
The tangle: some aspects of a blockchainless
cryptocurrency

Serguei Popov∗

April 3, 2016

Department of Statistics, Institute of Mathematics, Statistics and Scientific Computation, Univer-
sity of Campinas – UNICAMP, rua Sérgio Buarque de Holanda 651, 13083–859, Campinas SP, Brazil
e-mail: popov@ime.unicamp.br

Abstract

In this paper we discuss some (mainly probabilistic) aspects of a cryptocur-
rency that, instead of a blockchain, uses a tangle (that is, a directed acyclic
graph) for storing transactions. In particular, one of contributions of this paper
is a family of MCMC algorithms for selecting the sites of the tangle where a
newly arrived transaction should be attached.

1 Introduction and description of the system

The rise and success of Bitcoin during the last six years proved the value of blockchain
technology. However, this technology also has a number of drawbacks, which prevent
it to be used as a one and only global platform for cryptocurrencies. Among these
drawbacks, an especially notable one is the impossibility of making micro-payments,
which have increased importance for the rapidly developing Internet-of-Things indus-
try. Specifically, in the currently available systems one must pay a fee for making
a transaction; so, transferring a very small amount just makes no sense since one
would have also to pay the fee which is many times larger. On the other hand, it is
not easy to get rid of the fees since they serve as an incentive for the creators of the
blocks. It should be also observed that existing cryptocurrencies are heterogeneous

∗a.k.a. mthcl at bitcointalk.org and nxtforum.org

1

systems with clear separation of roles (transaction issuers, transaction approvers).
Such systems create unavoidable discrimination of some of their elements which in
turn creates conflicts and makes all elements spend resources on conflict resolution.
All this justifies a search for solutions essentially different from the blockchain tech-
nology, on which the Bitcoin and many other cryptocurrencies are based.

In this paper we discuss a blockchainless approach, which is currently being im-
plemented in the cryptocurrency system called iota [1], recently designed as a cryp-
tocurrency for the Internet-of-Things industry. We, however, focus more on general
features and problems/difficulties that arise when one attempts to get rid of the
blockchain, than on concrete details of iota’s implementation.

In general, a tangle-based cryptocurrency works in the following way. Instead of
the global blockchain, there is a DAG (= directed acyclic graph) that we call tangle.
The transactions issued by nodes constitute the site set of the tangle (i.e., the tangle
graph is the ledger for storing transactions). Its edge set is obtained in the following
way: when a new transaction arrives, it must approve two1 previous transactions;
these approvals are represented by directed edges, as shown on Figure 1 and others
(on the pictures, times always goes from left to right). If there is no directed edge
between transaction A and transaction B but there is a directed path of length at least
two from A to B, we say that A indirectly approves B. There is also the “genesis”
transaction, which is approved (directly or indirectly) by all other transactions, see
Figure 2. The genesis is described in the following way. In the beginning there was
an address with balance containing all the tokens. Then the genesis transaction sent
these tokens to several other “founder” addresses. Let us stress that all the tokens
were created in the genesis (no other tokens will be created), and there no mining in
the sense “miners receive monetary rewards”.

A quick note on the terminology: sites are transactions represented on the tangle
graph. The network is composed by nodes ; that is, nodes are entities that issue
transactions.

Now, the main idea is the following: to issue a transaction, users must work to
approve other transactions, therefore contributing to the network’s security. It is
assumed that the nodes check if the approved transactions are not conflicting and
do not approve (directly or indirectly) conflicting transactions2. As a transaction
gets more and more (direct or indirect) approvals, it becomes more accepted by the
system; in other words, it will be more difficult (or even practically impossible) to

1this is the simplest approach; one may also study similar systems where transactions must
approve k other transactions for a general k ≥ 2, or consider more complicated rules

2if a node issues a new transaction that approves conflicting transactions, then it risks that others
will not approve this new transaction, and so it will fall into oblivion

2

make the system accept a double-spending transaction. It is important to observe
that we do not impose any rule for choosing the transactions to approve; rather,
we argue that if a large number of other nodes follow some “reference” rule (which
seems to be a reasonable assumption, especially in the context of IoT, where nodes
are specialized chips with pre-installed firmware), then for any fixed node it is better
to stick to a rule of the same kind3.

More specifically, to issue a transaction, a node does the following:

• First, it chooses two other transactions to approve (in general, these two trans-
actions may coincide), according to some algorithm.

• It checks if the two transactions are not conflicting and do not approve conflict-
ing transactions.

• For the transaction to be valid, the node must solve a cryptographic puzzle
(which may be computationally demanding) similar to those in the Bitcoin
mining (e.g., it needs to find a nonce such that the hash of that nonce to-
gether with some data from the approved transactions has a particular form,
for instance, has at least some fixed number of zeros in front).

It is important to observe that, in general, we have an asynchronous network, so that
nodes do not necessarily see the same set of transactions. It should be noted also that
the tangle may contain conflicting transactions. The nodes do not have to achieve
consensus on which valid4 transactions have the right to be in the ledger (all of them
can be there); but, in case there are conflicting transactions, they need to decide
which transactions will become orphaned (that is, eventually not indirectly approved
by incoming transactions anymore). The main rule that the nodes use for deciding
between two conflicting transactions is the following: a node runs the tip selection
algorithm5 (cf. Section 4.1) many times, and see which transaction of the two is more
likely to be (indirectly) approved by the selected tip. For example, if, after 100 runs
of the tip selection algorithm, a transaction was selected 97 times, we say that it is
confirmed with 97% confidence.

Let us also comment on the following question (cf. [4]): what motivates the nodes
to propagate transactions? In fact, in our setup the nodes do not have motivation
not to propagate. Every node calculates some statistics, one of which is how many

3we comment more on this in the end of Section 4.1
4i.e., transactions issued according to the protocol
5as mentioned above, there is a good reason to assume that other nodes would follow (almost)

the same algorithm for tip selection

3

new transactions are received from a neighbor. If one particular node is “too lazy”, it
will be dropped by its neighbors. So, even if a node does not issue transactions (and
hence has no direct incentive to share new transactions that approve its own one), it
still has incentive to work hard.

In the subsequent sections, after introducing some notations in Section 2, we dis-
cuss algorithms for choosing the two transactions to approve, the rules for measuring
the overall transaction’s approval (Section 3 and especially Section 3.1), and possible
attack scenarios (Section 4).

It should be noted that the ideas about usage of DAGs in the cryptocurrency
context were around for some time, see e.g. [3, 6, 7, 8, 12]. Specifically, the work [7]
introduces the so-called GHOST protocol, which proposes a modification of the Bit-
coin protocol by making the main ledger a tree instead of the blockchain; it is shown
that such a modification permits to reduce the confirmation times and improve the
overall security of the network. In the paper [8] the authors consider a DAG-based
cryptocurrency model; differently from our model, the sites of the DAG are blocks
(not individual transactions), the miners compete for transactions’ fees, and (as in
Bitcoin) new tokens may be created. Also, observe that in the work [6] a solution
somewhat similar to ours was proposed, although it does not discuss any particular
tip approval strategies. We mention also another approach [2, 9] that aims to make
Bitcoin micro-payments possible by establishing peer-to-peer payment channels.

This paper is a revised and shortened version of [10].

2 Weights and more

Here, we discuss the (own) weight of a transaction and related concepts. The weight
of a transaction may be defined to be proportional to the amount of computational
work that the issuing node invested into it. In fact, mostly, here for us it is irrelevant
how the weight was obtained in practice; it is only important that every transaction
has a positive number (= weight) attached to it. In general, the idea is that the
larger the weight is, the more “important” the transaction is for the tangle. Usually
it is assumed that, to avoid spamming and different kinds of attacks, no entity can
generate too many transactions with “acceptable” weights in a short time period.

One of the notions we need is the cumulative weight of a transaction: it is defined
as the own weight of this transaction plus the sum of own weights of all transactions
that approve our transaction directly or indirectly. This algorithm of cumulative
weights calculation is illustrated on Figure 1. The boxes represent transactions; the
small numbers in the bottom right corner stand for the own weights of the transac-

4

1

1

1

1

3

1

1

3

1

1

4

12

9

11 6

13

10

4

1

1

1

3

1

1

3

1

1

7

45

12

14 9

16

13
3

3

A

B

C

D

X

E

F

Figure 1: On the cumulative weights (re)calculation

tions, while the (bigger) bold numbers are the cumulative weights. For example, the
transaction F is approved, directly or indirectly, by the transactions A,B,C,E. The
cumulative weight of F is 9 = 3 + 1 + 3 + 1 + 1, that is, the sum of the weight of F
and the weights of A,B,C,E.

On the top picture, the only unapproved transactions (the “tips”) are A and C.
When the new transaction X comes and approves A and C, it becomes the only tip;
the cumulative weight of all other transactions increases by 3 (which is the weight
of X).

For the discussion of approval algorithms, we need also to introduce some other
variables. First, for a site (i.e., a transaction) of the tangle, we introduce its

• height, as the length of the shortest oriented path to the genesis;

5

9

1

3

1

1

3

1

1

7

A

C

genesis

B

D

E

F

G

Figure 2: On the calculation of scores (circled)

• depth, as the length of the shortest reverse-oriented path to some tip.

For example, on Figure 2, G has height 1 and depth 2 (because of the reverse path
E,C), while E has height 2 and depth 1. Also, let us introduce the notion of the
score. By definition, the score of a transaction is sum of own weights of all transactions
approved by this transaction plus the own weight of the transaction See Figure 2.
Again, the only tips are A and C. Transaction A approves (directly or indirectly)
transactions B,D, F,G, so the score of A is 1 + 3 + 1 + 3 + 1 = 9. Analogously, the
score of C is 1 + 1 + 1 + 3 + 1 = 7.

In fact, to understand the arguments in this paper, one may safely assume that all
weights are equal to 1. So, from now, on, we stick to this assumption. In particular,
the cumulative weight now becomes one plus the number of transactions that approve
our transaction directly or indirectly. The score now is the number of transactions
that are directly or indirectly approved by our transaction.

Also, let us observe that, among the above metrics, the cumulative weight is the
most important for us (although heights, depths, and scores will briefly enter to some
discussions as well).

3 On the stability of the system

Let L(t) be the total number of tips (i.e., unapproved transactions) in the system at
time t. One, of course, expects that the stochastic process L(t) remains stable6 (more
precisely, positive recurrent, see Sections 4.4 and 6.5 of [11] for formal definitions; in

6under an additional assumption that the process is time-homogeneous

6

particular, positive recurrence implies that the limit of P[L(t) = k] as t→∞ should
exist and be positive for all k ≥ 1). Intuitively, we expect that L(t) should fluctuate
around a constant value, and not escape to infinity (thus leaving a lot of unapproved
transactions behind).

To analyze the stability properties of L(t), we need some assumptions. One of
them is that transactions are issued by large number of roughly independent entities,
so the process of incoming transactions can be modeled by a Poisson point process
(cf. e.g. Section 5.3 of [11]). Let λ be the rate of that Poisson process; for simplicity,
let us assume for now that it remains constant in time. Assume also that all devices
have approximately the same computing power, and let h(L,N) be the average time
a device needs to do the calculations necessary to issue a transaction in the situation
when there are L tips and the total number of transactions is N . Then, let us
assume that all nodes behave in the following way: to issue a transaction, a node
just chooses two tips at random and approves them. It should be observed that, in
general, it is not a good idea for the “honest nodes” to adopt this strategy. It has a
number of practical disadvantages, in particular, it does not offer enough protection
against “lazy” or malicious nodes7 (see Section 4.1 below). On the other hand, we
still consider it since it is simpler to analyze, and therefore one may get insight on
the system’s behavior for more complicated tip selection strategies. For this strategy,
one may assume that the Poisson flows of approvals to different tips are independent,
and have rate λ/L (this follows e.g. from Proposition 5.3 of [11], which says that
if we independently classify each event of a Poisson process according to a list of
some possible subtypes, then the processes of events of each subtype are independent
Poisson processes). Therefore,

P
[
nobody approves a given tip during time h(L,N)

]
= exp

(
− λh(L,N)

L

)
. (1)

This means that the expected increment of the total number of tips at the moment
when our device issues a transaction equals to

1− 2 exp
(
− λh(L,N)

L

)
. (2)

In the above formula, “1” corresponds to the new tip created by the transaction,
and the second term is the expected number of “erased” tips. Indeed, according
to (1) (and assuming also that the node always chooses two distinct tips to approve

7we remind the reader that we do not try to enforce any particular tip selection strategy, so an
attacker can choose tips in any way he/she finds convenient

7

in the event when there are at least two available tips) each tip initially chosen for
approval will still remain tip at the moment when the transaction is issued with
probability exp

(
− λh(L,N)

L

)
. Now, L(t) is in fact a continuous-time random walk

on N = {1, 2, 3, . . .}, with nearest-neighbor transitions. Indeed, if the two chosen
transactions were already approved by others, then the process jumps one unit to the
left, if both chosen transactions were not approved, then the process jumps one unit
to the right, and in the last possible case it remain on the same place.

Now, to understand the typical behavior of the process, observe that the drift
(i.e., the expectation of the increment of the number of tips) in (2) is positive for
small L(t) and negative (at least in the case when h(L,N) = o(L) as L→∞; or just
assuming that the main contribution to the computation/propagation time does not
come from handling the tips) for large L. In other words, if L(t) is small, then it
has a tendency to increase, while if L(t) is large, it tends to decrease. Therefore, the
“typical” value L0 of L(t) would be where (2) vanishes (so that the number of tips
has no clear tendency to increase or decrease), that is,

L0 ≈
λh(L0, N)

ln 2
≈ 1.44 · λh(L0, N). (3)

Clearly, L0 defined above is also the typical size of the set of tips.
It is important to observe, however, that the above “purely random” approval

strategy is not very good in practice, because it does not encourage approving tips: a
“lazy” user could just always approve a fixed couple of very old transactions (therefore
not contributing to approval of more recent transactions) without being punished for
such behavior. Also, a malicious entity can artificially inflate the number of tips (e.g.,
by issuing a lot of transactions that approve a fixed pair of transactions), in order
to make the new transactions select those tips with very high probability, effectively
abandoning the tips belonging to “honest” nodes. To avoid issues of this sort, one
has to adopt a strategy which is biased towards the “better” tips. One example of
such a strategy is presented in Section 4.1 below8.

Before starting the discussion about the expected time for a transaction to be
approved for the first time, observe that we can distinguish essentially two regimes
(see Figure 3).

8In fact, the author’s feeling is that the tip approval strategy is the most important ingredient for
constructing a tangle-based cryptocurrency. It is there that many attack vectors are hiding. Also,
since there is usually no way to enforce a particular tip approval strategy, that strategy must be
such that the nodes would voluntarily choose to follow it knowing that at least a good proportion
of other nodes does so.

8

Figure 3: The tangle and its typical tip sets (shaded) in low load and high load
regimes. Observe that in the latter case some transactions may have to wait a lot
until approved for the first time.

• Low load: the typical number of tips is small, and even frequently becomes 1.
This may happen when the flow of transactions is small enough, so that it is
not probable that several different transactions approve the same tip; also, if
the network latency is very low and the devices compute fast, then, even in the
situation when the flow of transaction is reasonably large, it is also unlikely that
many tips would appear. Also, we have to assume that there are no attackers
that try to inflate the number of tips artificially.

• High load: the typical number of tips is large. This may happen when the flow
of transactions is big enough, and the computational delays together with the
network latency make it likely that several different transactions approve the
same tip.

Of course, this division is rather informal and there is no clear borderline between
the the two regimes; nevertheless, we find that it may be instructive to consider these
two essentially different situations.

Now, in the low load regime, the situation is relatively simple: the first approval
happens in average time of order λ−1, since already the first (or one of the first)
incoming transactions will approve our transaction9.

9recall that, in the Poisson process with rate λ, the intervals between arrivals are Exponentially
distributed with mean λ−1

9

Let us now consider the high load regime, that is, the situation when L0 is large.
As mentioned above, one may assume that the Poisson flows of approvals to different
tips are independent and have rate approximately λ/L0. Therefore, the expected
time for a transaction to be approved for the first time is around L0/λ ≈ 1.44h
(recall (3)). It is worth noting, however, that for more elaborated approval strategies
(that favor the tips of the “better” quality, whatever it can mean), it may not be
a good idea to passively wait a lot of time until the transaction is approved by the
others; this is because “better” tips will keep appearing and be preferred for approval.
Rather, in case when the transaction is waiting for approval for too long time (i.e.,
much larger than L0/λ) a good strategy will be to promote it with an additional
empty transaction10, that is, issue an empty transaction that approves our previous
transaction together with one of the “better” tips (so that this empty transaction has
a good chance to be further approved).

Now, it turns out that the approval strategies based on heights and scores may
be vulnerable to a specific type of attacks, see Section 4.1. We will discuss more
elaborated strategies to defend against such attacks in that section. Nevertheless, we
stress that it is still worth considering the simplest tip selection strategy (“approve
two random tips”), since it is the easiest to analyze, and therefore may give some
insight about the qualitative and quantitative behavior of the system.

3.1 How fast does the cumulative weight typically grow?

Clearly, in the low load regime, after our transaction gets approved several times, its
cumulative weight will grow with speed λ, since essentially all new transactions will
indirectly reference our transaction11.

As for the high load regime, if a transaction is old enough and with big cumulative
weight, then the cumulative weight grows with speed λ for the same reasons. Also,
we know that in the beginning the transaction may have to wait for some time to be
approved, and it is clear that its cumulative weight behaves in a random fashion at
that time. To see how fast the cumulative weight grows after the transaction gets
several approvals, denote (for simplicity, we start counting time at the moment when
our transaction has been created) by H(t) the expected cumulative weight at time t,
and by K(t) the expected number of tips that approve our transaction at time t (or

10an empty transaction is a transaction that does not involve any token transfer; still, it has to
approve two other transactions thus contributing to the network security

11recall that we assumed that the own weights of all transactions are equal to 1, so the cumulative
weight is just the number of all transactions that reference (directly or indirectly) our transaction
plus 1

10

simply “our tips”). Let us also abbreviate h := h(L0, N). Also, we make a simplifying
assumption that the overall number of tips remains roughly constant (equal to L0) in
time. We work with the “approve two random tips” strategy here; it is expected that
the qualitative behavior will be roughly the same for other reasonable strategies.

Observe that a transaction coming to the system at time t typically chooses the
two transactions to approve based on the state of the system at time t−h (because the
node must do some calculations/verifications before actually issuing the transaction).
It is not difficult to obtain that the probability that it approves at least one “our”

tip is 1 −
(
1 − K(t−h)

L0

)2
= K(t−h)

L0

(
2 − K(t−h)

L0

)
(the expression in the left-hand side

is 1 minus probability that the two approved tips are not ours). Analogously e.g. to
Example 6.4 of [11], we can write

H(t+ δ) = H(t) + λδ
K(t− h)

L0

(
2− K(t− h)

L0

)
+ o(δ),

and thus deduce the following differential equation

dH(t)

dt
= λ

K(t− h)

L0

(
2− K(t− h)

L0

)
. (4)

In order to be able to use (4), we need first to calculate K(t). It is not immediately
clear how to do this, since a tip at time t−h may not be a tip at time t, and, in the case
when the newly coming transaction approves such a tip, the overall number of tips
approving the original transaction increases by 1. Now, the crucial observation is that
the probability that a tip at time t− h remains a tip at time t is approximately 1/2
(indeed, just plug the expression in (3) to (1)). So, at time t essentially a half
of K(t − h) “previous” our tips remain tips, while the other half will be already
approved at least once. Let us denote by A the set of those (approximately)K(t−h)/2
tips at time t−h that remained tips at time t, and the set of other K(t−h)/2 tips (that
were already approved by time t) will be denoted by B. Let p1 be the probability that
the newly arrived transaction approves at least 1 transaction from B and does not
approve any transactions from A. Also, let p2 be the probability that both approved
transactions belong to A. Clearly, p1 and p2 are, respectively, the probabilities that
the current number of “our” tips increases or decreases by 1 upon arrival of the new
transaction. We have

p1 =
(K(t− h)

2L0

)2
+ 2× K(t− h)

2L0

(
1− K(t− h)

L0

)
,

p2 =
(K(t− h)

2L0

)2
11

(to obtain the first expression, observe that p1 equals to the probability that both
approved tips belong to B plus twice the probability that the first tip belongs to B
and the second tip does not belong to A ∪ B). Analogously to (4), the differential
equation for K(t) then writes:

dK(t)

dt
= (p1 − p2)λ = λ

K(t− h)

L0

(
1− K(t− h)

L0

)
. (5)

It is difficult to solve (5) exactly, so we make further simplifying assumptions. First
of all, we observe that, after the time when K(t) reaches level εL0 for a fixed ε > 0, it
will grow very quickly to (1−ε)L0 (indeed, the right-hand side of (5) will be bounded
away from 0). Now, when K(t) is small with respect to L0, we can essentially drop
the last factor in the right-hand side of (5) (it will be at least a constant close to 1,

so the right-hand side would be equivalent to λK(t−h)
L0

). Also, substituting K(t − h)

by K(t)− hdK(t)
dt

, we obtain a simplified version of (5) (recall that λh
L0

= ln 2):

dK(t)

dt
≈ λ

1 + ln 2

K(t)

L0

≈ 0.59 · λK(t)

L0

, (6)

with boundary condition K(0) = 1. The (approximate) solution of this differential
equation is

K(t) ≈ exp
(t ln 2

(1 + ln 2)h

)
≈ exp

(
0.41

t

h

)
. (7)

So, taking logarithms in (7), we find that the time when K(t) reaches εL0 is roughly

t0 ≈
(
1 + (ln 2)−1

)
h×

(
lnL0 − ln ε−1

)
. 2.44 · h lnL0. (8)

Turning back to (4) (and, as before, dropping the last term in the right-hand side)
we obtain that during the “adaptation period” (i.e., t ≤ t0 with t0 as in (8)), it holds
that

dH(t)

dt
≈ 2λ

L0 exp
(

ln 2
1+ln 2

)K(t)

≈ 2λ

L0 exp
(

ln 2
1+ln 2

) exp
(t ln 2

(1 + ln 2)h

)
,

and so

H(t) ≈ 2(1 + ln 2)

exp
(

ln 2
1+ln 2

) exp
(t ln 2

(1 + ln 2)h

)
≈ 2.25 · exp

(
0.41

t

h

)
. (9)

12

time

cumulative weight

0

β

tanβ = λ

adaptation period

Figure 4: On the cumulative weight growth

Let us remind the reader that, as discussed above, after the adaptation period the
cumulative weight H(t) grows linearly with speed λ. We stress that the “exponential
growth” (as in (9)) does not mean that the cumulative weight grows “very quickly”
during the adaptation period; rather, the behavior is as shown on Figure 4.

Also, we comment that the calculations in this section can be easily adapted to
the situation when a node references s > 1 transactions in average. For this, one just
need to replace 2 by s in (2) (but not in (4)!), and ln 2 by ln s in (3) and in (6)–(9).

4 Possible attack scenarios

We start by discussing an obvious attack scenario, where the attacker is trying to
“outpace” the network alone:

1. the attacker pays to the merchant, and receives the goods after the merchant
considers that the transaction got already a sufficiently large cumulative weight;

2. the attacker issues a double-spending transaction;

3. the attacker issues a lot of small transactions (very aggressively, with all his/her
computing power) that do not approve the original one directly or indirectly,
but approve the double-spending transaction;

13

4. observe that the attacker may have a lot of Sybil identities, and also is not
required to necessarily approve tips;

5. he/she hopes that his/her “sub-DAG” outpaces the main one, so that the DAG
continues growing from the double-spending transaction, and the legitimate
branch is discarded.

Assume that a given transaction gained cumulative weight w0 in t0 time units af-
ter the moment when it was issued. Assume also that the adaptation period for that
transaction is over, and so its cumulative weight increases linearly with speed λ. Now,
the attacker wants to double-spend on this transaction; for that, at the time12 when
the first transaction was issued, he/she secretly prepares the double-spending transac-
tion, and starts generating other transactions that approve the double-spending one.
If at some moment (after the merchant decides to accept the legitimate transaction)
the attacker’s subtangle outpaces the legitimate subtangle, then the double-spending
attack would be successful. If that does not happen, then the double-spending trans-
action will not be approved by others (because the legitimate transaction will acquire
more cumulative weight and essentially all new tips would indirectly approve it), and
so it will be orphaned.

As before, let µ stand for the computing power of the attacker (i.e., the speed of
transactions’ generation). We also make a simplifying assumption that the transac-
tions propagate instantly. Let G1, G2, G3, . . . denote i.i.d. Exponential random vari-
ables with parameter µ (i.e., with expected value 1/µ), and denote also Vk = µGk,
k ≥ 1. Clearly, V1, V2, V3, . . . are i.i.d. Exponential random variables with parame-
ter 1.

Suppose that at time t0 the merchant decided to accept the transaction (recall that
it has cumulative weight w0 at that time). Let us estimate the probability that the
attacker successfully double-spends. Let M(θ) = (1−θ)−1 be the moment generating
function (see Section 7.7 of [14]) of the Exponential distribution with parameter 1.
It is known13 that for α ∈ (0, 1) it holds that

P
[n∑
k=1

Vk ≤ αn
]
≈ exp

(
− nϕ(α)

)
, (10)

12or even before; we discuss this case later
13this is a consequence of the so-called Large Deviation Principle; besides the general book [13],

see also Proposition 5.2 in Section 8.5 of [14] for a simple and instructive derivation of the upper
bound, and Section 1.9 of [5] for the (not so simple) derivation of the lower bound

14

where ϕ(α) = − lnα + α − 1 is the Legendre transform of lnM(−θ). Observe that,
as a general fact, it holds that ϕ(α) > 0 for α ∈ (0, 1) (recall that the expectation of
an Exponential random variable with parameter 1 also equals 1).

Assume also that µt0
w0

< 1 (otherwise, the probability that the attacker’s subtangle
eventually outpaces the legitimate one would be close to 1). Now, to outweigh w0

at time t0, the attacker needs to be able to issue at least w0 (for simplicity, we drop
the integer parts) transactions with maximal weight m during time t0. Therefore,
using (10), we obtain that the probability that the double-spending transaction has
more cumulative weight at time t0 is roughly

P
[w0/m∑
k=1

Gk < t0

]
= P

[w0∑
k=1

Vk < µt0

]
= P

[w0∑
k=1

Vk < w0 ×
µt0
w0

]
≈ exp

(
− w0ϕ

(
µt0
w0

))
. (11)

That is, for the above probability to be small, we typically need that w0

m
is large

and ϕ
(
µt0
w0

)
is not very small.

Note that, at time t ≥ t0, the cumulative weight of the legitimate transaction is
roughly w0 + λ(t − t0) (recall that we assumed that the adaptation period is over,
so the cumulative weight just grows with speed λ). Analogously to (11), one obtains
that the probability that the double-spending transaction has more cumulative weight
at time t ≥ t0 is roughly

exp
(
− (w0 + λ(t− t0))ϕ

(
µt

w0+λ(t−t0)

))
. (12)

Then, it must be true that we have µt0
w0
≥ µ

λ
(since, during the adaptation period, the

cumulative weight grows with speed less than λ). Anyhow, it can be shown that the
probability of achieving a successful double spend is of order

exp
(
− w0ϕ

(
max(µt0

w0
, µ
λ
)
))
. (13)

For example, let µ = 2, λ = 3 (so that the attacker’s power is only a bit less
that that of the rest of the network). Assume that the transaction got cumulative
weight 32 by time 12. Then, max(µt0

w0
, µ
λ
) = 3

4
, ϕ
(
3
4

)
≈ 0.03768, and (13) then

gives the upper bound approximately 0.29. If we assume, however, that µ = 1 (and
keep other parameters intact), then max(µt0

w0
, µ
λ
) = 3

8
, ϕ
(
3
8

)
≈ 0.3558, and (13) gives

approximately 0.00001135, quite a change indeed.

15

From the above discussion it is important to observe that, for the system to be
secure, it should be true that λ > µ (otherwise, the estimate (13) would be useless);
i.e., the input flow of “honest” transactions should be large enough compared to
the attacker’s computational power. This indicates the need for additional security
measures (i.e., checkpoints) during the early days of a tangle-based system.

4.1 A parasite chain attack and a new tip selection algorithm

Consider the following attack (Figure 5): an attacker secretly builds a chain/subtangle,
occasionally referencing the main tangle to gain more score (note that the score of
good tips is roughly the sum of all own weights in the main tangle, while the score
of the attacker’s tips also contains the sum of all own weights in the parasite chain).
Also, since the network latency is not an issue to someone with a sufficiently strong
computer who builds the chain alone14, the attacker might be able to give more
height to the parasite tips. Finally, the number of attacker’s tips can be artificially
increased at the moment of the attack (by issuing a lot of transactions that all ap-
prove the same attacker’s transactions, see Figure 5 below), in case the honest nodes
use some selection strategy that involves a simple choice between available tips.

To defend against this attack, we are going to use the fact that the main tangle
is supposed to have more (active) hashing power, and therefore manages to give
more cumulative weight to more transactions than the attacker. The idea is to use a
MCMC (Markov Chain Monte Carlo) algorithm to select the two tips to reference.

Let Hx be the current cumulative weight of a site (i.e., a transaction represented
on the tangle graph). Recall that we assumed that all own weights are equal to 1; so,
the cumulative weight of a tip is always 1, and the cumulative weight of other sites
is at least 2.

The idea is to place some particles (a.k.a. random walkers) on sites of the tangle,
and let them walk towards the tips in a random15 way. The tips “chosen” by the walks
are then the candidates for approval. The algorithm is described in the following way:

1. consider all transactions with cumulative weight between W and (say) 2W
(where W is reasonably large, to be chosen16);

14this is because the attacker can always approve his/her own transactions, without relying on
any information from the rest of the network

15there is no “canonical” source of randomness; the nodes just use their own (pseudo)random
number generators to simulate the random walks

16the idea is to place the particle “deep” into the tangle (so that it will not come to a tip straight
away) but not “too deep” (so that it will find a tip in a reasonable time). Also, the [W, 2W] interval
is arbitrary, one could chose e.g. [W, 3W] instead, or whatever.

16

main tangle

parasite chain

good tips

lazy tips

Figure 5: On the tip selection algorithm. The two red circles indicate an attempted
double-spend.

2. place N particles independently there (N is not so big, say, 10 or so17);

3. these particles will perform independent discrete-time random walks “towards
the tips” (i.e., transition from x to y is possible if and only if y approves x);

4. the two random walks that reach the tip set first will indicate our two tips to
approve;

5. the transition probabilities of the walks are defined in the following way: if y
approves x (we denote this y x), then the transition probability Pxy is
proportional to exp

(
− α(Hx −Hy)

)
, that is

Pxy = exp
(
− α(Hx −Hy)

)(∑
z:z x

exp
(
− α(Hx −Hz)

))−1

, (14)

where α > 0 is a parameter to be chosen (one can start e.g. with α = 1).

In particular, note that this algorithm is “local”, one need not go to all the way to
the genesis to calculate things.

To see that the algorithm works as intended, consider first the “lazy tips” (those
that intentionally approve some old transactions to avoid doing verification), see
Figure 5. Observe that, even if the particle is in a site approved by such a tip, it

17again, this choice is largely arbitrary; we use several particles instead of just two for additional
security. The idea is that a particle accidentally jumps to the attacker’s chain (which is supposed
to be long), then it will spend a lot of time there and other tips will be chosen first.

17

is not probable that the lazy tip would be selected, since the cumulative weights
difference will be very large, look at (14).

Next, consider the following attack: the attacker secretly builds a chain (a “para-
site chain”) containing a transaction that empties his/her account to another account
under his/her control (indicated as the leftmost red circle on Figure 5). At some point
the attacker issues a transaction in the main tangle (indicated as the other red circle),
and waits until the merchant accepts it. The parasite chain occasionally references
the main tangle (hence the name) and so its sites have good height/score (even bet-
ter than those of the main tangle), although the cumulative weight is not so big in
that chain. Note also that it cannot reference the main tangle after the merchant’s
transaction. Also, the attacker might try to artificially inflate the number of his/her
tips at the moment of the attack, as shown on the picture. The attacker’s idea is to
make the nodes reference the parasite chain, so that the “good” tangle would become
orphaned.

Now, it is easy to see why the MCMC selection algorithm with high probability
will not select one of the attacker’s tips. Basically, the reason is the same as why the
algorithm does not select the lazy tips: the sites of the parasite chain will have a much
smaller cumulative weight than the main tangle’s sites they reference. Therefore, it
is not probable that the random walk will ever jump to the parasite chain (unless it
begins there, but this is not very probable too, since the main tangle contains more
sites).

Next, let us comment on why the nodes would follow (at least approximately)
this algorithm. Recall that, as observed in Section 1, it is reasonable to assume
that at least a “good” proportion of the nodes will follow the reference algorithm.
Also, because of computational and network delays, the tip selection algorithm would
rather work with a past snapshot of the tangle (with respect to the moment when the
transaction is issued). Now, it may be a good idea to intentionally move this snapshot
more to the past18 in the reference algorithm, for the reasons that we explain in the
sequel. Imagine a “selfish” node that just wants to maximize the chances that his/her
transaction will be soon approved. The MCMC algorithm of this section (adopted
by a considerable proportion of other nodes) defines a probability distribution on
the set of tips; clearly, a natural first choice for that node would be picking the tips
where the maximum of that distribution is attained. However, if many other nodes
also behave in a selfish way (which is quite reasonable to assume as well) and use
the same strategy, then they all will lose: many new transactions will approve the

18that is, first the random walk finds a (past) tip with respect to that snapshot, and then it
continues to walk towards the “actual” tips on the current tangle

18

same two tips at (roughly) the same time, so there will be too much competition
between them for subsequent approval (since the nodes use a past snapshot, they
will not yet “feel” the cumulative weight increase caused by this mass approval of
the two tips). So, even a selfish node would have to use some random tip approval
algorithm, and the probability distribution of the selected tips should be, in some
sense, “not far away” from the default probability distribution (i.e., the one produced
by the reference tip selection algorithm). We do not claim that this “aggregated”
probability distribution (in the presence of selfish nodes) would be equal to the default
probability distribution, but the above argument shows that it should be close to it.
This means that the probability of selecting “bad” tips would remain small. In any
case (differently from Bitcoin), there is not so much incentive for the nodes to be
selfish, since possible gains amount only to slight decrease in confirmation time.

Also, it is not set in stone that the transition probabilities should necessarily
be defined as in (14). Instead of the exponent, one can take some other rapidly
decreasing function, such as e.g. f(s) = s−3. There is much freedom for the choice
of W and N as well. In fact, the author’s feeling is that the main contribution of
this section is the very idea of using MCMC for tip selection; it is unclear if there is
any “theoretical” argument that shows exactly in which way these parameters must
be chosen.

4.2 Splitting attack

The following attack scheme against the above MCMC algorithm was suggested by
Aviv Zohar. In the high-load regime, an attacker can try to split the tangle in two
branches and maintain the balance between them, so that both continue to grow.
To avoid that a honest node references the two branches at once (effectively joining
them), the attacker must place at least two conflicting transactions in the beginning
of the split. Then, he/she hopes that roughly half of the network would contribute
to each branch, so that he/she would be able to “compensate” random fluctuations
even with a relatively small computing power. Then, the attacker would be able to
spend the same funds on the two branches.

To defend against such an attack, one needs to use some “sharp-threshold” rule
(like “select the longest chain” in Bitcoin) that makes it too hard to maintain the
balance between the two branches. Just to give an example, assume that one branch
has the total weight (or any other metric that we may use) 537, and the total weight
of the other branch is quite close, say, 528. If in such a situation a honest node
selects the first branch with probability very close to 1/2, then, probably, the attacker
would be able to maintain the balance between the branches. If, however, a honest

19

node prefers the first branch with probability considerably bigger than 1/2, then
the attacker would probably be unable to maintain the balance, because after an
inevitable random fluctuation the network will quickly choose one of the branches
and abandon the other. Clearly, to make the MCMC algorithm behave this way, one
has to choose a very rapidly decaying function f , and also start the random walk at
a node with (relatively) large depth (so that it is probable that it starts before the
split was created). In this case the random walk would choose the “heavier” branch
with big probability, even if the total weight difference between the branches is small.

It is worth noting that the attacker’s task is very difficult also because of the
network synchronization issues: he/she may not be aware about a good chunk of
recently issued transactions19. Another effective way of fencing off such an attack
would be that a sufficiently powerful entity publishes a large number of transactions
at once (in one branch), thus rapidly changing the power’s balance and making it
difficult for the attacker to deal with this change. Observe also that, if the attacker
manages to maintain the split, the recent transactions will only have around 50%
of confirmation confidence (recall Section 1), and it will not grow; so, the “honest”
nodes may decide to start approving only the pre-split transactions then (and, in
particular, not approve neither of the two conflicting transactions).

One may consider other modifications of the tip selection algorithm. For example,
if a node sees two big subtangles, then it first chooses the one with larger sum of own
weights, and then does the tip selection only there using the above MCMC algorithm.

Also, the following idea may be worth considering: make the transition probabil-
ities in (14) depend not only on Hx − Hy, but on Hx too, in such a way that the
next step of the Markov chain is almost deterministic when the walker is deep in
the tangle (to avoid entering the weaker branch), but becomes more spread out when
close to tips (so that there is enough randomness in the choice of the two transactions
to approve).

5 Conclusion

We presented a concept of a blockchainless cryptocurrency that uses a directed acyclic
graph (which we call tangle) for storing transactions. One of the main advantages of
this design is the absence of the transaction fees, which opens a possibility of mak-
ing micro-payments, something very important for the emerging Internet-of-Things
industry. The main idea is the following: to issue a transaction, users must work to
approve other transactions, therefore contributing to the network’s security. Then,

19so the “real” cumulative weights may be quite different from what he/she believes

20

we perform a (probabilistic) analysis of the system, and describe a MCMC tip se-
lection algorithm (that is used by the nodes for selecting transactions to approve),
which seems to work well against several kinds of attacks.

Acknowledgements

The author thanks the two referees for many useful questions, comments, and sug-
gestions, that helped the author a lot to improve the paper.

References

[1] Iota: a cryptocurrency for Internet-of-Things. See http://www.iotatoken.com/,
and https://bitcointalk.org/index.php?topic=1216479.0

[2] bitcoinj. Working with micropayment channels.
https://bitcoinj.github.io/working-with-micropayments

[3] people on nxtforum.org (2014) DAG, a generalized blockchain.
nxtforum.org/proof-of-stake-algorithm/dag-a-generalized-blockchain/

(registration at nxtforum.org required)

[4] Moshe Babaioff, Shahar Dobzinski, Sigal Oren, Aviv Zohar (2012) On
Bitcoin and red balloons. Proc. 13th ACM Conf. Electronic Commerce, 56–73.

[5] Richard Durrett (2004) Probability – Theory and Examples. Duxbury ad-
vanced series.

[6] Sergio Demian Lerner (2015) DagCoin: a cryptocurrency without blocks.
https://bitslog.wordpress.com/2015/09/11/dagcoin/

[7] Yonatan Sompolinsky, Aviv Zohar (2013) Accelerating Bitcoin’s
Transaction Processing. Fast Money Grows on Trees, Not Chains.
https://eprint.iacr.org/2013/881.pdf

[8] Yoad Lewenberg, Yonatan Sompolinsky, Aviv Zohar (2015) Inclusive
Block Chain Protocols.
http://www.cs.huji.ac.il/~avivz/pubs/15/inclusive btc.pdf

21

[9] Joseph Poon, Thaddeus Dryja (2016) The Bitcoin Lightning Network: Scal-
able Off-Chain Instant Payments.
https://lightning.network/lightning-network-paper.pdf

[10] Serguei Popov (2015) The tangle (the iota whitepaper). Available at
http://188.138.57.93/tangle.pdf

[11] Sheldon M. Ross (2012) Introduction to Probability Models. 10th ed.

[12] David Vorick (2015) Getting rid of blocks. slides.com/davidvorick/braids

[13] Amir Dembo, Ofer Zeitouni (2010) Large Deviations Techniques and Ap-
plications. Springer.

[14] Sheldon M. Ross (2009) A First Course in Probability. 8th ed.

22

