

PERSPECTIVE-DRIVEN RADIOSITY ON GRAPHICS HARDWARE

A Thesis

by

JUSTIN TAYLOR BOZALINA

Submitted to the Office of Graduate Studies of
Texas A&M University

in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE

May 2011

Major Subject: Computer Science

PERSPECTIVE-DRIVEN RADIOSITY ON GRAPHICS HARDWARE

A Thesis

by

JUSTIN TAYLOR BOZALINA

Submitted to the Office of Graduate Studies of
Texas A&M University

in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE

Approved by:

Chair of Committee, Glen Williams
Committee Members, John Keyser
 Make McDermott
Head of Department, Valerie E. Taylor

May 2011

Major Subject: Computer Science

 iii

ABSTRACT

Perspective-Driven Radiosity on Graphics Hardware. (May 2011)

Justin Taylor Bozalina, B.S., Texas A&M University

Chair of Advisory Committee: Dr. Glen Williams

Radiosity is a global illumination algorithm used by artists, architects, and

engineers for its realistic simulation of lighting. Since the illumination model is global,

complexity and run time grow as larger environments are provided. Algorithms exist

which generate an incremental result and provide weighting based on the user’s view of

the environment. This thesis introduces an algorithm for directing and focusing radiosity

calculations relative to the user’s point-of-view and within the user’s field-of-view,

generating visually interesting results for a localized area more quickly than a traditional

global approach.

The algorithm, referred to as perspective-driven radiosity, is an extension of the

importance-driven radiosity algorithm, which itself is an extension of the progressive

refinement radiosity algorithm. The software implemented during research into the

point-of-view/field-of-view-driven algorithm can demonstrate both of these algorithms,

and can generate results for arbitrary geometry. Parameters can be adjusted by the user

to provide results that favor speed or quality.

To take advantage of the scalability of programmable graphics hardware, the

algorithm is implemented as an extension of progressive refinement radiosity on the

GPU, using OpenGL and GLSL. Results from each of the three implemented radiosity

algorithms are compared using a variety of geometry.

 iv

Dedicated to the memory of my father, Michael Bozalina.

 v

ACKNOWLEDGEMENTS

I graciously thank my advisor, Dr. Glen Williams, for allowing me the

opportunity to work on the Texas A&M Autonomous Ground Vehicle project, and for

continuing to offer guidance and encouragement throughout my graduate classes and

subsequent in-absence research. I am grateful to my committee members: Dr. John

Keyser, for all his help and instruction during my undergraduate and graduate studies,

and Dr. Make McDermott for his patience with my lack of automotive knowhow during

the autonomous vehicle project.

Many thanks are given to my parents, Glenda and Michael Bozalina, who

supported me through seven years of classes without asking anything in return.

Finally, this thesis could not have been completed without the love and support

of my wife, Marie, who sacrificed many weekends and evenings to allow me to continue

my work.

 vi

NOMENCLATURE

2D Two-Dimensional

3D Three-Dimensional

Cg C for Graphics

CPU Central Processing Unit

FBO Frame Buffer Object

FOV Field-of-View

GLSL OpenGL Shading Language

GPGPU General Purpose Computing on the GPU

GPU Graphics Processing Unit

HLSL High Level Shading Language

IDE Integrated Development Environment

MFC Microsoft Foundation Classes

MRT Multiple Render Targets

NPOT Non-Power-of-Two

OBJ A file format for 3D models, developed by Wavefront

PBO Pixel Buffer Object

POV Point-of-view

SDK Software Development Kit

SIMD Single Instruction, Multiple Data

STL Standard Template Library

 vii

TABLE OF CONTENTS

Page

ABSTRACT .. iii

ACKNOWLEDGEMENTS ... v

NOMENCLATURE .. vi

TABLE OF CONTENTS ... vii

LIST OF FIGURES... ix

LIST OF TABLES ... xii

1. INTRODUCTION.. 1

1.1 Objectives ... 2
1.2 Significance .. 2
1.3 Outline .. 3

2. BACKGROUND.. 5

2.1 Radiosity... 5
2.2 GPGPU ... 9
2.3 Previous Work .. 14

3. TECHNICAL SPECIFICATION... 17

3.1 Graphics API .. 17
3.2 Programming Language ... 22
3.3 Shading Language .. 22

3.4 Mesh Structure ... 23
3.5 Windows API ... 25

3.6 Graphics Hardware ... 25
3.7 Development Tools .. 26

4. PROGRESSIVE REFINEMENT AND IMPORTANCE-DRIVEN RADIOSITY 28

4.1 Progressive Refinement Radiosity ... 28
4.2 Importance-Driven Radiosity ... 40

 viii

Page

5. PERSPECTIVE-DRIVEN RADIOSITY ... 50

5.1 View Dependence .. 50
5.2 Stored Radiosity Table Creation .. 52
5.3 View Visibility ... 53
5.4 Stored Radiosity Table Gathering .. 55
5.5 Stored Radiosity Table Distribution ... 61

6. RESULTS .. 64

6.1 Single-Enclosure Environment .. 64
6.2 Multiple-Enclosure Environment ... 67
6.3 Subdivided Single-Enclosure Environment ... 70
6.4 Subdivided Multiple-Enclosure Environment .. 76

7. CONCLUSIONS .. 80

7.1 Performance ... 80
7.2 Limitations ... 80
7.3 Future Work ... 81

REFERENCES ... 83

APPENDIX A .. 88

APPENDIX B .. 100

VITA .. 102

 ix

LIST OF FIGURES

Page

Figure 1: Radiosity textures after progressive refinement radiosity
iterations .. 7

Figure 2: The duality of radiosity and importance [5] .. 9

Figure 3: Floating point RGB texture with normalized texture coordinates
and color channel values ... 10

Figure 4: Computation performed on an input texture written to an output
texture .. 11

Figure 5: Computation on a 2D array of 4-tuples in C++ using two for
loops .. 12

Figure 6: Computation on a 2D, 4-channel texture in GLSL using a
fragment shader ... 12

Figure 7: One-to-one mapping of input texture data to shaded output data
through the shader pipeline ... 14

Figure 8: Rectangular texture with dimensions showing texture
coordinates ... 20

Figure 9: 3D texture volume as 2D texture array with a depth value of four 21

 Figure 10: Half-edge data structure [44] ... 24

 Figure 11: Wireframe compared to emissive texture-mapped environment
model ... 29

 Figure 12: Computation of the unshot radiosity energy of a surface 30

 Figure 13: Selection of shooting surface via depth test where surface 3 has
the highest energy .. 31

 Figure 14: Projection of environment geometry to a hemicube 32

 Figure 15: Two stereographic hemisphere item buffers, where the right mesh
has been subdivided twice ... 33

 Figure 16: Item buffer mesh rasterization mapped to radiosity texture during
form factor shading .. 34

 x

Page

Figure 17: Progressive refinement without (top) and with (bottom) use of an
ambient term, at t iterations ... 38

Figure 18: Adaptive subdivision in importance-driven radiosity (left) and
GPU radiosity (right) [4-5] .. 39

Figure 19: Selection of a shooting surface weighted by radiosity energy and
visual importance ... 42

Figure 20: User view item buffer with surface ID as color, from three
perspectives ... 44

Figure 21: Visualization of directly received importance, shown from the
user's view and a rotated view ... 45

Figure 22: Computation of importance scaled unshot radiosity energy of a
surface .. 46

Figure 23: Importance textures after importance-driven radiosity iterations 47

Figure 24: Perspective-driven view-dependence .. 51

Figure 25: Stored radiosity table where rectangular texture coordinates
correspond to table entry indices ... 53

Figure 26: Visualization of FOV visibility test at FOV of degrees 54

Figure 27: Stored radiosity table with selected table entry values and their
meanings .. 55

Figure 28: Artifacts from shooting unshot radiosity from one central point
on a surface .. 57

Figure 29: Shooting surface 1 with four radiosity values directed to
appropriate bin for receiving surface 3 .. 58

Figure 30: Visibility vector in a stored radiosity table texture 59

Figure 31: Shooting locations vector in a stored radiosity table texture 60

Figure 32: Retrieving stored radiosity table entries for newly visible surfaces 62

Figure 33: Cornell box displayed in Autodesk Maya from front and top
perspectives ... 64

Figure 34: Progressive refinement with (right) and without the ambient term
(left), at 5 second intervals .. 65

 xi

Page

Figure 35: Progressive refinement shown in an environment using an
exaggerated color scheme .. 66

Figure 36: Multiple-enclosure environment displayed in Autodesk Maya
from top perspective .. 67

Figure 37: Time , in seconds, of significant lighting events for progressive
refinement radiosity ... 68

Figure 38: Time , in seconds, of significant lighting events for importance-
driven radiosity .. 69

Figure 39: Importance values shown as intensity maps .. 70

Figure 40: Subdivided Cornell box, displayed in Autodesk Maya 71

Figure 41: Time , in seconds, of four significant lighting events for
progressive refinement radiosity in a single enclosure
environment ... 72

Figure 42: Time , in seconds, of four significant lighting events for
importance-driven radiosity in a single enclosure environment 73

Figure 43: Time , in seconds, of four significant lighting events for
perspective-driven radiosity in a single enclosure environment 74

Figure 44: Demonstration of the effect of movement of the user's view in
perspective-driven radiosity .. 75

Figure 45: Multiple subdivided Cornell boxes, shown in Autodesk Maya 76

Figure 46: Time , in seconds, of four significant lighting events for
progressive refinement radiosity in an environment containing
multiple enclosures .. 77

Figure 47: Time , in seconds, of four significant lighting events for
importance-driven radiosity in an environment containing
multiple enclosures .. 78

Figure 48: Time , in seconds, of four significant lighting events for
perspective-driven radiosity in an environment containing
multiple enclosures .. 79

 xii

LIST OF TABLES

Page

Table 1: NVIDIA Quadro 5000 specifications [48].. 25

Table 2: NVIDIA Quadro 5000 render benchmark tests .. 26

1

1. INTRODUCTION

Realistic illumination of surfaces is a fundamental problem in the field of

computer graphics. The desire to emulate real-world lighting conditions has been of

interest to researchers for several decades, and continues to provide a source of

computing challenges. Speed, quality, and artistic control are all qualifications

considered when discussing lighting in computer graphics.

Global illumination is the concept of achieving realistic lighting results based not

only on the effect of light on a surface, but also taking into account the influence of light

radiating from each surface in the environment to every other surface in the

environment. By definition, this is a problem whose solution demands

complexity.

Radiosity is one such view-independent global illumination algorithm, which

models the interaction of light between Lambertian surfaces [1]. Although completely

solving a radiosity solution remains , algorithms have been introduced which

generate viewable results iteratively with complexity, where is the number of

iterations through the algorithm [2-3].

In the past decade, the GPU has emerged as a powerful coprocessor for general

purpose, parallel computing. This general-purpose computation using a GPU is referred

to as GPGPU. In addition to other global illumination algorithms, the radiosity

algorithm has been implemented using GPGPU [4].

This thesis introduces an extension of the GPU-based progressive refinement

radiosity algorithm, referred to as “perspective-driven radiosity,” which limits radiosity

calculations to a user-specified area-of-interest. This area-of-interest is defined by the

point-of-view (POV) and field-of-view (FOV) of the user’s view of the scene. A user

interface is supplied to allow changes to parameters used in radiosity calculations.

This thesis follows the style of IEEE Transactions on Visualization and

Computer Graphics.

2

1.1 Objectives

The purpose of this thesis, as stated in the thesis proposal, is to present an

algorithm that limits radiosity calculations to the surfaces in the user’s view. The

implementation details outlined in the thesis proposal require the algorithm to execute

primarily on the GPU. Features of the implementation include:

i. Loading arbitrary geometry of environments modeled in Wavefront OBJ

format, with diffuse surface color and light sources specified as material

properties.

ii. An implementation of progressive refinement radiosity on the GPU.

iii. An extension of progressive refinement on the GPU to importance-driven

radiosity on the GPU.

iv. An extension of importance-driven radiosity on the GPU to perspective-

driven radiosity on the GPU.

v. A user interface that allows control of speed and quality-affecting

parameters.

vi. User view interaction through mouse control of a camera.

1.2 Significance

Algorithms have been introduced which weight radiosity calculations based on

the user’s view of the environment. The perspective-driven radiosity algorithm is unique

in that none of these algorithms limit calculations to the user’s view. By restricting

computation to the surfaces encompassed by the user’s view, the radiosity calculations

are solved for the area of most immediate importance. Additionally, this thesis shows

that the progressive refinement radiosity algorithm on the GPU can be extended to

additional radiosity algorithms.

3

1.3 Outline

The radiosity algorithm is nearly thirty years old at the time this thesis is written.

Although this thesis assumes a certain degree of familiarity with computer graphics, an

explanation of radiosity will be provided. Additionally, the basic concepts of GPU

computing will be introduced. A review of topics related to radiosity, global

illumination, and the utilization of the GPU for implementing global illumination will be

presented.

Next, technical aspects of the software implementation will be shown, and an

explanation of the choice of each technology will be given. Technologies include the

use of MFC for application development, C++ for the programming language, OpenGL

for the interactive graphics API, and GLSL for the shading language.

The progressive refinement radiosity on the GPU algorithm will be the first

radiosity algorithm examined. An in-depth analysis of the techniques used for the

implementation of this algorithm will follow, including the fragment shader computation

of form factors, which is integral to all radiosity algorithms. Attention will be paid to

the GPU techniques used in this implementation that are later applied to importance-

driven and perspective-driven radiosity on the GPU.

The extension of progressive refinement radiosity on the GPU to importance-

driven radiosity on the GPU follows. Technical details relevant to the perspective-

driven algorithm will be examined, including weighting based on the user’s view, and

propagation of this weight through the environment using concepts from progressive

refinement radiosity.

Next, the perspective-driven radiosity on the GPU algorithm will be introduced.

The implementation of this algorithm depends heavily on the implementation of the

progressive refinement and importance-driven algorithms. Limiting the radiosity

calculations to the user’s view is accomplished by storing a table of radiosity values that

should contribute to the illumination of surfaces outside the user’s view. The area-of-

interest is gradually expanded over time, to ensure computation is not wasted.

4

Following the presentation of each radiosity algorithm used, results will be

presented from the experimentation with the software implementation of each algorithm.

Each algorithm will be compared in scenarios involving the generation of radiosity

lighting for a single-enclosure environment, for an environment comprised of multiple

enclosures, for an environment where a single enclosure has been subdivided, and for an

environment where multiple enclosures have been subdivided.

Finally, conclusions reached during research are given, along with suggestions

for future work that could improve performance.

5

2. BACKGROUND

Radiosity is a global illumination algorithm with decades of research invested in

improving the speed and quality of its results. The extension of radiosity to the GPU is a

more recent development, and the concepts involved in GPGPU are relatively new.

2.1 Radiosity

Many improvements to the radiosity algorithm have been introduced. The

algorithms most relevant to this thesis are progressive refinement radiosity and

importance-driven radiosity.

2.1.1 Classical Formulation

Radiosity is based on principles of radiative heat exchange from thermal

engineering [1]. Most commonly, an environment of surfaces is subdivided into a

collection of differential elements. The radiosity of surface , , can be described as

where is the emissive energy of surface , is the reflectivity of the surface , and

is the form factor representing the fraction of energy leaving surface and impinging on

surface .

The form factor formulation for two finite surfaces and , , is defined as

6

where is the area of surface , and are the angles between the surface normals

of the surfaces and the line between them, and are elemental areas of the

surfaces, and is the distance between them.

If the first equation is to be solved for for every surface in the environment of

 surfaces, it can be represented as a matrix of radiosity equations

Since is a scalar, the system of equations must be solved for each of the three-color

components in an RGB color model. The resulting vector of radiosity values can be

mapped to generate a view-independent image of the lit environment.

2.1.2 Progressive Refinement

The most significant improvement to radiosity lighting algorithms is progressive

refinement radiosity: an iterative approach that takes the concept of gathering radiosity

to surfaces by solving the radiosity equation matrix and reverses it, in favor of

“shooting” radiosity from a single surface to every other surface in the environment [3].

The original formulation of the radiosity equation solves for the radiosity of

surface , . Progressive refinement instead states that surface can be thought of as

contributing to all surfaces in the environment, such that for a surface

where each term holds its definition established in the classical radiosity equation. The

initial radiosity value for a surface , , is set to the emissive value if the surface is a

light, or it is set to zero for non-light sources. Once a surface receives radiosity, it can

distribute that received radiosity back to the rest of the surfaces in the environment that

7

are not occluded from the shooting surface when looking in the direction of the surface

normal.

Figure 1: Radiosity textures after progressive refinement radiosity iterations

Each time a surface contributes its radiosity to all other non-occluded surfaces in

the environment, an image can be generated from the resulting radiosity values.

Initially, these images represent an incomplete solution. Through continued iteration of

8

each surface in the environment and accumulation of radiosity values, a more complete

solution is eventually reached. Figure 1 shows an image generated using several

iterations of progressive refinement. The user may stop the iterations at any time, once a

satisfactory image has been reached. The resulting lit environment remains view-

independent.

The largest contribution towards the convergence of a desirable image will be

made by surfaces with the highest amount of energy. Therefore, it is desirable to select

surfaces that will contribute the most energy for a single iteration. This can be

accomplished by selecting the surface with the largest unshot radiosity energy

where represents radiosity the surface has received from all other surfaces that has

not yet been distributed to any other surfaces, or “unshot” radiosity. Using this

approach, an image that represents a close approximation of the actual solution may be

reached in one or two iterations.

2.1.3 Importance-Driven

Importance-driven radiosity introduced the idea that a surface can be selected for

shooting radiosity based on criteria other than its total energy, since view-independent

radiosity algorithms “over-solve globally and under-solve locally” [5]. The algorithm

uses the concept of an importance value being propagated through the environment

using the familiar radiosity equation

where is the importance of the surface and is directly received importance. is

initialized by an infinitesimally small camera surface, which is the source of directly

9

received importance. Importance is transported in a manner that is dual to radiosity in

this way, as depicted in Figure 2.

Figure 2: The duality of radiosity and importance [5]

The importance-driven algorithm was developed to determine which area of the

environment should have the highest resolution radiosity data when computing a

radiosity solution. It was later extended to the selection of an optimal shooting surface

during progressive refinement radiosity [2]. By weighting the total energy of a surface

with its total importance, the surface that will have the greatest contribution to image

convergence can be selected. The shooting surface selection equation becomes

where the optimal shooting surface maximizes the resulting value.

2.2 GPGPU

GPU programming has advanced significantly in the past decade as more

features have been introduced to commercial graphics processors. The software

implementation uses the GPU to display textures containing radiosity values that have

10

been mapped to the environment via the traditional graphics pipeline. GPGPU is used

for radiosity calculations, including the computation of form factors and the storage of

bookkeeping data structures. Advanced techniques possible with GPGPU are beyond

the scope of this thesis, but the basic principles common to GPU programming are

relevant.

2.2.1 Textures

A texture represents GPU memory, arranged two-dimensionally. Floating-point

texture formats provide the precision necessary for GPGPU. Texel values are one to

four-dimensional vectors that correspond to RGBA color channels or XYZW

homogeneous coordinates. The GPU performs operations on each vector channel in a

texel simultaneously [6].

Texture data is analogous to an array in CPU memory, and is indexed using

texture coordinates. Non-rectangular textures are indexed using normalized coordinates

in the range [0,1], shown in Figure 3.

Figure 3: Floating point RGB texture with normalized texture coordinates and color channel values

The software implementation uses an OpenGL frame buffer object (FBO) to

perform computations on a texture. An FBO allows direct rendering to a texture.

11

Texture memory can be in either “read” or “write” mode, but not “read/write.”

Therefore, to perform computations using data in a texture, the source texture must be

used as an input, and output values must be written to another texture of equivalent size

and format.

For example, in Figure 4, to perform a general computation using the right

texture as input, the output values of the computation are written to a different output

texture, attached to an FBO. General computation on the GPU will be explained in

Section 2.2.2.

Figure 4: Computation performed on an input texture written to an output texture

Texture data may be transferred between graphics memory and system memory,

but this is a time-intensive operation and is avoided if possible. The software

implementation initializes textures using initial values as the color input to a draw

operation, rather than sending values from system memory.

2.2.2 Shaders

The next crucial component of GPGPU programming is shaders. A shader is a

small program the GPU runs during a draw operation. In the software implementation,

two different kinds of shaders are used. Vertex shaders transform the vertices of input

geometry; fragment shaders modify the value of a pixel before it is written to a draw

12

buffer. Shaders can be used to produce complex render effects, but they can also be

used for general-purpose parallel computation.

When programming in C++, computations involving a two-dimensional (2D)

array with dimensions [4,4] containing 4-tuples similar to the texture in Figure 3 are

performed with two for loops, shown in Figure 5.

Figure 5: Computation on a 2D array of 4-tuples in C++ using two for loops

Each iteration through the loop will be performed sequentially when executed on the

CPU. Additionally, each component of a 4-tuple must be indexed separately.

To perform an analogous operation on a 2D texture with dimensions [4,4] in

GPU memory, a fragment shader is written to take the value of the input texel and add

the value of 1 to each color channel. Figure 6 contains GLSL code, detailed in Section

3.3.

Figure 6: Computation on a 2D, 4-channel texture in GLSL using a fragment shader

The fundamental difference between CPU and GPU computing is that this shader

operation is performed in parallel for every output value generated on the GPU. This

13

principle is known as “single instruction, multiple data,” or SIMD. When shading the

input texture, the shader itself is considered the “loop,” since it performs the

computation for each texel in the texture. In this manner, a shader can be thought of as a

kernel function, applied to each texel in the texture as a whole. This is the

implementation of the computation step in Figure 4.

Since instructions operating on the input texture data are executed in parallel, no

output values can have data dependencies on other output values. Any texel in the input

texture, however, can be accessed in a single shader operation [6].

2.2.3 Drawing

Computation on a texture using a shader is performed by executing a draw

operation in OpenGL using the full range of the normalized texture coordinates. Before

the draw operation takes place, a texture is bound as input to a fragment shader, and an

output texture is attached to an FBO. The shader is enabled and a polygon is drawn,

which shades the value of each texel in the output texture. Each texel in the input

texture must correspond to a pixel output by the fragment shader for computation to be

performed correctly. To achieve this one-to-one mapping of input to output values, both

the projection and viewport used in the draw operation must be considered.

The input and output data is 2D, therefore, the projection must also be 2D. This

corresponds to an orthographic projection in OpenGL. The dimensions of the drawn

polygon will match the extents of the orthographic projection. By achieving a mapping

of each input texel to each output texel, all input values in the texture will be processed

by the shader.

For the output texture to receive all shaded pixel values, the viewport used for

rendering must match the dimensions of the output texture. In Figure 7, a quad with

dimensions [1,1] is drawn into an orthographic projection with dimensions [1,1], using

normalized texture coordinates. A shader takes each fragment from the draw operation,

performs computation on the value using a texture with dimensions [4,4] as an input

14

parameter, and writes the computed value to an output texture with dimensions [4,4],

with a viewport set to equal dimensions.

Figure 7: One-to-one mapping of input texture data to shaded output data through the shader pipeline

By using these basic operations, a shader can perform complex computation on

an input data set using multiple render passes. Continuously swapping the input and

output textures, the results of each render pass can be used as the argument for the

consecutive render pass. In GPGPU, this is referred to as “ping ponging” [6].

2.3 Previous Work

Radiosity is a well-developed research topic, and a wealth of literature exists

concerning implementation details and improvements to the algorithm. Radiosity,

however, is not the only global illumination technique. Modeling the interaction of light

15

with an environment is a complex problem with many solutions, some of which have

also been implemented using the GPU.

2.3.1 Radiosity

As stated previously, radiosity was presented as a means of transferring light

between surfaces in a closed environment. Early environments using radiosity were

simple, as the calculation of form factors and the determination of surface visibility was

computationally intensive.

The hemicube was introduced as a comprehensive means of determining surface

to surface reflections [7]. This technique was used to solve complex environment

radiosity solutions when the progressive refinement algorithm was introduced [3]. The

progressive refinement algorithm has been augmented by other global illumination

techniques, such as ray tracing, which attempt to improve the results and performance of

radiosity lighting [8-10]. Radiosity itself can generate the diffuse lighting for

environments to be used with real-time dynamic illumination algorithms, such as

precomputed radiance transfer [11].

The precision of radiosity solutions has attracted lots of attention, particularly in

improving the appearance of areas where the gradient of radiosity exceeds a certain

threshold. Radiosity precision has been improved using adaptive environment meshing

and hierarchies of surfaces for areas of high detail [12-16]. The original importance-

driven algorithm is one such technique which refines the mesh in areas that are

important to the user’s view [5].

Optimizing the precedence of radiosity calculations using visual importance has

been the goal of this thesis and other work. The importance-driven algorithm was first

applied to progressive refinement by selecting which shooting surface will have the most

visually important effect towards image convergence for the user’s view [2]. Limiting

radiosity calculations to an area-of-interest defined by the camera FOV angle was also

attempted at Texas A&M University, using the CPU to store vectors of radiosity values

which could be contributed to the image when needed [17].

16

2.3.2 GPU-Based Global Illumination

Since radiosity was first introduced, research has attempted to improve the speed

of the radiosity solution and keep the results accurate. Advances in graphics hardware

trivialized the applicability of the radiosity solution for complex environments with

hidden surfaces, by using real-time graphics systems to generate each plane of the

hemicube. Hardware-accelerated hemicube generation also simplified form factor

computation when environments projected on the hemicube walls were discretized from

continuous surfaces to rasterized pixels with pre-computed form factors. Additionally,

solving the radiosity equations for surfaces in parallel was approached using networked

computers and parallel processing systems [18-21].

In addition to progressive refinement radiosity, several other global illumination

techniques have been implemented using the GPU. With the introduction of floating-

point textures, classical radiosity was shown to run on the GPU with the use of an

iterative Jacobi matrix solver. This technique accompanied the demonstration of

subsurface scattering using the GPU [22].

Ray tracing and ray casting were shown to run at increased speeds relative to the

CPU when using programmable graphics hardware [23-24]. These early tests

encouraged the use of the GPU for general purpose computing applied to computer

graphics. The introduction of GPGPU allowed the preceding radiosity hardware

acceleration techniques and parallel processing techniques to be combined by

simplifying the hemicube generation to one hemisphere rendering pass and calculating

form factors for a surface using scalable stream processors [4].

Ambient occlusion was also applied to models using the GPU. When combined

with a pre-processing step, the ambient occlusion light model could be approximated

dynamically at an interactive framerate [25]. Finally, photon mapping was implemented

using the GPU, although its performance was initially compute bound because of the

performance of early floating-point textures [26]. The introduction of newer graphics

hardware and improved floating-point operations allowed this algorithm to scale in

performance.

17

3. TECHNICAL SPECIFICATION

The development of the software used to demonstrate the perspective-driven

algorithm required the selection of multiple technologies and libraries.

3.1 Graphics API

At present, the two major industry standards for real-time graphics development

are OpenGL, by the Khronos Group, and Direct3D, by Microsoft [27-28]. OpenGL was

chosen, owing to ease of development and the ability to use extensions.

OpenGL is a cross-language, cross-platform graphics API [29]. It is commonly

used for scientific visualization and computing, because of its operating system

independence. New and experimental technologies can be added to OpenGL using

extensions. Core functionality is advanced with each version release, most of which are

backwards compatible.

Terminology and concepts related to the core functionality and extensions used

in this research are outside of the scope of basic OpenGL. They are presented in this

section because of their relevancy to the discussion of radiosity algorithms on the GPU.

3.1.1 Core Functionality

The software implementation was developed against the OpenGL 2.1

specification [30]. If a hardware vendor provides support for a specific version of

OpenGL, they must implement core behavior outlined in that version’s specification.

The following native OpenGL 2.1 functionality was used as a supplement to the

Microsoft implementation of OpenGL 1.1 supported by the Visual Studio IDE.

3.1.1.1 Volume Textures

Volumetric data can be displayed using three-dimensional (3D) volume textures.

In the software implementation, 3D textures are used in conjunction with the texture

18

array extension to provide indexed access to a 3D stack of 2D textures. The use of this

functionality will be explained further in Section 3.1.2.6.

3.1.1.2 Multi-Texturing

Multiple texture states and the mapping of multiple textures to a single polygon

are allowed with multi-texturing. This also permits binding multiple textures as inputs

to a shader. Any function that requires more than one texture argument to complete its

computation makes use of multi-texturing.

3.1.1.3 Multiple Render Targets (MRT)

Some shaders perform computation that is relevant to more than one output

texture. Binding textures one at a time and duplicating render passes also duplicates

work already performed. With MRT, a shader can write multiple output values,

avoiding the need to re-compute identical results for an additional output.

3.1.1.4 Pixel Buffer Objects (PBO)

Sending texture memory from the GPU to the CPU and vice-versa is a time-

consuming operation, as memory must be sent across the graphics bus. A PBO allows

graphics memory to be mapped to an address in CPU space. Reading texture data to

CPU memory and writing CPU memory to textures can occur asynchronously.

3.1.1.5 Occlusion Queries

Hardware occlusion queries allow a program to retrieve a count of the number of

pixels that were output to the draw buffer during rasterization of a primitive. Primitives

in OpenGL are the basic shapes that are output to the screen when interpreting incoming

vertices. An occlusion query that returns a pixel count equal to zero indicates that the

primitive could not be “seen” by the current screen projection.

19

3.1.1.6 Non-Power-Of-Two (NPOT) Textures

Originally, textures were restricted to dimensions defined by powers of two. The

relaxation of this restriction makes GPGPU less cumbersome, since only the space

required for a 2D dataset must be defined.

3.1.1.7 Shaders

As stated in Section 2.2.2, shaders have enabled general computation on the

commercial GPU. The software implementation uses shaders almost exclusively for

computation. A simple shader is used to augment the displayed texture, as explained in

Section 4.1.6.

3.1.2 Extensions

The OpenGL API is extended anytime a hardware vendor wishes to introduce

and promote new functionality. As a feature matures and new hardware is released, an

extension can be promoted to core functionality. The software implementation uses the

following extensions, all of which have since been promoted to core as of OpenGL 3.1

[31].

3.1.2.1 ARB_texture_float

This extension adds 32-bit and 16-bit floating-point texture capabilities to

OpenGL [32]. Any shader operations on a floating-point texture’s texel values will

result in floating-point output values; however, only values in the range can be

viewed on-screen. When used for data storage, they can contain any valid floating-point

values, with one caveat, explained in Section 3.1.2.3.

3.1.2.2 EXT_framebuffer_object

Textures are the primary data structure in GPGPU. This software

implementation uses textures for both computation and display. As described in Section

2.2.3, drawing to a texture is the mechanism by which shaders access input data and

20

write out computed values. An FBO allows a texture to be used as a drawing destination

in a simple and efficient manner, just as a buffer is used to display draw operations on-

screen [33].

3.1.2.3 ARB_color_buffer_float

Before floating-point texture support was introduced to the GPU, the fixed-

function graphics pipeline used fixed-point data types to represent texture values. The

default behavior of the standard pipeline clamps texture values to the range [0,1], to

accommodate these fixed-point values. Using this extension, floating-point textures can

store negative values, or values greater than one [34].

3.1.2.4 ARB_texture_rectangle

Textures are accessed using texture coordinates, similar to the indexing of data in

an array. Traditionally, texture coordinates for a 2D texture are normalized to the range

[0,1]. Rectangular textures are NPOT textures which are indexed with non-normalized

texture coordinates in the range , where is the width of the texture, and is the

height [35]. An example of this kind of texture coordinates is shown in Figure 8. These

textures are useful when performing operations where specific individual texels are

indexed in a shader.

Figure 8: Rectangular texture with dimensions showing texture coordinates

21

3.1.2.5 EXT_texture_integer

In fixed-function OpenGL textures, textures are stored as fixed-point values.

Although the actual data storage type for these textures can be integer type, these integer

values represent normalized fixed-point values, and do not return expected integer

values if accessed [36]. True integer support is added with this extension. An integer

texture can be attached to an FBO, but cannot be used in draw operations without the

assistance of a fragment shader to interpret the integer value.

3.1.2.6 EXT_texture_array

A texture array is a collection of textures of the same dimensions and format,

which can be indexed in the range [0,], where is the number of layers in the

texture array [37]. Texture arrays can be represented by two-dimensional or three-

dimensional texture data. If two-dimensional, it is referred to as a 1D texture array: a

collection of 1D textures. Similarly, a 2D texture array is three-dimensional. In Figure

9, the third layer in a 2D texture array is accessed using a zero-based array index.

Figure 9: 3D texture volume as 2D texture array with a depth value of four

Once a layer in a 2D texture array is accessed, the returned texture layer is

indexed as a 2D texture, and can be bound to an FBO.

22

3.1.2.7 EXT_gpu_shader4

New GPU technology requires additions to the OpenGL API, and the means to

utilize the new functionality in a shader. This extension exposes the shader-based means

of utilizing texture arrays and integer textures. It also includes an API function to

specify the binding location for a true integer output value of a shader operation, since

integers cannot be used in the normal fixed-function pipeline [38].

3.2 Programming Language

Because OpenGL is an open standard, it is supported on all major operating

systems, and bindings to the API are available for many programming languages [29].

Because of this flexibility, the use of a specific programming language is not a foregone

conclusion. For the software implementation, the two programming languages

considered were C/C++ and C#.

At present, C# is an attractive choice for programming on a Microsoft Windows

platform. With each release of the Visual Studio IDE, Microsoft continues to improve

programming tools that support C# and the .NET framework. Additionally, several open

source projects for OpenGL bindings in C# allow easy integration with managed

applications [39-40].

Official support from the Khronos Group on the OpenGL website is available in

the form of an extension registry written for C/C++ [41]. Since the software

implementation needed active support for extensions to the OpenGL specification, C++

was selected as the development language.

3.3 Shading Language

Two shading languages were considered for this research: GLSL, by the Khronos

Group, and Cg, by NVIDIA [42-43]. Cg is the same language as HLSL, developed by

Microsoft for use with Direct3D. It is cross-platform and uses a C-like syntax. Cg is a

versatile platform that can build shaders for use with Direct3D or OpenGL.

Additionally, shader assembly files from the Cg compiler can be examined. NVIDIA

23

offers powerful debugging tools for use with Cg development through their support of

CgFX.

Cg requires the presence of the Cg Runtime Libraries and the use of the Cg API

for application development. GLSL is supported natively in OpenGL 2.1 and accepts

shaders in the form of character strings. Whereas Cg uses input and output binding

syntax for shader arguments, GLSL has built-in constants and variables.

Native data types in GLSL include primitive data types such as Boolean, integer

and floating-point, as well as primitive vectors of length one to four, matrices, and

textures, among others. Common hardware-accelerated mathematics functions can be

used, such as the exponential operator, vector normalization, and vector norm.

GLSL, like other shading languages, can accept two different types of input

parameters when shading a primitive. Attribute variables are input per-vertex for input

geometry, thus, they are only available in a vertex shader. Attribute variables are used

for values such as position, color, or texture coordinates. Uniform variables are input

per-primitive, and can be accessed from fragment and vertex shaders.

Additionally, GLSL can perform operations in a vertex shader and send the

results to a fragment shader as a varying value. These varying values are automatically

interpolated from each output vertex over the output primitive.

Since cross-platform flexibility was not a requirement for the software

implementation, GLSL was selected because of its ease of integration with OpenGL.

3.4 Mesh Structure

To facilitate this research, a third-party mesh structure was selected. This was

driven by two integral requirements: the flexibility of importing a model in OBJ format,

and the need to subdivide that model for generation of data used in radiosity

calculations. OpenMesh was chosen to fulfill these requirements. Additionally, it can

be easily extended using generic programming in C++ [44].

OpenMesh can represent meshes of arbitrary polygons, and provides an STL-like

interface for iterating through model geometry stored using the half-edge data structure.

24

The half-edge data structure is similar to the winged-edge structure used in geometric

modeling [45]. Half-edges in the mesh store connectivity using one vertex, one face, the

next half-edge, the opposite half-edge, and the previous half-edge, see Figure 10.

Figure 10: Half-edge data structure [44]

Using this connectivity information, mesh geometry can be traversed quickly,

and in a repeatable manner. The extensibility of OpenMesh also enables the association

of custom traits with mesh geometry. Traits can include data types and functions,

allowing operations on faces, vertices, and edges. For example, the software

implementation uses face traits to associate textures with their corresponding surface,

represented by a face in the mesh.

OpenMesh provides templates to read and write persistent data, allowing the

developer to extend the OpenMesh IO framework to build importers and exporters for

the model format of their choice. The OBJ format is ubiquitous, so an OBJ importer was

already provided as part of the OpenMesh SDK [46].

The other requirement for this research was the ability to subdivide model

geometry, for reasons explained in Section 4.1.4. OpenMesh simplified this task by

providing a template subdivision class that operates on triangle meshes. Topological

compositing rules are specified as operators that are added to custom subdivision classes

25

defined by the developer. When a triangle mesh is provided to the subdivision class, the

rules are applied to the mesh. The software implementation uses rules that subdivide

triangle faces 1-to-4. The mesh is re-composited using additional OpenMesh rules.

3.5 Windows API

Although antiquated, MFC was chosen as the development library for application

development. The most recent version, MFC 10.0 was shipped by Microsoft with Visual

Studio 2010 [47]. MFC continues to be actively developed, with Visual Studio

providing the ability to generate dynamic applications from pre-packaged MFC

templates.

3.6 Graphics Hardware

Modern GPU-based hardware, like the CPU-based hardware of previous decades,

is notoriously transient. Since OpenGL is backwards compatible and GPU applications

scale effectively, however, development can proceed on any graphics card that provides

the necessary OpenGL extensions.

The experimentation for this research was conducted on a computer using an

NVIDIA Quadro 5000. Part of the Quadro series using NVIDIA’s Fermi architecture,

the Quadro 5000 is built to the specifications shown in Table 1.

Table 1: NVIDIA Quadro 5000 specifications [48]

CUDA Cores 352
Core clock 750 MHz

Memory bandwidth 120 GB/sec
Total frame buffer 2.5 GB
Memory interface 320-bit

Using the OpenGL Extensions Viewer from Realtech VR, the Quadro 5000 was

benchmarked using three runs of the render tests for OpenGL versions 1.1 through 2.1,

using multiple spinning cubes at v-sync fullscreen [49]. The results are displayed in

26

Table 2. Each version’s benchmark adds additional operations and tests the functionality

introduced in that version of OpenGL.

Table 2: NVIDIA Quadro 5000 render benchmark tests

OpenGL version 1.1 1.2 1.3 1.4 1.5 2.0 2.1
Average framerate 170.3 310.7 306 197.3 204.3 192.7 197.7
Standard deviation 1.2 4.9 1.7 3.1 0.6 0.6 0.6

3.7 Development Tools

Developing GPGPU applications using a graphics API such as OpenGL is not a

trivial task. OpenGL is an enormous finite state machine whose output function draws

geometric primitives. Achieving the correct configuration of the state machine can be

difficult without the proper software development practices. At present, GPU

programming with shaders is a recent technology relative to CPU programming, and the

development tools have not yet matured. In addition to the Microsoft Visual Studio C++

IDE, several other GPU-specific debuggers were used.

The most fundamental GPU debugging tool is the “printf technique,”

referring to the classical use of the printf command to output variable values when

programming in C. Shaders can be modified to write out an intermediate value from

their computational flow to a texture bound to an FBO. When the texture is mapped to a

polygon and displayed, the intermediate shader results are visible. This assumes that the

OpenGL machine is in a correctly configured state to display texture, which is not

always the true. It also does not account for the developer being interested in specific

numerical values at texel-level granularity.

A popular tool for OpenGL state debugging is Graphic Remedy’s gDEBugger

[50]. An academic license for this software was used during research. A lack of

integration with the Visual Studio C++ IDE makes it unwieldy for general-purpose use,

but it has multiple viewers for texture memory, readouts for OpenGL state machine

variables, and the ability to enable or disable OpenGL functionality to help narrow down

the scope of a problem. It also has the ability to break when any error in the OpenGL

27

configuration is detected. This is valuable since OpenGL must be polled constantly to

see when it enters an error state. At present, gDEBugger is undergoing active

development and new features are added frequently.

Although gDEBugger is improving in its ability to help with shader debugging,

at present it remains primarily useful for keeping track of the OpenGL finite state

machine configuration. A less-developed but powerful tool for GLSL debugging is

glslDevil, from the University of Stuttgart [51]. Using this application, the contents of

GPU registers can be retrieved, as with a CPU debugger. Graphical displays can show

the values of each shader variable for all in-flight fragments, and each branch in shader

code can be examined for every output pixel. Vertex, fragment, and geometry shaders

(available in extended OpenGL 2.1) are all supported in unique debug output forms.

For now, GPU development remains less-established than CPU development. As

the technology continues to gain popularity, the development tools will improve in their

sophistication.

28

4. PROGRESSIVE REFINEMENT AND IMPORTANCE-DRIVEN RADIOSITY

Importance-driven radiosity builds upon progressive refinement radiosity, which

had previously been implemented for execution on the GPU. Implementation of both

techniques was necessary for purposes of comparison with perspective-driven radiosity.

4.1 Progressive Refinement Radiosity

The software implementation of progressive refinement on the GPU follows the

original implementation details, with minor changes [4]. Some features were not

implemented, as they had been previously solved and were deemed unnecessary for

demonstration of the perspective-driven algorithm.

4.1.1 Texture Creation

Each surface in the environment has associated textures that are the same

resolution as the surface’s polygon, used for radiosity computation and display. There

are two textures per surface: one for the total radiosity of surface , , and one for the

unshot radiosity of the surface, . Textures are created as GL_RGB format and

GL_RGB16F internal format, meaning they have three-color channels with 16-bit

floating-point precision per channel. During display of the environment model at

runtime, the texture is mapped to the polygon drawn for surface , resulting in the

display of total radiosity for that surface.

4.1.2 Emissive Energy

Before a surface is chosen to shoot radiosity into the environment, all surfaces

must have their total radiosity and unshot radiosity textures initialized. As shown in

Section 2.1.2, the initial radiosity of a surface in the scene is the emissive energy of the

surface. For light surfaces, this emissive energy is the light intensity. For non-light

surfaces, the emissive energy is zero.

29

In the software implementation, light surfaces are specified using the ambient

material property of the input OBJ model, and reflectivity is specified using the diffuse

material property. As textures are created for surfaces, any surface which has emissive

energy will have its and textures attached to an FBO and initialized to the

emissive value using a GL_COLOR_BUFFER_BIT clear operation. Both textures are

initialized at the same time using MRT. If a texture does not have an associated

emissive value, its and textures are attached to the FBO and cleared to black,

which amounts to zero in every RGB channel. Texture initialization is illustrated in

Figure 11.

Figure 11: Wireframe compared to emissive texture-mapped environment model

4.1.3 Next Shooting Surface Selection

For radiosity to be propagated through the environment, a surface must be chosen

to shoot its radiosity. As stated in Section 2.1.2, the optimal shooting surface is the one

with the largest unshot radiosity energy, . In progressive refinement radiosity on

the GPU, a shooting surface is chosen by comparing these unshot radiosity energy

values without transferring graphics memory to the CPU. The unshot radiosity of the

surface is obtained by reading the highest-level mipmap of the surface’s texture.

30

The top-level mipmap is result of the minification of the entire texture down to one

texel. Thus, the unshot radiosity of the surface is averaged to a single RGB vector. This

RGB vector can be converted to HSI space to find the intensity of the color, which is

multiplied by the area of the surface to find the unshot radiosity energy, seen in Figure

12.

Figure 12: Computation of the unshot radiosity energy of a surface

To accomplish this comparison of energy using the GPU, a one-pixel

orthographic projection is set on a draw buffer. For all surfaces in the environment, a

single pixel whose value is the integer ID of surface is written to the draw buffer. A

shader is enabled which uses the inverse of the unshot radiosity energy of surface to set

the depth value of the shaded fragment. The ID of the surface with the highest unshot

energy will be drawn to the buffer as in Figure 13. The ID in the buffer can be read back

using a PBO. A far plane can be set on the orthographic projection to control when

convergence is reached: once every plane has a minimum unshot radiosity, all surface

IDs will have a depth greater than the far plane, so no ID value will be drawn to the

FBO.

31

Figure 13: Selection of shooting surface via depth test where surface 3 has the highest energy

When a surface is selected for shooting, radiosity is shot from points on the

surface that correspond to the centers of texels for a mipmap in the unshot radiosity

texture. Shooting from mipmap level averages every four texels in mipmap level

 to a single texel, and reduces the number of shooting locations by a power of two.

Shooting positions must be kept on the CPU to set the matrices used to project

the geometry from the eyepoint of the center of the shooting surface, where the surface

normal is the look-at direction. In the software implementation, the CPU was assisted

by utilizing the GPU to interpolate vector values over a 2D polygon. By setting an

orthographic projection to the size of the shooting surface’s level mipmap, a polygon

can be drawn using the shooting surface’s vertices as color values for each vertex in the

drawn polygon. The result of the draw operation can be read back from the draw buffer

using a PBO. The values in the returned buffer will be the positions of the shooting

surface’s shooting locations. The same technique can find the shooting texture

coordinates which index the texture.

4.1.4 Hemisphere Projection

Computing the form factor between two surfaces in a complex environment

involves finding the visibility of the receiving surface’s elements from the shooting

location. The earliest hardware-accelerated means of determining visibility in an

environment containing hidden surfaces was achieved by projecting the environment

geometry onto a hemicube surrounding the shooting location, shown in Figure 14 [7].

32

This technique requires five passes over the environment geometry: one for each

of the hemicube planes. The values of pixels in the hemicube are compared to the IDs of

surfaces in the environment. Each pixel in the hemicube represents a known delta form

factor. By summation of the pixels of a surface that pass the hemicube visibility test,

the total form factor from the shooting surface to the receiving surface may be

determined.

Figure 14: Projection of environment geometry to a hemicube

Progressive refinement radiosity on the GPU uses a hemisphere projection, made

possible by a stereographic vertex shader. A single render pass over the environment

geometry is made with the stereographic shader enabled, using the ID of surface as the

color. Once the item buffer has been generated, each surface for all surfaces except

the shooting surface is drawn using an orthographic projection of the surface with a one-

to-one mapping to its and textures. During the draw operation, a fragment shader

is enabled which back-projects every element of surface into the hemisphere item

buffer generated from the shooting location. If the ID in the item buffer matches the ID

of the surface, it is considered visible from the shooting location.

33

Two hemisphere item buffers generated from the environment’s light source are

shown in Figure 15. Geometry used to generate the item buffer on the right has been

subdivided twice, and contains four times as many polygons. Surfaces in the left figure

appear blocky and misshapen. This demonstrates the observed disadvantage of using a

vertex shader to produce the stereographic projection: in a true stereographic projection,

lines project as curves, but GPU rasterization produces straight edges [4]. These straight

edges can produce rasterized images where surfaces are occluded in unexpected ways,

resulting in false positives and negatives for fragment visibility tests. If surfaces are not

sufficiently subdivided, they will not produce an accurate representation of the

environment from the shooting location’s perspective.

Figure 15: Two stereographic hemisphere item buffers, where the right mesh has been subdivided twice

Based on implementation specifics described in the original GPU progressive

refinement radiosity algorithm, the software implementation handles this problem by

representing the environment with two separate meshes. The input model retains its

original level of subdivision, and is used for displaying radiosity textures. Derived from

this model is an “item buffer mesh,” shown in Figure 16. The mesh is subdivided to a

34

level specified by the user and used for drawing the hemisphere item buffer. The higher

the level of subdivision, the greater the accuracy of the stereographic projection will be.

Figure 16: Item buffer mesh rasterization mapped to radiosity texture during form factor shading

The surfaces in the item buffer mesh exhibit a child relationship to the parent

surface from which they were derived. The parent mesh retains its association with the

textures used for radiosity calculations. When a surface is shaded during the form factor

computation stage, however, the vertices and texture coordinates of the polygons in the

item buffer mesh are used as input geometry for back-projection into the hemisphere

item buffer.

4.1.5 Form Factors

Form factor calculation is the most computationally intense step in progressive

refinement. When the algorithm is adapted for the GPU, form factor computation for

each surface element is performed in parallel, where a surface element in the

environment is represented by a texel in the radiosity textures associated with surfaces.

The standard form factor equation assumes that “the areas of the differential

elements are small compared to the distance between them” [4]. This means that each

35

surface element must be the same relative size. Rather than make this assumption for

surface elements represented by statically sized textures, progressive refinement

radiosity on the GPU uses the disc approximation to the finite-area-to-differential-area

form factor

where surface has been subdivided into oriented discs and all other term definitions

remain the same as previously defined [9]. When surface is chosen to shoot the unshot

radiosity in its texture to surface , surface accumulates radiosity to all visible

surface elements in its and textures, where a surface element’s visibility is

determined using the technique explained in Section 4.1.4. After surface shoots all of

its radiosity from the texture, all texels in the texture are reset to zero.

Occlusion queries are generated for each polygon in the item buffer mesh during

the stereographic draw operation. These occlusion queries represent the number of

pixels that passed the rasterization step when rendering a polygon. By traversing the

results of the occlusion queries on its children, a parent surface can determine if it was

visible from the shooting location. As soon as a child surface query has a non-zero

result, traversal stops. If no child surface occlusion queries pass, form factor shading on

the parent surface textures can be avoided.

4.1.6 Ambient Term

During research, a contribution to the original GPU progressive refinement

algorithm was made through the addition of an ambient term, which is used for display

only and is not added to a surface’s unshot radiosity. Similar to the determination of the

optimal shooting surface, computation of the ambient term takes place on the GPU.

An ambient term is used to compensate for early iterations in the progressive

refinement radiosity algorithm when “global illumination is not yet accurately

36

represented” [3]. Without knowing the visibility between surfaces in the environment, a

form factor from all surfaces in the environment to surface can be approximated as

and an average reflectivity for the environment can be represented as

where a unit of energy that is sent into the environment can be expected to reflect, on

average, . If this energy is reflected by continuously against other surfaces, a

total interreflection factor is computed using the geometric sum such that

If is the total area-averaged unshot radiosity in the environment such that

for all surfaces, an ambient term can be computed as

and a surface can be displayed with a better estimation of its radiosity,
 , where

37

In the software implementation, the sum of areas of all surfaces,

 , and

the total interreflection factor, , can be computed when an input model is given. The

area sum is given as input to a shader that will compute the ambient term, and the

interreflection factor is given as input to a shader that will display the mesh with the

ambient term added to the surface’s radiosity textures.

Once the radiosity for each surface has been initialized, each surface that has

unshot radiosity is input to the ambient term computation shader. In the shader, the

fractional form factor of the surface, , is computed by dividing the surface’s area by

the environment area sum. Next, the top-level mipmap of the texture is read and

multiplied by to obtain . The result of this operation is drawn to a one-pixel

texture. Multiple render passes are performed on the texture, one for each surface that

has unshot radiosity. The value in the texture is incremented by the result of each render

pass, resulting in the computation of .

At display time, when the mesh is rendered with the texture mapped to surface

 for all mesh polygons, a fragment shader is utilized to add the ambient term to each

texel in the texture. The one-pixel texture is given as an input to the display

fragment shader. This fragment shader multiplies the area averaged unshot radiosity in

the environment, , the interreflection factor, , and the reflectivity of the surface, ,

which is added to the texel values in the texture.

When a surface finishes contributing its unshot radiosity to all other surfaces in

the environment, its texture is cleared, and is re-computed with the updated amount

of unshot radiosity in the environment. As unshot radiosity is distributed through the

environment during successive iterations, the ambient term becomes less noticeable, as

seen in Figure 17.

38

Figure 17: Progressive refinement without (top) and with (bottom) use of an ambient term, at t iterations

4.1.7 Adaptive Subdivision

In the original implementation of progressive refinement radiosity on the GPU,

adaptive subdivision was added to improve the quality of generated radiosity images [4].

Surfaces are represented using quad trees, where the leaves of the tree contain radiosity

textures. By evaluating the gradient of radiosity lighting across textures using a

fragment shader, a surface can be subdivided or collapsed. This leads to more detail for

high frequency image data and less detail for areas of lower frequency data. Therefore,

compute time is focused on areas that will contribute more high frequency details to the

convergence of an image.

Mesh subdivision for the purpose of efficiently focused detail and computation is

a familiar subject in the study of radiosity [12-13, 52]. The original purpose of

importance-driven radiosity was to direct mesh subdivision to areas where higher detail

could be of most value to the image generated from the user’s view [5].

This technique has already been demonstrated to both run efficiently on the GPU

and produce higher quality imagery for an interactive solution, demonstrated in the two

39

images show in Figure 18. It was deemed unnecessary for the demonstration of the

perspective-driven algorithm, and has been omitted from the software implementation.

Figure 18: Adaptive subdivision in importance-driven radiosity (left) and GPU radiosity (right) [4-5]

4.1.8 Interactivity

Since the radiosity calculations are performed on the GPU, most of the

processing time is spent calculating radiosity lighting, rather than displaying the results.

Consequently, an update of the image is unnecessary for computation to proceed.

Updating the image is an encumbrance to solution convergence, since GPU cycles are

redirected for non-computational purposes. Disregarding updates to the resulting

radiosity image, however, can produce undesired results if the framerate drops below

eight frames per second. A framerate of eight frames per second is commonly accepted

as the limit of an “interactive” display.

Surfaces can vary greatly in size, and therefore the number of shooting locations

per surface can vary as well. The naïve approach to displaying updates to the image is to

wait for a surface to finish shooting radiosity to all other surfaces for each of its shooting

locations. Once the surface has finished and the radiosity texture is cleared, the display

can be redrawn with the radiosity textures mapped to mesh polygons.

40

During research, it was determined that a high level of interactivity is necessary

for the perceived performance of a GPU-based radiosity solution, regardless of the

overall increase in time to convergence. A timer-enforced update to the display was

added to guarantee that the user would be able to see the convergence of their image at

expected intervals. Each time a single shooting location finishes contributing its unshot

radiosity to the other surfaces in the environment, the time since the last frame is

checked. If there is still time left in the current frame, the next shooting location is

allowed to contribute its unshot radiosity. If the frame timer has expired, the shooting

state is saved, and the computation loop exits to update the image.

The user can select the framerate at which they wish to see their image refreshed.

A higher framerate means more time will be devoted to updating the image, and the time

to convergence will be increased. A lower framerate means convergence can proceed

with fewer interruptions, but at the cost of a reduced level of interactivity.

4.2 Importance-Driven Radiosity

Importance-driven radiosity was the first extension to progressive refinement

radiosity on the GPU that was implemented during research. Perspective-driven

radiosity seeks to limit radiosity calculations to an area specified by the user, but

importance-driven radiosity ensures that the surfaces that contribute the most light for

the area-of-interest will be given priority when selecting shooting surfaces. Therefore,

the addition of visual importance to the progressive refinement algorithm is necessary

for a perspective-driven solution to produce satisfactory results.

4.2.1 View Dependence

Radiosity is a view-independent global illumination algorithm [1]. Some

illumination algorithms, such as ray-casting and ray-tracing, generate an image based on

the location of the viewing plane in the scene [53-54]. Since the viewing plane drives

the image computation, the image must be re-rendered whenever the viewing plane

41

changes. Once illumination of an environment has been computed by radiosity, the

solution need not be re-computed unless the environment changes.

Importance-driven radiosity was developed to address shortcomings in the

imprecision of radiosity view-independence. Because of its view-independence, a

radiosity solution is often rendered with uniform priority given to each surface. Surfaces

that are hidden or are not within the view of the user are given the same processing

precedence as a surface directly in front of the user. Conversely, since all surfaces are

processed homogeneously, a surface closer to the user is paid as much attention as a

hidden surface. Surfaces such as these should be given higher priority since they

directly affect convergence of the radiosity solution from the user’s view.

The idea of visual importance in a radiosity solution was introduced as a means

of driving the precision of a radiosity solution [5]. In this importance-driven radiosity

solution, surfaces that are visually important are given a higher degree of precision in the

solution by subdividing the mesh used for radiosity calculations at areas where it

benefits the image generated from the user’s viewpoint. This visual importance vector is

initially directed by the user’s view and propagated throughout the environment using

the same mechanism as radiosity, seen in Figure 2. By introducing a view-dependent

weighting metric to the radiosity solution, the image can be more accurate for the user’s

view of the environment and retain the interactive features of a view-independent

illumination algorithm.

The importance-driven radiosity algorithm used in this research is based on the

idea that in progressive refinement radiosity, visual importance can be used to select a

shooting surface which contributes the most radiosity to other surfaces and proceeds

towards the convergence of the image the user is interested in [2]. Surfaces that receive

importance directly from the user’s viewpoint or through propagation of importance

have a higher visual weight and are more likely to be selected.

42

Figure 19: Selection of a shooting surface weighted by radiosity energy and visual importance

For example, in Figure 19, assuming the intensities of both light sources are

equal, the light source on the right will have a higher amount of radiosity energy because

of the larger surface area. In progressive refinement radiosity, this surface is chosen for

shooting unshot radiosity into the environment. In importance-driven radiosity, the light

source on the left has a higher visual importance weight since the user’s viewpoint gives

it directly received importance. Hence, when considering both the radiosity energy and

the visual importance, the surface on the left should be chosen to shoot its unshot

radiosity.

4.2.2 Texture Creation

In the software implementation, progressive refinement radiosity on the GPU

was supplemented with visual importance to create an importance-driven radiosity

solution. For all surfaces in the environment, an additional two textures for surface

are required: , which represents all received importance, and , which represents all

received importance that has not yet been contributed to every other surface. These

43

textures are the importance-driven analogies to the and textures used in

progressive refinement radiosity, and are created using an intensity format. The and

 textures are never displayed as part of the radiosity image and are therefore stored at

half the resolution of radiosity textures.

4.2.3 Directly-Received Importance

In the equation for the radiosity of a surface ,

directly received radiosity is represented by the term . In the equation for importance

of a surface

there is a term analogous to : , which represents directly received importance. The

directly received importance value of a surface in the environment will be determined by

its visible area when projected in the user’s view. The sole emitter for this direct

importance is the user’s view, defined as a surface of infinitesimal area in the

environment [5]. To accomplish this contribution of directly received importance, a

technique similar to back-projection into the stereographic hemisphere item buffer was

utilized.

At run time, importance textures are initialized to zero. Once the environment

has been initialized, an item buffer is rendered from the user’s view of all surfaces in the

environment. Unlike the stereographic projection used for the hemisphere item buffer,

this user view item buffer exactly matches the projection the user sees on screen, as

demonstrated in Figure 20. Once again, the surface ID is used as color.

44

Figure 20: User view item buffer with surface ID as color, from three perspectives

Occlusion queries are initiated for each polygon rendered to the user view item

buffer, where rendered polygons correspond directly to all surfaces in the

environment. The surface whose occlusion query returns a non-zero pixel count has its

 and textures bound to an FBO with a one-to-one orthographic projection. A

fragment shader is enabled which back-projects each fragment in the surface polygon to

the user view item buffer. The ID value in the surface polygon is compared to the item

buffer for each fragment in the polygon. If the two values match, the surface element

represented by the texel is considered visible from the user’s view, so the and

textures receive direct importance from the user’s view. This direct importance is

simply an intensity value. To receive the importance value, the form factor is computed

between the receiving surface element and the user’s view, assuming that the camera has

an area of zero. Once the form factor is computed, the importance textures can be

shaded just as the radiosity textures are shaded during progressive refinement. The

results of this shading operation is shown in Figure 21.

45

Figure 21: Visualization of directly received importance, shown from the user's view and a rotated view

4.2.4 Next Important Shooting Surface Selection

The software implementation uses both visual importance and radiosity energy to

select an optimal shooting surface. This “important” shooting surface can be selected in

a manner similar to the selection of the optimal shooting surface in progressive

refinement radiosity.

To find the average importance of a surface, a naive approach would be to read

the top-level mipmap of the importance texture, similar to the process of finding the

average radiosity of a surface. However, importance is view-dependent, and the

directly-received importance of a surface can be occluded by other surfaces in the scene.

This can lead to error when considering a surface very close to the user’s POV, which

has been partially occluded by another surface directly between the surface and the

POV. Surface may be shaded with a very high importance in several texels, but when

the top-level mipmap of the texture is read back, the texels with high importance will be

averaged over the entire texture. Therefore, even though surface has areas of high

importance, it may not be selected for shooting due to the low average importance. A

more effective approach is the use of a maximum kernel, applied to the texture in place

46

of the linear interpolation kernel which is applied automatically when mipmps are

generated by the GPU.

The “maxmap” can be generated by performing a reduction with a fragment

shader. An importance texture’s level-0 mipmap is rendered to its level-1 mipmap using

the maxmap shader. The four texels which correspond to each rendered fragment’s

texture coordinate are read, and the maximum of the four is selected and written to the

level-1 mipmap. The process repeats for the higher mipmap levels until a single texel is

generated, which contains the maximum importance value for all texels in the texture.

The shader used to select the next shooting surface for progressive refinement

radiosity takes the texture of surface . The top-level mipmap of the texture is read

and used as the depth value of the fragment whose value contains the integer ID of the

surface. An additional input texture is added for importance-driven radiosity, which

accepts the texture. The top-level mipmap of this texture is read, which contains the

maximum importance value for the surface. To find the optimal shooting surface, the

shader writes the ID value fragment to the one-pixel buffer using the inverse of

 as the depth value of the fragment. An example is show in Figure 22.

The ID of the surface with the maximum unshot radiosity energy scaled by

importance will be at the top of the buffer when the buffer contents are read back to the

CPU using a PBO. Once the shooting surface has been selected, radiosity is shot from

the surface as described in Section 4.1.3.

Figure 22: Computation of importance scaled unshot radiosity energy of a surface

47

4.2.5 Propagation of Importance

Importance can be propagated to surfaces besides those that receive importance

directly from the user’s view, similar to the way light in an environment emitted from a

light source will be transported to surfaces throughout the environment. Therefore, it is

necessary to transport importance in the same manner as radiosity.

Figure 23: Importance textures after importance-driven radiosity iterations

48

Directly received importance is contributed to all surfaces visible from the user’s

view, and is collected in the and textures of surface . The surface in the

environment with the highest unshot importance, , is found using the same shader

which selects the surface with the highest unshot radiosity, . Once this surface is

found, importance is shot from the surface in the same way radiosity is shot from a

surface. The result of importance propagation is show in Figure 23. Since importance

textures are stored at a lower resolution, the number of importance shooting locations for

a surface will be half the number of radiosity shooting locations for the same surface.

In the software implementation, the same code is used for radiosity textures and

importance textures when generating the stereographic item buffer for a shooting

location, back-projection of each visible surface element in the environment to the

shooting location, and computing the form factor from the shooting location to each

receiving surface element. During a single iteration of importance-driven radiosity,

importance propagation begins when the surface with the highest unshot importance is

selected. This is followed by radiosity propagation using the propagated importance as

the weight for the optimal shooting surface.

4.2.6 View Changes

Light surfaces in the environment are the static sources of directly received

radiosity; the user’s view, which is the source of directly received importance, is

dynamic. Each time the user’s view changes, importance must be re-shot into the

environment, potentially affecting areas that have already received direct importance.

Therefore, changes in the user’s view must be anticipated in the importance-driven

radiosity solution [2].

To account for a change in the user’s view, the previous amount of directly

received importance must be known. If the previous directly received importance for a

surface is and the newly computed directly received importance is
 , the change in

directly received importance, , is such that

49

Therefore, the importance values for the surface are adjusted by the addition of

The newly computed directly received importance,
 , is stored as , in anticipation of

the next change in the user’s view.

To account for changes in the user’s view in the software implementation, an

additional texture, , is added for surface . The texture is given as an input to the

shader which contributes directly received importance, along with the and textures.

The newly contributed directly received importance,
 is computed by finding the form

factor between the user’s view and all surface elements determined to be visible during

back-projection into the user view item buffer. The one-to-one mapping of texels to

fragments allows us to subtract the texel value from each fragment’s
 texel value.

The values for , and are written out to the textures attached to an FBO, and
 is

written out to the texture, which is used the next time the user’s view changes. All

textures are written simultaneously with MRT.

50

5. PERSPECTIVE-DRIVEN RADIOSITY

Progressive refinement radiosity presents an iterative approach to the radiosity

solution. Importance-driven radiosity maximizes the visible work done per-iteration by

considering the user’s view in the environment. Perspective-driven radiosity seeks to

increase the amount of useful work towards the user’s perception of image convergence

by limiting radiosity calculations to the user’s view. The most computation time in

radiosity is spent calculating the form factors between two surfaces in an environment.

By performing these calculations only for surfaces in the user’s view, the amount of

visually important work per iteration can be increased.

5.1 View Dependence

Importance-driven radiosity adds the concept of view-dependence to the radiosity

solution by directing refinement based on the user’s view. Some of the view-

independent elegance of progressive refinement is lost, but in return, the user gains an

image that converges more quickly for the view they are interested in. With perspective-

driven radiosity, the solution becomes further view-dependent, since image generation is

localized to the area of the environment that their gaze encompasses.

Selection of the shooting surface in perspective-driven radiosity is the same as

importance-driven radiosity; therefore, the importance propagation will not be limited by

the user’s view and proceeds as it does in the importance-driven algorithm. Even though

a surface falls outside the user’s view, it can be selected for shooting if it has unshot

radiosity. This ensures that any directly received radiosity will be contributed if it can

affect the user’s view of the lit environment. A surface outside the user’s view,

however, will not receive radiosity because of the strict view-dependence of the

algorithm. Therefore, it cannot be guaranteed that a surface in the user’s view will

receive secondary radiosity from a surface that has not yet received direct radiosity.

This view-dependence requires some consideration to ensure convergence.

51

Figure 24: Perspective-driven view-dependence

In the environment in Figure 24, the user’s view encompasses only the bottom

surface. Because there is a light source in the environment which has emissivity, this

surface will be selected for shooting. The bottom surface of the environment, which is

in the user’s view, will receive radiosity directly from the chosen shooting surface.

Since all other surfaces in the environment are outside the user’s view, no other surfaces

will receive radiosity directly from the light surface. Consequently, the bottom surface

will not receive secondary radiosity from any other surface in the environment.

A relaxation in the strict view-dependence of perspective-driven radiosity allows

the solution to proceed to convergence. Over time, the FOV angle used to generate the

user’s view of the environment remains constant, but a “simulated FOV angle” will

grow to include other surfaces once the area-of-interest has received a pre-determined

amount of processing. The user does not detect this change, since the FOV angle of

their view remains the same.

A user-defined decay interval can be applied to grow the simulated angle of the

FOV. As the FOV angle grows, more surfaces are included in the area-of-interest.

These surfaces receive direct radiosity, and in turn shoot their received radiosity to the

52

bottom surface. When the user changes their view, it is assumed that a new area-of-

interest has been selected, so the simulated FOV angle will be reset to match the actual

FOV angle until the decay interval begins to grow the simulated FOV angle once again.

5.2 Stored Radiosity Table Creation

In progressive refinement radiosity, a surface is said to contribute radiosity, ,

to a surface for all surfaces, such that

To adjust this for perspective-driven radiosity, we instead define

where represents the stored radiosity which surface should contribute to surface ,

and represents the user’s view. A surface is visible if any surface element is visible

from the user’s view. Because is indexed by two variables, it can be thought of as a

table of stored radiosity. No form factors are computed for updates to the table entry

when surface is outside the user’s view. The value is only incremented by the amount

of radiosity that the surface is to contribute. When the FOV angle changes, due either to

user interaction or the decay interval, the radiosity for surface can be updated as

which guarantees that any surface that becomes visible in the user’s view and has

stored radiosity it should receive from surface will have its radiosity incremented by

the stored radiosity table entry for the two surfaces, . Once the radiosity for surface

has been updated, the table entry can be cleared to zero.

53

In the software implementation, a rectangular texture lends itself as a suitable

data structure for the stored radiosity table, since texels can be indexed directly by the

surface ID value, rather than a normalized texture coordinate. The texture size is ;

shooting surfaces are column-indexed, and receiving surfaces are row-indexed. The

table in Figure 25 is created for an environment with eight surfaces.

Figure 25: Stored radiosity table where rectangular texture coordinates correspond to table entry indices

5.3 View Visibility

It is important to determining if a surface lies in the user’s view, since the stored

radiosity table must be updated based on surface visibility. Visibility to the user’s view

is a simple test. The FOV is defined by an angle; if the angle between the user’s look-at

vector and the surface is greater than half the angle of the FOV, the surface is not

contained in the FOV. Although this test can be performed on the CPU, the GPU does

the work more effectively, since it can also eliminate hidden surfaces that would be

contained in the FOV angle of the user’s view.

54

The display mesh is rendered to an off-screen buffer, and an occlusion query is

initiated for the displayed polygon of each surface. The perspective projection is set to

the dimensions of the user’s display, and the FOV angle is set to the value used for

testing visibility. Once the mesh is rendered as in Figure 26, the occlusion query results

determine if a surface is visible in the user’s FOV. Because the perspective projection of

the environment uses a combination of gluPerspective and gluLookAt, the FOV

angle can range from (0,180), since the computed projection matrix contains a column

with the value (FOV/2).

Figure 26: Visualization of FOV visibility test at FOV of degrees

The results of the occlusion queries are placed in a vector mapped to GPU

memory using a PBO, so surface visibility results can be accessed in a shader.

55

5.4 Stored Radiosity Table Gathering

Stored radiosity table entries are incremented by the amount of unshot radiosity a

surface needs to shoot to surface . The value for the unshot radiosity that should be

transferred is stored in GPU memory. Therefore, our stored radiosity table is also

generated on the GPU to prevent the need to access radiosity textures on the CPU.

5.4.1 Table Entries

The rectangular texture containing the stored radiosity table is attached to an

FBO with a one-to-one orthographic projection, and a stored radiosity table gathering

shader is enabled for the stored radiosity table texture’s single draw operation. Texture

coordinates are rectangular, and correspond to the surface ID of each surface in the

environment. An example of the stored radiosity table is shown in Figure 27.

Figure 27: Stored radiosity table with selected table entry values and their meanings

Since the stored radiosity table is updated one shooting surface at a time, the

shader is able to discard fragments for every texture column except the one indexed by

56

the surface ID of the active shooting surface . Since the vector of surface occlusion

query results have been mapped to the GPU using a PBO, the shader is able to access the

view visibility vector as a one-by- rectangular texture, where is the number of

surfaces in the environment. The index value of each row in the shooting surface

column is also used to index the view visibility vector and determine if the receiving

surface indexed by the row index value was visible to the shooting surface . If surface

 was visible to surface , there is no need to update the stored radiosity table, since the

radiosity will be contributed to the surface during progressive refinement. If surface

was not visible to surface , the table is incremented at the texel in column and row by

the amount of unshot radiosity the active shooting surface should otherwise be

contributing, . This is obtained from the texture that is input to the shader.

5.4.2 Multiple Shooting Locations

In the software implementation of progressive refinement radiosity on the GPU,

radiosity is shot from level of the shooting surface’s unshot radiosity texture. Since

the size of each successive mipmap is the squared root of the previous mipmap, the

number of shooting locations is reduced by a magnitude of two for each mipmap level

above zero. If there are table entries in the stored radiosity table, each shooting

surface is allowed one stored radiosity value for surface . This is the equivalent of

shooting from the highest-level mipmap for each shooting surface, thereby shooting the

entire surface’s unshot radiosity from the center of the surface. Shooting all radiosity

from the center of the surface can produce an overly simplified image if the surfaces are

large enough. This can lead to artifacts such as those shown in Figure 28.

57

Figure 28: Artifacts from shooting unshot radiosity from one central point on a surface

To alleviate these artifacts, the creation of the stored radiosity table can be

generalized to store radiosity values for more than one shooting location for surface . If

the stored radiosity table is expanded to hold up to shooting locations per surface, the

table entries can be updated by using the shooting texture coordinates to direct stored

radiosity values into one of bins, shown in Figure 29. When shooting from the surface

location that maps to texture coordinates in the texture of shooting surface , a

stored radiosity table draw operation checks whether the fragments from the draw

operation are in the column that matches the bin that texture coordinates fall into

for surface , and discards all other column fragments.

The stored radiosity table requires memory, where is the number of

shooting locations stored per surface, so memory requirements are quadratic. The

software implementation allows storage of up to 256 bins per shooting surface.

58

Figure 29: Shooting surface 1 with four radiosity values directed to appropriate bin for receiving surface 3

5.4.3 Visibility Vector

When gathering to the table entries in a draw operation on the stored radiosity

table, it is useful to give a context for entries that are being written to the table. This

contextual information can be used when the table entries are retrieved. The extra

bookkeeping allows quick correlation between which receiving surfaces have stored

radiosity table entries and which receiving surfaces are now visible because of a change

in the user’s view. This prevents an search of table entries each time the user’s

view changes. The contextual information takes the form of a visibility vector in the

first column of the texture used for the stored radiosity table.

When the stored radiosity table gathering draw operation takes place, the shader

that writes to the table discards entries not in the shooting surface column or first

column. The shader uses each row index value in the first column to read the occlusion

query results vector that is mapped as a rectangular texture. If receiving surface that

corresponds to the row index was not visible, the texel in row of the visibility vector

59

is filled with the color white, as seen in Figure 30. This color is a Boolean indication

that receiving surface has stored radiosity table entries.

Figure 30: Visibility vector in a stored radiosity table texture

The receiving surfaces that have stored radiosity table rows containing entries

may be quickly identified by reading this resulting vector after a stored radiosity table

gathering draw operation.

5.4.4 Shooting Locations

When reconstructing the conditions necessary to propagate radiosity from

shooting surface to receiving surface , it is necessary to redraw the stereographic

hemisphere at the shooting location on shooting surface so that the visibility test can be

performed for each element in surface . Section 4.1.3 describes how shooting locations

for a surface are computed using the GPU. Rather than redraw these shooting location

values for each surface that needs to shoot entries in the stored radiosity table to

receiving surfaces, a vector of shooting locations is added to the top of the stored

radiosity table texture, shown in Figure 31. The value in the vector at index

60

corresponds to the shooting location bin that is stored in column of the rectangular

texture.

Figure 31: Shooting locations vector in a stored radiosity table texture

A 2D texture array is created to store shooting locations, which are written as

vector entries. The layers in the texture array can be indexed using the same column

index that is used to write to the rectangular texture. Each texture array layer is

initialized by drawing a polygon using the vertex values of the surface as colors. The

resulting texture array layer contains shooting locations for the surface in each texel.

Since the software implementation stores up to 256 shooting locations for each surface,

the texture array has dimensions [16,16,], where is the number of surfaces in the

environment. To store fewer shooting locations per surface, higher mipmap levels of the

texture array can be accessed, which give a reduced number of shooting locations. The

mipmap is indexed using the same texture coordinates that are used to write the unshot

radiosity value from surface to the stored radiosity table.

61

5.5 Stored Radiosity Table Distribution

Whenever the user view changes because of user interaction or the decay interval

growing the simulated FOV angle, the stored radiosity table must be checked to see if

any surfaces have become visible which have stored radiosity in table entries. If any of

these surfaces have become visible, they are bucketed by the shooting location that

needs to shoot radiosity to them. The stereographic item buffer must be regenerated

from the shooting location for a receiving surface’s radiosity textures to be updated,

which requires a render pass of the environment geometry. Bucketing receiving surfaces

by shooting surfaces allows the most work to be done per stereographic item buffer

generation.

5.5.1 Becoming Visible Vector

The projection matrix must be set on the CPU when shooting radiosity from the

stored radiosity table entry for a shooting surface to a receiving surface . Therefore, it

is important to know which surfaces become visible whenever the view changes.

To determine if a surface is becoming visible, the environment is rendered from

the user’s view. Occlusion queries are initiated for each surface polygon to determine if

the surface has at least one visible projected pixel. These occlusion queries are mapped

to a one-by- rectangular texture using a PBO. By comparing the visibility of surfaces

from the user’s view with the visibility vector in the stored radiosity table texture, a

shader is able to determine which surfaces have become visible in and should have

unshot radiosity distributed to them from the shooting surface. The result of the

comparison is a “becoming visible vector,” used by the CPU to bucket receiving

surfaces by their shooting surfaces.

5.5.2 Stored Radiosity Table Entry Retrieval

In the software implementation, a rectangular texture is created to retrieve the

contents of the stored radiosity table which should be propagated to newly visible

surfaces and a shader is enabled which performs the logic to retrieve table entries. The

62

shader checks the texels under each column in the stored radiosity table texture to see if

that shooting surface has stored radiosity table entries. If it does, the value in the

shooting location vector is written to the retrieved radiosity table texture. The value of

the visibility vector in the stored radiosity table at index is compared to the value in the

occlusion queries texture at index to create the “becoming visible” table in the first

column of the retrieved radiosity table texture. All table entries in the stored radiosity

table texture are written to the retrieved radiosity table texture if they are in a “becoming

visible” surface’s row, shown in Figure 32.

Figure 32: Retrieving stored radiosity table entries for newly visible surfaces

63

The stored radiosity table texture is attached to the FBO along with the retrieved

table entries texture, using MRT. If a receiving surface is becoming visible, the row for

that surface is “cleared” in the stored radiosity table by writing out the color black for

each entry in the row. The surface’s entry in the visibility vector is cleared, as well.

Additionally, if a shooting surface is determined not to have any remaining radiosity

table entries, the shooting location is cleared from the stored radiosity table.

5.5.3 Stored Radiosity Table Entry Shooting

The first column of the retrieve table entries texture contains the becoming

visible vector; the first row contains the shooting locations vector. Once the retrieved

radiosity table texture draw operation is complete, these vectors are read back to the

CPU using a PBO. The shooting locations vector provides a list of shooting surface

locations that have radiosity table entries that need to propagate stored radiosity. The

“becoming visible” table provides a list of receiving surfaces to which shooting surfaces

need to shoot stored radiosity table entries.

The stereographic item buffer is rendered for each shooting location in the

shooting locations list. Receiving surfaces that are in the “becoming visible” table are

bucketed by shooting surface, minimizing the number of stereographic item buffers that

must be generated. The receiving surface radiosity textures are updated using the same

code that is used for shooting radiosity and importance. The shader that performs

radiosity calculations for these surfaces is modified slightly to use the values in the

retrieved table entries texture. The radiosity values in the table entries are accessed by

using the index of the shooting surface , the shooting location bin number, and the

index of the receiving surface . The area for the shooting location used in form factor

calculations is derived by dividing the shooting surface into as many discs as there are

shooting location bins.

64

6. RESULTS

Experiments were conducted to compare the results of progressive refinement,

importance-driven, and perspective-driven radiosity. Links to videos of the results may

be found in Appendix B. All images in the following section were taken from the linked

videos. All environment models used were variations on the Cornell box: an enclosed

box with a red and green wall, and a single light source. When displayed in Autodesk

Maya using flat shading, the Cornell box appears as in Figure 33. The total surface area

of the environment is 23,603 units. Textures are stored one-to-one with their

corresponding surfaces, so this number equals the number of surface elements to which

radiosity will be shot.

Figure 33: Cornell box displayed in Autodesk Maya from front and top perspectives

6.1 Single-Enclosure Environment

A single-enclosure environment was used to test the effectiveness of the

progressive refinement radiosity implementation. It also served as a basis to which other

results could be compared. Two runs of the radiosity system were conducted using

progressive refinement and the single-enclosure Cornell box environment: one using the

65

ambient term for display in Video 2, one without the ambient term in Video 1. Images

from these videos are shown in Figure 34.

Figure 34: Progressive refinement with (right) and without the ambient term (left), at 5 second intervals

At five seconds, color bleeding from the red and green walls is reflected on the

sides of the inner boxes. At 15 seconds, the ambient term is no longer noticeable and the

66

runs are beginning to approach convergence. To demonstrate color bleeding that is more

pronounced and the effect of the ambient term, the Cornell box is again rendered, this

time using an exaggerated color scheme in Video 3 and Video 4, shown in Figure 35.

Figure 35: Progressive refinement shown in an environment using an exaggerated color scheme

67

6.2 Multiple-Enclosure Environment

A new environment was created by duplicating the Cornell box three times and

placing one of the four boxes in its own quadrant, shown in Figure 36. This

environment was created to determine the effectiveness of importance-driven radiosity.

Progressive refinement will treat every box the same, since they are all identical to each

other. Importance-driven, however, should perform radiosity calculations only for the

single Cornell box in the user’s view.

Figure 36: Multiple-enclosure environment displayed in Autodesk Maya from top perspective

The multiple-enclosure environment is used in a run of progressive refinement,

captured in Video 5. Figure 37 shows the results and the times at which significant

events occurred in the lighting process. The display contains two views: the user’s view,

and an omniscient view that has no effect on the rendered scene.

68

Figure 37: Time , in seconds, of significant lighting events for progressive refinement radiosity

69

At one second, each of the four boxes in the environment has been lit. Only the

lighting of one of these boxes contributes to the light visible to the user. At 17 seconds,

radiosity is shot from the green wall of the user-visible box. At 19 seconds, the red wall

also contributes its radiosity to the environment. At 30 seconds, the top of the smaller

inner box contributes its radiosity, and the solution begins to approach convergence.

Figure 38: Time , in seconds, of significant lighting events for importance-driven radiosity

70

The same environment is then used in a run of importance-driven radiosity,

captured in Video 6. Figure 38 again shows timings at which significant events occur in

the lighting of the environment from the user’s view. At one second, the box in the

user’s view is lit. At two seconds, the red wall shoots its radiosity, and the green wall

does the same at four seconds. At five seconds, the top of the small inner box

contributes its radiosity.

The remainder of the captured video shows the user view being rotated, and the

effect it has on the remaining boxes in the environment: when the user’s view is focused

on one of the four boxes, surfaces contained in that box are selected for shooting

radiosity. The cause of this can be seen in Video 7, which displays importance values as

intensity maps, shown in Figure 39.

Figure 39: Importance values shown as intensity maps

6.3 Subdivided Single-Enclosure Environment

To create the next environment used for testing, the Cornell box model was

subdivided twice using Autodesk Maya, as shown in Figure 40. This creates an

71

environment with 16 times as many surfaces and light sources as the Cornell box model

used in previous experiments.

Figure 40: Subdivided Cornell box, displayed in Autodesk Maya

The subdivided model was tested using each of the three radiosity algorithms in

the software implementation. Images from the videos generated during these tests are

shown in Figure 41, Figure 42, and Figure 43. It was expected that progressive

refinement would process the entire scene the most quickly, because of the low overhead

of the original algorithm, but that perspective-driven radiosity would be able to focus

radiosity calculations to a subset of surfaces in the environment contained in the user’s

view and light them more quickly.

For each run, the FOV of the user’s view is set to 10 degrees, to limit the number

of visible surfaces. The camera begins by viewing the front of the model, and is pointed

to the back right corner where the white wall, white floor, and white back wall meet.

The progressive refinement run is captured in Video 8.

72

Figure 41: Time , in seconds, of four significant lighting events for progressive refinement radiosity in a

single enclosure environment

73

Figure 42: Time , in seconds, of four significant lighting events for importance-driven radiosity in a

single enclosure environment

74

Figure 43: Time , in seconds, of four significant lighting events for perspective-driven radiosity in a

single enclosure environment

75

Progressive refinement radiosity must solve the radiosity calculations for each

surface in the environment. The small corner of the box receives as much computational

attention as any other area in the environment. Importance-driven radiosity, captured in

Video 9, has more computational overhead than progressive refinement because of

additional geometry passes and rendering to importance textures. All surfaces in the

environment receive nearly equal importance, due to all propagated importance being

confined to the single enclosure. Therefore, the importance-weighted shooting surface

chosen to shoot its radiosity next is similar to the surface chosen by the progressive

refinement algorithm. This amounts to no improvements being made towards a quicker

convergence of the lighting for the user’s view.

Perspective-driven radiosity limits radiosity calculations to the surfaces visible

from the user’s view, and is able to shoot radiosity multiple times to the few visible

surfaces, seen in Video 10. The ten-second decay constant gradually expands the FOV

of the user’s view, encompassing additional surfaces in the area-of-interest.

Movement of the user’s view and its effect on the lighting of a scene using

perspective-driven radiosity is demonstrated in Video 11, of which an image is shown in

Figure 44. The decay constant is reduced to one second, and the view is moved across

the subdivided environment with an exaggerated color scheme. Surfaces are lit when

they fall within the user’s view, displayed in the left pane. When the view pauses,

additional surfaces are quickly included in the area-of-interest.

Figure 44: Demonstration of the effect of movement of the user's view in perspective-driven radiosity

76

6.4 Subdivided Multiple-Enclosure Environment

A final experiment was conducted with the multiple-enclosure environment

previously used to demonstrate the importance-driven radiosity algorithm. The model

containing multiple Cornell boxes was subdivided once using Autodesk Maya, as shown

in Figure 45. Each enclosure contains four times as many surfaces and lights because of

this subdivision.

Figure 45: Multiple subdivided Cornell boxes, shown in Autodesk Maya

It was expected that this environment would demonstrate the ability of

perspective-driven radiosity to focus radiosity calculations to a user-defined subset of

surfaces. When perspective-driven radiosity is added, the surfaces in the user’s view

converge towards their final lit colors the most quickly. The results of this experiment

are seen in the images in Figure 46, Figure 47, and Figure 48, which are taken from

Video 12, Video 13, and Video 14, respectively.

77

Figure 46: Time , in seconds, of four significant lighting events for progressive refinement radiosity in an

environment containing multiple enclosures

78

Figure 47: Time , in seconds, of four significant lighting events for importance-driven radiosity in an

environment containing multiple enclosures

79

Figure 48: Time , in seconds, of four significant lighting events for perspective-driven radiosity in an

environment containing multiple enclosures

80

7. CONCLUSIONS

7.1 Performance

During research for this thesis, a method was developed in concordance with the

thesis proposal which limits radiosity calculations to the area-of-interest defined by the

user’s view: the combination of their point-of-view (POV) and field-of-view (FOV).

This was successfully achieved through implementation of the perspective-driven

radiosity algorithm, using the GPU for radiosity calculations. Additional work on the

software implementation could potentially expand the usefulness and effectiveness of

the perspective-driven algorithm.

7.2 Limitations

Because of the overhead of rendering multiple geometry passes and the

additional memory associated with the algorithm, perspective-driven radiosity is limited

in its applicability to any general environment model.

Several limitations are imposed due to current GPU hardware limitations. For

instance, the maximum dimensions of a texture on the NVIDIA Quadro 5000 are 8192

by 8192 texels. This means that in the current implementation, no surface can be created

with a texture larger than this size.

Additionally, the maximum dimensions of a 3D texture are 2048 by 2048 by

2048 texels. This limit is also placed on the number of layers in 2D texture arrays that

are created, such as the one used to store surface shooting locations for generation of the

stored radiosity table. The use of this 2D texture array would limit the number of

surfaces in the current implementation to 2048, since each layer in the texture array is

used to store position information for a surface.

The stored radiosity table is created as a 2D texture. If the maximum number of

shooting bins is kept for each shooting surface, this results in 256 texture columns of

stored radiosity entries per shooting surface. When the visibility vector is accounted for,

this leaves enough texture columns for 31 surfaces in the environment. This would be

81

an unrealistic limit for most applications, so the usefulness of multiple shooting bins is

reduced.

In terms of artistic limitations, the perspective-driven algorithm works best with

environments where the surfaces are highly subdivided. If the corner of a large surface

lies partially within the user’s view, the entire surface will still be considered visible to

the user, and will be shaded over the entire texture. By subdividing the same large

surface into smaller surfaces, only the subdivided surfaces which are visible to the user

will be shaded.

This characteristic of perspective-driven radiosity means that best results will be

achieved when the algorithm is applied to environments such as those presented in

Section 6.4.

7.3 Future Work

For the demonstration of the perspective-driven algorithm, some techniques from

the original paper on GPU progressive refinement radiosity were omitted which could be

added to improve appearance. The performance of the software implementation could

also benefit from further optimizations for execution on the GPU. In addition, new and

upcoming GPU features that are supported by the OpenGL API could improve

performance if utilized correctly.

7.3.1 Adaptive Subdivision

As explained in Section 4.1.7, adaptive subdivision was omitted from the

software implementation. The addition of adaptive subdivision would improve the

appearance of lighting results by providing higher resolution textures to surfaces that

have high frequency radiosity gradients. The original implementation of progressive

refinement radiosity on the GPU provided a simple solution to this problem, using

texture quadtrees [4].

82

7.3.2 GPU Optimization

Optimizing a software for the best performance on the GPU is both a science and

an art. It requires an understanding of the lower level execution details of the GPU, as

well as knowledge of how best to design a computer graphics problem so it is simplified

without sacrificing imaging quality.

OpenGL’s immediate mode was used for rendering all geometry in this thesis,

which is a bottleneck for performance. Using vertex buffer objects (VBOs) or display

lists would have a positive impact on the performance of all three algorithms. A VBO

places vertex data in GPU memory so it is not required to send model geometry across

the graphics bus every time a polygon is drawn.

In addition to the elimination of immediate mode drawing, more traditional

computer graphics optimization techniques could be employed, such as view frustum

culling. This would use the CPU to determine which areas of the model could be

skipped when drawing geometry, particularly when generating the user view item buffer

for importance-driven and perspective-driven radiosity.

7.3.3 Mesh Tessellation

Rendering the stereoscopic item buffer requires a subdivided surface because of

the straight rasterization of lines when transforming model vertexes in the stereoscopic

vertex shader. Since the subdivided polygons used to generate the stereographic item

buffer are based exactly on geometry already being sent to the GPU, subdividing model

geometry on the GPU would save both time and memory. This could potentially be

accomplished using instanced tessellation, or the tessellation engines found on the latest

generation of GPUs.

83

REFERENCES

[1] C.M. Goral, K.E. Torrance, D.P. Greenberg, and B. Battaile, "Modeling the
interaction of light between diffuse surfaces," Proceedings of the 11th Annual

Conference on Computer Graphics and Interactive Techniques, pp. 213-222,
1984.

[2] P. Bekaert, and Y.D. Willems, "Importance-driven progressive refinement

radiosity," Proceedings of the 6th Eurographics Workshop, pp. 316-325, 1995.

[3] M.F. Cohen, S.E. Chen, J.R. Wallace, and D.P. Greenberg, "A progressive

refinement approach to fast radiosity image generation," Proceedings of the 15th

Annual Conference on Computer Graphics and Interactive Techniques, pp. 75-
84, 1988.

[4] G. Coombe, M.J. Harris, and A. Lastra, "Radiosity on graphics hardware,"

Proceedings of Graphics Interface 2004, pp. 161-168, 2004.

[5] B.E. Smits, J.R. Arvo, and D.H. Salesin, "An importance-driven radiosity

algorithm," Proceedings of the 19th Annual Conference on Computer Graphics

and Interactive Techniques, pp. 273-282, 1992.

[6] D. Göddeke, "GPGPU - basic math tutorial," http://www.mathematik.uni-

dortmund.de/~goeddeke/gpgpu/tutorial.html, 2010.

[7] M.F. Cohen, and D.P. Greenberg, "The hemi-cube: a radiosity solution for

complex environments," Proceedings of the 12th Annual Conference on

Computer Graphics and Interactive Techniques, pp. 31-40, 1985.

[8] D.S. Immel, M.F. Cohen, and D.P. Greenberg, "A radiosity method for non-

diffuse environments," Proceedings of the 13th Annual Conference on Computer

Graphics and Interactive Techniques, 1986.

[9] J.R. Wallace, K.A. Elmquist, and E.A. Haines, "A ray tracing algorithm for

progressive radiosity," Proceedings of the 16th Annual Conference on Computer

Graphics and Interactive Techniques, pp. 315-324, 1989.

[10] P.S. Heckbert, "Adaptive radiosity textures for bidirectional ray tracing,"

Proceedings of the 17th Annual Conference on Computer Graphics and

Interactive Techniques, 1990.

84

[11] P.-P. Sloan, J. Kautz, and J. Snyder, "Precomputed radiance transfer for real-time
rendering in dynamic, low-frequency lighting environments," Proceedings of the

29th Annual Conference on Computer Graphics and Interactive Techniques, pp.
527-536, 2002.

[12] A.T. Campbell, and D.S. Fussell, "Adaptive mesh generation for global diffuse

illumination," Proceedings of the 17th Annual Conference on Computer

Graphics and Interactive Techniques, pp. 155-164, 1990.

[13] D.R. Baum, S. Mann, K.P. Smith, and J.M. Winget, "Making radiosity usable:

automatic preprocessing and meshing techniques for the generation of accurate
radiosity solutions," Proceedings of the 18th Annual Conference on Computer

Graphics and Interactive Techniques, 1991.

[14] P. Hanrahan, D. Salzman, and L. Aupperle, "A rapid hierarchical radiosity

algorithm," Proceedings of the 18th Annual Conference on Computer Graphics

and Interactive Techniques, 1991.

[15] D. Lischinski, F. Tampieri, and D.P. Greenberg, "Combining hierarchical

radiosity and discontinuity meshing," Proceedings of the 20th Annual

Conference on Computer Graphics and Interactive Techniques, 1993.

[16] F. Durand, G. Drettakis, and C. Puech, "Fast and accurate hierarchical radiosity

using global visibility," ACM Transactions on Graphics, vol. 18, no. 2, pp. 128-
170, 1999.

[17] B. Bolstad, Field-of-view directed radiosity, Master's thesis, Department of

Computer Science, Texas A&M University, College Station, 1999.

[18] D.R. Baum, and J.M. Winget, "Real-time radiosity through parallel processing

and hardware acceleration," Proceedings of the 1990 Symposium on Interactive

3D Graphics, 1990.

[19] C. Puech, F. Sillion, and C. Vedel, "Improving interaction with radiosity-based

lighting simulation programs," Proceedings of the 1990 Symposium on

Interactive 3D Graphics, pp. 51-57, 1990.

[20] R.J. Recker, D.W. George, and D.P. Greenberg, "Acceleration techniques for

progressive refinement radiosity," Proceedings of the 1990 Symposium on

Interactive 3D Graphics, 1990.

[21] T.A. Funkhouser, "Coarse-grained parallelism for hierarchical radiosity using

group iterative methods," Proceedings of the 23rd Annual Conference on

Computer Graphics and Interactive Techniques, 1996.

85

[22] N.A. Carr, J.D. Hall, and J.C. Hart, "GPU algorithms for radiosity and subsurface

scattering," Proceedings of the ACM SIGGRAPH/EUROGRAPHICS Conference

on Graphics Hardware, pp. 51-59, 2003.

[23] T.J. Purcell, I. Buck, W.R. Mark, and P. Hanrahan, "Ray tracing on

programmable graphics hardware," ACM Transactions on Graphics, vol. 21, no.
3, pp. 703-712, 2002.

[24] N.A. Carr, J.D. Hall, and J.C. Hart, "The ray engine," Proceedings of the ACM

SIGGRAPH/EUROGRAPHICS Conference on Graphics Hardware, pp. 37-46,
2002.

[25] R. Fernando, GPU Gems: Programming Techniques, Tips and Tricks for Real-

Time Graphics. Pearson Higher Education, 2004.

[26] T.J. Purcell, C. Donner, M. Cammarano, H.W. Jensen, and P. Hanrahan, "Photon

mapping on programmable graphics hardware," ACM SIGGRAPH 2005 Courses,
pp. 258, 2005.

[27] Microsoft Corporation, "DirectX software development kit,"

http://msdn.microsoft.com/library/cc440756.aspx, 2010.

[28] Khronos Group, "OpenGL software development kit,"

http://www.opengl.org/sdk/, 2010.

[29] Khronos Group, "OpenGL platform & OS implementations,"

http://www.opengl.org/documentation/implementations/, 2010.

[30] M. Segal, and K. Akeley, The OpenGL Graphics System: A Specification

(Version 2.1). Silicon Graphics, Inc., 2006.

[31] D. Shreiner, OpenGL Programming Guide: The Official Guide to Learning

OpenGL, Versions 3.0 and 3.1. Addison-Wesley Professional, 2009.

[32] P. Brown, J. Leech, R. Mace, and B. Paul, "ARB_texture_float," OpenGL

Extension Registry, http://www.opengl.org/registry/specs/ARB/texture_float.txt,
2008.

[33] K. Akeley, J. Allen, B. Beretta, P. Brown, M. Craighead, A. Eddy, C. Everitt, M.

Galvan, M. Gold, E. Hart, et al., "EXT_framebuffer_object," OpenGL Extension

Registry, http://www.opengl.org/registry/specs/EXT/framebuffer_object.txt,
2008.

86

[34] P. Brown, J. Jones, J. Leech, R. Mace, V. Moya, and B. Paul,
"ARB_color_buffer_float," OpenGL Extension Registry,
http://www.opengl.org/registry/specs/ARB/color_buffer_float.txt, 2007.

[35] P. Brown, D. Ginsburg, M. Gold, M.J. Kilgard, J. Leech, B. Licea-Kane, B.

Lichtenbelt, B. Lipchak, B. Paul, J. Rosasco, et al., "ARB_texture_rectangle,"

OpenGL Extension Registry,
http://www.opengl.org/registry/specs/ARB/texture_rectangle.txt, 2005.

[36] M. Gold, and P. Brown, "EXT_texture_integer," OpenGL Extension Registry,

http://www.opengl.org/registry/specs/EXT/texture_integer.txt, 2006.

[37] J. Leech, and M. Kilgard, "EXT_texture_array," OpenGL Extension Registry,

http://www.opengl.org/registry/specs/EXT/texture_array.txt, 2008.

[38] B. Lichtenbelt, and P. Brown, "EXT_gpu_shader4," OpenGL Extension Registry,

http://www.opengl.org/registry/specs/EXT/gpu_shader4.txt, 2009.

[39] D. Hudson, R. Loach, and R. Ridge, "The Tao framework,"

http://sourceforge.net/projects/taoframework/, 2010.

[40] L. Dupont, R. Ridge, and A. Ghezelbash, "C# graphics library,"

http://csgl.sourceforge.net/, 2010.

[41] Khronos Group, "OpenGL extension header file,"

http://www.opengl.org/registry/api/glext.h, 2010.

[42] R.J. Rost, B. Licea-Kane, D. Ginsburg, J.M. Kessenich, B. Lichtenbelt, H.

Malan, and M. Weiblen, OpenGL Shading Language. Addison-Wesley
Professional, 2009.

[43] R. Fernando, and M.J. Kilgard, The Cg Tutorial: The Definitive Guide to

Programmable Real-Time Graphics. Addison-Wesley Longman Publishing Co.,
Inc., 2003.

[44] M. Botsch, S. Steinberg, S. Bischoff, and L. Kobbelt, "OpenMesh - a generic and

efficient polygon mesh data structure," OpenSG Symposium, Darmstadt, Germany, 2002.

[45] B.G. Baumgart, "Winged edge polyhedron representation," Technical Report No. CS-320,

Stanford University, 1972.

[46] Computer Graphics Group, RWTH Aachen, "OpenMesh software development

kit," http://www.openmesh.org, 2010.

87

[47] Microsoft Corporation, "MFC reference," http://msdn.microsoft.com/en-
us/library/d06h2x6e(VS.80).aspx, 2010.

[48] NVIDIA Corporation, "NVIDIA Quadro 5000,"

http://www.nvidia.com/object/product-quadro-5000-us.html, 2010.

[49] Realtech VR Group, "OpenGL extensions viewer," http://www.realtech-

vr.com/glview/, 2010.

[50] Graphic Remedy Group, "gDEBugger - OpenGL, OpenGL ES and OpenCL

debugger, profiler and memory analyzer," http://www.gremedy.com, 2010.

[51] Institut für Visualisierung ung Interaktive Systeme, Universität Stuttgart,

"glslDevil - OpenGL GLSL debugger," http://www.vis.uni-stuttgart.de/glsldevil/,
2010.

[52] M. Cohen, D. Greenberg, D. Immel, and P. Brock, "An efficient radiosity

approach for realistic image synthesis," IEEE Computer Graphics and

Applications, vol. 6, no. 3, pp. 26-35, 1986.

[53] A. Appel, "Some techniques for shading machine renderings of solids,"

Proceedings of the Spring Joint Computer Conference, pp. 37-45, 1968.

[54] T. Whitted, "An improved illumination model for shaded display,"

Communications of the ACM, vol. 23, no. 6, pp. 343-349, 1980.

88

APPENDIX A

This section contains pseudo-code for the three GPU-based radiosity algorithms

implemented during research.

Progressive Refinement

// initialize surface textures

 for each surface

o draw to textures and

 while()

// select shooting surface

o enable

o for each surface in environment

 draw of surface to texture with depth

o =

o for each in

// create hemisphere item buffer

 enable

 for each surface in environment

 set projection from

 draw of surface to texture

89

// perform radiosity calculations

 enable

 for each surface in environment visible in hemisphere

 draw textures and

 back-project each from

into

 if is visible

// compute ambient term

 enable

 for each surface in environment

 draw contribution to texture

// display environment with ambient effects

 if

 enable

 for each surface in environment

90

Importance-Driven

Text in bold denotes code added to progressive refinement radiosity for this algorithm’s

implementation.

// initialize surface textures

 for each surface

o draw to textures and

o draw 0 to textures , , and

 while()

o if user view changes

// create user view item buffer

 enable

 for each surface in environment

 set projection from user POV

 draw of surface to texture

// account for changes in user POV

 enable

 for each surface in environment visible from user POV

 draw textures , , and

 back-project each from user POV into

 if is visible

91

// select importance shooting surface

o enable

o for each surface in environment

 draw of surface to texture with

depth

o =

o for each in

// create hemisphere item buffer

 enable

 for each surface in environment

 set projection from

 draw of surface to texture

// perform importance calculations

 enable

 for each surface in environment visible in hemisphere

 draw textures and

 back-project each from

 into

 if is visible

92

// Select radiosity shooting surface

o enable

o for each surface in environment

 draw of surface to texture with

depth

o =

o for each in

// create hemisphere item buffer

 enable

 for each surface in environment

 set projection from

 draw of surface to texture

// perform radiosity calculations

 enable

 for each surface in environment visible in hemisphere

 draw textures and

 back-project each from

into

 if is visible

// compute ambient term

 enable

 for each surface in environment

 draw contribution to texture

93

// display environment with ambient effects

 if

 enable

 for each surface in environment

94

Perspective-Driven

Text in bold denotes code added to importance-driven radiosity for this algorithm’s

implementation.

// initialize surface textures

 for each surface

o draw to textures and

o draw 0 to textures , , and

// initialize perspective-driven parameters

 draw 0 to texture

 while()

o if decay interval elapses

o if user view changes

// reset the simulated FOV

// create user view item buffer

 enable

 for each surface in environment

 set projection from user POV

 draw of surface to texture

95

// account for changes in user POV

 enable

 for each surface in environment visible in user POV

 draw textures , , and

 back-project each from user POV into

 if is visible

o if changes

// draw environment using

 for each surface in environment

 set projection from user POV using

 initiate occlusion query

 stream each occlusion query to texture

// retrieve visible stored radiosity table entries to be shot

 enable

 draw texture

 if value at texel indicates previously not visible and

value at texel indicates

currently visible

 draw to texture

96

 draw 0 to texture

 else

 draw to texture

 draw 0 to texture

 if shooting location has surfaces to shoot to

 draw to texture

// distribute retrieved results to surfaces

 for each with unshot radiosity

 retrieve from

 for each in

// create hemisphere item buffer

 enable

 for each surface in environment

 set projection from

 draw of surface to texture

// perform radiosity calculations

 enable

 for each surface in environment visible in

hemisphere and becoming visible in user FOV

 draw textures and

 back-project each from

 into

 if is visible

97

// select importance shooting surface

o enable

o for each surface in environment

 draw of surface to texture with depth

o =

o for each in

// create hemisphere item buffer

 enable

 for each surface in environment

 set projection from

 draw of surface to texture

// perform importance calculations

 enable

 for each surface in environment visible in hemisphere

 draw textures and

 back-project each from

into

 if is visible

// Select radiosity shooting surface

o enable

98

o for each surface in environment

 draw of surface to texture with depth

o =

o for each in

// create hemisphere item buffer

 enable

 for each surface in environment

 set projection from

 draw of surface to texture

// gather stored radiosity table entries

 enable

 draw texture

 if lies in column

 write nearest neighbor value of texture

 at layer

 to

 increment if surface is not visible in user

FOV by value of radiosity is

shooting

 if lies in column

 write value to indicating if surface is not

visible in user FOV

// perform radiosity calculations

 enable

99

 for each surface in environment visible in hemisphere and

visible in user FOV

 draw textures and

 back-project each from

into

 if is visible

// compute ambient term

 enable

 for each surface in environment

 draw contribution to texture

// display environment with ambient effects

 if

 enable

 for each surface in environment

100

APPENDIX B

The following are permanent links to videos captured for the demonstration of

research results. All videos are stored at 1080p resolution.

Video 1 Progressive refinement radiosity, single-enclosure environment.

http://www.youtube.com/watch?v=EHv8iCGMvRw

Video 2 Progressive refinement radiosity, single-enclosure environment using

ambient term. http://www.youtube.com/watch?v=zz5Awdejp-8

Video 3 Progressive Refinement radiosity, single-enclosure environment with

exaggerated colors. http://www.youtube.com/watch?v=MNUz8OnhLnc

Video 4 Progressive refinement radiosity, single-enclosure environment with

exaggerated colors using ambient term.

http://www.youtube.com/watch?v=oPXQUe5ZxaA

Video 5 Progressive refinement radiosity, multiple-enclosure environment.

http://www.youtube.com/watch?v=tS1S8MdJSQs

Video 6 Importance-driven radiosity, multiple-enclosure environment.

http://www.youtube.com/watch?v=QRZS9oMc4WM

Video 7 Importance-driven radiosity, multiple-enclosure environment, with

importance visualized as intensity values.

http://www.youtube.com/watch?v=G9ndxohtqAo

101

Video 8 Progressive refinement radiosity, subdivided single-enclosure

environment. http://www.youtube.com/watch?v=_Sr80g7KYVE

Video 9 Importance-driven radiosity, subdivided single-enclosure environment.

http://www.youtube.com/watch?v=3PH-hbDnFQ4

Video 10 Perspective-driven radiosity, subdivided single-enclosure environment,

ten-second decay constant. http://www.youtube.com/watch?v=6S-

gG3c_zkE

Video 11 Perspective-driven radiosity, subdivided single-enclosure environment

with exaggerated colors, one second decay constant.

http://www.youtube.com/watch?v=-Bq1jJJf7bk

Video 12 Progressive refinement radiosity, subdivided multiple-enclosure

environment. http://www.youtube.com/watch?v=OcMGUfk9Hng

Video 13 Importance-driven radiosity, subdivided multiple-enclosure environment.

http://www.youtube.com/watch?v=jRkXk-uGB6Q

Video 14 Perspective-driven radiosity, subdivided multiple-enclosure environment.

http://www.youtube.com/watch?v=Qj1YwdVlplY

102

VITA

Name: Justin Taylor Bozalina

Address: 8584 Katy Freeway, Suite 400
 Houston, TX 77024

Email Address: justin@bozalina.com

Education: B.S., Computer Science, Texas A&M University, 2004
 M.S., Computer Science, Texas A&M University, 2011

