Laplace transform of the given equation is

L {f}+ 2L {cos t}L {f} = 4L
{
e−t
}

+ L {sin t} .

Solving for L {f} we obtain

L {f} =
4s2 + s+ 5

(s+ 1)3
=

4

s+ 1
− 7

(s+ 1)2
+ 4

2

(s+ 1)3
.

Thus

f(t) = 4e−t − 7te−t + 4t2e−t.

41. The Laplace transform of the given equation is

L {f}+ L {1}L {f} = L {1} .

Solving for L {f} we obtain L {f} =
1

s+ 1
. Thus, f(t) = e−t.
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42. The Laplace transform of the given equation is

L {f} = L {cos t}+ L
{
e−t
}

L {f} .

Solving for L {f} we obtain

L {f} =
s

s2 + 1
+

1

s2 + 1
.

Thus

f(t) = cos t+ sin t.

43. The Laplace transform of the given equation is

L {f} = L {1}+ L {t} −L

{
8

3

∫ t

0
(t− τ)3f(τ) dτ

}
=

1

s
+

1

s2
+

8

3
L
{
t3
}

L {f} =
1

s
+

1

s2
+

16

s4
L {f} .

Solving for L {f} we obtain

L {f} =
s2(s+ 1)

s4 − 16
=

1

8

1

s+ 2
+

3

8

1

s− 2
+

1

4

2

s2 + 4
+

1

2

s

s2 + 4
.

Thus

f(t) =
1

8
e−2t +

3

8
e2t +

1

4
sin 2t+

1

2
cos 2t.

44. The Laplace transform of the given equation is

L {t} − 2L {f} = L
{
et − e−t

}
L {f} .

Solving for L {f} we obtain

L {f} =
s2 − 1

2s4
=

1

2

1

s2
− 1

12

3!

s4
.

Thus

f(t) =
1

2
t− 1

12
t3.

45. The Laplace transform of the given equation is

sL {y} − y(0) = L {1} −L {sin t} −L {1}L {y} .

Solving for L {f} we obtain

L {y} =
s2 − s+ 1

(s2 + 1)2
=

1

s2 + 1
− 1

2

2s

(s2 + 1)2
.

Thus

y = sin t− 1

2
t sin t.
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46. The Laplace transform of the given equation is

sL {y} − y(0) + 6L {y}+ 9L {1}L {y} = L {1} .

Solving for L {f} we obtain L {y} =
1

(s+ 3)2
. Thus, y = te−3t.

47. The differential equation is

0.1
di

dt
+ 3i+

1

0.05

∫ t

0
i(τ)dτ = 100

[
U (t− 1)−U (t− 2)

]
or

di

dt
+ 30i+ 200

∫ t

0
i(τ)dτ = 1000

[
U (t− 1)−U (t− 2)

]
,

where i(0) = 0. The Laplace transform of the differential

equation is

sL {i} − y(0) + 30L {i}+
200

s
L {i} =

1000

s
(e−s − e−2s).

Solving for L {i} we obtain

L {i} =
1000e−s − 1000e−2s

s2 + 30s+ 200
=

(
100

s+ 10
− 100

s+ 20

)
(e−s − e−2s).

Thus

i(t) = 100
(
e−10(t−1) − e−20(t−1)

)
U (t− 1)− 100

(
e−10(t−2) − e−20(t−2)

)
U (t− 2) .

48. The differential equation is

0.005
di

dt
+ i+

1

0.02

∫ t

0
i(τ)dτ = 100

[
t− (t− 1)U (t− 1)

]
or

di

dt
+ 200i+ 10,000

∫ t

0
i(τ)dτ = 20,000

[
t− (t− 1)U (t− 1)

]
,

where i(0) = 0. The Laplace transform of the differential

equation is

sL {i}+ 200L {i}+
10,000

s
L {i} = 20,000

(
1

s2
− 1

s2
e−s
)
.

Solving for L {i} we obtain

L {i} =
20,000

s(s+ 100)2
(1− e−s) =

[
2

s
− 2

s+ 100
− 200

(s+ 100)2

]
(1− e−s).
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Thus

i(t) = 2− 2e−100t − 200te−100t − 2U (t− 1)) + 2e−100(t−1)U (t− 1))

+ 200(t− 1)e−100(t−1)U (t− 1) .

7.4.2 TRANSFORM OF A PERIODIC FUNCTION

49. L {f(t)} =
1

1− e−2as

[∫ a

0
e−stdt−

∫ 2a

a
e−stdt

]
=

(1− e−as)2

s(1− e−2as)
=

1− e−as

s(1 + e−as)

50. L {f(t)} =
1

1− e−2as

∫ a

0
e−stdt =

1

s(1 + e−as)

51. Using integration by parts,

L {f(t)} =
1

1− e−bs

∫ b

0

a

b
te−stdt =

a

s

(
1

bs
− 1

ebs − 1

)
.

52. L {f(t)} =
1

1− e−2s

[∫ 1

0
te−stdt+

∫ 2

1
(2− t)e−stdt

]
=

1− e−s

s2(1− e−2s)

53. L {f(t)} =
1

1− e−πs

∫ π

0
e−st sin t dt =

1

s2 + 1
· e

πs/2 + e−πs/2

eπs/2 − e−πs/2
=

1

s2 + 1
coth

πs

2

54. L {f(t)} =
1

1− e−2πs

∫ π

0
e−st sin t dt =

1

s2 + 1
· 1

1− e−πs

55. The differential equation is Ldi/dt+Ri = E(t), where i(0) = 0. The Laplace transform of the

equation is

LsL {i}+RL {i} = L {E(t)} .

From Problem 49 we have L {E(t)} = (1− e−s)/s(1 + e−s). Thus

(Ls+R)L {i} =
1− e−s

s(1 + e−s)

and

L {i} =
1

L

1− e−s

s(s+R/L)(1 + e−s)
=

1

L

1− e−s

s(s+R/L)

1

1 + e−s

=
1

R

(
1

s
− 1

s+R/L

)
(1− e−s)(1− e−s + e−2s − e−3s + e−4s − · · · )

=
1

R

(
1

s
− 1

s+R/L

)
(1− 2e−s + 2e−2s − 2e−3s + 2e−4s − · · · ).
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Therefore,

i(t) =
1

R

(
1− e−Rt/L

)
− 2

R

(
1− e−R(t−1)/L

)
U (t− 1)

+
2

R

(
1− e−R(t−2)/L

)
U (t− 2)− 2

R

(
1− e−R(t−3)/L

)
U (t− 3) + · · ·

=
1

R

(
1− e−Rt/L

)
+

2

R

∞∑
n=1

(−1)n
(

1− e−R(t−n)/L
)

U (t− n) .

The graph of i(t) with L = 1 and R = 1 is shown below.

56. The differential equation is Ldi/dt+Ri = E(t), where i(0) = 0. The Laplace transform of the

equation is

LsL {i}+RL {i} = L {E(t)} .

From Problem 51 we have

L {E(t)} =
1

s

(
1

s
− 1

es − 1

)
=

1

s2
− 1

s

1

es − 1
.

Thus

(Ls+R)L {i} =
1

s2
− 1

s

1

es − 1

and

L {i} =
1

L

1

s2(s+R/L)
− 1

L

1

s(s+R/L)

1

es − 1

=
1

R

(
1

s2
− L

R

1

s
+
L

R

1

s+R/L

)
− 1

R

(
1

s
− 1

s+R/L

)(
e−s + e−2s + e−3s + · · ·

)
.

Therefore

i(t) =
1

R

(
t− L

R
+
L

R
e−Rt/L

)
− 1

R

(
1− e−R(t−1)/L

)
U (t− 1)

− 1

R

(
1− e−R(t−2)/L

)
U (t− 2)− 1

R

(
1− e−R(t−3)/L

)
U (t− 3)− · · ·

=
1

R

(
t− L

R
+
L

R
e−Rt/L

)
− 1

R

∞∑
n=1

(
1− e−R(t−n)/L)U (t− n) .

The graph of i(t) with L = 1 and R = 1 is shown below.
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57. The differential equation is x′′ + 2x′ + 10x = 20f(t), where f(t) is the meander function in

Problem 49 with a = π. Using the initial conditions x(0) = x′(0) = 0 and taking the Laplace

transform we obtain

(s2 + 2s+ 10)L {x(t)} =
20

s
(1− e−πs) 1

1 + e−πs

=
20

s
(1− e−πs)(1− e−πs + e−2πs − e−3πs + · · · )

=
20

s
(1− 2e−πs + 2e−2πs − 2e−3πs + · · · )

=
20

s
+

40

s

∞∑
n=1

(−1)ne−nπs.

Then

L {x(t)} =
20

s(s2 + 2s+ 10)
+

40

s(s2 + 2s+ 10)

∞∑
n=1

(−1)ne−nπs

=
2

s
− 2s+ 4

s2 + 2s+ 10
+

∞∑
n=1

(−1)n
[

4

s
− 4s+ 8

s2 + 2s+ 10

]
e−nπs

=
2

s
− 2(s+ 1) + 2

(s+ 1)2 + 9
+ 4

∞∑
n=1

(−1)n
[

1

s
− (s+ 1) + 1

(s+ 1)2 + 9

]
e−nπs

and

x(t) = 2

(
1− e−t cos 3t− 1

3
e−t sin 3t

)

+ 4

∞∑
n=1

(−1)n
[
1− e−(t−nπ) cos 3(t− nπ)− 1

3
e−(t−nπ) sin 3(t− nπ)

]
U (t− nπ) .

The graph of x(t) on the interval [0, 2π) is shown below.
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58. The differential equation is x′′ + 2x′ + x = 5f(t), where f(t) is the square wave function with

a = π. Using the initial conditions x(0) = x′(0) = 0 and taking the Laplace transform, we

obtain

(s2 + 2s+ 1)L {x(t)} =
5

s

1

1 + e−πs
=

5

s
(1− e−πs + e−2πs − e−3πs + e−4πs − · · · )

=
5

s

∞∑
n=0

(−1)ne−nπs.

Then

L {x(t)} =
5

s(s+ 1)2

∞∑
n=0

(−1)ne−nπs = 5

∞∑
n=0

(−1)n
(

1

s
− 1

s+ 1
− 1

(s+ 1)2

)
e−nπs

and

x(t) = 5
∞∑
n=0

(−1)n(1− e−(t−nπ) − (t− nπ)e−(t−nπ))U (t− nπ) .

The graph of x(t) on the interval [0, 4π) is shown below.

Discussion Problems

59. f(t) = −1

t
L −1

{
d

ds
[ln(s− 3)− ln(s+ 1)]

}
= −1

t
L −1

{
1

s− 3
− 1

s+ 1

}
= −1

t

(
e3t − e−t

)
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60. The transform of Bessel’s equation is

− d

ds
[s2Y (s)− sy(0)− y′(0)] + sY (s)− y(0)− d

ds
Y (s) = 0

or, after simplifying and using the initial condition, (s2 + 1)Y ′+ sY = 0. This equation is both

separable and linear. Solving gives Y (s) = c/
√
s2 + 1 . Now Y (s) = L {J0(t)}, where J0 has a

derivative that is continuous and of exponential order, implies by Problem 46 of Exercises 7.2

that

1 = J0(0) = lim
s→∞

sY (s) = c lim
s→∞

s√
s2 + k2

= c

so c = 1 and

Y (s) =
1√
s2 + 1

or L {J0(t)} =
1√
s2 + 1

.

61. (a) Using Theorem 7.4.1, the Laplace transform of the differential equation is

− d

ds
[s2Y − sy(0)− y′(0)] + sY − y(0) +

d

ds
[sY − y(0)] + nY

= − d

ds
[s2Y ] + sY +

d

ds
[sY ] + nY

= −s2
(
dY

ds

)
− 2sY + sY + s

(
dY

ds

)
+ Y + nY

= (s− s2)
(
dY

ds

)
+ (1 + n− s)Y = 0.

Separating variables, we find

dY

Y
=

1 + n− s
s2 − s

ds =

(
n

s− 1
− 1 + n

s

)
ds

lnY = n ln(s− 1)− (1 + n) ln s+ c

Y = c1
(s− 1)n

s1+n
.

Since the differential equation is homogeneous, any constant multiple of a solution will

still be a solution, so for convenience we take c1 = 1. The following polynomials are

solutions of Laguerre’s differential equation:

n = 0 : L0(t) = L −1
{

1

s

}
= 1

n = 1 : L1(t) = L −1
{
s− 1

s2

}
= L −1

{
1

s
− 1

s2

}
= 1− t
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n = 2 : L2(t) = L −1
{

(s− 1)2

s3

}
= L −1

{
1

s
− 2

s2
+

1

s3

}
= 1− 2t+

1

2
t2

n = 3 : L3(t) = L −1
{

(s− 1)3

s4

}
= L −1

{
1

s
− 3

s2
+

3

s3
− 1

s4

}
= 1− 3t+

3

2
t2 − 1

6
t3

n = 4 : L4(t) = L −1
{

(s− 1)4

s5

}
= L −1

{
1

s
− 4

s2
+

6

s3
− 4

s4
+

1

s5

}

= 1− 4t+ 3t2 − 2

3
t3 +

1

24
t4.

(b) Letting f(t) = tne−t we note that f (k)(0) = 0 for k = 0, 1, 2, . . . , n− 1 and f (n)(0) = n!.

Now, by the first translation theorem,

L

{
et

n!

dn

dtn
tne−t

}
=

1

n!
L
{
etf (n)(t)

}
=

1

n!
L
{
f (n)(t)

} ∣∣
s→s−1

=
1

n!

[
snL

{
tne−t

}
− sn−1f(0)− sn−2f ′(0)− · · · − f (n−1)(0)

]
s→s−1

=
1

n!

[
snL

{
tne−t

}]
s→s−1

=
1

n!

[
sn

n!

(s+ 1)n+1

]
s→s−1

=
(s− 1)n

sn+1
= Y,

where Y = L {Ln(t)}. Thus

Ln(t) =
et

n!

dn

dtn
(tne−t), n = 0, 1, 2, . . . .

62. Let L
{
e−t

2
}

= F (s). Then, taking the Laplace transform of the differential equation we

have

L
{
y′′
}

+ L {y} = L
{
e−t

2
}

or (s2 + 1)Y (s) = F (s).

This implies that

Y (s) =
F (s)

s2 + 1.

By the inverse form of the convolution theorem

y(t) = L −1
{
F (s)

s2 + 1

}
= L −1

{
F (s) · 1

s2 + 1

}
or

y(t) =

∫ t

0
e−τ

2
sin(t− τ)dτ.
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63. Taking the Laplace transform of the individual parts of the integral equation we have

F (s) = L {f(t)} = L
{
et
}

+ L

{
et
∫ t

0
e−τf(τ)dτ

}

=
1

s− 1
+ L

{∫ t

0
e−τf(τ)dτ

}
s→s−1

=
1

s− 1
+
[
L
{
e−τf(τ)

}
L {1}

]
s→s−1

=
1

s− 1
+

[
F (s)

∣∣∣
s→s+1

· 1

s

]
s→s−1

=
1

s− 1
+

[
F (s+ 1)

1

s

]
s→s−1

=
1

s− 1
+
F (s)

s− 1
.

Solving this equation for F (s) we have

F (s)− F (s)

s− 1
=

1

s− 1

F (s)

(
1− 1

s− 1

)
=

1

s− 1

F (s)

(
s− 2

s− 1

)
=

1

s− 1

f(s) =
1

s− 2
.

Thus, f(t) = e2t.

64. (a) E(t) =
∞∑
k=0

(−1)kU (t− k)

Et = U (t)−U (t− 1) + U (t− 2)−U (t− 3) + · · ·

Et =


1, 0 ≤ t < 1

0, 1 ≤ t < 2

1, 2 ≤ t < 3
...

(b) L {E(t)} =
1

s
− 1

s
e−s +

1

s
e−2s − 1

s
e−3s =

1

s

( geometric series with r = −e−s︷ ︸︸ ︷
1− e−s + e−2s − e−3s + · · ·

)
L {E(t)} =

1

s

[
1

1− (−e−s)

]
=

1

s(1 + e−s)
.

65. We know that

L {t sin 4t} = − d

ds

(
4

s2 + 16

)
=

8s

(s2 + 16)2
,

and so for s > 0,

F (s) =

∫ ∞
0

te−st sin 4tdt =
8s

(s2 + 16)2
.
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Therefore

F (2) =

∫ ∞
0

te−2t sin 4tdt =
8 · 2

(22 + 16)2
=

16

400
=

1

25
.

66. (a) L

{
sin at

t

}
=

∫ ∞
s

a

u2 + a2
du = a · 1

a
arctan

u

a

∣∣∣∣∞
s

=
π

2
− arctan

s

a
= arctan

a

s

(b) L

{
2(1− cos kt)

t

}
=

∫ ∞
s

[
2

u
− 2u

u2 + k2

]
du =

[
2 lnu− ln(u2 + k2)

]∞
s

L

{
2(1− cos kt)

t

}
=
[
2 lnu− ln(u2 + k2)

]∞
s

=

[
ln

u2

u2 + k2

]∞
s

L

{
2(1− cos kt)

t

}
= ln 1− ln

s2

s2 + k2
= ln

s2 + k2

s2

67. (a) Using the definition of the Laplace transform and integration by parts,

L {ln t} =

∫ ∞
0

e−st ln t dt = e−st(t ln t− t)
∣∣∣∞
0

+s

∫ ∞
0

e−st(t ln t− t) dt

= sL {t ln t} − sL {t} = sL {t ln t} − 1

s
.

(b) Letting Y (s) = L {ln t} we have

Y = s

(
− d

ds
Y

)
− 1

s

by Theorem 7.4.1. That is,

s
dY

ds
+ Y = −1

s

d

ds
[sY ] = −1

s

sY = − ln s+ c

Y =
c

s
− 1

s
ln s, s > 0.

(c) Now Y (1) = L {ln t}
∣∣∣
s=1

=

∫ ∞
0

e−t ln t dt = −γ. Thus

−γ = Y (1) = c− ln 1 = c

and

Y = L {ln t} = −γ
s
− 1

s
ln s.
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Computer Lab Assignments

68. The output for the first three lines of the program are

9y[t] + 6y′[t] + y′′[t] == t sin[t]

1− 2s+ 9Y + s2Y + 6(−2 + sY ) ==
2s

(1 + s2)2

Y → −
(
−11− 4s− 22s2 − 4s3 − 11s4 − 2s5

(1 + s2)2(9 + 6s+ s2)

)
The fourth line is the same as the third line with Y → removed. The final line of output shows

a solution involving complex coefficients of eit and e−it. To get the solution in more standard

form write the last line as two lines:

euler = Eˆ(It) −> Cos[t] + I Sin[t], Eˆ(-It) −> Cos[t] - I Sin[t]

InverseLaplaceTransform[Y, s, t]/.euler//Expand

We see that the solution is

y(t) =

(
487

250
+

247

50
t

)
e−3t +

1

250
(13 cos t− 15t cos t− 9 sin t+ 20t sin t) .

69. The solution is

y(t) =
1

6
et − 1

6
e−t/2 cos

√
15 t−

√
3/5

6
e−t/2 sin

√
15 t.

70. The solution is

q(t) = 1− cos t+ (6− 6 cos t)U (t− 3π))− (4 + 4 cos t)U (t− π) .
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THE LAPLACE TRANSFORM
7.1 The Dirac Delta Functionq

7.5 The Dirac Delta Functionq

1. The Laplace transform of the differential equation yields

L {y} =
1

s− 3
e−2s

so that

y = e3(t−2)U (t− 2) .

2. The Laplace transform of the differential equation yields

L {y} =
2

s+ 1
+

e−s

s+ 1

so that

y = 2e−t + e−(t−1)U (t− 1) .

3. The Laplace transform of the differential equation yields

L {y} =
1

s2 + 1

(
1 + e−2πs

)
so that

y = sin t+ sin tU (t− 2π) .

4. The Laplace transform of the differential equation yields

L {y} =
1

4

4

s2 + 16
e−2πs

so that

y =
1

4
sin 4(t− 2π)U (t− 2π) =

1

4
sin 4tU (t− 2π) .

5. The Laplace transform of the differential equation yields

L {y} =
1

s2 + 1

(
e−πs/2 + e−3πs/2

)
so that

y = sin
(
t− π

2

)
U
(
t− π

2

)
+ sin

(
t− 3π

2

)
U

(
t− 3π

2

)
= − cos tU

(
t− π

2

)
+ cos tU

(
t− 3π

2

)
.

6. The Laplace transform of the differential equation yields

L {y} =
s

s2 + 1
+

1

s2 + 1
(e−2πs + e−4πs)

so that

y = cos t+ sin t[U (t− 2π) + U (t− 4π)].
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7. The Laplace transform of the differential equation yields

L {y} =
1

s2 + 2s
(1 + e−s) =

[
1

2

1

s
− 1

2

1

s+ 2

]
(1 + e−s)

so that

y =
1

2
− 1

2
e−2t +

[
1

2
− 1

2
e−2(t−1)

]
U (t− 1) .

8. The Laplace transform of the differential equation yields

L {y} =
s+ 1

s2(s− 2)
+

1

s(s− 2)
e−2s =

3

4

1

s− 2
− 3

4

1

s
− 1

2

1

s2
+

[
1

2

1

s− 2
− 1

2

1

s

]
e−2s

so that

y =
3

4
e2t − 3

4
− 1

2
t+

[
1

2
e2(t−2) − 1

2

]
U (t− 2) .

9. The Laplace transform of the differential equation yields

L {y} =
1

(s+ 2)2 + 1
e−2πs

so that

y = e−2(t−2π) sin tU (t− 2π) .

10. The Laplace transform of the differential equation yields

L {y} =
1

(s+ 1)2
e−s

so that

y = (t− 1)e−(t−1)U (t− 1) .

11. The Laplace transform of the differential equation yields

L {y} =
4 + s

s2 + 4s+ 13
+
e−πs + e−3πs

s2 + 4s+ 13

=
2

3

3

(s+ 2)2 + 32
+

s+ 2

(s+ 2)2 + 32
+

1

3

3

(s+ 2)2 + 32
(
e−πs + e−3πs

)
so that

y =
2

3
e−2t sin 3t+ e−2t cos 3t+

1

3
e−2(t−π) sin 3(t− π)U (t− π)

+
1

3
e−2(t−3π) sin 3(t− 3π)U (t− 3π) .

12. The Laplace transform of the differential equation yields

L {y} =
1

(s− 1)2(s− 6)
+

e−2s + e−4s

(s− 1)(s− 6)

= − 1

25

1

s− 1
− 1

5

1

(s− 1)2
+

1

25

1

s− 6
+

[
−1

5

1

s− 1
+

1

5

1

s− 6

] (
e−2s + e−4s

)
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so that

y = − 1

25
et − 1

5
tet +

1

25
e6t +

[
−1

5
et−2 +

1

5
e6(t−2)

]
U (t− 2)

+

[
−1

5
et−4 +

1

5
e6(t−4)

]
U (t− 4) .

13. The Laplace transform of the differential equation yields

L {y} =
1

2

2

s3
y′′(0) +

1

6

3!

s4
y′′′(0) +

1

6

w0

EI

3!

s4
e−Ls/2

so that

y =
1

2
y′′(0)x2 +

1

6
y′′′(0)x3 +

1

6

w0

EI

(
x− L

2

)3

U

(
x− L

2

)
.

Using y′′(L) = 0 and y′′′(L) = 0 we obtain

y =
1

4

w0L

EI
x2 − 1

6

w0

EI
x3 +

1

6

w0

EI

(
x− L

2

)3

U

(
x− L

2

)

=


w0

EI

(
L

4
x2 − 1

6
x3
)
, 0 ≤ x < L

2

w0L
2

4EI

(
1

2
x− L

12

)
,

L

2
≤ x ≤ L.

14. From Problem 13 we know that

y =
1

2
y′′(0)x2 +

1

6
y′′′(0)x3 +

1

6

w0

EI

(
x− L

2

)3

U

(
x− L

2

)
.

Using y(L) = 0 and y′(L) = 0 we obtain

y =
1

16

w0L

EI
x2 − 1

12

w0

EI
x3 +

1

6

w0

EI

(
x− L

2

)3

U

(
x− L

2

)

=


w0

EI

(
L

16
x2 − 1

12
x3
)
, 0 ≤ x < L

2

w0L
2

EI

(
L

16
x2 − 1

12
x3
)

+
1

6

w0

EI

(
x− L

2

)3

,
L

2
≤ x ≤ L.

Discussion Problems

15. You should disagree. Although formal manipulations of the Laplace transform leads to

y(t) = 1
3e
−t sin 3t in both cases, this function does not satisfy the initial condition y′(0) = 0 of

the second initial-value problem.
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fferential Equations

Exercises 7.6

1. Taking the Laplace transform of the system gives

s {x} = − {x} + {y}

s {y}− 1 = 2 {x}

so that

{x} =
1

(s − 1)(s + 2)
=

1

3

1

s − 1
− 1

3

1

s + 2
and

{y} =
1

s
+

2

s(s − 1)(s + 2)
=

2

3

1

s − 1
+

1

3

1

s + 2
.

Then

x =
1

3
et − 1

3
e−2t and y =

2

3
et +

1

3
e−2t.

2. Taking the Laplace transform of the system gives

s {x}− 1 = 2 {y} +
1

s − 1

s {y}− 1 = 8 {x}− 1

s2

so that

{y} =
s3 + 7s2 − s + 1

s(s − 1)(s2 − 16)
=

1

16

1

s
− 8

15

1

s − 1
+

173

96

1

s − 4
− 53

160

1

s + 4
and

y =
1

16
− 8

15
et +

173

96
e4t − 53

160
e−4t.

Then

x =
1

8
y′ +

1

8
t =

1

8
t − 1

15
et +

173

192
e4t +

53

320
e−4t.

3. Taking the Laplace transform of the system gives

s {x} + 1 = {x}− 2 {y}

s {y}− 2 = 5 {x}− {y}

so that

{x} =
−s − 5

s2 + 9
= − s

s2 + 9
− 5

3

3

s2 + 9
and
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x = − cos 3t − 5

3
sin 3t.

Then

y =
1

2
x − 1

2
x′ = 2 cos 3t − 7

3
sin 3t.

4. Taking the Laplace transform of the system gives

(s + 3) {x} + s {y} =
1

s

(s − 1) {x} + (s − 1) {y} =
1

s − 1

so that

{y} =
5s − 1

3s(s − 1)2
= −1

3

1

s
+

1

3

1

s − 1
+

4

3

1

(s − 1)2

and

{x} =
1 − 2s

3s(s − 1)2
=

1

3

1

s
− 1

3

1

s − 1
− 1

3

1

(s − 1)2
.

Then

x =
1

3
− 1

3
et − 1

3
tet and y = −1

3
+

1

3
et +

4

3
tet.

5. Taking the Laplace transform of the system gives

(2s − 2) {x} + s {y} =
1

s

(s − 3) {x} + (s − 3) {y} =
2

s
so that

{x} =
−s − 3

s(s − 2)(s − 3)
= −1

2

1

s
+

5

2

1

s − 2
− 2

s − 3
and

{y} =
3s − 1

s(s − 2)(s − 3)
= −1

6

1

s
− 5

2

1

s − 2
+

8

3

1

s − 3
.

Then

x = −1

2
+

5

2
e2t − 2e3t and y = −1

6
− 5

2
e2t +

8

3
e3t.

6. Taking the Laplace transform of the system gives

(s + 1) {x}− (s − 1) {y} = −1

s {x} + (s + 2) {y} = 1

so that

{y} =
s + 1/2

s2 + s + 1
=

s + 1/2

(s + 1/2)2 + (
√

3/2)2

and
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{x} =
−3/2

s2 + s + 1
= −

√
3

√
3/2

(s + 1/2)2 + (
√

3/2)2
.

Then

y = e−t/2 cos

√
3

2
t and x = −

√
3 e−t/2 sin

√
3

2
t.

7. Taking the Laplace transform of the system gives

(s2 + 1) {x}− {y} = −2

− {x} + (s2 + 1) {y} = 1

so that

{x} =
−2s2 − 1

s4 + 2s2 = −1

2

1

s2 − 3

2

1

s2 + 2
and

x = −1

2
t − 3

2
√

2
sin

√
2 t.

Then

y = x′′ + x = −1

2
t +

3

2
√

2
sin

√
2 t.

8. Taking the Laplace transform of the system gives

(s + 1) {x} + {y} = 1

4 {x}− (s + 1) {y} = 1

so that

{x} =
s + 2

s2 + 2s + 5
=

s + 1

(s + 1)2 + 22 +
1

2

2

(s + 1)2 + 22

and

{y} =
−s + 3

s2 + 2s + 5
= − s + 1

(s + 1)2 + 22 + 2
2

(s + 1)2 + 22 .

Then

x = e−t cos 2t +
1

2
e−t sin 2t and y = −e−t cos 2t + 2e−t sin 2t.

9. Adding the equations and then subtracting them gives

d2x

dt2
=

1

2
t2 + 2t

d2y

dt2
=

1

2
t2 − 2t.

Taking the Laplace transform of the system gives

{x} = 8
1

s
+

1

24

4!

s5 +
1

3

3!

s4

and
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{y} =
1

24

4!

s5 − 1

3

3!

s4

so that

x = 8 +
1

24
t4 +

1

3
t3 and y =

1

24
t4 − 1

3
t3.

10. Taking the Laplace transform of the system gives

(s − 4) {x} + s3 {y} =
6

s2 + 1

(s + 2) {x}− 2s3 {y} = 0

so that

{x} =
4

(s − 2)(s2 + 1)
=

4

5

1

s − 2
− 4

5

s

s2 + 1
− 8

5

1

s2 + 1
and

{y} =
2s + 4

s3(s − 2)(s2 + 1)
=

1

s
− 2

s2 − 2
2

s3 +
1

5

1

s − 2
− 6

5

s

s2 + 1
+

8

5

1

s2 + 1
.

Then

x =
4

5
e2t − 4

5
cos t − 8

5
sin t

and

y = 1 − 2t − 2t2 +
1

5
e2t − 6

5
cos t +

8

5
sin t.

11. Taking the Laplace transform of the system gives

s2 {x} + 3(s + 1) {y} = 2

s2 {x} + 3 {y} =
1

(s + 1)2

so that

{x} = − 2s + 1

s3(s + 1)
=

1

s
+

1

s2 +
1

2

2

s3 − 1

s + 1
.

Then

x = 1 + t +
1

2
t2 − e−t

and

y =
1

3
te−t − 1

3
x′′ =

1

3
te−t +

1

3
e−t − 1

3
.

12. Taking the Laplace transform of the system gives

(s − 4) {x} + 2 {y} =
2e−s

s

−3 {x} + (s + 1) {y} =
1

2
+

e−s

s
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so that

{x} =
−1/2

(s − 1)(s − 2)
+ e−s 1

(s − 1)(s − 2)

=
1

2

1

s − 1
− 1

2

1

s − 2
+ e−s

[
− 1

s − 1
+

1

s − 2

]

and

{y} =
e−s

s
+

s/4 − 1

(s − 1)(s − 2)
+ e−s −s/2 + 2

(s − 1)(s − 2)

=
3

4

1

s − 1
− 1

2

1

s − 2
+ e−s

[
1

s
− 3

2

1

s − 1
+

1

s − 2

]
.

Then

x =
1

2
et − 1

2
e2t +

[
−et−1 + e2(t−1)

]
(t − 1)

and

y =
3

4
et − 1

2
e2t +

[
1 − 3

2
et−1 + e2(t−1)

]
(t − 1).

13. The system is

x′′
1 = −3x1 + 2(x2 − x1)

x′′
2 = −2(x2 − x1)

x1(0) = 0

x′
1(0) = 1

x2(0) = 1

x′
2(0) = 0.

Taking the Laplace transform of the system gives

(s2 + 5) {x1}− 2 {x2} = 1

−2 {x1} + (s2 + 2) {x2} = s

so that

{x1} =
s2 + 2s + 2

s4 + 7s2 + 6
=

2

5

s

s2 + 1
+

1

5

1

s2 + 1
− 2

5

s

s2 + 6
+

4

5
√

6

√
6

s2 + 6
and

{x2} =
s3 + 5s + 2

(s2 + 1)(s2 + 6)
=

4

5

s

s2 + 1
+

2

5

1

s2 + 1
+

1

5

s

s2 + 6
− 2

5
√

6

√
6

s2 + 6
.

Then

x1 =
2

5
cos t +

1

5
sin t − 2

5
cos

√
6 t +

4

5
√

6
sin

√
6 t

and
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x2 =
4

5
cos t +

2

5
sin t +

1

5
cos

√
6 t − 2

5
√

6
sin

√
6 t.

14. In this system x1 and x2 represent displacements of masses m1 and m2 from their equilibrium

positions. Since the net forces acting on m1 and m2 are

−k1x1 + k2(x2 − x1) and − k2(x2 − x1) − k3x2,

respectively, Newton’s second law of motion gives

m1x
′′
1 = −k1x1 + k2(x2 − x1)

m2x
′′
2 = −k2(x2 − x1) − k3x2.

Using k1 = k2 = k3 = 1, m1 = m2 = 1, x1(0) = 0, x1(0) = −1, x2(0) = 0, and x′
2(0) = 1, and

taking the Laplace transform of the system, we obtain

(2 + s2) {x1}− {x2} = −1

{x1}− (2 + s2) {x2} = −1

so that

{x1} = − 1

s2 + 3
and {x2} =

1

s2 + 3
.

Then

x1 = − 1√
3

sin
√

3 t and x2 =
1√
3

sin
√

3 t.

15. (a) By Kirchhoff’s first law we have i1 = i2 + i3. By Kirchhoff’s second law, on each loop we have

E(t) = Ri1+L1i′2 and E(t) = Ri1+L2i′3 or L1i′2+Ri2+Ri3 = E(t) and L2i′3+Ri2+Ri3 = E(t).

(b) Taking the Laplace transform of the system

0.01i′2 + 5i2 + 5i3 = 100

0.0125i′3 + 5i2 + 5i3 = 100

gives

(s + 500) {i2} + 500 {i3} =
10,000

s

400 {i2} + (s + 400) {i3} =
8,000

s

so that

{i3} =
8,000

s2 + 900s
=

80

9

1

s
− 80

9

1

s + 900
.

Then

i3 =
80

9
− 80

9
e−900t and i2 = 20 − 0.0025i′3 − i3 =

100

9
− 100

9
e−900t.
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(c) i1 = i2 + i3 = 20 − 20e−900t

16. (a) Taking the Laplace transform of the system

i′2 + i′3 + 10i2 = 120 − 120 (t − 2)

−10i′2 + 5i′3 + 5i3 = 0

gives

(s + 10) {i2} + s {i3} =
120

s

(
1 − e−2s

)

−10s {i2} + 5(s + 1) {i3} = 0

so that

{i2} =
120(s + 1)

(3s2 + 11s + 10)s

(
1 − e−2s

)
=

[
48

s + 5/3
− 60

s + 2
+

12

s

] (
1 − e−2s

)

and

{i3} =
240

3s2 + 11s + 10

(
1 − e−2s

)
=

[
240

s + 5/3
− 240

s + 2

] (
1 − e−2s

)
.

Then

i2 = 12 + 48e−5t/3 − 60e−2t −
[
12 + 48e−5(t−2)/3 − 60e−2(t−2)

]
(t − 2)

and

i3 = 240e−5t/3 − 240e−2t −
[
240e−5(t−2)/3 − 240e−2(t−2)

]
(t − 2).

(b) i1 = i2 + i3 = 12 + 288e−5t/3 − 300e−2t −
[
12 + 288e−5(t−2)/3 − 300e−2(t−2)

]
(t − 2)

17. Taking the Laplace transform of the system

i′2 + 11i2 + 6i3 = 50 sin t

i′3 + 6i2 + 6i3 = 50 sin t

gives

(s + 11) {i2} + 6 {i3} =
50

s2 + 1

6 {i2} + (s + 6) {i3} =
50

s2 + 1
so that

{i2} =
50s

(s + 2)(s + 15)(s2 + 1)
= −20

13

1

s + 2
+

375

1469

1

s + 15
+

145

113

s

s2 + 1
+

85

113

1

s2 + 1
.

Then

i2 = −20

13
e−2t +

375

1469
e−15t +

145

113
cos t +

85

113
sin t

and
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i3 =
25

3
sin t − 1

6
i′2 −

11

6
i2 =

30

13
e−2t +

250

1469
e−15t − 280

113
cos t +

810

113
sin t.

18. Taking the Laplace transform of the system

0.5i′1 + 50i2 = 60

0.005i′2 + i2 − i1 = 0

gives

s {i1} + 100 {i2} =
120

s

−200 {i1} + (s + 200) {i2} = 0

so that

{i2} =
24,000

s(s2 + 200s + 20,000)
=

6

5

1

s
− 6

5

s + 100

(s + 100)2 + 1002 − 6

5

100

(s + 100)2 + 1002 .

Then

i2 =
6

5
− 6

5
e−100t cos 100t − 6

5
e−100t sin 100t

and

i1 = 0.005i′2 + i2 =
6

5
− 6

5
e−100t cos 100t.

19. Taking the Laplace transform of the system

2i′1 + 50i2 = 60

0.005i′2 + i2 − i1 = 0

gives

2s {i1} + 50 {i2} =
60

s

−200 {i1} + (s + 200) {i2} = 0

so that

{i2} =
6,000

s(s2 + 200s + 5,000)

=
6

5

1

s
− 6

5

s + 100

(s + 100)2 − (50
√

2 )2
− 6

√
2

5

50
√

2

(s + 100)2 − (50
√

2 )2
.

Then

i2 =
6

5
− 6

5
e−100t cosh 50

√
2 t − 6

√
2

5
e−100t sinh 50

√
2 t

and

i1 = 0.005i′2 + i2 =
6

5
− 6

5
e−100t cosh 50

√
2 t − 9

√
2

10
e−100t sinh 50

√
2 t.
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20. (a) Using Kirchhoff’s first law we write i1 = i2 + i3. Since i2 = dq/dt we have i1 − i3 = dq/dt.

Using Kirchhoff’s second law and summing the voltage drops across the shorter loop gives

E(t) = iR1 +
1

C
q, (1)

so that

i1 =
1

R1
E(t) − 1

R1C
q.

Then
dq

dt
= i1 − i3 =

1

R1
E(t) − 1

R1C
q − i3

and

R1
dq

dt
+

1

C
q + R1i3 = E(t).

Summing the voltage drops across the longer loop gives

E(t) = i1R1 + L
di3
dt

+ R2i3.

Combining this with (1) we obtain

i1R1 + L
di3
dt

+ R2i3 = i1R1 +
1

C
q

or

L
di3
dt

+ R2i3 −
1

C
q = 0.

(b) Using L = R1 = R2 = C = 1, E(t) = 50e−t (t− 1) = 50e−1e−(t−1) (t− 1), q(0) = i3(0) = 0,

and taking the Laplace transform of the system we obtain

(s + 1) {q} + {i3} =
50e−1

s + 1
e−s

(s + 1) {i3}− {q} = 0,

so that

{q} =
50e−1e−s

(s + 1)2 + 1

and

q(t) = 50e−1e−(t−1) sin(t − 1) (t − 1) = 50e−t sin(t − 1) (t − 1).

21. (a) Taking the Laplace transform of the system

4θ′′1 + θ′′2 + 8θ1 = 0

θ′′1 + θ′′2 + 2θ2 = 0
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gives

4
(
s2 + 2

)
{θ1} + s2 {θ2} = 3s

s2 {θ1} +
(
s2 + 2

)
{θ2} = 0

so that (
3s2 + 4

) (
s2 + 4

)
{θ2} = −3s3

or

{θ2} =
1

2

s

s2 + 4/3
− 3

2

s

s2 + 4
.

Then

θ2 =
1

2
cos

2√
3
t − 3

2
cos 2t and θ′′1 = −θ′′2 − 2θ2

so that

θ1 =
1

4
cos

2√
3
t +

3

4
cos 2t.

(b)

Mass m2 has extreme displacements of greater magnitude. Mass m1 first passes through its

equilibrium position at about t = 0.87, and mass m2 first passes through its equilibrium

position at about t = 0.66. The motion of the pendulums is not periodic since cos(2t/
√

3 ) has

period
√

3 π, cos 2t has period π, and the ratio of these periods is
√

3 , which is not a rational

number.

(c) The Lissajous curve is plotted for 0 ≤ t ≤ 30.
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(d)

(e) Using a CAS to solve θ1(t) = θ2(t) we see that θ1 = θ2 (so that the double

pendulum is straight out) when t is about 0.75 seconds.

(f) To make a movie of the pendulum it is necessary to locate the mass in the plane as a function

of time. Suppose that the upper arm is attached to the origin and that the equilibrium position

lies along the negative y-axis. Then mass m1 is at (x, (t), y1(t)) and mass m2 is at (x2(t), y2(t)),

where

x1(t) = 16 sin θ1(t) and y1(t) = −16 cos θ1(t)

and

x2(t) = x1(t) + 16 sin θ2(t) and y2(t) = y1(t) − 16 cos θ2(t).

A reasonable movie can be constructed by letting t range from 0 to 10 in increments of 0.1

seconds.
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THE LAPLACE TRANSFORM
7.1 Chapter 7 in Reviewq

7.R Chapter 7 in Reviewq

1. L {f(t)} =

∫ 1

0
te−stdt+

∫ ∞
1

(2− t)e−stdt =
1

s2
− 2

s2
e−s

2. L {f(t)} =

∫ 4

2
e−stdt =

1

s

(
e−2s − e−4s

)
3. False; consider f(t) = t−1/2.

4. False, since f(t) = (et)10 = e10t.

5. True, since lims→∞ F (s) = 1 6= 0. (See Theorem 7.1.3 in the text.)

6. False; consider f(t) = 1 and g(t) = 1.

7. L
{
e−7t

}
=

1

s+ 7

8. L
{
te−7t

}
=

1

(s+ 7)2

9. L {sin 2t} =
2

s2 + 4

10. L
{
e−3t sin 2t

}
=

2

(s+ 3)2 + 4

11. L {t sin 2t} = − d

ds

[
2

s2 + 4

]
=

4s

(s2 + 4)2

12. L {sin 2tU (t− π)} = L {sin 2(t− π)U (t− π)} =
2

s2 + 4
e−πs

13. L −1
{

20

s6

}
= L −1

{
1

6

5!

s6

}
=

1

6
t5
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15. L −1
{

1

(s− 5)3

}
=

1

2

2

(s− 5)3
=

1

2
t2e5t

16. L −1
{

1

s2 − 5

}
= L −1

{
− 1

2
√

5

1

s+
√

5
+

1

2
√

5

1

s−
√

5

}
= − 1

2
√

5
e−
√
5 t +

1

2
√

5
e
√
5 t

17. L −1
{

s

s2 − 10s+ 29

}
= L −1

{
s− 5

(s− 5)2 + 22
+

5

2

2

(s− 5)2 + 22

}
= e5t cos 2t+

5

2
e5t sin 2t

18. L −1
{

1

s2
e−5s

}
= (t− 5)U (t− 5)

19. L −1
{
s+ π

s2 + π2
e−s
}

= L −1
{

s

s2 + π2
e−s +

π

s2 + π2
e−s
}

L −1
{
s+ π

s2 + π2
e−s
}

= cosπ(t− 1)U (t− 1) + sinπ(t− 1)U (t− 1)

20. L −1
{

1

L2s2 + n2π2

}
=

1

L2

L

nπ
L −1

{
nπ/L

s2 + (n2π2)/L2

}
=

1

Lnπ
sin

nπ

L
t

21. L
{
e−5t

}
exists for s > −5.

22. L
{
te8tf(t)

}
= − d

ds
F (s− 8).

23. L
{
eatf(t− k)U (t− k)

}
= e−ksL

{
ea(t+k)f(t)

}
= e−kseakL

{
eatf(t)

}
= e−k(s−a)F (s− a)

24. L

{∫ t

0
eaτf(τ) dτ

}
=

1

s
L
{
eatf(t)

}
=
F (s− a)

s
, whereas

L

{
eat
∫ t

0
f(τ) dτ

}
= L

{∫ t

0
f(τ) dτ

} ∣∣∣∣
s→s−a

=
F (s)

s

∣∣∣∣
s→s−a

=
F (s− a)

s− a
.

25. f(t)U (t− t0)

26. f(t)− f(t)U (t− t0)

27. f(t− t0)U (t− t0)

28. f(t)− f(t)U (t− t0) + f(t)U (t− t1)

7.R                  Chapter 7              in            eviewRR 459

© 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part, except for use as permitted in a license distributed 
with a certain product or service or otherwise on a password-protected website for classroom use. Not For Sale

©
 C

en
ga

ge
 L

ea
rn

in
g.

 A
ll 

rig
ht

s r
es

er
ve

d.
 N

o 
di

st
rib

ut
io

n 
al

lo
w

ed
 w

ith
ou

t e
xp

re
ss

 a
ut

ho
riz

at
io

n.



29. f(t) = t− [(t− 1) + 1]U (t− 1) + U (t− 1)− U (t− 4) = t− (t− 1)U (t− 1)− U (t− 4)

L {f(t)} =
1

s2
− 1

s2
e−s − 1

s
e−4s

L
{
etf(t)

}
=

1

(s− 1)2
− 1

(s− 1)2
e−(s−1) − 1

s− 1
e−4(s−1)

30. f(t) = sin tU (t− π)− sin tU (t− 3π) = − sin(t− π)U (t− π) + sin(t− 3π)U (t− 3π)

L {f(t)} = − 1

s2 + 1
e−πs +

1

s2 + 1
e−3πs

L
{
etf(t)

}
= − 1

(s− 1)2 + 1
e−π(s−1) +

1

(s− 1)2 + 1
e−3π(s−1)

31. f(t) = 2− 2U (t− 2) + [(t− 2) + 2]U (t− 2) = 2 + (t− 2)U (t− 2)

L {f(t)} =
2

s
+

1

s2
e−2s

L
{
etf(t)

}
=

2

s− 1
+

1

(s− 1)2
e−2(s−1)

32. f(t) = t− tU (t− 1)+(2− t)U (t− 1)−(2− t)U (t− 2) = t−2(t−1)U (t− 1)+(t−2)U (t− 2)

L {f(t)} =
1

s2
− 2

s2
e−s +

1

s2
e−2s

L
{
etf(t)

}
=

1

(s− 1)2
− 2

(s− 1)2
e−(s−1) +

1

(s− 1)2
e−2(s−1)

33. Taking the Laplace transform of the differential equation we obtain

L {y} =
5

(s− 1)2
+

1

2

2

(s− 1)3

so that

y = 5tet +
1

2
t2et.

34. Taking the Laplace transform of the differential equation we obtain

L {y} =
1

(s− 1)2(s2 − 8s+ 20)

=
6

169

1

s− 1
+

1

13

1

(s− 1)2
− 6

169

s− 4

(s− 4)2 + 22
+

5

338

2

(s− 4)2 + 22

so that

y =
6

169
et +

1

13
tet − 6

169
e4t cos 2t+

5

338
e4t sin 2t.
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35. Taking the Laplace transform of the given differential equation we obtain

L {y} =
s3 + 6s2 + 1

s2(s+ 1)(s+ 5)
− 1

s2(s+ 1)(s+ 5)
e−2s − 2

s(s+ 1)(s+ 5)
e−2s

= − 6

25
· 1

s
+

1

5
· 1

s2
+

3

2
· 1

s+ 1
− 13

50
· 1

s+ 5

−
(
− 6

25
· 1

s
+

1

5
· 1

s2
+

1

4
· 1

s+ 1
− 1

100
· 1

s+ 5

)
e−2s

−
(

2

5
· 1

s
− 1

2
· 1

s+ 1
+

1

10
· 1

s+ 5

)
e−2s

so that

y = − 6

25
+

1

5
t+

3

2
e−t − 13

50
e−5t − 4

25
U (t− 2)− 1

5
(t− 2)U (t− 2)

+
1

4
e−(t−2)U (t− 2)− 9

100
e−5(t−2)U (t− 2) .

36. Taking the Laplace transform of the differential equation we obtain

L {y} =
s3 + 2

s3(s− 5)
− 2 + 2s+ s2

s3(s− 5)
e−s

= − 2

125

1

s
− 2

25

1

s2
− 1

5

2

s3
+

127

125

1

s− 5
−
[
− 37

125

1

s
− 12

25

1

s2
− 1

5

2

s3
+

37

125

1

s− 5

]
e−s

so that

y = − 2

125
− 2

25
t− 1

5
t2 +

127

125
e5t −

[
− 37

125
− 12

25
(t− 1)− 1

5
(t− 1)2 +

37

125
e5(t−1)

]
U (t− 1) .

37. The function in Figure 7.R.10 is 
0, 0 ≤ t < 1

t− 1, 1 ≤ t < 2

3− t, 2 ≤ t < 3

0, t ≥ 3

or

f(t) = (t− 1)U (t− 1)− 2(t− 2)U (t− 2) + (t− 3)U (t− 3) .

The transform of the differential equation is

sY (s)− 1 + 2Y (s) =
e−s

s2
− 2e−2s

s2
+
e−3s

s2

so

Y (s) =
1

s+ 2
+

1

s2(s+ 2)
e−s − 2

s2(s+ 2)
e−2s +

1

s2(s+ 2)
e−3s,
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and

y(t) = e−2t +

[
−1

4
+

1

2
(t− 1) +

1

4
e−2(t−1)

]
U (t− 1)

− 2

[
−1

4
+

1

2
(t− 2) +

1

4
e−2(t−2)

]
U (t− 2)

+

[
−1

4
+

1

2
(t− 3) +

1

4
e−2(t−3)

]
U (t− 3) .

38. The transform of the differential equation is

s2Y (s)− 3 + 5sY (s) + 4Y (s) = 12
∞∑
k=0

(−1)k
e−ns

s

so

(s2 + 5s+ 4)Y (s) = 3 + 12

∞∑
k=0

(−1)k
e−ns

s

and

Y (s) =
3

s2 + 5s+ 4
+
∞∑
k=0

(−1)k
12

s(s2 + 5s+ 4)
e−ns.

Thus

Y (s) =

[
1

s+ 1
− 1

s+ 4

]
+

∞∑
k=0

(−1)k
[

3

s
− 4

s+ 1
+

1

s = 4

]
e−ns

and

y(t) = e−t − e−4t +

∞∑
k=0

(−1)k
(

3− 4e−(t−n) + e−4(t−n)
)

U (t− n) .

39. Taking the Laplace transform of the integral equation we obtain

L {y} =
1

s
+

1

s2
+

1

2

2

s3

so that

y(t) = 1 + t+
1

2
t2.

40. Taking the Laplace transform of the integral equation we obtain

(L {f})2 = 6 · 6

s4
or L {f} = ±6 · 1

s2

so that f(t) = ±6t.

41. Taking the Laplace transform of the system gives

sL {x}+ L {y} =
1

s2
+ 1

4L {x}+ sL {y} = 2
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so that

L {x} =
s2 − 2s+ 1

s(s− 2)(s+ 2)
= −1

4

1

s
+

1

8

1

s− 2
+

9

8

1

s+ 2
.

Then

x = −1

4
+

1

8
e2t +

9

8
e−2t and y = −x′ + t =

9

4
e−2t − 1

4
e2t + t.

42. Taking the Laplace transform of the system gives

s2L {x}+ s2L {y} =
1

s− 2

2sL {x}+ s2L {y} = − 1

s− 2

so that

L {x} =
2

s(s− 2)2
=

1

2

1

s
− 1

2

1

s− 2
+

1

(s− 2)2

and

L {y} =
−s− 2

s2(s− 2)2
= −3

4

1

s
− 1

2

1

s2
+

3

4

1

s− 2
− 1

(s− 2)2
.

Then

x =
1

2
− 1

2
e2t + te2t and y = −3

4
− 1

2
t+

3

4
e2t − te2t.

43. The integral equation is

10i+ 2

∫ t

0
i(τ) dτ = 2t2 + 2t.

Taking the Laplace transform we obtain

L {i} =

(
4

s3
+

2

s2

)
s

10s+ 2
=

s+ 2

s2(5s+ 2)
= −9

s
+

2

s2
+

45

5s+ 1
= −9

s
+

2

s2
+

9

s+ 1/5
.

Thus

i(t) = −9 + 2t+ 9e−t/5.

44. The differential equation is

1

2

d2q

dt2
+ 10

dq

dt
+ 100q = 10− 10U (t− 5) .

Taking the Laplace transform we obtain

L {q} =
20

s(s2 + 20s+ 200)

(
1− e−5s

)
=

[
1

10

1

s
− 1

10

s+ 10

(s+ 10)2 + 102
− 1

10

10

(s+ 10)2 + 102

](
1− e−5s

)
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so that

q(t) =
1

10
− 1

10
e−10t cos 10t− 1

10
e−10t sin 10t

−
[

1

10
− 1

10
e−10(t−5) cos 10(t− 5)− 1

10
e−10(t−5) sin 10(t− 5)

]
U (t− 5) .

45. Taking the Laplace transform of the given differential equation we obtain

L {y} =
2w0

EIL

(
L

48
· 4!

s5
− 1

120
· 5!

s6
+

1

120
· 5!

s6
e−sL/2

)
+
c1
2
· 2!

s3
+
c2
6
· 3!

s4

so that

y =
2w0

EIL

[
L

48
x4 − 1

120
x5 +

1

120

(
x− L

2

)5

U

(
x− L

2

)
+
c1
2
x2 +

c2
6
x3

]

where y′′(0) = c1 and y′′′(0) = c2. Using y′′(L) = 0 and y′′′(L) = 0 we find

c1 = w0L
2/24EI, c2 = −w0L/4EI.

Hence

y =
w0

12EIL

[
−1

5
x5 +

L

2
x4 − L2

2
x3 +

L3

4
x2 +

1

5

(
x− L

2

)5

U

(
x− L

2

)]
.

46. (a) In this case the boundary conditions are y(0) = y′′(0) = 0 and y(π) = y′′(π) = 0. If we let

c1 = y′(0) and c2 = y′′′(0) then

s4L {y} − s3y(0)− s2y′(0)− sy(0)− y′′′(0) + 4L {y} = L {w0/EI}

and

L {y} =
c1
2
· 2s2

s4 + 4
+
c2
4
· 4

s4 + 4
+

w0

8EI

(
2

s
− s− 1

(s− 1)2 + 1
− s+ 1

(s+ 1)2 + 1

)
.

From the table of transforms we get

y =
c1
2

(sinx coshx+cosx sinhx)+
c2
4

(sinx coshx−cosx sinhx)+
w0

4EI
(1−cosx coshx)

Using y(π) = 0 and y′′(π) = 0 we find

c1 =
w0

4EI
(1 + coshπ)cschπ, c2 = − w0

2EI
(1 + coshπ)cschπ.

Hence

y =
w0

8EI
(1 + coshπ)cschπ(sinx coshx+ cosx sinhx)

− w0

8EI
(1 + coshπ)cschπ(sinx coshx− cosx sinhx) +

w0

4EI
(1− cosx coshx).
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(b) In this case the boundary conditions are y(0) = y′(0) = 0 and y(π) = y′(π) = 0. If we let

c1 = y′′(0) and c2 = y′′′(0) then

s4L {y} − s3y(0)− s2y′(0)− sy(0)− y′′′(0) + 4L {y} = L {δ(t− π/2)}

and

L {y} =
c1
2
· 2s

s4 + 4
+
c2
4
· 4

s4 + 4
+

w0

4EI
· 4

s4 + 4
e−sπ/2.

From the table of transforms we get

y =
c1
2

sinx sinhx+
c2
4

(sinx coshx− cosx sinhx)

+
w0

4EI

[
sin
(
x− π

2

)
cosh

(
x− π

2

)
− cos

(
x− π

2

)
sinh

(
x− π

2

)]
U
(
x− π

2

)
Using y(π) = 0 and y′(π) = 0 we find

c1 =
w0

EI

sinh π
2

sinhπ
, c2 = −w0

EI

cosh π
2

sinhπ
.

Hence

y =
w0

2EI

sinh π
2

sinhπ
sinx sinhx− w0

4EI

cosh π
2

sinhπ
(sinx coshx− cosx sinhx)

+
w0

4EI

[
sin
(
x− π

2

)
cosh

(
x− π

2

)
− cos

(
x− π

2

)
sinh

(
x− π

2

)]
U
(
x− π

2

)
.

47. (a) With ω2 = g/l and K = k/m the system of differential equations is

θ′′1 + ω2θ1 = −K(θ1 − θ2)

θ′′2 + ω2θ2 = K(θ1 − θ2).

Denoting the Laplace transform of θ(t) by Θ(s) we have that the Laplace transform of

the system is

(s2 + ω2)Θ1(s) = −KΘ1(s) +KΘ2(s) + sθ0

(s2 + ω2)Θ2(s) = KΘ1(s)−KΘ2(s) + sψ0.

If we add the two equations, we get

Θ1(s) + Θ2(s) = (θ0 + ψ0)
s

s2 + ω2

which implies

θ1(t) + θ2(t) = (θ0 + ψ0) cosωt.

This enables us to solve for first, say, θ1(t) and then find θ2(t) from

θ2(t) = −θ1(t) + (θ0 + ψ0) cosωt.
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Now solving

(s2 + ω2 +K)Θ1(s)−KΘ2(s) = sθ0

−kΘ1(s) + (s2 + ω2 +K)Θ2(s) = sψ0

gives

[(s2 + ω2 +K)2 −K2]Θ1(s) = s(s2 + ω2 +K)θ0 +Ksψ0.

Factoring the difference of two squares and using partial fractions we get

Θ1(s) =
s(s2 + ω2 +K)θ0 +Ksψ0

(s2 + ω2)(s2 + ω2 + 2K)
=
θ0 + ψ0

2

s

s2 + ω2
+
θ0 − ψ0

2

s

s2 + ω2 + 2K
,

so

θ1(t) =
θ0 + ψ0

2
cosωt+

θ0 − ψ0

2
cos
√
ω2 + 2K t.

Then from θ2(t) = −θ1(t) + (θ0 + ψ0) cosωt we get

θ2(t) =
θ0 + ψ0

2
cosωt− θ0 − ψ0

2
cos
√
ω2 + 2K t.

(b) With the initial conditions θ1(0) = θ0, θ
′
1(0) = 0, θ2(0) = θ0, θ

′
2(0) = 0 we have

θ1(t) = θ0 cosωt, θ2(t) = θ0 cosωt.

Physically this means that both pendulums swing in the same direction as if they were

free since the spring exerts no influence on the motion (θ1(t) and θ2(t) are free of K).

With the initial conditions θ1(0) = θ0, θ
′
1(0) = 0, θ2(0) = −θ0, θ′2(0) = 0 we have

θ1(t) = θ0 cos
√
ω2 + 2K t, θ2(t) = −θ0 cos

√
ω2 + 2K t.

Physically this means that both pendulums swing in the opposite directions, stretching

and compressing the spring. The amplitude of both displacements is |θ0|. Moreover,

θ1(t) = θ0 and θ2(t) = −θ0 at precisely the same times. At these times the spring is

stretched to its maximum.

48. (a) We will find the first two times for which x′(t) = 0 and then obtain the rest of the times

using periodicity of x′(t). The solution of

x′′ + ω2x = F, x(0) = x0, x′(0) = 0

is

x(t) =

(
x0 −

F

ω2

)
cosωt+

F

ω2
so x′(t) =

(
x0 −

F

ω2

)
(−ω sinωt).

The latter equation is 0 when t = π/ω. The next initial-value problem is then

x′′ + ω2x = −F, x
(π
ω

)
=

2F

ω2
− x0, x′

(π
ω

)
= 0,
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where π/ω = T/2. From the solution of this problem,

x(t) =

(
x0 −

3F

ω2

)
cosωt− F

ω2
,

we see from

x′(t) =

(
x0 −

3F

ω2

)
(−ω sinωt) = 0

that t = 2π/ω = T . Since x′(t) has period T = 2π/ω we can see that x′(t) = 0 at the

times
π

ω
+

2π

ω
k and

2π

ω
+

2π

ω
k, for k = 0, 1, 2, . . .

which are

0,
π

ω
,

2π

ω
,
3π

ω
, . . . or 0,

t

2
, T,

3T

2
, . . . .

(b) There is no motion unless the initial displacement is such that the force of the spring is

greater than the force due to friction. That is,

k|x0| > fk or
k

m
|x0| >

fk
m

or ω2|x0| > F.

(c) From part (b), an initial displacement x(0) = x0 for which |x0| > F/ω2 will result in

motion. On the other hand, an initial displacement x0 for which |x0| ≤ F/ω2 will be

insufficient to overcome the force of friction and the system will be “dead”.

(d) The system can be described by the initial-value problem

x′′ + ω2x = g(t), x(0) = x0, x
′(0) = 0,

where g is a version of the meander function shown in Figure 7.4.6 in the text. In this

case the amplitude of the function is F instead of 1, and the length of each line segment

is T/2 rather than a. Then

L
{
x′′
}

+ ω2L {x} = L {g} ,

s2X(s)− sx0 + ω2X(s) = G(s),

and

X(s) =
sx0

s2 + ω2
+

1

s2 + ω2
G(s).

Now, using Problem 49 in Section 7.4 with F instead of 1 and a = T/2, we have

L {g(t)} = G(s) =
F

s

1− e−sT/2

1 + e−sT/2

=
F

s
[1− 2e−sT/2 + 2e−sT − 2e−3sT/2 + · · · ].
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Then

X(s) = x0
s

s2 + ω2
+
F

s

1

s2 + ω2
[1− 2e−sT/2 + 2e−sT − 2e−3sT/2 + · · · ]

= x0
s

s2 + ω2
+
F

ω2

[
1

s
− s

s2 + ω2

]
[1− 2e−sT/2 + 2e−sT − 2e−3sT/2 + · · · ]

and

x(t) = x0 cosωt+
F

ω2
(1− cosωt)− 2F

ω2

[
U

(
t− T

2

)
− cosω

(
t− T

2

)
U

(
t− T

2

)]
+

2F

ω2
[U (t− T )− cosω(t− T )U (t− T )]

− 2F

ω2

[
U

(
t− 3T

2

)
− cosω

(
t− 3T

2

)
U

(
t− 3T

2

)]
+ · · ·

or

x(t) =



x0 cosωt+
F

ω2
(1− cosωt), 0 ≤ t < T/2

x0 cosωt+
F

ω2
(1− cosωt)− 2F

ω2

[
1− cosω

(
t− T

2

)]
, T/2 ≤ t < T

x0 cosωt+
F

ω2
(1− cosωt)− 2F

ω2

[
1− cosω

(
t− T

2

)]
+

2F

ω2
[1− cosω(t− T )], T ≤ t < 3T/2

...

(e) The solutions from Problem 28 in Chapter 5 in Review are

x(t) =

{
4.5 cos t+ 1, 0 ≤ t < π

2.5 cos t− 1, π ≤ t < 2π.

On the interval [0, 2π) the solution is

x(t) =


x0 cosωt+

F

ω2
(1− cosωt), 0 ≤ t < T/2

x0 cosωt+
F

ω2
(1− cosωt)− 2F

ω2

[
1− cosω

(
t− T

2

)]
, T/2 ≤ t < T.

We let m = 1, k = 1, fk = 1, and x0 = 5.5. Then, when T = 2π, the foregoing becomes

x(t) =

{
5.5 cos t+ (1− cos t), 0 ≤ t < π

5.5 cos t+ (1− cos t)− 2
[
1− cos(t− π)

]
, π ≤ t < 2π.

Simplifying this we get

x(t) =

{
4.5 cos t+ 1, 0 ≤ t < π

2.5 cos t− 1, π ≤ t < 2π.
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(f) At t = T/2, x(T/2) = −x0 + 2F/ω2. At t = T ,

x(T ) = x0 − 4F/ω2 = (x0 − 2F/ω2)− 2F/ω2 = −x(T/2)− 2F/ω2.

At t = 3T/2, x(3T/2) = −x0 + 6F/ω2 = −x(T ) + 2F/ω2. We see in general that each

successive oscillation is 2F/ω2 shorter than the preceding one.

(g) The system will stay in motion until the oscillations bring the mass within the “dead zone”

at which time the motion ceases.

49. (a) Rewriting the system as

d2x

dt2
= 0

d2y

dt2
= −g .

Then, taking the Laplace transform of each equation, we have

s2X(s)− sx(0)− x′(0) = 0

s2Y (s)− sy(0)− y′(0) =
g

s
.

Using x(0) = 0, x′(0) = v0 cos θ, y(0) = 0, y′(0) = v0 sin θ where v0 =
∣∣v0

∣∣, we have

s2X(s) = v0 cos θ

s2Y (s) = v0 sin θ − g

s

or

X(s) = (v0 cos θ)
1

s2

Y (s) = (v0 sin θ)
1

s2
− g

s3
.

Thus

x(t) + (v0 cos θ)t

y(t) = (v0 sin θ)t− 1

2
gt2.

(b) Using t =
x

v0 cos θ
we o btain

y(x) = −1

2
g

x2

v20 cos2 θ
+ v0 sin θ

x

v0 cos θ
=

(
−1

2
g

x

v20 cos2 θ
+

sin θ

cos θ

)
x.

When the projectile hits the ground, y = 0, so x = 0, which is the initial condition, or

R =
2v20 cos θ sin θ

g
=
v20
g

sin 2θ,

which is the horizontal range.
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(c) When 0 < θ < π/2 the complementary angle of θ is π/2 − θ. Substituting this into the

result of part (b) we have

R
(π

2
− θ
)

=
v0
g

sin 2
(π

2
− θ
)

=
v0
g

sin(π − 2θ)

=
v0
g

(sinπ cos 2θ − cosπ sin 2θ) =
v0
g

sin 2θ = R(θ).

(d) When g = 32, θ = 38◦ and v0 = 300 we have from part (b) that

R =
3002

32
sin 76◦ ≈ 2729 ft.

Solving

x(t) = (300 cos 38◦)t = 2729

for t, we see that the projectile hits the ground after about 11.54 sec.

(e) For θ = 38◦ the curve is shown in blue,

while for θ = 52◦ the curve is shown in

red.

0 500 1000 1500 2000 2500
0

500

1000

1500

2000

2500

50. (a) Taking the Laplace transform of the first equation, we obtain

m(s2L {x(t)} − v0 cos θ) = −βsL {x(t)} ,

so that

L {x(t)} =
v0 cos θ

s(s+ β/m)
=
mv0 cos θ

β

(
1

s
− 1

s+ β/m

)
,

and

x(t) =
mv0 cos θ

β
(1− e−βt/m).

Taking the Laplace transform of the second equation, we obtain

m(sL {y(t)} − v0 sin θ) = −mg
s
− βsL {y}

so that

L {y(t)} =
v0 sin θ

s(s+ β/m)
− g

s2(s2 + β/m)

=
mv0 sin θ

β

(
1

s
− 1

s+ β/m

)
−
(
mg

β

1

s2
− m2g

β2
1

s
+
m2g

β2
1

s+ β/m

)
,

and

y(t) =
mv0 sin θ

β
(1− e−βt/m)−

(
mg

β
t− m2g

β2
e−βt/m

)

=
m

β

(
v0 sin θ +

mg

β

)
(1− e−βt/m)− mg

β
t.
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(b) To find when the projectile hits the ground, we use a CAS to solve y(t) = 0. This gives

t0 = 10.18 sec. The range is then approximately x(t0) = 1646 ft.

(c) Solving y(t) = 0 when θ = 52◦ gives t1 = 12.67, so the range in this case is x(t1) = 1470.9

ft, which is considerably less that the range of 1645.98 ft when θ = 38◦.

(d) For θ = 38◦ the curve is shown in blue, while

for θ = 52◦ the curve is shown in red. We see

that the larger angle of elevation results in a

smaller range for the projectile. Also, while

the curves look at first glance like parabolas,

a closer examination shows that they are not

parabolas (at least not with vertical axes).

0 500 1000 1500
0

500

1000

1500
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1. Let X =

(
x

y

)
. Then X′ =

(
3 −5

4 8

)
X.

2. Let X =

(
x

y

)
. Then X′ =

(
4 −7

5 0

)
X.

3. Let X =

⎛
⎜⎜⎝

x

y

z

⎞
⎟⎟⎠. Then X′ =

⎛
⎜⎜⎝
−3 4 −9

6 −1 0

10 4 3

⎞
⎟⎟⎠X.

4. Let X =

⎛
⎜⎜⎝

x

y

z

⎞
⎟⎟⎠. Then X′ =

⎛
⎜⎜⎝

1 −1 0

1 0 2

−1 0 1

⎞
⎟⎟⎠X.

5. Let X =

⎛
⎜⎜⎝

x

y

z

⎞
⎟⎟⎠. Then X′ =

⎛
⎜⎜⎝

1 −1 1

2 1 −1

1 1 1

⎞
⎟⎟⎠X+

⎛
⎜⎜⎝

0

−3t2

t2

⎞
⎟⎟⎠ +

⎛
⎜⎜⎝

t

0

−t

⎞
⎟⎟⎠ +

⎛
⎜⎜⎝
−1

0

2

⎞
⎟⎟⎠.

6. Let X =

⎛
⎜⎜⎝

x

y

z

⎞
⎟⎟⎠. Then X′ =

⎛
⎜⎜⎝
−3 4 0

5 9 0

0 1 6

⎞
⎟⎟⎠X+

⎛
⎜⎜⎝

e−t sin 2t

4e−t cos 2t

−e−t

⎞
⎟⎟⎠.

7.
dx

dt
= 4x + 2y + et;

dy

dt
= −x + 3y − et

8.
dx

dt
= 7x + 5y − 9z − 8e−2t;

dy

dt
= 4x + y + z + 2e5t;

dz

dt
= −2y + 3z + e5t − 3e−2t

9.
dx

dt
= x − y + 2z + e−t − 3t;

dy

dt
= 3x − 4y + z + 2e−t + t;

dz

dt
= −2x + 5y + 6z + 2e−t − t

10.
dx

dt
= 3x − 7y + 4 sin t + (t − 4)e4t;

dy

dt
= x + y + 8 sin t + (2t + 1)e4t

Systems of Linear First-Order

Differential Equations8
8.1 Preliminary Theory – Linear Systemsq
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11. Since

X′ =

( −5

−10

)
e−5t and

(
3 −4

4 −7

)
X =

( −5

−10

)
e−5t

we see that

X′ =

(
3 −4

4 −7

)
X.

12. Since

X′ =

(
5 cos t − 5 sin t

2 cos t − 4 sin t

)
et and

(−2 5

−2 4

)
X =

(
5 cos t − 5 sin t

2 cos t − 4 sin t

)
et

we see that

X′ =

(−2 5

−2 4

)
X.

13. Since

X′ =

(
3/2

−3

)
e−3t/2 and

(−1 1/4

1 −1

)
X =

(
3/2

−3

)
e−3t/2

we see that

X′ =

(−1 1/4

1 −1

)
X.

14. Since

X′ =

(
5

−1

)
et +

(
4

−4

)
tet and

(
2 1

−1 0

)
X =

(
5

−1

)
et +

(
4

−4

)
tet

we see that

X′ =

(
2 1

−1 0

)
X.

15. Since

X′ =

⎛
⎜⎜⎝

0

0

0

⎞
⎟⎟⎠ and

⎛
⎜⎜⎝

1 2 1

6 −1 0

−1 −2 −1

⎞
⎟⎟⎠X =

⎛
⎜⎜⎝

0

0

0

⎞
⎟⎟⎠

we see that

X′ =

⎛
⎜⎜⎝

1 2 1

6 −1 0

−1 −2 −1

⎞
⎟⎟⎠X.

16. Since

X′ =

⎛
⎜⎜⎝

cos t
1
2 sin t − 1

2 cos t

− cos t − sin t

⎞
⎟⎟⎠ and

⎛
⎜⎜⎝

1 0 1

1 1 0

−2 0 −1

⎞
⎟⎟⎠X =

⎛
⎜⎜⎝

cos t
1
2 sin t − 1

2 cos t

− cos t − sin t

⎞
⎟⎟⎠

we see that

X′ =

⎛
⎜⎜⎝

1 0 1

1 1 0

−2 0 −1

⎞
⎟⎟⎠X.
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17. Yes, since W (X1,X2) = −2e−8t �= 0 the set X1, X2 is linearly independent on −∞ < t < ∞.

18. Yes, since W (X1,X2) = 8e2t �= 0 the set X1, X2 is linearly independent on −∞ < t < ∞.

19. No, since W (X1,X2,X3) = 0 the set X1, X2, X3 is linearly dependent on −∞ < t < ∞.

20. Yes, since W (X1,X2,X3) = −84e−t �= 0 the set X1, X2, X3 is linearly independent on

−∞ < t < ∞.

21. Since

X′
p =

(
2

−1

)
and

(
1 4

3 2

)
Xp +

(
2

−4

)
t +

( −7

−18

)
=

(
2

−1

)

we see that

X′
p =

(
1 4

3 2

)
Xp +

(
2

−4

)
t +

( −7

−18

)
.

22. Since

X′
p =

(
0

0

)
and

(
2 1

1 −1

)
Xp +

(−5

2

)
=

(
0

0

)

we see that

X′
p =

(
2 1

1 −1

)
Xp +

(−5

2

)
.

23. Since

X′
p =

(
2

0

)
et +

(
1

−1

)
tet and

(
2 1

3 4

)
Xp −

(
1

7

)
et =

(
2

0

)
et +

(
1

−1

)
tet

we see that

X′
p =

(
2 1

3 4

)
Xp −

(
1

7

)
et.

24. Since

X′
p =

⎛
⎜⎜⎝

3 cos 3t

0

−3 sin 3t

⎞
⎟⎟⎠ and

⎛
⎜⎜⎝

1 2 3

−4 2 0

−6 1 0

⎞
⎟⎟⎠Xp +

⎛
⎜⎜⎝
−1

4

3

⎞
⎟⎟⎠ sin 3t =

⎛
⎜⎜⎝

3 cos 3t

0

−3 sin 3t

⎞
⎟⎟⎠

we see that

X′
p =

⎛
⎜⎜⎝

1 2 3

−4 2 0

−6 1 0

⎞
⎟⎟⎠Xp +

⎛
⎜⎜⎝
−1

4

3

⎞
⎟⎟⎠ sin 3t.

25. Let

X1 =

⎛
⎜⎜⎝

6

−1

−5

⎞
⎟⎟⎠ e−t, X2 =

⎛
⎜⎜⎝
−3

1

1

⎞
⎟⎟⎠ e−2t, X3 =

⎛
⎜⎜⎝

2

1

1

⎞
⎟⎟⎠ e3t, and A =

⎛
⎜⎜⎝

0 6 0

1 0 1

1 1 0

⎞
⎟⎟⎠ .
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Then

X′
1 =

⎛
⎜⎜⎝
−6

1

5

⎞
⎟⎟⎠ e−t = AX1,

X′
2 =

⎛
⎜⎜⎝

6

−2

−2

⎞
⎟⎟⎠ e−2t = AX2,

X′
3 =

⎛
⎜⎜⎝

6

3

3

⎞
⎟⎟⎠ e3t = AX3,

and W (X1,X2,X3) = 20 �= 0 so that X1, X2, and X3 form a fundamental set for X′ = AX on

−∞ < t < ∞.

26. Let

X1 =

(
1

−1 −√
2

)
e
√

2 t,

X2 =

(
1

−1 +
√

2

)
e−

√
2 t,

Xp =

(
1

0

)
t2 +

(−2

4

)
t +

(
1

0

)
,

and

A =

(−1 −1

−1 1

)
.

Then

X′
1 =

( √
2

−2 −√
2

)
e
√

2 t = AX1,

X′
2 =

( −√
2

−2 +
√

2

)
e−

√
2 t = AX2,

X′
p =

(
2

0

)
t +

(−2

4

)
= AXp +

(
1

1

)
t2 +

(
4

−6

)
t +

(−1

5

)
,

and W (X1,X2) = 2
√

2 �= 0 so that Xp is a particular solution and X1 and X2 form a fundamental

set on −∞ < t < ∞.
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1. The system is

X′ =

(
1 2

4 3

)
X

and det(A− λI) = (λ − 5)(λ + 1) = 0. For λ1 = 5 we obtain(−4 2 0

4 −2 0

)
=⇒

(
1 −1/2 0

0 0 0

)
so that K1 =

(
1

2

)
.

For λ2 = −1 we obtain(
2 2 0

4 4 0

)
=⇒

(
1 1 0

0 0 0

)
so that K2 =

(−1

1

)
.

Then

X = c1

(
1

2

)
e5t + c2

(−1

1

)
e−t.

2. The system is

X′ =

(
2 2

1 3

)
X

and det(A− λI) = (λ − 1)(λ − 4) = 0. For λ1 = 1 we obtain(
1 2 0

1 2 0

)
=⇒

(
1 2 0

0 0 0

)
so that K1 =

( −2

1

)
.

For λ2 = 4 we obtain(−2 2 0

1 −1 0

)
=⇒

(−1 1 0

0 0 0

)
so that K2 =

(
1

1

)
.

Then

X = c1

(−2

1

)
et + c2

(
1

1

)
e4t.

3. The system is

X′ =

( −4 2

−5/2 2

)
X

and det(A− λI) = (λ − 1)(λ + 3) = 0. For λ1 = 1 we obtain( −5 2 0

−5/2 1 0

)
=⇒

(−5 2 0

0 0 0

)
so that K1 =

(
2

5

)
.

8.2 Homogeneous Linear Systemsq
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For λ2 = −3 we obtain( −1 2 0

−5/2 5 0

)
=⇒

(−1 2 0

0 0 0

)
so that K2 =

(
2

1

)
.

Then

X = c1

(
2

5

)
et + c2

(
2

1

)
e−3t.

4. The system is

X′ =

(−5/2 2

3/4 −2

)
X

and det(A− λI) = 1
2(λ + 1)(2λ + 7) = 0. For λ1 = −7/2 we obtain(

1 2 0

3/4 3/2 0

)
=⇒

(
1 2 0

0 0 0

)
so that K1 =

( −2

1

)
.

For λ2 = −1 we obtain(−3/2 2 0

3/4 −1 0

)
=⇒

(−3 4 0

0 0 0

)
so that K2 =

(
4

3

)
.

Then

X = c1

( −2

1

)
e−7t/2 + c2

(
4

3

)
e−t.

5. The system is

X′ =

(
10 −5

8 −12

)
X

and det(A− λI) = (λ − 8)(λ + 10) = 0. For λ1 = 8 we obtain(
2 −5 0

8 −20 0

)
=⇒

(
1 −5/2 0

0 0 0

)
so that K1 =

(
5

2

)
.

For λ2 = −10 we obtain(
20 −5 0

8 −2 0

)
=⇒

(
1 −1/4 0

0 0 0

)
so that K2 =

(
1

4

)
.

Then

X = c1

(
5

2

)
e8t + c2

(
1

4

)
e−10t.

6. The system is

X′ =

(−6 2

−3 1

)
X

and det(A− λI) = λ(λ + 5) = 0. For λ1 = 0 we obtain(−6 2 0

−3 1 0

)
=⇒

(
1 −1/3 0

0 0 0

)
so that K1 =

(
1

3

)
.
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For λ2 = −5 we obtain(−1 2 0

−3 6 0

)
=⇒

(
1 −2 0

0 0 0

)
so that K2 =

(
2

1

)
.

Then

X = c1

(
1

3

)
+ c2

(
2

1

)
e−5t.

7. The system is

X′ =

⎛
⎜⎜⎝

1 1 −1

0 2 0

0 1 −1

⎞
⎟⎟⎠X

and det(A− λI) = (λ − 1)(2 − λ)(λ + 1) = 0. For λ1 = 1, λ2 = 2, and λ3 = −1 we obtain

K1 =

⎛
⎜⎜⎝

1

0

0

⎞
⎟⎟⎠ , K2 =

⎛
⎜⎜⎝

2

3

1

⎞
⎟⎟⎠ , and K3 =

⎛
⎜⎜⎝

1

0

2

⎞
⎟⎟⎠ ,

so that

X = c1

⎛
⎜⎜⎝

1

0

0

⎞
⎟⎟⎠ et + c2

⎛
⎜⎜⎝

2

3

1

⎞
⎟⎟⎠ e2t + c3

⎛
⎜⎜⎝

1

0

2

⎞
⎟⎟⎠ e−t.

8. The system is

X′ =

⎛
⎜⎜⎝

2 −7 0

5 10 4

0 5 2

⎞
⎟⎟⎠X

and det(A− λI) = (2 − λ)(λ − 5)(λ − 7) = 0. For λ1 = 2, λ2 = 5, and λ3 = 7 we obtain

K1 =

⎛
⎜⎜⎝

4

0

−5

⎞
⎟⎟⎠ , K2 =

⎛
⎜⎜⎝
−7

3

5

⎞
⎟⎟⎠ , and K3 =

⎛
⎜⎜⎝
−7

5

5

⎞
⎟⎟⎠ ,

so that

X = c1

⎛
⎜⎜⎝

4

0

−5

⎞
⎟⎟⎠ e2t + c2

⎛
⎜⎜⎝
−7

3

5

⎞
⎟⎟⎠ e5t + c3

⎛
⎜⎜⎝
−7

5

5

⎞
⎟⎟⎠ e7t.

9. We have det(A− λI) = −(λ + 1)(λ − 3)(λ + 2) = 0. For λ1 = −1, λ2 = 3, and λ3 = −2 we obtain

K1 =

⎛
⎜⎜⎝
−1

0

1

⎞
⎟⎟⎠ , K2 =

⎛
⎜⎜⎝

1

4

3

⎞
⎟⎟⎠ , and K3 =

⎛
⎜⎜⎝

1

−1

3

⎞
⎟⎟⎠ ,
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so that

X = c1

⎛
⎜⎜⎝
−1

0

1

⎞
⎟⎟⎠ e−t + c2

⎛
⎜⎜⎝

1

4

3

⎞
⎟⎟⎠ e3t + c3

⎛
⎜⎜⎝

1

−1

3

⎞
⎟⎟⎠ e−2t.

10. We have det(A− λI) = −λ(λ − 1)(λ − 2) = 0. For λ1 = 0, λ2 = 1, and λ3 = 2 we obtain

K1 =

⎛
⎜⎜⎝

1

0

−1

⎞
⎟⎟⎠ , K2 =

⎛
⎜⎜⎝

0

1

0

⎞
⎟⎟⎠ , and K3 =

⎛
⎜⎜⎝

1

0

1

⎞
⎟⎟⎠ ,

so that

X = c1

⎛
⎜⎜⎝

1

0

−1

⎞
⎟⎟⎠ + c2

⎛
⎜⎜⎝

0

1

0

⎞
⎟⎟⎠ et + c3

⎛
⎜⎜⎝

1

0

1

⎞
⎟⎟⎠ e2t.

11. We have det(A− λI) = −(λ + 1)(λ + 1/2)(λ + 3/2) = 0. For λ1 = −1, λ2 = −1/2, and λ3 = −3/2

we obtain

K1 =

⎛
⎜⎜⎝

4

0

−1

⎞
⎟⎟⎠ , K2 =

⎛
⎜⎜⎝
−12

6

5

⎞
⎟⎟⎠ , and K3 =

⎛
⎜⎜⎝

4

2

−1

⎞
⎟⎟⎠ ,

so that

X = c1

⎛
⎜⎜⎝

4

0

−1

⎞
⎟⎟⎠ e−t + c2

⎛
⎜⎜⎝
−12

6

5

⎞
⎟⎟⎠ e−t/2 + c3

⎛
⎜⎜⎝

4

2

−1

⎞
⎟⎟⎠ e−3t/2.

12. We have det(A− λI) = (λ − 3)(λ + 5)(6 − λ) = 0. For λ1 = 3, λ2 = −5, and λ3 = 6 we obtain

K1 =

⎛
⎜⎜⎝

1

1

0

⎞
⎟⎟⎠ , K2 =

⎛
⎜⎜⎝

1

−1

0

⎞
⎟⎟⎠ , and K3 =

⎛
⎜⎜⎝

2

−2

11

⎞
⎟⎟⎠ ,

so that

X = c1

⎛
⎜⎜⎝

1

1

0

⎞
⎟⎟⎠ e3t + c2

⎛
⎜⎜⎝

1

−1

0

⎞
⎟⎟⎠ e−5t + c3

⎛
⎜⎜⎝

2

−2

11

⎞
⎟⎟⎠ e6t.

13. We have det(A− λI) = (λ + 1/2)(λ − 1/2) = 0. For λ1 = −1/2 and λ2 = 1/2 we obtain

K1 =

(
0

1

)
and K2 =

(
1

1

)
,

so that

X = c1

(
0

1

)
e−t/2 + c2

(
1

1

)
et/2.
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If

X(0) =

(
3

5

)

then c1 = 2 and c2 = 3.

14. We have det(A− λI) = (2 − λ)(λ − 3)(λ + 1) = 0. For λ1 = 2, λ2 = 3, and λ3 = −1 we obtain

K1 =

⎛
⎜⎜⎝

5

−3

2

⎞
⎟⎟⎠ , K2 =

⎛
⎜⎜⎝

2

0

1

⎞
⎟⎟⎠ , and K3 =

⎛
⎜⎜⎝
−2

0

1

⎞
⎟⎟⎠ ,

so that

X = c1

⎛
⎜⎜⎝

5

−3

2

⎞
⎟⎟⎠ e2t + c2

⎛
⎜⎜⎝

2

0

1

⎞
⎟⎟⎠ e3t + c3

⎛
⎜⎜⎝
−2

0

1

⎞
⎟⎟⎠ e−t.

If

X(0) =

⎛
⎜⎜⎝

1

3

0

⎞
⎟⎟⎠

then c1 = −1, c2 = 5/2, and c3 = −1/2.

15. X = c1

⎛
⎜⎜⎝

0.382175

0.851161

0.359815

⎞
⎟⎟⎠ e8.58979t + c2

⎛
⎜⎜⎝

0.405188

−0.676043

0.615458

⎞
⎟⎟⎠ e2.25684t + c3

⎛
⎜⎜⎝
−0.923562

−0.132174

0.35995

⎞
⎟⎟⎠ e−0.0466321t

16. X = c1

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0.0312209

0.949058

0.239535

0.195825

0.0508861

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

e5.05452t + c2

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

−0.280232

−0.836611

−0.275304

0.176045

0.338775

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

e4.09561t + c3

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0.262219

−0.162664

−0.826218

−0.346439

0.31957

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

e−2.92362t

+c4

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0.313235

0.64181

0.31754

0.173787

−0.599108

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

e2.02882t + c5

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

−0.301294

0.466599

0.222136

0.0534311

−0.799567

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

e−0.155338t
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17. (a)

(b) Letting c1 = 1 and c2 = 0 we get x = 5e8t, y = 2e8t. Eliminating the parameter we find

y = 2
5x, x > 0. When c1 = −1 and c2 = 0 we find y = 2

5x, x < 0. Letting c1 = 0 and c2 = 1 we

get x = e−10t, y = 4e−10t. Eliminating the parameter we find y = 4x, x > 0. Letting c1 = 0

and c2 = −1 we find y = 4x, x < 0.

(c) The eigenvectors K1 = (5, 2) and K2 = (1, 4) are shown in the figure in part (a).

18. In Problem 2, letting c1 = 1 and c2 = 0 we get x = −2et,

y = et. Eliminating the parameter we find y = −1
2x, x < 0.

When c1 = −1 and c2 = 0 we find y = −1
2x, x > 0. Letting

c1 = 0 and c2 = 1 we get x = e4t, y = e4t. Eliminating the

parameter we find y = x, x > 0. When c1 = 0 and c2 = −1 we

find y = x, x < 0.

In Problem 4, letting c1 = 1 and c2 = 0 we get x = −2e−7t/2,

y = e−7t/2. Eliminating the parameter we find y = −1
2x, x < 0.

When c1 = −1 and c2 = 0 we find y = −1
2x, x > 0. Letting

c1 = 0 and c2 = 1 we get x = 4e−t, y = 3e−t. Eliminating the

parameter we find y = 3
4x, x > 0. When c1 = 0 and c2 = −1 we

find y = 3
4x, x < 0.

19. We have det(A− λI) = λ2 = 0. For λ1 = 0 we obtain

K =

(
1

3

)
.

A solution of (A− λ1I)P = K is

P =

(
1

2

)

so that

X = c1

(
1

3

)
+ c2

[(
1

3

)
t +

(
1

2

)]
.
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20. We have det(A− λI) = (λ + 1)2 = 0. For λ1 = −1 we obtain

K =

(
1

1

)
.

A solution of (A− λ1I)P = K is

P =

(
0

1/5

)

so that

X = c1

(
1

1

)
e−t + c2

[(
1

1

)
te−t +

(
0

1/5

)
e−t

]
.

21. We have det(A− λI) = (λ − 2)2 = 0. For λ1 = 2 we obtain

K =

(
1

1

)
.

A solution of (A− λ1I)P = K is

P =

(−1/3

0

)

so that

X = c1

(
1

1

)
e2t + c2

[(
1

1

)
te2t +

(−1/3

0

)
e2t

]
.

22. We have det(A− λI) = (λ − 6)2 = 0. For λ1 = 6 we obtain

K =

(
3

2

)
.

A solution of (A− λ1I)P = K is

P =

(
1/2

0

)

so that

X = c1

(
3

2

)
e6t + c2

[(
3

2

)
te6t +

(
1/2

0

)
e6t

]
.

23. We have det(A− λI) = (1 − λ)(λ − 2)2 = 0. For λ1 = 1 we obtain

K1 =

⎛
⎜⎜⎝

1

1

1

⎞
⎟⎟⎠ .

For λ2 = 2 we obtain

K2 =

⎛
⎜⎜⎝

1

0

1

⎞
⎟⎟⎠ and K3 =

⎛
⎜⎜⎝

1

1

0

⎞
⎟⎟⎠ .
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Then

X = c1

⎛
⎜⎜⎝

1

1

1

⎞
⎟⎟⎠ et + c2

⎛
⎜⎜⎝

1

0

1

⎞
⎟⎟⎠ e2t + c3

⎛
⎜⎜⎝

1

1

0

⎞
⎟⎟⎠ e2t.

24. We have det(A− λI) = (λ − 8)(λ + 1)2 = 0. For λ1 = 8 we obtain

K1 =

⎛
⎜⎜⎝

2

1

2

⎞
⎟⎟⎠ .

For λ2 = −1 we obtain

K2 =

⎛
⎜⎜⎝

0

−2

1

⎞
⎟⎟⎠ and K3 =

⎛
⎜⎜⎝

1

−2

0

⎞
⎟⎟⎠ .

Then

X = c1

⎛
⎜⎜⎝

2

1

2

⎞
⎟⎟⎠ e8t + c2

⎛
⎜⎜⎝

0

−2

1

⎞
⎟⎟⎠ e−t + c3

⎛
⎜⎜⎝

1

−2

0

⎞
⎟⎟⎠ e−t.

25. We have det(A− λI) = −λ(5 − λ)2 = 0. For λ1 = 0 we obtain

K1 =

⎛
⎜⎜⎝
−4

−5

2

⎞
⎟⎟⎠ .

For λ2 = 5 we obtain

K =

⎛
⎜⎜⎝
−2

0

1

⎞
⎟⎟⎠ .

A solution of (A− λ2I)P = K is

P =

⎛
⎜⎜⎝

5/2

1/2

0

⎞
⎟⎟⎠

so that

X = c1

⎛
⎜⎜⎝
−4

−5

2

⎞
⎟⎟⎠ + c2

⎛
⎜⎜⎝
−2

0

1

⎞
⎟⎟⎠ e5t + c3

⎡
⎢⎢⎣

⎛
⎜⎜⎝
−2

0

1

⎞
⎟⎟⎠ te5t +

⎛
⎜⎜⎝

5/2

1/2

0

⎞
⎟⎟⎠ e5t

⎤
⎥⎥⎦ .

26. We have det(A− λI) = (1 − λ)(λ − 2)2 = 0. For λ1 = 1 we obtain

K1 =

⎛
⎜⎜⎝

1

0

0

⎞
⎟⎟⎠ .
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For λ2 = 2 we obtain

K =

⎛
⎜⎜⎝

0

−1

1

⎞
⎟⎟⎠ .

A solution of (A− λ2I)P = K is

P =

⎛
⎜⎜⎝

0

−1

0

⎞
⎟⎟⎠

so that

X = c1

⎛
⎜⎜⎝

1

0

0

⎞
⎟⎟⎠ et + c2

⎛
⎜⎜⎝

0

−1

1

⎞
⎟⎟⎠ e2t + c3

⎡
⎢⎢⎣

⎛
⎜⎜⎝

0

−1

1

⎞
⎟⎟⎠ te2t +

⎛
⎜⎜⎝

0

−1

0

⎞
⎟⎟⎠ e2t

⎤
⎥⎥⎦ .

27. We have det(A− λI) = −(λ − 1)3 = 0. For λ1 = 1 we obtain

K =

⎛
⎜⎜⎝

0

1

1

⎞
⎟⎟⎠ .

Solutions of (A− λ1I)P = K and (A− λ1I)Q = P are

P =

⎛
⎜⎜⎝

0

1

0

⎞
⎟⎟⎠ and Q =

⎛
⎜⎜⎝

1/2

0

0

⎞
⎟⎟⎠

so that

X = c1

⎛
⎜⎜⎝

0

1

1

⎞
⎟⎟⎠ et + c2

⎡
⎢⎢⎣

⎛
⎜⎜⎝

0

1

1

⎞
⎟⎟⎠ tet +

⎛
⎜⎜⎝

0

1

0

⎞
⎟⎟⎠ et

⎤
⎥⎥⎦ + c3

⎡
⎢⎢⎣

⎛
⎜⎜⎝

0

1

1

⎞
⎟⎟⎠ t2

2
et +

⎛
⎜⎜⎝

0

1

0

⎞
⎟⎟⎠ tet +

⎛
⎜⎜⎝

1/2

0

0

⎞
⎟⎟⎠ et

⎤
⎥⎥⎦ .

28. We have det(A− λI) = (λ − 4)3 = 0. For λ1 = 4 we obtain

K =

⎛
⎜⎜⎝

1

0

0

⎞
⎟⎟⎠ .

Solutions of (A− λ1I)P = K and (A− λ1I)Q = P are

P =

⎛
⎜⎜⎝

0

1

0

⎞
⎟⎟⎠ and Q =

⎛
⎜⎜⎝

0

0

1

⎞
⎟⎟⎠

so that

X = c1

⎛
⎜⎜⎝

1

0

0

⎞
⎟⎟⎠ e4t + c2

⎡
⎢⎢⎣

⎛
⎜⎜⎝

1

0

0

⎞
⎟⎟⎠ te4t +

⎛
⎜⎜⎝

0

1

0

⎞
⎟⎟⎠ e4t

⎤
⎥⎥⎦ + c3

⎡
⎢⎢⎣

⎛
⎜⎜⎝

1

0

0

⎞
⎟⎟⎠ t2

2
e4t +

⎛
⎜⎜⎝

0

1

0

⎞
⎟⎟⎠ te4t +

⎛
⎜⎜⎝

0

0

1

⎞
⎟⎟⎠ e4t

⎤
⎥⎥⎦ .
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29. We have det(A− λI) = (λ − 4)2 = 0. For λ1 = 4 we obtain

K =

(
2

1

)
.

A solution of (A− λ1I)P = K is

P =

(
1

1

)

so that

X = c1

(
2

1

)
e4t + c2

[(
2

1

)
te4t +

(
1

1

)
e4t

]
.

If

X(0) =

(−1

6

)

then c1 = −7 and c2 = 13.

30. We have det(A− λI) = −(λ + 1)(λ − 1)2 = 0. For λ1 = −1 we obtain

K1 =

⎛
⎜⎜⎝
−1

0

1

⎞
⎟⎟⎠ .

For λ2 = 1 we obtain

K2 =

⎛
⎜⎜⎝

1

0

1

⎞
⎟⎟⎠ and K3 =

⎛
⎜⎜⎝

0

1

0

⎞
⎟⎟⎠

so that

X = c1

⎛
⎜⎜⎝
−1

0

1

⎞
⎟⎟⎠ e−t + c2

⎛
⎜⎜⎝

1

0

1

⎞
⎟⎟⎠ et + c3

⎛
⎜⎜⎝

0

1

0

⎞
⎟⎟⎠ et.

If

X(0) =

⎛
⎜⎜⎝

1

2

5

⎞
⎟⎟⎠

then c1 = 2, c2 = 3, and c3 = 2.

31. In this case det(A − λI) = (2 − λ)5, and λ1 = 2 is an eigenvalue of multiplicity 5. Linearly

independent eigenvectors are

K1 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1

0

0

0

0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

, K2 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0

0

1

0

0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

, and K3 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0

0

0

1

0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

.
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32. In Problem 20 letting c1 = 1 and c2 = 0 we get x = et, y = et. Eliminating the parameter we find

y = x, x > 0. When c1 = −1 and c2 = 0 we find y = x, x < 0.

In Problem 21 letting c1 = 1 and c2 = 0 we get x = e2t, y = e2t. Eliminating the parameter we find

y = x, x > 0. When c1 = −1 and c2 = 0 we find y = x, x < 0.

In Problems 33-46 the form of the answer will vary according to the choice of eigenvector. For example,

in Problem 33, if K1 is chosen to be

(
1

2 − i

)
the solution has the form

X = c1

(
cos t

2 cos t + sin t

)
e4t + c2

(
sin t

2 sin t − cos t

)
e4t.

33. We have det(A− λI) = λ2 − 8λ + 17 = 0. For λ1 = 4 + i we obtain

K1 =

(
2 + i

5

)

so that

X1 =

(
2 + i

5

)
e(4+i)t =

(
2 cos t − sin t

5 cos t

)
e4t + i

(
cos t + 2 sin t

5 sin t

)
e4t.

Then

X = c1

(
2 cos t − sin t

5 cos t

)
e4t + c2

(
cos t + 2 sin t

5 sin t

)
e4t.

34. We have det(A− λI) = λ2 + 1 = 0. For λ1 = i we obtain

K1 =

(−1 − i

2

)

so that

X1 =

(−1 − i

2

)
eit =

(
sin t − cos t

2 cos t

)
+ i

(− cos t − sin t

2 sin t

)
.
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Then

X = c1

(
sin t − cos t

2 cos t

)
+ c2

(− cos t − sin t

2 sin t

)
.

35. We have det(A− λI) = λ2 − 8λ + 17 = 0. For λ1 = 4 + i we obtain

K1 =

(−1 − i

2

)

so that

X1 =

(−1 − i

2

)
e(4+i)t =

(
sin t − cos t

2 cos t

)
e4t + i

(− sin t − cos t

2 sin t

)
e4t.

Then

X = c1

(
sin t − cos t

2 cos t

)
e4t + c2

(− sin t − cos t

2 sin t

)
e4t.

36. We have det(A− λI) = λ2 − 10λ + 34 = 0. For λ1 = 5 + 3i we obtain

K1 =

(
1 − 3i

2

)

so that

X1 =

(
1 − 3i

2

)
e(5+3i)t =

(
cos 3t + 3 sin 3t

2 cos 3t

)
e5t + i

(
sin 3t − 3 cos 3t

2 sin 3t

)
e5t.

Then

X = c1

(
cos 3t + 3 sin 3t

2 cos 3t

)
e5t + c2

(
sin 3t − 3 cos 3t

2 sin 3t

)
e5t.

37. We have det(A− λI) = λ2 + 9 = 0. For λ1 = 3i we obtain

K1 =

(
4 + 3i

5

)

so that

X1 =

(
4 + 3i

5

)
e3it =

(
4 cos 3t − 3 sin 3t

5 cos 3t

)
+ i

(
4 sin 3t + 3 cos 3t

5 sin 3t

)
.

Then

X = c1

(
4 cos 3t − 3 sin 3t

5 cos 3t

)
+ c2

(
4 sin 3t + 3 cos 3t

5 sin 3t

)
.

38. We have det(A− λI) = λ2 + 2λ + 5 = 0. For λ1 = −1 + 2i we obtain

K1 =

(
2 + 2i

1

)
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so that

X1 =

(
2 + 2i

1

)
e(−1+2i)t

=

(
2 cos 2t − 2 sin 2t

cos 2t

)
e−t + i

(
2 cos 2t + 2 sin 2t

sin 2t

)
e−t.

Then

X = c1

(
2 cos 2t − 2 sin 2t

cos 2t

)
e−t + c2

(
2 cos 2t + 2 sin 2t

sin 2t

)
e−t.

39. We have det(A− λI) = −λ
(
λ2 + 1

)
= 0. For λ1 = 0 we obtain

K1 =

⎛
⎜⎜⎝

1

0

0

⎞
⎟⎟⎠ .

For λ2 = i we obtain

K2 =

⎛
⎜⎜⎝
−i

i

1

⎞
⎟⎟⎠

so that

X2 =

⎛
⎜⎜⎝
−i

i

1

⎞
⎟⎟⎠ eit =

⎛
⎜⎜⎝

sin t

− sin t

cos t

⎞
⎟⎟⎠ + i

⎛
⎜⎜⎝
− cos t

cos t

sin t

⎞
⎟⎟⎠ .

Then

X = c1

⎛
⎜⎜⎝

1

0

0

⎞
⎟⎟⎠ + c2

⎛
⎜⎜⎝

sin t

− sin t

cos t

⎞
⎟⎟⎠ + c3

⎛
⎜⎜⎝
− cos t

cos t

sin t

⎞
⎟⎟⎠ .

40. We have det(A− λI) = −(λ + 3)(λ2 − 2λ + 5) = 0. For λ1 = −3 we obtain

K1 =

⎛
⎜⎜⎝

0

−2

1

⎞
⎟⎟⎠ .

For λ2 = 1 + 2i we obtain

K2 =

⎛
⎜⎜⎝
−2 − i

−3i

2

⎞
⎟⎟⎠

so that

X2 =

⎛
⎜⎜⎝
−2 cos 2t + sin 2t

3 sin 2t

2 cos 2t

⎞
⎟⎟⎠ et + i

⎛
⎜⎜⎝
− cos 2t − 2 sin 2t

−3 cos 2t

2 sin 2t

⎞
⎟⎟⎠ et.
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Then

X = c1

⎛
⎜⎜⎝

0

−2

1

⎞
⎟⎟⎠ e−3t + c2

⎛
⎜⎜⎝
−2 cos 2t + sin 2t

3 sin 2t

2 cos 2t

⎞
⎟⎟⎠ et + c3

⎛
⎜⎜⎝
− cos 2t − 2 sin 2t

−3 cos 2t

2 sin 2t

⎞
⎟⎟⎠ et.

41. We have det(A− λI) = (1 − λ)(λ2 − 2λ + 2) = 0. For λ1 = 1 we obtain

K1 =

⎛
⎜⎜⎝

0

2

1

⎞
⎟⎟⎠ .

For λ2 = 1 + i we obtain

K2 =

⎛
⎜⎜⎝

1

i

i

⎞
⎟⎟⎠

so that

X2 =

⎛
⎜⎜⎝

1

i

i

⎞
⎟⎟⎠ e(1+i)t =

⎛
⎜⎜⎝

cos t

− sin t

− sin t

⎞
⎟⎟⎠ et + i

⎛
⎜⎜⎝

sin t

cos t

cos t

⎞
⎟⎟⎠ et.

Then

X = c1

⎛
⎜⎜⎝

0

2

1

⎞
⎟⎟⎠ et + c2

⎛
⎜⎜⎝

cos t

− sin t

− sin t

⎞
⎟⎟⎠ et + c3

⎛
⎜⎜⎝

sin t

cos t

cos t

⎞
⎟⎟⎠ et.

42. We have det(A− λI) = −(λ − 6)(λ2 − 8λ + 20) = 0. For λ1 = 6 we obtain

K1 =

⎛
⎜⎜⎝

0

1

0

⎞
⎟⎟⎠ .

For λ2 = 4 + 2i we obtain

K2 =

⎛
⎜⎜⎝
−i

0

2

⎞
⎟⎟⎠

so that

X2 =

⎛
⎜⎜⎝
−i

0

2

⎞
⎟⎟⎠ e(4+2i)t =

⎛
⎜⎜⎝

sin 2t

0

2 cos 2t

⎞
⎟⎟⎠ e4t + i

⎛
⎜⎜⎝
− cos 2t

0

2 sin 2t

⎞
⎟⎟⎠ e4t.

Then

X = c1

⎛
⎜⎜⎝

0

1

0

⎞
⎟⎟⎠ e6t + c2

⎛
⎜⎜⎝

sin 2t

0

2 cos 2t

⎞
⎟⎟⎠ e4t + c3

⎛
⎜⎜⎝
− cos 2t

0

2 sin 2t

⎞
⎟⎟⎠ e4t.
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43. We have det(A− λI) = (2 − λ)(λ2 + 4λ + 13) = 0. For λ1 = 2 we obtain

K1 =

⎛
⎜⎜⎝

28

−5

25

⎞
⎟⎟⎠ .

For λ2 = −2 + 3i we obtain

K2 =

⎛
⎜⎜⎝

4 + 3i

−5

0

⎞
⎟⎟⎠

so that

X2 =

⎛
⎜⎜⎝

4 + 3i

−5

0

⎞
⎟⎟⎠ e(−2+3i)t =

⎛
⎜⎜⎝

4 cos 3t − 3 sin 3t

−5 cos 3t

0

⎞
⎟⎟⎠ e−2t + i

⎛
⎜⎜⎝

4 sin 3t + 3 cos 3t

−5 sin 3t

0

⎞
⎟⎟⎠ e−2t.

Then

X = c1

⎛
⎜⎜⎝

28

−5

25

⎞
⎟⎟⎠ e2t + c2

⎛
⎜⎜⎝

4 cos 3t − 3 sin 3t

−5 cos 3t

0

⎞
⎟⎟⎠ e−2t + c3

⎛
⎜⎜⎝

4 sin 3t + 3 cos 3t

−5 sin 3t

0

⎞
⎟⎟⎠ e−2t.

44. We have det(A− λI) = −(λ + 2)(λ2 + 4) = 0. For λ1 = −2 we obtain

K1 =

⎛
⎜⎜⎝

0

−1

1

⎞
⎟⎟⎠ .

For λ2 = 2i we obtain

K2 =

⎛
⎜⎜⎝
−2 − 2i

1

1

⎞
⎟⎟⎠

so that

X2 =

⎛
⎜⎜⎝
−2 − 2i

1

1

⎞
⎟⎟⎠ e2it =

⎛
⎜⎜⎝
−2 cos 2t + 2 sin 2t

cos 2t

cos 2t

⎞
⎟⎟⎠ + i

⎛
⎜⎜⎝
−2 cos 2t − 2 sin 2t

sin 2t

sin 2t

⎞
⎟⎟⎠ .

Then

X = c1

⎛
⎜⎜⎝

0

−1

1

⎞
⎟⎟⎠ e−2t + c2

⎛
⎜⎜⎝
−2 cos 2t + 2 sin 2t

cos 2t

cos 2t

⎞
⎟⎟⎠ + c3

⎛
⎜⎜⎝
−2 cos 2t − 2 sin 2t

sin 2t

sin 2t

⎞
⎟⎟⎠ .

45. We have det(A− λI) = (1 − λ)(λ2 + 25) = 0. For λ1 = 1 we obtain

K1 =

⎛
⎜⎜⎝

25

−7

6

⎞
⎟⎟⎠ .
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For λ2 = 5i we obtain

K2 =

⎛
⎜⎜⎝

1 + 5i

1

1

⎞
⎟⎟⎠

so that

X2 =

⎛
⎜⎜⎝

1 + 5i

1

1

⎞
⎟⎟⎠ e5it =

⎛
⎜⎜⎝

cos 5t − 5 sin 5t

cos 5t

cos 5t

⎞
⎟⎟⎠ + i

⎛
⎜⎜⎝

sin 5t + 5 cos 5t

sin 5t

sin 5t

⎞
⎟⎟⎠ .

Then

X = c1

⎛
⎜⎜⎝

25

−7

6

⎞
⎟⎟⎠ et + c2

⎛
⎜⎜⎝

cos 5t − 5 sin 5t

cos 5t

cos 5t

⎞
⎟⎟⎠ + c3

⎛
⎜⎜⎝

sin 5t + 5 cos 5t

sin 5t

sin 5t

⎞
⎟⎟⎠ .

If

X(0) =

⎛
⎜⎜⎝

4

6

−7

⎞
⎟⎟⎠

then c1 = c2 = −1 and c3 = 6.

46. We have det(A− λI) = λ2 − 10λ + 29 = 0. For λ1 = 5 + 2i we obtain

K1 =

(
1

1 − 2i

)

so that

X1 =

(
1

1 − 2i

)
e(5+2i)t =

(
cos 2t

cos 2t + 2 sin 2t

)
e5t + i

(
sin 2t

sin 2t − 2 cos 2t

)
e5t.

and

X = c1

(
cos 2t

cos 2t + 2 sin 2t

)
e5t + c3

(
sin 2t

sin 2t − 2 cos 2t

)
e5t.

If X(0) =

(−2

8

)
, then c1 = −2 and c2 = 5.
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47.

48. (a) Letting x1 = y1, x′
1 = y2, x2 = y3, and x′

2 = y4 we have

y′2 = x′′
1 = −10x1 + 4x2 = −10y1 + 4y3

y′4 = x′′
2 = 4x1 − 4x2 = 4y1 − 4y3.

The corresponding linear system is

y′1 = y2

y′2 = −10y1 + 4y3

y′3 = y4

y′4 = 4y1 − 4y3

or

Y′ =

⎛
⎜⎜⎜⎜⎜⎝

0 1 0 0

−10 0 4 0

0 0 0 1

4 0 −4 0

⎞
⎟⎟⎟⎟⎟⎠Y.

Using a CAS, we find eigenvalues ±√
2i and ±2

√
3i with corresponding eigenvectors

⎛
⎜⎜⎜⎜⎜⎝

∓√
2i/4

1/2

∓√
2i/2

1

⎞
⎟⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎜⎝

0

1/2

0

1

⎞
⎟⎟⎟⎟⎟⎠ + i

⎛
⎜⎜⎜⎜⎜⎝

∓√
2/4

0

∓√
2/2

0

⎞
⎟⎟⎟⎟⎟⎠

and ⎛
⎜⎜⎜⎜⎜⎝

±√
3i/3

−2

∓√
3i/6

1

⎞
⎟⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎜⎝

0

−2

0

1

⎞
⎟⎟⎟⎟⎟⎠ + i

⎛
⎜⎜⎜⎜⎜⎝

±√
3/3

0

∓√
3/6

0

⎞
⎟⎟⎟⎟⎟⎠ .
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Thus

Y(t) = c1

⎡
⎢⎢⎢⎢⎢⎣

⎛
⎜⎜⎜⎜⎜⎝

0

1/2

0

1

⎞
⎟⎟⎟⎟⎟⎠ cos

√
2t −

⎛
⎜⎜⎜⎜⎜⎝

−√
2/4

0

−√
2/2

0

⎞
⎟⎟⎟⎟⎟⎠ sin

√
2t

⎤
⎥⎥⎥⎥⎥⎦

+ c2

⎡
⎢⎢⎢⎢⎢⎣

⎛
⎜⎜⎜⎜⎜⎝

−√
2/4

0

−√
2/2

0

⎞
⎟⎟⎟⎟⎟⎠ cos

√
2t +

⎛
⎜⎜⎜⎜⎜⎝

0

1/2

0

1

⎞
⎟⎟⎟⎟⎟⎠ sin

√
2t

⎤
⎥⎥⎥⎥⎥⎦

+ c3

⎡
⎢⎢⎢⎢⎢⎣

⎛
⎜⎜⎜⎜⎜⎝

0

−2

0

1

⎞
⎟⎟⎟⎟⎟⎠ cos 2

√
3t −

⎛
⎜⎜⎜⎜⎜⎝

√
3/3

0

−√
3/6

0

⎞
⎟⎟⎟⎟⎟⎠ sin 2

√
3t

⎤
⎥⎥⎥⎥⎥⎦

+ c4

⎡
⎢⎢⎢⎢⎢⎣

⎛
⎜⎜⎜⎜⎜⎝

√
3/3

0

−√
3/6

0

⎞
⎟⎟⎟⎟⎟⎠ cos 2

√
3t +

⎛
⎜⎜⎜⎜⎜⎝

0

−2

0

1

⎞
⎟⎟⎟⎟⎟⎠ sin 2

√
3t

⎤
⎥⎥⎥⎥⎥⎦ .

The initial conditions y1(0) = 0, y2(0) = 1, y3(0) = 0, and y4(0) = −1 imply c1 = −2
5 , c2 = 0,

c3 = −3
5 , and c4 = 0. Thus,

x1(t) = y1(t) = −
√

2

10
sin

√
2t +

√
3

5
sin 2

√
3t

x2(t) = y3(t) = −
√

2

5
sin

√
2t −

√
3

10
sin 2

√
3t.

(b) The second-order system is

x′′
1 = −10x1 + 4x2

x′′
2 = 4x1 − 4x2

or

X′′ =

(−10 4

4 −4

)
X.

We assume solutions of the form X = V cos ωt and X = V sin ωt. Since the eigenvalues are −2

and −12, ω1 =
√
−(−2) =

√
2 and ω2 =

√
−(−12) = 2

√
3 . The corresponding eigenvectors

are

V1 =

(
1

2

)
and V2 =

(−2

1

)
.
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Then, the general solution of the system is

X = c1

(
1

2

)
cos

√
2t + c2

(
1

2

)
sin

√
2t + c3

(−2

1

)
cos 2

√
3t + c4

(−2

1

)
sin 2

√
3t.

The initial conditions

X(0) =

(
0

0

)
and X′(0) =

(
1

−1

)

imply c1 = 0, c2 = −√
2/10, c3 = 0, and c4 = −√

3/10. Thus

x1(t) = −
√

2

10
sin

√
2t +

√
3

5
sin 2

√
3t

x2(t) = −
√

2

5
sin

√
2t −

√
3

10
sin 2

√
3t.

49. (a) From det(A− λI) = λ(λ − 2) = 0 we get λ1 = 0 and λ2 = 2. For λ1 = 0 we obtain(
1 1 0

1 1 0

)
=⇒

(
1 1 0

0 0 0

)
so that K1 =

(−1

1

)
.

For λ2 = 2 we obtain(−1 1 0

1 −1 0

)
=⇒

(−1 1 0

0 0 0

)
so that K2 =

(
1

1

)
.

Then

X = c1

(−1

1

)
+ c2

(
1

1

)
e2t.

The line y = −x is not a trajectory of the system.

Trajectories are x = −c1 + c2e
2t, y = c1 + c2e

2t or

y = x + 2c1. This is a family of lines perpendicular

to the line y = −x. All of the constant solutions

of the system do, however, lie on the line y = −x.

(b) From det(A− λI) = λ2 = 0 we get λ1 = 0 and

K =

(−1

1

)
.

A solution of (A− λ1I)P = K is

P =

(−1

0

)

so that

X = c1

(−1

1

)
+ c2

[(−1

1

)
t +

(−1

0

)]
.
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All trajectories are parallel to y = −x, but

y = −x is not a trajectory. There are constant

solutions of the system, however, that do lie

on the line y = −x.

50. The system of differential equations is

x′
1 = 2x1 + x2

x′
2 = 2x2

x′
3 = 2x3

x′
4 = 2x4 + x5

x′
5 = 2x5.

We see immediately that x2 = c2e
2t, x3 = c3e

2t, and x5 = c5e
2t. Then

x′
1 = 2x1 + c2e

2t so x1 = c2te
2t + c1e

2t,

and

x′
4 = 2x4 + c5e

2t so x4 = c5te
2t + c4e

2t.

The general solution of the system is

X =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

c2te
2t + c1e

2t

c2e
2t

c3e
2t

c5te
2t + c4e

2t

c5e
2t

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠
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= c1

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1

0

0

0

0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

e2t + c2

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1

0

0

0

0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

te2t +

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0

1

0

0

0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

e2t

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

+ c3

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0

0

1

0

0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

e2t + c4

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0

0

0

1

0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

e2t + c5

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0

0

0

1

0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

te2t +

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0

0

0

0

1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

e2t

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

= c1K1e
2t + c2

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣
K1te

2t +

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0

1

0

0

0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

e2t

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

+ c3K2e
2t + c4K3e

2t + c5

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣
K3te

2t +

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0

0

0

0

1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

e2t

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

There are three solutions of the form X = Ke2t, where K is an eigenvector, and two solutions of

the form X = Kte2t +Pe2t. See (12) in the text. From (13) and (14) in the text

(A− 2I)K1 = 0

and

(A− 2I)K2 = K1.

This implies ⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 1

0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

p1

p2

p3

p4

p5

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1

0

0

0

0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

so p2 = 1 and p5 = 0, while p1, p3, and p4 are arbitrary. Choosing p1 = p3 = p4 = 0 we have
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P =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1

0

0

0

0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Therefore a solution is

X =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1

0

0

0

0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

te2t +

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1

0

0

0

0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

e2t.

Repeating for K3 we find

P =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0

0

0

0

1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

so another solution is

X =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0

0

0

1

0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

te2t +

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0

0

0

0

1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

e2t.

51. From x = 2 cos 2t − 2 sin 2t, y = − cos 2t we find x + 2y = −2 sin 2t. Then

(x + 2y)2 = 4 sin2 2t = 4(1 − cos2 2t) = 4 − 4 cos2 2t = 4 − 4y2

and

x2 + 4xy + 4y2 = 4 − 4y2 or x2 + 4xy + 8y2 = 4.

This is a rotated conic section and, from the discriminant b2 − 4ac = 16 − 32 < 0, we see that the

curve is an ellipse.

52. Suppose the eigenvalues are α ± iβ, β > 0. In Problem 36 the eigenvalues are 5 ± 3i, in

Problem 37 they are ±3i, and in Problem 38 they are −1 ± 2i. From Problem 47 we deduce that

the phase portrait will consist of a family of closed curves when α = 0 and spirals when α �= 0. The

origin will be a repellor when α > 0, and an attractor when α < 0.
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1. Solving

det(A− λI) =

∣∣∣∣∣ 2 − λ 3

−1 −2 − λ

∣∣∣∣∣ = λ2 − 1 = (λ − 1)(λ + 1) = 0

we obtain eigenvalues λ1 = −1 and λ2 = 1. Corresponding eigenvectors are

K1 =

(−1

1

)
and K2 =

(−3

1

)
.

Thus

Xc = c1

(−1

1

)
e−t + c2

(−3

1

)
et.

Substituting

Xp =

(
a1

b1

)

into the system yields

2a1 + 3b1 = 7

−a1 − 2b1 = −5,

from which we obtain a1 = −1 and b1 = 3. Then

X(t) = c1

(−1

1

)
e−t + c2

(−3

1

)
et +

(−1

3

)
.

2. Solving

det(A− λI) =

∣∣∣∣∣ 5 − λ 9

−1 11 − λ

∣∣∣∣∣ = λ2 − 16λ + 64 = (λ − 8)2 = 0

we obtain the eigenvalue λ = 8. A corresponding eigenvector is

K =

(
3

1

)
.

Solving (A− 8I)P = K we obtain

P =

(
2

1

)
.

Thus

Xc = c1

(
3

1

)
e8t + c2

[(
3

1

)
te8t +

(
2

1

)
e8t

]
.
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Substituting

Xp =

(
a1

b1

)

into the system yields

5a1 + 9b1 = −2

−a1 + 11b1 = −6,

from which we obtain a1 = 1/2 and b1 = −1/2. Then

X(t) = c1

(
3

1

)
e8t + c2

[(
3

1

)
te8t +

(
2

1

)
e8t

]
+

(
1/2

−1/2

)
.

3. Solving

det(A− λI) =

∣∣∣∣∣ 1 − λ 3

3 1 − λ

∣∣∣∣∣ = λ2 − 2λ − 8 = (λ − 4)(λ + 2) = 0

we obtain eigenvalues λ1 = −2 and λ2 = 4. Corresponding eigenvectors are

K1 =

(
1

−1

)
and K2 =

(
1

1

)
.

Thus

Xc = c1

(
1

−1

)
e−2t + c2

(
1

1

)
e4t.

Substituting

Xp =

(
a3

b3

)
t2 +

(
a2

b2

)
t +

(
a1

b1

)

into the system yields

a3 + 3b3 = 2

3a3 + b3 = 0

a2 + 3b2 = 2a3

3a2 + b2 + 1 = 2b3

a1 + 3b1 = a2

3a1 + b1 + 5 = b2

from which we obtain a3 = −1/4, b3 = 3/4, a2 = 1/4, b2 = −1/4, a1 = −2, and b1 = 3/4. Then

X(t) = c1

(
1

−1

)
e−2t + c2

(
1

1

)
e4t +

(−1/4

3/4

)
t2 +

(
1/4

−1/4

)
t +

( −2

3/4

)
.

4. Solving

det(A− λI) =

∣∣∣∣∣ 1 − λ −4

4 1 − λ

∣∣∣∣∣ = λ2 − 2λ + 17 = 0

we obtain eigenvalues λ1 = 1 + 4i and λ2 = 1 − 4i. Corresponding eigenvectors are

K1 =

(
i

1

)
and K2 =

(−i

1

)
.
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Thus

Xc = c1

[(
0

1

)
cos 4t +

(−1

0

)
sin 4t

]
et + c2

[(−1

0

)
cos 4t −

(
0

1

)
sin 4t

]
et

= c1

(− sin 4t

cos 4t

)
et + c2

(− cos 4t

− sin 4t

)
et.

Substituting

Xp =

(
a3

b3

)
t +

(
a2

b2

)
+

(
a1

b1

)
e6t

into the system yields

a3 − 4b3 = −4

4a3 + b3 = 1

a2 − 4b2 = a3

4a2 + b2 = b3

−5a1 − 4b1 = −9

4a1 − 5b1 = −1

from which we obtain a3 = 0, b3 = 1, a2 = 4/17, b2 = 1/17, a1 = 1, and b1 = 1. Then

X(t) = c1

(− sin 4t

cos 4t

)
et + c2

(− cos 4t

− sin 4t

)
et +

(
0

1

)
t +

(
4/17

1/17

)
+

(
1

1

)
e6t.

5. Solving

det(A− λI) =

∣∣∣∣∣ 4 − λ 1/3

9 6 − λ

∣∣∣∣∣ = λ2 − 10λ + 21 = (λ − 3)(λ − 7) = 0

we obtain the eigenvalues λ1 = 3 and λ2 = 7. Corresponding eigenvectors are

K1 =

(
1

−3

)
and K2 =

(
1

9

)
.

Thus

Xc = c1

(
1

−3

)
e3t + c2

(
1

9

)
e7t.

Substituting

Xp =

(
a1

b1

)
et

into the system yields

3a1 +
1

3
b1 = 3

9a1 + 5b1 = −10

from which we obtain a1 = 55/36 and b1 = −19/4. Then

X(t) = c1

(
1

−3

)
e3t + c2

(
1

9

)
e7t +

(
55/36

−19/4

)
et.
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6. Solving

det(A− λI) =

∣∣∣∣∣−1 − λ 5

−1 1 − λ

∣∣∣∣∣ = λ2 + 4 = 0

we obtain the eigenvalues λ1 = 2i and λ2 = −2i. Corresponding eigenvectors are

K1 =

(
5

1 + 2i

)
and K2 =

(
5

1 − 2i

)
.

Thus

Xc = c1

(
5 cos 2t

cos 2t − 2 sin 2t

)
+ c2

(
5 sin 2t

2 cos 2t + sin 2t

)
.

Substituting

Xp =

(
a2

b2

)
cos t +

(
a1

b1

)
sin t

into the system yields

−a2 + 5b2 − a1 = 0

−a2 + b2 − b1 − 2 = 0

−a1 + 5b1 + a2 + 1 = 0

−a1 + b1 + b2 = 0

from which we obtain a2 = −3, b2 = −2/3, a1 = −1/3, and b1 = 1/3. Then

X(t) = c1

(
5 cos 2t

cos 2t − 2 sin 2t

)
+ c2

(
5 sin 2t

2 cos 2t + sin 2t

)
+

( −3

−2/3

)
cos t +

(−1/3

1/3

)
sin t.

7. Solving

det(A− λI) =

∣∣∣∣∣∣∣∣
1 − λ 1 1

0 2 − λ 3

0 0 5 − λ

∣∣∣∣∣∣∣∣ = (1 − λ)(2 − λ)(5 − λ) = 0

we obtain the eigenvalues λ1 = 1, λ2 = 2, and λ3 = 5. Corresponding eigenvectors are

K1 =

⎛
⎜⎜⎝

1

0

0

⎞
⎟⎟⎠ , K2 =

⎛
⎜⎜⎝

1

1

0

⎞
⎟⎟⎠ and K3 =

⎛
⎜⎜⎝

1

2

2

⎞
⎟⎟⎠ .

Thus

Xc = C1

⎛
⎜⎜⎝

1

0

0

⎞
⎟⎟⎠ et + C2

⎛
⎜⎜⎝

1

1

0

⎞
⎟⎟⎠ e2t + C3

⎛
⎜⎜⎝

1

2

2

⎞
⎟⎟⎠ e5t.

Substituting

Xp =

⎛
⎜⎜⎝

a1

b1

c1

⎞
⎟⎟⎠ e4t
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into the system yields

−3a1 + b1 + c1 = −1

−2b1 + 3c1 = 1

c1 = −2

from which we obtain c1 = −2, b1 = −7/2, and a1 = −3/2. Then

X(t) = C1

⎛
⎜⎜⎝

1

0

0

⎞
⎟⎟⎠ et + C2

⎛
⎜⎜⎝

1

1

0

⎞
⎟⎟⎠ e2t + C3

⎛
⎜⎜⎝

1

2

2

⎞
⎟⎟⎠ e5t +

⎛
⎜⎜⎝
−3/2

−7/2

−2

⎞
⎟⎟⎠ e4t.

8. Solving

det(A− λI) =

∣∣∣∣∣∣∣∣
−λ 0 5

0 5 − λ 0

5 0 −λ

∣∣∣∣∣∣∣∣ = −(λ − 5)2(λ + 5) = 0

we obtain the eigenvalues λ1 = 5, λ2 = 5, and λ3 = −5. Corresponding eigenvectors are

K1 =

⎛
⎜⎜⎝

1

0

0

⎞
⎟⎟⎠ , K2 =

⎛
⎜⎜⎝

1

1

1

⎞
⎟⎟⎠ and K3 =

⎛
⎜⎜⎝

1

0

−1

⎞
⎟⎟⎠ .

Thus

Xc = C1

⎛
⎜⎜⎝

1

0

1

⎞
⎟⎟⎠ e5t + C2

⎛
⎜⎜⎝

1

1

1

⎞
⎟⎟⎠ e5t + C3

⎛
⎜⎜⎝

1

0

−1

⎞
⎟⎟⎠ e−5t.

Substituting

Xp =

⎛
⎜⎜⎝

a1

b1

c1

⎞
⎟⎟⎠

into the system yields

5c1 = −5

5b1 = 10

5a1 = −40

from which we obtain c1 = −1, b1 = 2, and a1 = −8. Then

X(t) = C1

⎛
⎜⎜⎝

1

0

1

⎞
⎟⎟⎠ e5t + C2

⎛
⎜⎜⎝

1

1

1

⎞
⎟⎟⎠ e5t + C3

⎛
⎜⎜⎝

1

0

−1

⎞
⎟⎟⎠ e−5t +

⎛
⎜⎜⎝
−8

2

−1

⎞
⎟⎟⎠ .
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9. Solving

det(A− λI) =

∣∣∣∣∣−1 − λ −2

3 4 − λ

∣∣∣∣∣ = λ2 − 3λ + 2 = (λ − 1)(λ − 2) = 0

we obtain the eigenvalues λ1 = 1 and λ2 = 2. Corresponding eigenvectors are

K1 =

(
1

−1

)
and K2 =

(−4

6

)
.

Thus

Xc = c1

(
1

−1

)
et + c2

(−4

6

)
e2t.

Substituting

Xp =

(
a1

b1

)

into the system yields

−a1 − 2b1 = −3

3a1 + 4b1 = −3

from which we obtain a1 = −9 and b1 = 6. Then

X(t) = c1

(
1

−1

)
et + c2

(−4

6

)
e2t +

(−9

6

)
.

Setting

X(0) =

(−4

5

)

we obtain
c1 − 4c2 − 9 = −4

−c1 + 6c2 + 6 = 5.

Then c1 = 13 and c2 = 2 so

X(t) = 13

(
1

−1

)
et + 2

(−4

6

)
e2t +

(−9

6

)
.

10. (a) Let I =

(
i2

i3

)
so that

I′ =

(−2 −2

−2 −5

)
I+

(
60

60

)

and

Ic = c1

(
2

−1

)
e−t + c2

(
1

2

)
e−6t.

If Ip =

(
a1

b1

)
then Ip =

(
30

0

)
so that
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I = c1

(
2

−1

)
e−t + c2

(
1

2

)
e−6t +

(
30

0

)
.

For I(0) =

(
0

0

)
we find c1 = −12 and c2 = −6.

(b) i1(t) = i2(t) + i3(t) = −12e−t − 18e−6t + 30.

11. From

X′ =

(
3 −3

2 −2

)
X+

(
4

−1

)

we obtain

Xc = c1

(
1

1

)
+ c2

(
3

2

)
et.

Then

Φ =

(
1 3et

1 2et

)
and Φ−1 =

( −2 3

e−t −e−t

)

so that

U =
∫
Φ−1F dt =

∫ ( −11

5e−t

)
dt =

( −11t

−5e−t

)

and

Xp = ΦU =

(−11

−11

)
t +

(−15

−10

)
.

12. From

X′ =

(
2 −1

3 −2

)
X+

(
0

4

)
t

we obtain

Xc = c1

(
1

1

)
et + c2

(
1

3

)
e−t.

Then

Φ =

(
et e−t

et 3e−t

)
and Φ−1 =

( 3
2e−t −1

2e−t

−1
2et 1

2et

)

so that

U =
∫
Φ−1F dt =

∫ (−2te−t

2tet

)
dt =

(
2te−t + 2e−t

2tet − 2et

)

and

Xp = ΦU =

(
4

8

)
t +

(
0

−4

)
.

13. From

X′ =

(
3 −5

3/4 −1

)
X+

(
1

−1

)
et/2
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we obtain

Xc = c1

(
10

3

)
e3t/2 + c2

(
2

1

)
et/2.

Then

Φ =

(
10e3t/2 2et/2

3e3t/2 et/2

)
and Φ−1 =

( 1
4e−3t/2 −1

2e−3t/2

−3
4e−t/2 5

2e−t/2

)

so that

U =
∫
Φ−1F dt =

∫ ( 3
4e−t

−13
4

)
dt =

(−3
4e−t

−13
4 t

)

and

Xp = ΦU =

(−13/2

−13/4

)
tet/2 +

(−15/2

−9/4

)
et/2.

14. From

X′ =

(
2 −1

4 2

)
X+

(
sin 2t

2 cos 2t

)

we obtain

Xc = c1

(− sin 2t

2 cos 2t

)
e2t + c2

(
cos 2t

2 sin 2t

)
e2t.

Then

Φ =

(−e2t sin 2t e2t cos 2t

2e2t cos 2t 2e2t sin 2t

)
and Φ−1 =

(−1
2e−2t sin 2t 1

4e−2t cos 2t

1
2e−2t cos 2t 1

4e−2t sin 2t

)

so that

U =
∫
Φ−1F dt =

∫ ( 1
2 cos 4t
1
2 sin 4t

)
dt =

( 1
8 sin 4t

−1
8 cos 4t

)

and

Xp = ΦU =

(−1
8 sin 2t cos 4t − 1

8 cos 2t cos 4t

1
4 cos 2t sin 4t − 1

4 sin 2t cos 4t

)
e2t.

15. From

X′ =

(
0 2

−1 3

)
X+

(
1

−1

)
et

we obtain

Xc = c1

(
2

1

)
et + c2

(
1

1

)
e2t.

Then

Φ =

(
2et e2t

et e2t

)
and Φ−1 =

(
e−t −e−t

−e−2t 2e−2t

)

so that

U =
∫
Φ−1F dt =

∫ (
2

−3e−t

)
dt =

(
2t

3e−t

)
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and

Xp = ΦU =

(
4

2

)
tet +

(
3

3

)
et.

16. From

X′ =

(
0 2

−1 3

)
X+

(
2

e−3t

)

we obtain

Xc = c1

(
2

1

)
et + c2

(
1

1

)
e2t.

Then

Φ =

(
2et e2t

et e2t

)
and Φ−1 =

(
e−t −e−t

−e−2t 2e−2t

)

so that

U =
∫
Φ−1F dt =

∫ (
2e−t − e−4t

−2e−2t + 2e−5t

)
dt =

(−2e−t + 1
4e−4t

e−2t − 2
5e−5t

)

and

Xp = ΦU =

( 1
10e−3t − 3

− 3
20e−3t − 1

)
.

17. From

X′ =

(
1 8

1 −1

)
X+

(
12

12

)
t

we obtain

Xc = c1

(
4

1

)
e3t + c2

(−2

1

)
e−3t.

Then

Φ =

(
4e3t −2e−3t

e3t e−3t

)
and Φ−1 =

( 1
6e−3t 1

3e−3t

−1
6e3t 2

3e3t

)

so that

U =
∫
Φ−1F dt =

∫ (
6te−3t

6te3t

)
dt =

(−2te−3t − 2
3e−3t

2te3t − 2
3e3t

)

and

Xp = ΦU =

(−12

0

)
t +

(−4/3

−4/3

)
.

18. From

X′ =

(
1 8

1 −1

)
X+

(
e−t

tet

)

we obtain

Xc = c1

(
4

1

)
e3t + c2

(−2

1

)
e−3t.
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Then

Φ =

(
4e3t −2e3t

e3t e−3t

)
and Φ−1 =

( 1
6e−3t 1

3e−3t

−1
6e3t 2

3e3t

)

so that

U =
∫
Φ−1F dt =

∫ ( 1
6e−4t + 1

3te−2t

−1
6e2t + 2

3te4t

)
dt =

(− 1
24e−4t − 1

6te−2t − 1
12e−2t

− 1
12e2t + 1

6te4t − 1
24e4t

)

and

Xp = ΦU =

( −tet − 1
4et

−1
8e−t − 1

8et

)
.

19. From

X′ =

(
3 2

−2 −1

)
X+

(
2

1

)
e−t

we obtain

Xc = c1

(
1

−1

)
et + c2

[(
1

−1

)
tet +

(
0

1/2

)
et

]
.

Then

Φ =

(
et tet

−et 1
2et − tet

)
and Φ−1 =

(
e−t − 2te−t −2te−t

2e−t 2e−t

)

so that

U =
∫
Φ−1F dt =

∫ (
2e−2t − 6te−2t

6e−2t

)
dt =

( 1
2e−2t + 3te−2t

−3e−2t

)

and

Xp = ΦU =

(
1/2

−2

)
e−t.

20. From

X′ =

(
3 2

−2 −1

)
X+

(
1

1

)

we obtain

Xc = c1

(
1

−1

)
et + c2

[(
1

−1

)
tet +

(
0

1/2

)
et

]
.

Then

Φ =

(
et tet

−et 1
2et − tet

)
and Φ−1 =

(
e−t − 2te−t −2te−t

2e−t 2e−t

)

so that

U =
∫
Φ−1F dt =

∫ (
e−t − 4te−t

2e−t

)
dt =

(
3e−t + 4te−t

−2e−t

)

and

Xp = ΦU =

(
3

−5

)
.
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21. From

X′ =

(
0 −1

1 0

)
X+

(
sec t

0

)

we obtain

Xc = c1

(
cos t

sin t

)
+ c2

(
sin t

− cos t

)
.

Then

Φ =

(
cos t sin t

sin t − cos t

)
and Φ−1 =

(
cos t sin t

sin t − cos t

)

so that

U =
∫
Φ−1F dt =

∫ (
1

tan t

)
dt =

(
t

− ln | cos t|

)

and

Xp = ΦU =

(
t cos t − sin t ln | cos t|
t sin t + cos t ln | cos t|

)
.

22. From

X′ =

(
1 −1

1 1

)
X+

(
3

3

)
et

we obtain

Xc = c1

(− sin t

cos t

)
et + c2

(
cos t

sin t

)
et.

Then

Φ =

(− sin t cos t

cos t sin t

)
et and Φ−1 =

(− sin t cos t

cos t sin t

)
e−t

so that

U =
∫
Φ−1F dt =

∫ (−3 sin t + 3 cos t

3 cos t + 3 sin t

)
dt =

(
3 cos t + 3 sin t

3 sin t − 3 cos t

)

and

Xp = ΦU =

(−3

3

)
et.

23. From

X′ =

(
1 −1

1 1

)
X+

(
cos t

sin t

)
et

we obtain

Xc = c1

(− sin t

cos t

)
et + c2

(
cos t

sin t

)
et.

Then

Φ =

(− sin t cos t

cos t sin t

)
et and Φ−1 =

(− sin t cos t

cos t sin t

)
e−t
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so that

U =
∫
Φ−1F dt =

∫ (
0

1

)
dt =

(
0

t

)

and

Xp = ΦU =

(
cos t

sin t

)
tet.

24. From

X′ =

(
2 −2

8 −6

)
X+

(
1

3

)
1

t
e−2t

we obtain

Xc = c1

(
1

2

)
e−2t + c2

[(
1

2

)
te−2t +

(
1/2

1/2

)
e−2t

]
.

Then

Φ =

⎛
⎝ 1 t + 1

2

2 2t + 1
2

⎞
⎠ e−2t and Φ−1 =

(−4t − 1 2t + 1

4 −2

)
e2t

so that

U =
∫
Φ−1F dt =

∫ (
2 + 2/t

−2/t

)
dt =

(
2t + 2 ln t

−2 ln t

)

and

Xp = ΦU =

(
2t + ln t − 2t ln t

4t + 3 ln t − 4t ln t

)
e−2t.

25. From

X′ =

(
0 1

−1 0

)
X+

(
0

sec t tan t

)

we obtain

Xc = c1

(
cos t

− sin t

)
+ c2

(
sin t

cos t

)
.

Then

Φ =

(
cos t sin t

− sin t cos t

)
t and Φ−1 =

(
cos t − sin t

sin t cos t

)

so that

U =
∫
Φ−1F dt =

∫ (− tan2 t

tan t

)
dt =

(
t − tan t

− ln | cos t|

)

and

Xp = ΦU =

(
cos t

− sin t

)
t +

( − sin t

sin t tan t

)
−

(
sin t

cos t

)
ln | cos t|.

26. From

X′ =

(
0 1

−1 0

)
X+

(
1

cot t

)
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we obtain

Xc = c1

(
cos t

− sin t

)
+ c2

(
sin t

cos t

)
.

Then

Φ =

(
cos t sin t

− sin t cos t

)
and Φ−1 =

(
cos t − sin t

sin t cos t

)

so that

U =
∫
Φ−1F dt =

∫ (
0

csc t

)
dt =

(
0

ln | csc t − cot t|

)

and

Xp = ΦU =

(
sin t ln | csc t − cot t|
cos t ln | csc t − cot t|

)
.

27. From

X′ =

(
1 2

−1/2 1

)
X+

(
csc t

sec t

)
et

we obtain

Xc = c1

(
2 sin t

cos t

)
et + c2

(
2 cos t

− sin t

)
et.

Then

Φ =

(
2 sin t 2 cos t

cos t − sin t

)
et and Φ−1 =

( 1
2 sin t cos t

1
2 cos t − sin t

)
e−t

so that

U =
∫
Φ−1F dt =

∫ ( 3
2

1
2 cot t − tan t

)
dt =

( 3
2t

1
2 ln | sin t| + ln | cos t|

)

and

Xp = ΦU =

(
3 sin t
3
2 cos t

)
tet +

(
cos t

−1
2 sin t

)
et ln | sin t| +

(
2 cos t

− sin t

)
et ln | cos t|.

28. From

X′ =

(
1 −2

1 −1

)
X+

(
tan t

1

)

we obtain

Xc = c1

(
cos t − sin t

cos t

)
+ c2

(
cos t + sin t

sin t

)
.

Then

Φ =

(
cos t − sin t cos t + sin t

cos t sin t

)
and Φ−1 =

(− sin t cos t + sin t

cos t sin t − cos t

)

so that

U =
∫
Φ−1F dt =

∫ (
2 cos t + sin t − sec t

2 sin t − cos t

)
dt =

(
2 sin t − cos t − ln | sec t + tan t|

−2 cos t − sin t

)
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and

Xp = ΦU =

(
3 sin t cos t − cos2 t − 2 sin2 t + (sin t − cos t) ln | sec t + tan t|

sin2 t − cos2 t − cos t(ln | sec t + tan t|)

)
.

29. From

X′ =

⎛
⎜⎜⎝

1 1 0

1 1 0

0 0 3

⎞
⎟⎟⎠X+

⎛
⎜⎜⎝

et

e2t

te3t

⎞
⎟⎟⎠

we obtain

Xc = c1

⎛
⎜⎜⎝

1

−1

0

⎞
⎟⎟⎠ + c2

⎛
⎜⎜⎝

1

1

0

⎞
⎟⎟⎠ e2t + c3

⎛
⎜⎜⎝

0

0

1

⎞
⎟⎟⎠ e3t.

Then

Φ =

⎛
⎜⎜⎝

1 e2t 0

−1 e2t 0

0 0 e3t

⎞
⎟⎟⎠ and Φ−1 =

⎛
⎜⎜⎝

1
2 −1

2 0
1
2e−2t 1

2e−2t 0

0 0 e−3t

⎞
⎟⎟⎠

so that

U =
∫
Φ−1F dt =

∫ ⎛
⎜⎜⎝

1
2et − 1

2e2t

1
2e−t + 1

2

t

⎞
⎟⎟⎠ dt =

⎛
⎜⎜⎝

1
2et − 1

4e2t

−1
2e−t + 1

2t

1
2t2

⎞
⎟⎟⎠

and

Xp = ΦU =

⎛
⎜⎜⎜⎝

−1
4e2t + 1

2te2t

−et + 1
4e2t + 1

2te2t

1
2t2e3t

⎞
⎟⎟⎟⎠ .

30. From

X′ =

⎛
⎜⎜⎝

3 −1 −1

1 1 −1

1 −1 1

⎞
⎟⎟⎠X+

⎛
⎜⎜⎝

0

t

2et

⎞
⎟⎟⎠

we obtain

Xc = c1

⎛
⎜⎜⎝

1

1

1

⎞
⎟⎟⎠ et + c2

⎛
⎜⎜⎝

1

1

0

⎞
⎟⎟⎠ e2t + c3

⎛
⎜⎜⎝

1

0

1

⎞
⎟⎟⎠ e2t.

Then

Φ =

⎛
⎜⎜⎝

et e2t e2t

et e2t 0

et 0 e2t

⎞
⎟⎟⎠ and Φ−1 =

⎛
⎜⎜⎝
−e−t e−t e−t

e−2t 0 −e−2t

e−2t −e−2t 0

⎞
⎟⎟⎠
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so that

U =
∫
Φ−1F dt =

∫ ⎛
⎜⎜⎝

te−t + 2

−2e−t

−te−2t

⎞
⎟⎟⎠ dt =

⎛
⎜⎜⎝
−te−t − e−t + 2t

2e−t

1
2te−2t + 1

4e−2t

⎞
⎟⎟⎠

and

Xp = ΦU =

⎛
⎜⎜⎝
−1/2

−1

−1/2

⎞
⎟⎟⎠ t +

⎛
⎜⎜⎝
−3/4

−1

−3/4

⎞
⎟⎟⎠ +

⎛
⎜⎜⎝

2

2

0

⎞
⎟⎟⎠ et +

⎛
⎜⎜⎝

2

2

2

⎞
⎟⎟⎠ tet.

31. From

X′ =

(
3 −1

−1 3

)
X+

(
4e2t

4e4t

)

we obtain

Φ =

(−e4t e2t

e4t e2t

)
, Φ−1 =

(−1
2e−4t 1

2e−4t

1
2e−2t 1

2e−2t

)
,

and

X = ΦΦ−1(0)X(0) +Φ
∫ t

0
Φ−1F ds = Φ ·

(
0

1

)
+Φ ·

(
e−2t + 2t − 1

e2t + 2t − 1

)

=

(
2

2

)
te2t +

(−1

1

)
e2t +

(−2

2

)
te4t +

(
2

0

)
e4t.

32. From

X′ =

(
1 −1

1 −1

)
X+

(
1/t

1/t

)

we obtain

Φ =

(
1 1 + t

1 t

)
, Φ−1 =

(−t 1 + t

1 −1

)
,

and

X = ΦΦ−1(1)X(1) +Φ
∫ t

1
Φ−1F ds = Φ ·

(−4

3

)
+Φ ·

(
ln t

0

)
=

(
3

3

)
t −

(
1

4

)
+

(
1

1

)
ln t.

33. Let I =

(
i1

i2

)
so that

I′ =

(−11 3

3 −3

)
I+

(
100 sin t

0

)

and

Ic = c1

(
1

3

)
e−2t + c2

(
3

−1

)
e−12t.
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Then

Φ =

(
e−2t 3e−12t

3e−2t −e−12t

)
, Φ−1 =

( 1
10e2t 3

10e2t

3
10e12t − 1

10e12t

)
,

U =
∫
Φ−1F dt =

∫ (
10e2t sin t

30e12t sin t

)
dt =

(
2e2t(2 sin t − cos t)

6
29e12t(12 sin t − cos t)

)
,

and

Ip = ΦU =

( 332
29 sin t − 76

29 cos t

276
29 sin t − 168

29 cos t

)

so that

I = c1

(
1

3

)
e−2t + c2

(
3

−1

)
e−12t + Ip.

If I(0) =

(
0

0

)
then c1 = 2 and c2 = 6

29 .

34. Write the differential equation as a system

y′ = v

v′ = −Qy − Pv + f
or

(
y

v

)′
=

(
0 1

−Q −P

) (
y

v

)
+

(
0

f

)
.

From (9) in the text of this section, a particular solution is then Xp = Φ(x)
∫
Φ−1(x)F(x) dx where

Φ(x) =

(
y1 y2

y′1 y′2

)
and Xp =

(
u1

u2

)
.

Then

Φ−1(x) =
1

y1y′2 − y2y′1

(
y′2 −y2

−y′1 y1

)
,

so

Xp =
∫ 1

W

(
y′2 −y2

−y′1 y1

) (
0

f

)
dx

and W = y1y
′
2 − y2y

′
1. Thus

u1 =
∫ −y2f(x)

W
dx and u2 =

∫ y1f(x)

W
dx,

which are the antiderivative forms of the equations in (5) of Section 4.6 in the text.

35. (a) The eigenvalues are 0, 1, 3, and 4, with corresponding eigenvectors⎛
⎜⎜⎜⎜⎜⎝

−6

−4

1

2

⎞
⎟⎟⎟⎟⎟⎠ ,

⎛
⎜⎜⎜⎜⎜⎝

2

1

0

0

⎞
⎟⎟⎟⎟⎟⎠ ,

⎛
⎜⎜⎜⎜⎜⎝

3

1

2

1

⎞
⎟⎟⎟⎟⎟⎠ , and

⎛
⎜⎜⎜⎜⎜⎝

−1

1

0

0

⎞
⎟⎟⎟⎟⎟⎠ .
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(b) Φ =

⎛
⎜⎜⎜⎜⎜⎝

−6 2et 3e3t −e4t

−4 et e3t e4t

1 0 2e3t 0

2 0 e3t 0

⎞
⎟⎟⎟⎟⎟⎠, Φ−1 =

⎛
⎜⎜⎜⎜⎜⎝

0 0 −1
3

2
3

1
3 e−t 1

3 e−t −2e−t 8
3 e−t

0 0 2
3 e−3t −1

3 e−3t

−1
3 e−4t 2

3 e−4t 0 1
3 e−4t

⎞
⎟⎟⎟⎟⎟⎠

(c) Φ−1(t)F(t) =

⎛
⎜⎜⎜⎜⎜⎝

2
3 − 1

3 e2t

1
3 e−2t + 8

3 e−t − 2et + 1
3 t

−1
3 e−3t + 2

3e−t

2
3 e−5t + 1

3 e−4t − 1
3 te−3t

⎞
⎟⎟⎟⎟⎟⎠,

∫
Φ−1(t)F(t)dt =

⎛
⎜⎜⎜⎜⎜⎝

−1
6 e2t + 2

3 t

−1
6 e−2t − 8

3 e−t − 2et + 1
6 t2

1
9 e−3t − 2

3 e−t

− 2
15 e−5t − 1

12 e−4t + 1
27 e−3t + 1

9 te−3t

⎞
⎟⎟⎟⎟⎟⎠,

Xp(t) = Φ(t)
∫
Φ−1(t)F(t)dt =

⎛
⎜⎜⎜⎜⎜⎝

−5e2t − 1
5 e−t − 1

27 et − 1
9 tet + 1

3 t2et − 4t − 59
12

−2e2t − 3
10 e−t + 1

27et + 1
9 tet + 1

6 t2et − 8
3t − 95

36

−3
2 e2t + 2

3 t + 2
9

−e2t + 4
3 t − 1

9

⎞
⎟⎟⎟⎟⎟⎠,

Xc(t) = Φ(t)C =

⎛
⎜⎜⎜⎜⎜⎝

−6c1 + 2c2e
t + 3c3e

3t − c4e
4t

−4c1 + c2e
t + c3e

3t + c4e
4t

c1 + 2c3e
3t

2c1 + c3e
3t

⎞
⎟⎟⎟⎟⎟⎠,

X(t) = Φ(t)C+Φ(t)
∫
Φ−1(t)F(t)dt

=

⎛
⎜⎜⎜⎜⎜⎝

−6c1 + 2c2e
t + 3c3e

3t − c4e
4t

−4c1 + c2e
t + c3e

3t + c4e
4t

c1 + 2c3e
3t

2c1 + c3e
3t

⎞
⎟⎟⎟⎟⎟⎠ +

⎛
⎜⎜⎜⎜⎜⎝

−5e2t − 1
5 e−t − 1

27 et − 1
9 tet + 1

3 t2et − 4t − 59
12

−2e2t − 3
10 e−t + 1

27et + 1
9 tet + 1

6 t2et − 8
3t − 95

36

−3
2 e2t + 2

3 t + 2
9

−e2t + 4
3 t − 1

9

⎞
⎟⎟⎟⎟⎟⎠

(d) X(t) = c1

⎛
⎜⎜⎜⎜⎜⎝

−6

−4

1

2

⎞
⎟⎟⎟⎟⎟⎠ + c2

⎛
⎜⎜⎜⎜⎜⎝

2

1

0

0

⎞
⎟⎟⎟⎟⎟⎠ et + c3

⎛
⎜⎜⎜⎜⎜⎝

3

1

2

1

⎞
⎟⎟⎟⎟⎟⎠ e3t + c4

⎛
⎜⎜⎜⎜⎜⎝

−1

1

0

0

⎞
⎟⎟⎟⎟⎟⎠ e4t

+

⎛
⎜⎜⎜⎜⎜⎝

−5e2t − 1
5 e−t − 1

27 et − 1
9 tet + 1

3 t2et − 4t − 59
12

−2e2t − 3
10 e−t + 1

27et + 1
9 tet + 1

6 t2et − 8
3t − 95

36

−3
2 e2t + 2

3 t + 2
9

−e2t + 4
3 t − 1

9

⎞
⎟⎟⎟⎟⎟⎠
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1. For A =

(
1 0

0 2

)
we have

A2 =

(
1 0

0 2

) (
1 0

0 2

)
=

(
1 0

0 4

)
,

A3 = AA2 =

(
1 0

0 2

) (
1 0

0 4

)
=

(
1 0

0 8

)
,

A4 = AA3 =

(
1 0

0 2

) (
1 0

0 8

)
=

(
1 0

0 16

)
,

and so on. In general

Ak =

(
1 0

0 2k

)
for k = 1, 2, 3, . . . .

Thus

eAt = I+
A

1!
t +

A2

2!
t2 +

A3

3!
t3 + · · ·

=

(
1 0

0 1

)
+

1

1!

(
1 0

0 2

)
t +

1

2!

(
1 0

0 4

)
t2 +

1

3!

(
1 0

0 8

)
t3 + · · ·

=

⎛
⎜⎜⎝

1 + t +
t2

2!
+

t3

3!
+ · · · 0

0 1 + 2t +
(2t)2

2!
+

(2t)3

3!
+ · · ·

⎞
⎟⎟⎠ =

(
et 0

0 e2t

)

and

e−At =

(
e−t 0

0 e−2t

)
.

2. For A =

(
0 1

1 0

)
we have

A2 =

(
0 1

1 0

) (
0 1

1 0

)
=

(
1 0

0 1

)
= I

A3 = AA2 =

(
0 1

1 0

)
I =

(
0 1

1 0

)
= A
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A4 = (A2)2 = I

A5 = AA4 = AI = A,

and so on. In general,

Ak =

{
A, k = 1, 3, 5, . . .

I, k = 2, 4, 6, . . . .

Thus

eAt = I+
A

1!
t +

A2

2!
t2 +

A3

3!
t3 + · · ·

= I+At +
1

2!
It2 +

1

3!
At3 + · · ·

= I
(
1 +

1

2!
t2 +

1

4!
t4 + · · ·

)
+A

(
t +

1

3!
t3 +

1

5!
t5 + · · ·

)

= I cosh t +A sinh t =

(
cosh t sinh t

sinh t cosh t

)

and

e−At =

(
cosh(−t) sinh(−t)

sinh(−t) cosh(−t)

)
=

(
cosh t − sinh t

− sinh t cosh t

)
.

3. For

A =

⎛
⎜⎜⎝

1 1 1

1 1 1

−2 −2 −2

⎞
⎟⎟⎠

we have

A2 =

⎛
⎜⎜⎝

1 1 1

1 1 1

−2 −2 −2

⎞
⎟⎟⎠

⎛
⎜⎜⎝

1 1 1

1 1 1

−2 −2 −2

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

0 0 0

0 0 0

0 0 0

⎞
⎟⎟⎠ .

Thus, A3 = A4 = A5 = · · · = 0 and

eAt = I+At =

⎛
⎜⎜⎝

1 0 0

0 1 0

0 0 1

⎞
⎟⎟⎠ +

⎛
⎜⎜⎝

t t t

t t t

−2t −2t −2t

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

t + 1 t t

t t + 1 t

−2t −2t −2t + 1

⎞
⎟⎟⎠ .

4. For

A =

⎛
⎜⎜⎝

0 0 0

3 0 0

5 1 0

⎞
⎟⎟⎠
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we have

A2 =

⎛
⎜⎜⎝

0 0 0

3 0 0

5 1 0

⎞
⎟⎟⎠

⎛
⎜⎜⎝

0 0 0

3 0 0

5 1 0

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

0 0 0

0 0 0

3 0 0

⎞
⎟⎟⎠

A3 = AA2 =

⎛
⎜⎜⎝

0 0 0

3 0 0

5 1 0

⎞
⎟⎟⎠

⎛
⎜⎜⎝

0 0 0

0 0 0

3 0 0

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

0 0 0

0 0 0

0 0 0

⎞
⎟⎟⎠ .

Thus, A4 = A5 = A6 = · · · = 0 and

eAt = I+At +
1

2
A2t2

=

⎛
⎜⎜⎝

1 0 0

0 1 0

0 0 1

⎞
⎟⎟⎠ +

⎛
⎜⎜⎝

0 0 0

3t 0 0

5t t 0

⎞
⎟⎟⎠ +

⎛
⎜⎜⎝

0 0 0

0 0 0
3
2t2 0 0

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

1 0 0

3t 1 0
3
2t2 + 5t t 1

⎞
⎟⎟⎠ .

5. Using the result of Problem 1,

X =

(
et 0

0 e2t

) (
c1

c2

)
= c1

(
et

0

)
+ c2

(
0

et

)
.

6. Using the result of Problem 2,

X =

(
cosh t sinh t

sinh t cosh t

) (
c1

c2

)
= c1

(
cosh t

sinh t

)
+ c2

(
sinh t

cosh t

)
.

7. Using the result of Problem 3,

X =

⎛
⎜⎜⎝

t + 1 t t

t t + 1 t

−2t −2t −2t + 1

⎞
⎟⎟⎠

⎛
⎜⎜⎝

c1

c2

c3

⎞
⎟⎟⎠ = c1

⎛
⎜⎜⎝

t + 1

t

−2t

⎞
⎟⎟⎠ + c2

⎛
⎜⎜⎝

t

t + 1

−2t

⎞
⎟⎟⎠ + c3

⎛
⎜⎜⎝

t

t

−2t + 1

⎞
⎟⎟⎠ .

8. Using the result of Problem 4,

X =

⎛
⎜⎜⎝

1 0 0

3t 1 0
3
2t2 + 5t t 1

⎞
⎟⎟⎠

⎛
⎜⎜⎝

c1

c2

c3

⎞
⎟⎟⎠ = c1

⎛
⎜⎜⎝

1

3t
3
2t2 + 5t

⎞
⎟⎟⎠ + c2

⎛
⎜⎜⎝

0

1

t

⎞
⎟⎟⎠ + c3

⎛
⎜⎜⎝

0

0

1

⎞
⎟⎟⎠ .

9. To solve

X′ =

(
1 0

0 2

)
X+

(
3

−1

)
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we identify t0 = 0, F(t) =

(
3

−1

)
, and use the results of Problem 1 and equation (5) in the text.

X(t) = eAtC+ eAt
∫ t

t0
e−AsF(s) ds

=

(
et 0

0 e2t

) (
c1

c2

)
+

(
et 0

0 e2t

) ∫ t

0

(
e−s 0

0 e−2s

) (
3

−1

)
ds

=

(
c1e

t

c2e
2t

)
+

(
et 0

0 e2t

) ∫ t

0

(
3e−s

−e−2s

)
ds

=

(
c1e

t

c2e
2t

)
+

(
et 0

0 e2t

) (−3e−s

1
2e−2s

) ∣∣∣∣t
0

=

(
c1e

t

c2e
2t

)
+

(
et 0

0 e2t

) (−3e−t + 3
1
2e−2t − 1

2

)

=

(
c1e

t

c2e
2t

)
+

(−3 + 3et

1
2 − 1

2e2t

)
= c3

(
1

0

)
et + c4

(
0

1

)
e2t +

( −3
1
2

)
.

10. To solve

X′ =

(
1 0

0 2

)
X+

(
t

e4t

)

we identify t0 = 0, F(t) =

(
t

e4t

)
, and use the results of Problem 1 and equation (5) in the text.

X(t) = eAtC+ eAt
∫ t

t0
e−AsF(s) ds

=

(
et 0

0 e2t

) (
c1

c2

)
+

(
et 0

0 e2t

) ∫ t

0

(
e−s 0

0 e−2s

) (
s

e4s

)
ds

=

(
c1e

t

c2e
2t

)
+

(
et 0

0 e2t

) ∫ t

0

(
se−s

e2s

)
ds

=

(
c1e

t

c2e
2t

)
+

(
et 0

0 e2t

) (−se−s − e−s

1
2e2s

) ∣∣∣∣t
0

=

(
c1e

t

c2e
2t

)
+

(
et 0

0 e2t

) (−te−t − e−t + 1
1
2e2t − 1

2

)

=

(
c1e

t

c2e
2t

)
+

(−t − 1 + et

1
2e4t − 1

2e2t

)
= c3

(
1

0

)
et + c4

(
0

1

)
e2t +

(−t − 1
1
2e4t

)
.
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11. To solve

X′ =

(
0 1

1 0

)
X+

(
1

1

)

we identify t0 = 0, F(t) =

(
1

1

)
, and use the results of Problem 2 and equation (5) in the text.

X(t) = eAtC+ eAt
∫ t

t0
e−AsF(s) ds

=

(
cosh t sinh t

sinh t cosh t

) (
c1

c2

)
+

(
cosh t sinh t

sinh t cosh t

) ∫ t

0

(
cosh s − sinh s

− sinh s cosh s

) (
1

1

)
ds

=

(
c1 cosh t + c2 sinh t

c1 sinh t + c2 cosh t

)
+

(
cosh t sinh t

sinh t cosh t

) ∫ t

0

(
cosh s − sinh s

− sinh s + cosh s

)
ds

=

(
c1 cosh t + c2 sinh t

c1 sinh t + c2 cosh t

)
+

(
cosh t sinh t

sinh t cosh t

) (
sinh s − cosh s

− cosh s + sinh s

) ∣∣∣∣t
0

=

(
c1 cosh t + c2 sinh t

c1 sinh t + c2 cosh t

)
+

(
cosh t sinh t

sinh t cosh t

) (
sinh t − cosh t + 1

− cosh t + sinh t + 1

)

=

(
c1 cosh t + c2 sinh t

c1 sinh t + c2 cosh t

)
+

(
sinh2 t − cosh2 t + cosh t + sinh t

sinh2 t − cosh2 t + sinh t + cosh t

)

= c1

(
cosh t

sinh t

)
+ c2

(
sinh t

cosh t

)
+

(
cosh t

sinh t

)
+

(
sinh t

cosh t

)
−

(
1

1

)

= c3

(
cosh t

sinh t

)
+ c4

(
sinh t

cosh t

)
−

(
1

1

)
.

12. To solve

X′ =

(
0 1

1 0

)
X+

(
cosh t

sinh t

)

we identify t0 = 0, F(t) =

(
cosh t

sinh t

)
, and use the results of Problem 2 and equation (5) in the text.

X(t) = eAtC+ eAt
∫ t

t0
e−AsF(s) ds

=

(
cosh t sinh t

sinh t cosh t

) (
c1

c2

)
+

(
cosh t sinh t

sinh t cosh t

) ∫ t

0

(
cosh s − sinh s

− sinh s cosh s

) (
cosh s

sinh s

)
ds
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=

(
c1 cosh t + c2 sinh t

c1 sinh t + c2 cosh t

)
+

(
cosh t sinh t

sinh t cosh t

) ∫ t

0

(
1

0

)
ds

=

(
c1 cosh t + c2 sinh t

c1 sinh t + c2 cosh t

)
+

(
cosh t sinh t

sinh t cosh t

) (
s

0

) ∣∣∣∣t
0

=

(
c1 cosh t + c2 sinh t

c1 sinh t + c2 cosh t

)
+

(
cosh t sinh t

sinh t cosh t

) (
t

0

)

=

(
c1 cosh t + c2 sinh t

c1 sinh t + c2 cosh t

)
+

(
t cosh t

t sinh t

)
= c1

(
cosh t

sinh t

)
+ c2

(
sinh t

cosh t

)
+ t

(
cosh t

sinh t

)
.

13. We have

X(0) = c1

⎛
⎜⎜⎝

1

0

0

⎞
⎟⎟⎠ + c2

⎛
⎜⎜⎝

0

1

0

⎞
⎟⎟⎠ + c3

⎛
⎜⎜⎝

0

0

1

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

c1

c2

c3

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

1

−4

6

⎞
⎟⎟⎠ .

Thus, the solution of the initial-value problem is

X =

⎛
⎜⎜⎝

t + 1

t

−2t

⎞
⎟⎟⎠ − 4

⎛
⎜⎜⎝

t

t + 1

−2t

⎞
⎟⎟⎠ + 6

⎛
⎜⎜⎝

t

t

−2t + 1

⎞
⎟⎟⎠ .

14. We have

X(0) = c3

(
1

0

)
+ c4

(
0

1

)
+

(−3
1
2

)
=

(
c3 − 3

c4 + 1
2

)
=

(
4

3

)
.

Thus, c3 = 7 and c4 = 5
2 , so

X = 7

(
1

0

)
et +

5

2

(
0

1

)
e2t +

(−3
1
2

)
.

15. From sI−A =

(
s − 4 −3

4 s + 4

)
we find

(sI−A)−1 =

⎛
⎜⎜⎝

3/2

s − 2
− 1/2

s + 2

3/4

s − 2
− 3/4

s + 2

−1

s − 2
+

1

s + 2

−1/2

s − 2
+

3/2

s + 2

⎞
⎟⎟⎠

and

eAt =

⎛
⎝ 3

2e2t − 1
2e−2t 3

4e2t − 3
4e−2t

−e2t + e−2t −1
2e2t + 3

2e−2t

⎞
⎠ .

The general solution of the system is then
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X = eAtC =

⎛
⎝ 3

2e2t − 1
2e−2t 3

4e2t − 3
4e−2t

−e2t + e−2t −1
2e2t + 3

2e−2t

⎞
⎠ (

c1

c2

)

= c1

(
3/2

−1

)
e2t + c1

(−1/2

1

)
e−2t + c2

(
3/4

−1/2

)
e2t + c2

( −3/4

3/2

)
e−2t

=
(1

2
c1 +

1

4
c2

) (
3

−2

)
e2t +

(
−1

2
c1 − 3

4
c2

) (
1

−2

)
e−2t

= c3

(
3

−2

)
e2t + c4

(
1

−2

)
e−2t.

16. From sI−A =

(
s − 4 2

−1 s − 1

)
we find

(sI−A)−1 =

⎛
⎜⎜⎝

2

s − 3
− 1

s − 2
− 2

s − 3
+

2

s − 2
1

s − 3
− 1

s − 2

−1

s − 3
+

2

s − 2

⎞
⎟⎟⎠

and

eAt =

(
2e3t − e2t −2e3t + 2e2t

e3t − e2t −e3t + 2e2t

)
.

The general solution of the system is then

X = eAtC =

(
2e3t − e2t −2e3t + 2e2t

e3t − e2t −e3t + 2e2t

) (
c1

c2

)

= c1

(
2

1

)
e3t + c1

(−1

−1

)
e2t + c2

(−2

−1

)
e3t + c2

(
2

2

)
e2t

= (c1 − c2)

(
2

1

)
e3t + (−c1 + 2c2)

(
1

1

)
e2t

= c3

(
2

1

)
e3t + c4

(
1

1

)
e2t.

17. From sI−A =

(
s − 5 9

−1 s + 1

)
we find

(sI−A)−1 =

⎛
⎜⎜⎝

1

s − 2
+

3

(s − 2)2
− 9

(s − 2)2

1

(s − 2)2
1

s − 2
− 3

(s − 2)2

⎞
⎟⎟⎠
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and

eAt =

(
e2t + 3te2t −9te2t

te2t e2t − 3te2t

)
.

The general solution of the system is then

X = eAtC =

(
e2t + 3te2t −9te2t

te2t e2t − 3te2t

) (
c1

c2

)

= c1

(
1

0

)
e2t + c1

(
3

1

)
te2t + c2

(
0

1

)
e2t + c2

(−9

−3

)
te2t

= c1

(
1 + 3t

t

)
e2t + c2

( −9t

1 − 3t

)
e2t.

18. From sI−A =

(
s −1

2 s + 2

)
we find

(sI−A)−1 =

⎛
⎜⎜⎜⎝

s + 1 + 1

(s + 1)2 + 1

1

(s + 1)2 + 1

−2

(s + 1)2 + 1

s + 1 − 1

(s + 1)2 + 1

⎞
⎟⎟⎟⎠

and

eAt =

(
e−t cos t + e−t sin t e−t sin t

−2e−t sin t e−t cos t − e−t sin t

)
.

The general solution of the system is then

X = eAtC =

(
e−t cos t + e−t sin t e−t sin t

−2e−t sin t e−t cos t − e−t sin t

) (
c1

c2

)

= c1

(
1

0

)
e−t cos t + c1

(
1

−2

)
e−t sin t + c2

(
0

1

)
e−t cos t + c2

(
1

−1

)
e−t sin t

= c1

(
cos t + sin t

−2 sin t

)
e−t + c2

(
sin t

cos t − sin t

)
e−t.

19. Solving

det(A− λI) =

∣∣∣∣∣ 2 − λ 1

−3 6 − λ

∣∣∣∣∣ = λ2 − 8λ + 15 = (λ − 3)(λ − 5) = 0

we find eigenvalues λ1 = 3 and λ2 = 5. Corresponding eigenvectors are

K1 =

(
1

1

)
and K2 =

(
1

3

)
.
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Then

P =

(
1 1

1 3

)
, P−1 =

(
3/2 −1/2

−1/2 1/2

)
, and D =

(
3 0

0 5

)
,

so that

PDP−1 =

(
2 1

−3 6

)
.

20. Solving

det(A− λI) =

∣∣∣∣∣ 2 − λ 1

1 2 − λ

∣∣∣∣∣ = λ2 − 4λ + 3 = (λ − 1)(λ − 3) = 0

we find eigenvalues λ1 = 1 and λ2 = 3. Corresponding eigenvectors are

K1 =

(−1

1

)
and K2 =

(
1

1

)
.

Then

P =

(−1 1

1 1

)
, P−1 =

(−1/2 1/2

1/2 1/2

)
, and D =

(
1 0

0 3

)

so that

PDP−1 =

(
2 1

1 2

)
.

21. From equation (3) in the text

etA = etPDP
−1

= I+ t(PDP−1) +
1

2!
t2(PDP−1)2 +

1

3!
t3(PDP−1)3 + · · ·

= P
[
I+ tD+

1

2!
(tD)2 +

1

3!
(tD)3 + · · ·

]
P−1 = PetDP−1.

22. From equation (3) in the text

etD =

⎛
⎜⎜⎜⎜⎜⎝

1 0 · · · 0

0 1 · · · 0
...

...
. . .

...

0 0 · · · 1

⎞
⎟⎟⎟⎟⎟⎠ + t

⎛
⎜⎜⎜⎜⎜⎝

λ1 0 · · · 0

0 λ2 · · · 0
...

...
. . .

...

0 0 · · · λn

⎞
⎟⎟⎟⎟⎟⎠ +

1

2!
t2

⎛
⎜⎜⎜⎜⎜⎝

λ2
1 0 · · · 0

0 λ2
2 · · · 0

...
...

. . .
...

0 0 · · · λ2
n

⎞
⎟⎟⎟⎟⎟⎠

+
1

3!
t3

⎛
⎜⎜⎜⎜⎜⎝

λ3
1 0 · · · 0

0 λ3
2 · · · 0

...
...

. . .
...

0 0 · · · λ3
n

⎞
⎟⎟⎟⎟⎟⎠ + · · ·
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=

⎛
⎜⎜⎜⎜⎜⎝

1 + λ1t + 1
2!(λ1t)

2 + · · · 0 · · · 0

0 1 + λ2t + 1
2!(λ2t)

2 + · · · · · · 0
...

...
. . .

...

0 0 · · · 1 + λnt + 1
2!(λnt)2 + · · ·

⎞
⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎝

eλ1t 0 · · · 0

0 eλ2t · · · 0
...

...
. . .

...

0 0 · · · eλnt

⎞
⎟⎟⎟⎟⎟⎠ .

23. From Problems 19, 21, and 22, and equation (1) in the text

X = etAC = PetDP−1C

=

(
e3t e5t

e3t 3e5t

) (
e3t 0

0 e5t

) ( 3
2e−3t −1

2e−3t

−1
2e−5t 1

2e−5t

) (
c1

c2

)

=

( 3
2e3t − 1

2e5t −1
2e3t + 1

2e5t

3
2e3t − 3

2e5t −1
2e3t + 3

2e5t

) (
c1

c2

)
.

24. From Problems 20-22 and equation (1) in the text

X = etAC = PetDP−1C

=

(−et e3t

et e3t

) (
et 0

0 e3t

) (−1
2e−t 1

2e−t

1
2e3t 1

2e−3t

) (
c1

c2

)

=

( 1
2et + 1

2e9t −1
2et + 1

2e3t

−1
2et + 1

2e9t 1
2et + 1

2e3t

) (
c1

c2

)
.

25. If det(sI−A) = 0, then s is an eigenvalue of A. Thus sI−A has an inverse if s is not an eigenvalue

of A. For the purposes of the discussion in this section, we take s to be larger than the largest

eigenvalue of A. Under this condition sI−A has an inverse.

26. Since A3 = 0, A is nilpotent. Since

eAt = I+At +A2 t2

2!
+ · · · +Ak tk

k!
+ · · · ,

if A is nilpotent and Am = 0, then Ak = 0 for k ≥ m and

eAt = I+At +A2 t2

2!
+ · · · +Am−1 tm−1

(m − 1)!
.
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In this problem A3 = 0, so

eAt = I+At +A2 t2

2
=

⎛
⎜⎜⎝

1 0 0

0 1 0

0 0 1

⎞
⎟⎟⎠ +

⎛
⎜⎜⎝
−1 1 1

−1 0 1

−1 1 1

⎞
⎟⎟⎠ t +

⎛
⎜⎜⎝
−1 0 1

0 0 0

−1 0 1

⎞
⎟⎟⎠ t2

2

=

⎛
⎜⎜⎝

1 − t − t2/2 t t + t2/2

−t 1 t

−t − t2/2 t 1 + t + t2/2

⎞
⎟⎟⎠

and the solution of X′ = AX is

X(t) = eAtC = eAt

⎛
⎜⎜⎝

c1

c2

c3

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

c1(1 − t − t2/2) + c2t + c3(t + t2/2)

−c1t + c2 + c3t

c1(−t − t2/2) + c2t + c3(1 + t + t2/2)

⎞
⎟⎟⎠ .

27. (a) The following commands can be used in Mathematica:

A={{4, 2},{3, 3}};
c={c1, c2};
m=MatrixExp[A t];

sol=Expand[m.c]

Collect[sol, {c1, c2}]//MatrixForm
The output gives

x(t) = c1

(
2

5
et +

3

5
e6t

)
+ c2

(
−2

5
et +

2

5
e6t

)

y(t) = c1

(
−3

5
et +

3

5
e6t

)
+ c2

(
3

5
et +

2

5
e6t

)
.

The eigenvalues are 1 and 6 with corresponding eigenvectors(−2

3

)
and

(
1

1

)
,

so the solution of the system is

X(t) = b1

(−2

3

)
et + b2

(
1

1

)
e6t

or

x(t) = −2b1e
t + b2e

6t

y(t) = 3b1e
t + b2e

6t.

If we replace b1 with −1
5c1 + 1

5c2 and b2 with 3
5c1 + 2

5c2, we obtain the solution found using the

matrix exponential.
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(b) x(t) = c1e
−2t cos t − (c1 + c2)e

−2t sin t

y(t) = c2e
−2t cos t + (2c1 + c2)e

−2t sin t

28. x(t) = c1(3e
−2t − 2e−t) + c3(−6e−2t + 6e−t)

y(t) = c2(4e
−2t − 3e−t) + c4(4e

−2t − 4e−t)

z(t) = c1(e
−2t − e−t) + c3(−2e−2t + 3e−t)

w(t) = c2(−3e−2t + 3e−t) + c4(−3e−2t + 4e−t)

1. If X = k

(
4

5

)
, then X′ = 0 and

k

(
1 4

2 −1

) (
4

5

)
−

(
8

1

)
= k

(
24

3

)
−

(
8

1

)
=

(
0

0

)
.

We see that k = 1
3 .

2. Solving for c1 and c2 we find c1 = −3
4 and c2 = 1

4 .

3. Since ⎛
⎜⎜⎝

4 6 6

1 3 2

−1 −4 −3

⎞
⎟⎟⎠

⎛
⎜⎜⎝

3

1

−1

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

12

4

−4

⎞
⎟⎟⎠ = 4

⎛
⎜⎜⎝

3

1

−1

⎞
⎟⎟⎠ ,

we see that λ = 4 is an eigenvalue with eigenvector K3. The corresponding solution is X3 = K3e
4t.

4. The other eigenvalue is λ2 = 1 − 2i with corresponding eigenvector K2 =

(
1

−i

)
. The general

solution is

X(t) = c1

(
cos 2t

− sin 2t

)
et + c2

(
sin 2t

cos 2t

)
et.

5. We have det(A− λI) = (λ − 1)2 = 0 and K =

(
1

−1

)
. A solution to (A− λI)P = K is P =

(
0

1

)

so that

X = c1

(
1

−1

)
et + c2

[(
1

−1

)
tet +

(
0

1

)
et

]
.

6. We have det(A− λI) = (λ + 6)(λ + 2) = 0 so that

X = c1

(
1

−1

)
e−6t + c2

(
1

1

)
e−2t.

8.R Chapter 8 in Reviewq
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7. We have det(A− λI) = λ2 − 2λ + 5 = 0. For λ = 1 + 2i we obtain K1 =

(
1

i

)
and

X1 =

(
1

i

)
e(1+2i)t =

(
cos 2t

− sin 2t

)
et + i

(
sin 2t

cos 2t

)
et.

Then

X = c1

(
cos 2t

− sin 2t

)
et + c2

(
sin 2t

cos 2t

)
et.

8. We have det(A− λI) = λ2 − 2λ + 2 = 0. For λ = 1 + i we obtain K1 =

(
3 − i

2

)
and

X1 =

(
3 − i

2

)
e(1+i)t =

(
3 cos t + sin t

2 cos t

)
et + i

(− cos t + 3 sin t

2 sin t

)
et.

Then

X = c1

(
3 cos t + sin t

2 cos t

)
et + c2

(− cos t + 3 sin t

2 sin t

)
et.

9. We have det(A− λI) = −(λ − 2)(λ − 4)(λ + 3) = 0 so that

X = c1

⎛
⎜⎜⎝
−2

3

1

⎞
⎟⎟⎠ e2t + c2

⎛
⎜⎜⎝

0

1

1

⎞
⎟⎟⎠ e4t + c3

⎛
⎜⎜⎝

7

12

−16

⎞
⎟⎟⎠ e−3t.

10. We have det(A − λI) = −(λ + 2)(λ2 − 2λ + 3) = 0. The eigenvalues are λ1 = −2, λ2 = 1 +
√

2i,

and λ2 = 1 −√
2i, with eigenvectors

K1 =

⎛
⎜⎜⎝
−7

5

4

⎞
⎟⎟⎠ , K2 =

⎛
⎜⎜⎝

1√
2i/2

1

⎞
⎟⎟⎠ , and K3 =

⎛
⎜⎜⎝

1

−√
2i/2

1

⎞
⎟⎟⎠ .

Thus

X = c1

⎛
⎜⎜⎝
−7

5

4

⎞
⎟⎟⎠ e−2t + c2

⎡
⎢⎢⎣

⎛
⎜⎜⎝

1

0

1

⎞
⎟⎟⎠ cos

√
2t −

⎛
⎜⎜⎝

0√
2/2

0

⎞
⎟⎟⎠ sin

√
2t

⎤
⎥⎥⎦ et

+ c3

⎡
⎢⎢⎣

⎛
⎜⎜⎝

0√
2/2

0

⎞
⎟⎟⎠ cos

√
2t +

⎛
⎜⎜⎝

1

0

1

⎞
⎟⎟⎠ sin

√
2t

⎤
⎥⎥⎦ et

= c1

⎛
⎜⎜⎝
−7

5

4

⎞
⎟⎟⎠ e−2t + c2

⎛
⎜⎜⎝

cos
√

2t

−1
2

√
2 sin

√
2t

cos
√

2t

⎞
⎟⎟⎠ et + c3

⎛
⎜⎜⎝

sin
√

2t

1
2

√
2 cos

√
2t

sin
√

2t

⎞
⎟⎟⎠ et.
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11. We have

Xc = c1

(
1

0

)
e2t + c2

(
4

1

)
e4t.

Then

Φ =

(
e2t 4e4t

0 e4t

)
, Φ−1 =

(
e−2t −4e−2t

0 e−4t

)
,

and

U =
∫
Φ−1F dt =

∫ (
2e−2t − 64te−2t

16te−4t

)
dt =

(
15e−2t + 32te−2t

−e−4t − 4te−4t

)
,

so that

Xp = ΦU =

(
11 + 16t

−1 − 4t

)
.

12. We have

Xc = c1

(
2 cos t

− sin t

)
et + c2

(
2 sin t

cos t

)
et.

Then

Φ =

(
2 cos t 2 sin t

− sin t cos t

)
et, Φ−1 =

( 1
2 cos t − sin t

1
2 sin t cos t

)
e−t,

and

U =
∫
Φ−1F dt =

∫ (
cos t − sec t

sin t

)
dt =

(
sin t − ln | sec t + tan t|

− cos t

)
,

so that

Xp = ΦU =

( −2 cos t ln | sec t + tan t|
−1 + sin t ln | sec t + tan t|

)
et.

13. We have

Xc = c1

(
cos t + sin t

2 cos t

)
+ c2

(
sin t − cos t

2 sin t

)
.

Then

Φ =

(
cos t + sin t sin t − cos t

2 cos t 2 sin t

)
, Φ−1 =

(
sin t 1

2 cos t − 1
2 sin t

− cos t 1
2 cos t + 1

2 sin t

)
,

and

U =
∫
Φ−1F dt =

∫ ( 1
2 sin t − 1

2 cos t + 1
2 csc t

−1
2 sin t − 1

2 cos t + 1
2 csc t

)
dt

=

(−1
2 cos t − 1

2 sin t + 1
2 ln | csc t − cot t|

1
2 cos t − 1

2 sin t + 1
2 ln | csc t − cot t|

)
,
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so that

Xp = ΦU =

(−1

−1

)
+

(
sin t

sin t + cos t

)
ln | csc t − cot t|.

14. We have

Xc = c1

(
1

−1

)
e2t + c2

[(
1

−1

)
te2t +

(
1

0

)
e2t

]
.

Then

Φ =

(
e2t te2t + e2t

−e2t −te2t

)
, Φ−1 =

(−te−2t −te−2t − e−2t

e−2t e−2t

)
,

and

U =
∫
Φ−1F dt =

∫ (
t − 1

−1

)
dt =

( 1
2t2 − t

−t

)
,

so that

Xp = ΦU =

(−1/2

1/2

)
t2e2t +

(−2

1

)
te2t.

15. (a) Letting

K =

⎛
⎜⎜⎝

k1

k2

k3

⎞
⎟⎟⎠

we note that (A− 2I)K = 0 implies that 3k1 + 3k2 + 3k3 = 0, so k1 = −(k2 + k3). Choosing

k2 = 0, k3 = 1 and then k2 = 1, k3 = 0 we get

K1 =

⎛
⎜⎜⎝
−1

0

1

⎞
⎟⎟⎠ and K2 =

⎛
⎜⎜⎝
−1

1

0

⎞
⎟⎟⎠ ,

respectively. Thus,

X1 =

⎛
⎜⎜⎝
−1

0

1

⎞
⎟⎟⎠ e2t and X2 =

⎛
⎜⎜⎝
−1

1

0

⎞
⎟⎟⎠ e2t

are two solutions.

(b) From det(A − λI) = λ2(3 − λ) = 0 we see that λ1 = 3, and 0 is an eigenvalue of multiplicity

two. Letting

K =

⎛
⎜⎜⎝

k1

k2

k3

⎞
⎟⎟⎠ ,
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as in part (a), we note that (A − 0I)K = AK = 0 implies that k1 + k2 + k3 = 0, so

k1 = −(k2 + k3). Choosing k2 = 0, k3 = 1, and then k2 = 1, k3 = 0 we get

K2 =

⎛
⎜⎜⎝
−1

0

1

⎞
⎟⎟⎠ and K3 =

⎛
⎜⎜⎝
−1

1

0

⎞
⎟⎟⎠ ,

respectively. Since the eigenvector corresponding to λ1 = 3 is

K1 =

⎛
⎜⎜⎝

1

1

1

⎞
⎟⎟⎠ ,

the general solution of the system is

X = c1

⎛
⎜⎜⎝

1

1

1

⎞
⎟⎟⎠ e3t + c2

⎛
⎜⎜⎝
−1

0

1

⎞
⎟⎟⎠ + c3

⎛
⎜⎜⎝
−1

1

0

⎞
⎟⎟⎠ .

16. For X =

(
c1

c2

)
et we have X′ = X = IX.
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1. 2.

3. 4.

Numerical Solutions of

Ordinary Differential Equations9
9.1 Euler Methods and Error Analysisq
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5. 6.

7. 8.

9. 10.
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11. To obtain the analytic solution use the substitution u = x+y−1. The resulting differential equation

in u(x) will be separable.

h=0.1 h=0.05

12. (a) (b)

13. (a) Using Euler’s method we obtain y(0.1) ≈ y1 = 1.2.

(b) Using y′′ = 4e2x we see that the local truncation error is

y′′(c)
h2

2
= 4e2c (0.1)2

2
= 0.02e2c.

Since e2x is an increasing function, e2c ≤ e2(0.1) = e0.2 for 0 ≤ c ≤ 0.1. Thus an upper bound

for the local truncation error is 0.02e0.2 = 0.0244.

(c) Since y(0.1) = e0.2 = 1.2214, the actual error is y(0.1)− y1 = 0.0214, which is less than 0.0244.

(d) Using Euler’s method with h = 0.05 we obtain y(0.1) ≈ y2 = 1.21.

(e) The error in (d) is 1.2214 − 1.21 = 0.0114. With global truncation error O(h), when the step

size is halved we expect the error for h = 0.05 to be one-half the error when h = 0.1. Comparing

0.0114 with 0.0214 we see that this is the case.

14. (a) Using the improved Euler’s method we obtain y(0.1) ≈ y1 = 1.22.

(b) Using y′′′ = 8e2x we see that the local truncation error is

y′′′(c)
h3

6
= 8e2c (0.1)3

6
= 0.001333e2c.

5339.     Euler Methods and Error Analysis1
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Since e2x is an increasing function, e2c ≤ e2(0.1) = e0.2 for 0 ≤ c ≤ 0.1. Thus an upper bound

for the local truncation error is 0.001333e0.2 = 0.001628.

(c) Since y(0.1) = e0.2 = 1.221403, the actual error is y(0.1) − y1 = 0.001403 which is less than

0.001628.

(d) Using the improved Euler’s method with h = 0.05 we obtain y(0.1) ≈ y2 = 1.221025.

(e) The error in (d) is 1.221403− 1.221025 = 0.000378. With global truncation error O(h2), when

the step size is halved we expect the error for h = 0.05 to be one-fourth the error for h = 0.1.

Comparing 0.000378 with 0.001403 we see that this is the case.

15. (a) Using Euler’s method we obtain y(0.1) ≈ y1 = 0.8.

(b) Using y′′ = 5e−2x we see that the local truncation error is

5e−2c (0.1)2

2
= 0.025e−2c.

Since e−2x is a decreasing function, e−2c ≤ e0 = 1 for 0 ≤ c ≤ 0.1. Thus an upper bound for

the local truncation error is 0.025(1) = 0.025.

(c) Since y(0.1) = 0.8234, the actual error is y(0.1) − y1 = 0.0234, which is less than 0.025.

(d) Using Euler’s method with h = 0.05 we obtain y(0.1) ≈ y2 = 0.8125.

(e) The error in (d) is 0.8234 − 0.8125 = 0.0109. With global truncation error O(h), when the

step size is halved we expect the error for h = 0.05 to be one-half the error when h = 0.1.

Comparing 0.0109 with 0.0234 we see that this is the case.

16. (a) Using the improved Euler’s method we obtain y(0.1) ≈ y1 = 0.825.

(b) Using y′′′ = −10e−2x we see that the local truncation error is

10e−2c (0.1)3

6
= 0.001667e−2c.

Since e−2x is a decreasing function, e−2c ≤ e0 = 1 for 0 ≤ c ≤ 0.1. Thus an upper bound for

the local truncation error is 0.001667(1) = 0.001667.

(c) Since y(0.1) = 0.823413, the actual error is y(0.1)−y1 = 0.001587, which is less than 0.001667.

(d) Using the improved Euler’s method with h = 0.05 we obtain y(0.1) ≈ y2 = 0.823781.

(e) The error in (d) is |0.823413 − 0.8237181| = 0.000305. With global truncation error O(h2),

when the step size is halved we expect the error for h = 0.05 to be one-fourth the error when

h = 0.1. Comparing 0.000305 with 0.001587 we see that this is the case.

17. (a) Using y′′ = 38e−3(x−1) we see that the local truncation error is

y′′(c)
h2

2
= 38e−3(c−1) h2

2
= 19h2e−3(c−1).
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(b) Since e−3(x−1) is a decreasing function for 1 ≤ x ≤ 1.5, e−3(c−1) ≤ e−3(1−1) = 1 for 1 ≤ c ≤ 1.5

and

y′′(c)
h2

2
≤ 19(0.1)2(1) = 0.19.

(c) Using Euler’s method with h = 0.1 we obtain y(1.5) ≈ 1.8207. With h = 0.05 we obtain

y(1.5) ≈ 1.9424.

(d) Since y(1.5) = 2.0532, the error for h = 0.1 is E0.1 = 0.2325, while the error for h = 0.05 is

E0.05 = 0.1109. With global truncation error O(h) we expect E0.1/E0.05 ≈ 2. We actually have

E0.1/E0.05 = 2.10.

18. (a) Using y′′′ = −114e−3(x−1) we see that the local truncation error is
∣∣∣∣∣y

′′′(c)
h3

6

∣∣∣∣∣ = 114e−3(x−1) h3

6
= 19h3e−3(c−1).

(b) Since e−3(x−1) is a decreasing function for 1 ≤ x ≤ 1.5, e−3(c−1) ≤ e−3(1−1) = 1 for 1 ≤ c ≤ 1.5

and ∣∣∣∣∣y
′′′(c)

h3

6

∣∣∣∣∣ ≤ 19(0.1)3(1) = 0.019.

(c) Using the improved Euler’s method with h = 0.1 we obtain y(1.5) ≈ 2.080108. With h = 0.05

we obtain y(1.5) ≈ 2.059166.

(d) Since y(1.5) = 2.053216, the error for h = 0.1 is E0.1 = 0.026892, while the error for h = 0.05 is

E0.05 = 0.005950. With global truncation error O(h2) we expect E0.1/E0.05 ≈ 4. We actually

have E0.1/E0.05 = 4.52.

19. (a) Using y′′ = −1/(x + 1)2 we see that the local truncation error is
∣∣∣∣∣y

′′(c)
h2

2

∣∣∣∣∣ =
1

(c + 1)2
h2

2
.

(b) Since 1/(x + 1)2 is a decreasing function for 0 ≤ x ≤ 0.5, 1/(c + 1)2 ≤ 1/(0 + 1)2 = 1 for

0 ≤ c ≤ 0.5 and ∣∣∣∣∣y
′′(c)

h2

2

∣∣∣∣∣ ≤ (1)
(0.1)2

2
= 0.005.

(c) Using Euler’s method with h = 0.1 we obtain y(0.5) ≈ 0.4198. With h = 0.05 we obtain

y(0.5) ≈ 0.4124.

(d) Since y(0.5) = 0.4055, the error for h = 0.1 is E0.1 = 0.0143, while the error for h = 0.05 is

E0.05 = 0.0069. With global truncation error O(h) we expect E0.1/E0.05 ≈ 2. We actually have

E0.1/E0.05 = 2.06.

535Euler Methods and Error Analysis

© 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part, except for use as permitted in a license distributed 
with a certain product or service or otherwise on a password-protected website for classroom use. 

9.  1

Not For Sale

©
 C

en
ga

ge
 L

ea
rn

in
g.

 A
ll 

rig
ht

s r
es

er
ve

d.
 N

o 
di

st
rib

ut
io

n 
al

lo
w

ed
 w

ith
ou

t e
xp

re
ss

 a
ut

ho
riz

at
io

n.



20. (a) Using y′′′ = 2/(x + 1)3 we see that the local truncation error is

y′′′(c)
h3

6
=

1

(c + 1)3
h3

3
.

(b) Since 1/(x + 1)3 is a decreasing function for 0 ≤ x ≤ 0.5, 1/(c + 1)3 ≤ 1/(0 + 1)3 = 1 for

0 ≤ c ≤ 0.5 and

y′′′(c)
h3

6
≤ (1)

(0.1)3

3
= 0.000333.

(c) Using the improved Euler’s method with h = 0.1 we obtain y(0.5) ≈ 0.405281. With h = 0.05

we obtain y(0.5) ≈ 0.405419.

(d) Since y(0.5) = 0.405465, the error for h = 0.1 is E0.1 = 0.000184, while the error for h = 0.05 is

E0.05 = 0.000046. With global truncation error O(h2) we expect E0.1/E0.05 ≈ 4. We actually

have E0.1/E0.05 = 3.98.

21. Because y∗n+1 depends on yn and is used to determine yn+1, all of the y∗n cannot be computed at one

time independently of the corresponding yn values. For example, the computation of y∗4 involves

the value of y3.

1.

9.2 Runge-Kutta Methodsq
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2. In this problem we use h = 0.1. Substituting w2 = 3
4 into the

equations in (4) in the text, we obtain

w1 = 1 − w2 =
1

4
, α =

1

2w2
=

2

3
, and β =

1

2w2
=

2

3
.

The resulting second-order Runge-Kutta method is

yn+1 = yn + h
(

1

4
k1 +

3

4
k2

)
= yn +

h

4
(k1 + 3k2)

where
k1 = f(xn, yn)

k2 = f
(
xn +

2

3
h, yn +

2

3
hk1

)
.

The table compares the values obtained using this second-order Runge-Kutta method with the

values obtained using the improved Euler’s method.

3. 4.

5. 6.

7. 8.
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9. 10.

11. 12.

13. (a) Write the equation in the form

dv

dt
= 32 − 0.025v2 = f(t, v).

(b)

(c) Separating variables and using partial fractions we have

1

2
√

32

(
1√

32 −
√

0.125 v
+

1√
32 +

√
0.125 v

)

dv = dt

and
1

2
√

32
√

0.125

(
ln |

√
32 +

√
0.125 v|− ln |

√
32 −

√
0.125 v|

)
= t + c.

Since v(0) = 0 we find c = 0. Solving for v we obtain

v(t) =
16
√

5 (e
√

3.2 t − 1)

e
√

3.2 t + 1
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and v(5) ≈ 35.7678. Alternatively, the solution can be expressed as

v(t) =
√

mg

k
tanh

√
kg

m
t.

14. (a)

(b) From the graph we estimate A(1) ≈ 1.68, A(2) ≈ 13.2,

A(3) ≈ 36.8, A(4) ≈ 46.9, and A(5) ≈ 48.9.

(c) Let α = 2.128 and β = 0.0432. Separating variables we obtain

dA

A(α − βA)
= dt

1

α

(
1

A
+

β

α − βA

)

dA = dt

1

α
[ln A − ln(α − βA)] = t + c

ln
A

α − βA
= α(t + c)

A

α − βA
= eα(t+c)

A = αeα(t+c) − βAeα(t+c)

[
1 + βeα(t+c)

]
A = αeα(t+c).

Thus

A(t) =
αeα(t+c)

1 + βeα(t+c)
=

α

β + e−α(t+c)
=

α

β + e−αce−αt .

From A(0) = 0.24 we obtain

0.24 =
α

β + e−αc
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so that e−αc = α/0.24 − β ≈ 8.8235 and

A(t) ≈ 2.128

0.0432 + 8.8235e−2.128t .

15. (a) (b)

16. (a) Using the RK4 method we obtain y(0.1) ≈ y1 = 1.2214.

(b) Using y(5)(x) = 32e2x we see that the local truncation error is

y(5)(c)
h5

120
= 32e2c (0.1)5

120
= 0.000002667e2c.

Since e2x is an increasing function, e2c ≤ e2(0.1) = e0.2 for 0 ≤ c ≤ 0.1. Thus an upper bound

for the local truncation error is 0.000002667e0.2 = 0.000003257.

(c) Since y(0.1) = e0.2 = 1.221402758, the actual error is y(0.1) − y1 = 0.000002758 which is less

than 0.000003257.

(d) Using the RK4 formula with h = 0.05 we obtain y(0.1) ≈ y2 = 1.221402571.

(e) The error in (d) is 1.221402758 − 1.221402571 = 0.000000187. With global truncation error

O(h4), when the step size is halved we expect the error for h = 0.05 to be one-sixteenth the

error for h = 0.1. Comparing 0.000000187 with 0.000002758 we see that this is the case.

17. (a) Using the RK4 method we obtain y(0.1) ≈ y1 = 0.823416667.

(b) Using y(5)(x) = −40e−2x we see that the local truncation error is

40e−2c (0.1)5

120
= 0.000003333.

Since e−2x is a decreasing function, e−2c ≤ e0 = 1 for 0 ≤ c ≤ 0.1. Thus an upper bound for

the local truncation error is 0.000003333(1) = 0.000003333.
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(c) Since y(0.1) = 0.823413441, the actual error is |y(0.1) − y1| = 0.000003225, which is less than

0.000003333.

(d) Using the RK4 method with h = 0.05 we obtain y(0.1) ≈ y2 = 0.823413627.

(e) The error in (d) is |0.823413441 − 0.823413627| = 0.000000185. With global truncation error

O(h4), when the step size is halved we expect the error for h = 0.05 to be one-sixteenth the

error when h = 0.1. Comparing 0.000000185 with 0.000003225 we see that this is the case.

18. (a) Using y(5) = −1026e−3(x−1) we see that the local truncation error is
∣∣∣∣∣y

(5)(c)
h5

120

∣∣∣∣∣ = 8.55h5e−3(c−1).

(b) Since e−3(x−1) is a decreasing function for 1 ≤ x ≤ 1.5, e−3(c−1) ≤ e−3(1−1) = 1 for 1 ≤ c ≤ 1.5

and

y(5)(c)
h5

120
≤ 8.55(0.1)5(1) = 0.0000855.

(c) Using the RK4 method with h = 0.1 we obtain y(1.5) ≈ 2.053338827. With h = 0.05 we obtain

y(1.5) ≈ 2.053222989.

19. (a) Using y(5) = 24/(x + 1)5 we see that the local truncation error is

y(5)(c)
h5

120
=

1

(c + 1)5
h5

5
.

(b) Since 1/(x + 1)5 is a decreasing function for 0 ≤ x ≤ 0.5, 1/(c + 1)5 ≤ 1/(0 + 1)5 = 1 for

0 ≤ c ≤ 0.5 and

y(5)(c)
h5

5
≤ (1)

(0.1)5

5
= 0.000002.

(c) Using the RK4 method with h = 0.1 we obtain y(0.5) ≈ 0.405465168. With h = 0.05 we obtain

y(0.5) ≈ 0.405465111.

20. Each step of Euler’s method requires only 1 function evaluation, while each step of the improved

Euler’s method requires 2 function evaluations – once at (xn, yn) and again at (xn+1, y∗n+1). The

second-order Runge-Kutta methods require 2 function evaluations per step, while the RK4 method

requires 4 function evaluations per step. To compare the methods we approximate the solution of

y′ = (x + y − 1)2, y(0) = 2, at x = 0.2 using h = 0.1 for the Runge-Kutta method, h = 0.05 for the

improved Euler’s method, and h = 0.025 for Euler’s method. For each method a total of 8 function

evaluations is required. By comparing with the exact solution we see that the RK4 method appears

to still give the most accurate result.
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21. (a) For y′ + y = 10 sin 3x an integrating factor is ex so that

d

dx
[exy] = 10ex sin 3x =⇒ exy = ex sin 3x − 3ex cos 3x + c

=⇒ y = sin 3x − 3 cos 3x + ce−x.

When x = 0, y = 0, so 0 = −3 + c and c = 3. The solution is

y = sin 3x − 3 cos 3x + 3e−x.

Using Newton’s method we find that x = 1.53235 is the only positive root in

[0, 2].

(b) Using the RK4 method with h = 0.1 we obtain the table of values shown. These values are used

to obtain an interpolating function in Mathematica. The graph of the interpolating function is

shown. Using Mathematica’s root finding capability we see that the only positive root in [0, 2]

is x = 1.53236.
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In the tables in this section “ABM” stands for Adams-Bashforth-Moulton.

1. Writing the differential equation in the form y′ − y = x − 1 we see that an integrating factor is

e−
∫

dx = e−x, so that
d

dx
[e−xy] = (x − 1)e−x

and

y = ex(−xe−x + c) = −x + cex.

From y(0) = 1 we find c = 1, so the solution of the initial-value problem is y = −x + ex. Actual

values of the analytic solution above are compared with the approximated values in the table.

2. The following program is written in Mathematica. It uses the Adams-Bashforth-Moulton method

to approximate the solution of the initial-value problem y′ = x + y − 1, y(0) = 1, on the interval

[0, 1].

Clear[f, x, y, h, a, b, y0];

f[x , y ]:= x + y - 1; (* define the differential equation *)

h = 0.2; (* set the step size *)

a = 0; y0 = 1; b = 1; (* set the initial condition and the interval *)

f[x, y] (* display the DE *)

Clear[k1, k2, k3, k4, x, y, u, v]

x = u[0] = a;

y = v[0] = y0;

n = 0;

While[x < a + 3h, (* use RK4 to compute the first 3 values after y(0) *)

n = n + 1;

9.3 Runge-Kutta Methodsq
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k1 = f[x, y];

k2 = f[x + h/2, y + h k1/2];

k3 = f[x + h/2, y + h k2/2];

k4 = f[x + h, y + h k3];

x = x + h;

y = y + (h/6)(k1 + 2k2 + 2k3 + k4);

u[n] = x;

v[n] = y];

While[x ≤ b, (* use Adams-Bashforth-Moulton *)

p3 = f[u[n - 3], v[n - 3]];

p2 = f[u[n - 2], v[n - 2]];

p1 = f[u[n - 1], v[n - 1]];

p0 = f[u[n], v[n]];

pred = y + (h/24)(55p0 - 59p1 + 37p2 - 9p3); (* predictor *)

x = x + h;

p4 = f[x, pred];

y = y + (h/24)(9p4 + 19p0 - 5p1 + p2); (* corrector *)

n = n + 1;

u[n] = x;

v[n] = y]

(*display the table *)

TableForm[Prepend[Table[{u[n], v[n]}, {n, 0, (b-a)/h}], {"x(n)", "y(n)"}]];

3. The first predictor is y∗4 = 0.73318477. 4. The first predictor is y∗4 = 1.21092217.
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5. The first predictor for h = 0.2 is y∗4 = 1.02343488.

6. The first predictor for h = 0.2 is y∗4 = 3.34828434.

7. The first predictor for h = 0.2 is y∗4 = 0.13618654.
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8. The first predictor for h = 0.2 is y∗4 = 2.61796154.

1. The substitution y′ = u leads to the iteration formulas

yn+1 = yn + hun, un+1 = un + h(4un − 4yn).

The initial conditions are y0 = −2 and u0 = 1. Then

y1 = y0 + 0.1u0 = −2 + 0.1(1) = −1.9

u1 = u0 + 0.1(4u0 − 4y0) = 1 + 0.1(4 + 8) = 2.2

y2 = y1 + 0.1u1 = −1.9 + 0.1(2.2) = −1.68.

The general solution of the differential equation is y = c1e2x + c2xe2x. From the initial conditions

we find c1 = −2 and c2 = 5. Thus y = −2e2x + 5xe2x and y(0.2) ≈ −1.4918.

2. The substitution y′ = u leads to the iteration formulas

yn+1 = yn + hun, un+1 = un + h
(

2

x
un − 2

x2 yn

)
.

The initial conditions are y0 = 4 and u0 = 9. Then

y1 = y0 + 0.1u0 = 4 + 0.1(9) = 4.9

u1 = u0 + 0.1
(

2

1
u0 −

2

1
y0

)
= 9 + 0.1[2(9) − 2(4)] = 10

y2 = y1 + 0.1u1 = 4.9 + 0.1(10) = 5.9.

9.4 Runge-Kutta Methodsq
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The general solution of the Cauchy-Euler differential equation is y = c1x + c2x2. From the initial

conditions we find c1 = −1 and c2 = 5. Thus y = −x + 5x2 and y(1.2) = 6.

3. The substitution y′ = u leads to the system

y′ = u, u′ = 4u − 4y.

Using formula (4) in the text with x correspond-

ing to t, y corresponding to x, and u correspond-

ing to y, we obtain the table shown.

4. The substitution y′ = u leads to the system

y′ = u, u′ =
2

x
u − 2

x2 y.

Using formula (4) in the text with x correspond-

ing to t, y corresponding to x, and u correspond-

ing to y, we obtain the table shown.

5. The substitution y′ = u leads to the system

y′ = u, u′ = 2u − 2y + et cos t.

Using formula (4) in the text with y correspond-

ing to x and u corresponding to y, we obtain the

table shown.

6. Using h = 0.1, the RK4 method for a system, and a numerical solver, we obtain

5479.    Runge-Kutta Methods 4 

© 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part, except for use as permitted in a license distributed 
with a certain product or service or otherwise on a password-protected website for classroom use. Not For Sale

©
 C

en
ga

ge
 L

ea
rn

in
g.

 A
ll 

rig
ht

s r
es

er
ve

d.
 N

o 
di

st
rib

ut
io

n 
al

lo
w

ed
 w

ith
ou

t e
xp

re
ss

 a
ut

ho
riz

at
io

n.



7.

8.

9.
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10.

11. Solving for x′ and y′ we obtain the system

x′ = −2x + y + 5t

y′ = 2x + y − 2t.

12. Solving for x′ and y′ we obtain the system

x′ =
1

2
y − 3t2 + 2t − 5

y′ = −1

2
y + 3t2 + 2t + 5.
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1. We identify P (x) = 0, Q(x) = 9, f(x) = 0, and h = (2 − 0)/4 = 0.5. Then the finite difference

equation is

yi+1 + 0.25yi + yi−1 = 0.

The solution of the corresponding linear system gives

2. We identify P (x) = 0, Q(x) = −1, f(x) = x2, and h = (1 − 0)/4 = 0.25. Then the finite difference

equation is

yi+1 − 2.0625yi + yi−1 = 0.0625x2
i .

The solution of the corresponding linear system gives

3. We identify P (x) = 2, Q(x) = 1, f(x) = 5x, and h = (1 − 0)/5 = 0.2. Then the finite difference

equation is

1.2yi+1 − 1.96yi + 0.8yi−1 = 0.04(5xi).

The solution of the corresponding linear system gives

4. We identify P (x) = −10, Q(x) = 25, f(x) = 1, and h = (1 − 0)/5 = 0.2. Then the finite difference

equation is

−yi + 2yi−1 = 0.04.

The solution of the corresponding linear system gives

5. We identify P (x) = −4, Q(x) = 4, f(x) = (1 + x)e2x, and h = (1 − 0)/6 = 0.1667. Then the finite

difference equation is

0.6667yi+1 − 1.8889yi + 1.3333yi−1 = 0.2778(1 + xi)e
2xi .

9.5 Runge-Kutta Methodsq
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The solution of the corresponding linear system gives

6. We identify P (x) = 5, Q(x) = 0, f(x) = 4
√

x , and h = (2 − 1)/6 = 0.1667. Then the finite

difference equation is

1.4167yi+1 − 2yi + 0.5833yi−1 = 0.2778(4
√

xi ).

The solution of the corresponding linear system gives

7. We identify P (x) = 3/x, Q(x) = 3/x2, f(x) = 0, and h = (2 − 1)/8 = 0.125. Then the finite

difference equation is
(
1 +

0.1875

xi

)
yi+1 +

(

−2 +
0.0469

x2
i

)

yi +
(
1 − 0.1875

xi

)
yi−1 = 0.

The solution of the corresponding linear system gives

8. We identify P (x) = −1/x, Q(x) = x−2, f(x) = ln x/x2, and h = (2− 1)/8 = 0.125. Then the finite

difference equation is
(
1 − 0.0625

xi

)
yi+1 +

(

−2 +
0.0156

x2
i

)

yi +
(
1 +

0.0625

xi

)
yi−1 = 0.0156 ln xi.

The solution of the corresponding linear system gives

9. We identify P (x) = 1−x, Q(x) = x, f(x) = x, and h = (1− 0)/10 = 0.1. Then the finite difference

equation is

[1 + 0.05(1 − xi)]yi+1 + [−2 + 0.01xi]yi + [1 − 0.05(1 − xi)]yi−1 = 0.01xi.

The solution of the corresponding linear system gives

10. We identify P (x) = x, Q(x) = 1, f(x) = x, and h = (1 − 0)/10 = 0.1. Then the finite difference

equation is

(1 + 0.05xi)yi+1 − 1.99yi + (1 − 0.05xi)yi−1 = 0.01xi.
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The solution of the corresponding linear system gives

11. We identify P (x) = 0, Q(x) = −4, f(x) = 0, and h = (1 − 0)/8 = 0.125. Then the finite difference

equation is

yi+1 − 2.0625yi + yi−1 = 0.

The solution of the corresponding linear system gives

12. We identify P (r) = 2/r, Q(r) = 0, f(r) = 0, and h = (4 − 1)/6 = 0.5. Then the finite difference

equation is
(
1 +

0.5

ri

)
ui+1 − 2ui +

(
1 − 0.5

ri

)
ui−1 = 0.

The solution of the corresponding linear system gives

13. (a) The difference equation
(

1 +
h

2
Pi

)

yi+1 + (−2 + h2Qi)yi +

(

1 − h

2
Pi

)

yi−1 = h2fi

is the same as equation (8) in the text. The equations are the same because the derivation was

based only on the differential equation, not the boundary conditions. If we allow i to range

from 0 to n − 1 we obtain n equations in the n + 1 unknowns y−1, y0, y1, . . . , yn−1. Since yn

is one of the given boundary conditions, it is not an unknown.

(b) Identifying y0 = y(0), y−1 = y(0− h), and y1 = y(0 + h) we have from equation (5) in the text

1

2h
[y1 − y−1] = y′(0) = 1 or y1 − y−1 = 2h.

The difference equation corresponding to i = 0,
(

1 +
h

2
P0

)

y1 + (−2 + h2Q0)y0 +

(

1 − h

2
P0

)

y−1 = h2f0

becomes, with y−1 = y1 − 2h,
(

1 +
h

2
P0

)

y1 + (−2 + h2Q0)y0 +

(

1 − h

2
P0

)

(y1 − 2h) = h2f0
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or

2y1 + (−2 + h2Q0)y0 = h2f0 + 2h − P0.

Alternatively, we may simply add the equation y1−y−1 = 2h to the list of n difference equations

obtaining n + 1 equations in the n + 1 unknowns y−1, y0, y1, . . . , yn−1.

(c) Using n = 5 we obtain

14. Using h = 0.1 and, after shooting a few times, y′(0) = 0.43535 we obtain the following table with

the RK4 method.

1.

9.R Chapter 9 in Reviewq

5539.    Runge-Kutta Methods 5 

© 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part, except for use as permitted in a license distributed 
with a certain product or service or otherwise on a password-protected website for classroom use. Not For Sale

©
 C

en
ga

ge
 L

ea
rn

in
g.

 A
ll 

rig
ht

s r
es

er
ve

d.
 N

o 
di

st
rib

ut
io

n 
al

lo
w

ed
 w

ith
ou

t e
xp

re
ss

 a
ut

ho
riz

at
io

n.



2.

3.

4.

5. Using

yn+1 = yn + hun,

un+1 = un + h(2xn + 1)yn,

y0 = 3

u0 = 1
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we obtain (when h = 0.2) y1 = y(0.2) = y0 + hu0 = 3 + (0.2)1 = 3.2. When h = 0.1 we have

y1 = y0 + 0.1u0 = 3 + (0.1)1 = 3.1

u1 = u0 + 0.1(2x0 + 1)y0 = 1 + 0.1(1)3 = 1.3

y2 = y1 + 0.1u1 = 3.1 + 0.1(1.3) = 3.23.

6. The first predictor is y∗3 = 1.14822731.

7. Using x0 = 1, y0 = 2, and h = 0.1 we have

x1 = x0 + h(x0 + y0) = 1 + 0.1(1 + 2) = 1.3

y1 = y0 + h(x0 − y0) = 2 + 0.1(1 − 2) = 1.9

and

x2 = x1 + h(x1 + y1) = 1.3 + 0.1(1.3 + 1.9) = 1.62

y2 = y1 + h(x1 − y1) = 1.9 + 0.1(1.3 − 1.9) = 1.84.

Thus, x(0.2) ≈ 1.62 and y(0.2) ≈ 1.84.

8. We identify P (x) = 0, Q(x) = 6.55(1 + x), f(x) = 1, and h = (1 − 0)/10 = 0.1. Then the finite

difference equation is

yi+1 + [−2 + 0.0655(1 + xi)]yi + yi−1 = 0.001

or

yi+1 + (0.0655xi − 1.9345)yi + yi−1 = 0.001.

The solution of the corresponding linear system gives
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1. The corresponding plane autonomous system is

x′ = y, y′ = −9 sin x.

If (x, y) is a critical point, y = 0 and −9 sin x = 0. Therefore x = ±nπ and so the critical points

are (±nπ, 0) for n = 0, 1, 2, . . . .

2. The corresponding plane autonomous system is

x′ = y, y′ = −2x − y2.

If (x, y) is a critical point, then y = 0 and so −2x − y2 = −2x = 0. Therefore (0, 0) is the sole

critical point.

3. The corresponding plane autonomous system is

x′ = y, y′ = x2 − y(1 − x3).

If (x, y) is a critical point, y = 0 and so x2 − y(1− x3) = x2 = 0. Therefore (0, 0) is the sole critical

point.

4. The corresponding plane autonomous system is

x′ = y, y′ = −4
x

1 + x2 − 2y.

If (x, y) is a critical point, y = 0 and so −4x/(1 + x2) − 2(0) = 0. Therefore x = 0 and so (0, 0) is

the sole critical point.

5. The corresponding plane autonomous system is

x′ = y, y′ = −x + εx3.

If (x, y) is a critical point, y = 0 and −x + εx3 = 0. Hence x(−1 + εx2) = 0 and so x = 0,
√

1/ε ,

−
√

1/ε . The critical points are (0, 0), (
√

1/ε , 0) and (−
√

1/ε , 0).

6. The corresponding plane autonomous system is

x′ = y, y′ = −x + εx|x|.

Plane Autonomous Systems10
10.1 Autonomous Systemsq
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If (x, y) is a critical point, y = 0 and −x + εx|x| = x(−1 + ε|x|) = 0. Hence x = 0, 1/ε, −1/ε. The

critical points are (0, 0), (1/ε, 0) and (−1/ε, 0).

7. From x + xy = 0 we have x(1 + y) = 0. Therefore x = 0 or y = −1. If x = 0, then, substituting

into −y − xy = 0, we obtain y = 0, Likewise, if y = −1, 1 + x = 0 or x = −1. We can conclude

that (0, 0) and (−1,−1) are critical points of the system.

8. From y2−x = 0 we have x = y2. Substituting into x2−y = 0, we obtain y4−y = 0 or y(y3−1) = 0.

It follows that y = 0, 1 and so (0, 0) and (1, 1) are the critical points of the system.

9. From x− y = 0 we have y = x. Substituting into 3x2 − 4y = 0 we obtain 3x2 − 4x = x(3x− 4) = 0.

It follows that (0, 0) and (4/3, 4/3) are the critical points of the system.

10. From x3 − y = 0 we have y = x3. Substituting into x − y3 = 0 we obtain x − x9 = 0 or x(1 − x8).

Therefore x = 0, 1, −1 and so the critical points of the system are (0, 0), (1, 1), and (−1,−1).

11. From x(10 − x − 1
2y) = 0 we obtain x = 0 or x + 1

2y = 10. Likewise y(16 − y − x) = 0 implies that

y = 0 or x + y = 16. We therefore have four cases. If x = 0, y = 0 or y = 16. If x + 1
2y = 10, we

can conclude that y(−1
2y + 6) = 0 and so y = 0, 12. Therefore the critical points of the system are

(0, 0), (0, 16), (10, 0), and (4, 12).

12. Adding the two equations we obtain 10 − 15y/(y + 5) = 0. It follows that y = 10, and from

−2x + y + 10 = 0 we can conclude that x = 10. Therefore (10, 10) is the sole critical point of the

system.

13. From x2ey = 0 we have x = 0. Since ex − 1 = e0 − 1 = 0, the second equation is satisfied for an

arbitrary value of y. Therefore any point of the form (0, y) is a critical point.

14. From sin y = 0 we have y = ±nπ. From ex−y = 1, we can conclude that x − y = 0 or x = y. The

critical points of the system are therefore (±nπ,±nπ) for n = 0, 1, 2, . . . .

15. From x(1 − x2 − 3y2) = 0 we have x = 0 or x2 + 3y2 = 1. If x = 0, then substituting into

y(3 − x2 − 3y2) gives y(3 − 3y2) = 0. Therefore y = 0, 1, −1. Likewise x2 = 1 − 3y2 yields 2y = 0

so that y = 0 and x2 = 1 − 3(0)2 = 1. The critical points of the system are therefore (0, 0), (0, 1),

(0,−1), (1, 0), and (−1, 0).

16. From −x(4− y2) = 0 we obtain x = 0, y = 2, or y = −2. If x = 0, then substituting into 4y(1−x2)

yields y = 0. Likewise y = 2 gives 8(1−x2) = 0 or x = 1, −1. Finally y = −2 yields −8(1−x2) = 0

or x = 1, −1. The critical points of the system are therefore (0, 0), (1, 2), (−1, 2), (1,−2), and

(−1,−2).

17. (a) From Exercises 8.2, Problem 1, x = c1e5t−c2e−t and y = 2c1e5t+c2e−t, which are not periodic.

(b) From X(0) = (−2, 2) it follows that c1 = 0 and c2 = 2. Therefore x = −2e−t and y = 2e−t.

55710.1    Autonomous Systems
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(c)

18. (a) From Exercises 8.2, Problem 6, x = c1 + 2c2e−5t and y = 3c1 + c2e−5t, which is not periodic.

(b) From X(0) = (3, 4) it follows that c1 = c2 = 1. Therefore x = 1 + 2e−5t and y = 3 + e−5t gives

y = 1
2(x − 1) + 3.

(c)

19. (a) From Exercises 8.2, Problem 37, x = c1(4 cos 3t − 3 sin 3t) + c2(4 sin 3t + 3 cos 3t) and y =

c1(5 cos 3t) + c2(5 sin 3t). All solutions are one periodic with p = 2π/3.

(b) From X(0) = (4, 5) it follows that c1 = 1 and c2 = 0. Therefore x = 4 cos 3t − 3 sin 3t and

y = 5 cos 3t.

(c)

20. (a) From Exercises 8.2, Problem 34, x = c1(sin t − cos t) + c2(− cos t − sin t) and y = 2c1 cos t +

2c2 sin t. All solutions are periodic with p = 2π.
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(b) From X(0) = (−2, 2) it follows that c1 = c2 = 1. Therefore x = −2 cos t and y = 2 cos t+2 sin t.

(c)

21. (a) From Exercises 8.2, Problem 35, x = c1(sin t − cos t)e4t + c2(− sin t − cos t)e4t and y =

2c1(cos t) e4t + 2c2(sin t) e4t. Because of the presence of e4t, there are no periodic solutions.

(b) From X(0) = (−1, 2) it follows that c1 = 1 and c2 = 0. Therefore x = (sin t − cos t)e4t and

y = 2(cos t) e4t.

(c)

22. (a) From Exercises 8.2, Problem 38, x = c1e−t(2 cos 2t − 2 sin 2t) + c2e−t(2 cos 2t + 2 sin 2t) and

y = c1e−t cos 2t + c2e−t sin 2t. Because of the presence of e−t, there are no periodic solutions.

(b) From X(0) = (2, 1) it follows that c1 = 1 and c2 = 0. Therefore x = e−t(2 cos 2t− 2 sin 2t) and

y = e−t cos 2t.

(c)
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23. Switching to polar coordinates,

dr

dt
=

1

r

(

x
dx

dt
+ y

dy

dt

)

=
1

r
(−xy − x2r4 + xy − y2r4) = −r5

dθ

dt
=

1

r2

(

−y
dx

dt
+ x

dy

dt

)

=
1

r2 (y2 + xyr4 + x2 − xyr4) = 1 .

If we use separation of variables on
dr

dt
= −r5 we obtain

r =
(

1

4t + c1

)1/4

and θ = t + c2.

Since X(0) = (4, 0), r = 4 and θ = 0 when t = 0. It follows that c2 = 0 and c1 = 1
256 . The final

solution can be written as

r =
4

4
√

1024t + 1
, θ = t

and so the solution spirals toward the origin as t increases.

24. Switching to polar coordinates,

dr

dt
=

1

r

(

x
dx

dt
+ y

dy

dt

)

=
1

r
(xy − x2r2 − xy + y2r2) = r3

dθ

dt
=

1

r2

(

−y
dx

dt
+ x

dy

dt

)

=
1

r2 (−y2 − xyr2 − x2 + xyr2) = −1 .

If we use separation of variables, it follows that

r =
1√

−2t + c1
and θ = −t + c2.

Since X(0) = (4, 0), r = 4 and θ = 0 when t = 0. It follows that c2 = 0 and c1 = 1
16 . The final

solution can be written as

r =
4√

1 − 32t
, θ = −t.

Note that r → ∞ as t →
(

1
32

)
. Because 0 ≤ t ≤ 1

32 , the curve is not a spiral.

25. Switching to polar coordinates,

dr

dt
=

1

r

(

x
dx

dt
+ y

dy

dt

)

=
1

r
[−xy + x2(1 − r2) + xy + y2(1 − r2)] = r(1 − r2)

dθ

dt
=

1

r2

(

−y
dx

dt
+ x

dy

dt

)

=
1

r2 [y2 − xy(1 − r2) + x2 + xy(1 − r2)] = 1.

Now dr/dt = r−r3 or (dr/dt)−r = −r3 is a Bernoulli differential equation. Following the procedure

in Section 2.5 of the text, we let w = r−2 so that w′ = −2r−3 (dr/dt). Therefore w′ + 2w = 2, a
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linear first order differential equation. It follows that w = 1 + c1e−2t and so r2 = 1/(1 + c1e−2t).

The general solution can be written as

r =
1√

1 + c1e−2t
, θ = t + c2.

If X(0) = (1, 0), r = 1 and θ = 0 when t = 0. Therefore c1 = 0 = c2 and so x = r cos t = cos t and

y = r sin t = sin t. This solution generates the circle r = 1. If X(0) = (2, 0), r = 2 and θ = 0 when

t = 0. Therefore c1 = −3/4, c2 = 0 and so

r =
1

√
1 − 3

4 e−2t
, θ = t.

This solution spirals toward the circle r = 1 as t increases.

26. Switching to polar coordinates,

dr

dt
=

1

r

(

x
dx

dt
+ y

dy

dt

)

=
1

r

[

xy − x2

r
(4 − r2) − xy − y2

r
(4 − r2)

]

= r2 − 4

dθ

dt
=

1

r2

(

−y
dx

dt
+ x

dy

dt

)

=
1

r2

[
−y2 +

xy

r
(4 − r2) − x2 − xy

r
(4 − r2)

]
= −1.

From Example 3, Section 2.2,

r = 2
1 + c1e4t

1 − c1e4t and θ = −t + c2.

If X(0) = (1, 0), r = 1 and θ = 0 when t = 0. It follows that c2 = 0 and c1 = −1
3 . Therefore

r = 2
1 − 1

3e4t

1 + 1
3e4t

and θ = −t.

Note that r = 0 when e4t = 3 or t = (ln 3)/4 and r → −2 as t → ∞. The solution therefore

approaches the circle r = 2. If X(0) = (2, 0), it follows that c1 = c2 = 0. Therefore r = 2 and

θ = −t so that the solution generates the circle r = 2 traversed in the clockwise direction. Note

also that the original system is not defined at (0, 0) but the corresponding polar system is defined

for r = 0. If the Runge-Kutta method is applied to the original system, the solution corresponding

to X(0) = (1, 0) will stall at the origin.

27. The system has no critical points, so there are no periodic solutions.

28. From x(6y−1) = 0 and y(2−8x) = 0 we see that (0, 0) and (1/4, 1/6) are

critical points. From the graph we see that there are periodic solutions

around (1/4, 1/6).
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29. The only critical point is (0, 0). There appears to be a single periodic

solution around (0, 0).

30. The system has no critical points, so there are no periodic solutions.

1. (a) If X(0) = X0 lies on the line y = 2x, then X(t) approaches (0, 0) along this line. For all other

initial conditions, X(t) approaches (0, 0) from the direction determined by the line y = −x/2.

(b)

2. (a) If X(0) = X0 lies on the line y = −x, then X(t) becomes unbounded along this line. For all

other initial conditions, X(t) becomes unbounded and y = −3x/2 serves as an asymptote.

(b)

10.2 Stability of Linear Systemsq
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3. (a) All solutions are unstable spirals which become unbounded as t increases.

(b)

4. (a) All solutions are spirals which approach the origin.

(b)

5. (a) All solutions approach (0, 0) from the direction specified by the line y = x.

(b)

6. (a) All solutions become unbounded and y = x/2 serves as the asymptote.
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(b)

7. (a) If X(0) = X0 lies on the line y = 3x, then X(t) approaches (0, 0) along this line. For all other

initial conditions, X(t) becomes unbounded and y = x serves as the asymptote.

(b)

8. (a) The solutions are ellipses which encircle the origin.

(b)

9. Since ∆ = −41 < 0, we can conclude from Figure 10.2.12 that (0, 0) is a saddle point.

10. Since ∆ = 29 and τ = −12, τ2 − 4∆ > 0 and so from Figure 10.2.12, (0, 0) is a stable node.

11. Since ∆ = −19 < 0, we can conclude from Figure 10.2.12 that (0, 0) is a saddle point.

12. Since ∆ = 1 and τ = −1, τ2 − 4∆ = −3 and so from Figure 10.2.12, (0, 0) is a stable spiral point.
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13. Since ∆ = 1 and τ = −2, τ2 − 4∆ = 0 and so from Figure 10.2.12, (0, 0) is a degenerate stable

node.

14. Since ∆ = 1 and τ = 2, τ2 − 4∆ = 0 and so from Figure 10.2.12, (0, 0) is a degenerate unstable

node.

15. Since ∆ = 0.01 and τ = −0.03, τ2 − 4∆ < 0 and so from Figure 10.2.12, (0, 0) is a stable spiral

point.

16. Since ∆ = 0.0016 and τ = 0.08, τ2 − 4∆ = 0 and so from Figure 10.2.12, (0, 0) is a degenerate

unstable node.

17. ∆ = 1 − µ2, τ = 0, and so we need ∆ = 1 − µ2 > 0 for (0, 0) to be a center. Therefore |µ| < 1.

18. Note that ∆ = 1 and τ = µ. Therefore we need both τ = µ < 0 and τ2 − 4∆ = µ2 − 4 < 0 for (0, 0)

to be a stable spiral point. These two conditions can be written as −2 < µ < 0.

19. Note that ∆ = µ+1 and τ = µ+1 and so τ2−4∆ = (µ+1)2−4(µ+1) = (µ+1)(µ−3). It follows

that τ2 − 4∆ < 0 if and only if −1 < µ < 3. We can conclude that (0, 0) will be a saddle point

when µ < −1. Likewise (0, 0) will be an unstable spiral point when τ = µ+1 > 0 and τ2 − 4∆ < 0.

This condition reduces to −1 < µ < 3.

20. τ = 2α, ∆ = α2 + β2 > 0, and τ2 − 4∆ = −4β < 0. If α < 0, (0, 0) is a stable spiral point. If

α > 0, (0, 0) is an unstable spiral point. Therefore (0, 0) cannot be a node or saddle point.

21. AX1 + F = 0 implies that AX1 = −F or X1 = −A−1F. Since Xp(t) = −A−1F is a particular

solution, it follows from Theorem 8.1.6 that X(t) = Xc(t) + X1 is the general solution to X′ =

AX+F. If τ < 0 and ∆ > 0 then Xc(t) approaches (0, 0) by Theorem 10.1(a). It follows that X(t)

approaches X1 as t → ∞.

22. If bc < 1, ∆ = adx̂ŷ(1 − bc) > 0 and τ2 − 4∆ = (ax̂ − dŷ)2 + 4abcdx̂ŷ > 0. Therefore (0, 0) is a

stable node.

23. (a) The critical point is X1 = (−3, 4).

(b) From the graph, X1 appears to be an unstable node or a saddle

point.

(c) Since ∆ = −1, (0, 0) is a saddle point.

565

© 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part, except for use as permitted in a license distributed 
with a certain product or service or otherwise on a password-protected website for classroom use. 

10.2 Stability of Linear Systems

Not For Sale

©
 C

en
ga

ge
 L

ea
rn

in
g.

 A
ll 

rig
ht

s r
es

er
ve

d.
 N

o 
di

st
rib

ut
io

n 
al

lo
w

ed
 w

ith
ou

t e
xp

re
ss

 a
ut

ho
riz

at
io

n.



24. (a) The critical point is X1 = (−1,−2).

(b) From the graph, X1 appears to be a stable node or a degenerate

stable node.

(c) Since τ = −16, ∆ = 64, and τ2 − 4∆ = 0, (0, 0) is a degenerate stable node.

25. (a) The critical point is X1 = (0.5, 2).

(b) From the graph, X1 appears to be an unstable spiral point.

(c) Since τ = 0.2, ∆ = 0.03, and τ2 − 4∆ = −0.08, (0, 0) is an unstable spiral point.

26. (a) The critical point is X1 = (1, 1).

(b) From the graph, X1 appears to be a center.

(c) Since τ = 0 and ∆ = 1, (0, 0) is a center.

1. Switching to polar coordinates,

dr

dt
=

1

r

(

x
dx

dt
+ y

dy

dt

)

=
1

r
(αx2 − βxy + xy2 + βxy + αy2 − xy2) =

1

r
αr2 = αr.

10.3
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Therefore r = ceαt and so r → 0 if and only if α < 0.

2. The differential equation dr/dt = αr(5 − r) is a logistic differential equation. [See Section 3.2, (4)

and (5).] It follows that

r =
5

1 + c1e−5αt and θ = −t + c2.

If α > 0, r → 5 as t → +∞ and so the critical point (0, 0) is unstable. If α < 0, r → 0 as t → +∞
and so (0, 0) is asymptotically stable.

3. The critical points are x = 0 and x = n + 1. Since g′(x) = k(n + 1)− 2kx, g′(0) = k(n + 1) > 0 and

g′(n + 1) = −k(n + 1) < 0. Therefore x = 0 is unstable while x = n + 1 is asymptotically stable.

See Theorem 10.2.

4. Note that x = k is the only critical point since ln(x/k) is not defined at x = 0. Since g′(x) =

−k − k ln(x/k), g′(k) = −k < 0. Therefore x = k is an asymptotically stable critical point by

Theorem 10.3.1.

5. The only critical point is T = T0. Since g′(T ) = k, g′(T0) = k > 0. Therefore T = T0 is unstable by

Theorem 10.3.1.

6. The only critical point is v = mg/k. Now g(v) = g − (k/m)v and so g′(v) = −k/m < 0. Therefore

v = mg/k is an asymptotically stable critical point by Theorem 10.3.1.

7. Critical points occur at x = α, β. Since g′(x) = k(−α − β + 2x), g′(α) = k(α − β) and g′(β) =

k(β−α). Since α > β, g′(α) > 0 and so x = α is unstable. Likewise x = β is asymptotically stable.

8. Critical points occur at x = α, β, γ. Since

g′(x) = k(α− x)(−β − γ − 2x) + k(β − x)(γ − x)(−1),

g′(α) = −k(β−α)(γ−α) < 0 since α > β > γ. Therefore x = α is asymptotically stable. Similarly

g′(β) > 0 and g′(γ) < 0. Therefore x = β is unstable while x = γ is asymptotically stable.

9. Critical points occur at P = a/b, c but not at P = 0. Since g′(P ) = (a − bP ) + (P − c)(−b),

g′(a/b) = (a/b − c)(−b) = −a + bc and g′(c) = a − bc.

Since a < bc, −a + bc > 0 and a − bc < 0. Therefore P = a/b is unstable while P = c is

asymptotically stable.

10. Since A > 0, the only critical point is A = K2. Since g′(A) = 1
2kKA−1/2 − k, g′(K2) = −k/2 < 0.

Therefore A = K2 is asymptotically stable.

11. The sole critical point is (1/2, 1) and

g′(X) =

(
−2y −2x

2y 2x − 1

)

.
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Computing g′((1/2, 1)) we find that τ = −2 and ∆ = 2 so that τ2 − 4∆ = −4 < 0. Therefore

(1/2, 1) is a stable spiral point.

12. Critical points are (1, 0) and (−1, 0), and

g′(X) =

(
2x −2y

0 2

)

.

At X = (1, 0), τ = 4, ∆ = 4, and so τ2 − 4∆ = 0. We can conclude that (1, 0) is unstable but we

are unable to classify this critical point any further. At X = (−1, 0), ∆ = −4 < 0 and so (−1, 0) is

a saddle point.

13. y′ = 2xy − y = y(2x − 1). Therefore if (x, y) is a critical point, either x = 1/2 or y = 0. The case

x = 1/2 and y − x2 + 2 = 0 implies that (x, y) = (1/2,−7/4). The case y = 0 leads to the critical

points (
√

2 , 0) and (−
√

2 , 0). We next use the Jacobian matrix

g′(X) =

(
−2x 1

2y 2x − 1

)

to classify these three critical points. For X = (
√

2 , 0) or (−
√

2 , 0), τ = −1 and ∆ < 0. Therefore

both critical points are saddle points. For X = (1/2,−7/4), τ = −1, ∆ = 7/2 and so τ2 − 4∆ =

−13 < 0. Therefore (1/2,−7/4) is a stable spiral point.

14. y′ = −y + xy = y(−1 + x). Therefore if (x, y) is a critical point, either y = 0 or x = 1. The case

y = 0 and 2x − y2 = 0 implies that (x, y) = (0, 0). The case x = 1 leads to the critical points

(1,
√

2 ) and (1,−
√

2 ). We next use the Jacobian matrix

g′(X) =

(
2 −2y

y x − 1

)

to classify these critical points. For X = (0, 0), ∆ = −2 < 0 and so (0, 0) is a saddle point. For

either (1,
√

2 ) or (1,−
√

2 ), τ = 2, ∆ = 4, and so τ2 − 4∆ = −12. Therefore (1,
√

2 ) and (1,−
√

2 )

are unstable spiral points.

15. Since x2 − y2 = 0, y2 = x2 and so x2 − 3x + 2 = (x − 1)(x − 2) = 0. It follows that the critical

points are (1, 1), (1,−1), (2, 2), and (2,−2). We next use the Jacobian

g′(X) =

(
−3 2y

2x −2y

)

to classify these four critical points. For X = (1, 1), τ = −5, ∆ = 2, and so τ2 − 4∆ = 17 > 0.

Therefore (1, 1) is a stable node. For X = (1,−1), ∆ = −2 < 0 and so (1,−1) is a saddle point.

For X = (2, 2), ∆ = −4 < 0 and so we have another saddle point. Finally, if X = (2,−2), τ = 1,

∆ = 4, and so τ2 − 4∆ = −15 < 0. Therefore (2,−2) is an unstable spiral point.

16. From y2 −x2 = 0, y = x or y = −x. The case y = x leads to (4, 4) and (−1, 1) but the case y = −x

leads to x2 − 3x + 4 = 0 which has no real solutions. Therefore (4, 4) and (−1, 1) are the only
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critical points. We next use the Jacobian matrix

g′(X) =

(
y x − 3

−2x 2y

)

to classify these two critical points. For X = (4, 4), τ = 12, ∆ = 40, and so τ2 − 4∆ < 0. Therefore

(4, 4) is an unstable spiral point. For X = (−1, 1), τ = −3, ∆ = 10, and so x2 − 4∆ < 0. It follows

that (−1,−1) is a stable spiral point.

17. Since x′ = −2xy = 0, either x = 0 or y = 0. If x = 0, y(1− y2) = 0 and so (0, 0), (0, 1), and (0,−1)

are critical points. The case y = 0 leads to x = 0. We next use the Jacobian matrix

g′(X) =

(
−2y −2x

−1 + y 1 + x − 3y2

)

to classify these three critical points. For X = (0, 0), τ = 1 and∆ = 0 and so the test is inconclusive.

For X = (0, 1), τ = −4, ∆ = 4 and so τ2 − 4∆ = 0. We can conclude that (0, 1) is a stable critical

point but we are unable to classify this critical point further in this borderline case. For X = (0,−1),

∆ = −4 < 0 and so (0,−1) is a saddle point.

18. We found that (0, 0), (0, 1), (0,−1), (1, 0) and (−1, 0) were the critical points in Exercise 15,

Section 10.1. The Jacobian is

g′(X) =

(
1 − 3x2 − 3y2 −6xy

−2xy 3 − x2 − 9y2

)

.

For X = (0, 0), τ = 4, ∆ = 3 and so τ2 − 4∆ = 4 > 0. Therefore (0, 0) is an unstable node. Both

(0, 1) and (0,−1) give τ = −8, ∆ = 12, and τ2 − 4∆ = 16 > 0. These two critical points are

therefore stable nodes. For X = (1, 0) or (−1, 0), ∆ = −4 < 0 and so saddle points occur.

19. We found the critical points (0, 0), (10, 0), (0, 16) and (4, 12) in Exercise 11, Section 10.1. Since the

Jacobian is

g′(X) =

(
10 − 2x − 1

2y −1
2x

−y 16 − 2y − x

)

we can classify the critical points as follows:

X τ ∆ τ2 − 4∆ Conclusion
(0, 0) 26 160 36 unstable node

(10, 0) −4 −60 – saddle point

(0, 16) −14 −32 – saddle point

(4, 12) −16 24 160 stable node

20. We found the sole critical point (10, 10) in Exercise 12, Section 10.1. The Jacobian is

g′(X) =




−2 1

2 −1 − 15

(y + 5)2



 ,
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g′((10, 10)) has trace τ = −46/15, ∆ = 2/15, and τ2 − 4∆ > 0. Therefore (0, 0) is a stable node.

21. The corresponding plane autonomous system is

θ′ = y, y′ = (cos θ − 1

2
) sin θ.

Since |θ| < π, it follows that critical points are (0, 0), (π/3, 0) and (−π/3, 0). The Jacobian matrix

is

g′(X) =

(
0 1

cos 2θ − 1
2 cos θ 0

)

and so at (0, 0), τ = 0 and ∆ = −1/2. Therefore (0, 0) is a saddle point. For X = (±π/3, 0), τ = 0

and ∆ = 3/4. It is not possible to classify either critical point in this borderline case.

22. The corresponding plane autonomous system is

x′ = y, y′ = −x +
(

1

2
− 3y2

)
y − x2.

If (x, y) is a critical point, y = 0 and so −x− x2 = −x(1 + x) = 0. Therefore (0, 0) and (−1, 0) are

the only two critical points. We next use the Jacobian matrix

g′(X) =

(
0 1

−1 − 2x 1
2 − 9y2

)

to classify these critical points. For X = (0, 0), τ = 1/2, ∆ = 1, and τ2 − 4∆ < 0. Therefore (0, 0)

is an unstable spiral point. For X = (−1, 0), τ = 1/2, ∆ = −1 and so (−1, 0) is a saddle point.

23. The corresponding plane autonomous system is

x′ = y, y′ = x2 − y(1 − x3)

and the only critical point is (0, 0). Since the Jacobian matrix is

g′(X) =

(
0 1

2x + 3x2y x3 − 1

)

,

τ = −1 and ∆ = 0, and we are unable to classify the critical point in this borderline case.

24. The corresponding plane autonomous system is

x′ = y, y′ = − 4x

1 + x2 − 2y

and the only critical point is (0, 0). Since the Jacobian matrix is

g′(X) =




0 1

−4
1 − x2

(1 + x2)2
−2



 ,

τ = −2, ∆ = 4, τ2 − 4∆ = −12, and so (0, 0) is a stable spiral point.
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25. In Exercise 5, Section 10.1, we showed that (0, 0), (
√

1/ε , 0) and (−
√

1/ε , 0) are the critical points.

We will use the Jacobian matrix

g′(X) =

(
0 1

−1 + 3εx2 0

)

to classify these three critical points. For X = (0, 0), τ = 0 and ∆ = 1 and we are unable to classify

this critical point. For (±
√

1/ε , 0), τ = 0 and ∆ = −2 and so both of these critical points are

saddle points.

26. In Exercise 6, Section 10.1, we showed that (0, 0), (1/ε, 0), and (−1/ε, 0) are the critical points.

Since Dxx|x| = 2|x|, the Jacobian matrix is

g′(X) =

(
0 1

2ε|x|− 1 0

)

.

For X = (0, 0), τ = 0, ∆ = 1 and we are unable to classify this critical point. For (±1/ε, 0), τ = 0,

∆ = −1, and so both of these critical points are saddle points.

27. The corresponding plane autonomous system is

x′ = y, y′ = −(β + α2y2)x

1 + α2x2

and the Jacobian matrix is

g′(X) =




0 1

(β + αy2)(α2x2 − 1)

(1 + α2x2)2
−2α2yx

1 + α2x2



 .

For X = (0, 0), τ = 0 and ∆ = β. Since β < 0, we can conclude that (0, 0) is a saddle point.

28. From x′ = −αx + xy = x(−α + y) = 0, either x = 0 or y = α. If x = 0, then 1 − βy = 0 and so

y = 1/β. The case y = α implies that 1− βα− x2 = 0 or x2 = 1−αβ. Since αβ > 1, this equation

has no real solutions. It follows that (0, 1/β) is the unique critical point. Since the Jacobian matrix

is

g′(X) =

(
−α + y x

−2x −β

)

,

τ = −α − β +
1

β
= −β +

1 − αβ

β
< 0 and ∆ = αβ − 1 > 0. Therefore (0, 1/β) is a stable critical

point.

29. (a) The graphs of −x + y − x3 = 0 and −x − y + y2 = 0 are shown in

the figure. The Jacobian matrix is

g′(X) =

(
−1 − 3x2 1

−1 −1 + 2y

)

.

For X = (0, 0), τ = −2, ∆ = 2, τ2 − 4∆ = −4, and so (0, 0) is a

stable spiral point.
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(b) For X1, ∆ = −6.07 < 0 and so a saddle point occurs at X1.

30. (a) The corresponding plane autonomous system is

x′ = y, y′ = ε
(
y − 1

3
y3

)
− x

and so the only critical point is (0, 0). Since the Jacobian matrix is

g′(X) =

(
0 1

−1 ε(1 − y2)

)

,

τ = ε, ∆ = 1, and so τ2 − 4∆ = ε2 − 4 at the critical point (0, 0).

(b) When τ = ε > 0, (0, 0) is an unstable critical point.

(c) When ε < 0 and τ2 − 4∆ = ε2 − 4 < 0, (0, 0) is a stable spiral point. These two requirements

can be written as −2 < ε < 0.

(d) When ε = 0, x′′ + x = 0 and so x = c1 cos t + c2 sin t. Therefore all solutions are periodic (with

period 2π) and so (0, 0) is a center.

31. The differential equation dy/dx = y′/x′ = −2x3/y can be solved by separating variables. It follows

that y2 + x4 = c. If X(0) = (x0, 0) where x0 > 0, then c = x4
0 so that y2 = x4

0 − x4. Therefore if

−x0 < x < x0, y2 > 0 and so there are two values of y corresponding to each value of x. Therefore

the solution X(t) with X(0) = (x0, 0) is periodic and so (0, 0) is a center.

32. The differential equation dy/dx = y′/x′ = (x2 − 2x)/y can be solved by separating variables. It

follows that y2/2 = (x3/3) − x2 + c and since X(0) = (x(0), x′(0)) = (1, 0), c = 2
3 . Therefore

y2

2
=

x3 − 3x2 + 2

3
=

(x − 1)(x2 − 2x − 2)

3
.

But (x− 1)(x2 − 2x− 2) > 0 for 1−
√

3 < x < 1 and so each x in this interval has 2 corresponding

values of y. therefore X(t) is a periodic solution.

33. (a) x′ = 2xy = 0 implies that either x = 0 or y = 0. If x = 0, then from 1 − x2 + y2 = 0, y2 = −1

and there are no real solutions. If y = 0, 1−x2 = 0 and so (1, 0) and (−1, 0) are critical points.

The Jacobian matrix is

g′(X) =

(
2y 2x

−2x 2y

)

and so τ = 0 and ∆ = 4 at either X = (1, 0) or (−1, 0). We obtain no information about these

critical points in this borderline case.
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(b) The differential equation is

dy

dx
=

y′

x′ =
1 − x2 + y2

2xy
or

2xy
dy

dx
= 1 − x2 + y2.

Letting µ = y2/x, it follows that dµ/dx = (1/x2) − 1 and

so µ = −(1/x)−x+2c. Therefore y2/x = −(1/x)−x+2c

which can be put in the form (x − c)2 + y2 = c2 − 1. The

solution curves are shown and so both (1, 0) and (−1, 0) are centers.

34. (a) The differential equation is dy/dx = y′/x′ = (−x − y2)/y = −(x/y) − y and so dy/dx + y =

−xy−1.

(b) Let w = y1−n = y2. It follows that dw/dx+2w = −2x, a linear first order differential equation

whose solution is y2 = w = ce−2x +
(

1
2 − x

)
. Since x(0) = 1

2 and y(0) = x′(0) = 0, 0 = c and so

y2 = 1
2−x, a parabola with vertex at (1/2, 0). Therefore the solution X(t) with X(0) = (1/2, 0)

is not periodic.

35. The differential equation is dy/dx = y′/x′ = (x3 − x)/y and so y2/2 = x4/4 − x2/2 + c or

y2 = x4/2 − x2 + c1. Since x(0) = 0 and y(0) = x′(0) = v0, it follows that c1 = v2
0 and so

y2 =
1

2
x4 − x2 + v2

0 =
(x2 − 1)2 + 2v2

0 − 1

2
.

The x-intercepts on this graph satisfy

x2 = 1 ±
√

1 − 2v2
0

and so we must require that 1 − 2v2
0 ≥ 0 (or |v0| ≤ 1

2

√
2 ) for real solutions to exist. If x2

0 =

1 −
√

1 − 2v2
0 and −x0 < x < x0, then (x2 − 1)2 + 2v2

0 − 1 > 0 and so there are two corresponding

values of y. Therefore X(t) with X(0) = (0, v0) is periodic provided that |v0| ≤ 1
2

√
2 .

36. The corresponding plane autonomous system is

x′ = y, y′ = εx2 − x + 1

and so the critical points must satisfy y = 0 and

x =
1 ±

√
1 − 4ε

2ε
.

Therefore we must require that ε ≤ 1
4 for real solutions to exist. We will use the Jacobian matrix

g′(X) =

(
0 1

2εx − 1 0

)

573

© 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part, except for use as permitted in a license distributed 
with a certain product or service or otherwise on a password-protected website for classroom use. 

10.3     Linearization and Local Stability

Not For Sale

©
 C

en
ga

ge
 L

ea
rn

in
g.

 A
ll 

rig
ht

s r
es

er
ve

d.
 N

o 
di

st
rib

ut
io

n 
al

lo
w

ed
 w

ith
ou

t e
xp

re
ss

 a
ut

ho
riz

at
io

n.



to attempt to classify ((1 ±
√

1 − 4ε )/2ε, 0) when ε ≤ 1/4. Note that τ = 0 and ∆ = ∓
√

1 − 4ε .

For X = ((1 +
√

1 − 4ε )/2ε, 0) and ε < 1/4, ∆ < 0 and so a saddle point occurs. For X =

((1 −
√

1 − 4ε )/2ε, 0), ∆ ≥ 0 and we are not able to classify this critical point using linearization.

37. The corresponding plane autonomous system is

x′ = y, y′ = −α

L
x − β

L
x3 − R

L
y

where x = q and y = q′. If X = (x, y) is a critical point, y = 0 and −αx− βx3 = −x(α+ βx2) = 0.

If β > 0, α + βx2 = 0 has no real solutions and so (0, 0) is the only critical point. Since

g′(X) =




0 1

−α− 3βx2

L
−R

L



 ,

τ = −R/L < 0 and ∆ = α/L > 0. Therefore (0, 0) is a stable critical point. If β < 0, (0, 0) and

(±x̂, 0), where x̂2 = −α/β are critical points. At X(±x̂, 0), τ = −R/L < 0 and ∆ = −2α/L < 0.

Therefore both critical points are saddles.

38. If we let dx/dt = y, then dy/dt = −x3 −x. From this we obtain the first-order differential equation

dy

dx
=

dy/dt

dx/dt
= −x3 + x

y
.

Separating variables and integrating we obtain
∫

y dy = −
∫

(x3 + x) dx

and
1

2
y2 = −1

4
x4 − 1

2
x2 + c1.

Completing the square we can write the solution as y2 = −1
2(x2 + 1)2 + c2. If X(0) = (x0, 0), then

c2 = 1
2(x2

0 + 1)2 and so

y2 = −1

2
(x2 + 1)2 +

1

2
(x2

0 + 1)2 =
x4

0 + 2x2
0 + 1 − x4 − 2x2 − 1

2

=
(x2

0 + x2)(x2
0 − x2) + 2(x2

0 − x2)

2
=

(x2
0 + x2 + 2)(x2

0 − x2)

2
.

Note that y = 0 when x = −x0. In addition, the right-hand side is positive for −x0 < x < x0, and

so there are two corresponding values of y for each x between −x0 and x0. The solution X = X(t)

that satisfies X(0) = (x0, 0) is therefore periodic, and so (0, 0) is a center.

39. (a) Letting x = θ and y = x′ we obtain the system x′ = y and y′ = 1/2 − sin x. Since sin π/6 =

sin 5π/6 = 1/2 we see that (π/6, 0) and (5π/6, 0) are critical points of the system.

(b) The Jacobian matrix is

g′(X) =

(
0 1

− cos x 0

)
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and so

A1 = g′ = ((π/6, 0)) =

(
0 1

−
√

3/2 0

)

and A2 = g′ = ((5π/6, 0)) =

(
0 1√
3/2 0

)

.

Since detA1 > 0 and the trace of A1 is 0, no conclusion can be drawn regarding the critical

point (π/6, 0). Since detA2 < 0, we see that (5π/6, 0) is a saddle point.

(c) From the system in part (a) we obtain the first-order differential equation

dy

dx
=

1/2 − sin x

y
.

Separating variables and integrating we obtain
∫

y dy =
∫ (

1

2
− sin x

)
dx

and
1

2
y2 =

1

2
x + cos x + c1

or

y2 = x + 2 cos x + c2.

For x0 near π/6, if X(0) = (x0, 0) then c2 = −x0 − 2 cos x0 and y2 = x+2 cos x−x0 − 2 cos x0.

Thus, there are two values of y for each x in a sufficiently small interval around π/6. Therefore

(π/6, 0) is a center.

40. (a) Writing the system as x′ = x(x3 − 2y3) and y′ = y(2x3 − y3) we see that (0, 0) is a critical

point. Setting x3 − 2y3 = 0 we have x3 = 2y3 and 2x3 − y3 = 4y3 − y3 = 3y3. Thus, (0, 0) is

the only critical point of the system.

(b) From the system we obtain the first-order differential equation

dy

dx
=

2x3y − y4

x4 − 2xy3

or

(2x3y − y4) dx + (2xy3 − x4) dy = 0

which is homogeneous. If we let y = ux it follows that

(2x4u − x4u4) dx + (2x4u3 − x4)(u dx + x du) = 0

x4u(1 + u3) dx + x5(2u3 − 1) du = 0

1

x
dx +

2u3 − 1

u(u3 + 1)
du = 0

1

x
dx +

(
1

u + 1
− 1

u
+

2u − 1

u2 − u + 1

)
du = 0.

Integrating gives

ln |x| + ln |u + 1|− ln |u| + ln |u2 − u + 1| = c1
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or

x
(

u + 1

u

)
(u2 − u + 1) = c2

x

(
y + x

y

) (
y2

x2 − y

x
+ 1

)

= c2

(xy + x2)(y2 − xy + x2) = c2x
2y

xy3 + x4 = c2x
2y

x3 + y2 = 3c3xy.

(c) We see from the graph that (0, 0) is unstable. It is not possible to

classify the critical point as a node, saddle, center, or spiral point.

1. We are given that x(0) = θ(0) = π/3 and y(0) = θ′(0) = w0. Since y2 = (2g/l) cos x + c,

w2
0 = (2g/l) cos(π/3) + c = g/l + c and so c = w2

0 − g/l. Therefore

y2 =
2g

l

(

cos x − 1

2
+

l

2g
w2

0

)

and the x-intercepts occur where cos x = 1/2 − (l/2g)w2
0 and so 1/2 − (l/2g)w2

0 must be greater

than −1 for solutions to exist. This condition is equivalent to |w0| <
√

3g/l .

2. (a) Since y2 = (2g/l) cos x + c, x(0) = θ(0) = θ0 and y(0) = θ′(0) = 0, c = −(2g/l) cos θ0 and

so y2 = 2g(cos θ − cos θ0)/l. When θ = −θ0, y2 = 2g[cos(−θ0) − cos θ0]/l = 0. Therefore

y = dθ/dt = 0 when θ = θ0.

(b) Since y = dθ/dt and θ is decreasing between the time when θ = θ0, t = 0, and θ = −θ0, that

is, t = T ,

dθ

dt
= −

√
2g

l

√
cos θ − cos θ0 .

10.4 Autonomous         Systems              as           Mathematical          Modelsq
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Therefore
dt

dθ
= −

√
l

2g

1√
cos θ − cos θ0

and so

T = −
√

l

2g

∫ θ=−θ0

θ=θ0

1√
cos θ − cos θ0

dθ =

√
l

2g

∫ θ0

−θ0

1√
cos θ − cos θ0

dθ.

3. The corresponding plane autonomous system is

x′ = y, y′ = −g
f ′(x)

1 + [f ′(x)]2
− β

m
y

and
∂

∂x

(

−g
f ′(x)

1 + [f ′(x)]2
− β

m
y

)

= −g
(1 + [f ′(x)]2)f ′′(x) − f ′(x)2f ′(x)f ′′(x)

(1 + [f ′(x)]2)2
.

If X1 = (x1, y1) is a critical point, y1 = 0 and f ′(x1) = 0. The Jacobian at this critical point is

therefore

g′(X1) =




0 1

−gf ′′(x1) − β

m



 .

4. When β = 0 the Jacobian matrix is (
0 1

−gf ′′(x1) 0

)

which has complex eigenvalues λ = ±
√

gf ′′(x1) i. The approximating linear system with x′(0) = 0

has solution

x(t) = x(0) cos
√

gf ′′(x1) t

and period 2π/
√

gf ′′(x1) . Therefore p ≈ 2π/
√

gf ′′(x1) for the actual solution.

5. (a) If f(x) = x2/2, f ′(x) = x and so

dy

dx
=

y′

x′ = −g
x

1 + x2

1

y
.

We can separate variables to show that y2 = −g ln(1 + x2) + c. But x(0) = x0 and y(0) =

x′(0) = v0. Therefore c = v2
0 + g ln(1 + x2

0) and so

y2 = v2
0 − g ln

(
1 + x2

1 + x2
0

)

.

Now

v2
0 − g ln

(
1 + x2

1 + x2
0

)

≥ 0 if and only if x2 ≤ ev2
0/g(1 + x2

0) − 1.

Therefore, if |x| ≤ [ev2
0/g(1 + x2

0)− 1]1/2, there are two values of y for a given value of x and so

the solution is periodic.
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(b) Since z = x2/2, the maximum height occurs at the largest value of x on the cycle. From (a),

xmax = [ev2
0/g(1 + x2

0) − 1]1/2 and so

zmax =
x2

max

2
=

1

2
[ev2

0/g(1 + x2
0) − 1].

6. (a) If f(x) = cosh x, f ′(x) = sinh x and [f ′(x)]2 + 1 = sinh2 x + 1 = cosh2 x. Therefore

dy

dx
=

y′

x′ = −g
sinh x

cosh2 x

1

y
.

We can separate variables to show that y2 = 2g/ cosh x + c. But x(0) = x0 and y(0) = x′(0) =

v0. Therefore c = v2
0 − (2g/ cosh x0) and so

y2 =
2g

cosh x
− 2g

cosh x0
+ v2

0.

Now
2g

cosh x
− 2g

cosh x0
+ v2

0 ≥ 0 if and only if cosh x ≤ 2g cosh x0

2g − v2
0 cosh x0

and the solution to this inequality is an interval [−a, a]. Therefore each x in (−a, a) has two

corresponding values of y and so the solution is periodic.

(b) Since z = cosh x, the maximum height occurs at the largest value of x on the cycle. From (a),

xmax = a where cosh a = 2g cosh x0/(2g − v2
0 cosh x0). Therefore

zmax =
2g cosh x0

2g − v2
0 cosh x0

.

7. If xm < x1 < xn, then F (x1) > F (xm) = F (xn). Letting x = x1,

G(y) =
c0

F (x1)
=

F (xm)G(a/b)

F (x1)
< G(a/b).

Therefore from Property (ii) on page 391 in this section of the text, G(y) = c0/F (x1) has two

solutions y1 and y2 that satisfy y1 < a/b < y2.

8. From Property (i) on page 391 in this section of the text, when y = a/b, xn is taken on at some time

t. From Property (iii) on page 391 in this section of the text, if x > xn there is no corresponding

value of y. Therefore the maximum number of predators is xn and xn occurs when y = a/b.

9. (a) In the Lotka-Volterra Model the average number of predators is d/c and the average number

of prey is a/b. But

x′ = −ax + bxy − ε1x = −(a + ε1)x + bxy

y′ = −cxy + dy − ε2y = −cxy + (d − ε2)y

and so the new critical point in the first quadrant is (d/c − ε2/c, a/b + ε1/b).
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(b) The average number of predators d/c − ε2/c has decreased while the average number of prey

a/b + ε1/b has increased. The fishery science model is consistent with Volterra’s principle.

10. (a) Solving

x(−0.1 + 0.02y) = 0

y(0.2 − 0.025x) = 0

in the first quadrant we obtain the critical point

(8, 5). The graphs are plotted using x(0) = 7 and

y(0) = 4.

(b) The graph in part (a) was obtained using NDSolve in Mathematica. We see that the period

is around 40. Since x(0) = 7, we use the FindRoot equation solver in Mathematica to

approximate the solution of x(t) = 7 for t near 40. From this we see that the period is more

closely approximated by t = 44.65.

11. Solving

x(20 − 0.4x − 0.3y) = 0

y(10 − 0.1y − 0.3x) = 0

we see that critical points are (0, 0), (0, 100), (50, 0), and (20, 40). The Jacobian matrix is

g′(X) =

(
0.08(20 − 0.8x − 0.3y) −0.024x

−0.018y 0.06(10 − 0.2y − 0.3x)

)

and so

A1 = g′((0, 0)) =

(
1.6 0

0 0.6

)

A3 = g′((50, 0)) =

(
−1.6 −1.2

0 −0.3

)

A2 = g′((0, 100)) =

(
−0.8 0

−1.8 −0.6

)

A4 = g′((20, 40)) =

(
−0.64 −0.48

−0.72 −0.24

)

.

Since det(A1) = ∆1 = 0.96 > 0, τ = 2.2 > 0, and τ2
1 −4∆1 = 1 > 0, we see that (0, 0) is an unstable

node. Since det(A2) = ∆2 = 0.48 > 0, τ = −1.4 < 0, and τ2
2 −4∆2 = 0.04 > 0, we see that (0, 100)

is a stable node. Since det(A3) = ∆3 = 0.48 > 0, τ = −1.9 < 0, and τ2
3 − 4∆3 = 1.69 > 0, we see

that (50, 0) is a stable node. Since det(A4) = −0.192 < 0 we see that (20, 40) is a saddle point.

12. ∆ = r1r2, τ = r1 + r2 and τ2 − 4∆ = (r1 + r2)2 − 4r1r2 = (r1 − r2)2. Therefore when r1 )= r2, (0, 0)

is an unstable node.

13. For X = (K1, 0), τ = −r1 + r2[1 − (K1α21/K2)] and ∆ = −r1r2[1 − (K1α21/K2)]. If we let

c = 1 − K1α21/K2, τ2 − 4∆ = (cr2 + r1)2 > 0. Now if k1 > K2/α21, c < 0 and so τ < 0, ∆ > 0.
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Therefore (K1, 0) is a stable node. If K1 < K2/α21, c > 0 and so ∆ < 0. In this case (K1, 0) is a

saddle point.

14. (x̂, ŷ) is a stable node if and only if K1/α12 > K2 and K2/α21 > K1. [See Figure 10.4.11(a) in

the text.] From Problem 12, (0.0) is an unstable node and from Problem 13, since K1 < K2/α21,

(K1, 0) is a saddle point. Finally, when K2 < K1/α12, (0, K2) is a saddle point. This is Problem

12 with the roles of 1 and 2 interchanged. Therefore (0, 0), (K1, 0), and (0, K2) are unstable.

15. K1/α12 < K2 < K1α21 and so α12α21 > 1. Therefore ∆ = (1 − α12α21)x̂ŷ r1r2/K1K2 < 0 and so

(x̂, ŷ) is a saddle point.

16. (a) The corresponding plane autonomous system is

x′ = y, y′ =
−g

l
sin x − β

ml
y

and so critical points must satisfy both y = 0 and sin x = 0. Therefore (±nπ, 0) are critical

points.

(b) The Jacobian matrix



0 1

−g

l
cos x − β

ml





has trace τ = −β/ml and determinant ∆ = g/l > 0 at (0, 0). Therefore

τ2 − 4∆ =
β2

m2l2
− 4

g

l
=

β2 − 4glm2

m2l2
.

We can conclude that (0, 0) is a stable spiral point provided β2 − 4glm2 < 0 or β < 2m
√

gl .

17. (a) The corresponding plane autonomous system is

x = y, y′ = − β

m
y|y|− k

m
x

and so a critical point must satisfy both y = 0 and x = 0. Therefore (0, 0) is the unique critical

point.

(b) The Jacobian matrix is



0 1

− k

m
− β

m
2|y|





and so τ = 0 and ∆ = k/m > 0. Therefore (0, 0) is a center, stable spiral point, or an unstable

spiral point. Physical considerations suggest that (0, 0) must be asymptotically stable and so

(0, 0) must be a stable spiral point.
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18. (a) The magnitude of the frictional force between the bead and the wire is µ(mg cos θ) for some

µ > 0. The component of this frictional force in the x-direction is

(µmg cos θ) cos θ = µmg cos2 θ.

But

cos θ =
1

√
1 + [f ′(x)]2

and so µmg cos2 θ =
µmg

1 + [f ′(x)]2
.

It follows from Newton’s Second Law that

mx′′ = −mg
f ′(x)

1 + [f ′(x)]2
− βx′ + mg

µ

1 + [f ′(x)]2

and so

x′′ = g
µ − f ′(x)

1 + [f ′(x)]2
− β

m
x′.

(b) A critical point (x, y) must satisfy y = 0 and f ′(x) = µ. Therefore critical points occur at

(x1, 0) where f ′(x1) = µ. The Jacobian matrix of the plane autonomous system is

g′(X) =




0 1

g
(1 + [f ′(x)]2)(−f ′′(x)) − (µ − f ′(x))2f ′(x)f ′′(x)

(1 + [f ′(x)]2)2
− β

m





and so at a critical point X1,

g′(X) =




0 1

−gf ′′(x1)

1 + µ2 − β

m



 .

Therefore τ = −β/m < 0 and ∆ = gf ′′(x1)/(1+µ2). When f ′′(x1) < 0, ∆ < 0 and so a saddle

point occurs. When f ′′(x1) > 0 and

τ2 − 4∆ =
β2

m2 − 4g
f ′′(x1)

1 + µ2 < 0,

(x1, 0) is a stable spiral point. This condition can also be written as

β2 < 4gm2 f ′′(x1)

1 + µ2 .

19. We have dy/dx = y′/x′ = −f(x)/y and so, using separation of variables,

y2

2
= −

∫ x

0
f(µ) dµ + c or y2 + 2F (x) = c.

We can conclude that for a given value of x there are at most two corresponding values of y. If

(0, 0) were a stable spiral point there would exist an x with more than two corresponding values of

y. Note that the condition f(0) = 0 is required for (0, 0) to be a critical point of the corresponding

plane autonomous system x′ = y, y′ = −f(x).
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20. (a) x′ = x(−a + by) = 0 implies that x = 0 or y = a/b. If x = 0, then, from

−cxy +
r

K
y(K − y) = 0,

y = 0 or K. Therefore (0, 0) and (0, K) are critical points. If ŷ = a/b, then

ŷ
[
−cx +

r

K
(K − ŷ)

]
= 0.

The corresponding value of x, x = x̂, therefore satisfies the equation cx̂ = r(K − ŷ)/K.

(b) The Jacobian matrix is

g′(X) =




−a + by bx

−cy −cx +
r

K
(K − 2y)





and so at X1 = (0, 0), ∆ = −ar < 0. For X1 = (0, K), ∆ = n(Kb− a) = −rb(K − a/b). Since

we are given that K > a/b, ∆ < 0 in this case. Therefore (0, 0) and (0, K) are each saddle

points. For X1 = (x̂, ŷ) where ŷ = a/b and cx̂ = r(K − ŷ)/K, we can write the Jacobian

matrix as

g′((x̂, ŷ)) =




0 bx̂

−cŷ − r

K
ŷ





and so τ = −rŷ/K < 0 and ∆ = bcx̂ŷ > 0. Therefore (x̂, ŷ) is a stable critical point and so it

is either a stable node (perhaps degenerate) or a stable spiral point.

(c) Write

τ2 − 4∆ =
r2

K2 ŷ2 − 4bcx̂ŷ = ŷ

[
r2

K2 ŷ − 4bcx̂

]

= ŷ

[
r2

K2 ŷ − 4b
r

K
(K − ŷ)

]

using

cx̂ =
r

K
(K − ŷ) =

r

K
ŷ

[(
r

K
+ 4b

)
ŷ − 4bK

]
.

Therefore τ2 − 4∆ < 0 if and only if

ŷ <
4bK

r
K + 4b

=
4bK2

r + 4bK
.

Note that
4bK2

r + 4bK
=

4bK

r + 4bK
· K ≈ K

where K is large, and ŷ = a/b < K. Therefore τ2−4∆ < 0 when K is large and a stable spiral

point will result.

21. The equation

x′ = α
y

1 + y
x − x = x

(
αy

1 + y
− 1

)

= 0
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implies that x = 0 or y = 1/(α − 1). When α > 0, ŷ = 1/(α − 1) > 0. If x = 0, then from the

differential equation for y′, y = β. On the other hand, if ŷ = 1/(α − 1), ŷ/(1 + ŷ) = 1/α and so

x̂/α− 1/(α− 1) + β = 0. It follows that

x̂ = α
(
β − 1

α− 1

)
=

α

α− 1
[(α− 1)β − 1]

and if β(α − 1) > 1, x̂ > 0. Therefore (x̂, ŷ) is the unique critical point in the first quadrant. The

Jacobian matrix is

g′(X) =





α
y

y + 1
− 1

αx

(1 + y)2

− y

1 + y

−x

(1 + y)2
− 1





and for X = (x̂, ŷ), the Jacobian can be written in the form

g′((x̂, ŷ)) =





0
(α− 1)2

α
x̂

− 1

α
−(α− 1)2

α2 − 1



 .

It follows that

τ = −
[
(α− 1)2

α2 x̂ + 1

]

< 0, ∆ =
(α− 1)2

α2 x̂

and so τ = −(∆ + 1). Therefore τ2 − 4∆ = (∆ + 1)2 − 4∆ = (∆ − 1)2 > 0. Therefore (x̂, ŷ) is a

stable node.

22. Letting y = x′ we obtain the plane autonomous system

x′ = y

y′ = −8x + 6x3 − x5.

Solving x5 − 6x3 + 8x = x(x2 − 4)(x2 − 2) = 0 we see that

critical points are (0, 0), (0,−2), (0, 2), (0,−
√

2 ), and (0,
√

2 ).

The Jacobian matrix is

g′(X) =

(
0 1

−8 + 18x2 − 5x4 0

)

and we see that det(g′(X)) = 5x4 − 18x2 +8 and the trace of g′(X) is 0. Since det(g′((±
√

2 , 0))) =

−8 < 0, (±
√

2 , 0) are saddle points. For the other critical points the determinant is positive and

linearization discloses no information. The graph of the phase plane suggests that (0, 0) and (±2, 0)

are centers.
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1. True

2. True

3. a center or a saddle point

4. complex with negative real parts

5. False; there are initial conditions for which lim
t→∞

X(t) = (0, 0).

6. True

7. False; this is a borderline case. See Figure 10.3.7 in the text.

8. False; see Figure 10.4.2 in the text.

9. The system is linear and we identify ∆ = −α and τ = α + 1. Since a critical point will be a center

when ∆ > 0 and τ = 0 we see that for α = −1 critical points will be centers and solutions will be

periodic. Note also that when α = −1 the system is

x′ = −x − 2y

y′ = x + y,

which does have an isolated critical point at (0, 0).

10. We identify g(x) = sin x in Theorem 10.3.1. Then x1 = nπ is a critical point for n an integer and

g′(nπ) = cos nπ < 0 when n is an odd integer. Thus, nπ is an asymptotically stable critical point

when n is an odd integer.

11. Switching to polar coordinates,

dr

dt
=

1

r

(

x
dx

dt
+ y

dy

dt

)

=
1

r
(−xy − x2r3 + xy − y2r3) = −r4

dθ

dt
=

1

r2

(

−y
dx

dt
+ x

dy

dt

)

=
1

r2 (y2 + xyr3 + x2 − xyr3) = 1.

Using separation of variables it follows that r = 1/ 3
√

3t + c1 and θ = t + c2. Since X(0) = (1, 0),

r = 1 and θ = 0. It follows that c1 = 1, c2 = 0, and so

r =
1

3
√

3t + 1
, θ = t.

As t → ∞, r → 0 and the solution spirals toward the origin.

10.R Chapter 10 in Reviewq

584 CHAPTER 10 PLANE AUTONOMOUS SYSTEMS

© 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part, except for use as permitted in a license distributed 
with a certain product or service or otherwise on a password-protected website for classroom use. 

Not For Sale

©
 C

en
ga

ge
 L

ea
rn

in
g.

 A
ll 

rig
ht

s r
es

er
ve

d.
 N

o 
di

st
rib

ut
io

n 
al

lo
w

ed
 w

ith
ou

t e
xp

re
ss

 a
ut

ho
riz

at
io

n.



12. (a) If X(0) = X0 lies on the line y = −2x, then X(t) approaches (0, 0) along this line. For all other

initial conditions, X(t) approaches (0, 0) from the direction determined by the line y = x.

(b) If X(0) = X0 lies on the line y = −x, then X(t) approaches (0, 0) along this line. For all other

initial conditions, X(t) becomes unbounded and y = 2x serves as an asymptote.

13. (a) τ = 0, ∆ = 11 > 0 and so (0, 0) is a center.

(b) τ = −2, ∆ = 1, τ2 − 4∆ = 0 and so (0, 0) is a degenerate stable node.

14. From x′ = x(1 + y − 3x) = 0, either x = 0 or 1 + y − 3x = 0. If x = 0, then, from y(4− 2x− y) = 0

we obtain y(4 − y) = 0. It follows that (0, 0) and (0, 4) are critical points. If 1 + y − 3x = 0,

then y(5 − 5x) = 0. Therefore (1/3, 0) and (1, 2) are the remaining critical points. We will use the

Jacobian matrix

g′(X) =

(
1 + y − 6x x

−2y 4 − 2x − 2y

)

to classify these four critical points. The results are as follows:

X τ ∆ τ2 − 4∆ Conclusion
(0, 0) 5 4 9 unstable node

(0, 4) – −20 – saddle point

(1
3 , 0) – −10

3 – saddle point

(1, 2) −5 10 −15 stable spiral point

15. From x = r cos θ, y = r sin θ we have

dx

dt
= −r sin θ

dθ

dt
+

dr

dt
cos θ

dy

dt
= r cos θ

dθ

dt
+

dr

dt
sin θ.

Then r′ = αr, θ′ = 1 gives
dx

dt
= −r sin θ + αr cos θ

dy

dt
= r cos θ + αr sin θ.

We see that r = 0, which corresponds to X = (0, 0), is a critical point. Solving r′ = αr we have

r = c1eαt. Thus, when α < 0, limt→∞ r(t) = 0 and (0, 0) is a stable critical point. When α = 0,

r′ = 0 and r = c1. In this case (0, 0) is a center, which is stable. Therefore, (0, 0) is a stable critical

point for the system when α ≤ 0.

16. The corresponding plane autonomous system is x′ = y, y′ = µ(1 − x2) − x and so the Jacobian at

the critical point (0, 0) is

g′((0, 0)) =

(
0 1

−1 µ

)

.
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Therefore τ = µ, ∆ = 1 and τ2 − 4∆ = µ2 − 4. Now µ2 − 4 < 0 if and only if −2 < µ < 2. We can

therefore conclude that (0, 0) is a stable node for µ < −2, a stable spiral point for −2 < µ < 0, an

unstable spiral point for 0 < µ < 2, and an unstable node for µ > 2.

17. Critical points occur at x = ±1. Since

g′(x) = −1

2
e−x/2(x2 − 4x − 1),

g′(1) > 0 and g′(−1) < 0. Therefore x = 1 is unstable and x = −1 is asymptotically stable.

18. Using the phase-plane method we obtain

dy

dx
=

y′

x′ =
−2x

√
y2 + 1

y
.

We can separate variables to show that
√

y2 + 1 = −x2 + c. But x(0) = x0 and y(0) = x′(0) = 0. It

follows that c = 1 + x2
0 so that y2 = (1 +x2

0 −x2)2 − 1. Note that 1 +x2
0 −x2 > 1 for −x0 < x < x0

and y = 0 for x = ±x0. Each x with −x0 < x < x0 has two corresponding values of y and so the

solution X(t) with X(0) = (x0, 0) is periodic.

19. The corresponding plane autonomous system is

x′ = y, y′ = − β

m
y − k

m
(s + x)3 + g

and so the Jacobian is

g′(X) =




0 1

−3k

m
(s + x)2 − β

m



 .

For X = (0, 0), τ = −β/m < 0, ∆ = 3ks2/m > 0. Therefore

τ2 − 4∆ =
β2

m2 − 12k

m
s2 =

1

m2 (β2 − 12kms2).

Therefore (0, 0) is a stable node if β2 > 12kms2 and a stable spiral point provided β2 < 12kms2,

where ks3 = mg.

20. (a) If (x, y) is a critical point, y = 0 and so sin x(ω2 cos x − g/l) = 0. Either sin x = 0 (in which

case x = 0) of cos x = g/ω2l. But if ω2 < g/l, g/ω2l > 1 and so the latter equation has no

real solutions. Therefore (0, 0) is the only critical point if ω2 < g/l. The Jacobian matrix is

g′(X) =

(
0 1

ω2 cos 2x − g
l cos x − β

ml

)

and so τ = −β/ml < 0 and ∆ = g/l − ω2 > 0 for X = (0, 0). It follows that (0, 0) is

asymptotically stable and so after a small displacement, the pendulum will return to θ = 0,

θ′ = 0.

586 CHAPTER 10 PLANE AUTONOMOUS SYSTEMS

© 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part, except for use as permitted in a license distributed 
with a certain product or service or otherwise on a password-protected website for classroom use. 

Not For Sale

©
 C

en
ga

ge
 L

ea
rn

in
g.

 A
ll 

rig
ht

s r
es

er
ve

d.
 N

o 
di

st
rib

ut
io

n 
al

lo
w

ed
 w

ith
ou

t e
xp

re
ss

 a
ut

ho
riz

at
io

n.



(b) If ω2 > g/l, cos x = g/ω2l will have two solutions x = ±x̂ that satisfy −π < x < π. Therefore

(±x̂, 0) are two additional critical points. If X1 = (0, 0), ∆ = g/l − ω2 < 0 and so (0, 0) is a

saddle point. If X1 = (±x̂, 0), τ = −β/ml < 0 and

∆ =
g

l
cos x̂ − ω2 cos 2x̂ =

g2

ω2l2
− ω2

(

2
g2

ω4l2
− 1

)

= ω2 − g2

ω2l2
> 0.

Therefore (x̂, 0) and (−x̂, 0) are each stable. When θ(0) = θ0, θ′(0) = 0 and θ0 is small we

expect the pendulum to reach one of these two stable equilibrium positions.
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1.
∫ 2

−2
xx2dx =

1

4
x4

∣∣∣∣
2

−2
= 0

2.
∫ 1

−1
x3(x2 + 1)dx =

1

6
x6

∣∣∣∣
1

−1
+

1

4
x4

∣∣∣∣
1

−1
= 0

3.
∫ 2

0
ex(xe−x − e−x)dx =

∫ 2

0
(x − 1)dx =

(
1

2
x2 − x

) ∣∣∣∣
2

0
= 0

4.
∫ π

0
cos x sin2 x dx =

1

3
sin3 x

∣∣∣∣
π

0
= 0

5.
∫ π/2

−π/2
x cos 2x dx =

1

2

(
1

2
cos 2x + x sin 2x

) ∣∣∣∣
π/2

−π/2
= 0

6.
∫ 5π/4

π/4
ex sin x dx =

(
1

2
ex sin x − 1

2
ex cos x

) ∣∣∣∣
5π/4

π/4
= 0

7. For m "= n

∫ π/2

0
sin(2n + 1)x sin(2m + 1)x dx

=
1

2

∫ π/2

0

(
cos 2(n − m)x − cos 2(n + m + 1)x

)
dx

=
1

4(n − m)
sin 2(n − m)x

∣∣∣∣
π/2

0
− 1

4(n + m + 1)
sin 2(n + m + 1)x

∣∣∣∣
π/2

0

= 0.

Fourier Series11
11.1 Orthogonal Functionsq
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For m = n ∫ π/2

0
sin2(2n + 1)x dx =

∫ π/2

0

(
1

2
− 1

2
cos 2(2n + 1)x

)
dx

=
1

2
x

∣∣∣∣
π/2

0
− 1

4(2n + 1)
sin 2(2n + 1)x

∣∣∣∣
π/2

0

=
π

4
so that

‖ sin(2n + 1)x‖ =
1

2

√
π .

8. For m "= n
∫ π/2

0
cos(2n + 1)x cos(2m + 1)x dx

=
1

2

∫ π/2

0

(
cos 2(n − m)x + cos 2(n + m + 1)x

)
dx

=
1

4(n − m)
sin 2(n − m)x

∣∣∣∣
π/2

0
+

1

4(n + m + 1)
sin 2(n + m + 1)x

∣∣∣∣
π/2

0

= 0.

For m = n ∫ π/2

0
cos2(2n + 1)x dx =

∫ π/2

0

(
1

2
+

1

2
cos 2(2n + 1)x

)
dx

=
1

2
x

∣∣∣∣
π/2

0
+

1

4(2n + 1)
sin 2(2n + 1)x

∣∣∣∣
π/2

0

=
π

4
so that

‖ cos(2n + 1)x‖ =
1

2

√
π .

9. For m "= n
∫ π

0
sin nx sin mx dx =

1

2

∫ π

0

(
cos(n − m)x − cos(n + m)x

)
dx

=
1

2(n − m)
sin(n − m)x

∣∣∣∣
π

0
− 1

2(n + m)
sin(n + m)x

∣∣∣∣
π

0

= 0.

For m = n ∫ π

0
sin2 nx dx =

∫ π

0

(
1

2
− 1

2
cos 2nx

)
dx =

1

2
x

∣∣∣∣
π

0
− 1

4n
sin 2nx

∣∣∣∣
π

0
=

π

2
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so that

‖ sin nx‖ =
√

π

2
.

10. For m "= n
∫ p

0
sin

nπ

p
x sin

mπ

p
x dx =

1

2

∫ p

0

(

cos
(n − m)π

p
x − cos

(n + m)π

p
x

)

dx

=
p

2(n − m)π
sin

(n − m)π

p
x

∣∣∣∣
p

0
− p

2(n + m)π
sin

(n + m)π

p
x

∣∣∣∣
p

0

= 0.

For m = n
∫ p

0
sin2 nπ

p
x dx =

∫ p

0

(
1

2
− 1

2
cos

2nπ

p
x

)

dx =
1

2
x

∣∣∣∣
p

0
− p

4nπ
sin

2nπ

p
x

∣∣∣∣
p

0
=

p

2

so that ∥∥∥∥∥sin
nπ

p
x

∥∥∥∥∥ =
√

p

2
.

11. For m "= n
∫ p

0
cos

nπ

p
x cos

mπ

p
x dx =

1

2

∫ p

0

(

cos
(n − m)π

p
x + cos

(n + m)π

p
x

)

dx

=
p

2(n − m)π
sin

(n − m)π

p
x

∣∣∣∣
p

0
+

p

2(n + m)π
sin

(n + m)π

p
x

∣∣∣∣
p

0

= 0.

For m = n
∫ p

0
cos2

nπ

p
x dx =

∫ p

0

(
1

2
+

1

2
cos

2nπ

p
x

)

dx =
1

2
x

∣∣∣∣
p

0
+

p

4nπ
sin

2nπ

p
x

∣∣∣∣
p

0
=

p

2
.

Also ∫ p

0
1 · cos

nπ

p
x dx =

p

nπ
sin

nπ

p
x

∣∣∣∣
p

0
= 0 and

∫ p

0
12dx = p

so that

‖1‖ =
√

p and

∥∥∥∥∥cos
nπ

p
x

∥∥∥∥∥ =
√

p

2
.

12. For m "= n, we use Problems 11 and 10:
∫ p

−p
cos

nπ

p
x cos

mπ

p
x dx = 2

∫ p

0
cos

nπ

p
x cos

mπ

p
x dx = 0

∫ p

−p
sin

nπ

p
x sin

mπ

p
x dx = 2

∫ p

0
sin

nπ

p
x sin

mπ

p
x dx = 0.
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Also

∫ p

−p
sin

nπ

p
x cos

mπ

p
x dx =

1

2

∫ p

−p

(

sin
(n − m)π

p
x + sin

(n + m)π

p
x

)

dx = 0,

∫ p

−p
1 · cos

nπ

p
x dx =

p

nπ
sin

nπ

p
x

∣∣∣∣
p

−p
= 0,

∫ p

−p
1 · sin nπ

p
x dx = − p

nπ
cos

nπ

p
x

∣∣∣∣
p

−p
= 0,

and
∫ p

−p
sin

nπ

p
x cos

nπ

p
x dx =

∫ p

−p

1

2
sin

2nπ

p
x dx = − p

4nπ
cos

2nπ

p
x

∣∣∣∣
p

−p
= 0.

For m = n

∫ p

−p
cos2

nπ

p
x dx =

∫ p

−p

(
1

2
+

1

2
cos

2nπ

p
x

)

dx = p,

∫ p

−p
sin2 nπ

p
x dx =

∫ p

−p

(
1

2
− 1

2
cos

2nπ

p
x

)

dx = p,

and
∫ p

−p
12dx = 2p

so that

‖1‖ =
√

2p ,

∥∥∥∥∥cos
nπ

p
x

∥∥∥∥∥ =
√

p , and

∥∥∥∥∥sin
nπ

p
x

∥∥∥∥∥ =
√

p .

13. Since
∫ ∞

−∞
e−x2

· 1 · 2x dx = −e−x2
∣∣∣∣
0

−∞
− e−x2

∣∣∣∣
∞

0
= 0,

∫ ∞

−∞
e−x2

· 1 · (4x2 − 2) dx = 2
∫ ∞

−∞
x

(
2xe−x2

)
dx − 2

∫ ∞

−∞
e−x2

dx

= 2

(

−xe−x2
∣∣∣∣
∞

−∞
+

∫ ∞

−∞
e−x2

dx

)

− 2
∫ ∞

−∞
e−x2

dx

= 2

(

−xe−x2
∣∣∣∣
0

−∞
−xe−x2

∣∣∣∣
∞

0

)

= 0,
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and
∫ ∞

−∞
e−x2

· 2x · (4x2 − 2) dx = 4
∫ ∞

−∞
x2

(
2xe−x2

)
dx − 4

∫ ∞

−∞
xe−x2

dx

= 4

(

−x2e−x2
∣∣∣∣
∞

−∞
+ 2

∫ ∞

−∞
xe−x2

dx

)

− 4
∫ ∞

−∞
xe−x2

dx

= 4

(

−x2e−x2
∣∣∣∣
0

−∞
− x2e−x2

∣∣∣∣
∞

0

)

+ 2
∫ ∞

−∞
2xe−x2

dx = 0,

the functions are orthogonal.

14. Since ∫ ∞

0
e−x · 1(1 − x) dx = (x − 1)e−x

∣∣∣∣
∞

0
−

∫ ∞

0
e−xdx = 0,

∫ ∞

0
e−x · 1 ·

(
1

2
x2 − 2x + 1

)
dx =

(
2x − 1 − 1

2
x2

)
e−x

∣∣∣∣
∞

0
+

∫ ∞

0
e−x(x − 2) dx

= 1 + (2 − x)e−x
∣∣∣∣
∞

0
+

∫ ∞

0
e−xdx = 0,

and
∫ ∞

0
e−x · (1 − x)

(
1

2
x2−2x + 1

)
dx

=
∫ ∞

0
e−x

(
−1

2
x3 +

5

2
x2 − 3x + 1

)
dx

= e−x
(

1

2
x3 − 5

2
x2 + 3x − 1

) ∣∣∣∣
∞

0
+

∫ ∞

0
e−x

(
−3

2
x2 + 5x − 3

)
dx

= 1 + e−x
(

3

2
x2 − 5x + 3

) ∣∣∣∣
∞

0
+

∫ ∞

0
e−x(5 − 3x) dx

= 1 − 3 + e−x(3x − 5)
∣∣∣∣
∞

0
−3

∫ ∞

0
e−xdx = 0,

the functions are orthogonal.

15. By orthogonality
∫ b
a φ0(x)φn(x)dx = 0 for n = 1, 2, 3, . . . ; that is,

∫ b
a φn(x)dx = 0 for

n = 1, 2, 3, . . . .
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16. Using the facts that φ0 and φ1 are orthogonal to φn for n > 1, we have
∫ b

a
(αx + β)φn(x) dx = α

∫ b

a
xφn(x) dx + β

∫ b

a
1 · φn(x) dx

= α
∫ b

a
φ1(x)φn(x) dx + β

∫ b

a
φ0(x)φn(x) dx

= α · 0 + β · 0 = 0

for n = 2, 3, 4, . . . .

17. Using the fact that φn and φm are orthogonal for n "= m we have

‖φm(x) + φn(x)‖2 =
∫ b

a
[φm(x) + φn(x)]2dx =

∫ b

a

[
φ2

m(x) + 2φm(x)φn(x) + φ2
n(x)

]
dx

=
∫ b

a
φ2

m(x)dx + 2
∫ b

a
φm(x)φn(x)dx +

∫ b

a
φ2

n(x) dx

= ‖φm(x)‖2 + ‖φn(x)‖2 .

18. Setting

0 =
∫ 2

−2
f3(x)f1(x) dx =

∫ 2

−2

(
x2 + c1x

3 + c2x
4
)
dx =

16

3
+

64

5
c2

and

0 =
∫ 2

−2
f3(x)f2(x) dx =

∫ 2

−2

(
x3 + c1x

4 + c2x
5
)
dx =

64

5
c1

we obtain c1 = 0 and c2 = −5/12.

19. Since sin nx is an odd function on [−π, π],

(1, sin nx) =
∫ π

−π
sin nx dx = 0

and f(x) = 1 is orthogonal to every member of {sin nx}. Thus {sin nx} is not complete.

20. (f1 + f2, f3) =
∫ b

a
[f1(x) + f2(x)]f3(x) dx =

∫ b

a
f1(x)f3(x) dx +

∫ b

a
f2(x)f3(x) dx = (f1, f3) + (f2, f3)

21. (a) The fundamental period is 2π/2π = 1.

(b) The fundamental period is 2π/(4/L) = 1
2πL.

(c) The fundamental period of sin x + sin 2x is 2π.

(d) The fundamental period of sin 2x + cos 4x is 2π/2 = π.

(e) The fundamental period of sin 3x + cos 4x is 2π since the smallest integer multiples of 2π/3

and 2π/4 = π/2 that are equal are 3 and 4, respectively.

(f) The fundamental period of f(x) is 2π/(π/p) = 2p.
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Discussion Problems

22. To show orthogonality on the interval [−π, π] we have∫ π

−π
sinnx sinmxdx =

1

2

∫ π

−π

[
cos(m− n)x− cos(m+ n)x

]
dx

=
1

2

[
sin(m− n)x

m− n
− sin(m+ n)x

m+ n

]π
−π

= 0, m 6= n.

To show that the set S = {sinnx, n = 1, 2, 3, . . .} is not complete we consider the function

f(x) = 1, which is continuous on [−π, π], and orthogonal to every function in S since∫ π

−π
1 · sinnxdx =

cosπ − cos(−π)

n
= 0, n = 1, 2, 3, . . . .

But f(x) = 0 is the only continuous function defined on [−π, π] that is orthogonal to every

function in the set S, so S cannot be complete.

FOURIER SERIES
11.1 Fourier Seriesq

11.2 Fourier Seriesq

If x0 is a point of discontinuity of f(x) on an interval, then the Fourier series of f(x) converges to

the midpoint of f(x−) and f(x+).

1. a0 =
1

π

∫ π

−π
f(x) dx =

1

π

∫ π

0
1 dx = 1

an =
1

π

∫ π

−π
f(x) cos

nπ

π
x dx =

1

π

∫ π

0
cosnx dx = 0

bn =
1

π

∫ π

−π
f(x) sin

nπ

π
x dx =

1

π

∫ π

0
sinnx dx =

1

nπ
(1− cosnπ) =

1

nπ
[1− (−1)n]

f(x) =
1

2
+

1

π

∞∑
n=1

1− (−1)n

n
sinnx

f(x) is discontinuous at x = 0 and converges to 1
2 there.
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2. a0 =
1

π

∫ π

−π
f(x) dx =

1

π

∫ 0

−π
(−1) dx+

1

π

∫ π

0
2 dx = 1

an =
1

π

∫ π

−π
f(x) cosnx dx =

1

π

∫ 0

−π
− cosnx dx+

1

π

∫ π

0
2 cosnx dx = 0

bn =
1

π

∫ π

−π
f(x) sinnx dx =

1

π

∫ 0

−π
− sinnx dx+

1

π

∫ π

0
2 sinnx dx =

3

nπ
[1− (−1)n]

f(x) =
1

2
+

3

π

∞∑
n=1

1− (−1)n

n
sinnx

f(x) is discontinuous at x = 0 and converges to 1
2 there.

3. a0 =

∫ 1

−1
f(x) dx =

∫ 0

−1
1 dx+

∫ 1

0
x dx =

3

2

an =

∫ 1

−1
f(x) cosnπx dx =

∫ 0

−1
cosnπx dx+

∫ 1

0
x cosnπx dx =

1

n2π2
[(−1)n − 1]

bn =

∫ 1

−1
f(x) sinnπx dx =

∫ 0

−1
sinnπx dx+

∫ 1

0
x sinnπx dx = − 1

nπ

f(x) =
3

4
+

∞∑
n=1

[
(−1)n − 1

n2π2
cosnπx− 1

nπ
sinnπx

]
f(x) is discontinuous at x = 0 and converges to 1

2 there.

4. a0 =

∫ 1

−1
f(x) dx =

∫ 1

0
x dx =

1

2

an =

∫ 1

−1
f(x) cosnπx dx =

∫ 1

0
x cosnπx dx =

1

n2π2
[(−1)n − 1]

bn =

∫ 1

−1
f(x) sinnπx dx =

∫ 1

0
x sinnπx dx =

(−1)n+1

nπ

f(x) =
1

4
+

∞∑
n=1

[
(−1)n − 1

n2π2
cosnπx+

(−1)n+1

nπ
sinnπx

]
f(x) is continuous on the interval.
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5. a0 =
1

π

∫ π

−π
f(x) dx =

1

π

∫ π

0
x2 dx =

1

3
π2

an =
1

π

∫ π

−π
f(x) cosnx dx =

1

π

∫ π

0
x2 cosnx dx =

1

π

(
x2

π
sinnx

∣∣∣∣π
0

− 2

n

∫ π

0
x sinnx dx

)

an =
2(−1)n

n2

bn =
1

π

∫ π

0
x2 sinnx dx =

1

π

(
−x

2

n
cosnx

∣∣∣∣π
0

+
2

n

∫ π

0
x cosnx dx

)

an =
π

n
(−1)n+1 +

2

n3π
[(−1)n − 1]

f(x) =
π2

6
+

∞∑
n=1

[
2(−1)n

n2
cosnx+

(
π

n
(−1)n+1 +

2[(−1)n − 1]

n3π

)
sinnx

]
f(x) is continuous on the interval.

6. a0 =
1

π

∫ π

−π
f(x) dx =

1

π

∫ 0

−π
π2 dx+

1

π

∫ π

0

(
π2 − x2

)
dx =

5

3
π2

an =
1

π

∫ π

−π
f(x) cosnx dx =

1

π

∫ 0

−π
π2 cosnx dx+

1

π

∫ π

0

(
π2 − x2

)
cosnx dx

an =
1

π

(
π2 − x2

n
sinnx

∣∣∣∣π
0

+
2

n

∫ π

0
x sinnx dx

)
=

2

n2
(−1)n+1

bn =
1

π

∫ π

−π
f(x) sinnx dx =

1

π

∫ 0

−π
π2 sinnx dx+

1

π

∫ π

0

(
π2 − x2

)
sinnx dx

bn =
π

n
[(−1)n − 1] +

1

π

(
x2 − π2

n
cosnx

∣∣∣∣π
0

− 2

n

∫ π

0
x cosnx dx

)
=
π

n
(−1)n +

2

n3π
[1− (−1)n]

f(x) =
5π2

6
+

∞∑
n=1

[
2

n2
(−1)n+1 cosnx+

(
π

n
(−1)n +

2[1− (−1)n]

n3π

)
sinnx

]
f(x) is continuous on the interval.

7. a0 =
1

π

∫ π

−π
f(x) dx =

1

π

∫ π

−π
(x+ π) dx = 2π

an =
1

π

∫ π

−π
f(x) cosnx dx =

1

π

∫ π

−π
(x+ π) cosnx dx = 0
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bn =
1

π

∫ π

−π
f(x) sinnx dx =

2

n
(−1)n+1

f(x) = π +

∞∑
n=1

2

n
(−1)n+1 sinnx

f(x) is continuous on the interval.

8. a0 =
1

π

∫ π

−π
f(x) dx =

1

π

∫ π

−π
(3− 2x) dx = 6

an =
1

π

∫ π

−π
f(x) cosnx dx =

1

π

∫ π

−π
(3− 2x) cosnx dx = 0

bn =
1

π

∫ π

−π
(3− 2x) sinnx dx =

4

n
(−1)n

f(x) = 3 + 4
∞∑
n=1

(−1)n

n
sinnx

f(x) is continuous on the interval.

9. a0 =
1

π

∫ π

−π
f(x) dx =

1

π

∫ π

0
sinx dx =

2

π

an =
1

π

∫ π

−π
f(x) cosnx dx =

1

π

∫ π

0
sinx cosnx dx =

1

2π

∫ π

0

(
sin(1 + n)x+ sin(1− n)x

)
dx

an =
1 + (−1)n

π(1− n2)
for n = 2, 3, 4, . . .

a1 =
1

2π

∫ π

0
sin 2x dx = 0

bn =
1

π

∫ π

−π
f(x) sinnx dx =

1

π

∫ π

0
sinx sinnx dx

bn =
1

2π

∫ π

0

(
cos(1− n)x− cos(1 + n)x

)
dx = 0 for n = 2, 3, 4, . . .

b1 =
1

2π

∫ π

0
(1− cos 2x) dx =

1

2

f(x) =
1

π
+

1

2
sinx+

∞∑
n=2

1 + (−1)n

π(1− n2)
cosnx

f(x) is continuous on the interval.
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10. a0 =
2

π

∫ π/2

−π/2
f(x) dx =

2

π

∫ π/2

0
cosx dx =

2

π

an =
2

π

∫ π/2

−π/2
f(x) cos 2nx dx =

2

π

∫ π/2

0
cosx cos 2nx dx

an =
1

π

∫ π/2

0

(
cos(2n− 1)x+ cos(2n+ 1)x

)
dx =

2(−1)n+1

π(4n2 − 1)

bn =
2

π

∫ π/2

−π/2
f(x) sin 2nx dx =

2

π

∫ π/2

0
cosx sin 2nx dx

bn =
1

π

∫ π/2

0

(
sin(2n− 1)x+ sin(2n+ 1)x

)
dx =

4n

π(4n2 − 1)

f(x) =
1

π
+
∞∑
n=1

[
2(−1)n+1

π(4n2 − 1)
cos 2nx+

4n

π(4n2 − 1)
sin 2nx

]
f(x) is discontinuous at x = 0 and converges to 1

2 there.

11. a0 =
1

2

∫ 2

−2
f(x) dx =

1

2

(∫ 0

−1
−2 dx+

∫ 1

0
1 dx

)
= −1

2

an =
1

2

∫ 2

−2
f(x) cos

nπ

2
x dx =

1

2

(∫ 0

−1
(−2) cos

nπ

2
x dx+

∫ 1

0
cos

nπ

2
x dx

)
= − 1

nπ
sin

nπ

2

bn =
1

2

∫ 2

−2
f(x) sin

nπ

2
x dx =

1

2

(∫ 0

−1
(−2) sin

nπ

2
x dx+

∫ 1

0
sin

nπ

2
x dx

)
=

3

nπ

(
1− cos

nπ

2

)

f(x) = −1

4
+

∞∑
n=1

[
− 1

nπ
sin

nπ

2
cos

nπ

2
x+

3

nπ

(
1− cos

nπ

2

)
sin

nπ

2
x

]
f(x) is discontinuous at x = −1 and converges to −1 there.

f(x) is discontinuous at x = 0 and converges to −1
2 there.

f(x) is discontinuous at x = 1 and converges to 1
2 there.

12. a0 =
1

2

∫ 2

−2
f(x) dx =

1

2

(∫ 1

0
x dx+

∫ 2

1
1 dx

)
=

3

4

an =
1

2

∫ 2

−2
f(x) cos

nπ

2
x dx =

1

2

(∫ 1

0
x cos

nπ

2
x dx+

∫ 2

1
cos

nπ

2
x dx

)
=

2

n2π2

(
cos

nπ

2
− 1
)

598 CHAPTER 11 FOURIER SERIES

© 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part, except for use as permitted in a license distributed 
with a certain product or service or otherwise on a password-protected website for classroom use. 

Not For Sale

©
 C

en
ga

ge
 L

ea
rn

in
g.

 A
ll 

rig
ht

s r
es

er
ve

d.
 N

o 
di

st
rib

ut
io

n 
al

lo
w

ed
 w

ith
ou

t e
xp

re
ss

 a
ut

ho
riz

at
io

n.



bn =
1

2

∫ 2

−2
f(x) sin

nπ

2
x dx =

1

2

(∫ 1

0
x sin

nπ

2
x dx+

∫ 2

1
sin

nπ

2
x dx

)

bn =
2

n2π2

(
sin

nπ

2
+
nπ

2
(−1)n+1

)

f(x) =
3

8
+
∞∑
n=1

[
2

n2π2

(
cos

nπ

2
− 1
)
cos

nπ

2
x+

2

n2π2

(
sin

nπ

2
+
nπ

2
(−1)n+1

)
sin

nπ

2
x

]
f(x) is continuous on the interval.

13. a0 =
1

5

∫ 5

−5
f(x) dx =

1

5

(∫ 0

−5
1 dx+

∫ 5

0
(1 + x) dx

)
=

9

2

an =
1

5

∫ 5

−5
f(x) cos

nπ

5
x dx =

1

5

(∫ 0

−5
cos

nπ

5
x dx+

∫ 5

0
(1 + x) cos

nπ

5
x dx

)
=

5

n2π2
[(−1)n−1]

bn =
1

5

∫ 5

−5
f(x) sin

nπ

5
x dx =

1

5

(∫ 0

−5
sin

nπ

5
x dx+

∫ 5

0
(1 + x) cos

nπ

5
x dx

)
=

5

nπ
(−1)n+1

f(x) =
9

4
+

∞∑
n=1

[
5

n2π2
[(−1)n − 1] cos

nπ

5
x+

5

nπ
(−1)n+1 sin

nπ

5
x

]
f(x) is continuous on the interval.

14. a0 =
1

2

∫ 2

−2
f(x) dx =

1

2

(∫ 0

−2
(2 + x) dx+

∫ 2

0
2 dx

)
= 3

an =
1

2

∫ 2

−2
f(x) cos

nπ

2
x dx =

1

2

(∫ 0

−2
(2 + x) cos

nπ

2
x dx+

∫ 2

0
2 cos

nπ

2
x dx

)

an =
2

n2π2
[1− (−1)n]

bn =
1

2

∫ 2

−2
f(x) sin

nπ

2
x dx =

1

2

(∫ 0

−2
(2 + x) sin

nπ

2
x dx+

∫ 2

0
2 sin

nπ

2
x dx

)
=

2

nπ
(−1)n+1

f(x) =
3

2
+

∞∑
n=1

[
2

n2π2
[1− (−1)n] cos

nπ

2
x+

2

nπ
(−1)n+1 sin

nπ

2
x

]
f(x) is continuous on the interval.
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15. a0 =
1

π

∫ π

−π
f(x) dx =

1

π

∫ π

−π
ex dx =

1

π
(eπ − e−π)

an =
1

π

∫ π

−π
f(x) cosnx dx =

(−1)n(eπ − e−π)

π(1 + n2)

bn =
1

π

∫ π

−π
f(x) sinnx dx =

1

π

∫ π

−π
ex sinnx dx =

(−1)nn(e−π − eπ)

π(1 + n2)

f(x) =
eπ − e−π

2π
+

∞∑
n=1

[
(−1)n(eπ − e−π)

π(1 + n2)
cosnx+

(−1)nn(e−π − eπ)

π(1 + n2)
sinnx

]
f(x) is continuous on the interval.

16. a0 =
1

π

∫ π

−π
f(x) dx =

1

π

∫ π

0
(ex − 1) dx =

1

π
(eπ − π − 1)

an =
1

π

∫ π

−π
f(x) cosnx dx =

1

π

∫ π

0
(ex − 1) cosnx dx =

[eπ(−1)n − 1]

π(1 + n2)

bn =
1

π

∫ π

−π
f(x) sinnx dx =

1

π

∫ π

0
(ex−1) sinnx dx =

1

π

(
neπ(−1)n+1

1 + n2
+

n

1 + n2
+

(−1)n

n
− 1

n

)

f(x) =
eπ − π − 1

2π
+

∞∑
n=1

[
eπ(−1)n − 1

π(1 + n2)
cosnx+

(
n

1 + n2
[
eπ(−1)n+1 + 1

]
+

(−1)n − 1

n

)
sinnx

]
f(x) is continuous on the interval.

17. x

-3 Π -2 Π -Π Π 2 Π 3 Π

1

18. x

-6 -4 -2 2 4 6

1

2

19. The function in Problem 5 is discontinuous at x = π, so the corresponding Fourier series

converges to π2/2 at x = π. That is,

π2

2
=
π2

6
+
∞∑
n=1

[
2(−1)n

n2
cosnπ +

(
π

n
(−1)n+1 +

2[(−1)n − 1]

n3π

)
sinnπ

]
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=
π2

6
+
∞∑
n=1

2(−1)n

n2
(−1)n =

π2

6
+
∞∑
n=1

2

n2
=
π2

6
+ 2

(
1 +

1

22
+

1

32
+ · · ·

)
and

π2

6
=

1

2

(
π2

2
− π2

6

)
= 1 +

1

22
+

1

32
+ · · · .

At x = 0 the series converges to 0 and

0 =
π2

6
+

∞∑
n=1

2(−1)n

n2
=
π2

6
+ 2

(
−1 +

1

22
− 1

32
+

1

42
− · · ·

)
so

π2

12
= 1− 1

22
+

1

32
− 1

42
+ · · · .

20. From Problem 19

π2

8
=

1

2

(
π2

6
+
π2

12

)
=

1

2

(
2 +

2

32
+

2

52
+ · · ·

)
= 1 +

1

32
+

1

52
+ · · · .

21. The function in Problem 7 is continuous at x = π/2 so

3π

2
= f

(π
2

)
= π +

∞∑
n=1

2

n
(−1)n+1 sin

nπ

2
= π + 2

(
1− 1

3
+

1

5
− 1

7
+ · · ·

)
and

π

4
= 1− 1

3
+

1

5
− 1

7
+ · · · .

22. The function in Problem 9 is continuous at x = π/2 so

1 = f
(π
2

)
=

1

π
+

1

2
+

∞∑
n=2

1 + (−1)n

π(1− n2)
cos

nπ

2

1 =
1

π
+

1

2
+

2

3π
− 2

3 · 5π
+

2

5 · 7π
− · · ·

and

π = 1 +
π

2
+

2

3
− 2

3 · 5
+

2

5 · 7
− · · ·

or

π

4
=

1

2
+

1

1 · 3
− 1

3 · 5
+

1

5 · 7
− · · · .
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23. (a) Letting c0 = a0/2, cn = (an − ibn)/2, and c−n = (an + ibn)/2 we have

f(x) =
a0
2

+
∞∑
n=1

(
an cos

nπ

p
x+ bn sin

nπ

p
x

)

= c0 +

∞∑
n=1

(
an
einπx/p + e−inπx/p

2
+ bn

einπx/p − e−inπx/p

2i

)

= c0 +

∞∑
n=1

(
an
einπx/p + e−inπx/p

2
− bn

ieinπx/p − ie−inπx/p

2

)

= c0 +

∞∑
n=1

(
an − ibn

2
einπx/p +

an + ibn
2

e−inπx/p
)

= c0 +

∞∑
n=1

(
cne

inπx/p + c−ne
i(−n)πx/p

)
=

∞∑
n=−∞

cne
inπx/p.

(b) From part (a) we have

cn =
1

2
(an − ibn) =

1

2p

∫ p

−p
f(x)

(
cos

nπ

p
x− i sin

nπ

p
x

)
dx =

1

2p

∫ p

−p
f(x)e−inπx/pdx

and

c−n =
1

2
(an + ibn) =

1

2p

∫ p

−p
f(x)

(
cos

nπ

p
x+ i sin

nπ

p
x

)
dx =

1

2p

∫ p

−p
f(x)einπx/pdx

for n = 1, 2, 3, . . . . Thus, for n = ±1, ±2, ±3, . . . ,

cn =
1

2p

∫ p

−p
f(x)e−inπx/pdx.

When n = 0 the above formula gives

c0 =
1

2p

∫ p

−p
f(x)dx,

which is a0/2 where a0 is (9) in the text. Therefore

cn =
1

2p

∫ p

−p
f(x)e−inπx/pdx, n = 0, ±1, ±2, . . . .
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24. Identifying f(x) = e−x and p = π, we have

cn =
1

2π

∫ π

−π
e−xe−inxdx =

1

2π

∫ π

−π
e−(in+1)xdx

= − 1

2(in+ 1)π
e−(in+1)x

∣∣∣∣π
−π

= − 1

2(in+ 1)π

[
e−(in+1)π − e(in+1)π

]

=
e(in+1)π − e−(in+1)π

2(in+ 1)π

=
eπ(cosnπ + i sinnπ)− e−π(cosnπ − i sinnπ)

2(in+ 1)π

=
(eπ − e−π) cosnπ

2(in+ 1)π
=

(eπ − e−π)(−1)n

2(in+ 1)π
.

Thus

f(x) =
∞∑

n=−∞
(−1)n

eπ − e−π

2(in+ 1)π
einx.

1. Since f(−x) = sin(−3x) = − sin 3x = −f(x), f(x) is an odd function.

2. Since f(−x) = −x cos(−x) = −x cos x = −f(x), f(x) is an odd function.

3. Since f(−x) = (−x)2 − x = x2 − x, f(x) is neither even nor odd.

q

11.3 Fourier Cosine and Sine Seriesq
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4. Since f(−x) = (−x)3 + 4x = −(x3 − 4x) = −f(x), f(x) is an odd function.

5. Since f(−x) = e|−x| = e|x| = f(x), f(x) is an even function.

6. Since f(−x) = e−x − ex = −f(x), f(x) is an odd function.

7. For 0 < x < 1, f(−x) = (−x)2 = x2 = −f(x), f(x) is an odd function.

8. For 0 ≤ x < 2, f(−x) = −x + 5 = f(x), f(x) is an even function.

9. Since f(x) is not defined for x < 0, it is neither even nor odd.

10. Since f(−x) =
∣∣∣(−x)5

∣∣∣ =
∣∣∣x5

∣∣∣ = f(x), f(x) is an even function.

11. Since f(x) is an odd function, we expand in a sine series:

bn =
2

π

∫ π

0
1 · sin nx dx =

2

nπ
[1 − (−1)n] .

Thus

f(x) =
∞∑

n=1

2

nπ
[1 − (−1)n] sin nx.

12. Since f(x) is an even function, we expand in a cosine series:

a0 =
∫ 2

1
1 dx = 1

an =
∫ 2

1
cos

nπ

2
x dx = − 2

nπ
sin

nπ

2
.

Thus

f(x) =
1

2
+

∞∑

n=1

−2

nπ
sin

nπ

2
cos

nπ

2
x.

13. Since f(x) is an even function, we expand in a cosine series:

a0 =
2

π

∫ π

0
x dx = π

an =
2

π

∫ π

0
x cos nx dx =

2

n2π
[(−1)n − 1].

Thus

f(x) =
π

2
+

∞∑

n=1

2

n2π
[(−1)n − 1] cos nx.

14. Since f(x) is an odd function, we expand in a sine series:

bn =
2

π

∫ π

0
x sin nx dx =

2

n
(−1)n+1.

Thus

f(x) =
∞∑

n=1

2

n
(−1)n+1 sin nx.
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15. Since f(x) is an even function, we expand in a cosine series:

a0 = 2
∫ 1

0
x2 dx =

2

3

an = 2
∫ 1

0
x2 cos nπx dx = 2

(
x2

nπ
sin nπx

∣∣∣∣
1

0
− 2

nπ

∫ 1

0
x sin nπx dx

)

=
4

n2π2 (−1)n.

Thus

f(x) =
1

3
+

∞∑

n=1

4

n2π2 (−1)n cos nπx.

16. Since f(x) is an odd function, we expand in a sine series:

bn = 2
∫ 1

0
x2 sin nπx dx = 2

(

− x2

nπ
cos nπx

∣∣∣∣
1

0
+

2

nπ

∫ 1

0
x cos nπx dx

)

=
2(−1)n+1

nπ
+

4

n3π3 [(−1)n − 1].

Thus

f(x) =
∞∑

n=1

(
2(−1)n+1

nπ
+

4

n3π3 [(−1)n − 1]

)

sin nπx.

17. Since f(x) is an even function, we expand in a cosine series:

a0 =
2

π

∫ π

0
(π2 − x2) dx =

4

3
π2

an =
2

π

∫ π

0
(π2 − x2) cos nx dx =

2

π

(
π2 − x2

n
sin nx

∣∣∣∣
π

0
+

2

n

∫ π

0
x sin nx dx

)

=
4

n2 (−1)n+1.

Thus

f(x) =
2

3
π2 +

∞∑

n=1

4

n2 (−1)n+1 cos nx.

18. Since f(x) is an odd function, we expand in a sine series:

bn =
2

π

∫ π

0
x3 sin nx dx =

2

π

(

−x3

n
cos nx

∣∣∣∣
π

0
+

3

n

∫ π

0
x2 cos nx dx

)

=
2π2

n
(−1)n+1 − 12

n2π

∫ π

0
x sin nx dx

=
2π2

n
(−1)n+1 − 12

n2π

(
−x

n
cos nx

∣∣∣∣
π

0
+

1

n

∫ π

0
cos nx dx

)
=

2π2

n
(−1)n+1 +

12

n3 (−1)n.

Thus

f(x) =
∞∑

n=1

(
2π2

n
(−1)n+1 +

12

n3 (−1)n
)

sin nx.
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19. Since f(x) is an odd function, we expand in a sine series:

bn =
2

π

∫ π

0
(x + 1) sin nx dx =

2(π + 1)

nπ
(−1)n+1 +

2

nπ
.

Thus

f(x) =
∞∑

n=1

(
2(π + 1)

nπ
(−1)n+1 +

2

nπ

)

sin nx.

20. Since f(x) is an odd function, we expand in a sine series:

bn = 2
∫ 1

0
(x − 1) sin nπx dx = 2

[∫ 1

0
x sin nπx dx −

∫ 1

0
sin nπx dx

]

= 2
[

1

n2π2 sin nπx − x

nπ
cos nπx +

1

nπ
cos nπx

]1

0
= − 2

nπ
.

Thus

f(x) = −
∞∑

n=1

2

nπ
sin nπx.

21. Since f(x) is an even function, we expand in a cosine series:

a0 =
∫ 1

0
x dx +

∫ 2

1
1 dx =

3

2

an =
∫ 1

0
x cos

nπ

2
x dx +

∫ 2

1
cos

nπ

2
x dx =

4

n2π2

(
cos

nπ

2
− 1

)
.

Thus

f(x) =
3

4
+

∞∑

n=1

4

n2π2

(
cos

nπ

2
− 1

)
cos

nπ

2
x.

22. Since f(x) is an odd function, we expand in a sine series:

bn =
1

π

∫ π

0
x sin

n

2
x dx +

∫ 2π

π
π sin

n

2
x dx =

4

n2π
sin

nπ

2
+

2

n
(−1)n+1.

Thus

f(x) =
∞∑

n=1

(
4

n2π
sin

nπ

2
+

2

n
(−1)n+1

)
sin

n

2
x.

23. Since f(x) is an even function, we expand in a cosine series:

a0 =
2

π

∫ π

0
sin x dx =

4

π

an =
2

π

∫ π

0
sin x cos nx dx =

1

π

∫ π

0

(
sin(1 + n)x + sin(1 − n)x

)
dx

=
2

π(1 − n2)
(1 + (−1)n) for n = 2, 3, 4, . . .

a1 =
1

π

∫ π

0
sin 2x dx = 0.
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Thus

f(x) =
2

π
+

∞∑

n=2

2[1 + (−1)n]

π(1 − n2)
cos nx.

24. Since f(x) is an even function, we expand in a cosine series. [See the solution of Problem 10 in

Exercise 11.2 for the computation of the integrals.]

a0 =
2

π/2

∫ π/2

0
cos x dx =

4

π

an =
2

π/2

∫ π/2

0
cos x cos

nπ

π/2
x dx =

4(−1)n+1

π (4n2 − 1)

Thus

f(x) =
2

π
+

∞∑

n=1

4(−1)n+1

π (4n2 − 1)
cos 2nx.

25. a0 = 2
∫ 1/2

0
1 dx = 1

an = 2
∫ 1/2

0
1 · cos nπx dx =

2

nπ
sin

nπ

2

bn = 2
∫ 1/2

0
1 · sin nπx dx =

2

nπ

(
1 − cos

nπ

2

)

f(x) =
1

2
+

∞∑

n=1

2

nπ
sin

nπ

2
cos nπx

f(x) =
∞∑

n=1

2

nπ

(
1 − cos

nπ

2

)
sin nπx

26. a0 = 2
∫ 1

1/2
1 dx = 1

an = 2
∫ 1

1/2
1 · cos nπx dx = − 2

nπ
sin

nπ

2

bn = 2
∫ 1

1/2
1 · sin nπx dx =

2

nπ

(
cos

nπ

2
+ (−1)n+1

)

f(x) =
1

2
+

∞∑

n=1

(
− 2

nπ
sin

nπ

2

)
cos nπx

f(x) =
∞∑

n=1

2

nπ

(
cos

nπ

2
+ (−1)n+1

)
sin nπx

27. a0 =
4

π

∫ π/2

0
cos x dx =

4

π
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an =
4

π

∫ π/2

0
cos x cos 2nx dx =

2

π

∫ π/2

0
[cos(2n + 1)x + cos(2n − 1)x] dx =

4(−1)n

π(1 − 4n2)

bn =
4

π

∫ π/2

0
cos x sin 2nx dx =

2

π

∫ π/2

0
[sin(2n + 1)x + sin(2n − 1)x] dx =

8n

π(4n2 − 1)

f(x) =
2

π
+

∞∑

n=1

4(−1)n

π(1 − 4n2)
cos 2nx

f(x) =
∞∑

n=1

8n

π(4n2 − 1)
sin 2nx

28. a0 =
2

π

∫ π

0
sin x dx =

4

π

an =
2

π

∫ π

0
sin x cos nx dx =

1

π

∫ π

0
[sin(n + 1)x − sin(n − 1)x] dx =

2[(−1)n + 1]

π(1 − n2)
for n = 2, 3, 4, . . .

bn =
2

π

∫ π

0
sin x sin nx dx =

1

π

∫ π

0
[cos(n − 1)x − cos(n + 1)x] dx = 0 for n = 2, 3, 4, . . .

a1 =
1

π

∫ π

0
sin 2x dx = 0

b1 =
2

π

∫ π

0
sin2 x dx = 1

f(x) = sin x

f(x) =
2

π
+

2

π

∞∑

n=2

(−1)n + 1

1 − n2 cos nx

29. a0 =
2

π

(∫ π/2

0
x dx +

∫ π

π/2
(π − x) dx

)

=
π

2

an =
2

π

(∫ π/2

0
x cos nx dx +

∫ π

π/2
(π − x) cos nx dx

)

=
2

n2π

(
2 cos

nπ

2
+ (−1)n+1 − 1

)

bn =
2

π

(∫ π/2

0
x sin nx dx +

∫ π

π/2
(π − x) sin nx dx

)

=
4

n2π
sin

nπ

2

f(x) =
π

4
+

∞∑

n=1

2

n2π

(
2 cos

nπ

2
+ (−1)n+1 − 1

)
cos nx

f(x) =
∞∑

n=1

4

n2π
sin

nπ

2
sin nx

30. a0 =
1

π

∫ 2π

π
(x − π) dx =

π

2

an =
1

π

∫ 2π

π
(x − π) cos

n

2
x dx =

4

n2π

(
(−1)n − cos

nπ

2

)
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bn =
1

π

∫ 2π

π
(x − π) sin

n

2
x dx =

2

n
(−1)n+1 − 4

n2π
sin

nπ

2

f(x) =
π

4
+

∞∑

n=1

4

n2π

(
(−1)n − cos

nπ

2

)
cos

n

2
x

f(x) =
∞∑

n=1

(
2

n
(−1)n+1 − 4

n2π
sin

nπ

2

)
sin

n

2
x

31. a0 =
∫ 1

0
x dx +

∫ 2

1
1 dx =

3

2

an =
∫ 1

0
x cos

nπ

2
x dx =

4

n2π2

(
cos

nπ

2
− 1

)

bn =
∫ 1

0
x sin

nπ

2
x dx +

∫ 2

1
1 · sin nπ

2
x dx =

4

n2π2 sin
nπ

2
+

2

nπ
(−1)n+1

f(x) =
3

4
+

∞∑

n=1

4

n2π2

(
cos

nπ

2
− 1

)
cos

nπ

2
x

f(x) =
∞∑

n=1

(
4

n2π2 sin
nπ

2
+

2

nπ
(−1)n+1

)
sin

nπ

2
x

32. a0 =
∫ 1

0
1 dx +

∫ 2

1
(2 − x) dx =

3

2

an =
∫ 1

0
1 · cos

nπ

2
x dx +

∫ 2

1
(2 − x) cos

nπ

2
x dx =

4

n2π2

(
cos

nπ

2
+ (−1)n+1

)

bn =
∫ 1

0
1 · sin nπ

2
x dx +

∫ 2

1
(2 − x) sin

nπ

2
x dx =

2

nπ
+

4

n2π2 sin
nπ

2

f(x) =
3

4
+

∞∑

n=1

4

n2π2

(
cos

nπ

2
+ (−1)n+1

)
cos

nπ

2
x

f(x) =
∞∑

n=1

(
2

nπ
+

4

n2π2 sin
nπ

2

)
sin

nπ

2
x

33. a0 = 2
∫ 1

0
(x2 + x) dx =

5

3

an = 2
∫ 1

0
(x2+x) cos nπx dx =

2(x2 + x)

nπ
sin nπx

∣∣∣∣
1

0
− 2

nπ

∫ 1

0
(2x+1) sin nπx dx =

2

n2π2 [3(−1)n−1]

bn = 2
∫ 1

0
(x2 + x) sin nπx dx = −2(x2 + x)

nπ
cos nπx

∣∣∣∣
1

0
+

2

nπ

∫ 1

0
(2x + 1) cos nπx dx

=
4

nπ
(−1)n+1 +

4

n3π3 [(−1)n − 1]
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f(x) =
5

6
+

∞∑

n=1

2

n2π2 [3(−1)n − 1] cos nπx

f(x) =
∞∑

n=1

(
4

nπ
(−1)n+1 +

4

n3π3 [(−1)n − 1]
)

sin nπx

34. a0 =
∫ 2

0
(2x − x2) dx =

4

3

an =
∫ 2

0
(2x − x2) cos

nπ

2
x dx =

8

n2π2 [(−1)n+1 − 1]

bn =
∫ 2

0
(2x − x2) sin

nπ

2
x dx =

16

n3π3 [1 − (−1)n]

f(x) =
2

3
+

∞∑

n=1

8

n2π2 [(−1)n+1 − 1] cos
nπ

2
x

f(x) =
∞∑

n=1

16

n3π3 [1 − (−1)n] sin
nπ

2
x

35. a0 =
1

π

∫ 2π

0
x2 dx =

8

3
π2

an =
1

π

∫ 2π

0
x2 cos nx dx =

4

n2

bn =
1

π

∫ 2π

0
x2 sin nx dx = −4π

n

f(x) =
4

3
π2 +

∞∑

n=1

(
4

n2 cos nx − 4π

n
sin nx

)

36. a0 =
2

π

∫ π

0
x dx = π

an =
2

π

∫ π

0
x cos 2nx dx = 0

bn =
2

π

∫ π

0
x sin 2nx dx = − 1

n

f(x) =
π

2
−

∞∑

n=1

1

n
sin 2nx

37. a0 = 2
∫ 1

0
(x + 1) dx = 3

an = 2
∫ 1

0
(x + 1) cos 2nπx dx = 0

bn = 2
∫ 1

0
(x + 1) sin 2nπx dx = − 1

nπ
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f(x) =
3

2
−

∞∑

n=1

1

nπ
sin 2nπx

38. a0 =
2

2

∫ 2

0
(2 − x) dx = 2

an =
2

2

∫ 2

0
(2 − x) cos nπx dx = 0

bn =
2

2

∫ 2

0
(2 − x) sin nπx dx =

2

nπ

f(x) = 1 +
∞∑

n=1

2

nπ
sin nπx

39. We have

bn =
2

π

∫ π

0
5 sin nt dt =

10

nπ
[1 − (−1)n]

so that

f(t) =
∞∑

n=1

10[1 − (−1)n]

nπ
sin nt.

Substituting the assumption xp(t) =
∑∞

n=1 Bn sin nt into the differential equation then gives

x′′
p + 10xp =

∞∑

n=1

Bn(10 − n2) sin nt =
∞∑

n=1

10[1 − (−1)n]

nπ
sin nt

and so Bn = 10[1 − (−1)n]/nπ(10 − n2). Thus

xp(t) =
10

π

∞∑

n=1

1 − (−1)n

n(10 − n2)
sin nt.

40. We have

bn =
2

π

∫ 1

0
(1 − t) sin nπt dt =

2

nπ

so that

f(t) =
∞∑

n=1

2

nπ
sin nπt.

Substituting the assumption xp(t) =
∑∞

n=1 Bn sin nπt into the differential equation then gives

x′′
p + 10xp =

∞∑

n=1

Bn(10 − n2π2) sin nπt =
∞∑

n=1

2

nπ
sin nπt

and so Bn = 2/nπ(10 − n2π2). Thus

xp(t) =
2

π

∞∑

n=1

1

n(10 − n2π2)
sin nπt.
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41. We have

a0 =
2

π

∫ π

0
(2πt − t2) dt =

4

3
π2

an =
2

π

∫ π

0
(2πt − t2) cos nt dt = − 4

n2

so that

f(t) =
2π2

3
−

∞∑

n=1

4

n2 cos nt.

Substituting the assumption

xp(t) =
A0

2
+

∞∑

n=1

An cos nt

into the differential equation then gives

1

4
x′′

p + 12xp = 6A0 +
∞∑

n=1

An

(
−1

4
n2 + 12

)
cos nt =

2π2

3
−

∞∑

n=1

4

n2 cos nt

and A0 = π2/9, An = 16/n2(n2 − 48). Thus

xp(t) =
π2

18
+ 16

∞∑

n=1

1

n2(n2 − 48)
cos nt.

42. We have

a0 =
2

1/2

∫ 1/2

0
t dt =

1

2

an =
2

1/2

∫ 1/2

0
t cos 2nπt dt =

1

n2π2 [(−1)n − 1]

so that

f(t) =
1

4
+

∞∑

n=1

(−1)n − 1

n2π2 cos 2nπt.

Substituting the assumption

xp(t) =
A0

2
+

∞∑

n=1

An cos 2nπt

into the differential equation then gives

1

4
x′′

p + 12xp = 6A0 +
∞∑

n=1

An(12 − n2π2) cos 2nπt =
1

4
+

∞∑

n=1

(−1)n − 1

n2π2 cos 2nπt

and A0 = 1/24, An = [(−1)n − 1]/n2π2(12 − n2π2). Thus

xp(t) =
1

48
+

1

π2

∞∑

n=1

(−1)n − 1

n2(12 − n2π2)
cos 2nπt.
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43. (a) The general solution is x(t) = c1 cos
√

10t + c2 sin
√

10t + xp(t), where

xp(t) =
10

π

∞∑

n=1

1 − (−1)n

n(10 − n2)
sin nt.

The initial condition x(0) = 0 implies c1 + xp(0) = 0. Since xp(0) = 0, we have c1 = 0 and

x(t) = c2 sin
√

10t + xp(t). Then x′(t) = c2
√

10 cos
√

10t + x′
p(t) and x′(0) = 0 implies

c2

√
10 +

10

π

∞∑

n=1

1 − (−1)n

10 − n2 cos 0 = 0.

Thus

c2 = −
√

10

π

∞∑

n=1

1 − (−1)n

10 − n2

and

x(t) =
10

π

∞∑

n=1

1 − (−1)n

10 − n2

[
1

n
sin nt − 1√

10
sin

√
10t

]
.

(b) The graph is plotted using eight nonzero terms in the series expansion of x(t).

44. (a) The general solution is x(t) = c1 cos 4
√

3t + c2 sin 4
√

3t + xp(t), where

xp(t) =
π2

18
+ 16

∞∑

n=1

1

n2(n2 − 48)
cos nt.

The initial condition x(0) = 0 implies c1 + xp(0) = 1 or

c1 = 1 − xp(0) = 1 − π2

18
− 16

∞∑

n=1

1

n2(n2 − 48)
.

Now x′(t) = −4
√

3c1 sin 4
√

3t+4
√

3c2 cos 4
√

3t+x′
p(t), so x′(0) = 0 implies 4

√
3c2 +x′

p(0) = 0.

Since x′
p(0) = 0, we have c2 = 0 and

x(t) =

(

1 − π2

18
− 16

∞∑

n=1

1

n2(n2 − 48)

)

cos 4
√

3t +
π2

18
+ 16

∞∑

n=1

1

n2(n2 − 48)
cos nt

=
π2

18
+

(
1 − π2

18

)
cos 4

√
3t + 16

∞∑

n=1

1

n2(n2 − 48)
[cos nt − cos 4

√
3t].
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(b) The graph is plotted using five nonzero terms in the series expansion of x(t).

45. (a) We have

bn =
2

L

∫ L

0

w0x

L
sin

nπ

L
x dx =

2w0

nπ
(−1)n+1

so that

w(x) =
∞∑

n=1

2w0

nπ
(−1)n+1 sin

nπ

L
x.

(b) If we assume yp(x) =
∑∞

n=1 Bn sin(nπx/L) then

y(4)
p =

∞∑

n=1

n4π4

L4 Bn sin
nπ

L
x

and so the differential equation EIy(4)
p = w(x) gives

Bn =
2w0(−1)n+1L4

EIn5π5 .

Thus

yp(x) =
2w0L4

EIπ5

∞∑

n=1

(−1)n+1

n5 sin
nπ

L
x.

46. We have

bn =
2

L

∫ 2L/3

L/3
w0 sin

nπ

L
x dx =

2w0

nπ

(
cos

nπ

3
− cos

2nπ

3

)

so that

w(x) =
∞∑

n=1

2w0

nπ

(
cos

nπ

3
− cos

2nπ

3

)
sin

nπ

L
x.

If we assume yp(x) =
∑∞

n=1 Bn sin(nπx/L) then

y(4)
p (x) =

∞∑

n=1

n4π4

L4 Bn sin
nπ

L
x

and so the differential equation EIy(4)
p (x) = w(x) gives

Bn = 2w0L
4 cos nπ

3 − cos 2nπ
3

EIn5π5 .
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Thus

yp(x) =
2w0L4

EIπ5

∞∑

n=1

cos nπ
3 − cos 2nπ

3

n5 sin
nπ

L
x.

47. We note that w(x)is 2π-periodic and even. With p = π we find the cosine expansion of

f(x) =

{
w0 0 < x < π/2

0, π/2 < x < π.

We have

a0 =
2

π

∫ π

0
f(x) dx =

2

π

∫ π/2

0
w0 dx = w0

an =
2

π

∫ π

0
f(x) cos nx dx =

2

π

∫ π/2

0
w0 cos nx dx =

2w0

nπ
sin

nπ

2
.

Thus,

w(x) =
w0

2
+

2w0

π

∞∑

n=1

1

n
sin

nπ

2
cos nx.

Now we assume a particular solution of the form yp(x) = A0/2 +
∑∞

n=1 An cos nx. Then y(4)
p (x) =

∑∞
n=1 Ann4 cos nx and substituting into the differential equation, we obtain

EIy(4)
p (x) + kyp(x) =

kA0

2
+

∞∑

n=1

An(EIn4 + k) cos nx

=
w0

2
+

2w0

π

∞∑

n=1

1

n
sin

nπ

2
cos nx.

Thus

A0 =
w0

k
and An =

2w0

π

sin(nπ/2)

n(EIn4 + k)
,

and

yp(x) =
w0

2k
+

2w0

π

∞∑

n=1

sin(nπ/2)

n(EIn4 + k)
cos nx.

48. (a) If f and g are even and h(x) = f(x)g(x) then

h(−x) = f(−x)g(−x) = f(x)g(x) = h(x)

and h is even.

(c) If f is even and g is odd and h(x) = f(x)g(x) then

h(−x) = f(−x)g(−x) = f(x)[−g(x)] = −h(x)

and h is odd.

(d) Let h(x) = f(x) ± g(x) where f and g are even. Then

h(−x) = f(−x) ± g(−x) = f(x) ± g(x) = h(x),
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and so h is an even function.

(f) If f is even then

∫ a

−a
f(x) dx = −

∫ 0

a
f(−u) du +

∫ a

0
f(x) dx =

∫ a

0
f(u) du +

∫ a

0
f(x) dx = 2

∫ a

0
f(x) dx.

(g) If f is odd then

∫ a

−a
f(x) dx = −

∫ 0

−a
f(−x) dx +

∫ a

0
f(x) dx =

∫ 0

a
f(u) du +

∫ a

0
f(x) dx

= −
∫ a

0
f(u) du +

∫ a

0
f(x) dx = 0.

49. If f(x) is even then f(−x) = f(x). If f(x) is odd then f(−x) = −f(x). Thus, if f(x) is both even

and odd, f(x) = f(−x) = −f(x), and f(x) = 0.

50. For EIy(4)+ky = 0 the roots of the auxiliary equation are m1 = α+αi, m2 = α−αi, m3 = −α+αi,

and m4 = −α − αi, where α = (k/EI)1/4/
√

2 . Thus

yc = eαx(c1 cos αx + c2 sin αx) + e−αx(c3 cos αx + c4 sin αx).

We expect y(x) to be bounded as x → ∞, so we must have c1 = c2 = 0. We also expect y(x) to be

bounded as x → −∞, so we must have c3 = c4 = 0. Thus, yc = 0 and the solution of the differential

equation in Problem 47 is yp(x).

51. The graph is obtained by summing the series from n = 1 to 20. It appears that

f(x) =

{
x, 0 < x < π

−π, π < x < 2π.
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52. The graph is obtained by summing the series from n = 1 to 10. It appears that

f(x) =

{
1 − x, 0 < x < 1

0, 1 < x < 2.

53. (a) The function in Problem 51 is not unique; it could also be defined as

f(x) =






x, 0 < x < π

1, x = π

−π, π < x < 2π.

(b) The function in Problem 52 is not unique; it could also be defined as

f(x) =






0, −2 < x < −1

x + 1, −1 < x < 0

−x + 1, 0 < x < 1

0, 1 < x < 2.

1. For λ ≤ 0 the only solution of the boundary-value problem is y = 0. For λ = α2 > 0 we have

y = c1 cos αx + c2 sin αx.

Now

y′(x) = −c1α sin αx + c2α cos αx

and y′(0) = 0 implies c2 = 0, so

y(1) + y′(1) = c1(cos α − α sin α) = 0 or cotα = α.

The eigenvalues are λn = α2
n where α1, α2, α3, . . . are the consecutive positive solutions of cotα = α.

The corresponding eigenfunctions are cos αnx for n = 1, 2, 3, . . . . Using a CAS we find that the

q
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first four eigenvalues are approximately 0.7402, 11.7349, 41.4388, and 90.8082 with corresponding

approximate eigenfunctions cos 0.8603x, cos 3.4256x, cos 6.4373x, and cos 9.5293x.

2. For λ < 0 the only solution of the boundary-value problem is y = 0. For λ = 0 we have y = c1x+c2.

Now y′ = c1 and the boundary conditions both imply c1 + c2 = 0. Thus, λ = 0 is an eigenvalue

with corresponding eigenfunction y0 = x − 1.

For λ = α2 > 0 we have

y = c1 cos αx + c2 sin αx

and

y′(x) = −c1α sin αx + c2α cos αx.

The boundary conditions imply

c1 + c2α = 0

c1 cos α + c2 sin α = 0

which gives

−c2α cos α + c2 sin α = 0 or tanα = α.

The eigenvalues are λn = α2
n where α1, α2, α3, . . . are the consecutive positive solutions of tanα = α.

The corresponding eigenfunctions are α cos αx − sin αx (obtained by taking c2 = −1 in the first

equation of the system.) Using a CAS we find that the first four positive eigenvalues are 20.1907,

59.6795, 118.9000, and 197.858 with corresponding eigenfunctions 4.4934 cos 4.4934x− sin 4.4934x,

7.7253 cos 7.7253x − sin 7.7253x, 10.9041 cos 10.9041x − sin 10.9041x, and 14.0662 cos 14.0662x −
sin 14.0662x.

3. For λ = 0 the solution of y′′ = 0 is y = c1x + c2. The condition y′(0) = 0 implies c1 = 0, so λ = 0

is an eigenvalue with corresponding eigenfunction 1.

For λ = −α2 < 0 we have y = c1 cosh αx + c2 sinh αx and y′ = c1α sinh αx + c2α cosh αx. The

condition y′(0) = 0 implies c2 = 0 and so y = c1 cosh αx. Now the condition y′(L) = 0 implies

c1 = 0. Thus y = 0 and there are no negative eigenvalues.

For λ = α2 > 0 we have y = c1 cos αx + c2 sin αx and y′ = −c1α sin αx + c2α cos αx. The condition

y′(0) = 0 implies c2 = 0 and so y = c1 cos αx. Now the condition y′(L) = 0 implies −c1α sin αL = 0.

For c1 &= 0 this condition will hold when αL = nπ or λ = α2 = n2π2/L2, where n = 1, 2, 3, . . . .

These are the positive eigenvalues with corresponding eigenfunctions cos(nπx/L), n = 1, 2, 3, . . . .

4. For λ = −α2 < 0 we have
y = c1 cosh αx + c2 sinh αx

y′ = c1α sinh αx + c2α cosh αx.
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Using the fact that cosh x is an even function and sinh x is odd we have

y(−L) = c1 cosh(−αL) + c2 sinh(−αL)

= c1 cosh αL − c2 sinh αL

and

y′(−L) = c1α sinh(−αL) + c2α cosh(−αL)

= −c1α sinh αL + c2α cosh αL.

The boundary conditions imply

c1 cosh αL − c2 sinh αL = c1 cosh αL + c2 sinh αL

or

2c2 sinh αL = 0

and

−c1α sinh αL + c2α cosh αL = c1α sinh αL + c2α cosh αL

or

2c1α sinh αL = 0.

Since αL &= 0, c1 = c2 = 0 and the only solution of the boundary-value problem in this case is

y = 0.

For λ = 0 we have
y = c1x + c2

y′ = c1.

From y(−L) = y(L) we obtain

−c1L + c2 = c1L + c2.

Then c1 = 0 and y = 1 is an eigenfunction corresponding to the eigenvalue λ = 0.

For λ = α2 > 0 we have
y = c1 cos αx + c2 sin αx

y′ = −c1α sin αx + c2α cos αx.

The first boundary condition implies

c1 cos αL − c2 sin αL = c1 cos αL + c2 sin αL

or

2c2 sin αL = 0.
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Thus, if c1 = 0 and c2 &= 0,

αL = nπ or λ = α2 =
n2π2

L2 , n = 1, 2, 3, . . . .

The corresponding eigenfunctions are sin(nπx/L), for n = 1, 2, 3, . . . . Similarly, the second

boundary condition implies

2c1α sin αL = 0.

If c1 &= 0 and c2 = 0,

αL = nπ or λ = α2 =
n2π2

L2 , n = 1, 2, 3, . . . ,

and the corresponding eigenfunctions are cos(nπx/L), for n = 1, 2, 3, . . . .

5. The eigenfunctions are cos αnx where cot αn = αn. Thus

‖ cos αnx‖2 =
∫ 1

0
cos2 αnx dx =

1

2

∫ 1

0
(1 + cos 2αnx) dx

=
1

2

(
x +

1

2αn
sin 2αnx

) ∣∣∣∣
1

0
=

1

2

(
1 +

1

2αn
sin 2αn

)

=
1

2

[
1 +

1

2αn
(2 sin αn cos αn)

]

=
1

2

[
1 +

1

αn
sin αn cot αn sin αn

]

=
1

2

[
1 +

1

αn
(sin αn) αn (sin αn)

]
=

1

2

(
1 + sin2 αn

)
.

6. The eigenfunctions are sin αnx where tan αn = −αn. Thus

‖ sin αnx‖2 =
∫ 1

0
sin2 αnx dx =

1

2

∫ 1

0
(1 − cos 2αnx) dx

=
1

2

(
x − 1

2αn
sin 2αnx

) ∣∣∣∣
1

0
=

1

2

(
1 − 1

2αn
sin 2αn

)

=
1

2

[
1 − 1

2αn
(2 sin αn cos αn)

]

=
1

2

[
1 − 1

αn
tan αn cos αn cos αn

]

=
1

2

[
1 − 1

αn

(
−αn cos2 αn

)]
=

1

2

(
1 + cos2 αn

)
.

7. (a) If λ ≤ 0 the initial conditions imply y = 0. For λ = α2 > 0 the general solution of the Cauchy-

Euler differential equation is y = c1 cos(α ln x) + c2 sin(α ln x). The condition y(1) = 0 implies
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c1 = 0, so that y = c2 sin(α ln x). The condition y(5) = 0 implies α ln 5 = nπ, n = 1, 2, 3, . . . .

Thus, the eigenvalues are n2π2/(ln 5)2 for n = 1, 2, 3, . . . , with corresponding eigenfunctions

sin[(nπ/ ln 5) ln x].

(b) The self-adjoint form is
d

dx
[xy′] +

λ

x
y = 0.

(c) An orthogonality relation is
∫ 5

1

1

x
sin

(
mπ

ln 5
ln x

)
sin

(
nπ

ln 5
ln x

)
dx = 0, m &= n.

8. (a) The roots of the auxiliary equation m2 + m + λ = 0 are 1
2(−1 ±

√
1 − 4λ ). When λ = 0

the general solution of the differential equation is c1 + c2e−x. The boundary conditions imply

c1 + c2 = 0 and c1 + c2e−2 = 0. Since the determinant of the coefficients is not 0, the only

solution of this homogeneous system is c1 = c2 = 0, in which case y = 0. When λ = 1
4 , the

general solution of the differential equation is c1e−x/2 + c2xe−x/2. The boundary conditions

imply c1 = 0 and c1 + 2c2 = 0, so c1 = c2 = 0 and y = 0. Similarly, if 0 < λ < 1
4 , the general

solution is

y = c1e
1
2 (−1+

√
1−4λ )x + c2e

1
2 (−1−

√
1−4λ )x.

In this case the boundary conditions again imply c1 = c2 = 0, and so y = 0. Now, for λ > 1
4 ,

the general solution of the differential equation is

y = c1e
−x/2 cos

√
4λ − 1 x + c2e

−x/2 sin
√

4λ − 1 x.

The condition y(0) = 0 implies c1 = 0 so y = c2e−x/2 sin
√

4λ − 1 x. From

y(2) = c2e
−1 sin 2

√
4λ − 1 = 0

we see that the eigenvalues are determined by 2
√

4λ − 1 = nπ for n = 1, 2, 3, . . . . Thus,

the eigenvalues are n2π2/42 + 1/4 for n = 1, 2, 3, . . . , with corresponding eigenfunctions

e−x/2 sin(nπx/2).

(b) The self-adjoint form is
d

dx
[exy′] + λexy = 0.

(c) An orthogonality relation is
∫ 2

0
ex

(
e−x/2 sin

mπ

2
x

) (
e−x/2 cos

nπ

2
x

)
dx =

∫ 2

0
sin

mπ

2
x cos

nπ

2
x dx = 0.

9. To obtain the self-adjoint form we note that an integrating factor is (1/x)e
∫

(1−x)dx/x = e−x. Thus,

the differential equation is

xe−xy′′ + (1 − x)e−xy′ + ne−xy = 0
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and the self-adjoint form is
d

dx

[
xe−xy′

]
+ ne−xy = 0.

Identifying the weight function p(x) = e−x and noting that since r(x) = xe−x, r(0) = 0 and

limx→∞ r(x) = 0, we have the orthogonality relation
∫ ∞

0
e−xLm(x)Ln(x) dx = 0, m &= n.

10. To obtain the self-adjoint form we note that an integrating factor is e
∫
−2x dx = e−x2

. Thus, the

differential equation is

e−x2
y′′ − 2xe−x2

y′ + 2ne−x2
y = 0

and the self-adjoint form is
d

dx

[
e−x2

y′
]

+ 2ne−x2
y = 0.

Identifying the weight function p(x) = e−x2
and noting that since r(x) = e−x2

, limx→−∞ r(x) =

limx→∞ r(x) = 0, we have the orthogonality relation
∫ ∞

−∞
e−x2

Hm(x)Hn(x) dx = 0, m &= n.

11. (a) The differential equation is

(1 + x2)y′′ + 2xy′ +
λ

1 + x2 y = 0.

Letting x = tan θ we have θ = tan−1 x and

dy

dx
=

dy

dθ

dθ

dx
=

1

1 + x2

dy

dθ

d2y

dx2 =
d

dx

[
1

1 + x2

dy

dθ

]

=
1

1 + x2

(
d2y

dθ2

dθ

dx

)

− 2x

(1 + x2)2
dy

dθ

=
1

(1 + x2)2
d2y

dθ2 − 2x

(1 + x2)2
dy

dθ
.

The differential equation can then be written in terms of y(θ) as

(1 + x2)

[
1

(1 + x2)2
d2y

dθ2 − 2x

(1 + x2)2
dy

dθ

]

+ 2x

[
1

1 + x2

dy

dθ

]

+
λ

1 + x2 y

=
1

1 + x2

d2y

dθ2 +
λ

1 + x2 y = 0

or
d2y

dθ2 + λy = 0.
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The boundary conditions become y(0) = y(π/4) = 0. For λ ≤ 0 the only solution of the

boundary-value problem is y = 0. For λ = α2 > 0 the general solution of the differential

equation is y = c1 cos αθ + c2 sin αθ. The condition y(0) = 0 implies c1 = 0 so y = c2 sin αθ.

Now the condition y(π/4) = 0 implies c2 sin απ/4 = 0. For c2 &= 0 this condition will hold

when απ/4 = nπ or λ = α2 = 16n2, where n = 1, 2, 3, . . . . These are the eigenvalues with

corresponding eigenfunctions sin 4nθ = sin(4n tan−1 x), for n = 1, 2, 3, . . . .

(b) An orthogonality relation is
∫ 1

0

1

x2 + 1
sin(4m tan−1 x) sin(4n tan−1 x) dx = 0, m &= n.

12. (a) Letting λ = α2 the differential equation becomes x2y′′ + xy′ + (α2x2 − 1)y = 0. This is the

parametric Bessel equation with ν = 1. The general solution is

y = c1J1(αx) + c2Y1(αx).

Since Y is unbounded at 0 we must have c2 = 0, so that y = c1J1(αx). The condition J1(3α) = 0

defines the eigenvalues λn = α2
n for n = 1, 2, 3, . . . . The corresponding eigenfunctions are

J1(αnx).

(b) Using a CAS or Table 6.1 in Section 6.3 of the text to solve J1(3α) = 0 we find 3α1 = 3.8317,

3α2 = 7.0156, 3α3 = 10.1735, and 3α4 = 13.3237. The corresponding eigenvalues are λ1 =

α2
1 = 1.6313, λ2 = α2

2 = 5.4687, λ3 = α2
3 = 11.4999, and λ4 = α2

4 = 19.7245.

13. When λ = 0 the differential equation is r(x)y′′ + r′(x)y′ = 0. By inspection we see that y = 1 is a

solution of the boundary-value problem. Thus, λ = 0 is an eigenvalue.

14. (a) An orthogonality relation is
∫ 1

0
cos xmx cos xnx dx = 0

where xm &= xn are positive solutions of cotx = x.

(b) Referring to Problem 1 we use a CAS to compute
∫ 1

0
(cos 0.8603x)(cos 3.4256x) dx = −1.8771 × 10−6 ≈ 0.

15. (a) An orthogonality relation is
∫ 1

0
(xm cos xmx − sin xmx)(xn cos xnx − sin xnx) dx = 0

where xm &= xn are positive solutions of tanx = x.

(b) Referring to Problem 2 we use a CAS to compute
∫ 1

0
(4.4934 cos 4.4934x − sin 4.4934x)(7.7253 cos 7.7253x − sin 7.7253x) dx = −2.5650 × 10−4 ≈ 0.
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1. Identifying b = 3, we have α1 = 1.2772, α2 = 2.3385, α3 = 3.3912, and α4 = 4.4412.

2. By (6) in the text J ′
0(2α) = −J1(2α). Thus, J ′

0(2α) = 0 is equivalent to J1(2α). Then α1 = 1.9159,

α2 = 3.5078, α3 = 5.0867, and α4 = 6.6618.

3. The boundary condition indicates that we use (15) and (16) in the text. With b = 2 we obtain

ci =
2

4J2
1 (2αi)

∫ 2

0
xJ0(αix) dx

t = αix dt = αi dx

=
1

2J2
1 (2αi)

· 1

α2
i

∫ 2αi

0
tJ0(t) dt

=
1

2α2
i J

2
1 (2αi)

∫ 2αi

0

d

dt
[tJ1(t)] dt [From (5) in the text]

=
1

2α2
i J

2
1 (2αi)

tJ1(t)
∣∣∣∣
2αi

0

=
1

αiJ1(2αi)
.

Thus

f(x) =
∞∑

i=1

1

αiJ1(2αi)
J0(αix).

4. The boundary condition indicates that we use (19) and (20) in the text. With b = 2 we obtain

c1 =
2

4

∫ 2

0
x dx =

2

4

x2

2

∣∣∣∣
2

0
= 1,

ci =
2

4J2
0 (2αi)

∫ 2

0
xJ0(αix) dx

t = αix dt = αi dx

=
1

2J2
0 (2αi)

· 1

α2
i

∫ 2αi

0
tJ0(t) dt

=
1

2α2
i J

2
0 (2αi)

∫ 2αi

0

d

dt
[tJ1(t)] dt [From (5) in the text]

=
1

2α2
i J

2
0 (2αi)

tJ1(t)
∣∣∣∣
2αi

0

q

Fourier Cosine and Sine Seriesq11.5
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=
J1(2αi)

αiJ2
0 (2αi)

.

Now since J ′
0(2αi) = 0 is equivalent to J1(2αi) = 0 we conclude ci = 0 for i = 2, 3, 4, . . . . Thus

the expansion of f on 0 < x < 2 consists of a series with one nontrivial term:

f(x) = c1 = 1.

5. The boundary condition indicates that we use (17) and (18) in the text. With b = 2 and h = 1 we

obtain

ci =
2α2

i

(4α2
i + 1)J2

0 (2αi)

∫ 2

0
xJ0(αix) dx

t = αix dt = αi dx

=
2α2

i

(4α2
i + 1)J2

0 (2αi)
· 1

α2
i

∫ 2αi

0
tJ0(t) dt

=
2

(4α2
i + 1)J2

0 (2αi)

∫ 2αi

0

d

dt
[tJ1(t)] dt [From (5) in the text]

=
2

(4α2
i + 1)J2

0 (2αi)
tJ1(t)

∣∣∣∣
2αi

0

=
4αiJ1(2αi)

(4α2
i + 1)J2

0 (2αi)
.

Thus

f(x) = 4
∞∑

i=1

αiJ1(2αi)

(4α2
i + 1)J2

0 (2αi)
J0(αix).

6. Writing the boundary condition in the form

2J0(2α) + 2αJ ′
0(2α) = 0

we identify b = 2 and h = 2. Using (17) and (18) in the text we obtain

ci =
2α2

i

(4α2
i + 4)J2

0 (2αi)

∫ 2

0
xJ0(αix) dx

t = αix dt = αi dx

=
α2

i

2(α2
i + 1)J2

0 (2αi)
· 1

α2
i

∫ 2αi

0
tJ0(t) dt

=
1

2(α2
i + 1)J2

0 (2αi)

∫ 2αi

0

d

dt
[tJ1(t)] dt [From (5) in the text]

=
1

2(α2
i + 1)J2

0 (2αi)
tJ1(t)

∣∣∣∣
2αi

0

=
αiJ1(2αi)

(α2
i + 1)J2

0 (2αi)
.
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Thus

f(x) =
∞∑

i=1

αiJ1(2αi)

(α2
i + 1)J2

0 (2αi)
J0(αix).

7. The boundary condition indicates that we use (17) and (18) in the text. With n = 1, b = 4, and

h = 3 we obtain

ci =
2α2

i

(16α2
i − 1 + 9)J2

1 (4αi)

∫ 4

0
xJ1(αix)5x dx

t = αix dt = αi dx

=
5α2

i

4(2α2
i + 1)J2

1 (4αi)
· 1

α3
i

∫ 4αi

0
t2J1(t) dt

=
5

4αi(2α2
i + 1)J2

1 (4αi)

∫ 4αi

0

d

dt
[t2J2(t)] dt [From (5) in the text]

=
5

4αi(2α2
i + 1)J2

1 (4αi)
t2J2(t)

∣∣∣∣
4αi

0

=
20αiJ2(4αi)

(2α2
i + 1)J2

1 (4αi)
.

Thus

f(x) = 20
∞∑

i=1

αiJ2(4αi)

(2α2
i + 1)J2

1 (4αi)
J1(αix).

8. The boundary condition indicates that we use (15) and (16) in the text. With n = 2 and b = 1 we

obtain

c1 =
2

J2
3 (αi)

∫ 1

0
xJ2(αix)x2 dx

t = αix dt = αi dx

=
2

J2
3 (αi)

· 1

α4
i

∫ αi

0
t3J2(t) dt

=
2

α4
i J

2
3 (αi)

∫ αi

0

d

dt
[t3J3(t)] dt [From (5) in the text]

=
2

α4
i J

2
3 (αi)

t3J3(t)
∣∣∣∣
αi

0

=
2

αiJ3(αi)
.

Thus

f(x) = 2
∞∑

i=1

1

αiJ3(αi)
J2(αix).
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9. The boundary condition indicates that we use (19) and (20) in the text. With b = 3 we obtain

c1 =
2

9

∫ 3

0
xx2 dx =

2

9

x4

4

∣∣∣∣
3

0
=

9

2
,

ci =
2

9J2
0 (3αi)

∫ 3

0
xJ0(αix)x2 dx

t = αix dt = αi dx

=
2

9J2
0 (3αi)

· 1

α4
i

∫ 3αi

0
t3J0(t) dt

=
2

9α4
i J

2
0 (3αi)

∫ 3αi

0
t2

d

dt
[tJ1(t)] dt

u = t2 dv = d
dt [tJ1(t)] dt

du = 2t dt v = tJ1(t)

=
2

9α4
i J

2
0 (3αi)

(

t3J1(t)
∣∣∣∣
3αi

0
−2

∫ 3αi

0
t2J1(t) dt

)

.

With n = 0 in equation (6) in the text we have J ′
0(x) = −J1(x), so the boundary condition

J ′
0(3αi) = 0 implies J1(3αi) = 0. Then

ci =
2

9α4
i J

2
0 (3αi)

(

−2
∫ 3αi

0

d

dt

[
t2J2(t)

]
dt

)

=
2

9α4
i J

2
0 (3αi)

(

−2t2J2(t)
∣∣∣∣
3αi

0

)

=
2

9α4
i J

2
0 (3αi)

[
−18α2

i J2(3αi)
]

=
−4J2(3αi)

α2
i J

2
0 (3αi)

.

Thus

f(x) =
9

2
− 4

∞∑

i=1

J2(3αi)

α2
i J

2
0 (3αi)

J0(αix).

10. The boundary condition indicates that we use (15) and (16) in the text. With b = 1 it follows that

ci =
2

J2
1 (αi)

∫ 1

0
x

(
1 − x2

)
J0(αix) dx

=
2

J2
1 (αi)

[∫ 1

0
xJ0(αix) dx −

∫ 1

0
x3J0(αix) dx

]
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t = αix dt = αi dx

=
2

J2
1 (αi)

[
1

α2
i

∫ αi

0
tJ0(t) dt − 1

α4
i

∫ αi

0
t3J0(t) dt

]

=
2

J2
1 (αi)

[
1

α2
i

∫ αi

0

d

dt
[tJ1(t)] dt − 1

α4
i

∫ αi

0
t2

d

dt
[tJ1(t)] dt

]

u = t2 dv = d
dt [tJ1(t)] dt

du = 2t dt v = tJ1(t)

=
2

J2
1 (αi)

[
1

α2
i
tJ1(t)

∣∣∣∣
αi

0
− 1

α4
i

(
t3J1(t)

∣∣∣∣
αi

0
− 2

∫ αi

0
t2J1(t) dt

)]

=
2

J2
1 (αi)

[
J1(αi)

αi
− J1(αi)

αi
+

2

α4
i

∫ αi

0

d

dt

[
t2J2(t)

]
dt

]

=
2

J2
1 (αi)

[
2

α4
i
t2J2(t)

∣∣∣∣
αi

0

]

=
4J2(αi)

α2
i J

2
1 (αi)

.

Thus

f(x) = 4
∞∑

i=1

J2(αi)

α2
i J

2
1 (αi)

J0(αix).

11. (a)

(b) Using FindRoot in Mathematica we find the roots x1 = 2.9496, x2 = 5.8411, x3 = 8.8727,

x4 = 11.9561, and x5 = 15.0624.

(c) Dividing the roots in part (b) by 4 we find the eigenvalues α1 = 0.7374, α2 = 1.4603,

α3 = 2.2182, α4 = 2.9890, and α5 = 3.7656.

(d) The next five eigenvalues are α6 = 4.5451, α7 = 5.3263, α8 = 6.1085, α9 = 6.8915, and

α10 = 7.6749.

12. (a) From Problem 7, the coefficients of the Fourier-Bessel series are

ci =
20αiJ2(4αi)

(2α2
i + 1)J2

1 (4αi)
.
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Using a CAS we find c1 = 26.7896, c2 = −12.4624, c3 = 7.1404, c4 = −4.68705, and

c5 = 3.35619.

(b)

(c)

13. Since f is expanded as a series of Bessel functions, J1(αix) and J1 is an odd function, the series

should represent an odd function.

14. (a) Since J0 is an even function, a series expansion of a function

defined on (0, 2) would converge to the even extension of the

function on (−2, 0).

(b) In Section 6.3 we saw that J ′
2(x) = 2J2(x)/x − J3(x). Since J2 is even

and J3 is odd we see that

J ′
2(−x) = 2J2(−x)/(−x) − J3(−x)

= −2J2(x)/x + J3(x) = −J ′
2(x),

so that J ′
2 is an odd function. Now, if f(x) = 3J2(x) + 2xJ ′

2(x), we see

that
f(−x) = 3J2(−x) − 2xJ ′

2(−x)

= 3J2(x) + 2xJ ′
2(x) = f(x),

so that f is an even function. Thus, a series expansion of a function

defined on (0, 4) would converge to the even extension of the function on (−4, 0).
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15. We compute

c0 =
1

2

∫ 1

0
xP0(x) dx =

1

2

∫ 1

0
x dx =

1

4

c1 =
3

2

∫ 1

0
xP1(x) dx =

3

2

∫ 1

0
x2 dx =

1

2

c2 =
5

2

∫ 1

0
xP2(x) dx =

5

2

∫ 1

0

1

2
(3x3 − x)dx =

5

16

c3 =
7

2

∫ 1

0
xP3(x) dx =

7

2

∫ 1

0

1

2
(5x4 − 3x2)dx = 0

c4 =
9

2

∫ 1

0
xP4(x) dx =

9

2

∫ 1

0

1

8
(35x5 − 30x3 + 3x)dx = − 3

32

c5 =
11

2

∫ 1

0
xP5(x) dx =

11

2

∫ 1

0

1

8
(63x6 − 70x4 + 15x2)dx = 0

c6 =
13

2

∫ 1

0
xP6(x) dx =

13

2

∫ 1

0

1

16
(231x7 − 315x5 + 105x3 − 5x)dx =

13

256
.

Thus

f(x) =
1

4
P0(x) +

1

2
P1(x) +

5

16
P2(x) − 3

32
P4(x) +

13

256
P6(x) + · · · .

The figure above is the graph of S5(x) = 1
4P0(x) + 1

2P1(x) + 5
16P2(x) − 3

32P4(x) + 13
256P6(x).

16. We compute

c0 =
1

2

∫ 1

−1
exP0(x) dx =

1

2

∫ 1

−1
exdx =

1

2
(e − e−1)

c1 =
3

2

∫ 1

−1
exP1(x) dx =

3

2

∫ 1

−1
xex dx = 3e−1

c2 =
5

2

∫ 1

−1
exP2(x) dx =

5

2

∫ 1

−1

1

2
(3x2ex − ex)dx

=
5

2
(e − 7e−1)

c3 =
7

2

∫ 1

−1
exP3(x) dx =

7

2

∫ 1

−1

1

2
(5x3ex − 3xex)dx =

7

2
(−5e + 37e−1)

c4 =
9

2

∫ 1

−1
exP4(x) dx =

9

2

∫ 1

−1

1

8
(35x4ex − 30x2ex + 3ex)dx =

9

2
(36e − 266e−1).
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Thus

f(x) =
1

2
(e − e−1)P0(x) + 3e−1P1(x) +

5

2
(e − 7e−1)P2(x)

+
7

2
(−5e + 37e−1)P3(x) +

9

2
(36e − 266e−1)P4(x) + · · · .

The figure above is the graph of S5(x).

17. Using cos2 θ = 1
2(cos 2θ + 1) we have

P2(cos θ) =
1

2
(3 cos2 θ − 1) =

3

2
cos2 θ − 1

2

=
3

4
(cos 2θ + 1) − 1

2
=

3

4
cos 2θ +

1

4
=

1

4
(3 cos 2θ + 1).

18. From Problem 17 we have

P2(cos θ) =
1

4
(3 cos 2θ + 1) or cos 2θ =

4

3
P2(cos θ) − 1

3
.

Then, using P0(cos θ) = 1,

F (θ) = 1 − cos 2θ = 1 −
[

4

3
P2(cos θ) − 1

3

]

=
4

3
− 4

3
P2(cos θ) =

4

3
P0(cos θ) − 4

3
P2(cos θ).

19. If f is an even function on (−1, 1) then
∫ 1

−1
f(x)P2n(x) dx = 2

∫ 1

0
f(x)P2n(x) dx

and ∫ 1

−1
f(x)P2n+1(x) dx = 0.

Thus

c2n =
2(2n) + 1

2

∫ 1

−1
f(x)P2n(x) dx =

4n + 1

2

(

2
∫ 1

0
f(x)P2n(x) dx

)

= (4n + 1)
∫ 1

0
f(x)P2n(x) dx,

c2n+1 = 0, and

f(x) =
∞∑

n=0

c2nP2n(x).

20. If f is an odd function on (−1, 1) then
∫ 1

−1
f(x)P2n(x) dx = 0

and
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∫ 1

−1
f(x)P2n+1(x) dx = 2

∫ 1

0
f(x)P2n+1(x) dx.

Thus

c2n+1 =
2(2n + 1) + 1

2

∫ 1

−1
f(x)P2n+1(x) dx =

4n + 3

2

(

2
∫ 1

0
f(x)P2n+1(x) dx

)

= (4n + 3)
∫ 1

0
f(x)P2n+1(x) dx,

c2n = 0, and

f(x) =
∞∑

n=0

c2n+1P2n+1(x).

21. From (26) in Problem 19 in the text we find

c0 =
∫ 1

0
xP0(x) dx =

∫ 1

0
x dx =

1

2
,

c2 = 5
∫ 1

0
xP2(x) dx = 5

∫ 1

0

1

2
(3x3 − x)dx =

5

8
,

c4 = 9
∫ 1

0
xP4(x) dx = 9

∫ 1

0

1

8
(35x5 − 30x3 + 3x)dx = − 3

16
,

and

c6 = 13
∫ 1

0
xP6(x) dx = 13

∫ 1

0

1

16
(231x7 − 315x5 + 105x3 − 5x)dx =

13

128
.

Hence, from (25) in the text,

f(x) =
1

2
P0(x) +

5

8
P2(x) − 3

16
P4(x) +

13

128
P6 + · · · .

On the interval −1 < x < 1 this series represents the function f(x) = |x|.

22. From (28) in Problem 20 in the text we find

c1 = 3
∫ 1

0
P1(x) dx = 3

∫ 1

0
x dx =

3

2
,

c3 = 7
∫ 1

0
P3(x) dx = 7

∫ 1

0

1

2

(
5x3 − 3x

)
dx = −7

8
,

c5 = 11
∫ 1

0
P5(x) dx = 11

∫ 1

0

1

8

(
63x5 − 70x3 + 15x

)
dx =

11

16

and

c7 = 15
∫ 1

0
P7(x) dx = 15

∫ 1

0

1

16

(
429x7 − 693x5 + 315x3 − 35x

)
dx = − 75

128
.
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Hence, from (27) in the text,

f(x) =
3

2
P1(x) − 7

8
P3(x) +

11

16
P5(x) − 75

128
P7(x) + · · · .

On the interval −1 < x < 1 this series represents the odd function

f(x) =

{
−1, −1 < x < 0

1, 0 < x < 1.

23. Since there is a Legendre polynomial of any specified degree, every polynomial can be represented

as a finite linear combination of Legendre polynomials.

24. For f(x) = x2 we have

c0 =
1

2

∫ 1

−1
x2 · 1 dx =

1

3

c1 =
3

2

∫ 1

−1
x2 · x dx = 0

c2 =
5

2

∫ 1

−1
x2 · 1

2
(3x2 − 1)dx =

2

3
,

so

x2 =
1

3
P0(x) +

2

3
P2(x).

For f(x) = x3 we have

c0 =
1

2

∫ 1

−1
x3 · 1 dx = 0

c1 =
3

2

∫ 1

−1
x3 · x dx =

3

5

c2 =
5

2

∫ 1

−1
x3 · 1

2
(3x2 − 1) dx = 0

c3 =
7

2

∫ 1

−1
x3 · 1

2
(5x3 − 3x) dx =

2

5
,

so

x3 =
3

5
P1(x) +

2

5
P3(x).
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1. True, since
∫ π
−π(x2 − 1)x5 dx = 0

2. Even, since if f and g are odd then h(−x) = f(−x)g(−x) = −f(x)[−g(x)] = f(x)g(x) = h(x)

3. Cosine, since f is even

4. True

5. False; the Sturm-Liouville problem,

d

dx
[r(x)y′] + λp(x)y = 0, y′(a) = 0, y′(b) = 0,

on the interval [a, b], has eigenvalue λ = 0.

6. Periodically extending the function we see that at x = −1 the function converges to 1
2(−1+0) = −1

2 ;

at x = 0 it converges to 1
2(0 + 1) = 1

2 , and at x = 1 it converges to 1
2(−1 + 0) = −1

2 .

7. The Fourier series will converge to 1, the cosine series to 1, and the sine series to 0 at x = 0.

Respectively, this is because the rule (x2 + 1) defining f(x) determines a continuous function on

(−3, 3), the even extension of f to (−3, 0) is continuous at 0, and the odd extension of f to (−3, 0)

approaches −1 as x approaches 0 from the left.

8. cos 5x, since the general solution is y = c1 cos αx + c2 sin αx and y′(0) = 0 implies c2 = 0.

9. Since the coefficient of y in the differential equation is n2, the weight function is the integrating

factor
1

a(x)
e
∫

(b/a)dx =
1

1 − x2 e
∫
− x

1−x2 dx
=

1

1 − x2 e
1
2 ln(1−x2) =

√
1 − x2

1 − x2 =
1√

1 − x2

on the interval [−1, 1]. The orthogonality relation is
∫ 1

−1

1√
1 − x2

Tm(x)Tn(x) dx = 0, m #= n.

10. Since Pn(x) is orthogonal to P0(x) = 1 for n > 0,
∫ 1

−1
Pn(x) dx =

∫ 1

−1
P0(x)Pn(x) dx = 0.

11. We know from a half-angle formula in trigonometry that cos2 x = 1
2 + 1

2 cos 2x, which is a cosine

series.

12. (a) For m #= n
∫ L

0
sin

(2n + 1)π

2L
x sin

(2m + 1)π

2L
x dx =

1

2

∫ L

0

(
cos

n − m

L
πx − cos

n + m + 1

L
πx

)
dx = 0.

q

11.R Chapter 11 in Reviewq
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(b) From
∫ L

0
sin2 (2n + 1)π

2L
x dx =

∫ L

0

(
1

2
− 1

2
cos

(2n + 1)π

L
x

)

dx =
L

2

we see that ∥∥∥∥∥sin
(2n + 1)π

2L
x

∥∥∥∥∥ =

√
L

2
.

13. Since

a0 =
∫ 0

−1
(−2x) dx = 1,

an =
∫ 0

−1
(−2x) cos nπx dx =

2

n2π2 [(−1)n − 1],

and

bn =
∫ 0

−1
(−2x) sin nπx dx =

4

nπ
(−1)n

for n = 1, 2, 3, . . . we have

f(x) =
1

2
+

∞∑

n=1

(
2

n2π2 [(−1)n − 1] cos nπx +
4

nπ
(−1)n sin nπx

)
.

14. Since

a0 =
∫ 1

−1
(2x2 − 1) dx = −2

3
,

an =
∫ 1

−1
(2x2 − 1) cos nπx dx =

8

n2π2 (−1)n,

and

bn =
∫ 1

−1
(2x2 − 1) sin nπx dx = 0

for n = 1, 2, 3, . . . we have

f(x) = −1

3
+

∞∑

n=1

8

n2π2 (−1)n cos nπx.

15. (a) Since

a0 = 2
∫ 1

0
e−xdx = 2(1 − e−1)

and

an = 2
∫ 1

−1
e−x cos nπx dx =

2

1 + n2π2 [1 − (−1)ne−1]

for n = 1, 2, 3, . . . we have

f(x) = 1 − e−1 + 2
∞∑

n=1

1 − (−1)ne−1

1 + n2π2 cos nπx.
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(b) Since

bn = 2
∫ 1

0
e−x sin nπx dx =

2nπ

1 + n2π2 [1 − (−1)ne−1]

for n = 1, 2, 3, . . . we have

f(x) =
∞∑

n=1

2nπ

1 + n2π2 [1 − (−1)ne−1] sin nπx.

16.

f(x) = |x|− x f(x) = 2x2 − 1 f(x) = e−|x| f(x) =






e−x, 0 < x < 1

0, x = 0

−ex, −1 < x < 0

17. The cosine series of f in Problem 15 converges to F (x) on the interval −1 < x < 1 since F is the

even extension of f to the interval.

18. Expanding in a full Fourier series we have

a0 =
1

2

(∫ 2

0
x dx +

∫ 4

2
2 dx

)

= 3

an =
1

2

(∫ 2

0
x cos

nπx

2
dx +

∫ 4

2
2 cos

nπx

2
dx

)

= 2
(−1)n − 1

n2π2

bn =
1

2

(∫ 2

0
x sin

nπx

2
dx +

∫ 4

2
2 sin

nπx

2
dx

)

= 4
−1

nπ

so

f(x) =
3

2
+ 2

∞∑

n=1

(
(−1)n − 1

n2π2 cos
nπx

2
− 2

nπ
sin

nπx

2

)

.

19. For λ = α2 > 0 a general solution of the given differential equation is

y = c1 cos(3α ln x) + c2 sin(3α ln x)

and

y′ = −3c1α

x
sin(3α ln x) +

3c2α

x
cos(3α ln x).

Since ln 1 = 0, the boundary condition y′(1) = 0 implies c2 = 0. Therefore

y = c1 cos(3α ln x).
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Using ln e = 1 we find that y(e) = 0 implies c1 cos 3α = 0 or 3α = (2n − 1)π/2, for

n = 1, 2, 3, . . . . The eigenvalues are λ = α2 = (2n− 1)2π2/36 with corresponding eigenfunctions

cos[(2n − 1)π(ln x)/2] for n = 1, 2, 3, . . . .

20. To obtain the self-adjoint form of the differential equation in Problem 19 we note that an integrating

factor is (1/x2)e
∫

dx/x = 1/x. Thus the weight function is 1/x and an orthogonality relation is
∫ e

1

1

x
cos

(
2n − 1

2
π ln x

)
cos

(
2m − 1

2
π ln x

)
dx = 0, m #= n.

21. The boundary condition indicates that we use (15) and (16) of Section 11.5 in the text. With b = 4

we obtain

ci =
2

16J2
1 (4αi)

∫ 4

0
xJ0(αix)f(x) dx

=
1

8J2
1 (4αi)

∫ 2

0
xJ0(αix) dx

t = αix dt = αi dx

=
1

8J2
1 (4αi)

· 1

α2
i

∫ 2αi

0
tJ0(t) dt

=
1

8J2
1 (4αi)

∫ 2αi

0

d

dt
[tJ1(t)] dt [From (5) in 11.5 in the text]

=
1

8J2
1 (4αi)

tJ1(t)
∣∣∣∣
2αi

0
=

J1(2αi)

4αiJ2
1 (4αi)

.

Thus

f(x) =
1

4

∞∑

i=1

J1(2αi)

αiJ2
1 (4αi)

J0(αix).

22. Since f(x) = x4 is a polynomial in x, an expansion of f in Legendre polynomials in x must

terminate with the term having the same degree as f . Using the fact that x4P1(x) and x4P3(x) are

odd functions, we see immediately that c1 = c3 = 0. Now

c0 =
1

2

∫ 1

−1
x4P0(x) dx =

1

2

∫ 1

−1
x4dx =

1

5

c2 =
5

2

∫ 1

−1
x4P2(x) dx =

5

2

∫ 1

−1

1

2
(3x6 − x4)dx =

4

7

c4 =
9

2

∫ 1

−1
x4P4(x) dx =

9

2

∫ 1

−1

1

8
(35x8 − 30x6 + 3x4)dx =

8

35
.

Thus

f(x) =
1

5
P0(x) +

4

7
P2(x) +

8

35
P4(x).
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23. (a) fe(x) + fo(x) =
f(x) + f(−x)

2
+

f(x) − f(−x)

2
=

2f(x)

2
= f(x)

(b) fe(−x) =
f(−x) + f(−(−x))

2
=

f(x) + f(−x)

2
= fe(x)

fo(−x) =
f(−x) − f(−(−x))

2
= −f(x) − f(−x)

2
= −fo(x)

24. Identifying

fe(x) =
f(x) + f(−x)

2
=

ex + e−x

2
and fo(x) =

f(x) − f(−x)

2
=

ex − e−x

2
,

we have

ex =
ex + e−x

2
+

ex − e−x

2
.

25. The details of the proof are a little complicated, but follow easily from the graph of a periodic

function with a assumed to be between 0 and 2p. It is then seen that this restriction on a is not

used in the proof. From the substitution u = x + 2p, we have
∫ a

0
f(x) dx =

∫ a+2p

2p
f(u − 2p)du.

But, since f is 2p-periodic, f(u − 2p) = f(u) and
∫ a

0
f(x)dx =

∫ a+2p

2p
f(u)du =

∫ a+2p

2p
f(x)dx.

Then
∫ a+2p

a
f(x)dx =

∫ 2p

a
f(x)dx +

∫ a+2p

2p
f(x)dx =

∫ 2p

a
f(x)dx +

∫ a

0
f(x)dx =

∫ 2p

0
f(x)dx.
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1. Substituting u(x, y) = X(x)Y (y) into the partial differential equation yields X ′Y = XY ′. Separat-

ing variables and using the separation constant −λ, where λ "= 0, we obtain

X ′

X
=

Y ′

Y
= −λ.

When λ "= 0

X ′ + λX = 0 and Y ′ + λY = 0

so that

X = c1e
−λx and Y = c2e

−λy.

A particular product solution of the partial differential equation is

u = XY = c3e
−λ(x+y), λ "= 0.

When λ = 0 the differential equations become X ′ = 0 and Y ′ = 0, so in this case X = c4, Y = c5,

and u = XY = c6.

2. Substituting u(x, y) = X(x)Y (y) into the partial differential equation yields X ′Y + 3XY ′ = 0.

Separating variables and using the separation constant −λ we obtain

X ′

−3X
=

Y ′

Y
= −λ.

When λ "= 0

X ′ − 3λX = 0 and Y ′ + λY = 0

so that

X = c1e
3λx and Y = c2e

−λy.

A particular product solution of the partial differential equation is

u = XY = c3e
λ(3x−y).

Boundary-Value Problems

in Rectangular Coordinates12
12.1 Separable Partial Differential Equationsq
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CHAPTER 12 BOUNDARY-VALUE PROBLEMS IN RECTANGULAR COORDINATES

When λ = 0 the differential equations become X ′ = 0 and Y ′ = 0, so in this case X = c4, Y = c5,

and u = XY = c6.

3. Substituting u(x, y) = X(x)Y (y) into the partial differential equation yields X ′Y + XY ′ = XY .

Separating variables and using the separation constant −λ we obtain

X ′

X
=

Y − Y ′

Y
= −λ.

Then

X ′ + λX = 0 and Y ′ − (1 + λ)Y = 0

so that

X = c1e
−λx and Y = c2e

(1+λ)y.

A particular product solution of the partial differential equation is

u = XY = c3e
y+λ(y−x).

4. Substituting u(x, y) = X(x)Y (y) into the partial differential equation yields X ′Y = XY ′ + XY .

Separating variables and using the separation constant −λ we obtain

X ′

X
=

Y + Y ′

Y
= −λ.

Then

X ′ + λX = 0 and y′ + (1 + λ)Y = 0

so that

X = c1e
−λx and Y = c2e

−(1+λ)y = 0.

A particular product solution of the partial differential equation is

u = XY = c3e
−y−λ(x+y).

5. Substituting u(x, y) = X(x)Y (y) into the partial differential equation yields xX ′Y = yXY ′. Sepa-

rating variables and using the separation constant −λ we obtain

xX ′

X
=

yY ′

Y
= −λ.

When λ "= 0

xX ′ + λX = 0 and yY ′ + λY = 0

so that

X = c1x
−λ and Y = c2y

−λ.

A particular product solution of the partial differential equation is

u = XY = c3(xy)−λ.
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When λ = 0 the differential equations become X ′ = 0 and Y ′ = 0, so in this case X = c4, Y = c5,

and u = XY = c6.

6. Substituting u(x, y) = X(x)Y (y) into the partial differential equation yields yX ′Y + xXY ′ = 0.

Separating variables and using the separation constant −λ we obtain

X ′

xX
= − Y ′

yY
= −λ.

When λ "= 0

X ′ + λxX = 0 and Y ′ − λyY = 0

so that

X = c1e
λx2/2 and Y = c2e

−λy2/2.

A particular product solution of the partial differential equation is

u = XY = c3e
λ(x2−y2)/2.

When λ = 0 the differential equations become X ′ = 0 and Y ′ = 0, so in this case X = c4, Y = c5,

and u = XY = c6.

7. Substituting u(x, y) = X(x)Y (y) into the partial differential equation yields X ′′Y +X ′Y ′ +XY ′′ =

0′, which is not separable.

8. Substituting u(x, y) = X(x)Y (y) into the partial differential equation yields yX ′Y ′ + XY = 0.

Separating variables and using the separation constant −λ we obtain

X ′

X
= − Y

yY ′ = −λ.

When λ "= 0

X ′ + λX = 0 and λyY ′ − Y = 0

so that

X = c1e
−λx and Y = c2y

1/λ.

A particular product solution of the partial differential equation is

u = XY = c3e
−λxy1/λ.

In this case λ = 0 yields no solution.

9. Substituting u(x, t) = X(x)T (t) into the partial differential equation yields kX ′′T − XT = XT ′.

Separating variables and using the separation constant −λ we obtain

kX ′′ − X

X
=

T ′

T
= −λ.

Then

X ′′ +
λ − 1

k
X = 0 and T ′ + λT = 0.
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CHAPTER 12 BOUNDARY-VALUE PROBLEMS IN RECTANGULAR COORDINATES

The second differential equation implies T (t) = c1e−λt. For the first differential equation we consider

three cases:

I. If (λ − 1)/k = 0 then λ = 1, X ′′ = 0, and X(x) = c2x + c3, so

u = XT = e−t(A1x + A2).

II. If (λ− 1)/k = −α2 < 0, then λ = 1− kα2, X ′′ −α2X = 0, and X(x) = c4 cosh αx + c5 sinh αx,

so

u = XT = (A3 cosh αx + A4 sinh αx)e−(1−kα2)t.

III. If (λ− 1)/k = α2 > 0, then λ = 1 + λα2, X ′′ + α2X = 0, and X(x) = c6 cos αx + c7 sin αx, so

u = XT = (A5 cos αx + A6 sin αx)e−(1+λα2)t.

10. Substituting u(x, t) = X(x)T (t) into the partial differential equation yields kX ′′T = XT ′. Sepa-

rating variables and using the separation constant −λ we obtain

X ′′

X
=

T ′

kT
= −λ.

Then

X ′′ + λX = 0 and T ′ + λkT = 0.

The second differential equation implies T (t) = c1e−λkt. For the first differential equation we

consider three cases:

I. If λ = 0 then X ′′ = 0 and X(x) = c2x + c3, so

u = XT = A1x + A2.

II. If λ = −α2 < 0, then X ′′ − α2X = 0, and X(x) = c4 cosh αx + c5 sinh αx, so

u = XT = (A3 cosh αx + A4 sinh αx)ekα2t.

III. If λ = α2 > 0, then X ′′ + α2X = 0, and X(x) = c6 cos αx + c7 sin αx, so

u = XT = (A5 cos αx + A6 sin αx)e−kα2t.

11. Substituting u(x, t) = X(x)T (t) into the partial differential equation yields a2X ′′T = XT ′′. Sepa-

rating variables and using the separation constant −λ we obtain

X ′′

X
=

T ′′

a2T
= −λ.

Then

X ′′ + λX = 0 and T ′′ + a2λT = 0.

We consider three cases:
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I. If λ = 0 then X ′′ = 0 and X(x) = c1x + c2. Also, T ′′ = 0 and T (t) = c3t + c4, so

u = XT = (c1x + c2)(c3t + c4).

II. If λ = −α2 < 0, then X ′′−α2X = 0, and X(x) = c5 cosh αx+c6 sinh αx. Also, T ′′−α2a2T = 0

and T (t) = c7 cosh αat + c8 sinh αat, so

u = XT = (c5 cosh αx + c6 sinh αx)(c7 cosh αat + c8 sinh αat).

III. If λ = α2 > 0, then X ′′ + α2X = 0, and X(x) = c9 cos αx + c10 sin αx. Also, T ′′ + α2a2T = 0

and T (t) = c11 cos αat + c12 sin αat, so

u = XT = (c9 cos αx + c10 sin αx)(c11 cos αat + c12 sin αat).

12. Substituting u(x, t) = X(x)T (t) into the partial differential equation yields a2X ′′T = XT ′′+2kXT ′.

Separating variables and using the separation constant −λ we obtain

X ′′

X
=

T ′′ + 2kT ′

a2T
= −λ.

Then

X ′′ + λX = 0 and T ′′ + 2kT ′ + a2λT = 0.

We consider three cases:

I. If λ = 0 then X ′′ = 0 and X(x) = c1x + c2. Also, T ′′ + 2kT ′ = 0 and T (t) = c3 + c4e−2kt, so

u = XT = (c1x + c2)(c3 + c4e
−2kt).

II. If λ = −α2 < 0, then X ′′−α2X = 0, and X(x) = c5 cosh αx+c6 sinh αx. The auxiliary equation

of T ′′+2kT ′−α2a2T = 0 is m2+2km−α2a2 = 0. Solving for m we obtain m = −k±
√

k2 + α2a2 ,

so T (t) = c7e(−k+
√

k2+α2a2 )t + c8e(−k−
√

k2+α2a2 )t. Then

u = XT = (c5 cosh αx + c6 sinh αx)(c7e
(−k+

√
k2+α2a2 )t + c8e

(−k−
√

k2+α2a2 )t.

III. If λ = α2 > 0, then X ′′ + α2X = 0, and X(x) = c9 cos αx + c10 sin αx. The auxiliary equation

of T ′′ + 2kT ′ + α2a2T = 0 is m2 + 2km + α2a2 = 0. Solving for m we obtain

m = −k ±
√

k2 − α2a2 . We consider three possibilities for the discriminant k2 − α2a2:

(i) If k2 − α2a2 = 0 then T (t) = c11e−kt + c12te−kt and

u = XT = (c9 cos αx + c10 sin αx)(c11e
−kt + c12te

−kt).

From k2 − α2a2 = 0 we have α = k/a so the solution can be written

u = XT = (c9 cos kx/a + c10 sin kx/a)(c11e
−kt + c12te

−kt).

(ii) If k2 − α2a2 < 0 then T (t) = e−kt
(
c13 cos

√
α2a2 − k2 t + c14 sin

√
α2a2 − k2 t

)
and

u = XT = (c9 cos αx + c10 sin αx)e−kt
(
c13 cos

√
α2a2 − k2 t + c14 sin

√
α2a2 − k2 t

)
.
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CHAPTER 12 BOUNDARY-VALUE PROBLEMS IN RECTANGULAR COORDINATES

(iii) If k2 − α2a2 > 0 then T (t) = c15e(−k+
√

k2−α2a2 )t + c16e(−k−
√

k2−α2a2 )t and

u = XT = (c9 cos αx + c10 sin αx)
(
c15e

(−k+
√

k2−α2a2 )t + c16e
(−k−

√
k2−α2a2 )t

)
.

13. Substituting u(x, y) = X(x)Y (y) into the partial differential equation yields X ′′Y + XY ′′ = 0.

Separating variables and using the separation constant −λ we obtain

−X ′′

X
=

Y ′′

Y
= −λ.

Then

X ′′ − λX = 0 and Y ′′ + λY = 0.

We consider three cases:

I. If λ = 0 then X ′′ = 0 and X(x) = c1x + c2. Also, Y ′′ = 0 and Y (y) = c3y + c4 so

u = XY = (c1x + c2)(c3y + c4).

II. If λ = −α2 < 0 then X ′′ + α2X = 0 and X(x) = c5 cos αx + c6 sin αx. Also, Y ′′ −α2Y = 0 and

Y (y) = c7 cosh αy + c8 sinh αy so

u = XY = (c5 cos αx + c6 sin αx)(c7 cosh αy + c8 sinh αy).

III. If λ = α2 > 0 then X ′′ − α2X = 0 and X(x) = c9 cosh αx + c10 sinh αx. Also, Y ′′ + α2Y = 0

and Y (y) = c11 cos αy + c12 sin αy so

u = XY = (c9 cosh αx + c10 sinh αx)(c11 cos αy + c12 sin αy).

14. Substituting u(x, y) = X(x)Y (y) into the partial differential equation yields x2X ′′Y + XY ′′ = 0.

Separating variables and using the separation constant −λ we obtain

−x2X ′′

X
=

Y ′′

Y
= −λ.

Then

x2X ′′ − λX = 0 and Y ′′ + λY = 0.

We consider three cases:

I. If λ = 0 then x2X ′′ = 0 and X(x) = c1x + c2. Also, Y ′′ = 0 and Y (y) = c3y + c4 so

u = XY = (c1x + c2)(c3y + c4).

II. If λ = −α2 < 0 then x2X ′′+α2X = 0 and Y ′′−α2Y = 0. The solution of the second differential

equation is Y (y) = c5 cosh αy + c6 sinh αy. The first equation is Cauchy-Euler with auxiliary

equation m2 − m + α2 = 0. Solving for m we obtain m = 1
2 ± 1

2

√
1 − 4α2 . We consider three

possibilities for the discriminant 1 − 4α2.
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(i) If 1 − 4α2 = 0 then X(x) = c7x1/2 + c8x1/2 ln x and

u = XY = x1/2(c7 + c8 ln x)(c5 cosh αy + c6 sinh αy).

(ii) If 1 − 4α2 < 0 then X(x) = x1/2
[
c9 cos

(√
4α2 − 1 ln x

)
+ c10 sin

(√
4α2 − 1 ln x

)]
and

u = XY = x1/2
[
c9 cos

(√
4α2 − 1 ln x

)
+ c10 sin

(√
4α2 − 1 ln x

)]
(c5 cosh αy + c6 sinh αy).

(iii) If 1 − 4α2 > 0 then X(x) = x1/2
(
c11x

√
1−4α2/2 + c12x−

√
1−4α2/2

)
and

u = XY = x1/2
(
c11x

√
1−4α2/2 + c12x

−
√

1−4α2/2
)

(c5 cosh αy + c6 sinh αy).

III. If λ = α2 > 0 then x2X ′′ − α2X = 0 and Y ′′ + α2Y = 0. The solution of the second

differential equation is Y (y) = c13 cos αy + c14 sin αy. The first equation is Cauchy-Euler

with auxiliary equation m2 − m − α2 = 0. Solving for m we obtain m = 1
2 ± 1

2

√
1 + 4α2 . In

this case the discriminant is always positive so the solution of the differential equation is

X(x) = x1/2
(
c15x

√
1+4α2/2 + c16x−

√
1+4α2/2

)
and

u = XY = x1/2
(
c15x

√
1+4α2/2 + c16x

−
√

1+4α2/2
)

(c13 cos αy + c14 sin αy).

15. Substituting u(x, y) = X(x)Y (y) into the partial differential equation yields X ′′Y + XY ′′ = XY .

Separating variables and using the separation constant −λ we obtain

X ′′

X
=

Y − Y ′′

Y
= −λ.

Then

X ′′ + λX = 0 and Y ′′ − (1 + λ)Y = 0.

We consider three cases:

I. If λ = 0 then X ′′ = 0 and X(x) = c1x + c2. Also Y ′′ − Y = 0 and Y (y) = c3 cosh y + c4 sinh y so

u = XY = (c1x + c2)(c3 cosh y + c4 sinh y).

II. If λ = −α2 < 0 then X ′′−α2X = 0 and Y ′′+(α2−1)Y = 0. The solution of the first differential

equation is X(x) = c5 cosh αx + c6 sinh αx. The solution of the second differential equation

depends on the nature of α2 − 1. We consider three cases:

(i) If α2 − 1 = 0, or α2 = 1, then Y (y) = c7y + c8 nad

u = XY = (c5 cosh x + c6 sinh x)(c7y + c8).

(ii) If α2 − 1 < 0, or 0 < α2 < 1, then Y (y) = c9 cosh
√

1 − α2 y + c10 sinh
√

1 − α2 y and

u = XY = (c5 cosh αx + c6 sinh αx)
(
c9 cosh

√
1 − α2 y + c10 sinh

√
1 − α2 y

)
.
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CHAPTER 12 BOUNDARY-VALUE PROBLEMS IN RECTANGULAR COORDINATES

(iii) If α2 − 1 > 0, or α2 > 1, then Y (y) = c11 cos
√

α2 − 1 y + c12 sin
√

α2 − 1 y and

u = XY = (c5 cosh αx + c6 sinh αx)
(
c11 cos

√
α2 − 1 y + c12 sin

√
α2 − 1 y

)
.

III. If λ = α2 > 0, then X ′′ + α2X = 0 and X(x) = c13 cos αx + c14 sin αx. Also,

Y ′′ − (1 + α2)Y = 0 and Y (y) = c15 cosh
√

1 + α2 y + c16 sinh
√

1 + α2 y so

u = XY = (c13 cos αx + c14 sin αx)
(
c15 cosh

√
1 + α2 y + c16 sinh

√
1 + α2 y

)
.

16. Substituting u(x, t) = X(x)T (t) into the partial differential equation yields a2X ′′T − g = XT ′′,

which is not separable.

17. Identifying A = B = C = 1, we compute B2 − 4AC = −3 < 0. The equation is elliptic.

18. Identifying A = 3, B = 5, and C = 1, we compute B2−4AC = 13 > 0. The equation is hyperbolic.

19. Identifying A = 1, B = 6, and C = 9, we compute B2 − 4AC = 0. The equation is parabolic.

20. Identifying A = 1, B = −1, and C = −3, we compute B2 − 4AC = 13 > 0. The equation is

hyperbolic.

21. Identifying A = 1, B = −9, and C = 0, we compute B2 − 4AC = 81 > 0. The equation is

hyperbolic.

22. Identifying A = 0, B = 1, and C = 0, we compute B2 − 4AC = 1 > 0. The equation is hyperbolic.

23. Identifying A = 1, B = 2, and C = 1, we compute B2 − 4AC = 0. The equation is parabolic.

24. Identifying A = 1, B = 0, and C = 1, we compute B2 − 4AC = −4 < 0. The equation is elliptic.

25. Identifying A = a2, B = 0, and C = −1, we compute B2 − 4AC = 4a2 > 0. The equation is

hyperbolic.

26. Identifying A = k > 0, B = 0, and C = 0, we compute B2 − 4AC = −4k < 0. The equation is

elliptic.

27. Substituting u(r, t) = R(r)T (t) into the partial differential equation yields

k
(
R′′T +

1

r
R′T

)
= RT ′.

Separating variables and using the separation constant −λ we obtain

rR′′ + R′

rR
=

T ′

kT
= −λ.

Then

rR′′ + R′ + λrR = 0 and T ′ + λkT = 0.

Letting λ = α2 and writing the first equation as r2R′′ + rR′ = α2r2R = 0 we see that it is

a parametric Bessel equation of order 0. As discussed in Chapter 6 of the text, it has solution
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R(r) = c1J0(αr) + c2Y0(αr). Since a solution of T ′ + α2kT is T (t) = e−kα2t, we see that a solution

of the partial differential equation is

u = RT = e−kα2t[c1J0(αr) + c2Y0(αr)].

28. Substituting u(r, θ) = R(r)Θ(θ) into the partial differential equation yields

R′′Θ +
1

r
R′Θ +

1

r2 RΘ′′ = 0.

Separating variables and using the separation constant −λ we obtain

r2R′′ + rR′

R
= −Θ′′

Θ
= −λ.

Then

r2R′′ + rR′ + λR = 0 and Θ′′ − λΘ = 0.

Letting λ = −α2 we have the Cauchy-Euler equation r2R′′ + rR′ − α2R = 0 whose solution is

R(r) = c3rα + c4r−α. Since the solution of Θ′′ + α2Θ = 0 is Θ(θ) = c1 cos αθ + c2 sin αθ we see that

a solution of the partial differential equation is

u = RΘ = (c1 cos αθ + c2 sin αθ)(c3r
α + c4r

−α).

29. For u = A1 + B1x we compute ∂2u/∂x2 = 0 = ∂u/∂y. Then ∂2u/∂x2 = 4 ∂u/∂y.

For u = A2eα2y cos 2αx + B2eα2y sin 2αx we compute

∂u

∂x
= 2αA2e

α2y sinh 2αx + 2αB2e
α2y cosh 2αx

∂2u

∂x2 = 4α2A2e
α2y cosh 2αx + 4α2B2e

α2y sinh 2αx

and
∂u

∂y
= α2A2e

α2y cosh 2αx + α2B2e
α2y sinh 2αx.

Then ∂2u/∂x2 = 4 ∂u/∂y.

For u = A3e−α2y cosh 2αx + B3e−α2y sinh 2αx we compute

∂u

∂x
= −2αA3e

−α2y sin 2αx + 2αB3e
−α2y cos 2αx

∂2u

∂x2 = −4α2A3e
−α2y cos 2αx − 4α2B3e

−α2y sin 2αx

and
∂u

∂y
= −α2A3e

−α2y cos 2αx − α2B3e
−α2y sin 2αx.

Then ∂2u/∂x2 = 4 ∂u/∂y.
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CHAPTER 12 BOUNDARY-VALUE PROBLEMS IN RECTANGULAR COORDINATES

30. We identify A = xy + 1, B = x + 2y, and C = 1. Then B2 − 4AC = x2 + 4y2 − 4. The equation

x2 + 4y2 = 4 defines an ellipse. The partial differential equation is hyperbolic outside the ellipse,

parabolic on the ellipse, and elliptic inside the ellipse.

Discussion Problems

31. Assuming u(x, y) = X(x)Y (y) and substituting into ∂2u/∂x2 − u = 0 we get X ′′Y −XY = 0

or Y (X ′′ − X) = 0. This implies X(x) = c1e
x or X(x) = c2e

−x. For these choices of X, we

have that Y can be any function of y. Two solutions of the partial differential equation are

then

u1(x, y) = A(y)ex and u2(x, y) = B(y)e−x.

Since the partial differential equation is linear and homogeneous the superposition principle

indicates that another solution is

u(x, y) = u1(x, y) + u2(x, y) = A(y)ex + B(y)e−x.

32. Assuming u(x, y) = X(x)Y (y) and substituting into ∂2u/∂x∂y + ∂u/∂x = 0 we get X ′Y ′ +

X ′Y = 0 or X ′(Y ′ + Y ) = 0. This implies Y (y) = c1e
−y. For this choice of Y , we have that

X can be any function of x. A solution of the partial differential equation is then u(x, y) =

A(x)e−y. In addition, noting that the partial differential equation can be written

∂

∂x

[
∂u

∂y
+ u

]
= 0,

any function u2(x, y) = B(y) will satisfy the partial differential equation since, in this case,

∂u2/∂y+u2 = B′(y)+B(y) and the x-partial of B′(y)+B(y) is 0. Thus, using the superposition

principle, a solution of the partial differential equation is

u(x, y) = u1(x, y) + u2(x, y) = A(x)e−y + B(y).
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BOUNDARY-VALUE PROBLEMS IN RECTANGULAR COORDINATES
12.1 Classical PDEs and Boundary-Value Problemsq

12.2 Classical PDEs and Boundary-Value Problemsq

1. k
∂2u

∂x2
=
∂u

∂t
, 0 < x < L, t > 0

u(0, t) = 0,
∂u

∂x

∣∣∣∣
x=L

= 0, t > 0

u(x, 0) = f(x), 0 < x < L

2. k
∂2u

∂x2
=
∂u

∂t
, 0 < x < L, t > 0

u(0, t) = u0, u(L, t) = u1, t > 0

u(x, 0) = 0, 0 < x < L

3. k
∂2u

∂x2
=
∂u

∂t
, 0 < x < L, t > 0

u(0, t) = 100,
∂u

∂x

∣∣∣∣
x=L

= −hu(L, t), t > 0

u(x, 0) = f(x), 0 < x < L

4. k
∂2u

∂x2
+ h(u− 50) =

∂u

∂t
, 0 < x < L, t > 0

∂u

∂x

∣∣∣∣
x=0

= 0,
∂u

∂x

∣∣∣∣
x=L

= 0, t > 0

u(x, 0) = 100, 0 < x < L

5. k
∂2u

∂x2
− hu =

∂u

∂t
, 0 < x < L, t > 0, h a constant

u(0, t) = sin
πt

L
, u(L, t) = 0, t > 0

u(x, 0) = f(x), 0 < x < L

6. k
∂2u

∂x2
+ h(u− 50) = ∂t , 0 < x < L, t > 0

∂u

∂x

∣∣∣∣
x=0

= 0,
∂u

∂x

∣∣∣∣
x=L

= 0, t > 0

u(x, 0) = 100, 0 < x < L

64912.2  Classical PDEs and Boundary-Value Problems
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CHAPTER 12 BOUNDARY-VALUE PROBLEMS IN RECTANGULAR COORDINATES

7. a2
∂2u

∂x2
=
∂2u

∂t2
, 0 < x < L, t > 0

u(0, t) = 0, u(L, t) = 0, t > 0

u(x, 0) = x(L− x),
∂u

∂t

∣∣∣∣
t=0

= 0, 0 < x < L

8. a2
∂2u

∂x2
=
∂2u

∂t2
, 0 < x < L, t > 0

u(0, t) = 0, u(L, t) = 0, t > 0

u(x, 0) = 0,
∂u

∂t

∣∣∣∣
t=0

= sin
πx

L
, 0 < x < L

9. a2
∂2u

∂x2
− 2β

∂u

∂t
=
∂2u

∂t2
, 0 < x < L, t > 0

u(0, t) = 0, u(L, t) = sinπt, t > 0

u(x, 0) = f(x),
∂u

∂t

∣∣∣∣
t=0

= 0, 0 < x < L

10. a2
∂2u

∂x2
+Ax =

∂2u

∂t2
, 0 < x < L, t > 0, A a constant

u(0, t) = 0, u(L, t) = 0, t > 0

u(x, 0) = 0,
∂u

∂t

∣∣∣∣
t=0

= 0, 0 < x < L

11.
∂2u

∂x2
+
∂2u

∂y2
= 0, 0 < x < 4, 0 < y < 2

∂u

∂x

∣∣∣∣
x=0

= 0, u(4, y) = f(y), 0 < y < 2

∂u

∂y

∣∣∣∣
y=0

= 0, u(x, 2) = 0, 0 < x < 4

12.
∂2u

∂x2
+
∂2u

∂y2
= 0, 0 < x < π, y > 0

u(0, y) = e−y, u(π, y) =

{
100, 0 < y ≤ 1

0, y > 1

u(x, 0) = f(x), 0 < x < π
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BOUNDARY-VALUE PROBLEMS IN RECTANGULAR COORDINATES
12.1 Heat Equationq

12.3 Heat Equationq

1. Using u = XT and −λ as a separation constant we obtain

X ′′ + λX = 0,

X(0) = 0,

X(L) = 0,

and

T ′ + kλT = 0.

This leads to

X = c1 sin
nπ

L
x and T = c2e

−kn2π2t/L2

for n = 1, 2, 3, . . . so that

u =

∞∑
n=1

Ane
−kn2π2t/L2

sin
nπ

L
x.

Imposing

u(x, 0) =

∞∑
n=1

An sin
nπ

L
x

gives

An =
2

L

∫ L/2

0
sin

nπ

L
xdx =

2

nπ

(
1− cos

nπ

2

)
for n = 1, 2, 3, . . . so that

u(x, t) =
2

π

∞∑
n=1

1− cos
nπ

2
n

e−kn
2π2t/L2

sin
nπ

L
x.

2. Using u = XT and −λ as a separation constant we obtain

X ′′ + λX = 0,

X(0) = 0,

X(L) = 0,and

T ′ + kλT = 0.

This leads to

X = c1 sin
nπ

L
x and T = c2e

−kn2π2t/L2

65112.3  Heart Equation
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CHAPTER 12 BOUNDARY-VALUE PROBLEMS IN RECTANGULAR COORDINATES

for n = 1, 2, 3, . . . so that

u =

∞∑
n=1

Ane
−kn2π2t/L2

sin
nπ

L
x.

Imposing

u(x, 0) =

∞∑
n=1

An sin
nπ

L
x

gives

An =
2

L

∫ L

0
x(L− x) sin

nπ

L
xdx =

4L2

n3π3
[1− (−1)n]

for n = 1, 2, 3, . . . so that

u(x, t) =
4L2

π3

∞∑
n=1

1− (−1)n

n3
e−kn

2π2t/L2
sin

nπ

L
x.

3. Using u = XT and −λ as a separation constant we obtain

X ′′ + λX = 0,

X ′(0) = 0,

X ′(L) = 0,

and

T ′ + kλT = 0.

This leads to

X = c1 cos
nπ

L
x and T = c2e

−kn2π2t/L2

for n = 0, 1, 2, . . . (λ = 0 is an eigenvalue in this case) so that

u =
∞∑
n=0

Ane
−kn2π2t/L2

cos
nπ

L
x.

Imposing

u(x, 0) = f(x) = A0 +

∞∑
n=1

An cos
nπ

L
x

gives

u(x, t) =
1

L

∫ L

0
f(x) dx+

2

L

∞∑
n=1

(∫ L

0
f(x) cos

nπ

L
xdx

)
e−kn

2π2t/L2
cos

nπ

L
x.
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4. If L = 2 and f(x) is x for 0 < x < 1 and f(x) is 0 for 1 < x < 2 then

u(x, t) =
1

4
+ 4

∞∑
n=1

[
1

2nπ
sin

nπ

2
+

1

n2π2

(
cos

nπ

2
− 1
)]
e−kn

2π2t/4 cos
nπ

2
x.

5. Using u = XT and −λ as a separation constant leads to

X ′′ + λX = 0,

X ′(0) = 0,

X ′(L) = 0,

and

T ′ + (h+ kλ)T = 0.

Then

X = c1 cos
nπ

L
x and T = c2e

−ht−kn2π2t/L2

for n = 0, 1, 2, . . . (λ = 0 is an eigenvalue in this case) so that

u = A0e
−ht + e−ht

∞∑
n=1

Ane
−kn2π2tL2

cos
nπ

L
x.

Imposing

u(x, 0) = f(x) =

∞∑
n=0

An cos
nπ

L
x

gives

u(x, t) =
e−ht

L

∫ L

0
f(x) dx+

2e−ht

L

∞∑
n=1

(∫ L

0
f(x) cos

nπ

L
xdx

)
e−kn

2π2t/L2
cos

nπ

L
x.

6. In Problem 5 we instead find that X(0) = 0 and X(L) = 0 so that

X = c1 sin
nπ

L
x

and

u =
2e−ht

L

∞∑
n=1

(∫ L

0
f(x) sin

nπ

L
xdx

)
e−kn

2π2t/L2
sin

nπ

L
x.

7. Using −λ as the separation constant implies X ′′ + λX = 0 and T ′ + kλT = 0. The boundary

conditions are then X(−L) = X(L) and X ′(−L) = X ′(L).

For λ = 0, X(x) = c1 + c2x. The condition X(−L) = X(L) implies c2 = 0. Therefore an

eigenfunction is X(x) = c1 6= 0. The boundary condition X ′(−L) = X ′(L) is automatically

satisfied.

65312.3  Heart Equation
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CHAPTER 12 BOUNDARY-VALUE PROBLEMS IN RECTANGULAR COORDINATES

For λ = −α2 < 0, X(x) = c3 coshαx + c4 sinhαx. From the condition X(−L) = X(L) we

obtain

c3 coshαL− c4 sinhαL = c3 coshαL+ c4 sinhαL so 2c4 sinhαL = 0.

This implies c4 = 0 and so X(x) = c3 coshαx. The boundary condition X ′(−L) = X ′(L)

implies

−c3α sinhαL = c3 sinhαL so 2αc3 sinhαL = 0.

Therefore c3 = 0 and X(x) = 0.

For λ = α2 > 0, X(x) = c5 cosαx + c6 sinαx. The boundary condition X(−L) = X(L)

implies

c5 cosαL− c6 sinαL = c5 cosαL+ c6 sinαL so 2c6 sinαL = 0.

If c6 6= 0, then α = nπ/L for n = 1, 2, . . . . The boundary condition X ′(−L) = X ′(L) implies

−c5α sinαL+ c6α cosαL = αc5 sinαL+ c6α cosαL so 2αc5 sinαL = 0.

Then, for c5 6= 0,

sinαL = 0 and α = nπ/L, n = 1, 2, . . . .

Thus the coefficients c5 and c6 are arbitrary but nonzero. Therefore the eigenvalues are

λn = (nπ/L)2, n = 0, 1, 2, . . . , and the corresponding eigenfunctions are

1, cos
nπ

L
x, sin

nπ

L
x for n = 0, 1, 2, . . . .

Forming product solutions with

T (t) =

{
c7, λ = 0

c7e
−k(nπ/L)2t, λ > 0,

relabeling constants, and summing gives

u(x, t) = A0 +
∞∑
k=1

e−k(nπ/L)
2 t
(
An cos

nπ

L
x+Bn sin

nπ

L
x
)
.,

where

A0 =
1

2L

∫ L

−L
f(x)dx, An =

1

L

∫ L

−L
f(x) cos

nπx

L
dx, and Bn =

1

L

∫ L

−L
f(x) sin

nπx

L
dx.

When t = 0 we get the full Fourier series of f on (−L, L),

f(x) = A0 +

∞∑
k=1

(
An cos

nπ

L
x+Bn sin

nπ

L
x
)
.

The coefficients are then A0 = 1
2 a0, An = an, Bn = bn, or

A0 =
1

2L

∫ L

−L
f(x)dx, An =

1

L

∫ L

−L
f(x) cos

nπ

L
dx, Bn =

1

L

∫ L

−L
f(x) sin

nπ

L
dx.
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8. In this case we have from (13) of this section in the text that

un(x, 0) = An sin
nπ

L
x = f(x) = 10 sin

5πx

L
,

so we can take n = 5 and A5 = 10. All other values of An are 0. Therefore, we can take the

solution of the boundary-value problem to be

u(x, t) = 10e−k(25π
2/L2)t sin

5π

L
x.

Discussion Problems

9. x

Computer Lab Assignments

10. (a) The solution is

u(x, t) =

∞∑
n=1

Ane
−kn2π2t/1002 sin

nπ

100
x,

where

An =
2

100

[∫ 50

0
0.8x sin

nπ

100
x dx+

∫ 100

50
0.8(100− x) sin

nπ

100
x dx

]
=

320

n2π2
sin

nπ

2
.

Thus,

u(x, t) =
320

π2

∞∑
n=1

1

n2

(
sin

nπ

2

)
e−kn

2π2t/1002 sin
nπ

100
x.

65512.3  Heart Equation
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CHAPTER 12 BOUNDARY-VALUE PROBLEMS IN RECTANGULAR COORDINATES

(b) Since An = 0 for n even, the first five nonzero terms correspond to n = 1, 3, 5, 7, 9. In

this case sin(nπ/2) = sin(2p− 1)/2 = (−1)p+1 for p = 1, 2, 3, 4, 5, and

u(x, t) =
320

π2

∞∑
p=1

(−1)p+1

(2p− 1)2
e(−1.6352(2p−1)

2π2/1002)t sin
(2p− 1)π

100
x.

1. Using u = XT and −λ as a separation constant we obtain

X ′′ + λX = 0,

X(0) = 0,

X(L) = 0,

and

T ′′ + λa2T = 0,

T ′(0) = 0.

Solving the differential equations we get

X = c1 sin
nπ

L
x + c2 cos

nπ

L
x and T = c3 cos

nπa

L
t + c4 sin

nπa

L
t

for n = 1, 2, 3, . . .. The boundary and initial conditions give

u =
∞∑

n=1

An cos
nπa

L
t sin

nπ

L
x.

656
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Imposing

u(x, 0) =
1

4
x(L − x) =

∞∑

n=1

An sin
nπ

L
x

gives

An =
L2

n3π3 [1 − (−1)n]

for n = 1, 2, 3, . . . so that

u(x, t) =
L2

π3

∞∑

n=1

1 − (−1)n

n3 cos
nπa

L
t sin

nπ

L
x.

2. Using u = XT and −λ as a separation constant we obtain

X ′′ + λX = 0,

X(0) = 0,

X(L) = 0,

and

T ′′ + λa2T = 0,

T (0) = 0.

Solving the differential equations we get

X = c1 sin
nπ

L
x + c2 cos

nπ

L
x and T = c3 cos

nπa

L
t + c4 sin

nπa

L
t

for n = 1, 2, 3, . . .. The boundary and initial conditions give

u =
∞∑

n=1

Bn sin
nπa

L
t sin

nπ

L
x.

Imposing

ut(x, 0) = x(L − x) =
∞∑

n=1

Bn
nπa

L
sin

nπ

L
x

gives

Bn
nπa

L
=

4L2

n3π3 [1 − (−1)n]

for n = 1, 2, 3, . . . so that

u(x, t) =
4L3

aπ4

∞∑

n=1

1 − (−1)n

n4 sin
nπa

L
t sin

nπ

L
x.

3. Using u = XT and −λ as a separation constant we obtain

X ′′ + λX = 0,

X(0) = 0,

657 12.4  Wave Equation

© 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part, except for use as permitted in a license distributed 
with a certain product or service or otherwise on a password-protected website for classroom use. Not For Sale

©
 C

en
ga

ge
 L

ea
rn

in
g.

 A
ll 

rig
ht

s r
es

er
ve

d.
 N

o 
di

st
rib

ut
io

n 
al

lo
w

ed
 w

ith
ou

t e
xp

re
ss

 a
ut

ho
riz

at
io

n.



CHAPTER 12 BOUNDARY-VALUE PROBLEMS IN RECTANGULAR COORDINATES

X(L) = 0,

and

T ′′ + λa2T = 0,

T ′(0) = 0.

Solving the differential equations we get

X = c1 sin
nπ

L
x + c2 cos

nπ

L
x and T = c3 cos

nπa

L
t + c4 sin

nπa

L
t

for n = 1, 2, 3, . . .. The boundary and initial conditions give

u =
∞∑

n=1

An cos
nπa

L
t sin

nπ

L
x.

Imposing

u(x, 0) =
∞∑

n=1

An sin
nπ

L
x

gives

An =
2

L

(∫ L/3

0

3

L
x sin

nπ

L
x dx +

∫ 2L/3

L/3
sin

nπ

L
x dx +

∫ L

2L/3

(
3 − 3

L
x

)
sin

nπ

L
x dx

)

so that

A1 =
6
√

3

π2 ,

A2 = A3 = A4 = 0,

A5 = − 6
√

3

52π2 ,

A6 = 0,

A7 =
6
√

3

72π2

...

and

u(x, t) =
6
√

3

π2

(
cos

πa

L
t sin

π

L
x − 1

52 cos
5πa

L
t sin

5π

L
x +

1

72 cos
7πa

L
t sin

7π

L
x − · · ·

)
.

4. Using u = XT and −λ as a separation constant we obtain

X ′′ + λX = 0,

X(0) = 0,

X(π) = 0,

and
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T ′′ + λa2T = 0,

T ′(0) = 0.

Solving the differential equations we get

X = c1 sin nx + c2 cos nx and T = c3 cos nat + c4 sin nat

for n = 1, 2, 3, . . .. The boundary and initial conditions give

u =
∞∑

n=1

An cos nt sin nx.

Imposing

u(x, 0) =
1

6
x(π2 − x2) =

∞∑

n=1

An sin nx and ut(x, 0) = 0

gives

An =
2

n3 (−1)n+1

for n = 1, 2, 3, . . . so that

u(x, t) = 2
∞∑

n=1

(−1)n+1

n3 cos nat sin nx.

5. Using u = XT and −λ as a separation constant we obtain

X ′′ + λX = 0,

X(0) = 0,

X(π) = 0,

and

T ′′ + λa2T = 0,

T ′(0) = 0.

Solving the differential equations we get

X = c1 sin nx + c2 cos nx and T = c3 cos nat + c4 sin nat

for n = 1, 2, 3, . . .. The boundary and initial conditions give

u =
∞∑

n=1

An cos nt sin nx.

Imposing

ut(x, 0) = sin x =
∞∑

n=1

Bnna sin nx
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CHAPTER 12 BOUNDARY-VALUE PROBLEMS IN RECTANGULAR COORDINATES

gives

B1 =
1

a2 , and Bn = 0

for n = 2, 3, 4, . . . so that

u(x, t) =
1

a
sin at sin x.

6. Using u = XT and −λ as a separation constant we obtain

X ′′ + λX = 0,

X(0) = 0,

X(1) = 0,

and

T ′′ + λa2T = 0,

T ′(0) = 0.

Solving the differential equations we get

X = c1 sin nπx + c2 cos nπx and T = c3 cos nπat + c4 sin nπat

for n = 1, 2, 3, . . .. The boundary and initial conditions give

u =
∞∑

n=1

An cos nt sin nx.

Imposing

u(x, 0) = 0.01 sin 3πx =
∞∑

n=1

An sin nπx

gives A3 = 0.01, and An = 0 for n = 1, 2, 4, 5, 6, . . . so that

u(x, t) = 0.01 sin 3πx cos 3πat.

7. Using u = XT and −λ as a separation constant we obtain

X ′′ + λX = 0,

X(0) = 0,

X(L) = 0,

and

T ′′ + λa2T = 0,

T ′(0) = 0.

Solving the differential equations we get

X = c1 sin
nπ

L
x + c2 cos

nπ

L
x and T = c3 cos

nπa

L
t + c4 sin

nπa

L
t

660

© 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part, except for use as permitted in a license distributed 
with a certain product or service or otherwise on a password-protected website for classroom use. 

Not For Sale

©
 C

en
ga

ge
 L

ea
rn

in
g.

 A
ll 

rig
ht

s r
es

er
ve

d.
 N

o 
di

st
rib

ut
io

n 
al

lo
w

ed
 w

ith
ou

t e
xp

re
ss

 a
ut

ho
riz

at
io

n.



for n = 1, 2, 3, . . .. The boundary and initial conditions give

u =
∞∑

n=1

An cos
nπa

L
t sin

nπ

L
x.

Imposing

u(x, 0) =
∞∑

n=1

An sin
nπ

L
x

gives

An =
8h

n2π2 sin
nπ

2
for n = 1, 2, 3, . . . so that

u(x, t) =
8h

π2

∞∑

n=1

1

n2 sin
nπ

2
cos

nπa

L
t sin

nπ

L
x.

8. Using u = XT and −λ as a separation constant we obtain

X ′′ + λX = 0,

X ′(0) = 0,

X ′(L) = 0,

and

T ′′ + λa2T = 0,

T ′(0) = 0.

Solving the differential equations we get

X = c1 sin
nπ

L
x + c2 cos

nπ

L
x and T = c3 cos

nπa

L
t + c4 sin

nπa

L
t

for n = 1, 2, 3, . . .. The boundary and initial conditions, together with the fact that λ = 0 is an

eigenvalue with eigenfunction X(x) = 1, give

u = A0 +
∞∑

n=1

An cos
nπa

L
t sin

nπ

L
x.

Imposing

u(x, 0) = x = A0 +
∞∑

n=1

An cos
nπ

L
x

gives

A0 =
1

L

∫ L

0
x dx =

L

2
and

An =
2

L

∫ L

0
x cos

nπ

L
x dx =

2L

n2π2 [(−1)n − 1]

661 12.4  Wave Equation

© 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part, except for use as permitted in a license distributed 
with a certain product or service or otherwise on a password-protected website for classroom use. Not For Sale

©
 C

en
ga

ge
 L

ea
rn

in
g.

 A
ll 

rig
ht

s r
es

er
ve

d.
 N

o 
di

st
rib

ut
io

n 
al

lo
w

ed
 w

ith
ou

t e
xp

re
ss

 a
ut

ho
riz

at
io

n.



CHAPTER 12 BOUNDARY-VALUE PROBLEMS IN RECTANGULAR COORDINATES

for n = 1, 2, 3, . . . , so that

u(x, t) =
L

2
+

2L

π2

∞∑

n=1

(−1)n − 1

n2 cos
nπa

L
t cos

nπ

L
x.

9. Using u = XT and −λ as a separation constant we obtain

X ′′ + λX = 0,

X(0) = 0,

X(π) = 0,

and

T ′′ + 2βT ′ + λT = 0,

T ′(0) = 0.

Solving the differential equations we get

X = c1 sin nx + c2 cos nx and T = e−βt
(
c3 cos

√
n2 − β2 t + c4 sin

√
n2 − β2 t

)

The boundary conditions on X imply c2 = 0 so

X = c1 sin nx and T = e−βt
(
c3 cos

√
n2 − β2 t + c4 sin

√
n2 − β2 t

)

and

u =
∞∑

n=1

e−βt
(
An cos

√
n2 − β2 t + Bn sin

√
n2 − β2 t

)
sin nx.

Imposing

u(x, 0) = f(x) =
∞∑

n=1

An sin nx

and

ut(x, 0) = 0 =
∞∑

n=1

(
Bn

√
n2 − β2 − βAn

)
sin nx

gives

u(x, t) = e−βt
∞∑

n=1

An



cos
√

n2 − β2 t +
β

√
n2 − β2

sin
√

n2 − β2 t



 sin nx,

where

An =
2

π

∫ π

0
f(x) sin nx dx.

10. Using u = XT and −λ = as a separation constant leads to X ′′ + α2X = 0, X(0) = 0, X(π) =

0 and T ′′ + (1 + α2)T = 0, T ′(0) = 0. Then X = c2 sin nx and T = c3 cos
√

n2 + 1 t for

n = 1, 2, 3, . . . so that

u =
∞∑

n1

Bn cos
√

n2 + 1 t sin nx.

662

© 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part, except for use as permitted in a license distributed 
with a certain product or service or otherwise on a password-protected website for classroom use. 

Not For Sale

©
 C

en
ga

ge
 L

ea
rn

in
g.

 A
ll 

rig
ht

s r
es

er
ve

d.
 N

o 
di

st
rib

ut
io

n 
al

lo
w

ed
 w

ith
ou

t e
xp

re
ss

 a
ut

ho
riz

at
io

n.



Imposing u(x, 0) =
∞∑

n=1

Bn sin nx gives

Bn =
2

π

∫ π/2

0
x sin nx dx +

2

π

∫ π

π/2
(π − x) sin nx dx =

4

πn2 sin
nπ

2

=

{ 0, n even,
4

πn2 (−1)(n+3)/2, n = 2k − 1, k = 1, 2, 3, . . ..

Thus with n = 2k − 1,

u(x, t) =
4

π

∞∑

n=1

sin nπ
2

n2 cos
√

n2 + 1 t sin nx =
4

π

∞∑

k=1

(−1)k+1

(2k − 1)2
cos

√
(2k − 1)2 + 1 t sin(2k − 1)x.

11. Separating variables in the partial differential equation and using the separation constant −λ = α4

gives

X(4)

X
= − T ′′

a2T
= α4

so that
X(4) − α4X = 0

T ′′ + a2α4T = 0

and
X = c1 cosh αx + c2 sinh αx + c3 cos αx + c4 sin αx

T = c5 cos aα2t + c6 sin aα2t.

The boundary conditions translate into X(0) = X(L) = 0 and X ′′(0) = X ′′(L) = 0. From

X(0) = X ′′(0) = 0 we find c1 = c3 = 0. From

X(L) = c2 sinh αL + c4 sin αL = 0

X ′′(L) = α2c2 sinh αL − α2c4 sin αL = 0

we see by subtraction that c4 sin αL = 0. This equation yields the eigenvalues α = nπL for n = 1,

2, 3, . . . . The corresponding eigenfunctions are

X = c4 sin
nπ

L
x.

Thus

u(x, t) =
∞∑

n=1

(

An cos
n2π2

L2 at + Bn sin
n2π2

L2 at

)

sin
nπ

L
x.

From

u(x, 0) = f(x) =
∞∑

n=1

An sin
nπ

L
x
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CHAPTER 12 BOUNDARY-VALUE PROBLEMS IN RECTANGULAR COORDINATES

we obtain

An =
2

L

∫ L

0
f(x) sin

nπ

L
x dx.

From
∂u

∂t
=

∞∑

n=1

(

−An
n2π2a

L2 sin
n2π2

L2 at + Bn
n2π2a

L2 cos
n2π2

L2 at

)

sin
nπ

L
x

and
∂u

∂t

∣∣∣∣
t=0

= g(x) =
∞∑

n=1

Bn
n2π2a

L2 sin
nπ

L
x

we obtain

Bn
n2π2a

L2 =
2

L

∫ L

0
g(x) sin

nπ

L
x dx

and

Bn =
2L

n2π2a

∫ L

0
g(x) sin

nπ

L
x dx.

12. (a) Write the differential equation in X from Problem 11 as X(4)−α4X = 0 where the eigenvalues

are λ = α2. Then

X = c1 cosh αx + c2 sinh αx + c3 cos αx + c4 sin αx

and using X(0) = 0 and X ′(0) = 0 we find c3 = −c1 and c4 = −c2. The conditions X(L) = 0

and X ′(L) = 0 yield the system of equations

c1(cosh αL − cos αL) + c2(sinh αL − sin αL) = 0

c1(α sinh αL + α sin αL) + c2(α cosh αL − α cos αL) = 0.

In order for this system to have nontrivial solutions the determinant of the coefficients must

be zero. That is,

α(cosh αL − cos αL)2 − α(sinh2 αL − sin2 αL) = 0.

Since α = 0 leads to X = 0, λ = α2 = 02 = 0 is not an eigenvalue. Then, dividing the above

equation by α, we have

(cosh αL − cos αL)2 − (sinh2 αL − sin2 αL)

= cosh2 αL − 2 cosh αL cos αL + cos2 αL − sinh2 αL + sin2 αL

= −2 cosh αL cos αL + 2 = 0

or cosh αL cos αL = 1. Letting x = αL we see that the eigenvalues are λn = α2
n = x2

n/L2 where

xn, n = 1, 2, 3, . . . , are the positive roots of the equation coshx cos x = 1.
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(b) The equation cosh x cos x = 1 is the same as cos x = sech x.

The figure indicates that the equation has an infinite num-

ber of roots.

(c) Using a CAS we find the first four positive roots of coshx cos x = 1 to be x1 = 4.7300,

x2 = 7.8532, x3 = 10.9956, and x4 = 14.1372. Thus the first four eigenvalues are λ1 = x2
1/L =

22.3733/L, λ2 = x2
2/L = 61.6728/L, λ3 = x2

3/L = 120.9034/L, and λ4 = x2
4/L = 199.8594/L.

13. From (8) in the text we have

u(x, t) =
∞∑

n=1

(
An cos

nπa

L
t + Bn sin

nπa

L
t
)

sin
nπ

L
x.

Since ut(x, 0) = g(x) = 0 we have Bn = 0 and

u(x, t) =
∞∑

n=1

An cos
nπa

L
t sin

nπ

L
x

=
∞∑

n=1

An
1

2

[
sin

(
nπ

L
x +

nπa

L
t
)

+ sin
(

nπ

L
x − nπa

L
t
)]

=
1

2

∞∑

n=1

An

[
sin

nπ

L
(x + at) + sin

nπ

L
(x − at)

]
.

From

u(x, 0) = f(x) =
∞∑

n=1

An sin
nπ

L
x

we identify

f(x + at) =
∞∑

n=1

An sin
nπ

L
(x + at)

and

f(x − at) =
∞∑

n=1

An sin
nπ

L
(x − at),

so that

u(x, t) =
1

2
[f(x + at) + f(x − at)].

14. (a) We note that ξx = ηx = 1, ξt = a, and ηt = −a. Then

∂u

∂x
=

∂u

∂ξ

∂ξ

∂x
+

∂u

∂η

∂η

∂x
= uξ + uη

and
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CHAPTER 12 BOUNDARY-VALUE PROBLEMS IN RECTANGULAR COORDINATES

∂2u

∂x2 =
∂

∂x
(uξ + uη) =

∂uξ

∂ξ

∂ξ

∂x
+

∂uξ

∂η

∂η

∂x
+

∂uη

∂ξ

∂ξ

∂x
+

∂uη

∂η

∂η

∂x

= uξξ + 2uξη + uηη.

Similarly
∂2u

∂t2
= a2(uξξ − 2uξη + uηη).

Thus

a2 ∂2u

∂x2 =
∂2u

∂t2
becomes

∂2u

∂ξ∂η
= 0.

(b) Integrating
∂2u

∂ξ∂η
=

∂

∂η
uξ = 0

we obtain ∫ ∂

∂η
uξ dη =

∫
0 dη

uξ = f(ξ).

Integrating this result with respect to ξ we obtain
∫ ∂u

∂ξ
dξ =

∫
f(ξ) dξ

u = F (ξ) + G(η).

Since ξ = x + at and η = x − at, we then have

u = F (ξ) + G(η) = F (x + at) + G(x − at).

Next, we have

u(x, t) = F (x + at) + G(x − at)

u(x, 0) = F (x) + G(x) = f(x)

ut(x, 0) = aF ′(x) − aG′(x) = g(x)

Integrating the last equation with respect to x gives

F (x) − G(x) =
1

a

∫ x

x0

g(s) ds + c1.

Substituting G(x) = f(x) − F (x) we obtain

F (x) =
1

2
f(x) +

1

2a

∫ x

x0

g(s) ds + c

where c = c1/2. Thus

G(x) =
1

2
f(x) − 1

2a

∫ x

x0

g(s) ds − c.
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(c) From the expressions for F and G,

F (x + at) =
1

2
f(x + at) +

1

2a

∫ x+at

x0

g(s) ds + c

G(x − at) =
1

2
f(x − at) − 1

2a

∫ x−at

x0

g(s) ds − c.

Thus,

u(x, t) = F (x + at) + G(x − at) =
1

2
[f(x + at) + f(x − at)] +

1

2a

∫ x+at

x−at
g(s) ds.

Here we have used −
∫ x−at

x0

g(s) ds =
∫ x0

x−at
g(s) ds.

15. u(x, t) =
1

2
[sin(x + at) + sin(x − at)] +

1

2a

∫ x+at

x−at
ds

=
1

2
[sin x cos at + cos x sin at + sin x cos at − cos x sin at] +

1

2a
s

∣∣∣
x+at

x−at
= sin x cos at + t

16. u(x, t) =
1

2
sin(x + at) + sin(x − at)] +

1

2a

∫ x+at

x−at
cos s ds

= sin x cos at +
1

2a
[sin(x + at) − sin(x − at)] = sin x cos at +

1

a
cos x sin at

17. u(x, t) = 0 +
1

2a

∫ x+at

x−at
sin 2s ds =

1

2a

[
− cos(2x + 2at) + cos(2x − 2at)

2

]

=
1

4a
[− cos 2x cos 2at + sin 2x sin 2at + cos 2x cos 2at + sin 2x sin 2at] =

1

2a
sin 2x sin 2at

18. u(x, t) =
1

2

[
e−(x+at)2 + e−(x−at)2

]

=
1

2

[
e−(x2+2axt+a2t2) + e−(x2−2axt+a2t2)

]

= e−(x2+a2t2)

[
e−2axt + e2axt

2

]

= e−(x2+a2t2) cosh 2axt

19. (a)
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CHAPTER 12 BOUNDARY-VALUE PROBLEMS IN RECTANGULAR COORDINATES

(b)

20. (a)

(b) Since g(x) = 0, d’Alembert’s solution with a = 1 is

u(x, t) =
1

2
[f(x + t) + f(x − t)].

Sample plots are shown below.
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(c) The single peaked wave disolves into two peaks moving outward.

21. (a) With a = 1, d’Alembert’s solution is

u(x, t) =
1

2

∫ x+t

x−t
g(s) ds where g(s) =

{
1, |s| ≤ 0.1

0, |s| > 0.1
.

Sample plots are shown below.

669 12.4  Wave Equation
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CHAPTER 12 BOUNDARY-VALUE PROBLEMS IN RECTANGULAR COORDINATES

(b) Some frames of the movie are shown in part (a), The string has a roughly rectangular shape

with the base on the x-axis increasing in length.

22. (a) and (b) With the given parameters, the solution is

u(x, t) =
8

π2

∞∑

n=1

1

n2 sin
nπ

2
cos nt sin nx.

For n even, sin(nπ/2) = 0, so the first six nonzero terms correspond to n = 1, 3, 5, 7, 9, 11. In

this case sin(nπ/2) = sin(2p − 1)/2 = (−1)p+1 for p = 1, 2, 3, 4, 5, 6, and

u(x, t) =
8

π2

∞∑

p=1

(−1)p+1

(2p − 1)2
cos(2p − 1)t sin(2p − 1)x.

Frames of the movie corresponding to t = 0.5, 1, 1.5, and 2 are shown.
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1. Using u = XY and −λ as a separation constant we obtain

X ′′ + λX = 0,

X(0) = 0,

X(a) = 0,

and

Y ′′ − λY = 0,

Y (0) = 0.

With λ = α2 > 0 the solutions of the differential equations are

X = c1 cos αx + c2 sin αx and Y = c3 cosh αy + c4 sinh αy

The boundary and initial conditions imply

X = c2 sin
nπ

a
x and Y = c4 sinh

nπ

a
y

for n = 1, 2, 3, . . . so that

u =
∞∑

n=1

An sin
nπ

a
x sinh

nπ

a
y.

Imposing

u(x, b) = f(x) =
∞∑

n=1

An sinh
nπb

a
sin

nπ

a
x

gives

An sinh
nπb

a
=

2

a

∫ a

0
f(x) sin

nπ

a
x dx

so that

u(x, y) =
∞∑

n=1

An sin
nπ

a
x sinh

nπ

a
y

where

An =
2

a
csch

nπb

a

∫ a

0
f(x) sin

nπ

a
x dx.

2. Using u = XY and −λ as a separation constant we obtain

X ′′ + λX = 0,

X(0) = 0,

12.5 Laplace’s Equationq
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CHAPTER 12 BOUNDARY-VALUE PROBLEMS IN RECTANGULAR COORDINATES

X(a) = 0,

and

Y ′′ − λY = 0,

Y ′(0) = 0.

With λ = α2 > 0 the solutions of the differential equations are

X = c1 cos αx + c2 sin αx and Y = c3 cosh αy + c4 sinh αy

The boundary and initial conditions imply

X = c2 sin
nπ

a
x and Y = c3 cosh

nπ

a
y

for n = 1, 2, 3, . . . so that

u =
∞∑

n=1

An sin
nπ

a
x cosh

nπ

a
y.

Imposing

u(x, b) = f(x) =
∞∑

n=1

An cosh
nπb

a
sin

nπ

a
x

gives

An cosh
nπb

a
=

2

a

∫ a

0
f(x) sin

nπ

a
x dx

so that

u(x, y) =
∞∑

n=1

An sin
nπ

a
x cosh

nπ

a
y

where

An =
2

a
sech

nπb

a

∫ a

0
f(x) sin

nπ

a
x dx.

3. Using u = XY and −λ as a separation constant we obtain

X ′′ + λX = 0,

X(0) = 0,

X(a) = 0,

and

Y ′′ − λY = 0,

Y (b) = 0.

With λ = α2 > 0 the solutions of the differential equations are

X = c1 cos αx + c2 sin αx and Y = c3 cosh αy + c4 sinh αy
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The boundary and initial conditions imply

X = c2 sin
nπ

a
x and Y = c2 cosh

nπ

a
y − c2

cosh nπb
a

sinh nπb
a

sinh
nπ

a
y

for n = 1, 2, 3, . . . so that

u =
∞∑

n=1

An

(

cosh
nπ

a
y −

cosh nπb
a

sinh nπb
a

sinh
nπ

a
y

)

sin
nπ

a
x.

Imposing

u(x, 0) = f(x) =
∞∑

n=1

An sin
nπ

a
x

gives

An =
2

a

∫ a

0
f(x) sin

nπ

a
x dx

so that

u(x, y) =
2

a

∞∑

n=1

(∫ a

0
f(x) sin

nπ

a
x dx

) (

cosh
nπ

a
y −

cosh nπb
a

sinh nπb
a

sinh
nπ

a
y

)

sin
nπ

a
x.

4. Using u = XY and −λ as a separation constant we obtain

X ′′ + λX = 0,

X ′(0) = 0,

X ′(a) = 0,

and

Y ′′ − λY = 0,

Y (b) = 0.

With λ = α2 > 0 the solutions of the differential equations are

X = c1 cos αx + c2 sin αx and Y = c3 cosh αy + c4 sinh αy

The boundary and initial conditions imply

X = c1 cos
nπ

a
x and Y = c3 cosh

nπ

a
y − c3

cosh nπb
a

sinh nπb
a

sinh
nπ

a
y

for n = 1, 2, 3, . . . . Since λ = 0 is an eigenvalue for both differential equations with corresponding

eigenfunctions 1 and y − b, respectively we have

u = A0(y − b) +
∞∑

n=1

An cos
nπ

a
x

(

cosh
nπ

a
y −

cosh nπb
a

sinh nπb
a

sinh
nπ

a
y

)

.

Imposing

u(x, 0) = x = −A0b +
∞∑

n=1

An cos
nπ

a
x

67312.5  Laplace  Equation's
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CHAPTER 12 BOUNDARY-VALUE PROBLEMS IN RECTANGULAR COORDINATES

gives

−A0b =
1

a

∫ a

0
x dx =

1

2
a

and

An =
2

a

∫ a

0
x cos

nπ

a
x dx =

2a

n2π2 [(−1)n − 1]

so that

u(x, y) =
a

2b
(b − y) +

2a

π2

∞∑

n=1

(−1)n − 1

n2 cos
nπ

a
x

(

cosh
nπ

a
y −

cosh nπb
a

sinh nπb
a

sinh
nπ

a
y

)

.

5. Using u = XY and −λ as a separation constant we obtain

X ′′ + λX = 0,

X ′(0) = 0,

X ′(a) = 0,

and

Y ′′ − λY = 0,

Y (b) = 0.

With λ = −α2 < 0 the solutions of the differential equations are

X = c1 cosh αx + c2 sinh αx and Y = c3 cos αy + c4 sin αy

for n = 1, 2, 3 . . . . The boundary and initial conditions imply

X = c2 sinh nπx and Y = c3 cos nπy

for n = 1, 2, 3, . . . . Since λ = 0 is an eigenvalue for the differential equation in X with corresponding

eigenfunction x we have

u = A0x +
∞∑

n=1

An sinh nπx cos nπy.

Imposing

u(1, y) = 1 − y = A0 +
∞∑

n=1

An sinh nπ cos nπy

gives

A0 =
∫ 1

0
(1 − y) dy

and

An sinh nπ = 2
∫ 1

0
(1 − y) cos nπy =

2[1 − (−1)n]

n2π2

for n = 1, 2, 3, . . . so that

u(x, y) =
1

2
x +

2

π2

∞∑

n=1

1 − (−1)n

n2 sinh nπ
sinh nπx cos nπy.
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6. Using u = XY and −λ as a separation constant we obtain

X ′′ + λX = 0,

X ′(1) = 0

and

Y ′′ − λY = 0,

Y ′(0) = 0,

Y ′(π) = 0.

With λ = α2 < 0 the solutions of the differential equations are

X = c1 cosh αx + c2 sinh αx and Y = c3 cos αy + c4 sin αy

The boundary and initial conditions imply

X = c1 cosh nx − c1
sinh n

cosh n
sinh nx and Y = c3 cos ny

for n = 1, 2, 3, . . . . Since λ = 0 is an eigenvalue for both differential equations with corresponding

eigenfunctions 1 and 1 we have

u = A0 +
∞∑

n=1

An

(

cosh nx − sinh n

cosh n
sinh nx

)

cos ny.

Imposing

u(0, y) = g(y) = A0 +
∞∑

n=1

An cos ny

gives

A0 =
1

π

∫ π

0
g(y) dy and An =

2

π

∫ π

0
g(y) cos ny dy

for n = 1, 2, 3, . . . so that

u(x, y) =
1

π

∫ π

0
g(y) dy +

∞∑

n=1

(
2

π

∫ π

0
g(y) cos ny dy

) (

cosh nx − sinh n

cosh n
sinh nx

)

cos ny.

7. Using u = XY and −λ as a separation constant we obtain

X ′′ + λX = 0,

X ′(0) = X(0)

and

Y ′′ − λY = 0,

Y (0) = 0,

Y (π) = 0.

67512.5  Laplace  Equation's
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CHAPTER 12 BOUNDARY-VALUE PROBLEMS IN RECTANGULAR COORDINATES

With λ = α2 < 0 the solutions of the differential equations are

X = c1 cosh αx + c2 sinh αx and Y = c3 cos αy + c4 sin αy

The boundary and initial conditions imply

Y = c4 sin ny and X = c2(n cosh nx + sinh nx)

for n = 1, 2, 3, . . . so that

u =
∞∑

n=1

An(n cosh nx + sinh nx) sin ny.

Imposing

u(π, y) = 1 =
∞∑

n=1

An(n cosh nπ + sinh nπ) sin ny

gives

An(n cosh nπ + sinh nπ) =
2

π

∫ π

0
sin ny dy =

2[1 − (−1)n]

nπ
for n = 1, 2, 3, . . . so that

u(x, y) =
2

π

∞∑

n=1

1 − (−1)n

n

n cosh nx + sinh nx

n cosh nπ + sinh nπ
sin ny.

8. Using u = XY and −λ as a separation constant we obtain

X ′′ + λX = 0,

X(0) = 0,

X(1) = 0,

and

Y ′′ − λY = 0,

Y ′(0) = Y (0).

With λ = α2 > 0 the solutions of the differential equations are

X = c1 cos αx + c2 sin αx and Y = c3 cosh αy + c4 sinh αy

The boundary and initial conditions imply

X = c2 sin nπx and Y = c4(n cosh nπy + sinh nπy)

for n = 1, 2, 3, . . . so that

u =
∞∑

n=1

An(n cosh nπy + sinh nπy) sin nπx.
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Imposing

u(x, 1) = f(x) =
∞∑

n=1

An(n cosh nπ + sinh nπ) sin nπx

gives

An(n cosh nπ + sinh nπ) =
2

π

∫ π

0
f(x) sin nπx dx

for n = 1, 2, 3, . . . so that

u(x, y) =
∞∑

n=1

An(n cosh nπy + sinh nπy) sin nπx

where

An =
2

nπ cosh nπ + π sinh nπ

∫ 1

0
f(x) sin nπx dx.

9. This boundary-value problem has the form of Problem 1 in this section, with a = b = 1, f(x) = 100,

and g(x) = 200. The solution, then, is

u(x, y) =
∞∑

n=1

(An cosh nπy + Bn sinh nπy) sin nπx,

where

An = 2
∫ 1

0
100 sin nπx dx = 200

(
1 − (−1)n

nπ

)

and

Bn =
1

sinh nπ

[

2
∫ 1

0
200 sin nπx dx − An cosh nπ

]

=
1

sinh nπ

[
400

(
1 − (−1)n

nπ

)
− 200

(
1 − (−1)n

nπ

)
cosh nπ

]

= 200
[
1 − (−1)n

nπ

]
[2 csch nπ − coth nπ].

10. This boundary-value problem has the form of Problem 2 in this section, with a = 1 and b = 1.

Thus, the solution has the form

u(x, y) =
∞∑

n=1

(An cosh nπx + Bn sinh nπx) sin nπy.

The boundary condition u(0, y) = 10y implies

10y =
∞∑

n=1

An sin nπy

and

An =
2

1

∫ 1

0
10y sin nπy dy =

20

nπ
(−1)n+1.
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CHAPTER 12 BOUNDARY-VALUE PROBLEMS IN RECTANGULAR COORDINATES

The boundary condition ux(1, y) = −1 implies

−1 =
∞∑

n=1

(nπAn sinh nπ + nπBn cosh nπ) sin nπy

and

nπAn sinh nπ + nπBn cosh nπ =
2

1

∫ 1

0
(− sin nπy)dy

An sinh nπ + Bn cos nπ = − 2

nπ
[1 − (−1)n]

Bn =
2

nπ
[(−1)n − 1] sech nπ − 20

nπ
(−1)n+1 tanh nπ.

11. Using u = XY and −λ as a separation constant we obtain

X ′′ + λX = 0,

X(0) = 0,

X(π) = 0,

and

Y ′′ − λY = 0.

With λ = α2 > 0 the solutions of the differential equations are

X = c1 cos αx + c2 sin αx and Y = c3e
αy + c4e

−αy

Then the boundedness of u as y → ∞ implies c3 = 0, so Y = c4e−ny. The boundary conditions at

x = 0 and x = π imply c1 = 0 so X = c2 sin nx for n = 1, 2, 3, . . . and

u =
∞∑

n=1

Ane−ny sin nx.

Imposing

u(x, 0) = f(x) =
∞∑

n=1

An sin nx

gives

An =
2

π

∫ π

0
f(x) sin nx dx

so that

u(x, y) =
∞∑

n=1

(
2

π

∫ π

0
f(x) sin nx dx

)
e−ny sin nx.

12. Using u = XY and −λ as a separation constant we obtain

X ′′ + λX = 0,

X ′(0) = 0,
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X ′(π) = 0,

and

Y ′′ − λY = 0.

With λ = α2 > 0 the solutions of the differential equations are

X = c1 cos αx + c2 sin αx and Y = c3e
αy + c4e

−αy

The boundary conditions at x = 0 and x = π imply c2 = 0 so X = c1 cos nx for n = 1, 2, 3, . . . .

Now the boundedness of u as y → ∞ implies c3 = 0, so Y = c4e−ny. In this problem λ = 0 is also

an eigenvalue with corresponding eigenfunction 1 so that

u = A0 +
∞∑

n=1

Ane−ny cos nx.

Imposing

u(x, 0) = f(x) = A0 +
∞∑

n=1

An cos nx

gives

A0 =
1

π

∫ π

0
f(x) dx and An =

2

π

∫ π

0
f(x) cos nx dx

so that

u(x, y) =
1

π

∫ π

0
f(x) dx +

∞∑

n=1

(
2

π

∫ π

0
f(x) cos nx dx

)
e−ny cos nx.

13. Since the boundary conditions at y = 0 and y = b are functions of x we choose to separate Laplace’s

equation as
X ′′

X
= −Y ′′

Y
= −λ

so that
X ′′ + λX = 0

Y ′′ − λY = 0.

Then with λ = α2 we have
X(x) = c1 cos αx + c2 sin αx

Y (y) = c3 cosh αy + c4 sinh αy.

Now X(0) = 0 gives c1 = 0 and X(a) = 0 implies sin αa = 0 or α = nπ/a for n = 1, 2, 3, . . . . Thus

un(x, y) = XY =
(
An cosh

nπ

a
y + Bn sinh

nπ

a
y
)

sin
nπ

a
x

and

u(x, y) =
∞∑

n=1

(
An cosh

nπ

a
y + Bn sinh

nπ

a
y
)

sin
nπ

a
x. (1)
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CHAPTER 12 BOUNDARY-VALUE PROBLEMS IN RECTANGULAR COORDINATES

At y = 0 we then have

f(x) =
∞∑

n=1

An sin
nπ

a
x

and consequently

An =
2

a

∫ a

0
f(x) sin

nπ

a
x dx. (2)

At y = b,

g(y) =
∞∑

n=1

(
An cosh

nπ

a
b + Bn sinh

nπ

b
a
)

sin
nπ

a
x

indicates that the entire expression in the parentheses is given by

An cosh
nπ

a
b + Bn sinh

nπ

a
b =

2

a

∫ a

0
g(x) sin

nπ

a
x dx.

We can now solve for Bn:

Bn sinh
nπ

a
b =

2

a

∫ a

0
g(x) sin

nπ

a
x dx − An cosh

nπ

a
b

Bn =
1

sinh nπ
a b

(
2

a

∫ a

0
g(x) sin

nπ

a
x dx − An cosh

nπ

a
b
)

. (3)

A solution to the given boundary-value problem consists of the series (1) with coefficients An and

Bn given in (2) and (3), respectively.

14. Since the boundary conditions at x = 0 and x = a are functions of y we choose to separate Laplace’s

equation as
X ′′

X
= −Y ′′

Y
= −λ

so that
X ′′ + λX = 0

Y ′′ − λY = 0.

Then with λ = −α2 we have

X(x) = c1 cosh αx + c2 sinh αx

Y (y) = c3 cos αy + c4 sin αy.

Now Y (0) = 0 gives c3 = 0 and Y (b) = 0 implies sin αb = 0 or α = nπ/b for n = 1, 2, 3, . . . . Thus

un(x, y) = XY =
(
An cosh

nπ

b
x + Bn sinh

nπ

b
x

)
sin

nπ

b
y

and

u(x, y) =
∞∑

n=1

(
An cosh

nπ

b
x + Bn sinh

nπ

b
x

)
sin

nπ

b
y. (4)
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At x = 0 we then have

F (y) =
∞∑

n=1

An sin
nπ

b
y

and consequently

An =
2

b

∫ b

0
F (y) sin

nπ

b
y dy. (5)

At x = a,

G(y) =
∞∑

n=1

(
An cosh

nπ

b
a + Bn sinh

nπ

b
a
)

sin
nπ

b
y

indicates that the entire expression in the parentheses is given by

An cosh
nπ

b
a + Bn sinh

nπ

b
a =

2

b

∫ b

0
G(y) sin

nπ

b
y dy.

We can now solve for Bn:

Bn sinh
nπ

b
a =

2

b

∫ b

0
G(y) sin

nπ

b
y dy − An cosh

nπ

b
a

Bn =
1

sinh nπ
b a

(
2

b

∫ b

0
G(y) sin

nπ

b
y dy − An cosh

nπ

b
a

)

. (6)

A solution to the given boundary-value problem consists of the series (4) with coefficients An and

Bn given in (5) and (6), respectively.

15. Referring to the discussion in this section of the text we identify a = b = π, f(x) = 0, g(x) = 1,

F (y) = 1, and G(y) = 1. Then An = 0 and

u1(x, y) =
∞∑

n=1

Bn sinh ny sin nx

where

Bn =
2

π sinh nπ

∫ π

0
sin nx dx =

2[1 − (−1)n]

nπ sinh nπ
.

Next

u2(x, y) =
∞∑

n=1

(An cosh nx + Bn sinh nx) sin ny

where

An =
2

π

∫ π

0
sin ny dy =

2[1 − (−1)n]

nπ
and

Bn =
1

sinh nπ

(
2

π

∫ π

0
sin ny dy − An cosh nπ

)

=
1

sinh nπ

(
2[1 − (−1)n]

nπ
− 2[1 − (−1)n]

nπ
cosh nπ

)

=
2[1 − (−1)n]

nπ sinh nπ
(1 − cosh nπ).

68112.5  Laplace  Equation's
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CHAPTER 12 BOUNDARY-VALUE PROBLEMS IN RECTANGULAR COORDINATES

Now

An cosh nx + Bn sinh nx =
2[1 − (−1)n]

nπ

[

cosh nx +
sinh nx

sinh nπ
(1 − cosh nπ)

]

=
2[1 − (−1)n]

nπ sinh nπ
[cosh nx sinh nπ + sinh nx − sinh nx cosh nπ]

=
2[1 − (−1)n]

nπ sinh nπ
[sinh nx + sinh n(π − x)]

and

u(x, y) = u1 + u2 =
2

π

∞∑

n=1

1 − (−1)n

n sinh nπ
sinh ny sin nx

+
2

π

∞∑

n=1

[1 − (−1)n][sinh nx + sinh n(π − x)]

n sinh nπ
sin ny.

16. Referring to the discussion in this section of the text we identify a = b = 2, f(x) = 0,

g(x) =

{
x, 0 < x < 1

2 − x, 1 < x < 2,

F (y) = 0, and G(y) = y(2 − y). Then An = 0 and

u1(x, y) =
∞∑

n=1

Bn sinh
nπ

2
y sin

nπ

2
x

where

Bn =
1

sinh nπ

∫ 2

0
g(x) sin

nπ

2
x dx

=
1

sinh nπ

(∫ 1

0
x sin

nπ

2
x dx +

∫ 2

1
(2 − x) sin

nπ

2
x dx

)

=
8 sin nπ

2

n2π2 sinh nπ
.

Next, since An = 0 in u2, we have

u2(x, y) =
∞∑

n=1

Bn sinh
nπ

2
x sin

nπ

2

where

Bn =
1

sinh nπ

∫ b

0
y(2 − y) sin

nπ

2
y dy =

16[1 − (−1)n]

n3π3 sinh nπ
.

Thus

u(x, y) = u1 + u2 =
8

π2

∞∑

n=1

sin nπ
2

n2 sinh nπ
sinh

nπ

2
y sin

nπ

2
x

+
16

π3

∞∑

n=1

[1 − (−1)n]

n3 sinh nπ
sinh

nπ

2
x sin

nπ

2
y.
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17. (a)

(b) The maximum value occurs at (π/2, π) and is f(π/2) = 25π2.

(c) The coefficients are

An =
2

π
csch nπ

∫ π

0
100x(π − x) sin nx dx

=
200 csch nπ

π

[
200

n3

(
1 − (−1)n

)]
=

400

n3π

[
1 − (−1)n

]
csch nπ.

See part (a) for the graph.

18. From the figure showing the boundary conditions we see that

the maximum value of the temperature is 1 at (1, 2) and (2, 1).

68312.5  Laplace  Equation's
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CHAPTER 12 BOUNDARY-VALUE PROBLEMS IN RECTANGULAR COORDINATES

19. (a) Assuming u(x, y) = X(x)Y (y) and substituting into the partial differential equation we

get X ′′Y +XY ′′ = 0. Separating variables and using λ = α2 we get

X ′′ − α2X = 0, X ′(0) = 0,

which implies X(x) = c3 coshαx. From

Y ′′ + α2Y = 0, Y ′(0) = 0, Y ′(b) = 0

we get Y (y) = c1 cosαy + c2 sinαy and eigenvalues λn = n2π2/b2, n = 1, 2, 3, . . . .

The corresponding eigenfunctions are Y (y) = c1 cos(nπy/b). For λ = 0 the boundary

conditions applied to X(x) = c3 + c4x and Y (y) = c1 + c2y imply X = c3 and Y = c1.

Forming products and using the superposition principle then gives

u(x, y) = A0 +

∞∑
n=1

An cosh
nπ

b
x cos

nπ

b
y.

The remaining boundary condition, ux(a) = g(y) implies

g(y) =
∂u

∂x

∣∣∣∣
x=a

=

∞∑
n=1

An
nπ

b
sinh

nπ

b
x cos

nπ

b
y,

and so A0 remains arbitrary. In order that the series expression for g(y) be a cosine series,

the constant term in the series, a0/2, must be 0. Thus, from Section 12.3 in the text,

a0 =
2

b

∫ b

0
g(y)dy = 0 so

∫ b

0
g(y)dy = 0.

Also,

An
nπ

b
sinh

nπ

b
a =

2

b

∫ b

0
g(y) cos

nπ

b
y dy

and

An =
2

nπ sinhnπa/b

∫ b

0
g(y) cos

nπ

b
y dy.

The solution is then

u(x, y) = A0 +

∞∑
n=1

An cosh
nπ

b
x cos

nπ

b
y,

where the An are defined above and A0 is arbitrary. In general, Neumann problems do

not have unique solutions.

For a physical interpretation of the compatibility condition
∫ b
0 g(y)dy = 0 see the texts

Elementary Partial Differential Equations by Paul Berg and James McGregor (Holden-

Day) and Partial Differential Equations of Mathematical Physics by Tyn Myint-U (North

Holland).
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(b) Since the derivative of a constant is 0, v(x, y) = u(x, y) + c satisfies the five boundary

conditions in the Neumann problem as given in part (a) of this problem in the text.

20. Separating variables in the boundary-value problem leads to

Y ′′ + λY = 0, Y ′(0) = 0, Y ′(π) = 0

X ′′ − λX = 0.

The boundary conditions yield

λ0 = 0 so Y = c1 and X = c3 + c4x.

Also

λn = n2, n > 0 so Y (y) = c5 cosny and X(x) = c7 coshnx+ c8 sinhnx.

Thus product solutions are

u(x, y) = A0 +B0x+

∞∑
n=1

(An coshnx+Bn sinhnx) cosny.

The last part of this problem involves matching coefficients.

At x = 0,

u0 cos y = A0 +
∞∑
n=1

An cosny implies A0 = 0, A1 = u0, and An = 0, for n ≥ 2.

Therefore

u(x, y) = B0x+ u0 coshx cos y +B1 sinhx cos y +B2 sinh 2x cos 2y +

∞∑
n=3

Bn sinhnx cosny.

At x = 1,

u0(1 + cos 2y) = B0 + u0 cosh 1 cos y +B1 sinh 1 cos y +B2 sinh 2 cos 2y +
∞∑
n=3

Bn sinhn cosny,

so

u0 − u0 cosh 1 cos y + u0 cos 2y = B0 +B1 sinh 1 cos y +B2 sinh 2 cos 2y +

∞∑
n=3

Bn sinhn cosny.

Then

B0 = u0, B1 = −u0
cosh 1

sinh 1
, B2 =

u0
sinh 2

, and Bn = 0 for n ≥ 3.

Therefore

u(x, y) = u0x+ u0 coshx cos y − u0
cosh 1

sinh 1
sinhx cos y +

u0
sinh 2

sinh 2x cos 2y

68512.5  Laplace  Equation's
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CHAPTER 12 BOUNDARY-VALUE PROBLEMS IN RECTANGULAR COORDINATES

= u0x+ u0

(
sinh 1 coshx− cosh 1 sinhx

sinh 1

)
cos y +

u0
sinh 2

sinh 2x cos 2y

or

u(x, y) = u0x+ u0
sinh(1 − x)

sinh 1
cos y +

u0
sinh 2

sinh 2x cos 2y.

Computer Lab Assignments

(a)

(b)

22.
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1. Using v(x, t) = u(x, t) − 100 we wish to solve kvxx = vt subject to v(0, t) = 0, v(1, t) = 0, and

v(x, 0) = −100. Let v = XT and use −λ as a separation constant so that

X ′′ + λX = 0,

X(0) = 0,

X(1) = 0,

and

T ′ + λkT = 0.

This leads to

X = c2 sin(nπx) and T = c3e
−kn2π2t

for n = 1, 2, 3, . . . so that

v =
∞∑

n=1

Ane−kn2π2t sin nπx.

Imposing

v(x, 0) = −100 =
∞∑

n=1

An sin nπx

gives

An = 2
∫ 1

0
(−100) sin nπx dx =

−200

nπ
[1 − (−1)n]

so that

u(x, t) = v(x, t) + 100 = 100 +
200

π

∞∑

n=1

(−1)n − 1

n
e−kn2π2t sin nπx.

2. Letting u(x, t) = v(x, t)+ψ(x) and proceeding as in Example 1 in the text we find ψ(x) = u0−u0x.

Then v(x, t) = u(x, t) + u0x − u0 and we wish to solve kvxx = vt subject to v(0, t) = 0, v(1, t) = 0,

and v(x, 0) = f(x) + u0x − u0. Let v = XT and use −λ as a separation constant so that

X ′′ + λX = 0,

X(0) = 0,

X(1) = 0,

and

T ′ + λkT = 0.

Separable Partial Differential Equationsq12.6
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CHAPTER 12 BOUNDARY-VALUE PROBLEMS IN RECTANGULAR COORDINATES

Then

X = c2 sin nπx and T = c3e
−kn2π2t

for n = 1, 2, 3, . . . so that

v =
∞∑

n=1

Ane−kn2π2t sin nπx.

Imposing

v(x, 0) = f(x) + u0x − u0 =
∞∑

n=1

An sin nπx

gives

An = 2
∫ 1

0
(f(x) + u0x − u0) sin nπx dx

so that

u(x, t) = v(x, t) + u0 − u0x = u0 − u0x +
∞∑

n=1

Ane−kn2π2t sin nπx.

3. If we let u(x, t) = v(x, t) + ψ(x), then we obtain as in Example 1 in the text

kψ′′ + r = 0

or

ψ(x) = − r

2k
x2 + c1x + c2.

The boundary conditions become

u(0, t) = v(0, t) + ψ(0) = u0

u(1, t) = v(1, t) + ψ(1) = u0.

Letting ψ(0) = ψ(1) = u0 we obtain homogeneous boundary conditions in v:

v(0, t) = 0 and v(1, t) = 0.

Now ψ(0) = ψ(1) = u0 implies c2 = u0 and c1 = r/2k. Thus

ψ(x) = − r

2k
x2 +

r

2k
x + u0 = u0 −

r

2k
x(x − 1).

To determine v(x, t) we solve

k
∂2v

∂x2 =
∂v

dt
, 0 < x < 1, t > 0

v(0, t) = 0, v(1, t) = 0,

v(x, 0) =
r

2k
x(x − 1) − u0.

Separating variables, we find

v(x, t) =
∞∑

n=1

Ane−kn2π2t sin nπx,
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where

An = 2
∫ 1

0

[
r

2k
x(x − 1) − u0

]
sin nπx dx = 2

[
u0

nπ
+

r

kn3π3

]
[(−1)n − 1]. (1)

Hence, a solution of the original problem is

u(x, t) = ψ(x) + v(x, t)

= u0 −
r

2k
x(x − 1) +

∞∑

n=1

Ane−kn2π2t sin nπx,

where An is defined in (1).

4. If we let u(x, t) = v(x, t) + ψ(x), then we obtain as in Example 1 in the text

kψ′′ + r = 0.

Integrating gives

ψ(x) = − r

2k
x2 + c1x + c2.

The boundary conditions become

u(0, t) = v(0, t) + ψ(0) = u0

u(1, t) = v(1, t) + ψ(1) = u1.

Letting ψ(0) = u0 and ψ(1) = u1 we obtain homogeneous boundary conditions in v:

v(0, t) = 0 and v(1, t) = 0.

Now ψ(0) = u0 and ψ(1) = u1 imply c2 = u0 and c1 = u1 − u0 + r/2k. Thus

ψ(x) = − r

2k
x2 +

(
u1 − u0 +

r

2k

)
x + u0.

To determine v(x, t) we solve

k
∂2v

∂x2 =
∂v

dt
, 0 < x < 1, t > 0

v(0, t) = 0, v(1, t) = 0,

v(x, 0) = f(x) − ψ(x).

Separating variables, we find

v(x, t) =
∞∑

n=1

Ane−kn2π2t sin nπx,

where

An = 2
∫ 1

0
[f(x) − ψ(x)] sin nπx dx. (2)

68912.6  Separable Partial Differential Equations
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CHAPTER 12 BOUNDARY-VALUE PROBLEMS IN RECTANGULAR COORDINATES

Hence, a solution of the original problem is

u(x, t) = ψ(x) + v(x, t)

= − r

2k
x2 +

(
u1 − u0 +

r

2k

)
x + u0 +

∞∑

n=1

Ane−kn2π2t sin nπx,

where An is defined in (2).

5. Substituting u(x, t) = v(x, t) + ψ(x) into the partial differential equation gives

k
∂2v

∂x2 + kψ′′ + Ae−βx =
∂v

∂t
.

This equation will be homogeneous provided ψ satisfies

kψ′′ + Ae−βx = 0.

The solution of this differential equation is obtained by successive integrations:

ψ(x) = − A

β2k
e−βx + c1x + c2.

From ψ(0) = 0 and ψ(1) = 0 we find

c1 =
A

β2k
(e−β − 1) and c2 =

A

β2k
.

Hence

ψ(x) = − A

β2k
e−βx +

A

β2k
(e−β − 1)x +

A

β2k

=
A

β2k

[
1 − e−βx + (e−β − 1)x

]
.

Now the new problem is

k
∂2v

∂x2 =
∂v

∂t
, 0 < x < 1, t > 0,

v(0, t) = 0, v(1, t) = 0, t > 0,

v(x, 0) = f(x) − ψ(x), 0 < x < 1.

Identifying this as the heat equation solved in Section 12.3 in the text with L = 1 we obtain

v(x, t) =
∞∑

n=1

Ane−kn2π2t sin nπx

where

An = 2
∫ 1

0
[f(x) − ψ(x)] sin nπx dx.

Thus

u(x, t) =
A

β2k

[
1 − e−βx + (e−β − 1)x

]
+

∞∑

n=1

Ane−kn2π2t sin nπx.
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6. Substituting u(x, t) = v(x, t) + ψ(x) into the partial differential equation gives

k
∂2v

∂x2 + kψ′′ − hv − hψ =
∂v

∂t
.

This equation will be homogeneous provided ψ satisfies

kψ′′ − hψ = 0.

Since k and h are positive, the general solution of this latter linear second-order equation is

ψ(x) = c1 cosh

√
h

k
x + c2 sinh

√
h

k
x.

From ψ(0) = 0 and ψ(π) = u0 we find c1 = 0 and c2 = u0/ sinh
√

h/k π. Hence

ψ(x) = u0
sinh

√
h/k x

sinh
√

h/k π
.

Now the new problem is

k
∂2v

∂x2 − hv =
∂v

∂t
, 0 < x < π, t > 0

v(0, t) = 0, v(π, t) = 0, t > 0

v(x, 0) = −ψ(x), 0 < x < π.

If we let v = XT then
X ′′

X
=

T ′ + hT

kT
= −λ.

With λ = α2 > 0, the separated differential equations

X ′′ + α2X = 0 and T ′ +
(
h + kα2

)
T = 0.

have the respective solutions

X(x) = c3 cos αx + c4 sin αx

T (t) = c5e
−(h+kα2)t.

From X(0) = 0 we get c3 = 0 and from X(π) = 0 we find α = n for n = 1, 2, 3, . . . . Consequently,

it follows that

v(x, t) =
∞∑

n=1

Ane−(h+kn2)t sin nx

where

An = − 2

π

∫ π

0
ψ(x) sin nx dx.

Hence a solution of the original problem is

u(x, t) = u0
sinh

√
h/k x

sinh
√

h/k π
+ e−ht

∞∑

n=1

Ane−kn2t sin nx
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CHAPTER 12 BOUNDARY-VALUE PROBLEMS IN RECTANGULAR COORDINATES

where

An = − 2

π

∫ π

0
u0

sinh
√

h/k x

sinh
√

h/k π
sin nx dx.

Using the exponential definition of the hyperbolic sine and integration by parts we find

An =
2u0nk(−1)n

π (h + kn2)
.

7. Substituting u(x, t) = v(x, t) + ψ(x) into the partial differential equation gives

k
∂2v

∂x2 + kψ′′ − hv − hψ + hu0 =
∂v

∂t
.

This equation will be homogeneous provided ψ satisfies

kψ′′ − hψ + hu0 = 0 or kψ′′ − hψ = −hu0.

This non-homogeneous, linear, second-order, differential equation has solution

ψ(x) = c1 cosh

√
h

k
x + c2 sinh

√
h

k
x + u0,

where we assume h > 0 and k > 0. From ψ(0) = u0 and ψ(1) = 0 we find c1 = 0 and

c2 = −u0/ sinh
√

h/k . Thus, the steady-state solution is

ψ(x) = − u0

sinh
√

h
k

sinh

√
h

k
x + u0 = u0



1 −
sinh

√
h
k x

sinh
√

h
k



 .

8. The partial differential equation is

k
∂2u

∂x2 − hu =
∂u

∂t
.

Substituting u(x, t) = v(x, t) + ψ(x) gives

k
∂2v

∂x2 + kψ′′ − hv − hψ =
∂v

∂t
.

This equation will be homogeneous provided ψ satisfies

kψ′′ − hψ = 0.

Assuming h > 0 and k > 0, we have

ψ = c1e
√

h/k x + c2e
−
√

h/k x,

where we have used the exponential form of the solution since the rod is infinite. Now, in order

that the steady-state temperature ψ(x) be bounded as x → ∞, we require c1 = 0. Then

ψ(x) = c2e
−
√

h/k x
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and ψ(0) = u0 implies c2 = u0. Thus

ψ(x) = u0e
−
√

h/k x.

9. Substituting u(x, t) = v(x, t) + ψ(x) into the partial differential equation gives

a2 ∂2v

∂x2 + a2ψ′′ + Ax =
∂2v

∂t2
.

This equation will be homogeneous provided ψ satisfies

a2ψ′′ + Ax = 0.

The solution of this differential equation is

ψ(x) = − A

6a2x3 + c1x + c2.

From ψ(0) = 0 we obtain c2 = 0, and from ψ(1) = 0 we obtain c1 = A/6a2. Hence

ψ(x) =
A

6a2 (x − x3).

Now the new problem is

a2 ∂2v

∂x2 =
∂2v

∂t2

v(0, t) = 0, v(1, t) = 0, t > 0,

v(x, 0) = −ψ(x), vt(x, 0) = 0, 0 < x < 1.

Identifying this as the wave equation solved in Section 12.4 in the text with L = 1, f(x) = −ψ(x),

and g(x) = 0 we obtain

v(x, t) =
∞∑

n=1

An cos nπat sin nπx

where

An = 2
∫ 1

0
[−ψ(x)] sin nπx dx =

A

3a2

∫ 1

0
(x3 − x) sin nπx dx =

2A(−1)n

a2π3n3 .

Thus

u(x, t) =
A

6a2 (x − x3) +
2A

a2π3

∞∑

n=1

(−1)n

n3 cos nπat sin nπx.

10. We solve

a2∂2u

∂x2 − g =
∂2u

∂t2
, 0 < x < 1, t > 0

u(0, t) = 0, u(1, t) = 0, t > 0

u(x, 0) = 0,
∂u

∂t

∣∣∣∣
t=0

= 0, 0 < x < 1.
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CHAPTER 12 BOUNDARY-VALUE PROBLEMS IN RECTANGULAR COORDINATES

The partial differential equation is nonhomogeneous. The substitution u(x, t) = v(x, t)+ψ(x) yields

a homogeneous partial differential equation provided ψ satisfies

a2ψ′′ − g = 0.

By integrating twice we find

ψ(x) =
g

2a2x2 + c1x + c2.

The imposed conditions ψ(0) = 0 and ψ(1) = 0 then lead to c2 = 0 and c1 = −g/2a2. Hence

ψ(x) =
g

2a2

(
x2 − x

)
.

The new problem is now

a2 ∂2v

∂x2 =
∂2v

∂t2
, 0 < x < 1, t > 0

v(0, t) = 0, v(1, t) = 0

v(x, 0) =
g

2a2

(
x − x2

)
,

∂v

∂t

∣∣∣∣
t=0

= 0.

Substituting v = XT we find in the usual manner

X ′′ + α2X = 0

T ′′ + a2α2T = 0

with solutions
X(x) = c3 cos αx + c4 sin αx

T (t) = c5 cos aαt + c6 sin aαt.

The conditions X(0) = 0 and X(1) = 0 imply in turn that c3 = 0 and α = nπ for n = 1, 2, 3, . . . .

The condition T ′(0) = 0 implies c6 = 0. Hence, by the Superposition Principle

v(x, t) =
∞∑

n=1

An cos(anπt) sin(nπx).

At t = 0,
g

2a2

(
x − x2

)
=

∞∑

n=1

An sin(nπx)

and so

An =
g

a2

∫ 1

0

(
x − x2

)
sin(nπx) dx =

2g

a2n3π3 [1 − (−1)n] .

Thus the solution to the original problem is

u(x, t) = ψ(x) + v(x, t) =
g

2a2

(
x2 − x

)
+

2g

a2π3

∞∑

n=1

1 − (−1)n

n3 cos(anπt) sin(nπx).
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11. Substituting u(x, y) = v(x, y) + ψ(y) into Laplace’s equation we obtain

∂2v

∂x2 +
∂2v

∂y2 + ψ′′(y) = 0.

This equation will be homogeneous provided ψ satisfies ψ(y) = c1y + c2. Considering

u(x, 0) = v(x, 0) + ψ(0) = u1

u(x, 1) = v(x, 1) + ψ(1) = u0

u(0, y) = v(0, y) + ψ(y) = 0

we require that ψ(0) = u1, ψ1 = u0 and v(0, y) = −ψ(y). Then c1 = u0 − u1 and c2 = u1. The new

boundary-value problem is

∂2v

∂x2 +
∂2v

∂y2 = 0

v(x, 0) = 0, v(x, 1) = 0,

v(0, y) = −ψ(y), 0 < y < 1,

where v(x, y) is bounded at x → ∞. This problem is similar to Problem 11 in Section 12.5. The

solution is

v(x, y) =
∞∑

n=1

(

2
∫ 1

0
[−ψ(y) sin nπy] dy

)

e−nπx sin nπy

= 2
∞∑

n=1

[

(u1 − u0)
∫ 1

0
y sin nπy dy − u1

∫ 1

0
sin nπy dy

]

e−nπx sin nπy

=
2

π

∞∑

n=1

u0(−1)n − u1

n
e−nπx sin nπy.

Thus
u(x, y) = v(x, y) + ψ(y)

= (u0 − u1)y + u1 +
2

π

∞∑

n=1

u0(−1)n − u1

n
e−nπx sin nπy.

12. Substituting u(x, y) = v(x, y) + ψ(x) into Poisson’s equation we obtain

∂2v

∂x2 + ψ′′(x) + h +
∂2v

∂y2 = 0.

The equation will be homogeneous provided ψ satisfies ψ′′(x) + h = 0 or ψ(x) = −h
2x2 + c1x + c2.

From ψ(0) = 0 we obtain c2 = 0. From ψ(π) = 1 we obtain

c1 =
1

π
+

hπ

2
.
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CHAPTER 12 BOUNDARY-VALUE PROBLEMS IN RECTANGULAR COORDINATES

Then

ψ(x) =

(
1

π
+

hπ

2

)

x − h

2
x2.

The new boundary-value problem is

∂2v

∂x2 +
∂2v

∂y2 = 0

v(0, y) = 0, v(π, y) = 0,

v(x, 0) = −ψ(x), 0 < x < π.

This is Problem 11 in Section 12.5. The solution is

v(x, y) =
∞∑

n=1

Ane−ny sin nx

where

An =
2

π

∫ π

0
[−ψ(x) sin nx] dx

=
2(−1)n

m

(
1

π
+

hπ

2

)

− h(−1)n
(

π

n
+

2

n2

)
.

Thus

u(x, y) = v(x, y) + ψ(x) =

(
1

π
+

hπ

2

)

x − h

2
x2 +

∞∑

n=1

Ane−ny sin nx.

13. With k = 1 and L = π in Method 2 the eigenfunctions of X ′′ + λX = 0, X(0) = 0, X(π) = 0 are

sin nx, n = 1, 2, 3, . . . . Assuming that u(x, t) =
∑∞

n=1 un(t) sin nx, the formal partial derivatives

of u are
∂2u

∂x2 =
∞∑

n=1

un(t)(−n2) sin nx and
∂u

∂t
=

∞∑

n=1

u′
n(t) sin nx.

Assuming that xe−3t =
∑∞

n=1 Fn(t) sin nx we have

Fn(t) =
2

π

∫ π

0
xe−3t sin nx dx =

2e−3t

π

∫ π

0
x sin nx dx =

2e−3t(−1)n+1

n
.

Then

xe−3t =
∞∑

n=1

2e−3t(−1)n+1

n
sin nx

and

ut − uxx =
∞∑

n=1

[u′
n(t) + n2un(t)] sin nx = xe−3t =

∞∑

n=1

2e−3t(−1)n+1

n
sin nx.

Equating coefficients we obtain

u′
n(t) + n2un(t) =

2e−3t(−1)n+1

n
.
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This is a linear first-order differential equation whose solution is

un(t) =
2(−1)n+1

n(n2 − 3)
e−3t + Cne−n2t.

Thus

u(x, t) =
∞∑

n=1

2(−1)n+1

n(n2 − 3)
e−3t sin nx +

∞∑

n=1

Cne−n2t sin nx

and u(x, 0) = 0 implies
∞∑

n=1

2(−1)n+1

n(n2 − 3)
sin nx +

∞∑

n=1

Cn sin nx = 0

so that Cn = 2(−1)n/n(n2 − 3). Therefore

u(x, t) = 2
∞∑

n=1

(−1)n+1

n(n2 − 3)
e−3t sin nx + 2

∞∑

n=1

(−1)n

n(n2 − 3)
e−n2t sin nx.

14. With k = 1 and L = π in Method 2 the eigenfunctions of X ′′ + λX = 0, X(0) = 0, X ′(π) = 0 are

1, cos nx, n = 1, 2, 3, . . . . Assuming that u(x, t) = 1
2u0(t) +

∑∞
n=1 un(t) cos nx, the formal partial

derivatives of u are

∂2u

∂x2 =
∞∑

n=1

un(t)(−n2) cos nx and
∂u

∂t
=

1

2
u′

0 +
∞∑

n=1

u′
n(t) cos nx.

Assuming that xe−3t = 1
2F0(t) +

∑∞
n=1 Fn(t) cos nx we have

F0(t) =
2e−3t

π

∫ π

0
x dx = πe−3t

and

Fn(t) =
2e−3t

π

∫ π

0
x cos nx dx =

2e−3t[(−1)n − 1]

πn2 .

Then

xe−3t =
π

2
e−3t +

∞∑

n=1

2e−3t[(−1)n − 1]

πn2 cos nx

and

ut − uxx =
1

2
u′

0(t) +
∞∑

n=1

[u′
n(t) + n2un(t)] cos nx

= xe−3t =
π

2
e−3t +

∞∑

n=1

2e−3t[(−1)n − 1]

πn2 cos nx.

Equating coefficients, we obtain

u′
0(t) = πe−3t and u′

n(t) + n2un(t) =
2e−3t[(−1)n − 1]

πn2 cos nx.
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CHAPTER 12 BOUNDARY-VALUE PROBLEMS IN RECTANGULAR COORDINATES

The first equation yields u0(t) = −(π/3)e−3t + C0 and the second equation, which is a linear

first-order differential equation, yields

un(t) =
2[(−1)n − 1]

πn2(n2 − 3)
e−3t + Cne−n2t.

Thus

u(x, t) = −π

3
e−3t + C0 +

∞∑

n=1

2[(−1)n − 1]

πn2(n2 − 3)
e−3t cos nx +

∞∑

n=1

Cne−n2t cos nx

and u(x, 0) = 0 implies

−π

3
+ C0 +

∞∑

n=1

2[(−1)n − 1]

πn2(n2 − 3)
cos nx +

∞∑

n=1

Cn cos nx = 0

so that C0 = π/3 and Cn = 2[(−1)n − 1]/πn2(n2 − 3). Therefore

u(x, t) =
π

3
(1 − e−3t) +

2

π

∞∑

n=1

(−1)n − 1

n2(n2 − 3)
e−3t cos nx +

2

π

∞∑

n=1

1 − (−1)n

n2(n2 − 3)
e−n2t cos nx.

15. With k = 1 and L = 1 in Method 2 the eigenfunctions of X ′′ + λX = 0, X(0) = 0, X(1) = 0 are

sin nπx, n = 1, 2, 3, . . . . Assuming that u(x, t) =
∑∞

n=1 un(t) sin nπx, the formal partial derivatives

of u are
∂2u

∂x2 =
∞∑

n=1

un(t)(−n2π2) sin nπx and
∂u

∂t
=

∞∑

n=1

u′
n(t) sin nπx.

Assuming that −1 + x − x cos t =
∑∞

n=1 Fn(t) sin nπx we have

Fn(t) =
2

1

∫ 1

0
(−1 + x − x cos t) sin nπx dx =

2[−1 + (−1)n cos t]

nπ
.

Then

−1 + x − x cos t =
2

π

∞∑

n=1

−1 + (−1)n cos t

n
sin nπx

and

ut − uxx =
∞∑

n=1

[u′
n(t) + n2π2un(t)] sin nπx

= −1 + x − x cos t =
2

π

∞∑

n=1

−1 + (−1)n cos t

n
sin nπx.

Equating coefficients we obtain

u′
n(t) + n2π2un(t) =

2[−1 + (−1)n cos t]

nπ
.

This is a linear first-order differential equation whose solution is

un(t) =
2

nπ

[

− 1

n2π2 + (−1)n
n2π2 cos t + sin t

n4π4 + 1

]

+ Cne−n2π2t.
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Thus

u(x, t) =
∞∑

n=1

2

nπ

[

− 1

n2π2 + (−1)n
n2π2 cos t + sin t

n4π4 + 1

]

sin nπx +
∞∑

n=1

Cne−n2π2t sin nπx

and u(x, 0) = x(1 − x) implies
∞∑

n=1

2

nπ

[

− 1

n2π2 + (−1)n
n2π2

n4π4 + 1
+ Cn

]

sin nπx = x(1 − x).

Hence

2

nπ

[

− 1

n2π2 + (−1)n
n2π2

n4π4 + 1
+ Cn

]

=
2

1

∫ 1

0
x(1 − x) sin nπx dx = 2

[
1 − (−1)n

n3π3

]

and

Cn =
4 − 2(−1)n

n3π3 − (−1)n
2nπ

n4π4 + 1
.

Therefore

u(x, t) =
∞∑

n=1

2

nπ

[

− 1

n2π2 + (−1)n
n2π2 cos t + sin t

n4π4 + 1

]

sin nπx

+
∞∑

n=1

[
4 − 2(−1)n

n3π3 − (−1)n
2nπ

n4π4 + 1

]

e−n2π2t sin nπx.

16. With k = 1 and L = π in Method 2 the eigenfunctions of X ′′ + λX = 0, X(0) = 0, X(π) = 0 are

sin nx, n = 1, 2, 3, . . . . Assuming that u(x, t) =
∑∞

n=1 un(t) sin nx, the formal partial derivatives

of u are
∂2u

∂x2 =
∞∑

n=1

un(t)(−n2) sin nx and
∂2u

∂t2
=

∞∑

n=1

u′′
n(t) sin nx.

Then

utt − uxx =
∞∑

n=1

[u′′
n(t) + n2un(t)] sin nx = cos t sin x.

Equating coefficients, we obtain u′′
1(t) + u1(t) cos t and u′′

n(t) + n2un(t) = 0 for n = 2, 3, 4, . . . .

Solving the first differential equation we obtain u1(t) = A1 cos t+B1 sin t+ 1
2t sin t. From the second

differential equation we obtain un(t) = An cos nt + Bn sin nt for n = 2, 3, 4, . . . . Thus

u(x, t) =
(
A1 cos t + B1 sin t +

1

2
t sin t

)
sin x +

∞∑

n=2

(An cos nt + Bn sin nt) sin nx.

From

u(x, 0) = A1 sin x +
∞∑

n=2

An sin nx = 0

we see that An = 0 for n = 1, 2, 3, . . . . Thus

u(x, t) =
(
B1 sin t +

1

2
t sin t

)
sin x +

∞∑

n=2

Bn sin nt sin nx
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CHAPTER 12 BOUNDARY-VALUE PROBLEMS IN RECTANGULAR COORDINATES

and

∂u

∂t
=

(
B1 cos t +

1

2
t cos t +

1

2
sin t

)
sin x +

∞∑

n=2

nBn cos nt sin nx,

so

∂u

∂t

∣∣∣∣
t=0

= B1 sin x +
∞∑

n=2

nBn sin nx = 0.

We see that Bn = 0 for all n so u(x, t) = 1
2t sin t sin x.

17. The given substitution leads to the boundary-value problem

∂2v

∂x2
+ (x− 1) cos t =

∂v

∂t
, 0 < x < 1, t > 0

v(0, t) = 0, v(1, t) = 0, t > 0

v(x, 0) = 0, 0 < x < 1.

The eigenvalues and eigenfunctions of the Sturm-Liouville problem

X ′′ + λX = 0, X(0) = 0, X(1) = 0

are λn = α2
n = n2π2 and sinnπx, n = 1, 2, 3, . . . . With G(x, t) = (x − 1) cos t we assume for

fixed t that v and G can be written as Fourier sine series:

v(x, t) =

∞∑
n=1

vn(t) sinnπx

and

G(x, t) =

∞∑
n=1

Gn(t) sinnπx.

By treating t as a parameter, the coefficients Gn can be computed:

Gn(t) =
2

1

∫ 1

0
(x− 1) cos t sinnπx dx = 2 cos t

∫ 1

0
(x− 1) sinnπx dx = − 2

nπ
cos t.

Hence

(x− 1) cos t =

∞∑
n=1

−2 cos t

nπ
sinnπx.
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Now, using the series representation for v(x, t), we have

∂2v

∂x2
=

∞∑
n=1

vn(t)(−n2π2) sinnπx and
∂v

∂t
=

∞∑
n=1

v′n(t) sinnπx.

Writing the partial differential equation as vt− vxx = (x− 1) cos t and using the above results

we have
∞∑
n=1

[v′n(t) + n2π2vn(t)] sinnπx =
∞∑
n=1

−2 cos t

nπ
sinnπx.

Equating coefficients we get

v′n(t) + n2π2vn(t) = −2 cos t

nπ
.

For each n this is a linear first-order differential equation whose general solution is

vn(t) = − 2

nπ

[
n2π2 cos t+ sin t

n4π4 + 1

]
+ Cne

−n2π2t.

Thus

v(x, t) =
∞∑
n=1

[
−2n2π2 cos t+ 2 sin t

nπ(n4π4 + 1)
+ Cne

−n2π2t

]
sinnπx.

The initial condition v(x, 0) = 0 implies

∞∑
n=1

[
− 2nπ

n4π4 + 1
+ Cn

]
sinnπx = 0

so that Cn = 2nπ/(n4π4 + 1). Therefore

v(x, t) =

∞∑
n=1

[
−2n2π2 cos t+ 2 sin t

nπ(n4π4 + 1)
+

2nπ

n4π4 + 1
e−n

2π2t

]
sinnπx

=
2

π

∞∑
n=1

[
n2π2e−n

2π2t − n2π2 cos t− sin t

n(n4π4 + 1)

]
sinnπx

and

u(x, t) = v(x, t) + ψ(x, t) = (1 − x) sin t+
2

π

∞∑
n=1

[
n2π2e−n

2π2t − n2π2 cos t− sin t

n(n4π4 + 1)

]
sinnπx.

18. If this problem appears in your text, then it should be deleted since it cannot be solved by

methods discussed in the text.
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CHAPTER 12 BOUNDARY-VALUE PROBLEMS IN RECTANGULAR COORDINATES

1. Referring to Example 1 in the text we have

X(x) = c1 cos αx + c2 sin αx

and

T (t) = c3e
−kα2t.

From X ′(0) = 0 (since the left end of the rod is insulated), we find c2 = 0. Then X(x) = c1 cos αx

and the other boundary condition X ′(1) = −hX(1) implies

−α sin α + h cos α = 0 or cot α =
α

h
.

Denoting the consecutive positive roots of this latter equation by αn for n = 1, 2, 3, . . . , we have

u(x, t) =
∞∑

n=1

Ane−kα2
nt cos αnx.

From the initial condition u(x, 0) = 1 we obtain

1 =
∞∑

n=1

An cos αnx

and

An =

∫ 1
0 cos αnx dx

∫ 1
0 cos2 αnx dx

=
sin αn/αn

1
2

[
1 + 1

2αn
sin 2αn

]

=
2 sin αn

αn

[
1 + 1

αn
sin αn cos αn

] =
2 sin αn

αn

[
1 + 1

hαn
sin αn(αn sin αn)

]

=
2h sin αn

αn[h + sin2 αn]
.

12.7 Orthogonal Series Expansionsq

The solution is

u(x, t) = 2h
∞∑

n=1

sin αn

αn(h + sin2 αn)
e−kα2

nt cos αnx.

2. Substituting u(x, t) = v(x, t) + ψ(x) into the partial differential equation gives

k
∂2v

∂x2 + kψ′′ =
∂v

∂t
.
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This equation will be homogeneous if ψ′′(x) = 0 or ψ(x) = c1x + c2. The boundary condition

u(0, t) = 0 implies ψ(0) = 0 which implies c2 = 0. Thus ψ(x) = c1x. Using the second boundary

condition we obtain

−
(

∂v

∂x
+ ψ′

) ∣∣∣∣
x=1

= −h[v(1, t) + ψ(1) − u0],

which will be homogeneous when

−ψ′(1) = −hψ(1) + hu0.

Since ψ(1) = ψ′(1) = c1 we have −c1 = −hc1 + hu0 and c1 = hu0/(h − 1). Thus

ψ(x) =
hu0

h − 1
x.

The new boundary-value problem is

k
∂2v

∂x2 =
∂v

∂t
, 0 < x < 1, t > 0

v(0, t) = 0,
∂v

∂x

∣∣∣∣
x=1

= −hv(1, t), h > 0, t > 0

v(x, 0) = f(x) − hu0

h − 1
x, 0 < x < 1.

Referring to Example 1 in the text we see that

v(x, t) =
∞∑

n=1

Ane−kα2
nt sin αnx

and

u(x, t) = v(x, t) + ψ(x) =
hu0

h − 1
x +

∞∑

n=1

Ane−kα2
nt sin αnx

where

f(x) − hu0

h − 1
x =

∞∑

n=1

An sin αnx
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CHAPTER 12 BOUNDARY-VALUE PROBLEMS IN RECTANGULAR COORDINATES

and αn is a solution of αn cos αn = −h sin αn. The coefficients are

An =

∫ 1
0 [f(x) − hu0x/(h − 1)] sin αnx dx

∫ 1
0 sin2 αnx dx

=

∫ 1
0 [f(x) − hu0x/(h − 1)] sin αnx dx

1
2

[
1 − 1

2αn
sin 2αn

]

=
2

∫ 1
0 [f(x) − hu0x/(h − 1)] sin αnx dx

1 − 1
αn

sin αn cos αn

=
2

∫ 1
0 [f(x) − hu0x/(h − 1)] sin αnx dx

1 − 1
hαn

(h sin αn) cos αn

=
2

∫ 1
0 [f(x) − hu0x/(h − 1)] sin αnx dx

1 − 1
hαn

(−αn cos αn) cos αn

=
2h

h + cos2 αn

∫ 1

0

[

f(x) − hu0

h − 1
x

]

sin αnx dx.

3. Separating variables in Laplace’s equation gives

X ′′ + α2X = 0

Y ′′ − α2Y = 0

and
X(x) = c1 cos αx + c2 sin αx

Y (y) = c3 cosh αy + c4 sinh αy.

From u(0, y) = 0 we obtain X(0) = 0 and c1 = 0. From ux(a, y) = −hu(a, y) we obtain X ′(a) =

−hX(a) and

α cos αa = −h sin αa or tan αa = −α

h
.

Let αn, where n = 1, 2, 3, . . . , be the consecutive positive roots of this equation. From u(x, 0) = 0

we obtain Y (0) = 0 and c3 = 0. Thus

u(x, y) =
∞∑

n=1

An sinh αny sin αnx.

Now

f(x) =
∞∑

n=1

An sinh αnb sin αnx

and

An sinh αnb =

∫ a
0 f(x) sin αnx dx
∫ a
0 sin2 αnx dx

.
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Since ∫ a

0
sin2 αnx dx =

1

2

[
a − 1

2αn
sin 2αna

]
=

1

2

[
a − 1

αn
sin αna cos αna

]

=
1

2

[
a − 1

hαn
(h sin αna) cos αna

]

=
1

2

[
a − 1

hαn
(−αn cos αna) cos αna

]
=

1

2h

[
ah + cos2 αna

]
,

we have

An =
2h

sinh αnb[ah + cos2 αna]

∫ a

0
f(x) sin αnx dx.

4. Letting u(x, y) = X(x)Y (y) and separating variables gives

X ′′Y + XY ′′ = 0.

The boundary conditions

∂u

∂y

∣∣∣∣
y=0

= 0 and
∂u

∂y

∣∣∣∣
y=1

= −hu(x, 1)

correspond to

X(x)Y ′(0) = 0 and X(x)Y ′(1) = −hX(x)Y (1)

or

Y ′(0) = 0 and Y ′(1) = −hY (1).

Since these homogeneous boundary conditions are in terms of Y , we separate the differential equa-

tion as
X ′′

X
= −Y ′′

Y
= α2.

Then

Y ′′ + α2Y = 0

and

X ′′ − α2X = 0

have solutions

Y (y) = c1 cos αy + c2 sin αy

and

X(x) = c3e
−αx + c4e

αx.

We use exponential functions in the solution of X(x) since the interval over which X is defined

is infinite. (See the informal rule given in Section 11.4 of the text that discusses when to use the

exponential form and when to use the hyperbolic form of the solution of y′′ − α2y = 0.) Now,
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CHAPTER 12 BOUNDARY-VALUE PROBLEMS IN RECTANGULAR COORDINATES

Y ′(0) = 0 implies c2 = 0, so Y (y) = c1 cos αy. Since Y ′(y) = −c1α sin αy, the boundary condition

Y ′(1) = −hY (1) implies

−c1α sin α = −hc1 cos α or cot α =
α

h
.

Consideration of the graphs of f(α) = cot α and g(α) = α/h show that cos α = αh has an infinite

number of roots. The consecutive positive roots αn for n = 1, 2, 3, . . . , are the eigenvalues of the

problem. The corresponding eigenfunctions are Yn(y) = c1 cos αny. The condition lim
x→∞u(x, y) = 0

is equivalent to lim
x→∞X(x) = 0. Thus c4 = 0 and X(x) = c3e−αx. Therefore

un(x, y) = Xn(x)Yn(x) = Ane−αnx cos αny

and by the Superposition Principle

u(x, y) =
∞∑

n=1

Ane−αnx cos αny.

[It is easily shown that there are no eigenvalues corresponding to α = 0.] Finally, the condition

u(0, y) = u0 implies

u0 =
∞∑

n=1

An cos αny.

This is not a Fourier cosine series since the coefficients αn of y are not integer multiples of π/p, where

p = 1 in this problem. The functions cos αny are however orthogonal since they are eigenfunctions

of the Sturm-Lionville problem

Y ′′ + α2Y = 0,

Y ′(0) = 0

Y ′(1) + hY (1) = 0,

with weight function p(x) = 1. Thus we find

An =

∫ 1
0 u0 cos αny dy
∫ 1
0 cos2 αny dy

.

Now ∫ 1

0
u0 cos αny dy =

u0

αn
sin αny

∣∣∣∣
1

0
=

u0

αn
sin αn

and
∫ 1

0
cos2 αny dy =

1

2

∫ 1

0
(1 + cos 2αny) dy =

1

2

[
y +

1

2αn
sin 2αny

]1

0

=
1

2

[
1 +

1

2αn
sin 2αn

]
=

1

2

[
1 +

1

αn
sin αn cos αn

]
.
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Since cot α = α/h,
cos α

α
=

sin α

h
and

∫ 1

0
cos2 αny dy =

1

2

[

1 +
sin2 αn

h

]

.

Then

An =
u0
αn

sin αn

1
2

[
1 + 1

h sin2 αn

] =
2hu0 sin αn

αn

(
h + sin2 αn

)

and

u(x, y) = 2hu0

∞∑

n=1

sin αn

αn

(
h + sin2 αn

)e−αnx cos αny

where αn for n = 1, 2, 3, . . . are the consecutive positive roots of cotα = α/h.

5. The boundary-value problem is

k
∂2u

∂x2 =
∂u

∂t
, 0 < x < L, t > 0,

u(0, t) = 0,
∂u

∂x

∣∣∣∣
x=L

= 0, t > 0,

u(x, 0) = f(x), 0 < x < L.

Separation of variables leads to

X ′′ + α2X = 0

T ′ + kα2T = 0

and
X(x) = c1 cos αx + c2 sin αx

T (t) = c3e
−kα2t.

From X(0) = 0 we find c1 = 0. From X ′(L) = 0 we obtain cos αL = 0 and

α =
π(2n − 1)

2L
, n = 1, 2, 3, . . . .

Thus

u(x, t) =
∞∑

n=1

Ane−k(2n−1)2π2t/4L2
sin

(
2n − 1

2L

)
πx

where

An =

∫ L
0 f(x) sin

(
2n−1
2L

)
πx dx

∫ L
0 sin2

(
2n−1
2L

)
πx dx

=
2

L

∫ L

0
f(x) sin

(
2n − 1

2L

)
πx dx.
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CHAPTER 12 BOUNDARY-VALUE PROBLEMS IN RECTANGULAR COORDINATES

6. Substituting u(x, t) = v(x, t) + ψ(x) into the partial differential equation gives

a2 ∂2v

∂x2 + ψ′′(x) =
∂2v

∂t2
.

This equation will be homogeneous if ψ′′(x) = 0 or ψ(x) = c1x + c2. The boundary condition

u(0, t) = 0 implies ψ(0) = 0 which implies c2 = 0. Thus ψ(x) = c1x. Using the second boundary

condition, we obtain

E

(
∂v

∂x
+ ψ′

) ∣∣∣∣
x=L

= F0,

which will be homogeneous when

Eψ′(L) = F0.

Since ψ′(x) = c1 we conclude that c1 = F0/E and

ψ(x) =
F0

E
x.

The new boundary-value problem is

a2 ∂2v

∂x2 =
∂2v

∂t2
, 0 < x < L, t > 0

v(0, t) = 0,
∂v

∂x

∣∣∣∣
x=L

= 0, t > 0,

v(x, 0) = −F0

E
x,

∂v

∂t

∣∣∣∣
t=0

= 0, 0 < x < L.

Referring to Example 2 in the text we see that

v(x, t) =
∞∑

n=1

An cos a
(

2n − 1

2L

)
πt sin

(
2n − 1

2L

)
πx

where

−F0

E
x =

∞∑

n=1

An sin
(

2n − 1

2L

)
πx

and

An =
−F0

∫ L
0 x sin

(
2n−1
2L

)
πx dx

E
∫ L
0 sin2

(
2n−1
2L

)
πx dx

=
8F0L(−1)n

Eπ2(2n − 1)2
.

Thus
u(x, t) = v(x, t) + ψ(x)

=
F0

E
x +

8F0L

Eπ2

∞∑

n=1

(−1)n

(2n − 1)2
cos a

(
2n − 1

2L

)
πt sin

(
2n − 1

2L

)
πx.

7. Separation of variables leads to

Y ′′ + α2Y = 0

X ′′ − α2X = 0
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and
Y (y) = c1 cos αy + c2 sin αy

X(x) = c3 cosh αx + c4 sinh αx.

From Y (0) = 0 we find c1 = 0. From Y ′(1) = 0 we obtain cosα = 0 and

α =
π(2n − 1)

2
, n = 1, 2, 3, . . . .

Thus

Y (y) = c2 sin
(

2n − 1

2

)
πy.

From X ′(0) = 0 we find c4 = 0. Then

u(x, y) =
∞∑

n=1

An cosh
(

2n − 1

2

)
πx sin

(
2n − 1

2

)
πy

where

u0 = u(1, y) =
∞∑

n=1

An cosh
(

2n − 1

2

)
π sin

(
2n − 1

2

)
πy

and

An cosh
(

2n − 1

2

)
π =

∫ 1
0 u0 sin

(
2n−1

2

)
πy dy

∫ 1
0 sin2

(
2n−1

2

)
πy dy

=
4u0

(2n − 1)π
.

Thus

u(x, y) =
4u0

π

∞∑

n=1

1

(2n − 1) cosh
(

2n−1
2

)
π

cosh
(

2n − 1

2

)
πx sin

(
2n − 1

2

)
πy.

8. The boundary-value problem is

k
∂2u

∂x2 =
∂u

∂t
, 0 < x < 1, t > 0

∂u

∂x

∣∣∣∣
x=0

= hu(0, t),
∂u

∂x

∣∣∣∣
x=1

= −hu(1, t), h > 0, t > 0,

u(x, 0) = f(x), 0 < x < 1.

Referring to Example 1 in the text we have

X(x) = c1 cos αx + c2 sin αx

and

T (t) = c3e
−kα2t.

Applying the boundary conditions, we obtain

X ′(0) = hX(0)

X ′(1) = −hX(1)
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CHAPTER 12 BOUNDARY-VALUE PROBLEMS IN RECTANGULAR COORDINATES

or
αc2 = hc1

−αc1 sin α + αc2 cos α = −hc1 cos α − hc2 sin α.

Choosing c1 = α and c2 = h (to satisfy the first equation above) we obtain

−α2 sin α + hα cos α = −hα cos α − h2 sin α

2hα cos α = (α2 − h2) sin α.

The eigenvalues αn are the consecutive positive roots of

tan α =
2hα

α2 − h2 .

Then

u(x, t) =
∞∑

n=1

Ane−kα2
nt(αn cos αnx + h sin αnx)

where

f(x) = u(x, 0) =
∞∑

n=1

An(αn cos αnx + h sin αnx)

and

An =

∫ 1
0 f(x)(αn cos αnx + h sin αnx)dx
∫ 1
0 (αn cos αnx + h sin αnx)2dx

=
2

α2
n + 2h + h2

∫ 1

0
f(x)(αn cos αnx + h sin αnx)dx.

[Note: the evaluation and simplification of the integral in the denominator requires the use of the

relationship (α2 − h2) sin α = 2hα cos α.]

9. The eigenfunctions of the associated homogeneous boundary-value problem are sinαnx, n = 1, 2,

3, . . . , where the αn are the consecutive positive roots of tanα = −α. We assume that

u(x, t) =
∞∑

n=1

un(t) sin αnx and xe−2t =
∞∑

n=1

Fn(t) sin αnx.

Then

Fn(t) =
e−2t ∫ 1

0 x sin αnx dx
∫ 1
0 sin2 αnx dx

.

Since αn cos αn = − sin αn and
∫ 1

0
sin2 αnx dx =

1

2

[
1 − 1

2αn
sin 2αn

]
,

we have

e−2t
∫ 1

0
x sin αnx dx = e−2t

(
sin αn − αn cos αn

α2
n

)

=
2 sin αn

α2
n

e−2t
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∫ 1

0
sin2 αnx dx =

1

2
[1 + cos2 αn]

and so

Fn(t) =
4 sin αn

α2
n(1 + cos2 αn)

e−2t.

Substituting the assumptions into ut − kuxx = xe−2t and equating coefficients leads to the linear

first-order differential equation

u′
n(t) + kα2

nu(t) =
4 sin αn

α2
n(1 + cos2 αn)

e−2t

whose solution is

un(t) =
4 sin αn

α2
n(1 + cos2 αn)(kα2

n − 2)
e−2t + Cne−kα2

nt.

From

u(x, t) =
∞∑

n=1

[
4 sin αn

α2
n(1 + cos2 αn)(kα2

n − 2)
e−2t + Cne−kα2

nt

]

sin αnx

and the initial condition u(x, 0) = 0 we see

Cn = − 4 sin αn

α2
n(1 + cos2 αn)(kα2

n − 2)
.

The formal solution of the original problem is then

u(x, t) =
∞∑

n=1

4 sin αn

α2
n(1 + cos2 αn)(kα2

n − 2)
(e−2t − e−kα2

nt) sin αnx.

10. Using u = XT and separation constant −λ = α4 we find

X(4) − α4X = 0

and

X(x) = c1 cos αx + c2 sin αx + c3 cosh αx + c4 sinh αx.

Since u = XT the boundary conditions become

X(0) = 0, X ′(0) = 0, X ′′(1) = 0, X ′′′(1) = 0.

Now X(0) = 0 implies c1 + c3 = 0, while X ′(0) = 0 implies c2 + c4 = 0. Thus

X(x) = c1 cos αx + c2 sin αx − c1 cosh αx − c2 sinh αx.

The boundary condition X ′′(1) = 0 implies

−c1 cos α − c2 sin α − c1 cosh α − c2 sinh α = 0

while the boundary condition X ′′′(1) = 0 implies

c1 sin α − c2 cos α − c1 sinh α − c2 cosh α = 0.
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CHAPTER 12 BOUNDARY-VALUE PROBLEMS IN RECTANGULAR COORDINATES

We then have the system of two equations in two unknowns

(cos α + cosh α)c1 + (sin α + sinh α)c2 = 0

(sin α − sinh α)c1 − (cos α + cosh α)c2 = 0.

This homogeneous system will have nontrivial solutions for c1 and c2 provided
∣∣∣∣∣
cos α + cosh α sin α + sinh α

sin α − sinh α − cos α − cosh α

∣∣∣∣∣ = 0

or

−2 − 2 cos α cosh α = 0.

Thus, the eigenvalues are determined by the equation cosα cosh α = −1.

Using a computer to graph coshα and −1/ cos α = − sec α

we see that the first two positive eigenvalues occur near

1.9 and 4.7. Applying Newton’s method with these initial

values we find that the eigenvalues are α1 = 1.8751 and

α2 = 4.6941.

11. (a) In this case the boundary conditions are

u(0, t) = 0,
∂u

∂x

∣∣∣
x=0

= 0

u(1, t) = 0,
∂u

∂x

∣∣∣
x=1

= 0.

Separating variables leads to

X(x) = c1 cos αx + c2 sin αx + c3 cosh αx + c4 sinh αx

subject to

X(0) = 0, X ′(0) = 0, X(1) = 0, and X ′(1) = 0.

Now X(0) = 0 implies c1 + c3 = 0 while X ′(0) = 0 implies c2 + c4 = 0. Thus

X(x) = c1 cos αx + c2 sin αx − c1 cosh αx − c2 sinh αx.

The boundary condition X(1) = 0 implies

c1 cos α + c2 sin α − c1 cosh α − c2 sinh α = 0

while the boundary condition X ′(1) = 0 implies

−c1 sin α + c2 cos α − c1 sinh α − c2 cosh α = 0.
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We then have the system of two equations in two unknowns

(cos α − cosh α)c1 + (sin α − sinh α)c2 = 0

−(sin α + sinh α)c1 + (cos α − cosh α)c2 = 0.

This homogeneous system will have nontrivial solutions for c1 and c2 provided
∣∣∣∣∣

cos α − cosh α sin α − sinh α

− sin α − sinh α cos α − cosh α

∣∣∣∣∣ = 0

or

2 − 2 cos α cosh α = 0.

Thus, the eigenvalues are determined by the equation cosα cosh α = 1.

(b) Using a computer to graph coshα and 1/ cos α = sec α we see

that the first two positive eigenvalues occur near the vertical

asymptotes of sec α, at 3π/2 and 5π/2. Applying Newton’s

method with these initial values we find that the eigenvalues

are α1 = 4.7300 and α2 = 7.8532.

1. This boundary-value problem was solved in Example 1 in the text. Identifying b = c = π and

f(x, y) = u0 we have

u(x, y, t) =
∞∑

m=1

∞∑

n=1

Amne−k(m2+n2)t sin mx sin ny

where

Amn =
4

π2

∫ π

0

∫ π

0
u0 sin mx sin ny dx dy

=
4u0

π2

∫ π

0
sin mx dx

∫ π

0
sin ny dy

=
4u0

mnπ2 [1 − (−1)m][1 − (−1)n].

2. As shown in Example 1 in the text, separation of variables leads to

X(x) = c1 cos αx + c2 sin αx

Y (y) = c3 cos βy + c4 sin βy

q12.8 Higher-Dimensional Problems
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CHAPTER 12 BOUNDARY-VALUE PROBLEMS IN RECTANGULAR COORDINATES

and

T (t) + c5e
−k(α2+β2)t.

The boundary conditions

ux(0, y, t) = 0, ux(1, y, t) = 0

uy(x, 0, t) = 0, uy(x, 1, t) = 0





imply






X ′(0) = 0, X ′(1) = 0

Y ′(0) = 0, Y ′(1) = 0.

Applying these conditions to

X ′(x) = −αc1 sin αx + αc2 cos αx

and

Y ′(y) = −βc3 sin βy + βc4 cos βy

gives c2 = c4 = 0 and sin α = sin β = 0. Then

α = mπ, m = 0, 1, 2, . . . and β = nπ, n = 0, 1, 2, . . . .

By the Superposition Principle

u(x, y, t) = A00 +
∞∑

m=1

Am0e
−km2π2t cos mπx +

∞∑

n=1

A0ne−kn2π2t cos nπy

+
∞∑

m=1

∞∑

n=1

Amne−k(m2+n2)π2t cos mπx cos nπy.

We now compute the coefficients of the double cosine series: Identifying b = c = 1 and f(x, y) = xy

we have

A00 =
∫ 1

0

∫ 1

0
xy dx dy =

∫ 1

0

1

2
x2y

∣∣∣∣
1

0
dy =

1

2

∫ 1

0
y dy =

1

4
,

Am0 = 2
∫ 1

0

∫ 1

0
xy cos mπx dx dy = 2

∫ 1

0

1

m2π2 (cos mπx + mπx sin mπx)
∣∣∣∣
1

0
y dy

= 2
∫ 1

0

cos mπ − 1

m2π2 y dy =
cos mπ − 1

m2π2 =
(−1)m − 1

m2π2 ,

A0n = 2
∫ 1

0

∫ 1

0
xy cos nπy dx dy =

(−1)n − 1

n2π2 ,

and

Amn = 4
∫ 1

0

∫ 1

0
xy cos mπx cos nπy dx dy = 4

∫ 1

0
x cos mπx dx

∫ 1

0
y cos nπy dy

= 4

(
(−1)m − 1

m2π2

) (
(−1)n − 1

n2π2

)

.
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In Problems 3 and 4 we need to solve the partial differential equation

a2

(
∂2u

∂x2 +
∂2u

∂y2

)

=
∂2u

∂t2
.

To separate this equation we try u(x, y, t) = X(x)Y (y)T (t):

a2(X ′′Y T + XY ′′T ) = XY T ′′

X ′′

X
= −Y ′′

Y
+

T ′′

a2T
= −α2.

Then

X ′′ + α2X = 0 (1)

Y ′′

Y
=

T ′′

a2T
+ α2 = −β2

Y ′′ + β2Y = 0 (2)

T ′′ + a2
(
α2 + β2

)
T = 0. (3)

The general solutions of equations (1), (2), and (3) are, respectively,

X(x) = c1 cos αx + c2 sin αx

Y (y) = c3 cos βy + c4 sin βy

T (t) = c5 cos a
√

α2 + β2 t + c6 sin a
√

α2 + β2 t.

3. The conditions X(0) = 0 and Y (0) = 0 give c1 = 0 and c3 = 0. The conditions X(π) = 0 and

Y (π) = 0 yield two sets of eigenvalues:

α = m, m = 1, 2, 3, . . . and β = n, n = 1, 2, 3, . . . .

A product solution of the partial differential equation that satisfies the boundary conditions is

umn(x, y, t) =
(
Amn cos a

√
m2 + n2 t + Bmn sin a

√
m2 + n2 t

)
sin mx sin ny.

To satisfy the initial conditions we use the Superposition Principle:

u(x, y, t) =
∞∑

m=1

∞∑

n=1

(
Amn cos a

√
m2 + n2 t + Bmn sin a

√
m2 + n2 t

)
sin mx sin ny.

The initial condition ut(x, y, 0) = 0 implies Bmn = 0 and

u(x, y, t) =
∞∑

m=1

∞∑

n=1

Amn cos a
√

m2 + n2 t sin mx sin ny.
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CHAPTER 12 BOUNDARY-VALUE PROBLEMS IN RECTANGULAR COORDINATES

At t = 0 we have

xy(x − π)(y − π) =
∞∑

m=1

∞∑

n=1

Amn sin mx sin ny.

Using (11) and (12) in the text, it follows that

Amn =
4

π2

∫ π

0

∫ π

0
xy(x − π)(y − π) sin mx sin ny dx dy

=
4

π2

∫ π

0
x(x − π) sin mx dx

∫ π

0
y(y − π) sin ny dy

=
16

m3n3π2 [(−1)m − 1][(−1)n − 1].

4. The conditions X(0) = 0 and Y (0) = 0 give c1 = 0 and c3 = 0. The conditions X(b) = 0 and

Y (c) = 0 yield two sets of eigenvalues

α = mπ/b, m = 1, 2, 3, . . . and β = nπ/c, n = 1, 2, 3, . . . .

A product solution of the partial differential equation that satisfies the boundary conditions is

umn(x, y, t) = (Amn cos aωmnt + Bmn sin aωmnt) sin
(

mπ

b
x

)
sin

(
nπ

c
y
)

,

where ωmn =
√

(mπ/b)2 + (nπ/c)2 . To satisfy the initial conditions we use the Superposition

Principle:

u(x, y, t) =
∞∑

m=1

∞∑

n=1

(Amn cos aωmnt + Bmn sin aωmnt) sin
(

mπ

b
x

)
sin

(
nπ

c
y
)

.

At t = 0 we have

f(x, y) =
∞∑

m=1

∞∑

n=1

Amn sin
(

mπ

b
x

)
sin

(
nπ

c
y
)

and

g(x, y) =
∞∑

m=1

∞∑

n=1

Bmnaωmn sin
(

mπ

b
x

)
sin

(
nπ

c
y
)

.

Using (11) and (12) in the text, it follows that

Amn =
4

bc

∫ c

0

∫ b

0
f(x, y) sin

(
mπ

b
x

)
sin

(
nπ

c
y
)

dx dy

Bmn =
4

abcωmn

∫ c

0

∫ b

0
g(x, y) sin

(
mπ

b
x

)
sin

(
nπ

c
y
)

dx dy.

Note: In Problems 5 and 6 we try u(x, y, z) = X(x)Y (y)Z(z) to separate Laplace’s equation in three

dimensions :

X ′′Y Z + XY ′′Z + XY Z ′′ = 0

X ′′

X
= −Y ′′

Y
− Z ′′

Z
= −α2.
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Then

X ′′ + α2X = 0 (4)

Y ′′

Y
= −Z ′′

Z
+ α2 = −β2

Y ′′ + β2Y = 0 (5)

Z ′′ − (α2 + β2)Z = 0. (6)

The general solutions of equations (4), (5), and (6) are, respectively

X(x) = c1 cos αx + c2 sin αx

Y (y) = c3 cos βy + c4 sin βy

Z(z) = c5 cosh
√

α2 + β2 z + c6 sinh
√

α2 + β2 z.

5. The boundary and initial conditions are

u(0, y, z) = 0, u(a, y, z) = 0

u(x, 0, z) = 0, u(x, b, z) = 0

u(x, y, 0) = 0, u(x, y, c) = f(x, y).

The conditions X(0) = Y (0) = Z(0) = 0 give c1 = c3 = c5 = 0. The conditions X(a) = 0 and

Y (b) = 0 yield two sets of eigenvalues:

α =
mπ

a
, m = 1, 2, 3, . . . and β =

nπ

b
, n = 1, 2, 3, . . . .

By the Superposition Principle

u(x, y, t) =
∞∑

m=1

∞∑

n=1

Amn sinh ωmnz sin
mπ

a
x sin

nπ

b
y

where

ω2
mn =

m2π2

a2 +
n2π2

b2

and

Amn =
4

ab sinh ωmnc

∫ b

0

∫ a

0
f(x, y) sin

mπ

a
x sin

nπ

b
y dx dy.

6. The boundary and initial conditions are

u(0, y, z) = 0,

u(x, 0, z) = 0,

u(x, y, 0) = f(x, y),

u(a, y, z) = 0,

u(x, b, z) = 0,

u(x, y, c) = 0.
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CHAPTER 12 BOUNDARY-VALUE PROBLEMS IN RECTANGULAR COORDINATES

The conditions X(0) = Y (0) = 0 give c1 = c3 = 0. The conditions X(a) = Y (b) = 0 yield two sets

of eigenvalues:

α =
mπ

a
, m = 1, 2, 3, . . . and β =

nπ

b
, n = 1, 2, 3, . . . .

Let

ω2
mn =

m2π2

a2 +
n2π2

b2 .

Then the boundary condition Z(c) = 0 gives

c5 cosh cωmn + c6 sinh cωmn = 0

from which we obtain

Z(z) = c5

(

cosh wmnz − cosh cωmn

sinh cωmn
sinh ωz

)

=
c5

sinh cωmn
(sinh cωmn cosh ωmnz − cosh cωmn sinh ωmnz) = cmn sinh ωmn(c − z).

By the Superposition Principle

u(x, y, t) =
∞∑

m=1

∞∑

n=1

Amn sinh ωmn(c − z) sin
mπ

a
x sin

nπ

b
y

where

Amn =
4

ab sinh cωmn

∫ b

0

∫ a

0
f(x, y) sin

mπ

a
x sin

nπ

b
y dx dy.

1. Letting u(x, y) = X(x) + Y (y) we have X ′Y ′ = XY and

X ′

X
=

Y

Y ′ = −λ.

If λ = 0 then X ′ = 0 and X(x) = c1. also Y (y) = 0 so u = 0.

If λ "= 0 then X ′ + λX = 0 and Y + (1/λ)Y = 0. Thus X(x) = c1e−λx and Y (y) = c2e−y/λ so

u(x, y) = Ae(−λx−y/λ).

2. Letting u = XY we have X ′′Y +XY ′′+2X ′Y +2XY ′ = 0 so that (X ′′+2X ′)Y +X(Y ′′+2Y ′) = 0.

Separating variables and using the separation constant −λ we obtain

X ′′ + 2X ′

−X
=

Y ′′ + 2Y ′

Y
= −λ

12.R Chapter 12 in Reviewq
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so that

X ′′ + 2X ′ − λX = 0 and Y ′′ + 2Y ′ + λY = 0.

The corresponding auxiliary equations are m2 + 2m − λ = 0 and m2 + 2m + λ with solutions

m = −1 ±
√

1 + λ and m = −1 ±
√

1 − λ , respectively. We consider five cases:

I. λ = −1: In this case X = c1e−x + c2xe−x and Y = c3e(−1+
√

2 )y + c4e(−1−
√

2 )y so that

u = (c1e
x + c2xe−x)

(
c3e

(−1+
√

2 )y + c4e
(−1−

√
2 )y

)
.

II. λ = 1: In this case X = c5e(−1+
√

2 )x + c6e(−1−
√

2 )y and Y = c7e−y + c8ye−y so that

u =
(
c5e

(−1+
√

2 )x + c6e
(−1−

√
2 )x

)
(c7e

−y + c8ye−y).

III. −1 < λ < 1: Here both 1 + λ and 1 − λ are positive so

u =
(
c9e

(−1+
√

1+λ )x + c10e
(−1−

√
1+λ )x

) (
c11e

(−1+
√

1−λ )y + c12e
(−1−

√
1−λ )y

)
.

IV. λ < −1: Here 1 + λ < 0 and 1 − λ > 0 so

u = e−x(c13 cos
√
−1 − λ x + c14 sin

√
−1 − λ x) +

(
c15e

(−1+
√

1−λ )y + c16e
(−1−

√
1−λ )y

)
.

V. λ > 1: Here 1 + λ > 0 and 1 − λ < 0 so

u =
(
c17e

(−1+
√

1+λ )x + c18e
(−1−

√
1+λ )x

)
+ e−x(c19 cos

√
λ − 1 y + c20 sin

√
λ − 1 y).

We see from the above that it is not possible to choose λ so that both X and Y are oscillatory.

3. Substituting u(x, t) = v(x, t) + ψ(x) into the partial differential equation we obtain

k
∂2v

∂x2 + kψ′′(x) =
∂v

∂t
.

This equation will be homogeneous provided ψ satisfies

kψ′′ = 0 or ψ = c1x + c2.

Considering

u(0, t) = v(0, t) + ψ(0) = u0

we set ψ(0) = u0 so that ψ(x) = c1x + u0. Now

−∂u

∂x

∣∣∣∣
x=π

= −∂v

∂x

∣∣∣∣
x=π

− ψ′(x) = v(π, t) + ψ(π) − u1

is equivalent to

∂v

∂x

∣∣∣∣
x=π

+ v(π, t) = u1 − ψ′(x) − ψ(π) = u1 − c1 − (c1π + u0),
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CHAPTER 12 BOUNDARY-VALUE PROBLEMS IN RECTANGULAR COORDINATES

which will be homogeneous when

u1 − c1 − c1π − u0 = 0 or c1 =
u1 − u0

1 + π
.

The steady-state solution is

ψ(x) =
(

u1 − u0

1 + π

)
x + u0.

4. The solution of the problem represents the heat of a thin rod of length π. The left boundary x = 0

is kept at constant temperature u0 for t > 0. Heat is lost from the right end of the rod by being in

contact with a medium that is held at constant temperature u1.

5. The boundary-value problem is

a2 ∂2u

∂x2 =
∂2u

∂t2
, 0 < x < 1, t > 0,

u(0, t) = 0, u = (1, t) = 0, t > 0,

u(x, 0) = 0,
∂u

∂t

∣∣∣∣
t=0

= g(x), 0 < x < 1.

From Section 12.4 in the text we see that An = 0,

Bn =
2

nπa

∫ 1

0
g(x) sin nπx dx =

2

nπa

∫ 3/4

1/4
h sin nπx dx

=
2h

nπa

(
− 1

nπ
cos nπx

) ∣∣∣∣
3/4

1/4
=

2h

n2π2a

(
cos

nπ

4
− cos

3nπ

4

)

and

u(x, t) =
∞∑

n=1

Bn sin nπat sin nπx.

6. The boundary-value problem is

∂2u

∂x2 + x2 =
∂2u

∂t2
, 0 < x < 1, t > 0,

u(0, t) = 1, u(1, t) = 0, t > 0,

u(x, 0) = f(x), ut(x, 0) = 0, 0 < x < 1.

Substituting u(x, t) = v(x, t) + ψ(x) into the partial differential equation gives

∂2v

∂x2 + ψ′′(x) + x2 =
∂2v

∂t2
.

This equation will be homogeneous provided ψ′′(x) + x2 = 0 or

ψ(x) = − 1

12
x4 + c1x + c2.
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From ψ(0) = 1 and ψ(1) = 0 we obtain c1 = −11/12 and c2 = 1. The new problem is

∂2v

∂x2 =
∂2v

∂t2
, 0 < x < 1, t > 0,

v(0, t) = 0, v(1, t) = 0, t > 0,

v(x, 0) = f(x) − ψ(x), vt(x, 0) = 0, 0 < x < 1.

From Section 12.4 in the text we see that Bn = 0,

An = 2
∫ 1

0
[f(x) − ψ(x)] sin nπx dx = 2

∫ 1

0

[
f(x) +

1

12
x4 +

11

12
x − 1

]
sin nπx dx,

and

v(x, t) =
∞∑

n=1

An cos nπt sin nπx.

Thus

u(x, t) = v(x, t) + ψ(x) = − 1

12
x4 − 11

12
x + 1 +

∞∑

n=1

An cos nπt sin nπx.

7. Using u = XY and −λ as a separation constant leads to

X ′′ − λX = 0,

X(0) = 0,

and

Y ′′ + λY = 0,

Y (0) = 0,

Y (π) = 0.

This leads to

Y = c4 sin ny and X = c2 sinh nx

for n = 1, 2, 3, . . . so that

u =
∞∑

n=1

An sinh nx sin ny.

Imposing

u(π, y) = 50 =
∞∑

n=1

An sinh nπ sin ny

gives

An =
100

nπ

1 − (−1)n

sinh nπ
so that

u(x, y) =
100

π

∞∑

n=1

1 − (−1)n

n sinh nπ
sinh nx sin ny.
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CHAPTER 12 BOUNDARY-VALUE PROBLEMS IN RECTANGULAR COORDINATES

8. Using u = XY and −λ as a separation constant leads to

X ′′ − λX = 0,

and

Y ′′ + λY = 0,

Y ′(0) = 0,

Y ′(π) = 0.

This leads to

Y = c3 cos ny and X = c2e
−nx

for n = 1, 2, 3, . . . . In this problem we also have λ = 0 is an eigenvalue with corresponding

eigenfunctions 1 and 1. Thus

u = A0 +
∞∑

n=1

Ane−nx cos ny.

Imposing

u(0, y) = 50 = A0 +
∞∑

n=1

An cos ny

gives

A0 =
1

π

∫ π

0
50 dy = 50

and

An =
2

π

∫ π

0
50 cos ny dy = 0

for n = 1, 2, 3, . . . so that

u(x, y) = 50.

9. Using u = XY and −λ as a separation constant leads to

X ′′ − λX = 0,

and

Y ′′ + λY = 0,

Y (0) = 0,

Y (π) = 0.

Then

X = c1e
nx + c2e

−nx and Y = c3 cos ny + c4 sin ny

722

© 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part, except for use as permitted in a license distributed 
with a certain product or service or otherwise on a password-protected website for classroom use. 

Not For Sale

©
 C

en
ga

ge
 L

ea
rn

in
g.

 A
ll 

rig
ht

s r
es

er
ve

d.
 N

o 
di

st
rib

ut
io

n 
al

lo
w

ed
 w

ith
ou

t e
xp

re
ss

 a
ut

ho
riz

at
io

n.



for n = 1, 2, 3, . . . . Since u must be bounded as x → ∞) we define c1 = 0. Also Y (0) = 0 implies

c3 = 0 so

u =
∞∑

n=1

Ane−nx sin ny.

Imposing

u(0, y) = 50 =
∞∑

n=1

An sin ny

gives

An =
2

π

∫ π

0
50 sin ny dy =

100

nπ
[1 − (−1)n]

so that

u(x, y) =
∞∑

n=1

100

nπ
[1 − (−1)n]e−nx sin ny.

10. The boundary-value problem is

k
∂2u

∂x2 =
∂u

∂t
, −L < x < L, t > 0,

u(−L, t) = 0, u(L, t) = 0, t > 0,

u(x, 0) = u0, −L < x < L.

Referring to Section 12.3 in the text we have

X(x) = c1 cos αx + c2 sin αx

and

T (t) = c3e
−kα2t.

Using the boundary conditions u(−L, 0) = X(−L)T (0) = 0 and u(L, 0) = X(L)T (0) = 0 we obtain

X(−L) = 0 and X(L) = 0. Thus

c1 cos(−αL) + c2 sin(−αL) = 0

c1 cos αL + c2 sin αL = 0

or

c1 cos αL − c2 sin αL = 0

c1 cos αL + c2 sin αL = 0.

Adding, we find cos αL = 0 which gives the eigenvalues

α =
2n − 1

2L
π, n = 1, 2, 3, . . . .

Thus

u(x, t) =
∞∑

n=1

Ane−( 2n−1
2L π)

2
kt cos

(
2n − 1

2L

)
πx.
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CHAPTER 12 BOUNDARY-VALUE PROBLEMS IN RECTANGULAR COORDINATES

From

u(x, 0) = u0 =
∞∑

n=1

An cos
(

2n − 1

2L

)
πx

we find

An =
2

∫ L
0 u0 cos

(
2n−1
2L

)
πx dx

2
∫ L
0 cos2

(
2n−1
2L

)
πx dx

=
u0(−1)n+12L/π(2n − 1)

L/2
=

4u0(−1)n+1

π(2n − 1)
.

11. The coefficients of the series

u(x, 0) =
∞∑

n=1

Bn sin nx

are

Bn =
2

π

∫ π

0
sin x sin nx dx =

2

π

∫ π

0

1

2
[cos(1 − n)x − cos(1 + n)x] dx

=
1

π

[
sin(1 − n)x

1 − n

∣∣∣∣
π

0
− sin(1 + n)x

1 + n

∣∣∣∣
π

0

]

= 0 for n "= 1.

For n = 1,

B1 =
2

π

∫ π

0
sin2 x dx =

1

π

∫ π

0
(1 − cos 2x) dx = 1.

Thus

u(x, t) =
∞∑

n=1

Bne−n2t sin nx

reduces to u(x, t) = e−t sin x for n = 1.

12. Substituting u(x, t) = v(x, t)+ψ(x) into the partial differential equation results in ψ′′ = − sin x and

ψ(x) = c1x + c2 + sin x. The boundary conditions ψ(0) = 400 and ψ(π) = 200 imply c1 = −200/π

and c2 = 400 so

ψ(x) = −200

π
x + 400 + sin x.

Solving

∂2v

∂x2 =
∂v

∂t
, 0 < x < π, t > 0

v(0, t) = 0, v(π, t) = 0, t > 0

u(x, 0) = 400 + sinx −
(
−200

π
x + 400 + sin x

)
=

200

π
x, 0 < x < π

using separation of variables with separation constant −λ, where λ = α2, gives

X ′′ + α2X = 0 and T ′ + α2T = 0.

Using X(0) = 0 and X(π) = 0 we determine α2 = n2, X(x) = c2 sin nx, and T (t) = c3e−n2t. Then

v(x, t) =
∞∑

n=1

Ane−n2t sin nx
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and

v(x, 0) =
200

π
x =

∞∑

n=1

An sin nx

so

An =
400

π2

∫ π

0
x sin nx dx =

400

nπ
(−1)n+1.

Thus

u(x, t) = −200

π
x + 400 + sin x +

400

π

∞∑

n=1

(−1)n+1

n
e−n2t sin nx.

13. Using u = XT and −λ, where λ = α2, as a separation constant we find

X ′′ + 2X ′ + α2X = 0 and T ′′ + 2T ′ + (1 + α2)T = 0.

Thus for α > 1

X = c1e
−x cos

√
α2 − 1 x + c2e

−x sin
√

α2 − 1 x

T = c3e
−t cos αt + c4e

−t sin αt.

For 0 ≤ α ≤ 1 we only obtain X = 0. Now the boundary conditions X(0) = 0 and X(π) = 0 give,

in turn, c1 = 0 and
√

α2 − 1 π = nπ or α2 = n2 + 1, n = 1, 2, 3, . . . . The corresponding solutions

are X = c2e−x sin nx. The initial condition T ′(0) = 0 implies c3 = αc4 and so

T = c4e
−t

[√
n2 + 1 cos

√
n2 + 1 t + sin

√
n2 + 1 t

]
.

Using u = XT and the Superposition Principle, a formal series solution is

u(x, t) = e−(x+t)
∞∑

n=1

An

[√
n2 + 1 cos

√
n2 + 1 t + sin

√
n2 + 1 t

]
sin nx.

14. Letting c = XT and separating variables we obtain

kX ′′ − hX ′

X
=

T ′

T
or

X ′′ − aX ′

X
=

T ′

kT
= −λ

where a = h/k. Setting λ = α2 leads to the separated differential equations

X ′′ − aX ′ + α2X = 0 and T ′ + kα2T = 0.

The solution of the second equation is

T (t) = c3e
−kα2t.

For the first equation we have m = 1
2(a ±

√
a2 − 4α2 ), and we consider three cases using the

boundary conditions X(0) = X(1) = 0:

a2 > 4α2 The solution is X = c1em1x +c2em2x, where the boundary conditions imply c1 = c2 = 0,

so X = 0. (Note in this case that if α = 0, the solution is X = c1+c2eax and the boundary conditions

again imply c1 = c2 = 0, so X = 0.)
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CHAPTER 12 BOUNDARY-VALUE PROBLEMS IN RECTANGULAR COORDINATES

a2 = 4α2 The solution is X = c1em1x + c2xem1x, where the boundary conditions imply

c1 = c2 = 0, so X = 0.

a2 < 4α2 The solution is

X(x) = c1e
ax/2 cos

√
4α2 − a2

2
x + c2e

ax/2 sin

√
4α2 − a2

2
x.

From X(0) = 0 we see that c1 = 0. From X(1) = 0 we find

1

2

√
4α2 − a2 = nπ or α2 =

1

4
(4n2π2 + a2).

Thus

X(x) = c2e
ax/2 sin nπx,

and

c(x, t) =
∞∑

n=1

Aneax/2e−k(4n2π2+a2)t/4 sin πx.

The initial condition c(x, 0) = c0 implies

c0 =
∞∑

n=1

Aneax/2 sin nπx. (1)

From the self-adjoint form
d

dx
[e−axX ′] + α2e−axX = 0

the eigenfunctions are orthogonal on [0, 1] with weight function e−ax. That is
∫ 1

0
e−ax(eax/2 sin nπx)(eax/2 sin mπx) dx = 0, n "= m.

Multiplying (1) by e−axeax/2 sin mπx and integrating we obtain
∫ 1

0
c0e

−axeax/2 sin mπx dx =
∞∑

n=1

An

∫ 1

0
e−axeax/2(sin mπx)eax/2 sin nπx dx

c0

∫ 1

0
e−ax/2 sin nπx dx = An

∫ 1

0
sin2 nπx dx =

1

2
An

and

An = 2c0

∫ 1

0
e−ax/2 sin nπx dx =

4c0[2ea/2nπ − 2nπ(−1)n]

ea/2(a2 + 4n2π2)
=

8nπc0[ea/2 − (−1)n]

ea/2(a2 + 4n2π2)
.

15. The boundary conditions are nonhomogeneous so we try to find a solution of the form

u(x, t) = ν(x, t) + ψ(x). Substituting into the partial differential equation and using the

boundary conditions we find that ψ′′(x) = 0, ψ(0) = u0, ψ
′(1) + ψ(1) = u1 so ψ(x) = ax + b,

b = u0, and 2a+ b = u1. Solving gives a = 1
2(u1 − u0), so

ψ(x) =
1

2
(u1 − u0)x+ u0.
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The boundary-value problem for the function ν(x, t) is given by

∂2ν

∂x2
=
∂ν

∂t
, 0 < x < 1, t > 0

ν(0, t) = 0,
∂u

∂x

∣∣∣∣∣
x=1

= −ν(1, t), t > 0

ν(x, 0) =
1

2
(u0 − u1), 0 < x < 1.

We now proceed as in Example 1 in Section 12.7, using k = 1 and h = 1 to obtain

ν(x, t) =
∞∑
n=1

Ane
−α2

nt sinαnx,

where αn, n = 1, 2, . . . are the consecutive positive roots of the equation tanα = −α. The

coefficients are determined from the initial condition

1

2
(u0 − u1)x =

∞∑
n=1

An sinαnx.

Thus

An =

1

2
(u0 − u1)

∫ 1

0
x sinαnxdx

∫ 1

0
sin2 αnx

=
1

2
(u0 − u1)

sinαn − αn cosαn
α2
n

1

2

(
1 + cos2 αn

)
= (u0 − u1)

−2αn cosαn

α2
n

(
1 + cos2 αn

) ← tanαn = −αn so
sinαn = −αn cosαn

= 2(u1 − uo)
cosαn

αn
(
1 + cos2 αn

) .
The solution is then

ν(x, t) = 2(u1 − u0)
∞∑
n=1

cosαn

αn
(
1 + cos2 αn

) e−α2
nt sinαnx

so

u(x, t) = u0 +
1

2
(u1 − u0)x+ 2(u1 − u0)

∞∑
n=1

cosαn

αn
(
1 + cos2 αn

) e−α2
nt sinαnx.

72712.R  Chapter 12 in Review
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1. We have

A0 =
1

2π

∫ π

0
u0 dθ =

u0

2

An =
1

π

∫ π

0
u0 cos nθ dθ = 0

Bn =
1

π

∫ π

0
u0 sin nθ dθ =

u0

nπ
[1 − (−1)n]

and so

u(r, θ) =
u0

2
+

u0

π

∞∑

n=1

1 − (−1)n

n
rn sin nθ.

2. We have

A0 =
1

2π

∫ π

0
θ dθ +

1

2π

∫ 2π

π
(π − θ) dθ = 0

An =
1

π

∫ π

0
θ cos nθ dθ +

1

π

∫ 2π

π
(π − θ) cos nθ dθ =

2

n2π
[(−1)n − 1]

Bn =
1

π

∫ π

0
θ sin nθ dθ +

1

π

∫ 2π

π
(π − θ) sin nθ dθ =

1

n
[1 − (−1)n]

and so

u(r, θ) =
∞∑

n=1

rn

[
(−1)n − 1

n2π
cos nθ +

1 − (−1)n

n
sin nθ

]

.

3. We have

A0 =
1

2π

∫ 2π

0
(2πθ − θ2) dθ =

2π2

3

An =
1

π

∫ 2π

0
(2πθ − θ2) cos nθ dθ = − 4

n2

Bn =
1

π

∫ 2π

0
(2πθ − θ2) sin nθ dθ = 0

Boundary-Value Problems

in Other Coordinate Systems13
13.1 Polar Coordinatesq
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and so

u(r, θ) =
2π2

3
− 4

∞∑

n=1

rn

n2 cos nθ.

4. We have

A0 =
1

2π

∫ 2π

0
θ dθ = π

An =
1

π

∫ 2π

0
θ cos nθ dθ = 0

Bn =
1

π

∫ 2π

0
θ sin nθ dθ = − 2

n
and so

u(r, θ) = π − 2
∞∑

n=1

rn

n
sin nθ.

5. As in Example 1 in the text we have R(r) = c3rn + c4r−n. In order that the solution be bounded

as r → ∞ we must define c3 = 0. Hence

u(r, θ) = A0 +
∞∑

n=1

r−n(An cos nθ + Bn sin nθ)

A0 =
1

2π

∫ 2π

0
f(θ) dθwhere

An =
cn

π

∫ 2π

0
f(θ) cos nθ dθ

Bn =
cn

π

∫ 2π

0
f(θ) sin nθ dθ.

6. We solve

∂2u

∂r2 +
1

r

∂u

∂r
+

1

r2

∂2u

∂θ2 = 0, 0 < θ <
π

2
, 0 < r < c,

u(c, θ) = f(θ), 0 < θ <
π

2
,

u(r, 0) = 0, u(r, π/2) = 0, 0 < r < c.

Proceeding as in Example 1 in the text we obtain the separated differential equations

r2R′′ + rR′ − λR = 0

Θ′′ + λΘ = 0.

Taking λ = α2 the solutions are

Θ(θ) = c1 cos αθ + c2 sin αθ

R(r) = c3r
α + c4r

−α.

72913.1 Polar Coordinates  
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Since we want R(r) to be bounded as r → 0 we require c4 = 0. Applying the boundary conditions

Θ(0) = 0 and Θ(π/2) = 0 we find that c1 = 0 and α = 2n for n = 1, 2, 3, . . . . Therefore

u(r, θ) =
∞∑

n=1

Anr2n sin 2nθ.

From

u(c, θ) = f(θ) =
∞∑

n=1

Ancn sin 2nθ

we find

An =
4

πc2n

∫ π/2

0
f(θ) sin 2nθ dθ.

7. Referring to the solution of Problem 6 above we have

Θ(θ) = c1 cos αθ + c2 sin αθ

R(r) = c3r
α.

Applying the boundary conditions Θ′(0) = 0 and Θ′(π/2) = 0 we find that c2 = 0 and α = 2n for

n = 0, 1, 2, . . . . Therefore

u(r, θ) = A0 +
∞∑

n=1

Anr2n cos 2nθ.

From

u(c, θ) =

{
1, 0 < θ < π/4

0, π/4 < θ < π/2
= A0 +

∞∑

n=1

Anc2n cos 2nθ

we find

A0 =
1

π/2

∫ π/4

0
dθ =

1

2

and

c2nAn =
2

π/2

∫ π/4

0
cos 2nθ dθ =

2

nπ
sin

nπ

2
.

Thus

u(r, θ) =
1

2
+

2

π

∞∑

n=1

1

n
sin

nπ

2

(
r

c

)2n
cos 2nθ.

8. We solve

∂2u

∂r2 +
1

r

∂u

∂r
+

1

r2

∂2u

∂θ2 = 0, 0 < θ < π/4, r > 0

u(r, 0) = 0, r > 0

u(r, π/4) = 30, r > 0.
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Proceeding as in Example 1 in the text we find the separated ordinary differential equations to be

r2R′′ + rR′ − λR = 0

Θ′′ + λΘ = 0.

With λ = α2 > 0 the corresponding general solutions are

R(r) = c1r
α + c2r

−α

Θ(θ) = c3 cos αθ + c4 sin αθ.

The condition Θ(0) = 0 implies c3 = 0 so that Θ = c4 sin αθ. Now, in order that the temperature

be bounded as r → ∞ we define c1 = 0. Similarly, in order that the temperature be bounded as

r → 0 we are forced to define c2 = 0. Thus R(r) = 0 and so no nontrivial solution exists for λ > 0.

For λ = 0 the separated differential equations are

r2R′′ + rR′ = 0 and Θ′′ = 0.

Solutions of these latter equations are

R(r) = c1 + c2 ln r and Θ(θ) = c3θ + c4.

Θ(0) = 0 still implies c4 = 0, whereas boundedness as r → 0 demands c2 = 0. Thus, a product

solution is

u = c1c3θ = Aθ.

From u(r, π/4) = 0 we obtain A = 120/π. Thus, a solution to the problem is

u(r, θ) =
120

π
θ.

9. Proceeding as in Example 1 in the text and again using the periodicity of u(r, θ), we have

Θ(θ) = c1 cos αθ + c2 sin αθ

where α = n for n = 0, 1, 2, . . . . Then

R(r) = c3r
n + c4r

−n.

[We do not have c4 = 0 in this case since 0 < a ≤ r.] Since u(b, θ) = 0 we have

u(r, θ) = A0 ln
r

b
+

∞∑

n=1

[(
b

r

)n

−
(

r

b

)n
]

[An cos nθ + Bn sin nθ] .

From

u(a, θ) = f(θ) = A0 ln
a

b
+

∞∑

n=1

[(
b

a

)n

−
(

a

b

)n
]

[An cos nθ + Bn sin nθ]
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CHAPTER 13 BOUNDARY-VALUE PROBLEMS IN OTHER COORDINATE SYSTEMS

we find

A0 ln
a

b
=

1

2π

∫ 2π

0
f(θ) dθ,

[(
b

a

)n

−
(

a

b

)n
]

An =
1

π

∫ 2π

0
f(θ) cos nθ dθ,

and [(
b

a

)n

−
(

a

b

)n
]

Bn =
1

π

∫ 2π

0
f(θ) sin nθ dθ.

10. Substituting u(r, θ) = v(r, θ) + ψ(r) into the partial differential equation we obtain

∂2v

∂r2 + ψ′′(r) +
1

r

[
∂v

∂r
+ ψ′(r)

]

+
1

r2

∂2v

∂θ2 = 0.

This equation will be homogeneous provided

ψ′′(r) +
1

r
ψ′(r) = 0 or r2ψ′′(r) + rψ′(r) = 0.

The general solution of this Cauchy-Euler differential equation is

ψ(r) = c1 + c2 ln r.

From

u0 = u(a, θ) = v(a, θ) + ψ(a) and u1 = u(b, θ) = v(b, θ) + ψ(b)

we see that in order for the boundary values v(a, θ) and v(b, θ) to be 0 we need ψ(a) = u0 and

ψ(b) = u1. From this we have

ψ(a) = c1 + c2 ln a = u0

ψ(b) = c1 + c2 ln b = u1.

Solving for c1 and c2 we obtain

c1 =
u1 ln a − u0 ln b

ln(a/b)
and c2 =

u0 − u1

ln(a/b)
.

Then

ψ(r) =
u1 ln a − u0 ln b

ln(a/b)
+

u0 − u1

ln(a/b)
ln r =

u0 ln(r/b) − u1 ln(r/a)

ln(a/b)
.

From Problem 9 with f(θ) = 0 we see that the solution of

∂2v

∂r2 +
1

r

∂v

∂r
+

1

r2

∂2v

∂θ2 = 0, 0 < θ < 2π, a < r < b,

v(a, θ) = 0, v(b, θ) = 0, 0 < θ < 2π

is v(r, θ) = 0. Thus the steady-state temperature of the ring is

u(r, θ) = v(r, θ) + ψ(r) =
u0 ln(r/b) − u1 ln(r/a)

ln(a/b)
.
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11. Solutions of the separated equations are

Θ(θ) = c1, n = 0

Θ(θ) = c1 cosnθ + c2 sinnθ, n = 1, 2, . . .

R(r) = c3 + c4 ln r, n = 0

R(r) = c3r
n + c4r

−n, n = 1, 2, . . . .

Thus

u(r, θ) = A0 +B0 ln r +
∞∑
n=1

[
(Anr

n +Bnr
−n) cosnθ + (Cnr

n +Dnr
−n) sinnθ

]
.

When r = 1,

A0 +B0 ln 1 =
1

2π

∫ 2π

0
75 sin θdθ = 0 ← ln 1 = 0

An +Bn =
1

π

∫ 2π

0
75 sin θ cosnθdθ = 0, n = 1, 2, . . .

Cn +Dn =
1

π

∫ 2π

0
75 sin θ sinnθdθ =

{
0, n > 0

75, n = 1
, n = 1, 2, . . . ,

so

A0 = 0, A1 +B1 = 0, C1 +D1 = 75,

and

An +Bn = 0, Cn +Dn = 0, for n > 1.

When r = 2

A0 +B0 ln 2 =
1

2π

∫ 2π

0
60 cos θdθ = 0

An2n +Bn2−n =
1

π

∫ 2π

0
60 cos θ cosnθdθ =

{
0, n > 1

60, n = 1

Cn2n +Dn2−n =
1

π

∫ π

0
60 cos θ sinnθdθ = 0, n = 1, 2, . . . ,

so

B0 = 0, 2A1 +
1

2
B1 = 60, 2C1 +

1

2
D1 = 0,

and

An2n +Bn2−n = 0, Cn2n +Dn2−n = 0, for n > 1.
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CHAPTER 13 BOUNDARY-VALUE PROBLEMS IN OTHER COORDINATE SYSTEMS

We have A0 = 0 and B0 = 0, and solving the the nonhomogeneous systems for n = 1,

A1 +
1

2
B1 = 0 C1 +

1

2
D1 = 75

2A1 +
1

2
B1 = 60 2C1 +

1

2
D1 = 0

yields A1 = 40, B1 = −40, C1 = −25, and D1 = 100. Finally, solving the homogeneous

systems

An2n +Bn2−n = 0 Cn2n +Dn2−n = 0

An2n +Bn2−n = 0 Cn2n +Dn2−n = 0

gives An = Bn = Cn = Dn = 0 for n > 1. The solution is then

u(r, θ) = (A1r +B1r
−1) cos θ + (C1r +D1r

−1) sin θ

= (40r − 40r−1) cos θ + (−25r + 100r−1) sin θ

= 40

(
r − 1

r

)
cos θ − 25

(
r − 4

r

)
sin θ.

e solve

∂2u

∂r2 +
1

r

∂u

∂r
+

1

r2

∂2u

∂θ2 = 0, 0 < θ < π , a < r < b,

u(a, θ) = θ(π − θ), u(b, θ) = 0, 0 < θ < π ,

u(r, 0) = 0, u(r, π) = 0, a < r < b.

Proceeding as in Example 1 in the text we obtain the separated differential equations

r2R′′ + rR′ − λR = 0

Θ′′ + λΘ = 0.

Taking λ = α2 the solutions are

Θ(θ) = c1 cos αθ + c2 sin αθ

R(r) = c3r
α + c4r

−α.

Applying the boundary conditions Θ(0) = 0 and Θ(π) = 0 we find that c1 = 0 and α = n for

n = 1, 2, 3, . . . . The boundary condition R(b) = 0 gives

c3b
n + c4b

−n = 0 and c4 = −c3b
2n.

12. W
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Then

R(r) = c3

(

rn − b2n

rn

)

= c3

(
r2n − b2n

rn

)

and

u(r, θ) =
∞∑

n=1

An

(
r2n − b2n

rn

)

sin nθ.

From

u(a, θ) = θ(π − θ) =
∞∑

n=1

An

(
a2n − b2n

an

)

sin nθ

we find

An

(
a2n − b2n

an

)

=
2

π

∫ π

0
(θπ − θ2) sin nθ dθ =

4

n3π
[1 − (−1)n].

Thus

u(r, θ) =
4

π

∞∑

n=1

1 − (−1)n

n3

r2n − b2n

a2n − b2n

(
a

r

)n
sin nθ.

13. The homogeneous boundary conditions Θ(0) = 0 and Θ(π) = 0 imply that λ = 0 is not an

eigenvalue, but, imply for Θ(θ) = c1 cosλθ+ c2 sinλθ, that c1 = 0 and λn = n2, n = 1, 2, . . . .

Then Θ(θ) = c2 sinnθ < n = 1, 2, . . . . Applying R(1) = 0 to R(r) = c3r
n + c4r

−n gives

c4 = −c3 so R(r) = c3(r
n − r−n). Thus u(r, θ) =

∑∞
n=1An(rn − r−n) sinnθ and the boundary

condition

u(2, θ) = u0 =
∞∑
n=1

An(2n − 2−n) sinnθ

implies

An(2n − 2−n) =
2u0
π

∫ π

0
sinnθdθ =

2u0
π

1− (−1)n

n
or An =

2u0
π

1− (−1)n

n(2n − 2−n)
.

Hence

u(r, θ) =
2u0
π

∞∑
n=1

1− (−1)n

n

rn − r−n

2n − 2−n
sinnθ.

14. Letting u(r, θ) = v(r, θ) + ψ(θ) we obtain ψ′′(θ) = 0 and so ψ(θ) = c1θ + c2. From

ψ(0) = 0 and ψ(π) = u0 we find, in turn, c2 = 0 and c1 = u0/π. Therefore ψ(θ) =
u0

π
θ.

Now u(1, θ) = v(1, θ) + ψ(θ) so that v(1, θ) = u0 −
u0

π
θ. From

v(r, θ) =
∞∑

n=1

Anrn sin nθ and v(1, θ) =
∞∑

n=1

An sin nθ

we obtain

An =
2

π

∫ π

0

(
u0 −

u0

π
θ
)

sin nθ dθ =
2u0

πn
.

Thus

u(r, θ) =
u0

π
θ +

2u0

π

∞∑

n=1

rn

n
sin nθ.
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CHAPTER 13 BOUNDARY-VALUE PROBLEMS IN OTHER COORDINATE SYSTEMS

15. We solve

∂2u

∂r2 +
1

r

∂u

∂r
+

1

r2

∂2u

∂θ2 = 0, 0 < θ < π , 0 < r < 2,

u(2, θ) =

{
u0, 0 < θ < π/2

0, π/2 < θ < π

∂u

∂θ

∣∣∣∣
θ=0

= 0,
∂u

∂θ

∣∣∣∣
θ=π

= 0, 0 < r < 2.

Proceeding as in Example 1 in the text we obtain the separated differential equations

r2R′′ + rR′ − λR = 0

Θ′′ + λΘ = 0.

Taking λ = α2 the solutions are

Θ(θ) = c1 cos αθ + c2 sin αθ

R(r) = c3r
α + c4r

−α.

Applying the boundary conditions Θ′(0) = 0 and Θ′(π) = 0 we find that c2 = 0 and α = n for

n = 0, 1, 2, . . . . Since we want R(r) to be bounded as r → 0 we require c4 = 0. Thus

u(r, θ) = A0 +
∞∑

n=1

Anrn cos nθ.

From

u(2, θ) =

{
u0, 0 < θ < π/2

0, π/2 < θ < π
= A0 +

∞∑

n=1

An2n cos nθ

we find

A0 =
1

2

2

π

∫ π/2

0
u0 dθ =

u0

2
and

2nAn =
2u0

π

∫ π/2

0
cos nθ dθ =

2u0

π

sin nπ/2

n
.

Therefore

u(r, θ) =
u0

2
+

2u0

π

∞∑

n=1

1

n

(
sin

nπ

2

) (
r

2

)n
cos nθ.
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17. Let u1 be the solution of the boundary-value problem

∂2u1

∂r2 +
1

r

∂u1

∂r
+

1

r2

∂2u1

∂θ2 = 0, 0 < θ < 2π, a < r < b

u1(a, θ) = f(θ), 0 < θ < 2π

u1(b, θ) = 0, 0 < θ < 2π,

and let u2 be the solution of the boundary-value problem

∂2u2

∂r2 +
1

r

∂u2

∂r
+

1

r2

∂2u2

∂θ2 = 0, 0 < θ < 2π, a < r < b

u2(a, θ) = 0, 0 < θ < 2π

u2(b, θ) = g(θ), 0 < θ < 2π.

Each of these problems can be solved using the methods shown in Problem 9 of this section. Now

if u(r, θ) = u1(r, θ) + u2(r, θ), then

u(a, θ) = u1(a, θ) + u2(a, θ) = f(θ)

u(b, θ) = u1(b, θ) + u2(b, θ) = g(θ)

and u(r, θ) will be the steady-state temperature of the circular ring with boundary conditions

u(a, θ) = f(θ) and u(b, θ) = g(θ).

14. Separating variables we get Θ(θ) = c1 cos αθ + c2 sin αθ, so Θ(0) = 0 and c1 = 0. Now Θ(θ) =

c2 sin αθ and Θ(π/4) = 0 implies sin(απ/4) = 0 or α = 4n. Then λ = (4n)2 and Θ(θ) = c2 sin 4nθ.

Now R(r) = c3r4n + c4r−4n, so R(a) = 0 implies c3a4n + c4a−4n = 0 and c4 = −a4n/a−4n. Thus

R(r) = c3
(r/a)4n − (a/r)4n

a4n

u(r, θ) =
∞∑

n=1

An
(r/a)4n − (a/r)4n

a4n sin 4nθ

u(b, θ) = 100 =
∞∑

n=1

An
(b/a)4n − (a/b)4n

a4n sin 4nθ

(b/a)4n − (a/b)4n

a4n An =
8

π

∫ π/4

0
100 sin 4nθ dθ =

800

π

1 − (−1)n

4n

and u(r, θ) =
200

π

∞∑

n=1

(r/a)4n − (a/r)4n

(b/a)4n − (a/b)4n

1 − (−1)n

n
sin 4nθ.

16. Separating variables we get Θ(θ) = c1 cos αθ + c2 sin αθ, so Θ(0) = 0 and c1 = 0. Now Θ(θ) =

c2 sin αθ and Θ(π/4) = 0 implies sin(απ/4) = 0 or α = 4n. Then λ = (4n)2 and Θ(θ) = c2 sin 4nθ.

Now R(r) = c3r4n + c4r−4n, so R(a) = 0 implies c3a4n + c4a−4n = 0 and c4 = −a4n/a−4n. Thus

R(r) = c3
(r/a)4n − (a/r)4n

a4n

u(r, θ) =
∞∑

n=1

An
(r/a)4n − (a/r)4n

a4n sin 4nθ

u(b, θ) = 100 =
∞∑

n=1

An
(b/a)4n − (a/b)4n

a4n sin 4nθ

(b/a)4n − (a/b)4n

a4n An =
8

π

∫ π/4

0
100 sin 4nθ dθ =

800

π

1 − (−1)n

4n

and u(r, θ) =
200

π

∞∑

n=1

(r/a)4n − (a/r)4n

(b/a)4n − (a/b)4n

1 − (−1)n

n
sin 4nθ.
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CHAPTER 13 BOUNDARY-VALUE PROBLEMS IN OTHER COORDINATE SYSTEMS

19. Using −λ as the separation constant along with λ = α2 leads to

Θ′′ − α2Θ = 0 and r2R′′ + rR′ + α2R = 0.

Solving these two equations we obtain

Θ(θ) = c1 coshαθ + c2 sinhαθ and R(r) = c3 cos(α ln r) + c4 sin(α ln r).

From the boundary condition u(1, θ) = R(1)Θ(θ) = 0 we see that R(1) = c3 cos(α · 0) +

c4 sin(α · 0) = c3 = 0. Similarly, the boundary condition u(2, θ) = R(2)Θ(θ) = 0 means that

R(2) = c4 sin(α ln 2) = 0. Since sin(α ln 2) = 0 when α ln 2 = nπ, we have the eigenvalues

λn =
(
nπ/ ln 2

)2
for n = 1, 2, . . . . The corresponding eigenfunctions are

R(r) = c4 sin
( nπ

ln 2
ln r
)
.

From the boundary condition u(r, 0) = 0 we have Θ(0) = c1 = 0 and so Θ(θ) = c2 sinh(nπθ/ ln 2).

Therefore

u(r, θ) =
∞∑
n=1

An sinh
( nπ

ln 2
θ
)

sin
( nπ

ln 2
ln r
)
.

18. Referring to Problem 15 above we solve boundary-value problems for u1(r, θ) and u2(r, θ). Using

the answer to Problem 9 we find A0 = −100/ ln 2, A1 = 100/3, An = 0, n > 1, and Bn = 0 for all

n. Then

u1(r, θ) = −100
ln r

ln 2
+

100

3
(r−1 − r) cos θ.

Using the answer to Problem 10 we find

u2(r, θ) = 200
ln 2r

ln 2
= 200

(

1 +
ln r

ln 2

)

so

u(r, θ) = u1(r, θ) + u2(r, θ) = 200 + 100
ln r

ln 2
+

100

3
(r−1 − r) cos θ.
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When θ = π, u(r, π) = r so

r =

∞∑
n=1

An sinh
( nπ

ln 2
π
)

sin
( nπ

ln 2
ln r
)
,
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(a) From Problem 1 in this section, with u0 = 100,

u(r, θ) = 50 +
100

π

∞∑

n=1

1 − (−1)n

n
rn sin nθ.

(b)

20.

Computer Lab Assignments
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which is an orthogonal function expansion. Using the idea of Problem 7 in Exercises 11.4 and

the information in Section 12.7,

An sinh
( nπ

ln 2
π
)

=

∫ 2

1
r · 1

r
sin
( nπ

ln 2
ln r
)
dr

∫ 2

1

1

r
sin2

( nπ
ln 2

ln r
)
dr

.

Now, with the substitutions t = ln r (so dt = dr/r), r = et, and αn = nπ/ ln 2, a CAS gives,

after simplifying,

An sinh(αnπ) =
2πn

[
1− 2(−1)n

]
(nπ)2 + (ln 2)2.

Therefore, the solution is

u(r, θ) = 2π

∞∑
n=1

n
[
1− 2(−1)n

]
(nπ)2 + (ln 2)2

sinh(αnθ)

sinh(αnπ)
sin(αn ln r).
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(d) At the center of the plate u(0, 0) = 50. From the graphs in part (b) we observe that the solution

curves are symmetric about the point (π, 50). In part (c) we observe that the horizontal pairs

add up to 100, and hence average 50. This is consistent with the observation about part (b),

so it is appropriate to say the average temperature in the plate is 50◦.

(c) We could use S5 from part (b) of this problem to compute the approximations, but in a CAS

it is just as easy to compute the sum with a much larger number of terms, thereby getting

greater accuracy. In this case we use partial sums including the term with r99 to find

u(0.9, 1.3) ≈ 96.5268 u(0.9, 2π − 1.3) ≈ 3.4731

u(0.7, 2) ≈ 87.871 u(0.7, 2π − 2) ≈ 12.129

u(0.5, 3.5) ≈ 36.0744 u(0.5, 2π − 3.5) ≈ 63.9256

u(0.3, 4) ≈ 35.2674 u(0.3, 2π − 4) ≈ 64.7326

u(0.1, 5.5) ≈ 45.4934 u(0.1, 2π − 5.5) ≈ 54.5066
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q

13.2 Polar and Cylindrical Coordinatesq

1. Referring to the solution of Example 1 in the text we have

R(r) = c1J0(αnr) and T (t) = c3 cos aαnt + c4 sin aαnt

where the αn are the positive roots of J0(αc) = 0. Now, the initial condition u(r, 0) = R(r)T (0) = 0

implies T (0) = 0 and so c3 = 0. Thus

u(r, t) =
∞∑

n=1

An sin aαntJ0(αnr) and
∂u

∂t
=

∞∑

n=1

aαnAn cos aαntJ0(αnr).

From
∂u

∂t

∣∣∣∣
t=0

= 1 =
∞∑

n=1

aαnAnJ0(αnr)

we find

aαnAn =
2

c2J2
1 (αnc)

∫ c

0
rJ0(αnr) dr x = αnr, dx = αn dr

=
2

c2J2
1 (αnc)

∫ αnc

0

1

α2
n
xJ0(x) dx

=
2

c2J2
1 (αnc)

∫ αnc

0

1

α2
n

d

dx
[xJ1(x)] dx see (5) of Section 11.5 in text

=
2

c2α2
nJ2

1 (αnc)
xJ1(x)

∣∣∣∣
αnc

0
=

2

cαnJ1(αnc)
.

Then

An =
2

acα2
nJ1(αnc)

and

u(r, t) =
2

ac

∞∑

n=1

J0(αnr)

α2
nJ1(αnc)

sin aαnt.

74113.2  Polar and Cylindrical Coordinates
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CHAPTER 13 BOUNDARY-VALUE PROBLEMS IN OTHER COORDINATE SYSTEMS

3. Referring to Example 2 in the text we have

R(r) = c1J0(αr) + c2Y0(αr)

Z(z) = c3 cosh αz + c4 sinh αz

where c2 = 0 and J0(2α) = 0 defines the positive eigenvalues λn = α2
n. From Z(4) = 0 we obtain

c3 cosh 4αn + c4 sinh 4αn = 0 or c4 = −c3
cosh 4αn

sinh 4αn
.

Then

Z(z) = c3

[

cosh αnz − cosh 4αn

sinh 4αn
sinh αnz

]

= c3
sinh 4αn cosh αnz − cosh 4αn sinh αnz

sinh 4αn

= c3
sinh αn(4 − z)

sinh 4αn

and

u(r, z) =
∞∑

n=1

An
sinh αn(4 − z)

sinh 4αn
J0(αnr).

From

u(r, 0) = u0 =
∞∑

n=1

AnJ0(αnr)

we obtain

An =
2u0

4J2
1 (2αn)

∫ 2

0
rJ0(αnr) dr =

u0

αnJ1(2αn)
.

Thus the temperature in the cylinder is

u(r, z) = u0

∞∑

n=1

sinh αn(4 − z)J0(αnr)

αn sinh 4αnJ1(2αn)
.

2. From Example 1 in the text we have Bn = 0 and

An =
2

J2
1 (αn)

∫ 1

0
r(1 − r2)J0(αnr) dr.

From Problem 10, Exercises 11.5 we obtained An =
4J2(αn)

α2
nJ2

1 (αn)
. Thus

u(r, t) = 4
∞∑

n=1

J2(αn)

J2
1 (αn)

cos aαntJ0(αnr).

742

© 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part, except for use as permitted in a license distributed 
with a certain product or service or otherwise on a password-protected website for classroom use. 

Not For Sale

©
 C

en
ga

ge
 L

ea
rn

in
g.

 A
ll 

rig
ht

s r
es

er
ve

d.
 N

o 
di

st
rib

ut
io

n 
al

lo
w

ed
 w

ith
ou

t e
xp

re
ss

 a
ut

ho
riz

at
io

n.



4. (a) The boundary condition ur(2, z) = 0 implies R′(2) = 0 or J ′
0(2α) = 0. Thus α = 0 is also an

eigenvalue and the separated equations are in this case rR′′+R′ = 0 and z′′ = 0. The solutions

of these equations are then

R(r) = c1 + c2 ln r, Z(z) = c3z + c4.

Now Z(0) = 0 yields c4 = 0 and the implicit condition that the temperature is bounded as

r → 0 demands that we define c2 = 0. Thus we have

u(r, z) = A1z +
∞∑

n=2

An sinh αnzJ0(αnr). (1)

At z = 4 we obtain

f(r) = 4A1 +
∞∑

n=2

An sinh 4αnJ0(αnr).

Thus from (17) and (18) of Section 11.5 in the text we can write with b = 2,

A1 =
1

8

∫ 2

0
rf(r) dr (2)

An =
1

2 sinh 4αnJ2
0 (2αn)

∫ 2

0
rf(r)J0(αnr) dr. (3)

A solution of the problem consists of the series (1) with coefficients A1 and An defined in

(2) and (3), respectively.

(b) When f(r) = u0 we get A1 = u0/4 and

An =
u0J1(2αn)

αn sinh 4αnJ2
0 (2αn)

= 0

since J ′
0(2α) = 0 is equivalent to J1(2α) = 0. A solution of the problem is then u(r, z) =

u0

4
z.

5. Letting the separation constant be λ = α2 and referring to Example 2 in Section 13.2 in the text

we have
R(r) = c1J0(αr) + c2Y0(αr)

Z(z) = c3 cosh αz + c4 sinh αz

where c2 = 0 and the positive eigenvalues λn are determined by J0(2α) = 0. From Z ′(0) = 0 we

obtain c4 = 0. Then

u(r, z) =
∞∑

n=1

An cosh αnzJ0(αnr).

74313.2  Polar and Cylindrical Coordinates
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CHAPTER 13 BOUNDARY-VALUE PROBLEMS IN OTHER COORDINATE SYSTEMS

From

u(r, 4) = 50 =
∞∑

n=1

An cosh 4αnJ0(αnr)

we obtain (as in Example 1 of Section 13.1)

An cosh 4αn =
2(50)

4J2
1 (2αn)

∫ 2

0
rJ0(αnr) dr =

50

αnJ1(2αn)
.

Thus the temperature in the cylinder is

u(r, z) = 50
∞∑

n=1

cosh αnzJ0(αnr)

αn cosh 4αnJ1(2αn)
.

6. The boundary-value problem in this case is

∂2u

∂r2 +
1

r

∂u

∂r
+

∂2u

∂z2 = 0, 0 < r < 2, 0 < z < 4

u(2, z) = 50, 0 < z < 4

∂u

∂z

∣∣∣∣∣
z=0

= 0,
∂u

∂z

∣∣∣∣∣
z=4

= 0, 0 < r < 2.

We have u(r, z) = v(r, z) + 50, so

∂2v

∂r2 +
1

r

∂v

∂r
+

∂2v

∂z2 = 0, 0 < r < 2, 0 < z < 4

v(2, z) = 0, 0 < z < 4

∂v

∂z

∣∣∣∣∣
z=0

= 0,
∂v

∂z

∣∣∣∣∣
z=4

= 0, 0 < r < 2,

which implies that v(r, z) = 0 and so u(r, z) = 50.

7. Because of the nonhomogeneous condition specified at r = 1, namely u(1, z) = 1 − z, we do

not expect the eigenvalues of the problem to be defined in terms of zeros of a Bessel function

of the first kind. Using λ as the separation constant the separated equations are

rR′′ +R′ − rλR = 0 and Z ′′ + λZ = 0,

with boundary conditions, in addition to the one specified above in this solution, Z(0) = 0 and

Z(1)=0. It can be shown that the two cases λ = 0 and λ = −α2 < 0 lead only to the trivial

solution u(r, z) = 0. In the case λ = α2 > 0 the differential equations are

rR′′ +R′ − α2rR = 0 and Z ′′ + α2Z = 0.
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The first equation is the parametric form of Bessel’s modified differential equation of order

ν = 0. The solution of this equation is R(r)c1I0(αr) + c2K0(αr). We immediately define

c2 = 0 because the modified Bessel function of the second kind K0(αr) is unbounded at r = 0.

Therefore R(r) = c1I0(αr).

Now the eigenvalues and eigenfunctions of the Sturm-Liouville problem

Z ′′ + α2Z = 0, Z(0) = 0, Z(1) = 0

are λn = n2π2, n = 1, 2, 3, . . . and Z(z) = c3 sinnπz. Thus product solutions that satisfy the

partial differential equation and the homogeneous boundary conditions are

un = R(r)Z(z) = AnI0(nπr) sinnπz.

Next we form

u(r, z) =

∞∑
n=1

AnI0(nπr) sinnπz.

The reamining condition at r = 1 yields the Fourier sine series

u(1, z) = 1− z =
∞∑
n=1

AnI0(nπ) sinnπz.

From (5) of Section 11.5 we can write

AnI0(nπ) = 2

∫ 1

0
(1− z) sinnπzdz =

2

nπ
← integration by parts

and

An =
2

nπI0(nπ)
.

The steady-state temperature is then

u(r, z) = 2

∞∑
n=1

I0(nπr)

nπI0(nπ)
sinnπz.

8. Using λ as the separation constant the separated equations are

rR′′ +R′ − rλR = 0 and Z ′′ + λZ = 0.

The boundary conditions are Z ′(0) = 0 and Z ′(1) = 0.

If λ = 0 the solutions of the ordinary differential equations are

R = c1 + c2 ln r and Z = c3 + c4z.
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Since Z ′(0) = 0, c4 = 0. Therefore Z = c3, which satisfies Z ′(1) = 0. Boundedness at r = 0

implies c2 = 0. Therefore λ = 0 is an eigenvalue with eigenfunction R = c1 6= 0.

If λ = −α2 < 0, the solutions of the ordinary differential equations are

R = c1J0(αr) + c2Y0(αr) and Z = c3 coshαz + c4 sinhαz.

Since Z ′(0) = 0, c4 = 0. Therefore Z = c3 coshαz. Then Z ′(1) = 0, so c4α sinhα = 0 and

c4 = 0. Thus Z = 0, and therefore u = 0.

If λ = α2 > 0, the solutions of the ordinary differential equations are

R = c1I0(αr) + c2K0(αr) and Z = c3 cosαz + c4 sinαz.

Since Z ′(0) = 0, c4 = 0 and so Z = c3 cosαz. Now Z ′(1) = 0 so c4α sinα = 0 and α =

nπ, n = 1, 2, 3, . . . . The eigenvalues are λn = n2π2 and corresponding eigenfunctions are

Z = c3 cosnπz. Now, the usual requirement that u be bounded at r = 0 implies c2 = 0.

Therefore R = c1I0(αr) or R = c1I0(nπr). The superposition principle then yields

u(r, z) = A0 +

∞∑
n=1

AnI0(nπr) cosnπz.

At r = 1

u(1, z) = z = A0 +
∞∑
n=1

AnI0(nπ) cosnπz

so

A0 =
1

2
a0 =

1

2
· 2

1

∫ 1

0
zdz =

1

2

anI0(nπ) =
2

1

∫ 1

0
z cosnπzdz = 2

(−1)n − 1

n2π2

and

An = 2
(−1)n − 1

n2π2I0(nπ)
,

where we note that I0(nπ) has no real zeros. Therefore

u(r, z) =
1

2
+ 2

∞∑
n=1

(−1)n − 1

n2π2I0(nπ)
I0(nπr) cosnπz.
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Letting u(r, t) = R(r)T (t) and separating variables we obtain

R′′ + 1
rR

′

R
=

T ′

kT
= −λ and R′′ +

1

r
R′ + λR = 0, T ′ + λkT = 0.

From the last equation we find T (t) = e−λkt. If λ < 0, T (t) increases without bound as t → ∞.

Thus we assume λ = α2 > 0. Now

R′′ +
1

r
R′ + α2R = 0

is a parametric Bessel equation with solution

R(r) = c1J0(αr) + c2Y0(αr).

Since Y0 is unbounded as r → 0 we take c2 = 0. Then R(r) = c1J0(αr) and the boundary condition

u(c, t) = R(c)T (t) = 0 implies J0(αc) = 0. This latter equation defines the positive eigenvalues

λn = α2
n. Thus

u(r, t) =
∞∑

n=1

AnJ0(αnr)e−α2
nkt.

From

u(r, 0) = f(r) =
∞∑

n=1

AnJ0(αnr)

we find

An =
2

c2J2
1 (αnc)

∫ c

0
rJ0(αnr)f(r) dr, n = 1, 2, 3, . . . .

If the edge r = c is insulated we have the boundary condition ur(c, t) = 0. Referring to the solution

of Problem 7 above we have

R′(c) = αc1J
′
0(αc) = 0

which defines an eigenvalue λ = α2 = 0 and positive eigenvalues λn = α2
n. Thus

u(r, t) = A0 +
∞∑

n=1

AnJ0(αnr)e−α2
nkt.

From

u(r, 0) = f(r) = A0 +
∞∑

n=1

AnJ0(αnr)

9.

10.

we find

A0 =
2

c2

∫ c

0
rf(r) dr

An =
2

c2J2
0 (αnc)

∫ c

0
rJ0(αnr)f(r) dr.
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Referring to Problem 7 above we have T (t) = e−λkt and R(r) = c1J0(αr). The boundary condition

hu(1, t)+ur(1, t) = 0 implies hJ0(α)+αJ ′
0(α) = 0 which defines positive eigenvalues λn = α2

n. Now

u(r, t) =
∞∑

n=1

AnJ0(αnr)e−α2
nkt

where

An =
2α2

n

(α2
n + h2)J2

0 (αn)

∫ 1

0
rJ0(αnr)f(r) dr.

12. We solve

∂2u

∂r2 +
1

r

∂u

∂r
+

∂2u

∂z2 = 0, 0 < r < 1, z > 0

∂u

∂r

∣∣∣∣
r=1

= −hu(1, z), z > 0

u(r, 0) = u0, 0 < r < 1.

assuming u = RZ we get
R′′ + 1

rR
′

R
= −Z ′′

Z
= −λ

and so

rR′′ + R′ + λ2rR = 0 and Z ′′ − λZ = 0.

Letting λ = α2 we then have

R(r) = c1J0(αr) + c2Y0(αr) and Z(z) = c3e
−αz + c4e

αz.

We use the exponential form of the solution of Z ′′−α2Z = 0 since the domain of the variable z is a

semi-infinite interval. As usual we define c2 = 0 since the temperature is surely bounded as r → 0.

Hence R(r) = c1J0(αr). Now the boundary-condition ur(1, z) + hu(1, z) = 0 is equivalent to

αJ ′
0(α) + hJ0(α) = 0. (4)

The eigenvalues αn are the positive roots of (4) above. Finally, we must now define c4 = 0 since the

temperature is also expected to be bounded as z → ∞. A product solution of the partial differential

equation that satisfies the first boundary condition is given by

un(r, z) = Ane−αnzJ0(αnr).

11.

Therefore

u(r, z) =
∞∑

n=1

Ane−αnzJ0(αnr)
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is another formal solution. At z = 0 we have u0 = AnJ0(αnr). In view of (4) above we use equations

(17) and (18) of Section 11.5 in the text with the identification b = 1:

An =
2α2

n

(α2
n + h2) J2

0 (αn)

∫ 1

0
rJ0(αnr)u0 dr

=
2α2

nu0

(α2
n + h2) J2

0 (αn)α2
n
tJ1(t)

∣∣∣∣
αn

0
=

2αnu0J1(αn)

(α2
n + h2) J2

0 (αn)
. (5)

Since J ′
0 = −J1 [see equation (6) of Section 11.5 in the text] it follows from (4) above that

αnJ1(αn) = hJ0(αn). Thus (5) above simplifies to

An =
2u0h

(α2
n + h2) J0(αn)

.

A solution to the boundary-value problem is then

u(r, z) = 2u0h
∞∑

n=1

e−αnz

(α2
n + h2) J0(αn)

J0(αnr).

13. Substituting u(r, t) = v(r, t) + ψ(r) into the partial differential equation gives

∂2v

∂r2 +
1

r

∂v

∂r
+ ψ′′ +

1

r
ψ′ =

∂v

∂t
.

This equation will be homogeneous provided ψ′′ + 1
rψ

′ = 0 or ψ(r) = c1 ln r + c2. Since ln r is

unbounded as r → 0 we take c1 = 0. Then ψ(r) = c2 and using u(2, t) = v(2, t) + ψ(2) = 100

we set c2 = ψ(2) = 100. Therefore ψ(r) = 100. Referring to Problem 7 above, the solution of the

boundary-value problem

∂2v

∂r2 +
1

r

∂v

∂r
=

∂v

∂t
, 0 < r < 2, t > 0,

v(2, t) = 0, t > 0,

v(r, 0) = u(r, 0) − ψ(r)

is

v(r, t) =
∞∑

n=1

AnJ0(αnr)e−α2
nt
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where

An =
2

22J2
1 (2αn)

∫ 2

0
rJ0(αnr)[u(r, 0) − ψ(r)] dr

=
1

2J2
1 (2αn)

[∫ 1

0
rJ0(αnr)[200 − 100] dr +

∫ 2

1
rJ0(αnr)[100 − 100] dr

]

=
50

J2
1 (2αn)

∫ 1

0
rJ0(αnr) dr x = αnr, dx = αn dr

=
50

J2
1 (2αn)

∫ αn

0

1

α2
n
xJ0(x) dx

=
50

α2
nJ2

1 (2αn)

∫ αn

0

d

dx
[xJ1(x)] dx see (5) of Section 11.5 in text

=
50

α2
nJ2

1 (2αn)
(xJ1(x))

∣∣∣∣
αn

0
=

50J1(αn)

αnJ2
1 (2αn)

.

Thus

u(r, t) = v(r, t) + ψ(r) = 100 + 50
∞∑

n=1

J1(αn)J0(αnr)

αnJ2
1 (2αn)

e−α2
nt.

14. Letting u(r, t) = u(r, t) + ψ(r) we obtain rψ′′ + ψ′ = −βr. The general solution of this nonhomo-

geneous Cauchy-Euler equation is found with the aid of variation of parameters: ψ = c1 + c2 ln r −
βr2/4. In order that this solution be bounded as r → 0 we define c2 = 0. Using ψ(1) = 0 then

gives c1 = β/4 and so ψ(r) = β(1 − r2)/4. Using v = RT we find that a solution of

∂2v

∂r2 +
1

r

∂v

∂r
=

∂v

∂t
, 0 < r < 1, t > 0

v(1, t) = 0, t > 0

v(r, 0) = −ψ(r), 0 < r < 1

is

v(r, t) =
∞∑

n=1

Ane−α2
ntJ0(αnr)

where

An = −β

4

2

J2
1 (αn)

∫ 1

0
r(1 − r2)J0(αnr) dr

and the αn are defined by J0(α) = 0. From the result of Problem 10, Exercises 11.5 (see also

Problem 2 of this exercise set) we get

An = − βJ2(αn)

α2
nJ2

1 (αn)
.
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Thus from u = v + ψ(r) it follows that

u(r, t) =
β

4
(1 − r2) − β

∞∑

n=1

J2(αn)

α2
nJ2

1 (αn)
e−α2

ntJ0(αnr).

15. (a) Writing the partial differential equation in the form

g

(

x
∂2u

∂x2 +
∂u

∂x

)

=
∂2u

∂t2

and separating variables we obtain

xX ′′ + X ′

X
=

T ′′

gT
= −λ.

Letting λ = α2 we obtain

xX ′′ + X ′ + α2X = 0 and T ′′ + gα2T = 0.

Letting x = τ2/4 in the first equation we obtain dx/dτ = τ/2 or dτ/dx = 2τ . Then

dX

dx
=

dX

dτ

dτ

dx
=

2

τ

dX

dτ
and

d2X

dx2 =
d

dx

(
2

τ

dX

dτ

)

=
2

τ

d

dx

(
dX

dτ

)

+
dX

dτ

d

dx

(
2

τ

)

=
2

τ

d

dτ

(
dX

dτ

)
dτ

dx
+

dX

dτ

d

dτ

(
2

τ

)
dτ

dx
=

4

τ2

d2X

dτ2 − 4

τ3

dX

dτ
.

Thus

xX ′′ + X ′ + α2X =
τ2

4

(
4

τ2

d2X

dτ2 − 4

τ3

dX

dτ

)

+
2

τ

dX

dτ
+ α2X =

d2X

dτ2 +
1

τ

dX

dτ
+ α2X = 0.

This is a parametric Bessel equation with solution

X(τ) = c1J0(ατ) + c2Y0(ατ).

(b) To insure a finite solution at x = 0 (and thus τ = 0) we set c2 = 0. The condition

u(L, t) = X(L)T (t) = 0 implies X |x=L = X |τ=2
√

L = c1J0(2α
√

L ) = 0, which defines positive

eigenvalues λn = α2
n. The solution of T ′′ + gα2T = 0 is

T (t) = c3 cos(αn
√

g t) + c4 sin(αn
√

g t).

The boundary condition ut(x, 0) = X(x)T ′(0) = 0 implies c4 = 0. Thus

u(τ, t) =
∞∑

n=1

An cos(αn
√

g t)J0(αnτ).

From

u(τ, 0) = f(τ2/4) =
∞∑

n=1

AnJ0(αnτ)
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we find

An =
2

(2
√

L )2J2
1 (2αn

√
L )

∫ 2
√

L

0
τJ0(αnτ)f(τ2/4) dτ v = τ/2, dv = dτ/2

=
1

2LJ2
1 (2αn

√
L )

∫ √
L

0
2vJ0(2αnv)f(v2)2 dv

=
2

LJ2
1 (2αn

√
L )

∫ √
L

0
vJ0(2αnv)f(v2) dv.

The solution of the boundary-value problem is

u(x, t) =
∞∑

n=1

An cos(αn
√

g t)J0(2αn
√

x ).

16. (a) First we see that

R′′Θ +
1

r
R′Θ +

1

r2 RΘ′′

RΘ
=

T ′′

a2T
= −λ.

This gives T ′′ + a2λT = 0 and from

R′′ +
1

r
R′ + λR

−R/r2 =
Θ′′

Θ
= −ν

we get Θ′′ + νΘ = 0 and r2R′′ + rR′ + (λr2 − ν)R = 0.

(b) With λ = α2 and ν = β2 the general solutions of the differential equations in part (a) are

T = c1 cos aαt + c2 sin aαt

Θ = c3 cos βθ + c4 cos βθ

R = c5Jβ(αr) + c6Yβ(αr).

(c) Implicitly we expect u(r, θ, t) = u(r, θ + 2π, t) and so Θ must be 2π-periodic. Therefore β = n,

n = 0, 1, 2, . . . . The corresponding eigenfunctions are 1, cos θ, cos 2θ, . . . , sin θ, sin 2θ, . . . .

Arguing that u(r, θ, t) is bounded as r → 0 we then define c6 = 0 and so R = c3Jn(αr).

But R(c) = 0 gives Jn(αc) = 0; this equation defines the eigenvalues λn = α2
n. For each n,

αni = xni/c, i = 1, 2, 3, . . . .

(d) u(r, θ, t) =
n∑

i=1

(A0i cos aα0it + B0i sin aα0it)J0(α0ir)

+
∞∑

n=1

∞∑

i=1

[
(Ani cos aαnit + Bni sin aαnit) cos nθ

+ (Cni cos aαnit + Dni sin aαnit) sin nθ
]
Jn(αnir)
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17. (a) The boundary-value problem is

a2

(
∂2u

∂r2 +
1

r

∂u

∂r

)

=
∂2u

∂t2
, 0 < r < 1, t > 0

u(1, t) = 0, t > 0

u(r, 0) = 0,
∂u

∂t

∣∣∣
t=0

=

{
−v0, 0 ≤ r < b

0, b ≤ r < 1
, 0 < r < 1,

and the solution is

u(r, t) =
∞∑

n=1

(An cos aαnt + Bn sin aαnt)J0(αnr),

where the eigenvalues λn = α2
n are defined by J0(α) = 0 and An = 0 since f(r) = 0. The

coefficients Bn are given by

Bn =
2

aαnJ2
1 (αn)

∫ b

0
rJ0(αnr)g(r) dr = − 2v0

aαnJ2
1 (αn)

∫ b

0
rJ0(αnr)dr

let x = αnr

= − 2v0

aαnJ2
1 (αn)

∫ αnb

0

x

αn
J0(x)

1

αn
dx = − 2v0

aα3
nJ2

1 (αn)

∫ αnb

0
xJ0(x) dx

= − 2v0

aα3
nJ2

1 (αn)
(xJ1(x))

∣∣∣
αnb

0
= − 2v0

aα3
nJ1(αn)

(αnbJ1(αnb))

= −2v0b

aα2
n

J1(αnb)

J2
1 (αn)

.

Thus,

u(r, t) =
−2v0b

a

∞∑

n=1

1

α2
n

J1(αnb)

J2
1 (αn)

sin(aαnt)J0(αnr).

(b) The standing wave un(r, t) is given by un(r, t) = Bn sin(aαnt)J0(αnr), which has frequency

fn = aαn/2π, where αn is the nth positive zero of J0(x). The fundamental frequency is

f1 = aα1/2π. The next two frequencies are

f2 =
aα2

2π
=

α2

α1

(
aα1

2π

)
=

5.520

2.405
f1 = 2.295f1

and

f3 =
aα3

2π
=

α3

α1

(
aα1

2π

)
=

8.654

2.405
f1 = 3.598f1.

(c) With a = 1, b = 1
4 , and v0 = 1, the solution becomes

u(r, t) = −1

2

∞∑

n=1

1

α2
n

J2
1 (αn/4)

J2
1 (αn)

sin(αnt)J0(αnr).
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The graphs of S5(r, t) for t = 1, 2, 3, 4, 5, 6 are shown below.

(d) Three frames from the movie are shown.

18. (a) With c = 10 in Example 1 in the text the eigenvalues are λn = α2
n = x2

n/100 where xn

is a positive root of J0(x) = 0. From a CAS we find that x1 = 2.4048, x2 = 5.5201, and

x3 = 8.6537, so that the first three eigenvalues are λ1 = 0.0578, λ2 = 0.3047, and λ3 = 0.7489.

The corresponding coefficients are

A1 =
2

100J2
1 (x1)

∫ 10

0
rJ0(x1r/10)(1 − r/10) dr = 0.7845,

A2 =
2

100J2
1 (x2)

∫ 10

0
rJ0(x2r/10)(1 − r/10) dr = 0.0687,

and

A3 =
2

100J2
1 (x3)

∫ 10

0
rJ0(x3r/10)(1 − r/10) dr = 0.0531.
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Since g(r) = 0, Bn = 0, n = 1, 2, 3, . . . , and the third partial sum of the series solution is

S3(r, t) =
∞∑

n=1

An cos(xnt/10)J0(xnr/10)

= 0.7845 cos(0.2405t)J0(0.2405r) + 0.0687 cos(0.5520t)J0(0.5520r)

+ 0.0531 cos(0.8654t)J0(0.8654r).

(b)

19. Because of the nonhomogeneous boundary condition u(c, t) = 200 we use the substitution u(r, t) =

v(r, t) + ψ(r). This gives

k

(
∂2v

∂r2 +
1

r

∂v

∂r
+ ψ′′ +

1

r
ψ′

)

=
∂v

∂t
.

This equation will be homogeneous provided ψ′′ + (1/r)ψ′ = 0 or ψ(r) = c1 ln r + c2. Since ln r

is unbounded as r → 0 we take c1 = 0. Then ψ(r) = c2 and using u(c, t) = v(c, t) + c2 = 200

we set c2 = 200, giving v(c, t) = 0. Referring to Problem 7 in this section, the solution of the

boundary-value problem

k

(
∂2v

∂r2 +
1

r

∂v

∂r

)

=
∂v

∂t
, 0 < r < c, t > 0

v(c, t) = 0, t > 0

v(r, 0) = −200, 0 < r < c

is

v(r, t) =
∞∑

n=1

AnJ0(αnr)e−α2
nkt,

where the separation constant is −λ = −α2. The eigenvalues are λn = α2 = x2
n/c2 where xn is a

positive root of J0(x) = 0 and the coefficients An are

An =
2

c2J2
1 (αnc)

∫ c

0
rJ0(αnr)(−200)dr = − 400

c2J2
1 (αnc)

∫ c

0
rJ0(αnr)dr.
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Taking c = 10 and k = 0.1 we have

u(r, t) = v(r, t) + 200 = 200 +
∞∑

n=1

AnJ0(xnr/10)e−0.01x2
nt/100

where

An = − 4

J2
1 (xn)

∫ 10

0
rJ0(xnr/10) dr.

Using a CAS we find that the first five values of xn are

x1 = 2.4048, x2 = 5.5201, x3 = 8.6537, x4 = 11.7915,

and x5 = 14.9309, with corresponding eigenvalues

λ1 = 0.0578, λ2 = 0.3047, λ3 = 0.7489, λ4 = 1.3904,

and λ5 = 2.2293. The first five values of An are

A1 = −320.4, A2 = 213.0, A3 = −170.3, A4 = 145.9,

and A5 = −129.7. Using a root finding application in

a CAS we find that u(5, t) = 100 when t ≈ 1331 and

u(0, t) = 100 when t ≈ 2005. Since u = 200 is an asymptote for the graphs of u(0, t) and u(5, t) we

solve u(5, t) = 199.9 and u(0, t) = 199.9. This gives t ≈ 13,265 and t ≈ 13,958, respectively.
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13.3 Spherical Coordinatesq

1. To compute

An =
2n + 1

2cn

∫ π

0
f(θ)Pn(cos θ) sin θ dθ

we substitute x = cos θ and dx = − sin θ dθ. Then

An =
2n + 1

2cn

∫ −1

1
F (x)Pn(x)(−dx) =

2n + 1

2cn

∫ 1

−1
F (x)Pn(x) dx

where

F (x) =

{
0, −1 < x < 0

50, 0 < x < 1
= 50

{
0, −1 < x < 0

1, 0 < x < 1
.

The coefficients An are computed in Example 3 of Section 11.5. Thus

u(r, θ) =
∞∑

n=0

AnrnPn(cos θ)

= 50
[
1

2
P0(cos θ) +

3

4

(
r

c

)
P1(cos θ) − 7

16

(
r

c

)3
P3(cos θ) +

11

32

(
r

c

)5
P5(cos θ) + · · ·

]
.

2. In the solution of the Cauchy-Euler equation,

R(r) = c1r
n + c2r

−(n+1),

we define c1 = 0 since we expect the potential u to be bounded as r → ∞. Hence

un(r, θ) = Anr−(n+1)Pn(cos θ)

u(r, θ) =
∞∑

n=0

Anr−(n+1)Pn(cos θ).

When r = c we have

f(θ) =
∞∑

n=0

Anc−(n+1)Pn(cos θ)

so that

An = cn+1 (2n + 1)

2

∫ π

0
f(θ)Pn(cos θ) sin θ dθ.

The solution of the problem is then

u(r, θ) =
∞∑

=0

(
2n + 1

2

∫ π

0
f(θ)Pn(cos θ) sin θdθ

) (
c

r

)n+1
Pn(cos θ).
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CHAPTER 13 BOUNDARY-VALUE PROBLEMS IN OTHER COORDINATE SYSTEMS

3. The coefficients are given by

An =
2n + 1

2cn

∫ π

0
cos θPn(cos θ) sin θ dθ =

2n + 1

2cn

∫ π

0
P1(cos θ)Pn(cos θ) sin θ dθ

x = cos θ, dx = − sin θ dθ

=
2n + 1

2cn

∫ 1

−1
P1(x)Pn(x) dx.

Since Pn(x) and Pm(x) are orthogonal for m %= n, An = 0 for n %= 1 and

A1 =
2(1) + 1

2c1

∫ 1

−1
P1(x)P1(x) dx =

3

2c

∫ 1

−1
x2dx =

1

c
.

Thus

u(r, θ) =
r

c
P1(cos θ) =

r

c
cos θ.

4. The coefficients are given by

An =
2n + 1

2cn

∫ π

0
(1 − cos 2θ)Pn(cos θ) sin θ dθ.

These were computed in Problem 18 of Section 11.5. Thus

u(r, θ) =
4

3
P0(cos θ) − 4

3

(
r

c

)2
P2(cos θ).

5. Referring to Example 1 in the text we have

Θ = Pn(cos θ) and R = c1r
n + c2r

−(n+1).

Since u(b, θ) = R(b)Θ(θ) = 0,

c1b
n + c2b

−(n+1) = 0 or c1 = −c2b
−2n−1,

and

R(r) = −c2b
−2n−1rn + c2r

−(n+1) = c2

(
b2n+1 − r2n+1

b2n+1rn+1

)

.

Then

u(r, θ) =
∞∑

n=0

An
b2n+1 − r2n+1

b2n+1rn+1 Pn(cos θ)

where
b2n+1 − a2n+1

b2n+1an+1 An =
2n + 1

2

∫ π

0
f(θ)Pn(cos θ) sin θ dθ.

6. Referring to Example 1 in the text we have

R(r) = c1r
n and Θ(θ) = Pn(cos θ).

Now Θ(π/2) = 0 implies that n is odd, so

u(r, θ) =
∞∑

n=0

A2n+1r
2n+1P2n+1(cos θ).
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From

u(c, θ) = f(θ) =
∞∑

n=0

A2n+1c
2n+1P2n+1(cos θ)

we see that

A2n+1c
2n+1 = (4n + 3)

∫ π/2

0
f(θ) sin θ P2n+1(cos θ) dθ.

Thus

u(r, θ) =
∞∑

n=0

A2n+1r
2n+1P2n+1(cos θ)

where

A2n+1 =
4n + 3

c2n+1

∫ π/2

0
f(θ) sin θ P2n+1(cos θ) dθ.

7. Referring to Example 1 in the text we have

r2R′′ + 2rR′ − λR = 0

sin θ Θ′′ + cos θ Θ′ + λ sin θ Θ = 0.

Substituting x = cos θ, 0 ≤ θ ≤ π/2, the latter equation becomes

(1 − x2)
d2Θ

dx2 − 2x
dΘ

dx
+ λΘ = 0, 0 ≤ x ≤ 1.

Taking the solutions of this equation to be the Legendre polynomials Pn(x) corresponding to

λ = n(n + 1) for n = 1, 2, 3, . . . , we have Θ = Pn(cos θ). Since

∂u

∂θ

∣∣∣∣
θ=π/2

= Θ′(π/2)R(r) = 0

we have

Θ′(π/2) = −(sin π/2)P ′
n(cos π/2) = −P ′

n(0) = 0.

As noted in the hint, P ′
n(0) = 0 only if n is even. Thus Θ = Pn(cos θ), n = 0, 2, 4, . . . . As in

Example 1, R(r) = c1rn. Hence

u(r, θ) =
∞∑

n=0

A2nr2nP2n(cos θ).

At r = c,

f(θ) =
∞∑

n=0

A2nc2nP2n(cos θ).

Using Problem 19 in Section 11.5, we obtain

c2nA2n = (4n + 1)
∫ 0

π/2
f(θ)P2n(cos θ)(− sin θ) dθ

and

A2n =
4n + 1

c2n

∫ π/2

0
f(θ) sin θ P2n(cos θ) dθ.
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CHAPTER 13 BOUNDARY-VALUE PROBLEMS IN OTHER COORDINATE SYSTEMS

8. Referring to Example 1 in the text we have

R(r) = c1r
n + c2r

−(n−1) and Θ(θ) = Pn(cos θ).

Since we expect u(r, θ) to be bounded as r → ∞, we define c1 = 0. Also Θ(π/2) = 0 implies that

n is odd, so

u(r, θ) =
∞∑

n=0

A2n+1r
−2(n+1)P2n+1(cos θ).

From

u(c, θ) = f(θ) =
∞∑

n=0

A2n+1c
−2(n+1)P2n+1(cos θ)

we see that

A2n+1c
−2(n+1) = (4n + 3)

∫ π/2

0
f(θ) sin θ P2n+1(cos θ) dθ.

Thus

u(r, θ) =
∞∑

n=0

A2n+1r
−2(n+1)P2n+1(cos θ)

where

A2n+1 = (4n + 3)c2(n+1)
∫ π/2

0
f(θ) sin θ P2n+1(cos θ) dθ.

9. Checking the hint, we find

1

r

∂2

∂r2 (ru) =
1

r

∂

∂r

[

r
∂u

∂r
+ u

]

=
1

r

[

r
∂2u

∂r2 +
∂u

∂r
+

∂u

∂r

]

=
∂2u

∂r2 +
2

r

∂u

∂r
.

The partial differential equation then becomes

∂2

∂r2 (ru) = r
∂u

∂t
.

Now, letting ru(r, t) = v(r, t) + ψ(r), since the boundary condition is nonhomogeneous, we obtain

∂2

∂r2 [v(r, t) + ψ(r)] = r
∂

∂t

[
1

r
v(r, t) + ψ(r)

]

or
∂2v

∂r2 + ψ′′(r) =
∂v

∂t
.

This differential equation will be homogeneous if ψ′′(r) = 0 or ψ(r) = c1r + c2. Now

u(r, t) =
1

r
v(r, t) +

1

r
ψ(r) and

1

r
ψ(r) = c1 +

c2

r
.
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Since we want u(r, t) to be bounded as r approaches 0, we require c2 = 0. Then ψ(r) = c1r. When

r = 1

u(1, t) = v(1, t) + ψ(1) = v(1, t) + c1 = 100,

and we will have the homogeneous boundary condition v(1, t) = 0 when c1 = 100. Consequently,

ψ(r) = 100r. The initial condition

u(r, 0) =
1

r
v(r, 0) +

1

r
ψ(r) =

1

r
v(r, 0) + 100 = 0

implies v(r, 0) = −100r. We are thus led to solve the new boundary-value problem

∂2v

∂r2 =
∂v

∂t
, 0 < r < 1, t > 0,

v(1, t) = 0, lim
r→0

1

r
v(r, t) < ∞,

v(r, 0) = −100r.

Letting v(r, t) = R(r)T (t) and using the separation constant −λ we obtain

R′′ + λR = 0 and T ′ + λT = 0.

Using λ = α2 > 0 we then have

R(r) = c3 cos αr + c4 sin αr and T (t) = c5e
−α2t.

The boundary conditions are equivalent to R(1) = 0 and limr→0 R(r)/r < ∞. Since

lim
r→0

cos αr

r
does not exist we must have c3 = 0. Then R(r) = c4 sin αr, and R(1) = 0 implies α = nπ for n = 1,

2, 3, . . . . Thus

vn(r, t) = Ane−n2π2t sin nπr

for n = 1, 2, 3, . . . . Using the condition limr→0 R(r)/r < ∞ it is easily shown that there are no

eigenvalues for λ = 0, nor does setting the common constant to −λ = α2 when separating variables

lead to any solutions. Now, by the Superposition Principle,

v(r, t) =
∞∑

n=1

Ane−n2π2t sin nπr.

The initial condition v(r, 0) = −100r implies

−100r =
∞∑

n=1

An sin nπr.

76113.3  Spherical Coordinates

© 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part, except for use as permitted in a license distributed 
with a certain product or service or otherwise on a password-protected website for classroom use. Not For Sale

©
 C

en
ga

ge
 L

ea
rn

in
g.

 A
ll 

rig
ht

s r
es

er
ve

d.
 N

o 
di

st
rib

ut
io

n 
al

lo
w

ed
 w

ith
ou

t e
xp

re
ss

 a
ut

ho
riz

at
io

n.



CHAPTER 13 BOUNDARY-VALUE PROBLEMS IN OTHER COORDINATE SYSTEMS

This is a Fourier sine series and so

An = 2
∫ 1

0
(−100r sin nπr) dr = −200

[

− r

nπ
cos nπr

∣∣∣∣
1

0
+

∫ 1

0

1

nπ
cos nπr dr

]

= −200

[

−cos nπ

nπ
+

1

n2π2 sin nπr
∣∣∣∣
1

0

]

= −200

[

−(−1)n

nπ

]

=
(−1)n200

nπ
.

A solution of the problem is thus

u(r, t) =
1

r
v(r, t) +

1

r
ψ(r) =

1

r

∞∑

n=1

(−1)n
20

nπ
e−n2π2t sin nπr +

1

r
(100r)

=
200

πr

∞∑

n=1

(−1)n

n
e−n2π2t sin nπr + 100.

10. Referring to Problem 9 we have
∂2v

∂r2 + ψ′′(r) =
∂v

∂t
where ψ(r) = c1r. Since

u(r, t) =
1

r
v(r, t) +

1

r
ψ(r) =

1

r
v(r, t) + c1

we have
∂u

∂r
=

1

r
vr(r, t) −

1

r2v(r, t).

When r = 1,
∂u

∂r

∣∣∣∣
r=1

= vr(1, t) − v(1, t)

and

∂u

∂r

∣∣∣∣
r=1

+ hu(1, t) = vr(1, t) − v(1, t) + h[v(1, t) + ψ(1)] = vr(1, t) + (h − 1)v(1, t) + hc1.

Thus the boundary condition
∂u

∂r

∣∣∣∣
r=1

+ hu(1, t) = hu1

will be homogeneous when hc1 = hu1 or c1 = u1. Consequently ψ(r) = u1r. The initial condition

u(r, 0) =
1

r
v(r, 0) +

1

r
ψ(r) =

1

r
v(r, 0) + u1 = u0

implies v(r, 0) = (u0 − u1)r. We are thus led to solve the new boundary-value problem

∂2v

∂r2 =
∂v

∂t
, 0 < r < 1, t > 0,

vr(1, t) + (h − 1)v(1, t) = 0, t > 0,

lim
r→0

1

r
v(r, t) < ∞,

v(r, 0) = (u0 − u1)r.
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Separating variables as in Problem 9 leads to

R(r) = c3 cos αr + c4 sin αr and T (t) = c5e
−α2t.

The boundary conditions are equivalent to

R′(1) + (h − 1)R(1) = 0 and lim
r→0

1

r
R(r) < ∞.

As in Problem 6 we use the second condition to determine that c3 = 0 and R(r) = c4 sin αr. Then

R′(1) + (h − 1)R(1) = c4α cos α + c4(h − 1) sin α = 0

and the αn are the consecutive nonnegative roots of tanα = α/(1 − h). Now

v(r, t) =
∞∑

n=1

Ane−α2
nt sin αnr.

From

v(r, 0) = (u0 − u1)r =
∞∑

n=1

An sin αnr

we obtain

An =

∫ 1

0
(u0 − u1)r sin αnr dr

∫ 1

0
sin2 αnr dr

.

We compute the integrals
∫ 1

0
r sin αnr dr =

(
1

α2
n

sin αnr − 1

αn
cos αnr

) ∣∣∣∣
1

0
=

1

α2
n

sin αn − 1

αn
cos αn

and ∫ 1

0
sin2 αnr dr =

(
1

2
r − 1

4αn
sin 2αnr

) ∣∣∣∣
1

0
=

1

2
− 1

4αn
sin 2αn.

Using αn cos αn = −(h − 1) sin αn we then have

An = (u0 − u1)
1

α2
n

sin αn − 1
αn

cos αn

1
2 − 1

4αn
sin 2αn

= (u0 − u1)
4 sin αn − 4αn cos αn

2α2
n − αn2 sin αn cos αn

= 2(u0 − u1)
sin αn + (h − 1) sin αn

α2
n + (h − 1) sin αn sin αn

= 2(u0 − u1)h
sin αn

α2
n + (h − 1) sin2 αn

.

Therefore

u(r, t) =
1

r
v(r, t) +

1

r
ψ(r) = u1 + 2(u0 − u1)h

∞∑

n=1

sin αn sin αnr

r[α2
n + (h − 1) sin2 αn]

e−α2
nt.
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CHAPTER 13 BOUNDARY-VALUE PROBLEMS IN OTHER COORDINATE SYSTEMS

11. We write the differential equation in the form

a2 1

r

∂2

∂r2 (ru) =
∂2u

∂t2
or a2 ∂2

∂r2 (ru) = r
∂2u

∂t2
,

and then let v(r, t) = ru(r, t). The new boundary-value problem is

a2 ∂2v

∂r2 =
∂2v

∂t2
, 0 < r < c, t > 0

v(c, t) = 0, t > 0

v(r, 0) = rf(r),
∂v

∂t

∣∣∣∣
t=0

= rg(r).

Letting v(r, t) = R(r)T (t) and using the separation constant −λ = −α2 we obtain

R′′ + α2R = 0

T ′′ + a2α2T = 0

and
R(r) = c1 cos αr + c2 sin αr

T (t) = c3 cos aαt + c4 sin aαt.

Since u(r, t) = v(r, t)/r, in order to insure boundedness at r = 0 we define c1 = 0. Then R(r) =

c2 sin αr and the condition R(c) = 0 implies α = nπ/c. Thus

v(r, t) =
∞∑

n=1

(
An cos

nπa

c
t + Bn sin

nπa

c
t
)

sin
nπ

c
r.

From

v(r, 0) = rf(r) =
∞∑

n=1

An sin
nπ

c
r

we see that

An =
2

c

∫ c

0
rf(r) sin

nπ

c
r dr.

From
∂v

∂t

∣∣∣∣
t=0

= rg(r) =
∞∑

n=1

(
Bn

nπa

c

)
sin

nπ

c
r

we see that

Bn =
c

nπa
· 2

c

∫ c

0
rg(r) sin

nπ

c
r dr =

2

nπa

∫ c

0
rg(r) sin

nπ

c
r dr.

The solution is

u(r, t) =
1

r

∞∑

n=1

(
An cos

nπa

c
t + Bn sin

nπa

c
t
)

sin
nπ

c
r,

where An and Bn are given above.

764

© 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part, except for use as permitted in a license distributed 
with a certain product or service or otherwise on a password-protected website for classroom use. 

Not For Sale

©
 C

en
ga

ge
 L

ea
rn

in
g.

 A
ll 

rig
ht

s r
es

er
ve

d.
 N

o 
di

st
rib

ut
io

n 
al

lo
w

ed
 w

ith
ou

t e
xp

re
ss

 a
ut

ho
riz

at
io

n.



12. Proceeding as in Example 1 we obtain

Θ(θ) = Pn(cos θ) and R(r) = c1r
n + c2r

−(n+1)

so that

u(r, θ) =
∞∑

n=0

(Anrn + Bnr−(n+1))Pn(cos θ).

To satisfy limr→∞ u(r, θ) = −Er cos θ we must have An = 0 for n = 2, 3, 4, . . . . Then

lim
r→∞u(r, θ) = −Er cos θ = A0 · 1 + A1r cos θ,

so A0 = 0 and A1 = −E. Thus

u(r, θ) = −Er cos θ +
∞∑

n=0

Bnr−(n+1)Pn(cos θ).

Now

u(c, θ) = 0 = −Ec cos θ +
∞∑

n=0

Bnc−(n+1)Pn(cos θ)

so
∞∑

n=0

Bnc−(n+1)Pn(cos θ) = Ec cos θ

and

Bnc−(n+1) =
2n + 1

2

∫ π

0
Ec cos θ Pn(cos θ) sin θ dθ.

Now cos θ = P1(cos θ) so, for n %= 1,
∫ π

0
cos θ Pn(cos θ) sin θ dθ = 0

by orthogonality. Thus Bn = 0 for n %= 1 and

B1 =
3

2
Ec3

∫ π

0
cos2 θ sin θ dθ = Ec3.

Therefore,

u(r, θ) = −Er cos θ + Ec3r−2 cos θ.

13. From (2) in the text ∇2u+ k2u = 0 becomes

∂2u

∂r2
+

2

r

∂u

∂r
+

1

r2 sin2 θ

∂2u

∂φ2
+

1

r2
∂2u

∂θ2
+

cot θ

r2
∂u

∂θ
+ k2u = 0

or

r2
∂2u

∂r2
+ 2r

∂u

∂r
+ k2r2u = − 1

sin2 θ

∂2u

∂φ2
+
∂2u

∂θ2
+ cot θ

∂u

∂θ
.
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CHAPTER 13 BOUNDARY-VALUE PROBLEMS IN OTHER COORDINATE SYSTEMS

Now, assuming that u(r, θ, φ) = R(r)Θ(θ)Φ(φ) we have

r2R′′(r)Θ(θ)Φ(φ) + 2rR′(r)Θ(θ)Φ(φ) + k2r2R(r)Θ(θ)Φ(φ)

= − 1

sin2 θ
R(r)Θ(θ)Φ′′(φ)−R(r)Θ′′(θ)Φ(φ)− cot θR′(r)Θ′(θ)Φ(φ).

Thus
r2R′′ + 2rR′ + k2r2R

R
= − 1

sin2 θ

Φ′′

Φ
− Θ′′ + cot θΘ′

Θ
= n(n+ 1).

This implies that

r2R′′ + 2rR′ +
[
k2r2 − n(n+ 1)

]
R = 0.

To solve this differential equation identify r = x and k = α, and then see Problem 54 in

Exercises 6.4.

Since the left hand side of the above equation is strictly a function of r and the right hand side

is strictly a function of φ and θ, we have

r2
∂2u

∂r2
+ 2r

∂u

∂r
+ k2r2u = 0 and − 1

sin2 θ

∂2u

∂φ2
+
∂2u

∂θ2
+ cot θ

∂u

∂θ
= 0.
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1. We have

A0 =
1

2π

∫ π

0
u0 dθ +

1

2π

∫ 2π

π
(−u0) dθ = 0

An =
1

cnπ

∫ π

0
u0 cos nθ dθ +

1

cnπ

∫ 2π

π
(−u0) cos nθ dθ = 0

Bn =
1

cnπ

∫ π

0
u0 sin nθ dθ +

1

cnπ

∫ 2π

π
(−u0) sin nθ dθ =

2u0

cnnπ
[1 − (−1)n]

and so

u(r, θ) =
2u0

π

∞∑

n=1

1 − (−1)n

n

(
r

c

)n
sin nθ.

2. We have

A0 =
1

2π

∫ π/2

0
dθ +

1

2π

∫ 2π

3π/2
dθ =

1

2

An =
1

cnπ

∫ π/2

0
cos nθ dθ +

1

cnπ

∫ 2π

3π/2
cos nθ dθ =

1

cnnπ

[
sin

nπ

2
− sin

3nπ

2

]

Bn =
1

cnπ

∫ π/2

0
sin nθ dθ +

1

cnπ

∫ 2π

3π/2
sin nθ dθ =

1

cnnπ

[
cos

3nπ

2
− cos

nπ

2

]

and so

u(r, θ) =
1

2
+

1

π

∞∑

n=1

(
r

c

)n
[
sin nπ

2 − sin 3nπ
2

n
cos nθ +

cos 3nπ
2 − cos nπ

2

n
sin nθ

]

.

3. The conditions Θ(0) = 0 and Θ(π) = 0 applied to Θ = c1 cos αθ + c2 sin αθ give c1 = 0 and α = n,

n = 1, 2, 3, . . . , respectively. Thus we have the Fourier sine-series coefficients

An =
2

π

∫ π

0
u0(πθ − θ2) sin nθ dθ =

4u0

n3π
[1 − (−1)n].

Thus

u(r, θ) =
4u0

π

∞∑

n=1

1 − (−1)n

n3 rn sin nθ.

4. In this case

An =
2

π

∫ π

0
sin θ sin nθ dθ =

1

π

∫ π

0
[cos(1 − n)θ − cos(1 + n)θ] dθ = 0, n "= 1.

13.R Chapter 13 in Reviewq
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CHAPTER 13 BOUNDARY-VALUE PROBLEMS IN OTHER COORDINATE SYSTEMS

For n = 1,

A1 =
2

π

∫ π

0
sin2 θ dθ =

1

π

∫ π

0
(1 − cos 2θ) dθ = 1.

Thus

u(r, θ) =
∞∑

n=1

Anrn sin nθ

reduces to

u(r, θ) = r sin θ.

5. We solve

∂2u

∂r2 +
1

r

∂u

∂r
+

1

r2

∂2u

∂θ2 = 0, 0 < θ <
π

4
,

1

2
< r < 1,

u(r, 0) = 0, u(r, π/4) = 0,
1

2
< r < 1,

u(1/2, θ) = u0, ur(1, θ) = 0, 0 < θ <
π

4
.

Proceeding as in Example 1 in Section 13.1 using the separation constant λ = α2 we obtain

r2R′′ + rR′ − λR = 0

Θ′′ + λΘ = 0

with solutions
Θ(θ) = c1 cos αθ + c2 sin αθ

R(r) = c3r
α + c4r

−α.

Applying the boundary conditions Θ(0) = 0 and Θ(π/4) = 0 gives c1 = 0 and α = 4n for

n = 1, 2, 3, . . . . From Rr(1) = 0 we obtain c3 = c4. Therefore

u(r, θ) =
∞∑

n=1

An

(
r4n + r−4n

)
sin 4nθ.

From

u(1/2, θ) = u0 =
∞∑

n=1

An

(
1

24n +
1

2−4n

)
sin 4nθ

we find

An

(
1

24n +
1

2−4n

)
=

2

π/4

∫ π/4

0
u0 sin 4nθ dθ =

2u0

nπ
[1 − (−1)n]

or

An =
2u0

nπ(24n + 2−4n)
[1 − (−1)n].

Thus the steady-state temperature in the plate is

u(r, θ) =
2u0

π

∞∑

n=1

[r4n + r−4n][1 − (−1)n]

n[24n + 2−4n]
sin 4nθ.
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6. We solve

∂2u

∂r2 +
1

r

∂u

∂r
+

1

r2

∂2u

∂θ2 = 0, r > 1, 0 < θ < π,

u(r, 0) = 0, u(r, π) = 0, r > 1,

u(1, θ) = f(θ), 0 < θ < π.

Separating variables we obtain

Θ(θ) = c1 cos αθ + c2 sin αθ

R(r) = c3r
α + c4r

−α.

Applying the boundary conditions Θ(0) = 0, and Θ(π) = 0 gives c1 = 0 and α = n for

n = 1, 2, 3, . . . . Assuming f(θ) to be bounded, we expect the solution u(r, θ) to also be bounded

as r → ∞. This requires that c3 = 0. Therefore

u(r, θ) =
∞∑

n=1

Anr−n sin nθ.

From

u(1, θ) = f(θ) =
∞∑

n=1

An sin nθ

we obtain

An =
2

π

∫ π

0
f(θ) sin nθ dθ.

7. Letting u(r, t) = R(r)T (t) and separating variables we obtain

R′′ + 1
rR

′ − hR

R
=

T ′

T
= λ

so

R′′ +
1

r
R′ − (λ + h)R = 0 and T ′ − λT = 0.

From the second equation we find T (t) = c1eλt. If λ > 0, T (t) increases without bound as t → ∞.

Thus we assume λ = −α2 < 0. Since h > 0 we can take µ = −α2 − h. Then

R′′ +
1

r
R′ + α2R = 0

is a parametric Bessel equation with solution

R(r) = c1J0(αr) + c2Y0(αr).

Since Y0 is unbounded as r → 0 we take c2 = 0. Then R(r) = c1J0(αr) and the boundary condition

u(1, t) = R(1)T (t) = 0 implies J0(α) = 0. This latter equation defines the positive eigenvalues λn.

Thus

u(r, t) =
∞∑

n=1

AnJ0(αnr)e(−α2
n−h)t.

76913.R  Chapter 13 in Review

© 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part, except for use as permitted in a license distributed 
with a certain product or service or otherwise on a password-protected website for classroom use. Not For Sale

©
 C

en
ga

ge
 L

ea
rn

in
g.

 A
ll 

rig
ht

s r
es

er
ve

d.
 N

o 
di

st
rib

ut
io

n 
al

lo
w

ed
 w

ith
ou

t e
xp

re
ss

 a
ut

ho
riz

at
io

n.



CHAPTER 13 BOUNDARY-VALUE PROBLEMS IN OTHER COORDINATE SYSTEMS

From

u(r, 0) = 1 =
∞∑

n=1

AnJ0(αnr)

we find

An =
2

J2
1 (αn)

∫ 1

0
rJ0(αnr) dr x = αnr, dx = αn dr

=
2

J2
1 (αn)

∫ αn

0

1

α2
n
xJ0(x) dx.

From recurrence relation (5) in Section 11.5 of the text we have

xJ0(x) =
d

dx
[xJ1(x)].

Then

An =
2

α2
nJ2

1 (αn)

∫ αn

0

d

dx
[xJ1(x)] dx =

2

α2
nJ2

1 (αn)

(
xJ1(x)

) ∣∣∣∣
αn

0
=

2α1J1(αn)

α2
nJ2

1 (αn)
=

2

αnJ1(αn)

and

u(r, t) = 2e−ht
∞∑

n=1

J0(αnr)

αnJ1(αn)
e−α2

nt

8. Letting λ = α2 > 0 and proceeding in the usual manner we find

u(r, t) =
∞∑

n=1

An cos aαntJ0(αnr)

where the eigenvalues λn = α2
n are determined by J0(α) = 0. Then the initial condition gives

u0J0(xkr) =
∞∑

n=1

AnJ0(αnr)

and so

An =
2

J2
1 (αn)

∫ 1

0
r (u0J0(xkr)) J0(αnr) dr.

But J0(α) = 0 implies that the eigenvalues are the positive zeros of J0, that is, αn = xn

for n = 1, 2, 3, . . . . Therefore

An =
2u0

J2
1 (αn)

∫ 1

0
rJ0(αkr)J0(αnr) dr = 0, n "= k

by orthogonality. For n = k,

Ak =
2u0

J2
1 (αk)

∫ 1

0
rJ2

0 (αk) dr = u0

by (7) of Section 11.5. Thus the solution u(r, t) reduces to one term when n = k, and

u(r, t) = u0 cos aαktJ0(αkr) = u0 cos axktJ0(xkr).
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9. The boundary-value problem is

∂2u

∂r2 +
1

r

∂u

∂r
+

∂2u

∂z2 = 0, 0 < r < 2, 0 < z < 4

u(2, z) = 50, 0 < z < 4

∂u

∂z

∣∣∣∣
z=0

= 0, u(r, 4) = 0, 0 < r < 2.

We have u(r, z) = v(r, z) + ψ(r) so ψ′′ + (1/r)ψ′ = 0 and ψ = c1 ln r + c2. Now, boundedness at

r = 0 implies c2 = 0. Also, ψ = c2 and u(r, z) = v(r, z) + ψ(r), which implies

u(2, z) = v(2, z) + ψ(2) = 50 = c2,

and ψ(r) = 50, all of which implies

∂2v

∂r2 +
1

r

∂v

∂r
+

∂2v

∂z2 = 0, 0 < r < 2, 0 < z < 4

v(2, z) = 0, 0 < z < 4

∂v

∂z

∣∣∣∣
z=0

= 0, v(r, 4) = −50, 0 < r < 2.

(See the solution of Problem 5 in Exercises 13.2.) From

v(r, z) = −50
∞∑

n=1

cosh(αnz)

αn cosh(4αn)J1(2αn)
J0(αnr)

we get

u(r, z) = 50 − 50
∞∑

n=1

cosh(αnz)

αn cosh(4αn)J1(2αn)
J0(αnr).

10. Using u = RZ and −λ as a separation constant and then letting λ = α2 > 0 leads to

r2R′′ + rR′ + α2r2R = 0, R′(1) = 0, and Z ′′ − α2Z = 0.

Thus
R(r) = c1J0(αr) + c2Y0(αr)

Z(z) = c3 cosh αz + c4 sinh αz

for α > 0. Arguing that u(r, z) is bounded as r → 0 we define c2 = 0. Since the eigenvalues are

defined by J ′
0(α) = 0 we know that λ = α = 0 is an eigenvalue. The solutions are then

R(r) = c1 + c2 ln r and Z(z) = c3z + c4

where boundedness again dictates that c2 = 0. Thus,

u(r, z) = A0z + B0 +
∞∑

n=1

(An sinh αnz + Bn cosh αnz)J0(αnr).
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CHAPTER 13 BOUNDARY-VALUE PROBLEMS IN OTHER COORDINATE SYSTEMS

Finally, the specified conditions z = 0 and z = 1 give, in turn,

B0 = 2
∫ 1

0
rf(r) dr

Bn =
2

J2
0 (αn)

∫ 1

0
rf(r)J0(αnr) dr

A0 = −B0 + 2
∫ 1

0
rg(r) dr

An =
1

sinh αn

[

−Bn cosh αn +
2

J2
0 (αn)

∫ 1

0
rg(r)J0(αnr) dr

]

.

11. Referring to Example 1 in Section 13.3 of the text we have

u(r, θ) =
∞∑

n=0

AnrnPn(cos θ).

For x = cos θ

u(1, θ) =

{
100 0 < θ < π/2

−100 π/2 < θ < π
= 100

{
−1, −1 < x < 0

1, 0 < x < 1
= g(x).

From Problem 22 in Exercise 11.5 we have

u(r, θ) = 100
[
3

2
rP1(cos θ) − 7

8
r3P3(cos θ) +

11

16
r5P5(cos θ) + · · ·

]
.

12. Since
1

r

∂2

∂r2 (ru) =
1

r

∂

∂r

[

r
∂u

∂r
+ u

]

=
1

r

[

r
∂2u

∂r2 +
∂u

∂r
+

∂u

∂r

]

=
∂2u

∂r2 +
2

r

∂u

r

the differential equation becomes

1

r

∂2

∂r2 (ru) =
∂2u

∂t2
or

∂2

∂r2 (ru) = r
∂2u

∂t2
.

Letting v(r, t) = ru(r, t) we obtain the boundary-value problem

∂2v

∂r2 =
∂2v

∂t2
, 0 < r < 1, t > 0

∂v

∂r

∣∣∣∣
r=1

− v(1, t) = 0, t > 0

v(r, 0) = rf(r),
∂v

∂t

∣∣∣∣
t=0

= rg(r), 0 < r < 1.

If we separate variables using v(r, t) = R(r)T (t) and separation constant −λ then we obtain

R′′

R
=

T ′′

T
= −λ
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so that
R′′ + λR = 0

T ′′ + λT = 0.

Letting λ = α2 > 0 and solving the differential equations we get

R(r) = c1 cos αr + c2 sin αr

T (t) = c3 cos αt + c4 sin αt.

Since u(r, t) = v(r, t)/r, in order to insure boundedness at r = 0 we define c1 = 0. Then R(r) =

c2 sin αr. Now the boundary condition R′(1) − R(1) = 0 implies α cos α − sin α = 0. Thus, the

eigenvalues λn are determined by the positive solutions of tanα = α. We now have

vn(r, t) = (An cos αnt + Bn sin αnt) sin αnr.

For the eigenvalue λ = 0,

R(r) = c1r + c2 and T (t) = c3t + c4,

and boundedness at r = 0 implies c2 = 0. We then take

v0(r, t) = A0tr + B0r

so that

v(r, t) = A0tr + B0r +
∞∑

n=1

(an cos αnt + Bn sin αnt) sin αnr.

Now

v(r, 0) = rf(r) = B0r +
∞∑

n=1

An sin αnr.

Since {r, sin αnr} is an orthogonal set on [0, 1],
∫ 1

0
r sin αnr dr = 0 and

∫ 1

0
sin αnr sin αnr dr = 0

for m "= n. Therefore
∫ 1

0
r2f(r) dr = B0

∫ 1

0
r2 dr =

1

3
B0

and

B0 = 3
∫ 1

0
r2f(r) dr.

Also ∫ 1

0
rf(r) sin αnr dr = An

∫ 1

0
sin2 αnr dr

and

An =

∫ 1
0 rf(r) sin αnr dr

∫ 1
0 sin2 αnr dr

.
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CHAPTER 13 BOUNDARY-VALUE PROBLEMS IN OTHER COORDINATE SYSTEMS

Now ∫ 1

0
sin2 αnr dr =

1

2

∫ 1

0
(1 − cos 2αnr) dr =

1

2

[
1 − sin 2αn

2αn

]
=

1

2
[1 − cos2 αn].

Since tan αn = αn,

1 + α2
n = 1 + tan2 αn = sec2 αn =

1

cos2 αn

and

cos2 αn =
1

1 + α2
n

.

Then
∫ 1

0
sin2 αnr dr =

1

2

[

1 − 1

1 + α2
n

]

=
α2

n

2(1 + α2
n)

and

An =
2(1 + α2

n)

α2
n

∫ 1

0
rf(r) sin αnr dr.

Similarly, setting
∂v

∂t

∣∣∣∣
t=0

= rg(r) = A0r +
∞∑

n=1

Bnαn sin αnr

we obtain

A0 = 3
∫ 1

0
r2g(r) dr

and

Bn =
2(1 + α2

n)

α3
n

∫ 1

0
rg(r) sin αnr dr.

Therefore, since v(r, t) = ru(r, t) we have

u(r, t) = A0t + B0 +
∞∑

n=1

(An cos αnt + Bn sin αnt)
sin αnr

r
,

where the αn are solutions of tan α = α and

A0 = 3
∫ 1

0
r2g(r) dr

B0 = 3
∫ 1

0
r2f(r) dr

An =
2(1 + α2

n)

α2
n

∫ 1

0
rf(r) sin αnr dr

Bn =
2(1 + α2

n)

α3
n

∫ 1

0
rg(r) sin αnr dr

for n = 1, 2, 3, . . . .
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13. We note that the differential equation can be expressed in the form

d

dx
[xu′] = −α2xu.

Thus

un
d

dx
[xu′

m] = −α2
mxumun

and

um
d

dx
[xu′

n] = −α2
nxunum.

Subtracting we obtain

un
d

dx
[xu′

m] − um
d

dx
[xu′

n] = (α2
n − α2

m)xumun

and ∫ b

a
un

d

dx
[xu′

m] dx −
∫ b

a
um

d

dx
[xu′

n] = (α2
n − α2

m)
∫ b

a
xumun dx.

Using integration by parts this becomes

unxu′
m

∣∣∣
b

a
−

∫ b

a
xu′

mu′
n dx − umxu′

n

∣∣∣
b

a
+

∫ b

a
xu′

nu′
m dx

= b[un(b)u′
m(b) − um(b)u′

n(b)] − a[un(a)u′
m(a) − um(a)u′

n(a)]

= (α2
n − α2

m)
∫ b

a
xumun dx.

Since

u(x) = Y0(αa)J0(αx) − J0(αa)Y0(αx)

we have

un(b) = Y0(αna)J0(αnb) − J0(αna)Y0(αnb) = 0

by the definition of the αn. Similarly um(b) = 0. Also

un(a) = Y0(αa)J0(αna) − J0(αna)Y0(αna) = 0

and um(a) = 0. Therefore
∫ b

a
xumun dx =

1

α2
n − α2

m

(
b[un(b)u′

m(b) − um(b)u′
n(b)] − a[un(a)u′

m(a) − um(a)u′
n(a)]

)
= 0

and the un(x) are orthogonal with respect to the weight function x.

14. Letting u(r, t) = R(r)T (t) and the separation constant be −λ = −α2 we obtain

rR′′ + R′ + α2rR = 0

T ′ + α2T = 0,
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CHAPTER 13 BOUNDARY-VALUE PROBLEMS IN OTHER COORDINATE SYSTEMS

with solutions
R(r) = c1J0(αr) + c2Y0(αr)

T (t) = c3e
−α2t.

Now the boundary conditions imply

R(a) = 0 = c1J0(αa) + c2Y0(αa)

R(b) = 0 = c1J0(αb) + c2Y0(αb)

so that

c2 = −c1J0(αa)

Y0(αa)

and

c1J0(αb) − c1J0(αa)

Y0(αa)
Y0(αb) = 0

or

Y0(αa)J0(αb) − J0(αa)Y0(αb) = 0.

This equation defines αn for n = 1, 2, 3, . . . . Now

R(r) = c1J0(αr) − c1
J0(αa)

Y0(αa)
Y0(αr) =

c1

Y0(αa)

[
Y0(αa)J0(αr) − J0(αa)Y0(αr)

]

and

un(r, t) = An

[
Y0(αna)J0(αnr) − J0(αna)Y0(αnr)

]
e−α2

nt = Anun(r)e−α2
nt.

Thus

u(r, t) =
∞∑

n=1

Anun(r)e−α2
nt.

From the initial condition

u(r, 0) = f(r) =
∞∑

n=1

Anun(r)

we obtain

An =

∫ b
a rf(r)un(r) dr
∫ b
a ru2

n(r) dr
.

15. We use the Superposition Principle for Laplace’s equation discussed in Section 12.5 and shown

schematically in Figure 12.5.3 in the text. That is,

Solution u = Solution u1 of Problem 1 + Solution u2 of Problem 2,

where in Problem 1 the boundary condition on the top and bottom of the cylinder is u = 0, while

on the lateral surface r = c it is u = h(z), and in Problem 2 the boundary condition on the top of

the cylinder z = L is u = f(r), on the bottom z = 0 it is u = g(r), and on the lateral surface r = c

it is u = 0.
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Solution for u1(r, z)

Using λ as a separation constant we have

R′′ + 1
rR

′

R
= −Z ′′

Z
= λ,

so

rR′′ + R′ − λrR = 0 and Z ′′ + λZ = 0.

The differential equation in Z, together with the boundary conditions Z(0) = 0 and Z(L) = 0 is

a Sturm-Liouville problem. Letting λ = α2 > 0 we note that the above differential equation in R

is a modified parametric Bessel equation which is discussed in Section 6.3 in the text. Also, we

have Z(z) = c1 cos αz + c2 sin αz. The boundary conditions imply c1 = 0 and sin αL = 0. Thus,

αn = nπ/L, n = 1, 2, 3, . . . , so λn = n2π2/L2 and

R(r) = c3I0

(
nπ

L
r
)

+ c4K0

(
nπ

L
r
)

.

Now boundedness at r = 0 implies c4 = 0, so R(r) = c3I0(nπr/L) and

u1(r, z) =
∞∑

n=1

AnI0

(
nπ

L
r
)

sin
(

nπ

L
z
)

.

At r = c for 0 < z < L we have

h(z) = u1(c, z) =
∞∑

n=1

AnI0

(
nπ

L
c
)

sin
(

nπ

L
z
)

which gives

An =
2

LI0(nπc/L)

∫ L

0
h(z) sin

(
nπ

L
z
)

dz.

Solution for u2(r, z)

In this case we use −λ as a separation constant which leads to

R′′ + 1
rR

′

R
= −Z ′′

Z
= −λ,

so

rR′′ + R′ + λrR = 0 and Z ′′ − λZ = 0.

The differential equation in R is a parametric Bessel equation. Using λ = α2 we find R(r) =

c1J0(αr) + c2Y0(αr). Boundedness at r = 0 implies c2 = 0 so R(r) = c3J0(αr). The boundary

condition R(c) = 0 then gives the defining equation for the eigenvalues: J0(αc) = 0. Let λn = α2
n

where αnc = xn are the roots. The solution of the differential equation in Z is Z(z) = c4 cosh αnz +

c5 sinh αnz, so

u2(r, z) =
∞∑

n=1

(Bn cosh αnz + Cn sinh αnz)J0(αnr).
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CHAPTER 13 BOUNDARY-VALUE PROBLEMS IN OTHER COORDINATE SYSTEMS

At z = 0, for 0 < r < c, we have

f(r) = u2(r, 0) =
∞∑

n=1

BnJ0(αnr),

so

Bn =
2

c2J2
1 (αnc)

∫ c

0
rf(r)J0(αnr) dr.

At z = L, for 0 < r < c, we have

g(r) = u2(r, L) =
∞∑

n=1

(Bn cosh αnL + Cn sinh αnL)J0(αnr),

so

Bn cosh αnL + Cn sinh αnL =
2

c2J2
1 (αnc)

∫ c

0
rg(r)J0(αnr) dr

and

Cn = −Bn
cosh αnL

sinh αnL
+

2

c2(sinh αnL)J2
1 (αnc)

∫ c

0
rg(r)J0(αnr) dr.

By the Superposition Principle the solution of the original problem is

u(r, z) = u1(r, z) + u2(r, z).

16. Using −λ as the separation constant we have, when λ = α2 for α > 0, that

Θ′′ − α2Θ = 0 and r2R′′ + rR′ + α2R = 0.

This implies that

Θ(θ) = c1 coshαθ + c2 sinhαθ and R(r) = c3 cos(α ln r) + c4 sin(α ln r).

From the boundary condition u(1, θ) = R(1)Θ(θ) = 0 we see that R(1) = c3 cos(α · 0) +

c4 sin(α · 0) = c3 = 0. Similarly, the boundary condition u(2, θ) = R(2)Θ(θ) = 0 means that

R(2) = c4 sin(α ln 2) = 0. Since sin(α ln 2) = 0 when α ln 2 = nπ, we have the eigenvalues

λn =
(
nπ/ ln 2

)2
for n = 1, 2, . . . . The corresponding eigenfunctions are

R(r) = c4 sin
( nπ

ln 2
ln r
)
.

From the boundary condition u(r, π) = R(r)Θ(π) = 0 we see that

Θ(π) = c1 coshαπ + c2 sinhαπ = 0 and c2 = −c1
coshαπ

sinhαπ
.
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Then

Θ(θ) = c1

[
coshαθ − coshαπ

sinhαπ
sinhαθ

]
= c1

sinhα(π − θ)

sinhαπ
.

Thus

u(r, θ) =
∞∑
n=1

An
sinhαn(π − θ)

sinhαnπ
sin
(
αn ln r

)
,

where αn = nπ/ ln 2, for n = 1, 2, . . . . When θ = 0, the boundary condition u(r, 0) = f(r)

implies that

f(r) =

∞∑
n=1

An sin
(
αn ln r

)
where An =

∫ 2

1
f(r)

1

r
sin
(
αn ln r

)
dr

∫ 2

1

1

r
sin2

(
αn ln r

)
dr

.

Evaluating the square norm in the denominator using the substitution t = ln r we have

An =
2

ln 2

∫ 2

1
f(r)

1

r
sin
(
αn ln r

)
dr.

In evaluating this integral we use the fact that αn = nπ/ ln 2.

17. Using λ as the separation constant the separated equations are

rR′′ +R′ − rλR = 0 and Z ′′ + λZ = 0.

The boundary conditions are Z(0) = 0 and Z ′(1) = 0.

If λ = 0 the solutions of the ordinary differential equations are

R = c1 + c2 ln r and Z = c3 + c4z.

Since Z(0) = 0, c3 = 0. Therefore Z = c4z and Z ′(1) = 0 so Z(1) = c4 = 0. The product

solution is u = R(r)Z(z) = 0. Thus λ = 0 is not an eigenvalue.

If λ = −α2 < 0, the solutions of the ordinary differential equations are

R = c1J0(αr) + c2Y0(αr) and Z = c3 coshαz + c4 sinhαz.

Since Z(0) = 0, c3 = 0. Therefore Z = c4 sinhαz and Z ′(1) = 0 so c4α coshα = 0, which

implies c4 = 0. Thus Z = 0 and therefore u = 0.

If λ = α2 > 0, the solutions of the ordinary differential equations are

R = c1I0(αr) + c2K0(αr) and Z = c3 cosαz + c4 sinαz.
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CHAPTER 13 BOUNDARY-VALUE PROBLEMS IN OTHER COORDINATE SYSTEMS

Since Z(0) = 0, c3 = 0 and so Z = c4 sinαz. Now Z ′(1) = 0 so c4α cosα = 0 and α =

(2n − 1)π/2, n = 1, 2, 3, . . . . The eigenvalues are λn = (2n − 1)2π2/4 and corresponding

eigenfunctions are Z = c4 sin(2n − 1)πz/2. Now, the usual implicit requirement that u be

bounded at r = 0 implies c2 = 0. (See Figure 6.4.4 in the text.) Therefore R = c1I0(αr) or

R = c1I0
(
(2n− 1)πr/2

)
. The superposition principle then yields

u(r, z) =

∞∑
n=1

AnI0

(
2n− 1

2
πr

)
sin

2n− 1

2
πz .

At r = 1

u(1, z) = u0 =

∞∑
n=1

AnI0

(
2n− 1

2
π

)
sin

2n− 1

2
πz,

which is not a Fourier series. Thus

AnI0

(
2n− 1

2
π

)
=

∫ 1

0
u0 sin

2n− 1

2
πzdz

∫ 1

0
sin2 2n− 1

2
πzdz

=
4u0

(2n− 1)π
.

Therefore

u(r, z) =
4u0
π

∞∑
n=1

I0

(
2n− 1

2
πr

)

(2n− 1) I0

(
2n− 1

2
π

) sin
2n− 1

2
πz.

780

© 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part, except for use as permitted in a license distributed 
with a certain product or service or otherwise on a password-protected website for classroom use. 

Not For Sale

©
 C

en
ga

ge
 L

ea
rn

in
g.

 A
ll 

rig
ht

s r
es

er
ve

d.
 N

o 
di

st
rib

ut
io

n 
al

lo
w

ed
 w

ith
ou

t e
xp

re
ss

 a
ut

ho
riz

at
io

n.



1. (a) The result follows by letting τ = u2 or u =
√

τ in erf(
√

t ) =
2√
π

∫ √
t

0
e−u2

du.

(b) Using {t−1/2} =

√
π

s1/2
and the first translation theorem, it follows from the convolution

theorem that

{
erf(

√
t)
}

=
1√
π

{∫ t

0

e−τ

√
τ

dτ

}

=
1√
π

{1}
{
t−1/2e−t

}
=

1√
π

1

s

{
t−1/2

} ∣∣∣∣
s→s+1

=
1√
π

1

s

√
π√

s + 1
=

1

s
√

s + 1
.

2. Since erfc(
√

t ) = 1 − erf(
√

t ) we have

{
erfc(

√
t )
}

= {1}−
{
erf(

√
t )
}

=
1

s
− 1

s
√

s + 1
=

1

s

[

1 − 1√
s + 1

]

.

3. By the first translation theorem,

{
et erf(

√
t )
}

=
{
erf(

√
t )
} ∣∣∣∣

s→s−1
=

1

s
√

s + 1

∣∣∣∣
s→s−1

=
1√

s (s − 1)
.

4. By the first translation theorem and the result of Problem 2,

{
et erfc(

√
t )
}

=
{
erfc(

√
t )
} ∣∣∣∣

s→s−1
=

(
1

s
− 1

s
√

s + 1

) ∣∣∣∣
s→s−1

=
1

s − 1
− 1√

s (s − 1)

=

√
s − 1√

s (s − 1)
=

√
s − 1√

s (
√

s + 1)(
√

s − 1)
=

1√
s (

√
s + 1)

.

Integral Transform14
14.1 Error Functionq
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CHAPTER 14 INTEGRAL TRANSFORMS

5. We will verify that

L −1
{

1√
s+ 1

}
=

1√
πt
− eterfc(

√
t)

by taking the Laplace transform of the given function of t. First

L

{
1√
πt
− eterfc(

√
t)

}
= L

{
1√
πt

}
−L

{
eterfc(

√
t)
}
.

Then

L

{
1√
πt

}
=

1√
π

L
{
t−1/2

}
=

1√
π

√
π√
s

=
1√
s

by Problem 43 of Exercises 7.1, and by Problem 4 of Exercises 14.1

L
{
eterfc(

√
t)
}

=
1√

s(
√
s+ 1)

.

Therefore

L

{
1√
πt

}
−L

{
eterfc(

√
t)
}

=
1√
s
− 1√

s(
√
s+ 1)

=

√
s+ 1− 1√
s(
√
s+ 1)

=
1√
s+ 1

.

6. To find

L −1
{

1

1 +
√
s+ 1

}
we begin by rationalizing first the denominator and then the numerator:

1

1 +
√
s+ 1

=
1

1 +
√
s+ 1

· 1−
√
s+ 1

1−
√
s+ 1

=
1−
√
s+ 1

−s

= −1

s
+

√
s+ 1

s
= −1

s
+

√
s+ 1

s
·
√
s+ 1√
s+ 1

= −1

s
+

s+ 1

s
√
s+ 1

←− partial fractions

= −1

s
+

1√
s+ 1

+
1

s
√
s+ 1

.

Therefore, from the first translation theorem and Problem 1(b) in this section,

L −1
{
−1

s
+

1√
s+ 1

+
1

s
√
s+ 1

}
= L −1

{
1

s

}
+ L −1

{
1√
s+ 1

}
+ L −1

{
1

s
√
s+ 1

}

= −1 + L −1
{

1

s

∣∣∣∣
s→s+1

}
+ L −1

{
1

s
√
s+ 1

}

= −1 +
1√
π

L −1
{√

π

s

∣∣∣∣
s→s+1

}
+ L −1

{
1

s
√
s+ 1

}

= −1 +
1√
π

e−t√
t

+ erf(
√
t) =

e−t√
πt
− (1− erf(

√
t)

=
e−t√
πt
− erfc(

√
t).

782
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From entry 3 in Table 14.1.1 and the first translation theorem we have



e−Gt/Cerf



x

2

√
RC

t








 =




e−Gt/C



1 − erfc



x

2

√
RC

t














=
{
e−Gt/C

}
−




e−Gt/C erfc



x

2

√
RC

t










=
1

s + G/C
− e−x

√
RC

√
s

s

∣∣∣∣
s→s+G/C

=
1

s + G/C
− e−x

√
RC

√
s+G/C

s + G/C
=

C

Cs + G

(
1 − e -x

√
RCs+RG

)
.

We first compute

sinh a
√

s

s sinh
√

s
=

ea
√

s − e−a
√

s

s(e
√

s − e−
√

s)
=

e(a−1)
√

s − e−(a+1)
√

s

s(1 − e−2
√

s )

=
e(a−1)

√
s

s

[
1 + e−2

√
s + e−4

√
s + · · ·

]
− e−(a+1)

√
s

s

[
1 + e−2

√
s + e−4

√
s + · · ·

]

=



e−(1−a)
√

s

s
+

e−(3−a)
√

s

s
+

e−(5−a)
√

s

s
+ · · ·





−


e−(1+a)
√

s

s
+

e−(3+a)
√

s

s
+

e−(5+a)
√

s

s
+ · · ·





=
∞∑

n=0



e−(2n+1−a)
√

s

s
− e−(2n+1+a)

√
s

s



 .

Then
{

sinh a
√

s

s sinh
√

s

}

=
∞∑

n=0









e−(2n+1−a)

√
s

s




−




−
e−(2n+1+a)

√
s

s










=
∞∑

n=0

[

erfc

(
2n + 1 − a

2
√

t

)

− erfc

(
2n + 1 + a

2
√

t

)]

=
∞∑

n=0

([

1 − erf

(
2n + 1 − a

2
√

t

)]

−
[

1 − erf

(
2n + 1 + a

2
√

t

)])

=
∞∑

n=0

[

erf

(
2n + 1 + a

2
√

t

)

− erf

(
2n + 1 − a

2
√

t

)]

.

7.

−

8.

78314.1  Error Function
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CHAPTER 14 INTEGRAL TRANSFORMS

Taking the Laplace transform of both sides of the equation we obtain

{y(t)} = {1}−
{∫ t

0

y(τ)√
t − τ

dτ

}

Y (s) =
1

s
− Y (s)

√
π√
s

√
s +

√
π√

s
Y (s) =

1

s

Y (s) =
1√

s (
√

s +
√

π )
.

Thus

y(t) =

{
1√

s (
√

s +
√

π )

}

= eπt erfc(
√

πt ). By entry 5 in Table 14.

Using entries 3 and 5 in Table 14.1.1, we have
{

−eabeb2t erfc

(

b
√

t +
a

2
√

t

)

+ erfc

(
a

2
√

t

)}

= −
{

eabeb2t erfc

(

b
√

t +
a

2
√

t

)}

+

{

erfc

(
a

2
√

t

)}

= − e−a
√

s

√
s (

√
s + b)

+
e−a

√
s

s

= e−a
√

s

[
1

s
− 1√

s (
√

s + b)

]

= e−a
√

s

[
1

s
−

√
s

s (
√

s + b)

]

= e−a
√

s

[√
s + b −

√
s

s (
√

s + b)

]

=
be−a

√
s

s (
√

s + b)
.

∫ b

a
e−u2

du =
∫ 0

a
e−u2

du +
∫ b

0
e−u2

du =
∫ b

0
e−u2

du −
∫ a

0
e−u2

du

=

√
π

2
erf(b) −

√
π

2
erf(a) =

√
π

2
[erf(b) − erf(a)]

12. Since f(x) = e−x2
is an even function,

∫ a

−a
e−u2

du = 2
∫ a

0
e−u2

du.

Therefore,
∫ a

−a
e−u2

du =
√

π erf(a).

9.

1.1

10.

11.

784
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13. The function erf (x) is symmetric with respect to the

origin, while erfc(x) appears to be symmetric with re-

spect to the point (0, 1). From the graph it appears

that limx→−∞ erf (x) = −1 and limx→−∞ erfc(x) = 2.

78514.1  Error Function
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CHAPTER 14 INTEGRAL TRANSFORMS

1. The boundary-value problem is

a2∂2u

∂x2 =
∂2u

∂t2
, 0 < x < L, t > 0,

u(0, t) = 0, u(L, t) = 0, t > 0,

u(x, 0) = A sin
π

L
x,

∂u

∂t

∣∣∣∣
t=0

= 0.

Transforming the partial differential equation gives

d2U

dx2 −
(

s

a

)2
U = − s

a2A sin
π

L
x.

Using undetermined coefficients we obtain

U(x, s) = c1 cosh
s

a
x + c2 sinh

s

a
x +

As

s2 + a2π2/L2 sin
π

L
x.

The transformed boundary conditions, U(0, s) = 0, U(L, s) = 0 give in turn c1 = 0 and c2 = 0.

Therefore

U(x, s) =
As

s2 + a2π2/L2 sin
π

L
x

and

u(x, t) = A

{
s

s2 + a2π2/L2

}

sin
π

L
x = A cos

aπ

L
t sin

π

L
x.

2. The transformed equation is

d2U

dx2 − s2U = −2 sin πx − 4 sin 3πx

and so

U(x, s) = c1 cosh sx + c2 sinh sx +
2

s2 + π2 sin πx +
4

s2 + 9π2 sin 3πx.

14.2 Laplace Transformq

786
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The transformed boundary conditions, U(0, s) = 0 and U(1, s) = 0 give c1 = 0 and c2 = 0. Thus

U(x, s) =
2

s2 + π2 sin πx +
4

s2 + 9π2 sin 3πx

and

u(x, t) = 2
{

1

s2 + π2

}
sin πx + 4

{
1

s2 + 9π2

}
sin 3πx

=
2

π
sin πt sin πx +

4

3π
sin 3πt sin 3πx.

3. The solution of

a2 d2U

dx2 − s2U = 0

is in this case

U(x, s) = c1e
−(x/a)s + c2e

(x/a)s.

Since limx→∞ u(x, t) = 0 we have limx→∞ U(x, s) = 0. Thus c2 = 0 and

U(x, s) = c1e
−(x/a)s.

If {u(0, t)} = {f(t)} = F (s) then U(0, s) = F (s). From this we have c1 = F (s) and

U(x, s) = F (s)e−(x/a)s.

Hence, by the second translation theorem,

u(x, t) = f
(
t − x

a

) (
t − x

a

)
.

4. Expressing f(t) in the form (sin πt)[1 − (t − 1)] and using the result of Problem 3 we find

u(x, t) = f
(
t − x

a

) (
t − x

a

)

= sin π
(
t − x

a

) [
1 −

(
t − x

a
− 1

)] (
t − x

a

)

= sin π
(
t − x

a

) [ (
t − x

a

)
−

(
t − x

a

) (
t − x

a
− 1

)]

= sin π
(
t − x

a

) [ (
t − x

a

)
−

(
t − x

a
− 1

)]

Now
(
t − x

a

)
−

(
t − x

a
− 1

)
=






0, 0 ≤ t < x/a

1, x/a ≤ t ≤ x/a + 1

0, t > x/a + 1

=

{
0, x < a(t − 1) or x > at

1, a(t − 1) ≤ x ≤ at

78714.2  Laplace Transform
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CHAPTER 14 INTEGRAL TRANSFORMS

so

u(x, t) =

{
0, x < a(t − 1) or x > at

sin π(t − x/a), a(t − 1) ≤ x ≤ at.

The graph is shown for t > 1.

5. We use

U(x, s) = c1e
−(x/a)s − g

s3 .

Now

{u(0, t)} = U(0, s) =
Aω

s2 + ω2

and so

U(0, s) = c1 −
g

s3 =
Aω

s2 + ω2 or c1 =
g

s3 +
Aω

s2 + ω2 .

Therefore

U(x, s) =
Aω

s2 + ω2 e−(x/a)s +
g

s3 e−(x/a)s − g

s3

and

u(x, t) = A

{
ωe−(x/a)s

s2 + ω2

}

+ g

{
e−(x/a)s

s3

}

− g
{

1

s3

}

= A sin ω
(
t − x

a

) (
t − x

a

)
+

1

2
g
(
t − x

a

)2 (
t − x

a

)
− 1

2
gt2.

6. Transforming the partial differential equation gives

d2U

dx2 − s2U = − ω

s2 + ω2 sin πx.

Using undetermined coefficients we obtain

U(x, s) = c1 cosh sx + c2 sinh sx +
ω

(s2 + π2)(s2 + ω2)
sin πx.

The transformed boundary conditions U(0, s) = 0 and U(1, s) = 0 give, in turn, c1 = 0 and c2 = 0.

Therefore

U(x, s) =
ω

(s2 + π2)(s2 + ω2)
sin πx

788
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and

u(x, t) = ω sin πx

{
1

(s2 + π2)(s2 + ω2)

}

=
ω

ω2 − π2 sin πx
{

1

π

π

s2 + π2 − 1

ω

ω

s2 + ω2

}

=
ω

π(ω2 − π2)
sin πt sin πx − 1

ω2 − π2 sin ωt sin πx.

7. We use

U(x, s) = c1 cosh
s

a
x + c2 sinh

s

a
x.

Now U(0, s) = 0 implies c1 = 0, so U(x, s) = c2 sinh(s/a)x. The condition E dU/dx |x=L = F0 then

yields c2 = F0a/Es cosh(s/a)L and so

U(x, s) =
aF0

Es

sinh(s/a)x

cosh(s/a)L
=

aF0

Es

e(s/a)x − e−(s/a)x

e(s/a)L + e−(s/a)L

=
aF0

Es

e(s/a)(x−L) − e−(s/a)(x+L)

1 + e−2sL/a

=
aF0

E

[
e−(s/a)(L−x)

s
− e−(s/a)(3L−x)

s
+

e−(s/a)(5L−x)

s
− · · ·

]

− aF0

E

[
e−(s/a)(L+x)

s
− e−(s/a)(3L+x)

s
+

e−(s/a)(5L+x)

s
− · · ·

]

=
aF0

E

∞∑

n=0

(−1)n
[
e−(s/a)(2nL+L−x)

s
− e−(s/a)(2nL+L+x)

s

]

and

u(x, t) =
aF0

E

∞∑

n=0

(−1)n
[ {

e−(s/a)(2nL+L−x)

s

}

−
{

e−(s/a)(2nL+L+x)

s

}]

=
aF0

E

∞∑

n=0

(−1)n
[(

t − 2nL + L − x

a

) (
t − 2nL + L − x

a

)

−
(
t − 2nL + L + x

a

) (
t − 2nL + L + x

a

)]

.

8. We use

U(x, s) = c1e
−(x/a)s + c2e

(x/a)s − v0

s2 .

Now limx→∞ dU/dx = 0 implies c2 = 0, and U(0, s) = 0 then gives c1 = v0/s2. Hence

U(x, s) =
v0

s2 e−(x/a)s − v0

s2

and

78914.2  Laplace Transform

© 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part, except for use as permitted in a license distributed 
with a certain product or service or otherwise on a password-protected website for classroom use. Not For Sale

©
 C

en
ga

ge
 L

ea
rn

in
g.

 A
ll 

rig
ht

s r
es

er
ve

d.
 N

o 
di

st
rib

ut
io

n 
al

lo
w

ed
 w

ith
ou

t e
xp

re
ss

 a
ut

ho
riz

at
io

n.



CHAPTER 14 INTEGRAL TRANSFORMS

u(x, t) = v0

(
t − x

a

) (
t − x

a

)
− v0t.

9. Transforming the partial differential equation gives

d2U

dx2 − s2U = −sxe−x.

Using undetermined coefficients we obtain

U(x, s) = c1e
−sx + c2e

sx − 2s

(s2 − 1)2
e−x +

s

s2 − 1
xe−x.

The transformed boundary conditions limx→∞ U(x, s) = 0 and U(0, s) = 0 give, in turn, c2 = 0 and

c1 = 2s/(s2 − 1)2. Therefore

U(x, s) =
2s

(s2 − 1)2
e−sx − 2s

(s2 − 1)2
e−x +

s

s2 − 1
xe−x.

From entries (13) and (26) in the Table of Laplace transforms we obtain

u(x, t) =

{
2s

(s2 − 1)2
e−sx − 2s

(s2 − 1)2
e−x +

s

s2 − 1
xe−x

}

= 2(t − x) sinh(t − x) (t − x) − te−x sinh t + xe−x cosh t.

10. We use

U(x, s) = c1e
−xs + c2e

xs +
s

s2 − 1
e−x.

Now limx→∞ u(x, t) = 0 implies limx→∞ U(x, s) = 0, so we define c2 = 0. Then

U(x, s) = c1e
−xs +

s

s2 − 1
e−x.

Finally, U(0, s) = 1/s gives c1 = 1/s − s/(s2 − 1). Thus

U(x, s) =
1

s
− s

s2 − 1
e−xs +

s

s2 − 1
e−x

and

u(x, t) = −
{

s

s2 − 1
e−(x/a)s

}
+

{
s

s2 − 1

}
e−x

= − cosh
(
t − x

a

) (
t − x

a

)
+ e−x cosh t.

11. We use

U(x, s) = c1e
−
√

s x + c2e
√

s x +
u1

s
.

The condition limx→∞ u(x, t) = u1 implies limx→∞ U(x, s) = u1/s, so we define c2 = 0. Then

U(x, s) = c1e
−
√

s x +
u1

s
.

790

© 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part, except for use as permitted in a license distributed 
with a certain product or service or otherwise on a password-protected website for classroom use. 

Not For Sale

©
 C

en
ga

ge
 L

ea
rn

in
g.

 A
ll 

rig
ht

s r
es

er
ve

d.
 N

o 
di

st
rib

ut
io

n 
al

lo
w

ed
 w

ith
ou

t e
xp

re
ss

 a
ut

ho
riz

at
io

n.



From U(0, s) = u0/s we obtain c1 = (u0 − u1)/s. Thus

U(x, s) = (u0 − u1)
e−

√
s x

s
+

u1

s
and

u(x, t) = (u0 − u1)





e−x

√
s

s




 + u1

{
1

s

}
= (u0 − u1) erfc

(
x

2
√

t

)

+ u1.

12. We use

U(x, s) = c1e
−
√

s x + c2e
√

s x +
u1x

s
.

The condition limx→∞ u(x, t)/x = u1 implies limx→∞ U(x, s)/x = u1/s, so we define c2 = 0. Then

U(x, s) = c1e
−
√

s x +
u1x

s
.

From U(0, s) = u0/s we obtain c1 = u0/s. Hence

U(x, s) = u0
e−

√
s x

s
+

u1x

s
and

u(x, t) = u0





e−x

√
s

s




 + u1x
{

1

s

}
= u0 erfc

(
x

2
√

t

)

+ u1x.

13. We use

U(x, s) = c1e
−
√

s x + c2e
√

s x +
u0

s
.

The condition limx→∞ u(x, t) = u0 implies limx→∞ U(x, s) = u0/s, so we define c2 = 0. Then

U(x, s) = c1e
−
√

s x +
u0

s
.

The transform of the remaining boundary conditions gives

dU

dx

∣∣∣∣
x=0

= U(0, s).

This condition yields c1 = −u0/s(
√

s + 1). Thus

U(x, s) = −u0
e−

√
s x

s(
√

s + 1)
+

u0

s

and

u(x, t) = −u0





e−x

√
s

s(
√

s + 1)




 + u0

{
1

s

}

= u0e
x+t erfc

(√
t +

x

2
√

t

)

− u0 erfc

(
x

2
√

t

)

+ u0 By entry (6) in Table 14.1

14. We use

U(x, s) = c1e
−
√

s x + c2e
√

s x.
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CHAPTER 14 INTEGRAL TRANSFORMS

The condition limx→∞ u(x, t) = 0 implies limx→∞ U(x, s) = 0, so we define c2 = 0. Hence

U(x, s) = c1e
−
√

s x.

The remaining boundary condition transforms into

dU

dx

∣∣∣∣
x=0

= U(0, s) − 50

s
.

This condition gives c1 = 50/s(
√

s + 1). Therefore

U(x, s) = 50
e−

√
s x

s(
√

s + 1)

and

u(x, t) = 50





e−x

√
s

s(
√

s + 1)




 = −50ex+t erfc

(√
t +

x

2
√

t

)

+ 50 erfc

(
x

2
√

t

)

.

15. We use

U(x, s) = c1e
−
√

s x + c2e
√

s x.

The condition limx→∞ u(x, t) = 0 implies limx→∞ U(x, s) = 0, so we define c2 = 0. Hence

U(x, s) = c1e
−
√

s x.

The transform of u(0, t) = f(t) is U(0, s) = F (s). Therefore

U(x, s) = F (s)e−
√

s x

and

u(x, t) =
{
F (s)e−x

√
s
}

=
x

2
√

π

∫ t

0

f(t − τ)e−x2/4τ

τ3/2
dτ.

16. We use

U(x, s) = c1e
−
√

s x + c2e
√

s x.

The condition limx→∞ u(x, t) = 0 implies limx→∞ U(x, s) = 0, so we define c2 = 0. Then U(x, s) =

c1e−
√

s x. The transform of the remaining boundary condition gives

dU

dx

∣∣∣∣
x=0

= −F (s)

where F (s) = {f(t)}. This condition yields c1 = F (s)/
√

s . Thus

U(x, s) = F (s)
e−

√
s x

√
s

.

Using entry (44) in the Table of Laplace transforms and the convolution theorem we obtain

u(x, t) =




F (s) · e−
√

s x

√
s




 =
1√
π

∫ t

0
f(τ)

e−x2/4(t−τ)
√

t − τ
dτ.
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17. Transforming the partial differential equation gives

d2U

dx2 − sU = −60.

Using undetermied coefficients we obtain

U(x, s) = c1e
−
√

s x + c2e
√

s x +
60

s
.

The condition limx→∞ u(x, t) = 60 implies limx→∞ U(x, s) = 60/s, so we define c2 = 0. The

transform of the remaining boundary condition gives

U(0, s) =
60

s
+

40

s
e−2s.

This condition yields c1 =
40

s
e−2s. Thus

U(x, s) =
60

s
+ 40e−2s e−

√
s x

s
.

Using entry (46) in the Table of Laplace transforms and the second translation theorem we obtain

u(x, t) =





60

s
+ 40e−2s e−

√
s x

s




 = 60 + 40 erfc

(
x

2
√

t − 2

)

(t − 2).

18. The solution of the transformed equation

d2U

dx2 − sU = −100

by undetermined coefficients is

U(x, s) = c1e
√

s x + c2e
−
√

s x +
100

s
.

From the fact that limx→∞ U(x, s) = 100/s we see that c1 = 0. Thus

U(x, s) = c2e
−
√

s x +
100

s
. (1)

Now the transform of the boundary condition at x = 0 is

U(0, s) = 20
[
1

s
− 1

s
e−s

]
.

It follows from (1) that

20

s
− 20

s
e−s = c2 +

100

s
or c2 = −80

s
− 20

s
e−s

and so

U(x, s) =
(
−80

s
− 20

s
e−s

)
e−

√
s x +

100

s

=
100

s
− 80

s
e−

√
s x − 20

s
e−

√
s xe−s.
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CHAPTER 14 INTEGRAL TRANSFORMS

Thus

u(x, t) = 100
{

1

s

}
− 80





e−

√
s x

s




− 20





e−

√
s x

s
e−s






= 100 − 80 erfc
(
x/2

√
t
)
− 20 erfc

(
x/2

√
t − 1

)
(t − 1).

19. Transforming the partial differential equation gives

d2U

dx2 − sU = 0

and so

U(x, s) = c1e
−
√

s x + c2e
√

s x.

The condition limx→−∞ u(x, t) = 0 implies limx→−∞ U(x, s) = 0, so we define c1 = 0. The

transform of the remaining boundary condition gives

dU

dx

∣∣∣∣
x=1

=
100

s
− U(1, s).

This condition yields

c2
√

s e
√

s =
100

s
− c2e

√
s

from which it follows that

c2 =
100

s(
√

s + 1)
e−

√
s.

Thus

U(x, s) = 100
e−(1−x)

√
s

s(
√

s + 1)
.

Using entry (49) in the Table of Laplace transforms we obtain

u(x, t) = 100





e−(1−x)

√
s

s(
√

s + 1)




 = 100

[

−e1−x+t erfc

(√
t +

1 − x√
t

)

+ erfc

(
1 − x

2
√

t

)]

.

20. Transforming the partial differential equation gives

k
d2U

dx2 − sU = −r

s
.

Using undetermined coefficients we obtain

U(x, s) = c1e
−
√

s/k x + c2e
√

s/k x +
r

s2 .

The condition limx→∞ ∂u/∂x = 0 implies limx→∞ dU/dx = 0, so we define c2 = 0. The transform

of the remaining boundary condition gives U(0, s) = 0. This condition yields c1 = −r/s2. Thus

U(x, s) = r



 1

s2 − e−
√

s/k x

s2



 .
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Using entries (2) and (46) in the Table of Laplace transforms and the convolution theorem we obtain

u(x, t) = r





1

s2 − 1

s
· e−

√
s/k x

s




 = rt − r
∫ t

0
erfc

(
x

2
√

kτ

)

dτ.

21. The solution of
d2U

dx2 − sU = −u0 − u0 sin
π

L
x

is

U(x, s) = c1 cosh(
√

s x) + c2 sinh(
√

s x) +
u0

s
+

u0

s + π2/L2 sin
π

L
x.

The transformed boundary conditions U(0, s) = u0/s and U(L, s) = u0/s give, in turn, c1 = 0 and

c2 = 0. Therefore

U(x, s) =
u0

s
+

u0

s + π2/L2 sin
π

L
x

and

u(x, t) = u0

{
1

s

}
+ u0

{
1

s + π2/L2

}

sin
π

L
x = u0 + u0e

−π2t/L2
sin

π

L
x.

22. The transform of the partial differential equation is

k
d2U

dx2 − hU + h
um

s
= sU − u0

or

k
d2U

dx2 − (h + s)U = −h
um

s
− u0.

By undetermined coefficients we find

U(x, s) = c1e
√

(h+s)/k x + c2e
−
√

(h+s)/k x +
hum + u0s

s(s + h)
.

The transformed boundary conditions are U ′(0, s) = 0 and U ′(L, s) = 0. These conditions imply

c1 = 0 and c2 = 0. By partial fractions we then get

U(x, s) =
hum + u0s

s(s + h)
=

um

s
− um

s + h
+

u0

s + h
.

Therefore,

u(x, t) = um

{
1

s

}
− um

{
1

s + h

}
+ u0

{
1

s + h

}
= um − ume−ht + u0e

−ht.

23. We use

U(x, s) = c1 cosh
√

s

k
x + c2 sinh

√
s

k
x +

u0

s
.

The transformed boundary conditions dU/dx |x=0 = 0 and U(1, s) = 0 give, in turn, c2 = 0 and
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CHAPTER 14 INTEGRAL TRANSFORMS

c1 = −u0/s cosh
√

s/k . Therefore

U(x, s) =
u0

s
−

u0 cosh
√

s/k x

s cosh
√

s/k
=

u0

s
− u0

e
√

s/k x + e−
√

s/k x

s(e
√

s/k + e−
√

s/k )

=
u0

s
− u0

e
√

s/k (x−1) + e−
√

s/k (x+1)

s(1 + e−2
√

s/k )

=
u0

s
− u0



e−
√

s/k (1−x)

s
− e−

√
s/k (3−x)

s
+

e−
√

s/k (5−x)

s
− · · ·





− u0



e−
√

s/k (1+x)

s
− e−

√
s/k (3+x)

s
+

e−
√

s/k (5+x)

s
− · · ·





=
u0

s
− u0

∞∑

n=0

(−1)n


e−(2n+1−x)
√

s/
√

k

s
+

e−(2n+1+x)
√

s/
√

k

s





and

u(x, t) = u0

{
1

s

}
− u0

∞∑

n=0

(−1)n








e−(2n+1−x)

√
s/
√

k

s




−





e−(2n+1+x)

√
s/
√

k

s










= u0 − u0

∞∑

n=0

(−1)n
[

erfc

(
2n + 1 − x

2
√

kt

)

− erfc

(
2n + 1 + x

2
√

kt

)]

.

24.

(x, s) = c1 cosh
√

s

D
x + c2 sinh

√
s

D
x.

The transform of the two boundary conditions are (0, s) = c0/s and (1, s) = c0/s. From these

conditions weobtain c1 = c0/s and

c2 = c0(1 − cosh
√

s/D )/s sinh
√

s/D .

Letting L {c(x, t)} = C(x, t) we have

C

C C
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Therefore

(x, s) = c0




cosh

√
s/D x

s
+

(1 − cosh
√

s/D )

s sinh
√

s/D
sinh

√
s/D x





= c0




sinh

√
s/D (1 − x)

s sinh
√

s/D
+

sin
√

s/D x

s sinh
√

s/D





= c0



e
√

s/D (1−x) − e−
√

s/D (1−x)

s(e
√

s/D − e−
√

s/D )
+

e
√

s/D x − e−
√

s/D x

s(e
√

s/D − e−
√

s/D )





= c0



e−
√

s/D x − e−
√

s/D (2−x)

s(1 − e−2
√

s/D )
+

e
√

s/D (x−1) − e−
√

s/D (x+1)

s(1 − e−2
√

s/D )





= c0
(e−

√
s/D x − e−

√
s/D (2−x))

s

(
1 + e−2

√
s/D + e−4

√
s/D + · · ·

)

+ c0
(e
√

s/D (x−1) − e−
√

s/D (x+1))

s

(
1 + e−2

√
s/D + e−4

√
s/D + · · ·

)

= c0

∞∑

n=0



e−(2n+x)
√

s/D

s
− e−(2n+2−x)

√
s/D

s





+ c0

∞∑

n=0



e−(2n+1−x)
√

s/D

s
− e−(2n+1+x)

√
s/D

s





and so

c(x, t) = c0

∞∑

n=0









e
− (2n+x)√

D

√
s

s





−





e
− (2n+2−x)√

D

√
s

s










+ c0

∞∑

n=0









e
− (2n+1−x)√

D

√
s

s





−





e
− (2n+1+x)√

D

√
s

s










= c0

∞∑

n=0

[

erfc

(
2n + x

2
√

Dt

)

− erfc

(
2n + 2 − x

2
√

Dt

)]

+ c0

∞∑

n=0

[

erfc

(
2n + 1 − x

2
√

Dt

)

− erfc

(
2n + 1 + x

2
√

Dt

)]

.

C
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CHAPTER 14 INTEGRAL TRANSFORMS

Now using erfc(x) = 1 − erf(x) we get

c(x, t) = c0

∞∑

n=0

[

erf

(
2n + 2 − x

2
√

Dt

)

− erf

(
2n + x

2
√

Dt

)]

+ c0

∞∑

n=0

[

erf

(
2n + 1 + x

2
√

Dt

)

− erf

(
2n + 1 − x

2
√

Dt

)]

.

25. We use

U(x, s) = c1e
−
√

RCs+RG x + c2e
√

RCs+RG +
Cu0

Cs + G
.

The condition limx→∞ ∂u/∂x = 0 implies limx→∞ dU/dx = 0, so we define c2 = 0. Applying

U(0, s) = 0 to

U(x, s) = c1e
−
√

RCs RG x +
Cu0

Cs + G
gives c1 = −Cu0/(Cs + G). Therefore

U(x, s) = −Cu0
e−

√
RCs+RG x

Cs + G
+

Cu0

Cs + G
and

u(x, t) = u0

{
1

s + G/C

}

− u0





e−x

√
RC

√
s+G/C

s + G/C






= u0e
−Gt/C − u0e

−Gt/C erfc

(
x
√

RC

2
√

t

)

= u0e
−Gt/C



1 − erfc



x

2

√
RC

t









= u0e
−Gt/Cerf



x

2

√
RC

t



 .

26. We use

U(x, s) = c1e
−
√

s+h x + c2e
√

s+h x.

The condition limx→∞ u(x, t) = 0 implies limx→∞ U(x, s) = 0, so we take c2 = 0. Therefore

U(x, s) = c1e
−
√

s+h x.

The Laplace transform of u(0, t) = u0 is U(0, s) = u0/s and so

U(x, s) = u0
e−

√
s+h x

s
and

u(x, t) = u0





e−

√
s+h x

s




 = u0

{
1

s
e−

√
s+h x

}
.

+

798
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From the first translation theorem,
{
e−

√
s+h x

}
= e−ht {e−x

√
s} = e−ht x

2
√

πt3
e−x2/4t.

Thus, from the convolution theorem we obtain

u(x, s) =
u0x

2
√

π

∫ t

0

e−hτ−x2/4τ

τ3/2
dτ.

27. Using the Laplace transform with respect to t of the partial differential equation gives

d2U

dr2
+

2

r

dU

dr
= sU −

0︷ ︸︸ ︷
u(r, 0),

where L {u(r, t)} = U(r, s). The ordinary differential equation is equivalent to

rU ′′ + 2U ′ − srU = 0.

If we let v(r, s) = rU(r, s) then differentiation with respect to r gives v′′ = rU ′′ + 2U ′. The

transformed ordinary differential equation becomes

v′′ − sv = 0

v = c1e
−
√
sr + c2e

√
sr

U(r, s) = c1
e−
√
sr

r
+ c2

e
√
sr

r
.

The usual argument about boundedness as r → ∞ implies c2 = 0. Therefore U(r, s) =

c1e
−
√
sr
/
r. Now the Laplace transform of u(1, t) = 100 is

U(1, s) =
100

s
= c1e

−
√
s

c1 =
100e

√
s

s
so

U(r, s) =
100

r

e−
√
s(r−1)

s
.and

Thus

u(r, t) =
100

r
L −1

{
e−(r−1)

√
s

s

}
.

From the third entry in Table 14.1.1 we get

u(r, t) =
100

r
erfc

(
r − 1

2
√
t

)
.

79914.2  Laplace Transform
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CHAPTER 14 INTEGRAL TRANSFORMS

28. (a) We use

U(x, s) = c1e
−(s/a)x + c2e

(s/a)x +
v2
0F0

(a2 − v2
0)s

2
e−(s/v0)x.

The condition limx→∞ u(x, t) = 0 implies limx→∞ U(x, s) = 0, so we must define c2 = 0.

Consequently

U(x, s) = c1e
−(s/a)x +

v2
0F0

(a2 − v2
0)s

2
e−(s/v0)x.

The remaining boundary condition transforms into U(0, s) = 0. From this we find

c1 = −v2
0F0/(a2 − v2

0)s
2.

Therefore, by the second translation theorem

U(x, s) = − v2
0F0

(a2 − v2
0)s

2
e−(s/a)x +

v2
0F0

(a2 − v2
0)s

2
e−(s/v0)x

and

u(x, t) =
v2
0F0

a2 − v2
0

[ {
e−(x/v0)s

s2

}

−
{

e−(x/a)s

s2

}]

=
v2
0F0

a2 − v2
0

[(
t − x

v0

) (
t − x

v0

)
−

(
t − x

a

) (
t − x

a

)]
.

(b) In the case when v0 = a the solution of the transformed equation is

U(x, s) = c1e
−(s/a)x + c2e

(s/a)x − F0

2as
xe−(s/a)x.

The usual analysis then leads to c1 = 0 and c2 = 0. Therefore

U(x, s) = − F0

2as
xe−(s/a)x

and

u(x, t) = −xF0

2a

{
e−(x/a)s

s

}

= −xF0

2a

(
t − x

a

)
.

29. (a) We use

U(x, s) = c1e
−
√

s/k x + c2e
√

s/k x.

Now limx→∞ u(x, t) = 0 implies limx→∞ U(x, s) = 0, so we define c2 = 0. Then

U(x, s) = c1e
−
√

s/k x.

Finally, from U(0, s) = u0/s we obtain c1 = u0/s. Thus
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U(x, s) = u0
e−

√
s/k x

s

and

u(x, t) = u0





e−

√
s/k x

s




 = u0





e−(x/

√
k )

√
s

s




 = u0 erfc

(
x

2
√

kt

)

.

Since erfc(0) = 1,

lim
t→∞

u(x, t) = lim
t→∞

u0 erfc(x/2
√

kt ) = u0.

(b)

(a) Transforming the partial differential equation and using the initial condition gives

k
d2U

dx2 − sU = 0.

Since the domain of the variable x is an infinite interval we write the general solution of this

differential equation as

U(x, s) = c1e
−
√

s/k x + c2e
√

s/k x.

Transforming the boundary conditions gives U ′(0, s) = −A/s and lim
x→∞U(x, s) = 0. Hence we

find c2 = 0 and c1 = A
√

k/s
√

s . From

U(x, s) = A
√

k
e−

√
s/k x

s
√

s

we see that

u(x, t) = A
√

k





e−

√
s/k x

s
√

s




 .

30.

With the identification a = x/
√

k it follows from (47) in the Table of Laplace transforms that

u(x, t) = A
√

k




2

√
t

π
e−x2/4kt − x√

k
erfc

(
x

2
√

kt

)
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CHAPTER 14 INTEGRAL TRANSFORMS

= 2A

√
kt

π
e−x2/4kt − Ax erfc

(
x/2

√
kt

)
.

Since erfc(0) = 1,

lim
t→∞

u(x, t) = lim
t→∞



2A

√
kt

π
e−x2/4kt − Ax erfc

(
x

2
√

kt

)

 = ∞.

(b)

3 . (a) Letting C(x, s) = {c(x, t)} we obtain

d2C

dx2 − s

k
C = 0 subject to

dC

dx

∣∣∣∣
x=0

= −A.

The solution of this initial-value problem is

C(x, s) = A
√

k
e−(x/

√
k )

√
s

√
s

,

so that

c(x, t) = A

√
k

πt
e−x2/4kt.

(b)

(c)
∫ ∞

0
c(x, t)dx = Ak erf

(
x

2
√

kt

) ∣∣∣∣
∞

0
= Ak(1 − 0) = Ak

1

802

© 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part, except for use as permitted in a license distributed 
with a certain product or service or otherwise on a password-protected website for classroom use. 

Not For Sale

©
 C

en
ga

ge
 L

ea
rn

in
g.

 A
ll 

rig
ht

s r
es

er
ve

d.
 N

o 
di

st
rib

ut
io

n 
al

lo
w

ed
 w

ith
ou

t e
xp

re
ss

 a
ut

ho
riz

at
io

n.



1. From formulas (5) and (6) in the text,

A(α) =
∫ 0

−1
(−1) cos αx dx +

∫ 1

0
(2) cos αx dx = −sin α

α
+ 2

sin α

α
=

sin α

α
and

B(α) =
∫ 0

−1
(−1) sin αx dx +

∫ 1

0
(2) sin αx dx

=
1 − cos α

α
− 2

cos α − 1

α
=

3(1 − cos α)

α
.

Hence

f(x) =
1

π

∫ ∞

0

sin α cos αx + 3(1 − cos α) sin αx

α
dα.

2. From formulas (5) and (6) in the text,

A(α) =
∫ 2π

π
4 cos αx dx = 4

sin 2πα − sin πα

α
and

B(α) =
∫ 2π

π
4 sin αx dx = 4

cos πα − cos 2πα

α
.

Hence

f(x) =
4

π

∫ ∞

0

(sin 2πα − sin πα) cos αx + (cos πα − cos 2πα) sin αx

α
dα

=
4

π

∫ ∞

0

sin 2πα cos αx − cos 2πα sin αx − sin πα cos αx + cos πα sin αx

α
dα

=
4

π

∫ ∞

0

sin α(2π − x) − sin α(π − x)

α
dα.

3. From formulas (5) and (6) in the text,

A(α) =
∫ 3

0
x cos αx dx =

x sin αx

α

∣∣∣∣
3

0
− 1

α

∫ 3

0
sin αx dx

=
3 sin 3α

α
+

cos αx

α2

∣∣∣∣
3

0
=

3α sin 3α + cos 3α − 1

α2

and

B(α) =
∫ 3

0
x sin αx dx = −x cos αx

α

∣∣∣∣
3

0
+

1

α

∫ 3

0
cos αx dx

= −3 cos 3α

α
+

sin αx

α2

∣∣∣∣
3

0
=

sin 3α − 3α cos 3α

α2 .

14.3 Fourier Integralq
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CHAPTER 14 INTEGRAL TRANSFORMS

Hence

f(x) =
1

π

∫ ∞

0

(3α sin 3α + cos 3α − 1) cos αx + (sin 3α − 3α cos 3α) sin αx

α2 dα

=
1

π

∫ ∞

0

3α(sin 3α cos αx − cos 3α sin αx) + cos 3α cos αx + sin 3α sin αx − cos αx

α2 dα

=
1

π

∫ ∞

0

3α sin α(3 − x) + cos α(3 − x) − cos αx

α2 dα.

4. From formulas (5) and (6) in the text,

A(α) =
∫ ∞

−∞
f(x) cos αx dx

=
∫ 0

−∞
0 · cos αx dx +

∫ π

0
sin x cos αx dx +

∫ ∞

π
0 · cos αx dx

=
1

2

∫ π

0
[sin(1 + α)x + sin(1 − α)x] dx

=
1

2

[

−cos(1 + α)x

1 + α
− cos(1 − α)x

1 − α

]π

0

= −1

2

[
cos(1 + α)π − 1

1 + α
+

cos(1 − α)π − 1

1 − α

]

= −1

2

[
cos(1 + α)π − α cos(1 + α)π + cos(1 − α)π + α cos(1 − α)π − 2

1 − α2

]

=
1 + cos απ

1 − α2 ,

and

B(α) =
∫ π

0
sin x sin αx dx =

1

2

∫ π

0
[cos(1 − α)x − cos(1 + α)] dx

=
1

2

[
sin(1 − α)π

1 − α
− sin(1 + α)π

1 + α

]

=
sin απ

1 − α2 .

Hence

f(x) =
1

π

∫ ∞

0

cos αx + cos αx cos απ + sin αx sin απ

1 − α2 dα

=
1

π

∫ ∞

0

cos αx + cos α(x − π)

1 − α2 dα.

5. From formula (5) in the text,

A(α) =
∫ ∞

0
e−x cos αx dx.
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Recall {cos kt} = s/(s2 + k2). If we set s = 1 and k = α we obtain

A(α) =
1

1 + α2 .

Now

B(α) =
∫ ∞

0
e−x sin αx dx.

Recall {sin kt} = k/(s2 + k2). If we set s = 1 and k = α we obtain

B(α) =
α

1 + α2 .

Hence

f(x) =
1

π

∫ ∞

0

cos αx + α sin αx

1 + α2 dα.

6. From formulas (5) and (6) in the text,

A(α) =
∫ 1

−1
ex cos αx dx

=
e(cos α + α sin α) − e−1(cos α − α sin α)

1 + α2

=
2(sinh 1) cos α − 2α(cosh 1) sin α

1 + α2

and

B(α) =
∫ 1

−1
ex sin αx dx

=
e(sin α − α cos α) − e−1(− sin α − α cos α)

1 + α2

=
2(cosh 1) sin α − 2α(sinh 1) cos α

1 + α2 .

Hence

f(x) =
1

π

∫ ∞

0
[A(α) cos αx + B(α) sin αx] dα.

7. The function is odd. Thus from formula (11) in the text

B(α) = 5
∫ 1

0
sin αx dx =

5(1 − cos α)

α
.

Hence from formula (10) in the text,

f(x) =
10

π

∫ ∞

0

(1 − cos α) sin αx

α
dα.

8. The function is even. Thus from formula (9) in the text

A(α) = π
∫ 2

1
cos αx dx = π

(
sin 2α − sin α

α

)
.

80514.3  Fourier Integral
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CHAPTER 14 INTEGRAL TRANSFORMS

Hence from formula (8) in the text,

f(x) = 2
∫ ∞

0

(sin 2α − sin α) cos αx

α
dα.

9. The function is even. Thus from formula (9) in the text

A(α) =
∫ π

0
x cos αx dx =

x sin αx

α

∣∣∣∣
π

0
− 1

α

∫ π

0
sin αx dx

=
π sin πα

α
+

1

α2 cos αx
∣∣∣∣
π

0
=

πα sin πα + cos πα − 1

α2 .

Hence from formula (8) in the text

f(x) =
2

π

∫ ∞

0

(πα sin πα + cos πα − 1) cos αx

α2 dα.

10. The function is odd. Thus from formula (11) in the text

B(α) =
∫ π

0
x sin αx dx = −x cos αx

α

∣∣∣∣
π

0
+

1

α

∫ π

0
cos αx dx

= −π cos πα

α
+

1

α2 sin αx
∣∣∣∣
π

0
=

−πα cos πα + sin πα

α2 .

Hence from formula (10) in the text,

f(x) =
2

π

∫ ∞

0

(−πα cos πα + sin πα) sin αx

α2 dα.

11. The function is odd. Thus from formula (11) in the text

B(α) =
∫ ∞

0
(e−x sin x) sin αx dx

=
1

2

∫ ∞

0
e−x[cos(1 − α)x − cos(1 + α)x] dx

=
1

2

∫ ∞

0
e−x cos(1 − α)x dx − 1

2

∫ ∞

0
e−x cos(1 + α)x, dx.

Now recall

{cos kt} =
∫ ∞

0
e−st cos kt dt = s/(s2 + k2).

If we set s = 1, and in turn, k = 1 − α and then k = 1 + α, we obtain

B(α) =
1

2

1

1 + (1 − α)2
− 1

2

1

1 + (1 + α)2
=

1

2

(1 + α)2 − (1 − α)2

[1 + (1 − α)2][1 + (1 + α)2]
.

Simplifying the last expression gives

B(α) =
2α

4 + α4 .

Hence from formula (10) in the text

f(x) =
4

π

∫ ∞

0

α sin αx

4 + α4 dα.
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12. The function is odd. Thus from formula (11) in the text

B(α) =
∫ ∞

0
xe−x sin αx dx.

Now recall

{t sin kt} = − d

ds
{sin kt} = 2ks/(s2 + k2)2.

If we set s = 1 and k = α we obtain

B(α) =
2α

(1 + α2)2
.

Hence from formula (10) in the text

f(x) =
4

π

∫ ∞

0

α sin αx

(1 + α2)2
dα.

13. For the cosine integral,

A(α) =
∫ ∞

0
e−kx cos αx dx =

k

k2 + α2 .

Hence

f(x) =
2

π

∫ ∞

0

k cos αx

k2 + α2 dα =
2k

π

∫ ∞

0

cos αx

k2 + α2 dα.

For the sine integral,

B(α) =
∫ ∞

0
e−kx sin αx dx =

α

k2 + α2 .

Hence

f(x) =
2

π

∫ ∞

0

α sin αx

k2 + α2 dα.

14. From Problem 13 the cosine and sine integral representations of e−kx, k > 0, are respectively,

e−kx =
2k

π

∫ ∞

0

cos αx

k2 + α2 dα and e−kx =
2

π

∫ ∞

0

α sin αx

k2 + α2 dα.

Hence, the cosine integral representation of f(x) = e−x − e−3x is

e−x − e−3x =
2

π

∫ ∞

0

cos αx

1 + α2 dα − 2(3)

π

∫ ∞

0

cos αx

9 + α2 dα =
4

π

∫ ∞

0

3 − α2

(1 + α2) (9 + α2)
cos αx dα.

The sine integral representation of f is

e−x − e−3x =
2

π

∫ ∞

0

α sin αx

1 + α2 dα − 2

π

∫ ∞

0

α sin αx

9 + α2 dα =
16

π

∫ ∞

0

α sin αx

(1 + α2) (9 + α2)
dα.

15. For the cosine integral,

A(α) =
∫ ∞

0
xe−2x cos αx dx.

But we know

{t cos kt} = − d

ds

s

(s2 + k2)
=

(s2 − k2)

(s2 + k2)2
.

80714.3  Fourier Integral
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CHAPTER 14 INTEGRAL TRANSFORMS

If we set s = 2 and k = α we obtain

A(α) =
4 − α2

(4 + α2)2
.

Hence

f(x) =
2

π

∫ ∞

0

(4 − α2) cos αx

(4 + α2)2
dα.

For the sine integral,

B(α) =
∫ ∞

0
xe−2x sin αx dx.

From Problem 12, we know

{t sin kt} =
2ks

(s2 + k2)2
.

If we set s = 2 and k = α we obtain

B(α) =
4α

(4 + α2)2
.

Hence

f(x) =
8

π

∫ ∞

0

α sin αx

(4 + α2)2
dα.

16. For the cosine integral,

A(α) =
∫ ∞

0
e−x cos x cos αx dx

=
1

2

∫ ∞

0
e−x[cos(1 + α)x + cos(1 − α)x] dx

=
1

2

1

1 + (1 + α)2
+

1

2

1

1 + (1 − α)2

=
1

2

1 + (1 − α)2 + 1 + (1 + α)2

[1 + (1 + α)2][1 + (1 − α)2]

=
2 + α2

4 + α4 .

Hence

f(x) =
2

π

∫ ∞

0

(2 + α2) cos αx

4 + α4 dα.
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For the sine integral,

B(α) =
∫ ∞

0
e−x cos x sin αx dx

=
1

2

∫ ∞

0
e−x[sin(1 + α)x − sin(1 − α)x] dx

=
1

2

1 + α

1 + (1 + α)2
− 1

2

1 − α

1 + (1 − α)2

=
1

2

[
(1 + α)[1 + (1 − α)2] − (1 − α)[1 + (1 + α)2]

[1 + (1 + α)2][1 + (1 − α)2]

]

=
α3

4 + α4 .

Hence

f(x) =
2

π

∫ ∞

0

α3 sin αx

4 + α4 dα.

17. By formula (8) in the text

f(x) = 2π
∫ ∞

0
e−α cos αx dα =

2

π

1

1 + x2 , x > 0.

18. From the formula for sine integral of f(x) we have

f(x) =
2

π

∫ ∞

0

(∫ ∞

0
f(x) sin αx dx

)
sin αx dx

=
2

π

[∫ 1

0
1 · sin αx dα +

∫ ∞

1
0 · sin αx dα

]

=
2

π

(− cos αx)

x

∣∣∣∣
1

0
=

2

π

1 − cos x

x
.

19. (a) From formula (7) in the text with x = 2, we have

1

2
=

2

π

∫ ∞

0

sin α cos α

α
dα =

1

π

∫ ∞

0

sin 2α

α
dα.

If we let α = x we obtain ∫ ∞

0

sin 2x

x
dx =

π

2
.

(b) If we now let 2x = kt where k > 0, then dx = (k/2)dt and the integral in part (a) becomes
∫ ∞

0

sin kt

kt/2
(k/2) dt =

∫ ∞

0

sin kt

t
dt =

π

2
.

20. With f(x) = e−|x|, formula (20) in the text is

C(α) =
∫ ∞

−∞
e−|x|eiαxdx =

∫ ∞

−∞
e−|x| cos αx dx + i

∫ ∞

−∞
e−|x| sin αx dx.

80914.3  Fourier Integral
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CHAPTER 14 INTEGRAL TRANSFORMS

The imaginary part in the last line is zero since the integrand is an odd function of x. Therefore,

C(α) =
∫ ∞

−∞
e−|x| cos αx dx = 2

∫ ∞

0
e−x cos αx dx =

2

1 + α2

and so from formula (19) in the text,

f(x) =
1

π

∫ ∞

−∞

cos αx

1 + α2 dα =
2

π

∫ ∞

0

cos αx

1 + α2 dα.

This is the same result obtained from formulas (8) and (9) in the text.

21. (a) From the identity

sin A cos B =
1

2
[sin(A + B) + sin(A − B)]

we have

sin α cos αx =
1

2
[sin(α + αx) + sin(α − αx)]

=
1

2
[sin α(1 + x) + sin α(1 − x)]

=
1

2
[sin α(x + 1) − sin α(x − 1)].

Then

2

π

∫ ∞

0

sin α cos αx

α
dα =

1

π

∫ ∞

0

sin α(x + 1) − sin α(x − 1)

α
dα.

(b) Noting that

Fb =
1

π

∫ b

0

sin α(x + 1) − sin α(x − 1)

α
dα

=
1

π

[∫ b

0

sin α(x + 1)

α
dα −

∫ b

0

sin α(x − 1)

α
dα

]

and letting t = α(x + 1) so that dt = (x + 1) dα in the first integral and t = α(x − 1) so that

dt = (x − 1) dα in the second integral we have

Fb =
1

π

[∫ b(x+1)

0

sin t

t
dt −

∫ b(x−1)

0

sin t

t
dt

]

.

Since Si (x) =
∫ x
0 [(sin t)/t] dt, this becomes

Fb =
1

π
[Si (b(x + 1)) − Si (b(x − 1))].
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(c) In Mathematica we define f [b ] := (1/Pi)(SinIntegral[b(x + 1)] − SinIntegral[b(x − 1)].

Graphs of Fb(x) for b = 4, 6, 15, and 75 are shown below.
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CHAPTER 14 INTEGRAL TRANSFORMS

For the boundary-value problems in this section it is sometimes useful to note that the identities

eiα = cos α + i sin α and e−iα = cos α − i sin α

imply

eiα + e−iα = 2 cos α and eiα − e−iα = 2i sin α.

1. Using the Fourier transform, the partial differential equation becomes

dU

dt
+ kα2U = 0 and so U(α, t) = ce−kα2t.

Now

{u(x, 0)} = U(α, 0) =
{
e−|x|

}
.

We have
{
e−|x|

}
=

∫ ∞

−∞
e−|x|eiαxdx =

∫ ∞

−∞
e−|x|(cos αx + i sin αx) dx =

∫ ∞

−∞
e−|x| cos αx dx.

The integral ∫ ∞

−∞
e−|x| sin αx dx = 0

since the integrand is an odd function of x. Continuing we obtain
{
e−|x|

}
= 2

∫ ∞

0
e−x cos αx dx =

2

1 + α2 .

But U(α, 0) = c = 2/(1 + α2) gives

U(α, t) =
2e−kα2t

1 + α2

and so

u(x, t) =
2

2π

∫ ∞

−∞

e−kα2te−iαx

1 + α2 dα =
1

π

∫ ∞

−∞

e−kα2t

1 + α2 (cos αx − i sin αx)dα

=
1

π

∫ ∞

−∞

e−kα2t cos αx

1 + α2 dα =
2

π

∫ ∞

0

e−kα2t cos αx

1 + α2 dα.

q

14.4 Fourier Transformq
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2. Using the Fourier sine transform we find U(α, t) = ce−kα2t. The Fourier sine transform of the initial

condition is

S{u(x, 0)} =
∫ ∞

0
u(x, 0) sin αx dx =

∫ 1

0
100 sin αx dx =

100

α
(1 − cos α).

Thus U(α, 0) = (100/α)(1 − cos α) and since c = U(α, 0), we have

U(α, t) =
100

α
(1 − cos α)e−kα2t.

Applying the inverse Fourier transform we obtain

u(x, t) = −1
S {U(α, t)} =

2

π

∫ ∞

0

100

α
(1 − cos α)e−kα2t sin αx dα

=
200

π

∫ ∞

0

1 − cos α

α
e−kα2t sin αx dx.

3. Using the Fourier sine transform, the partial differential equation becomes

dU

dt
+ kα2U = kαu0.

The general solution of this linear equation is

U(α, t) = ce−kα2t +
u0

α
.

But U(α, 0) = 0 implies c = −u0/α and so

U(α, t) = u0
1 − e−kα2t

α
and

u(x, t) =
2u0

π

∫ ∞

0

1 − e−kα2t

α
sin αx dα.

4. The solution of Problem 3 can be written

u(x, t) =
2u0

π

∫ ∞

0

sin αx

α
dα − 2u0

π

∫ ∞

0

sin αx

α
e−kα2t dα.

Using
∫ ∞

0

sin αx

α
dα = π/2 the last line becomes

u(x, t) = u0 −
2u0

π

∫ ∞

0

sin αx

α
e−kα2t dα.

5. Using the Fourier sine transform we find

U(α, t) = ce−kα2t.

Now

S{u(x, 0)} = U(α, 0) =
∫ 1

0
sin αx dx =

1 − cos α

α
.

81314.4  Fourier Transform
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CHAPTER 14 INTEGRAL TRANSFORMS

From this we find c = (1 − cos α)/α and so

U(α, t) =
1 − cos α

α
e−kα2t

and

u(x, t) =
2

π

∫ ∞

0

1 − cos α

α
e−kα2t sin αx dα.

6. Since the domain of x is (0,∞) and the condition at x = 0 involves ∂u/∂x we use the Fourier cosine

transform:

−kα2U(α, t) − kux(0, t) =
dU

dt

dU

dt
+ kα2U = kA

U(α, t) = ce−kα2t +
A

α2 .

Since

{u(x, 0)} = U(α, 0) = 0

we find c = −A/α2, so that

U(α, t) = A
1 − e−kα2t

α2 .

Applying the inverse Fourier cosine transform we obtain

u(x, t) = C
−1{U(α, t)} =

2A

π

∫ ∞

0

1 − e−kα2t

α2 cos αx dα.

C

7. Using the Fourier cosine transform we find

U(α, t) = ce−kα2t.

Now

C{u(x, 0)} =
∫ 1

0
cos αx dx =

sin α

α
= U(α, 0).

From this we obtain c = (sin α)/α and so

U(α, t) =
sin α

α
e−kα2t

and

u(x, t) =
2

π

∫ ∞

0

sin α

α
e−kα2t cos αx dα.
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8. Using the Fourier sine transform we find

U(α, t) = ce−kα2t +
1

α
.

Now

S{u(x, 0)} = S

{
e−x

}
=

∫ ∞

0
e−x sin αx dx =

α

1 + α2 = U(α, 0).

From this we obtain c = α/(1 + α2) − 1/α. Therefore

U(α, t) =
(

α

1 + α2 − 1

α

)
e−kα2t +

1

α
=

1

α
− e−kα2t

α(1 + α2)

and

u(x, t) =
2

π

∫ ∞

0



 1

α
− e−kα2t

α(1 + α2)



 sin αx dα.

9. (a) Using the Fourier transform we obtain

U(α, t) = c1 cos αat + c2 sin αat.

If we write

{u(x, 0)} = {f(x)} = F (α)

and

{ut(x, 0)} = {g(x)} = G(α)

we first obtain c1 = F (α) from U(α, 0) = F (α) and then c2 = G(α)/αa from dU/dt |t=0= G(α).

Thus

U(α, t) = F (α) cos αat +
G(α)

αa
sin αat

and

u(x, t) =
1

2π

∫ ∞

−∞

(

F (α) cos αat +
G(α)

αa
sin αat

)

e−iαxdα.

(b) If g(x) = 0 then c2 = 0 and

u(x, t) =
1

2π

∫ ∞

−∞
F (α) cos αate−iαxdα

=
1

2π

∫ ∞

−∞
F (α)

(
eαati + e−αati

2

)

e−iαxdα

=
1

2

[
1

2π

∫ ∞

−∞
F (α)e−i(x−at)αdα +

1

2π

∫ ∞

−∞
F (α)e−i(x+at)αdα

]

=
1

2
[f(x − at) + f(x + at)] .
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CHAPTER 14 INTEGRAL TRANSFORMS

10. Using the Fourier sine transform we obtain

U(α, t) = c1 cos αat + c2 sin αat.

Now

S{u(x, 0)} = S

{
xe−x

}
=

∫ ∞

0
xe−x sin αx dx =

2α

(1 + α2)2
= U(α, 0).

Also,

S{ut(x, 0)} =
dU

dt

∣∣∣∣
t=0

= 0.

This last condition gives c2 = 0. Then U(α, 0) = 2α/(1+α2)2 yields c1 = 2α/(1+α2)2. Therefore

U(α, t) =
2α

(1 + α2)2
cos αat

and

u(x, t) =
4

π

∫ ∞

0

α cos αat

(1 + α2)2
sin αx dα.

11. Using the Fourier cosine transform we obtain

U(x, α) = c1 cosh αx + c2 sinh αx.

Now the Fourier cosine transforms of u(0, y) = e−y and u(π, y) = 0 are, respectively, U(0, α) =

1/(1 + α2) and U(π, α) = 0. The first of these conditions gives c1 = 1/(1 + α2). The second

condition gives

c2 = − cosh απ

(1 + α2) sinh απ
.

Hence

U(x, α) =
cosh αx

1 + α2 − cosh απ sinh αx

(1 + α2) sinh απ
=

sinh απ cosh απ − cosh απ sinh αx

(1 + α2) sinh απ

=
sinh α(π − x)

(1 + α2) sinh απ

and

u(x, y) =
2

π

∫ ∞

0

sinh α(π − x)

(1 + α2) sinh απ
cos αy dα.
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12. Since the boundary condition at y = 0 now involves u(x, 0) rather than u′(x, 0), we use the Fourier

sine transform. The transform of the partial differential equation is then

d2U

dx2 − α2U + αu(x, 0) = 0 or
d2U

dx2 − α2U = −α.

The solution of this differential equation is

U(x, α) = c1 cosh αx + c2 sinh αx +
1

α
.

The transforms of the boundary conditions at x = 0 and x = π in turn imply that c1 = 1/α and

c2 =
cosh απ

α sinh απ
− 1

α sinh απ
+

α

(1 + α2) sinh απ
.

Hence

U(x, α) =
1

α
− cosh αx

α
+

cosh απ

α sinh απ
sinh αx − sinh αx

α sinh απ
+

α sinh αx

(1 + α2) sinh απ

=
1

α
− sinh α(π − x)

α sinh απ
− sinh αx

α(1 + α2) sinh απ
.

Taking the inverse transform it follows that

u(x, y) =
2

π

∫ ∞

0

(
1

α
− sinh α(π − x)

α sinh απ
− sinh αx

α(1 + α2) sinh απ

)

sin αy dα.

13. Using the Fourier cosine transform with respect to x gives

U(α, y) = c1e
−αy + c2e

αy.

Since we expect u(x, y) to be bounded as y → ∞ we define c2 = 0. Thus

U(α, y) = c1e
−αy.

Now

C{u(x, 0)} =
∫ 1

0
50 cos αx dx = 50

sin α

α
and so

U(α, y) = 50
sin α

α
e−αy

and

u(x, y) =
100

π

∫ ∞

0

sin α

α
e−αy cos αx dα.

14. The boundary condition u(0, y) = 0 indicates that we now use the Fourier sine transform. We still

have U(α, y) = c1e−αy, but

S{u(x, 0)} =
∫ 1

0
50 sin αx dx = 50(1 − cos α)/α = U(α, 0).

81714.4  Fourier Transform
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CHAPTER 14 INTEGRAL TRANSFORMS

This gives c1 = 50(1 − cos α)/α and so

U(α, y) = 50
1 − cos α

α
e−αy

and

u(x, y) =
100

π

∫ ∞

0

1 − cos α

α
e−αy sin αx dα.

15. We use the Fourier sine transform with respect to x to obtain

U(α, y) = c1 cosh αy + c2 sinh αy.

The transforms of u(x, 0) = f(x) and u(x, 2) = 0 give, in turn, U(α, 0) = F (α) and U(α, 2) = 0.

The first condition gives c1 = F (α) and the second condition then yields

c2 = −F (α) cosh 2α

sinh 2α
.

Hence

U(α, y) = F (α) cosh αy − F (α) cosh 2α sinh αy

sinh 2α

= F (α)
sinh 2α cosh αy − cosh 2α sinh αy

sinh 2α

= F (α)
sinh α(2 − y)

sinh 2α
and

u(x, y) =
2

π

∫ ∞

0
F (α)

sinh α(2 − y)

sinh 2α
sin αx dα.

16. The domain of y and the boundary condition at y = 0 suggest that we use a Fourier cosine transform.

The transformed equation is

d2U

dx2 − α2U − uy(x, 0) = 0 or
d2U

dx2 − α2U = 0.

Because the domain of the variable x is a finite interval we choose to write the general solution of

the latter equation as

U(x, α) = c1 cosh αx + c2 sinh αx.

Now U(0, α) = F (α), where F (α) is the Fourier cosine transform of f(y), and U ′(π, α) = 0 imply

c1 = F (α) and c2 = −F (α) sinh απ/ cosh απ. Thus

U(x, α) = F (α) cosh αx − F (α)
sinh απ

cosh απ
sinh αx = F (α)

cosh α(π − x)

cosh απ
.

Using the inverse transform we find that a solution to the problem is

u(x, y) =
2

π

∫ ∞

0
F (α)

cosh α(π − x)

cosh απ
cos αy dα.
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17. We solve two boundary-value problems:

Using the Fourier sine transform with respect to y gives

u1(x, y) =
2

π

∫ ∞

0

αe−αx

1 + α2 sin αy dα.

The Fourier sine transform with respect to x yields the solution to the second problem:

u2(x, y) =
2

π

∫ ∞

0

αe−αy

1 + α2 sin αx dα.

We define the solution of the original problem to be

u(x, y) = u1(x, y) + u2(x, y) =
2

π

∫ ∞

0

α

1 + α2

[
e−αx sin αy + e−αy sin αx

]
dα.

18. We solve the three boundary-value problems:

Using separation of variables we find the solution of the first problem is

u1(x, y) =
∞∑

n=1

Ane−ny sin nx where An =
2

π

∫ π

0
f(x) sin nx dx.

Using the Fourier sine transform with respect to y gives the solution of the second problem:

u2(x, y) =
200

π

∫ ∞

0

(1 − cos α) sinh α(π − x)

α sinh απ
sin αy dα.

Also, the Fourier sine transform with respect to y gives the solution of the third problem:

u3(x, y) =
2

π

∫ ∞

0

α sinh αx

(1 + α2) sinh απ
sin αy dα.

The solution of the original problem is

u(x, y) = u1(x, y) + u2(x, y) + u3(x, y).

19. Using the Fourier transform, the partial differential equation equation becomes

dU

dt
+ kα2U = 0 and so U(α, t) = ce−kα2t.

81914.4  Fourier Transform
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CHAPTER 14 INTEGRAL TRANSFORMS

Now

{u(x, 0)} = U(α, 0) =
√

π e−α2/4

by the given result. This gives c =
√

π e−α2/4 and so

U(α, t) =
√

π e−( 1
4+kt)α2

.

Using the given Fourier transform again we obtain

u(x, t) =
√

π −1{e−(1+4kt)α2/4} =
1√

1 + 4kt
e−x2/(1+4kt).

20. We use U(α, t) = ce−kα2t. The Fourier transform of the boundary condition is U(α, 0) = F (α).

This gives c = F (α) and so U(α, t) = F (α)e−kα2t. By the convolution theorem and the given result,

we obtain

u(x, t) = −1{F (α) · e−kα2t} =
1

2
√

kπt

∫ ∞

−∞
f(τ)e−(x−τ)2/4kt dτ.

21. Using the Fourier transform with respect to x gives

U(α, y) = c1 cosh αy + c2 sinh αy.

The transform of the boundary condition ∂u/∂y |y=0 = 0 is dU/dy |y=0 = 0. This condition gives

c2 = 0. Hence

U(α, y) = c1 cosh αy.

Now by the given information the transform of the boundary condition u(x, 1) = e−x2
is U(α, 1) =

√
π e−α2/4. This condition then gives c1 =

√
π e−α2/4 cosh α. Therefore

U(α, y) =
√

π
e−α2/4 cosh αy

cosh α
and

U(x, y) =
1

2
√

π

∫ ∞

−∞

e−α2/4 cosh αy

cosh α
e−iαxdα

=
1

2
√

π

∫ ∞

−∞

e−α2/4 cosh αy

cosh α
cos αx dα

=
1√
π

∫ ∞

0

e−α2/4 cosh αy

cosh α
cos αx dα.

22. Entries 42 and 43 in the Table of Laplace transforms imply
∫ ∞

0
e−st sin at

t
dt = arctan

a

s
and ∫ ∞

0
e−st sin at cos bt

t
dt =

1

2
arctan

a + b

s
+

1

2
arctan

a − b

s
.
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Identifying α = t, x = a, and y = s, the solution of Problem 14 is

u(x, y) =
100

π

∫ ∞

0

1 − cos α

α
e−αy sin αx dα

=
100

π

[∫ ∞

0

sin αx

α
e−αydα −

∫ ∞

0

sin αx cos α

α
e−αydα

]

=
100

π

[

arctan
x

y
− 1

2
arctan

x + 1

y
− 1

2
arctan

x − 1

y

]

.

23. Using the definition of f and the solution in Problem 20 we obtain

u(x, t) =
u0

2
√

kπt

∫ 1

−1
e−(x−τ)2/4ktdτ.

If v = (x − τ)/2
√

kt , then dτ = −2
√

kt du and the integral becomes

v(x, t) =
u0√
π

∫ (x+1)/2
√

kt

(x−1)/2
√

kt
e−v2

dv.

Using the result in Problem 9 of Exercises 14.1 in the text, we have

u(x, t) =
u0

2

[

erf

(
x + 1

2
√

kt

)

− erf

(
x − 1

2
√

kt

)]

.

24. We use the Fourier sine transform with respect to the variable z. The transform of the partial

differential equation is

d2U

dr2
+

1

r

dU

dr
− α2U + αU(r, 0) = 0 or

d2U

dr2
+

1

r

dU

dr
− α2U = −αu0.

Thus

U(r, α) = c1I0(αr) + c2K0(αr) +
u0
α
,

where U(r, α) = Fs{u(r, z)}. The usual argument about u being bounded at r = 0 implies

c2 = 0 so U(r, α) = c1I0(αr)+u0/α. Now the transform of the boundary condition u(1, z) = 0

is U(1, α) = 0 and so c1I0(α) + u0/α = 0 or c1 = −u0/αI0(α). Thus

U(r, α) =
−u0I0(αr)
αI0(α)

+
u0
α
.

The inverse transform is

u(r, z) =
2

π

∫ ∞

0

(
−u0I0(αr)

αI0(α)
+
u0
α

)
sinαzdα

=
2u0
π

∫ ∞

0

sinαz

α
dα− 2u0

π

∫ ∞

0

I0(αr)

αI0(α)
sinαzdα. ←− Problem 4, Exercises 15.4

82114.4  Fourier Transform
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CHAPTER 14 INTEGRAL TRANSFORMS

Therefore

u(r, z) = u0 −
2u0
π

∫ ∞

0

I0(αr)

αI0(α)
sinαzdα.

25. The Fourier cosine transform with respect to z of the partial differential equation is

d2U

dr2
+

1

r

dU

dr
− α2U = 0

which implies that

U(r, α) = c1I0(αr) + c2K(αr).

Assuming boundedness as r → 0 implies that c2 = 0, so U(r, α) = c1I0(αr). The transform of

the remaining boundary condition is

U(1, α) =

∫ 1

0
cosαzdz =

sinα

α
= c1I0(α) so c1 =

sinα

αI0(α)
and U(rα) =

sinα

αI0(αr)
I0(αr).

Thus

u(r, z) =
2

π

∫ ∞

0

I0(αr)

αI0(α)
sinα cosαzdz.

Discussion Problems

26. (a) If ∫ ∞

0
f(x) cosαxdx = F (α) and F (α) =

{
1− α, 0 ≤ α ≤ 1

0, α > 1,

then by (6) in the text of this section

f(x) =
2

π

∫ ∞

0
F (α) cosαxdα

=
2

π

∫ 1

0
F (α) cosαxdα+

2

π

∫ ∞

1
F (α) cosαxdα

=
2

π

∫ 1

0
(1− α) cosαxdα+

2

π

∫ ∞

1
0 · cosαxdα.

Integration by parts then gives

f(x) =
2(1− cosx)

πx2
.

(b) Therefore we know

822
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∫ ∞

0

2(1− cosx)

πx2
cosαxdx =

{
1− α, 0 ≤ α ≤ 1

0, α > 1.

For α = 0,
2

π

∫ ∞

0

1− cosx

x2
dx = 1 or

∫ ∞

0

1− cosx

x2
dx =

π

2
.

From the identity

sin2 x

2
− 1

2
(1− cosx)

1− cosx = 2 sin2 x

2
we have

2

∫ ∞

0

sin2 x

2
x2

dx =
π

2
.or

Now, if t = x/2 we have x = 2t and dx = 2dt. This implies that the foregoing integral is∫ ∞

0

sin2 t

t2
dt =

π

2
or

∫ ∞

0

sin2 x

x2
dx =

π

2
.

27.

Since erf (0) = 0 and limx→∞ erf (x) = 1, we have

lim
t→∞

u(x, t) = 50[erf (0) − erf (0)] = 0

and

lim
x→∞u(x, t) = 50[erf (∞) − erf (∞)] = 50[1 − 1] = 0.

82314.4  Fourier Transform
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CHAPTER 14 INTEGRAL TRANSFORMS

1. The partial differential equation and the boundary conditions indicate that the Fourier cosine

transform is appropriate for the problem. We find in this case

u(x, y) =
2

π

∫ ∞

0

sinh αy

α(1 + α2) cosh απ
cos αx dα.

2. We use the Laplace transform and undetermined coefficients to obtain

U(x, s) = c1 cosh
√

s x + c2 sinh
√

s x +
50

s + 4π2 sin 2πx.

The transformed boundary conditions U(0, s) = 0 and U(1, s) = 0 give, in turn, c1 = 0 and c2 = 0.

Hence

U(x, s) =
50

s + 4π2 sin 2πx

and

u(x, t) = 50 sin 2πx
{

1

s + 4π2

}
= 50e−4π2t sin 2πx.

3. The Laplace transform gives

U(x, s) = c1e
−
√

s+h x + c2e
√

s+h x +
u0

s + h
.

The condition limx→∞ ∂u/∂x = 0 implies limx→∞ dU/dx = 0 and so we define c2 = 0. Thus

U(x, s) = c1e
−
√

s+h x +
u0

s + h
.

The condition U(0, s) = 0 then gives c1 = −u0/(s + h) and so

U(x, s) =
u0

s + h
− u0

e−
√

s+h x

s + h
.

With the help of the first translation theorem we then obtain

u(x, t) = u0

{
1

s + h

}
− u0





e−

√
s+h x

s + h




 = u0e
−ht − u0e

−ht erfc

(
x

2
√

t

)

= u0e
−ht

[

1 − erfc

(
x

2
√

t

)]

= u0e
−hterf

(
x

2
√

t

)

.

14.R Chapter 14 in Reviewq
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4. Using the Fourier transform and the result
{
e−|x|

}
= 1/(1 + α2) we find

u(x, t) =
1

2π

∫ ∞

−∞

1 − e−α2t

α2(1 + α2)
e−iαxdα

=
1

2π

∫ ∞

−∞

1 − e−α2t

α2(1 + α2)
cos αx dα

=
1

π

∫ ∞

0

1 − e−α2t

α2(1 + α2)
cos αx dα.

5. The Laplace transform gives

U(x, s) = c1e
−
√

s x + c2e
√

s x.

The condition limx→∞ u(x, t) = 0 implies limx→∞ U(x, s) = 0 and so we define c2 = 0. Thus

U(x, s) = c1e
−
√

s x.

The transform of the remaining boundary condition is U(0, s) = 1/s2. This gives c1 = 1/s2. Hence

U(x, s) =
e−

√
s x

s2 and u(x, t) =





1

s

e−
√

s x

s




 .

Using
{

1

s

}
= 1 and





e−

√
s x

s




 = erfc

(
x

2
√

t

)

,

it follows from the convolution theorem that

u(x, t) =
∫ t

0
erfc

(
x

2
√

τ

)

dτ.

6. The Laplace transform and undetermined coefficients give

U(x, s) = c1 cosh sx + c2 sinh sx +
s − 1

s2 + π2 sin πx.

The conditions U(0, s) = 0 and U(1, s) = 0 give, in turn, c1 = 0 and c2 = 0. Thus

U(x, s) =
s − 1

s2 + π2 sin πx

and

u(x, t) = sin πx
{

s

s2 + π2

}
− 1

π
sin πx

{
π

s2 + π2

}

= (sin πx) cos πt − 1

π
(sin πx) sin πt.

82514.R  Chapter 14 in Reivew
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CHAPTER 14 INTEGRAL TRANSFORMS

7. The Fourier transform gives the solution

u(x, t) =
u0

2π

∫ ∞

−∞

(
eiαπ − 1

iα

)

e−iαxe−kα2tdα

=
u0

2π

∫ ∞

−∞

eiα(π−x) − e−iαx

iα
e−kα2tdα

=
u0

2π

∫ ∞

−∞

cos α(π − x) + i sin α(π − x) − cos αx + i sin αx

iα
e−kα2tdα.

Since the imaginary part of the integrand of the last integral is an odd function of α, we obtain

u(x, t) =
u0

2π

∫ ∞

−∞

sin α(π − x) + sin αx

α
e−kα2tdα.

8. Using the Fourier cosine transform we obtain U(x, α) = c1 cosh αx + c2 sinh αx. The condition

U(0, α) = 0 gives c1 = 0. Thus U(x, α) = c2 sinh αx. Now

C{u(π, y)} =
∫ 2

1
cos αy dy =

sin 2α − sin α

α
= U(π, α).

This last condition gives c2 = (sin 2α − sin α)/α sinh απ. Hence

U(x, α) =
sin 2α − sin α

α sinh απ
sinh αx

and

u(x, y) =
2

π

∫ ∞

0

sin 2α − sin α

α sinh απ
sinh αx cos αy dα.

9. We solve the two problems

∂2u1

∂x2 +
∂2u1

∂y2 = 0, x > 0, y > 0,

u1(0, y) = 0, y > 0,

u1(x, 0) =

{
100, 0 < x < 1

0, x > 1

and
∂2u2

∂x2 +
∂2u2

∂y2 = 0, x > 0, y > 0,

u2(0, y) =

{
50, 0 < y < 1

0, y > 1

u2(x, 0) = 0.

Using the Fourier sine transform with respect to x we find

u1(x, y) =
200

π

∫ ∞

0

(
1 − cos α

α

)
e−αy sin αx dα.
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Using the Fourier sine transform with respect to y we find

u2(x, y) =
100

π

∫ ∞

0

(
1 − cos α

α

)
e−αx sin αy dα.

The solution of the problem is then

u(x, y) = u1(x, y) + u2(x, y).

10. The Laplace transform gives

U(x, s) = c1 cosh
√

s x + c2 sinh
√

s x +
r

s2 .

The condition ∂u/∂x |x=0 = 0 transforms into dU/dx |x=0 = 0. This gives c2 = 0. The remaining

condition u(1, t) = 0 transforms into U(1, s) = 0. This condition then implies c1 = −r/s2 cosh
√

s .

Hence

U(x, s) =
r

s2 − r
cosh

√
s x

s2 cosh
√

s
.

Using geometric series and the convolution theorem we obtain

u(x, t) = r
{

1

s2

}
− r

{
cosh

√
s x

s2 cosh
√

s

}

= rt − r
∞∑

n=0

(−1)n
[∫ t

0
erfc

(
2n + 1 − x

2
√

τ

)

dτ +
∫ t

0
erfc

(
2n + 1 + x

2
√

τ

)

dτ

]

.

11. The Fourier sine transform with respect to x and undetermined coefficients give

U(α, y) = c1 cosh αy + c2 sinh αy +
A

α
.

The transforms of the boundary conditions are

dU

dy

∣∣∣∣
y=0

= 0 and
dU

dy

∣∣∣∣
y=π

=
Bα

1 + α2 .

The first of these conditions gives c2 = 0 and so

U(α, y) = c1 cosh αy +
A

α
.

The second transformed boundary condition yields c1 = B/(1 + α2) sinh απ. Therefore

U(α, y) =
B cosh αy

(1 + α2) sinh απ
+

A

α

and

u(x, y) =
2

π

∫ ∞

0

(
B cosh αy

(1 + α2) sinh απ
+

A

α

)

sin αx dα.

12. Using the Laplace transform gives

U(x, s) = c1 cosh
√

s x + c2 sinh
√

s x.

82714.R  Chapter 14 in Reivew
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CHAPTER 14 INTEGRAL TRANSFORMS

The condition u(0, t) = u0 transforms into U(0, s) = u0/s. This gives c1 = u0/s. The condition

u(1, t) = u0 transforms into U(1, s) = u0/s. This implies that c2 = u0(1 − cosh
√

s )/s sinh
√

s .

Hence

U(x, s) =
u0

s
cosh

√
s x + u0

[
1 − cosh

√
s

s sinh
√

s

]

sinh
√

s x

= u0

[
sinh

√
s cosh

√
s x − cosh

√
s sinh

√
s x + sinh

√
s x

s sinh
√

s

]

= u0

[
sinh

√
s (1 − x) + sinh

√
s x

s sinh
√

s

]

= u0

[
sinh

√
s (1 − x)

s sinh
√

s
+

sinh
√

s x

s sinh
√

s

]

and

u(x, t) = u0

[ {
sinh

√
s (1 − x)

s sinh
√

s

}

+

{
sinh

√
s x

s sinh
√

s

}]

= u0

∞∑

n=0

[

erf

(
2n + 2 − x

2
√

t

)

− erf

(
2n + x

2
√

t

)]

+ u0

∞∑

n=0

[

erf

(
2n + 1 + x

2
√

t

)

− erf

(
2n + 1 − x

2
√

t

)]

.

13. Using the Fourier transform gives

U(α, t) = c1e
−kα2t.

Now

u(α, 0) =
∫ ∞

0
e−xeiαx dx =

e(iα−1)x

iα − 1

∣∣∣∣
∞

0
= 0 − 1

iα − 1
=

1

1 − iα
= c1

so

U(α, t) =
1 + iα

1 + α2 e−kα2t

and

u(x, t) =
1

2π

∫ ∞

−∞

1 + iα

1 + α2 e−kα2te−iαx dα.

Since
1 + iα

1 + α2 (cos αx − i sin αx) =
cos αx + α sin αx

1 + α2 +
i(α cos αx − sin αx)

1 + α2

and the integral of the product of the second term with e−kα2t is 0 (it is an odd function), we have

u(x, t) =
1

2π

∫ ∞

−∞

cos αx + α sin αx

1 + α2 e−kα2t dα.
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14. Using the Laplace transform the partial differential equation becomes

d2U

dx2 − sU = −100

so

U(x, s) = c1e
−
√

s x + c2e
√

s x +
100

s
.

The condition x → ∞ implies limx→∞ U(x, s) = 100/s and the condition at x = 0 implies U ′(0, s) =

−50/s. thus c2 = 0 and c1 = 50/s
√

s , so

U(x, s) =
100

s
+ 50

e−x
√

s

s
√

s

and by (4) of Table 14.1 in the text,

u(x, t) = 100 + 100

√
t

π
e−x2/4t − 50x erfc

(
x

2
√

t

)

.

15. The Fourier cosine transform of the partial differential equation gives

dU

dt
+ kα2U = 0 so U(α, t) = c1e

−kα2t.

The transform of the initial condition gives

U(α, 0) =
α

α2 + 1
= c1

U(α, t) =
α

α2 + 1
e−kα2t

and so u(x, t) =
2

π

∫ ∞

0

αe−kα2t

α2 + 1
cos αx dα.

16. Using the Fourier transform with respect to x we obtain

d2U

dy2 − α2U = 0.

Since 0 < y < 1 is a finite interval we use the general solution

U(α, y) = c1 cosh αy + c2 sinh αy.

The boundary condition at y = 0 transforms into U ′(α, 0) = 0, so c2 = 0 and U(α, y) = c1 cosh αy.

Now denote the Fourier transform of f as F (α). Then U(α, 1) = F (α) so F (α) = c1 cosh α and

U(α, y) = F (α)
cosh αy

cosh α
.

Taking the inverse Fourier transform we obtain

u(x, y) =
1

2π

∫ ∞

−∞
F (α)

cosh αy

cosh α
e−iαx dα.

82914.R  Chapter 14 in Reivew
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CHAPTER 14 INTEGRAL TRANSFORMS

But

F (α) =
∫ ∞

−∞
f(t)eiαt dt,

and so

u(x, y) =
1

2π

∫ ∞

−∞

(∫ ∞

−∞
f(t)eiαt dt

)
cosh αy

cosh α
e−iαx dα

=
1

2π

∫ ∞

−∞

∫ ∞

−∞
f(t)eiα(t−x) cosh αy

cosh α
dt dα

=
1

2π

∫ ∞

−∞

∫ ∞

−∞
f(t)(cos α(t − x) + i sin α(t − x))

cosh αy

cosh α
dt dα

=
1

2π

∫ ∞

−∞

∫ ∞

−∞
f(t) cos α(t − x)

cosh αy

cosh α
dt dα

=
1

π

∫ ∞

0

∫ ∞

−∞
f(t) cos α(t − x)

cosh αy

cosh α
dt dα,

since the imaginary part of the integrand is an odd function of α followed by the fact that the

remaining integrand is an even function of α.
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1. The figure shows the values of u(x, y) along the boundary. We need to determine

u11 and u21. The system is

u21 + 2 + 0 + 0 − 4u11 = 0

1 + 2 + u11 + 0 − 4u21 = 0
or

−4u11 + u21 = −2

u11 − 4u21 = −3.

Solving we obtain u11 = 11/15 and u21 = 14/15.

2. The figure shows the values of u(x, y) along the boundary. We need to

determine u11, u21, and u31. By symmetry u11 = u31 and the system is

u21 + 0 + 0 + 100 − 4u11 = 0

u31 + 0 + u11 + 100 − 4u21 = 0

0 + 0 + u21 + 100 − 4u31 = 0

or
−4u11 + u21 = −100

2u11 − 4u21 = −100.

Solving we obtain u11 = u31 = 250/7 and u21 = 300/7.

3. The figure shows the values of u(x, y) along the boundary. We need to determine

u11, u21, u12, and u22. By symmetry u11 = u21 and u12 = u22. The system is

u21 + u12 + 0 + 0 − 4u11 = 0

0 + u22 + u11 + 0 − 4u21 = 0

u22 +
√

3/2 + 0 + u11 − 4u12 = 0

0 +
√

3/2 + u12 + u21 − 4u22 = 0

or

3u11 + u12 = 0

u11 − 3u12 = −
√

3

2
.

Solving we obtain u11 = u21 =
√

3/16 and u12 = u22 = 3
√

3/16.

Numerical Solutions of

Partial Differential Equations15
15.1 Laplace’s Equationq
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4. The figure shows the values of u(x, y) along the boundary. We need to determine

u11, u21, u12, and u22. The system is

u21 + u12 + 8 + 0 − 4u11 = 0

0 + u22 + u11 + 0 − 4u21 = 0

u22 + 0 + 16 + u11 − 4u12 = 0

0 + 0 + u12 + u21 − 4u22 = 0

or

−4u11 + u21 + u12 = −8

u11 − 4u21 + u22 = 0

u11 − 4u12 + u22 = −16

u21 + u12 − 4u22 = 0.

Solving we obtain u11 = 11/3, u21 = 4/3, u12 = 16/3, and u22 = 5/3.

5. The figure shows the values of u(x, y) along the boundary. For Gauss-Seidel

the coefficients of the unknowns u11, u21, u31, u12, u22, u32, u13, u23, u33

are shown in the matrix





0 .25 0 .25 0 0 0 0 0

.25 0 .25 0 .25 0 0 0 0

0 .25 0 0 0 .25 0 0 0

.25 0 0 0 .25 0 .25 0 0

0 .25 0 .25 0 .25 0 .25 0

0 0 .25 0 .25 0 0 0 .25

0 0 0 .25 0 0 0 .25 0

0 0 0 0 .25 0 .25 0 .25

0 0 0 0 0 .25 0 .25 0





The constant terms in the equations are 0, 0, 6.25, 0, 0, 12.5, 6.25, 12.5, 37.5. We use 25 as the

initial guess for each variable. Then u11 = 6.25, u21 = u12 = 12.5, u31 = u13 = 18.75, u22 = 25,

u32 = u23 = 37.5, and u33 = 56.25

6. The coefficients of the unknowns are the same as shown above in Problem 5. The constant terms

are 7.5, 5, 20, 10, 0, 15, 17.5, 5, 27.5. We use 32.5 as the initial guess for each variable. Then

u11 = 21.92, u21 = 28.30, u31 = 38.17, u12 = 29.38, u22 = 33.13, u32 = 44.38, u13 = 22.46,

u23 = 30.45, and u33 = 46.21.

7. (a) Using the difference approximations for uxx and uyy we obtain

uxx + uyy =
1

h2 (ui+1,j + ui,j+1 + ui−1,j + ui,j−1 − 4uij) = f(x, y)

so that

ui+1,j + ui,j+1 + ui−1,j + ui,j−1 − 4uij = h2f(x, y).

832 CHAPTER 15 NUMERICAL SOLUTIONS OF PARTIAL DIFFERENTIAL EQUATIONS 
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(b) By symmetry, as shown in the figure, we need only solve for u1, u2,

u3, u4, and u5. The difference equations are

u2 + 0 + 0 + 1 − 4u1 =
1

4
(−2)

u3 + 0 + u1 + 1 − 4u2 =
1

4
(−2)

u4 + 0 + u2 + u5 − 4u3 =
1

4
(−2)

0 + 0 + u3 + u3 − 4u4 =
1

4
(−2)

u3 + u3 + 1 + 1 − 4u5 =
1

4
(−2)

or
u1 = 0.25u2 + 0.375

u2 = 0.25u1 + 0.25u3 + 0.375

u3 = 0.25u2 + 0.25u4 + 0.25u5 + 0.125

u4 = 0.5u3 + 0.125

u5 = 0.5u3 + 0.625.

Using Gauss-Seidel iteration we find u1 = 0.5427, u2 = 0.6707, u3 = 0.6402, u4 = 0.4451, and

u5 = 0.9451.

8. By symmetry, as shown in the figure, we need only solve for u1, u2, u3, u4,

and u5. The difference equations are

u2 + 0 + 0 + u3 − 4u1 = −1

0 + 0 + u1 + u4 − 4u2 = −1

u4 + u1 + 0 + u5 − 4u3 = −1

u2 + u2 + u3 + u3 − 4u4 = −1

u3 + u3 + 0 + 0 − 4u5 = −1

or

u1 = 0.25u2 + 0.25u3 + 0.25

u2 = 0.25u1 + 0.25u4 + 0.25

u3 = 0.25u1 + 0.25u4 + 0.25u5 + 0.25

u4 = 0.5u2 + 0.5u3 + 0.25

u5 = 0.5u3 + 0.25.

Using Gauss-Seidel iteration we find u1 = 0.6157, u2 = 0.6493, u3 = 0.8134, u4 = 0.9813, and

u5 = 0.6567.

83315.1  Laplace's Equation
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CHAPTER 15 NUMERICAL SOLUTIONS OF PARTIAL DIFFERENTIAL EQUATIONS 

1. We identify c = 1, a = 2, T = 1, n = 8, and m = 40. Then h = 2/8 = 0.25, k = 1/40 = 0.025, and

λ = 2/5 = 0.4.

15.2 Heat Equationq

834
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2.

3. We identify c = 1, a = 2, T = 1, n = 8, and m = 40. Then h = 2/8 = 0.25, k = 1/40 = 0.025, and

λ = 2/5 = 0.4.

83515.2  Heat Equation
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CHAPTER 15 NUMERICAL SOLUTIONS OF PARTIAL DIFFERENTIAL EQUATIONS 

4. We identify c = 1, a = 2, T = 1, n = 8, and m = 20. Then h = 2/8 = 0.25, h = 1/20 = 0.05, and

λ = 4/5 = 0.8.

In this case λ = 0.8 is greater than 0.5 and the procedure is unstable.

836

© 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part, except for use as permitted in a license distributed 
with a certain product or service or otherwise on a password-protected website for classroom use. 

Not For Sale

©
 C

en
ga

ge
 L

ea
rn

in
g.

 A
ll 

rig
ht

s r
es

er
ve

d.
 N

o 
di

st
rib

ut
io

n 
al

lo
w

ed
 w

ith
ou

t e
xp

re
ss

 a
ut

ho
riz

at
io

n.



5. We identify c = 1, a = 2, T = 1, n = 8, and m = 20. Then h = 2/8 = 0.25, k = 1/20 = 0.05, and

λ = 4/5 = 0.8.

6. (a) We identify c = 15/88 ≈ 0.1705, a = 20, T = 10, n = 10, and m = 10. Then h = 2, k = 1, and

λ = 15/352 ≈ 0.0426.

83715.2  Heat Equation

© 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part, except for use as permitted in a license distributed 
with a certain product or service or otherwise on a password-protected website for classroom use. Not For Sale

©
 C

en
ga

ge
 L

ea
rn

in
g.

 A
ll 

rig
ht

s r
es

er
ve

d.
 N

o 
di

st
rib

ut
io

n 
al

lo
w

ed
 w

ith
ou

t e
xp

re
ss

 a
ut

ho
riz

at
io

n.



CHAPTER 15 NUMERICAL SOLUTIONS OF PARTIAL DIFFERENTIAL EQUATIONS 

(b) We identify c = 15/88 ≈ 0.1705, a = 50, T = 10, n = 10, and m = 10. Then h = 5, k = 1, and

λ = 3/440 ≈ 0.0068.

(c) We identify c = 50/27 ≈ 1.8519, a = 20, T = 10, n = 10, and m = 10. Then h = 2, k = 1, and

λ = 25/54 ≈ 0.4630.

(d) We identify c = 260/159 ≈ 1.6352, a = 100, T = 10, n = 10, and m = 10. Then h = 10, k = 1,

and λ = 13/795 ≈ 00164.
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7. (a) We identify c = 15/88 ≈ 0.1705, a = 20, T = 10, n = 10, and m = 10. Then h = 2, k = 1, and

λ = 15/352 ≈ 0.0426.

(b) We identify c = 15/88 ≈ 0.1705, a = 50, T = 10, n = 10, and m = 10. Then h = 5, k = 1, and

λ = 3/440 ≈ 0.0068.

(c) We identify c = 50/27 ≈ 1.8519, a = 20, T = 10, n = 10, and m = 10. Then h = 2, k = 1, and

λ = 25/54 ≈ 0.4630.

83915.2  Heat Equation
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CHAPTER 15 NUMERICAL SOLUTIONS OF PARTIAL DIFFERENTIAL EQUATIONS 

(d) We identify c = 260/159 ≈ 1.6352, a = 100, T = 10, n = 10, and m = 10. Then h = 10, k = 1,

and λ = 13/795 ≈ 00164.

8. (a) We identify c = 15/88 ≈ 0.1705, a = 20, T = 10, n = 10, and m = 10. Then h = 2, k = 1, and

λ = 15/352 ≈ 0.0426.

(b) We identify c = 15/88 ≈ 0.1705, a = 50, T = 10, n = 10, and m = 10. Then h = 5, k = 1, and

λ = 3/440 ≈ 0.0068.
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(c) We identify c = 50/27 ≈ 1.8519, a = 20, T = 10, n = 10, and m = 10. Then h = 2, k = 1, and

λ = 25/54 ≈ 0.4630.

(d) We identify c = 260/159 ≈ 1.6352, a = 100, T = 10, n = 10, and m = 10. Then h = 10, k = 1,

and λ = 13/795 ≈ 00164.

9. (a) We identify c = 15/88 ≈ 0.1705, a = 20, T = 10, n = 10, and m = 10. Then h = 2, k = 1, and

λ = 15/352 ≈ 0.0426.

84115.2  Heat Equation
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CHAPTER 15 NUMERICAL SOLUTIONS OF PARTIAL DIFFERENTIAL EQUATIONS 

(b) We identify c = 15/88 ≈ 0.1705, a = 50, T = 10, n = 10, and m = 10. Then h = 5, k = 1, and

λ = 3/440 ≈ 0.0068.

(c) We identify c = 50/27 ≈ 1.8519, a = 20, T = 10, n = 10, and m = 10. Then h = 2, k = 1, and

λ = 25/54 ≈ 0.4630.

(d) We identify c = 260/159 ≈ 1.6352, a = 100, T = 10, n = 10, and m = 10. Then h = 10, k = 1,

and λ = 13/795 ≈ 00164.

10. (a) With n = 4 we have h = 1/2 so that λ = 1/100 = 0.01.

(b) We observe that α = 2(1 + 1/λ) = 202 and β = 2(1 − 1/λ) = −198. The system of equations
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is

−u01 + αu11 − u21 = u20 − βu10 + u00

−u11 + αu21 − u31 = u30 − βu20 + u10

−u21 + αu31 − u41 = u40 − βu30 + u20.

Now u00 = u01 = u40 = u41 = 0, so the system is

αu11 − u21 = u20 − βu10

−u11 + αu21 − u31 = u30 − βu20 + u10

−u21 + αu31 = −βu30 + u20

or

202u11 − u21 = sin π + 198 sin
π

2
= 198

−u11 + 202u21 − u31 = sin
3π

2
+ 198 sin π + sin

π

2
= 0

−u21 + 202u31 = 198 sin
3π

2
+ sin π = −198.

(c) The solution of this system is u11 ≈ 0.9802, u21 = 0, u31 ≈ −0.9802.

11. (a) The differential equation is k
∂2u

∂x2 =
∂u

∂t
where k = K/γρ. If we let u(x, t) = v(x, t) + ψ(x),

then

∂2u

∂x2 =
∂2v

∂x2 + ψ′′ and
∂u

∂t
=

∂v

∂t
.

Substituting into the differential equation gives

k
∂2v

∂x2 + kψ′′ =
∂v

∂t
.

Requiring kψ′′ = 0 we have ψ(x) = c1x + c2. The boundary conditions become

u(0, t) = v(0, t) + ψ(0) = 20 and u(20, t) = v(20, t) + ψ(20) = 30.

Letting ψ(0) = 20 and ψ(20) = 30 we obtain the homogeneous boundary conditions in v:

v(0, t) = v(20, t) = 0. Now ψ(0) = 20 and ψ(20) = 30 imply that c1 = 1/2 and c2 = 20. The

steady-state solution is ψ(x) = 1
2 x + 20.

84315.2  Heat Equation
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CHAPTER 15 NUMERICAL SOLUTIONS OF PARTIAL DIFFERENTIAL EQUATIONS 

(b) To use the Crank-Nicholson method we identify c = 375/212 ≈ 1.7689, a = 20, T = 400, n = 5,

and m = 40. Then h = 4, k = 10, and λ = 1875/1696 ≈ 1.1055.

We observe that the approximate steady-state temperatures agree exactly with the correspond-

ing values of ψ(x).

844
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12. We identify c = 1, a = 1, T = 1, n = 5, and m = 20. Then h = 0.2, k = 0.04, and λ = 1. The

values below were obtained using Excel, which carries more than 12 significant digits. In order to

see evidence of instability use 0 ≤ t ≤ 2.

1. (a) Identifying h = 1/4 and k = 1/10 we see that λ = 2/5.

15.3 Wave Equationq

84515.2  Heat Equation
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CHAPTER 15 NUMERICAL SOLUTIONS OF PARTIAL DIFFERENTIAL EQUATIONS 

(b) Identifying h = 2/5 and k = 1/10 we see that λ = 1/4.

(c) Identifying h = 1/10 and k = 1/25 we see that λ = 2
√

2/5.

2. (a) In Section 12.4 the solution of the wave equation is shown to be

u(x, t) =
∞∑

n=1

(An cos nπt + Bn sin nπt) sin nπx

846
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where

An = 2
∫ 1

0
sin πx sin nπx dx =

{
1, n = 1

0, n = 2, 3, 4, . . .

and

Bn =
2

nπ

∫ 1

0
0 dx = 0.

Thus u(x, t) = cos πt sin πx.

(b) We have h = 1/4, k = 0.5/5 = 0.1 and λ = 0.4. Now u0,j = u4,j = 0 or j = 0, 1, . . . , 5, and

the initial values of u are u1,0 = u(1/4, 0) = sin π/4 ≈ 0.7071, u2,0 = u(1/2, 0) = sin π/2 = 1,

u3,0 = u(3/4, 0) = sin 3π/4 ≈ 0.7071. From equation (6) in the text we have

ui,1 = 0.8(ui+1,0 + ui−1,0) + 0.84ui,0 + 0.1(0).

Then u1,1 ≈ 0.6740, u2,1 = 0.9531, u3,1 = 0.6740. From equation (3) in the text we have for

j = 1, 2, 3, . . .

ui,j+1 = 0.16ui+1,j + 2(0.84)ui,j + 0.16ui−1,j − ui,j−1.

The results of the calculations are given in the table.

(c)

84715.2  Heat Equation
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CHAPTER 15 NUMERICAL SOLUTIONS OF PARTIAL DIFFERENTIAL EQUATIONS 

3. (a) Identifying h = 1/5 and k = 0.5/10 = 0.05 we see that λ = 0.25.

(b) Identifying h = 1/5 and k = 0.5/20 = 0.025 we see that λ = 0.125.

4. We have λ = 1. The initial values of n are u1,0 = u(0.2, 0) = 0.16, u2,0 = u(0.4) = 0.24, u3,0 = 0.24,

and u4,0 = 0.16. From equation (6) in the text we have

ui,1 =
1

2
(ui+1,0 + ui−1,0) + 0ui,0 + k · 0 =

1

2
(ui+1,0 + ui−1,0).

Then, using u0,0 = u5,0 = 0, we find u1,1 = 0.12, u2,1 = 0.2, u3,1 = 0.2, and u4,1 = 0.12.

848
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5. We identify c = 24944.4, k = 0.00020045 seconds = 0.20045 milliseconds, and λ = 0.5. Time in the

table is expressed in milliseconds.

84915.2  Heat Equation
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CHAPTER 15 NUMERICAL SOLUTIONS OF PARTIAL DIFFERENTIAL EQUATIONS 

6. We identify c = 24944.4, k = 0.00010022 seconds = 0.10022 milliseconds, and λ = 0.25. Time in

the table is expressed in milliseconds.

850
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1. Using the figure we obtain the system

u21 + 0 + 0 + 0 − 4u11 = 0

u31 + 0 + u11 + 0 − 4u21 = 0

50 + 0 + u21 + 0 − 4u31 = 0.

By Gauss-Elimination then,




−4 1 0 0

1 −4 1 0

0 1 −4 −50




row−−−−−−→

operations





1 −4 1 0

0 1 −4 −50

0 0 1 13.3928



 .

The solution is u11 = 0.8929, u21 = 3.5714, u31 = 13.3928.

2. By symmetry we observe that ui,1 = ui,3 for i = 1, 2, . . . , 7.

We then use Gauss-Seidel iteration with an initial guess of

7.5 for all variables to solve the system

u11 = 0.25u21 + 0.25u12

u21 = 0.25u31 + 0.25u22 + 0.25u11

u31 = 0.25u41 + 0.25u32 + 0.25u21

u41 = 0.25u51 + 0.25u42 + 0.25u31

u51 = 0.25u61 + 0.25u52 + 0.25u41

u61 = 0.25u71 + 0.25u62 + 0.25u51

u71 = 12.5 + 0.25u72 + 0.25u61

u12 = 0.25u22 + 0.5u11

u22 = 0.25u32 + 0.5u21 + 0.25u12

u32 = 0.25u42 + 0.5u31 + 0.25u22

15.R Chapter 15 in Reviewq

85115.2  Heat Equation
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CHAPTER 15 NUMERICAL SOLUTIONS OF PARTIAL DIFFERENTIAL EQUATIONS 

u42 = 0.25u52 + 0.5u41 + 0.25u32

u52 = 0.25u62 + 0.5u51 + 0.25u42

u62 = 0.25u72 + 0.5u61 + 0.25u52

u72 = 12.5 + 0.5u71 + 0.25u62.

After 30 iterations we obtain u11 = u13 = 0.1765, u21 = u23 = 0.4566, u31 = u33 = 1.0051,

u41 = u43 = 2.1479, u51 = u53 = 4.5766, u61 = u63 = 9.8316, u71 = u73 = 21.6051, u12 = 0.2494,

u22 = 0.6447, u32 = 1.4162, u42 = 3.0097, u52 = 6.3269, u62 = 13.1447, u72 = 26.5887.

3. (a)

(b)

(c) The table in part (b) is the same as the table in part (a) shifted downward one row.
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Chapter 0

APPENDIX I

0.1 Gamma Functionq

Appendix IApp

A I Gamma Functionq

1. (a) Γ(5) = Γ(4 + 1) = 4! = 24

(b) Γ(7) = Γ(6 + 1) = 6! = 720

(c) Using Example 1 in the text,

−2
√
π = Γ

(
−1

2

)
= Γ

(
−3

2
+ 1

)
= −3

2
Γ

(
−3

2

)
.

Thus, Γ(−3/2) = 4
√
π/3.

(d) Using (c) above we have

4
√
π

3
= Γ

(
−3

2

)
= Γ

(
−5

2
+ 1

)
= −5

2
Γ

(
−5

2

)
.

Thus, Γ(−5/2) = −8
√
π/15.

2. If t = x5, then dt = 5x4 dx and x5 dx = 1
5 t

1/5 dt. Now∫ ∞
0

x5e−x
5
dx =

∫ ∞
0

1

5
t1/5e−t dt =

1

5

∫ ∞
0

t1/5e−t dt

=
1

5
Γ

(
6

5

)
=

1

5
(0.92) = 0.184.

3. If t = x3, then dt = 3x2 dx and x4 dx = 1
3 t

2/3 dt. Now∫ ∞
0

x4e−x
3
dx =

∫ ∞
0

1

3
t2/3e−t dt =

1

3

∫ ∞
0

t2/3e−t dt

=
1

3
Γ

(
5

3

)
=

1

3
(0.89) ≈ 0.297.
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4. If t = − lnx = ln
1

x
then dt = −1

x
dx. Also et =

1

x
, so x = e−t and dx = −x dt = −e−t dt.

Thus ∫ 1

0
x3
(

ln
1

x

)3

dx =

∫ 0

∞
(e−t)3t3(−e−t) dt

=

∫ ∞
0

t3e−4t dt

=

∫ ∞
0

(
1

4
u

)3

e−u
(

1

4
du

)
[u = 4t]

=
1

256

∫ ∞
0

u3e−udu =
1

256
Γ(4)

=
1

256
(3!) =

3

128
.

5. Since e−t ≥ e−1 for 0 ≤ t ≤ 1,

Γ(x) =

∫ ∞
0

tx−1e−tdt >

∫ 1

0
tx−1e−tdt ≥ e−1

∫ 1

0
tx−1dt

=
1

e

(
1

x
tx
) ∣∣∣∣1

0

=
1

ex

for x > 0. As x→ 0+, we see that Γ(x)→∞.

6. For x > 0 we integrate by parts:

Γ(x+ 1) =

∫ ∞
0

txe−tdt qquad

u = tx dv = e−t dt
du = xtx−1 dt v = −e−t

Γ(x+ 1) = −txe−t
∣∣∣∣∞
0

−
∫ ∞
0

xtx−1(−e−t) dt

= x

∫ ∞
0

tx−1e−tdt = xΓ(x).

7. Γ(x+ 1) = lim
n→∞

n!nx+1

(x+ 1)(x+ 2) · · · (x+ n)(x+ n+ 1)

Γ(x+ 1) = lim
n→∞

x · n!nx

x(x+ 1)(x+ 2) · · · (x+ n)
· n

(x+ n+ 1)

Γ(x+ 1) = x · lim
n→∞

n!nx

x(x+ 1)(x+ 2) · · · (x+ n)
· lim
n→∞

n

x+ n+ 1
= x · Γ(x) · 1 = xΓ(x)
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Chapter 0

Appendix IIApp

A II Matricesq

1. (a) A + B =

(
4 − 2 5 + 6

−6 + 8 9 − 10

)

=

(
2 11

2 −1

)

(b) B − A =

(
−2 − 4 6 − 5

8 + 6 −10 − 9

)

=

(
−6 1

14 −19

)

(c) 2A + 3B =

(
8 10

−12 18

)

+

(
−6 18

24 −30

)

=

(
2 28

12 −12

)

2. (a) A − B =





−2 − 3 0 + 1

4 − 0 1 − 2

7 + 4 3 + 2



 =





−5 1

4 −1

11 5





(b) B − A =





3 + 2 −1 − 0

0 − 4 2 − 1

−4 − 7 −2 − 3



 =





5 −1

−4 1

−11 −5





(c) 2(A + B) = 2





1 −1

4 3

3 1



 =





2 −2

8 6

6 2





3. (a) AB =

(
−2 − 9 12 − 6

5 + 12 −30 + 8

)

=

(
−11 6

17 −22

)

(b) BA =

(
−2 − 30 3 + 24

6 − 10 −9 + 8

)

=

(
−32 27

− 4 −1

)

(c) A2 =

(
4 + 15 −6 − 12

−10 − 20 15 + 16

)

=

(
19 −18

−30 31

)

(d) B2 =

(
1 + 18 −6 + 12

−3 + 6 18 + 4

)

=

(
19 6

3 22

)

4. (a) AB =

−4 + 4 6 − 12 −3 + 8

−20 + 10 30 − 30 −15 + 20

−32 + 12 48 − 36 −24 + 24

=

0 −6 5

−10 0 5

−20 12 0
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(b) BA =

(
−4 + 30 − 24 −16 + 60 − 36

1 − 15 + 16 4 − 30 + 24

)

=

(
2 8

2 −2

)

5. (a) BC =

(
9 24

3 8

)

(b) A(BC) =

(
1 −2

−2 4

) (
9 24

3 8

)

=

(
3 8

−6 −16

)

(c) C(BA) =

(
0 2

3 4

) (
0 0

0 0

)

=

(
0 0

0 0

)

(d) A(B + C) =

(
1 −2

−2 4

) (
6 5

5 5

)

=

(
−4 −5

8 10

)

6. (a) AB = ( 5 −6 7 )





3

4

−1



 = (−16)

(b) BA =





3

4

−1



 ( 5 −6 7 ) =





15 −18 21

20 −24 28

−5 6 −7





(c) (BA)C =





15 −18 21

20 −24 28

−5 6 −7









1 2 4

0 1 −1

3 2 1



 =





78 54 99

104 72 132

−26 −18 −33





(d) Since AB is 1 × 1 and C is 3 × 3 the product (AB)C is not defined.

7. (a) ATA = ( 4 8 −10 )





4

8

−10



 = (180)

(b) BTB =





2

4

5



 ( 2 4 5 ) =





4 8 10

8 16 20

10 20 25





(c) A + BT =





4

8

−10



 +





2

4

5



 =





6

12

−5
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8. (a) A + BT =

(
1 2

2 4

)

+

(
−2 5

3 7

)

=

(
−1 7

5 11

)

(b) 2AT − BT =

(
2 4

4 8

)

−
(
−2 5

3 7

)

=

(
4 −1

1 1

)

(c) AT (A − B) =

(
1 2

2 4

) (
3 −1

−3 −3

)

=

(
−3 −7

−6 −14

)

9. (a) (AB)T =

(
7 10

38 75

)T

=

(
7 38

10 75

)

(b) BTAT =

(
5 −2

10 −5

) (
3 8

4 1

)

=

(
7 38

10 75

)

10. (a) AT + BT =

(
5 −4

9 6

)

+

(
−3 −7

11 2

)

=

(
2 −11

20 8

)

(b) (A + B)T =

(
2 20

−11 8

)T

=

(
2 −11

20 8

)

11.

(
−4

8

)

−
(

4

16

)

+

(
−6

9

)

=

(
−14

1

)

12.





6t

3t2

−3t



 +





−t + 1

−t2 + t

3t − 3



 −





6t

8

−10t



 =





−t + 1

2t2 + t − 8

10t − 3





13.

(
−19

18

)

−
(

19

20

)

=

(
−38

−2

)

14.





−9t + 3

13t − 5

−6t + 4



 +





−t

1

4



 −





2

8

−6



 =





−10t + 1

13t − 12

−6t + 14





15. Since detA = 0, A is singular.

16. Since detA = 3, A is nonsingular.

A−1 =
1

3

(
4 −5

−1 2

)
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17. Since detA = 4, A is nonsingular.

A−1 =
1

4

(
−5 −8

3 4

)

18. Since detA = −6, A is nonsingular.

A−1 = −1

6

(
2 −10

−2 7

)

19. Since detA = 2, A is nonsingular. The cofactors are

A11 = 0 A12 = 2 A13 = −4

A21 = −1 A22 = 2 A23 = −3

A31 = 1 A32 = −2 A33 = 5.

Then

A−1 =
1

2





0 2 −4

−1 2 −3

1 −2 5





T

=
1

2





0 −1 1

2 2 −2

−4 −3 5



 .

20. Since detA = 27, A is nonsingular. The cofactors are

A11 = −1 A12 = 4 A13 = 22

A21 = 7 A22 = −1 A23 = −19

A31 = −1 A32 = 4 A33 = −5.

Then

A−1 =
1

27





−1 4 22

7 −1 −19

−1 4 −5





T

=
1

27





−1 7 −1

4 −1 4

22 −19 −5



 .

21. Since detA = −9, A is nonsingular. The cofactors are

A11 = −2 A12 = −13 A13 = 8

A21 = −2 A22 = 5 A23 = −1

A31 = −1 A32 = 7 A33 = −5.

Then

A−1 = −1

9





−2 −13 8

−2 5 −1

−1 7 −5





T

= −1

9





−2 −2 −1

−13 5 7

8 −1 −5



 .

22. Since detA = 0, A is singular.
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23. Since detA(t) = 2e3t #= 0, A is nonsingular.

A−1 =
1

2
e−3t

(
3e4t −e4t

−4e−t 2e−t

)

24. Since detA(t) = 2e2t #= 0, A is nonsingular.

A−1 =
1

2
e−2t

(
et sin t 2et cos t

−et cos t 2et sin t

)

25.
dX

dt
=





−5e−t

−2e−t

7e−t





26.
dX

dt
=

(
cos 2t + 8 sin 2t

−6 cos 2t − 10 sin 2t

)

27. X =

(
2e2t + 8e−3t

−2e2t + 4e−3t

)

so that
dX

dt
=

(
4e2t − 24e−3t

−4e2t − 12e−3t

)

.

28.
dX

dt
=

(
10te2t + 5e2t

3t cos 3t + sin 3t

)

29. (a)
dA

dt
=

(
4e4t −π sin πt

2 6t

)

(b)
∫ 2

0
A(t) dt =

( 1
4e4t 1

π sin πt

t2 t3 − t

) ∣∣∣∣∣

t=2

t=0

=

( 1
4e8 − 1

4 0

4 6

)

(c)
∫ t

0
A(s) ds =

( 1
4e4s 1

π sin πs

s2 s3 − s

) ∣∣∣∣∣

s=t

s=0

=

( 1
4e4t − 1

4
1
π sin πt

t2 t3 − t

)

30. (a)
dA

dt
=

(
−2t/(t2 + 1)2 3

2t 1

)

(b)
dB

dt
=

(
6 0

−1/t2 4

)

(c)
∫ 1

0
A(t) dt =

(
tan−1 t 3

2t2

1
3t3 1

2t2

) ∣∣∣∣∣

t=1

t=0

=

( π
4

3
2

1
3

1
2

)

(d)
∫ 2

1
B(t) dt =

(
3t2 2t

ln t 2t2

) ∣∣∣∣∣

t=2

t=1

=

(
9 2

ln 2 6

)
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(e) A(t)B(t) =

(
6t/(t2 + 1) + 3 2/(t2 + 1) + 12t2

6t3 + 1 2t2 + 4t2

)

(f)
d

dt
A(t)B(t) =

(
(6 − 6t2)/(t2 + 1)2 −4t/(t2 + 1)2 + 24t

18t2 12t

)

(g)
∫ t

1
A(s)B(s) ds =

∫ t

1

(
6s/(s2 + 1) + 3 2/(s2 + 1) + 12s2

6s3 + 1 6s2

)

ds

=

(
3 ln(t2 + 1) + 3t − 3 ln 2 − 3 2 tan−1 t + 4t3 − π/2 − 4

3t4/2 + t − 5/2 2t3 − 2

)

31.





1 1 −2 14

2 −1 1 0

6 3 4 1



 =⇒





1 1 −2 14

0 −3 5 −28

0 6 1 1



 =⇒





1 0 −1/3 14/3

0 1 −5/3 28/3

0 0 11 −55





=⇒





1 0 0 3

0 1 0 1

0 0 1 −5





Thus x = 3, y = 1, and z = −5.

32.





5 −2 4 10

1 1 1 9

4 −3 3 1



 =⇒





1 1 1 9

0 −7 −1 −35

0 −7 −1 −35



 =⇒





1 0 6/7 4

0 1 1/7 5

0 0 0 0





Letting z = t we find y = 5 − 1
7t, and x = 4 − 6

7t.

33.





1 −1 −5 7

5 4 −16 −10

0 1 1 −5



 =⇒





1 −1 −5 7

0 1 1 −5

0 9 9 −45



 =⇒





1 0 −4 2

0 1 1 −5

0 0 0 0





Letting z = t we find y = −5 − t, and x = 2 + 4t.

34.





1 1 −3 6

4 2 −1 7

3 1 1 4



 =⇒





1 1 −3 6

0 −2 11 −17

0 −2 10 −14



 =⇒





1 0 5/2 −5/2

0 1 −11/2 17/2

0 0 − 1 3
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=⇒





1 0 0 5

0 1 0 −8

0 0 1 −3





Thus x = 5, y = −8, and z = −3.

35.





2 1 1 4

10 −2 2 −1

6 −2 4 8



 =⇒





1 1/2 1/2 2

0 −7 −3 −21

0 −5 1 4



 =⇒





1 0 2/7 1/2

0 1 3/7 3

0 0 22/7 11





=⇒





1 0 0 −1/2

0 1 0 3/2

0 0 1 7/2





Thus x = −1/2, y = 3/2, and z = 7/2.

36.





1 0 2 8

1 2 −2 4

2 5 −6 6



 =⇒





1 0 2 8

0 2 −4 −4

0 5 −10 −10



 =⇒





1 0 2 8

0 1 −2 −2

0 0 0 0





Letting z = t we find y = −2 + 2t, and x = 8 − 2t.

37.





1 1 −1 −1 −1

1 1 1 1 3

1 −1 1 −1 3

4 1 −2 1 0




=⇒





1 1 −1 −1 −1

0 0 2 2 4

0 −2 2 0 4

0 −3 2 5 4




=⇒





1 0 0 −1 1

0 1 −1 0 −2

0 0 2 2 4

0 0 −1 5 −2





=⇒





1 0 0 −1 1

0 1 0 1 0

0 0 1 1 2

0 0 0 6 0




=⇒





1 0 0 0 1

0 1 0 0 0

0 0 1 0 2

0 0 0 1 0





Thus x1 = 1, x2 = 0, x3 = 2, and x4 = 0.

38.





1 3 1 0

2 1 1 0

7 1 3 0



 =⇒





1 3 1 0

0 −5 −1 0

0 −20 −4 0



 =⇒





1 0 2/5 0

0 1 1/5 0

0 0 0 0





Letting x3 = t, we find x2 = −1
5t and x1 = −2

5t.
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39.





1 2 4 2

2 4 3 1

1 2 −1 7



 =⇒





1 2 4 2

0 0 −5 −3

0 0 −5 5



 =⇒





1 2 0 −2/5

0 0 1 3/5

0 0 0 8





There is no solution.

40.





1 1 −1 3 1

0 1 −1 −4 0

1 2 −2 −1 6

4 7 −7 0 9




=⇒





1 1 −1 3 1

0 1 −1 −4 0

0 1 −1 −4 5

0 3 −3 −12 5




=⇒





1 0 0 7 1

0 1 −1 −4 0

0 0 0 0 5

0 0 0 0 5





There is no solution.

41.





4 2 3 1 0 0

2 1 0 0 1 0

−1 −2 0 0 0 1




R13−−−−−−→





−1 −2 0 0 0 1

2 1 0 0 1 0

4 2 3 1 0 0





row−−−−−−→
operations





1 0 0 0 2
3

1
3

0 1 0 0 −1
3 −2

3

0 0 1 1
3 −2

3 0



; A−1 =





0 2
3

1
3

0 −1
3 −2

3
1
3 −2

3 0





42.





2 4 −2 1 0 0

4 2 −2 0 1 0

8 10 −6 0 0 1




row−−−−−−→

operations





1 2 −1 1
2 0 0

0 1 −1
3

1
3 −1

6 0

0 0 0 −2 −1 1



; A is singular.

43.





−1 3 0 1 0 0

3 −2 1 0 1 0

0 1 2 0 0 1




row−−−−−−→

operations





1 −3 0 −1 0 0

0 1 1 1 1 0

0 0 1 −1 −1 1





row−−−−−−→
operations





1 0 0 5 6 −3

0 1 0 2 2 −1

0 0 1 −1 −1 1



; A−1 =





5 6 −3

2 2 −1

−1 −1 1





44.





1 2 3 1 0 0

0 1 4 0 1 0

0 0 8 0 0 1




row−−−−−−→

operations





1 0 0 1 −2 5
8

0 1 0 0 1 −1
2

0 0 1 0 0 1
8



; A−1 =





1 −2 5
8

0 1 −1
2

0 0 1
8





45.





1 2 3 1 1 0 0 0

−1 0 2 1 0 1 0 0

2 1 −3 0 0 0 1 0

1 1 2 1 0 0 0 1





row−−−−−−→
operations





1 2 3 1 1 0 0 0

0 1 5
2 1 1

2
1
2 0 0

0 0 1 −2
3

1
3 −1 −2

3 0

0 0 0 1 −1
2 1 1

2
1
2
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row−−−−−−→
operations





1 0 0 0 −1
2 −2

3 −1
6

7
6

0 1 0 0 1 1
3

1
3 −4

3

0 0 1 0 0 −1
3 −1

3
1
3

0 0 0 1 −1
2 1 1

2
1
2





; A−1 =





−1
2 −2

3 −1
6

7
6

1 1
3

1
3 −4

3

0 −1
3 −1

3
1
3

−1
2 1 1

2
1
2





46.





1 0 0 0 1 0 0 0

0 0 1 0 0 1 0 0

0 0 0 1 0 0 1 0

0 1 0 0 0 0 0 1





row−−−−−−→
interchange





1 0 0 0 1 0 0 0

0 1 0 0 0 0 0 1

0 0 1 0 0 1 0 0

0 0 0 1 0 0 1 0




; A−1 =





1 0 0 0

0 0 0 1

0 1 0 0

0 0 1 0





47. We solve

det(A − λI) =

∣∣∣∣∣
−1 − λ 2

−7 8 − λ

∣∣∣∣∣ = (λ − 6)(λ − 1) = 0.

For λ1 = 6 we have
(−7 2 0

−7 2 0

)

=⇒
(

1 −2/7 0

0 0 0

)

so that k1 = 2
7k2. If k2 = 7 then

K1 =

(
2

7

)

.

For λ2 = 1 we have
(−2 2 0

−7 7 0

)

=⇒
(

1 −1 0

0 0 0

)

so that k1 = k2. If k2 = 1 then

K2 =

(
1

1

)

.

48. We solve

det(A − λI) =

∣∣∣∣∣
2 − λ 1

2 1 − λ

∣∣∣∣∣ = λ(λ − 3) = 0.

For λ1 = 0 we have
(

2 1 0

2 1 0

)

=⇒
(

1 1/2 0

0 0 0

)

so that k1 = −1
2k2. If k2 = 2 then

K1 =

(
−1

2

)

.
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For λ2 = 3 we have (−1 1 0

2 −2 0

)

=⇒
(

1 −1 0

0 0 0

)

so that k1 = k2. If k2 = 1 then

K2 =

(
1

1

)

.

49. We solve

det(A − λI) =

∣∣∣∣∣
−8 − λ −1

16 −λ

∣∣∣∣∣ = (λ + 4)2 = 0.

For λ1 = λ2 = −4 we have (−4 −1 0

16 4 0

)

=⇒
(

1 1/4 0

0 0 0

)

so that k1 = −1
4k2. If k2 = 4 then

K1 =

(
−1

4

)

.

50. We solve

det(A − λI) =

∣∣∣∣∣
1 − λ 1

1/4 1 − λ

∣∣∣∣∣ = (λ − 3/2)(λ − 1/2) = 0.

For λ1 = 3/2 we have
(−1/2 1 0

1/4 −1/2 0

)

=⇒
(

1 −2 0

0 0 0

)

so that k1 = 2k2. If k2 = 1 then

K1 =

(
2

1

)

.

If λ2 = 1/2 then
(

1/2 1 0

1/4 1/2 0

)

=⇒
(

1 2 0

0 0 0

)

so that k1 = −2k2. If k2 = 1 then

K2 =

(
−2

1

)

.

51. We solve

det(A − λI) =

∣∣∣∣∣∣∣∣

5 − λ −1 0

0 −5 − λ 9

5 −1 −λ

∣∣∣∣∣∣∣∣
= λ(4 − λ)(λ + 4) = 0.
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If λ1 = 0 then




5 −1 0 0

0 −5 9 0

5 −1 0 0



 =⇒





1 0 −9/25 0

0 1 −9/5 0

0 0 0 0





so that k1 = 9
25k3 and k2 = 9

5k3. If k3 = 25 then

K1 =





9

45

25



 .

If λ2 = 4 then




1 −1 0 0

0 −9 9 0

5 −1 −4 0



 =⇒





1 0 −1 0

0 1 −1 0

0 0 0 0





so that k1 = k3 and k2 = k3. If k3 = 1 then

K2 =





1

1

1



 .

If λ3 = −4 then




9 −1 0 0

0 −1 9 0

5 −1 4 0



 =⇒





1 0 −1 0

0 1 −9 0

0 0 0 0





so that k1 = k3 and k2 = 9k3. If k3 = 1 then

K3 =





1

9

1



 .

52. We solve

det(A − λI) =

∣∣∣∣∣∣∣∣

3 − λ 0 0

0 2 − λ 0

4 0 1 − λ

∣∣∣∣∣∣∣∣
= (3 − λ)(2 − λ)(1 − λ) = 0.

If λ1 = 1 then




2 0 0 0

0 1 0 0

4 0 0 0



 =⇒





1 0 0 0

0 1 0 0

0 0 0 0





865MatricesA II

© 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part, except for use as permitted in a license distributed 
with a certain product or service or otherwise on a password-protected website for classroom use. Not For Sale

©
 C

en
ga

ge
 L

ea
rn

in
g.

 A
ll 

rig
ht

s r
es

er
ve

d.
 N

o 
di

st
rib

ut
io

n 
al

lo
w

ed
 w

ith
ou

t e
xp

re
ss

 a
ut

ho
riz

at
io

n.



so that k1 = 0 and k2 = 0. If k3 = 1 then

K1 =





0

0

1



 .

If λ2 = 2 then




1 0 0 0

0 0 0 0

4 0 −1 0



 =⇒





1 0 0 0

0 0 1 0

0 0 0 0





so that k1 = 0 and k3 = 0. If k2 = 1 then

K2 =





0

1

0



 .

If λ3 = 3 then




0 0 0 0

0 −1 0 0

4 0 −2 0



 =⇒





1 0 −1/2 0

0 1 0 0

0 0 0 0





so that k1 = 1
2k3 and k2 = 0. If k3 = 2 then

K3 =





1

0

2



 .

53. We solve

det(A − λI) =

∣∣∣∣∣∣∣∣

−λ 4 0

−1 −4 − λ 0

0 0 −2 − λ

∣∣∣∣∣∣∣∣
= −(λ + 2)3 = 0.

For λ1 = λ2 = λ3 = −2 we have




2 4 0 0

−1 −2 0 0

0 0 0 0



 =⇒





1 2 0 0

0 0 0 0

0 0 0 0





so that k1 = −2k2. If k2 = 1 and k3 = 1 then

K1 =





−2

1

0



 and K2 =





0

0

1



 .
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54. We solve

det(A − λI) =

∣∣∣∣∣∣∣∣

1 − λ 6 0

0 2 − λ 1

0 1 2 − λ

∣∣∣∣∣∣∣∣
= (3 − λ)(1 − λ)2 = 0.

For λ = 3 we have 



−2 6 0 0

0 0 0 0

0 1 −1 0



 =⇒





1 0 −3 0

0 1 −1 0

0 0 0 0





so that k1 = 3k3 and k2 = k3. If k3 = 1 then

K1 =





3

1

1



 .

For λ2 = λ3 = 1 we have




0 6 0 0

0 1 1 0

0 1 1 0



 =⇒





0 1 0 0

0 0 1 0

0 0 0 0





so that k2 = 0 and k3 = 0. If k1 = 1 then

K2 =





1

0

0



 .

55. We solve

det(A − λI) =

∣∣∣∣∣
−1 − λ 2

−5 1 − λ

∣∣∣∣∣ = λ2 + 9 = (λ − 3i)(λ + 3i) = 0.

For λ1 = 3i we have
(−1 − 3i 2 0

−5 1 − 3i 0

)

=⇒
(

1 −(1/5) + (3/5)i 0

0 0 0

)

so that k1 =
(

1
5 − 3

5i
)
k2. If k2 = 5 then

K1 =

(
1 − 3i

5

)

.

For λ2 = −3i we have
(−1 + 3i 2 0

−5 1 + 3i 0

)

=⇒
(

1 −1
5 − 3

5i 0

0 0 0

)
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so that k1 =
(

1
5 + 3

5i
)
k2. If k2 = 5 then

K2 =

(
1 + 3i

5

)

.

56. We solve

det(A − λI) =

∣∣∣∣∣∣∣∣

2 − λ −1 0

5 2 − λ 4

0 1 2 − λ

∣∣∣∣∣∣∣∣
= −λ3 + 6λ2 − 13λ + 10 = (λ − 2)(−λ2 + 4λ − 5)

= (λ − 2)(λ − (2 + i))(λ − (2 − i)) = 0.

For λ1 = 2 we have 



0 −1 0 0

5 0 4 0

0 1 0 0



 =⇒





1 0 4/5 0

0 1 0 0

0 0 0 0





so that k1 = −4
5k3 and k2 = 0. If k3 = 5 then

K1 =





−4

0

5



 .

For λ2 = 2 + i we have




−i −1 0 0

5 −i 4 0

0 1 −i 0



 =⇒





1 −i 0 0

0 1 −i 0

0 0 0 0





so that k1 = ik2 and k2 = ik3. If k3 = i then

K2 =





−i

−1

i



 .

For λ3 = 2 − i we have 



i −1 0 0

5 i 4 0

0 1 i 0



 =⇒





1 i 0 0

0 1 i 0

0 0 0 0





so that k1 = −ik2 and k2 = −ik3. If k3 = i then

K3 =





−1

1

i



 .
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57. Let

A =

(
a11 a12

a21 a22

)

.

Then

d

dt
[A(t)X(t)] =

d

dt

(
a1 a2

a3 a4

) (
x1

x2

)

=
d

dt

(
a1x1 + a2x2

a3x1 + a4x2

)

=

(
a1x′

1 + a′1x1 + a2x′
2 + a′2x2

a3x′
1 + a′3x1 + a4x′

2 + a′4x2

)

=

(
a1 a2

a3 a4

) (
x′

1

x′
2

)

+

(
a′1 a′2
a′3 a′4

) (
x1

x2

)

= A(t)X′(t) + A′(t)X(t).

58. Assume detA #= 0 and AB = I, so that
(

a11 a12

a21 a22

) (
b11 b12

b21 b22

)

=

(
1 0

0 1

)

.

Then
a11b11 + a12b21 = 1

a21b11 + a21b21 = 0
and

a11b12 + a12b22 = 0

a21b12 + a21b22 = 1

and by Cramer’s rule

b11 =
a22

detA

b21 =
−a21

detA

b12 =
−a12

detA

b22 =
a11

detA
.

Thus

A−1 = B =
1

detA

(
a22 −a12

−a21 a11

)

.

59. Since A is nonsingular, AB = AC implies A−1AB = A−1AC. Then IB = IC and B = C.

60. Since

(AB)(B−1A−1) = A(BB−1)A−1 = AIA−1 = AA−1 = I

and

(B−1A−1)(AB) = B−1(A−1A)B = B−1IB = B−1B = I

we have

(AB)−1 = B−1A−1.

61. No; consider

A =

(
1 0

0 0

)

and B =

(
0 0

1 0

)

.

62. (a) A−1 =

[
1/a11 0

0 1/a22

]
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(b) A−1 =





1/a11 0 0

0 1/a22 0

0 0 1/a33





(c) For any diagonal matrix, the inverse matrix is obtaining by taking the reciprocals of the diagonal

entries and leaving all other entries 0.
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