
Real-Time 3-D Wavelet Lifting
David Barina Pavel Zemcik

Faculty of Information Technology
Brno University of Technology

Bozetechova 1/2, Brno
Czech Republic

{ibarina,zemcik}@fit.vutbr.cz

ABSTRACT
This work presents a fast streaming unit for computing a 3-D discrete wavelet transform. The unit can continuously
consume source data and instantly produce resulting coefficients. Considering this approach, every input as well
as output sample is visited only once. The streaming unit can be further improved by exploiting suitable SIMD
instruction set. Depending on the platform, the proposed method reaches speedup 11× and 8× compared to the
naive implementation. The measurements presented in the paper confirm the linear theoretical complexity of the
transform. Our method requires a constant amount of time to transform a sample independently of the data size.

Keywords
wavelet transform, volumetric data, real-time processing

1 INTRODUCTION
Discrete wavelet transform (DWT) is mathematical
tool that uses discretely sampled wavelets to de-
compose input data into several scales. Regarding
multi-dimensional signals, every such scale is also
split into several directionally selective subbands. The
transform is used as the basis of many sophisticated
algorithms and applications. A forward direction
of the transform is composed of several consecutive
levels of signal decompositions. These can be briefly
understood as convolutions with two complementary
FIR filters – low-pass and high-pass one. An inverse
direction of the transform has a symmetric nature to
the forward one.

Considering the number of arithmetic operations, a lift-
ing scheme [12] is often the most efficient way for com-
puting the discrete wavelet transform. The entire cal-
culation consists of several lifting steps. These steps
alternately update odd and even intermediate results.

This paper focuses on the Cohen-Daubechies-Feauveau
(CDF) 9/7 wavelet [11], which is often used for image
compression (e.g., JPEG 2000 standard). The resulting
coefficients using this wavelet can be computed by the
convolution with two FIR filters, one with 7 and the
other with 9 real-valued coefficients. Daubechies et al.

Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for profit
or commercial advantage and that copies bear this notice and
the full citation on the first page. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee.

demonstrated that the transform employing this wavelet
can be computed in four successive lifting steps.

The 1-D discrete wavelet transform can be straightfor-
wardly extended to transform 3-D signals. A separated
decomposition along each axis is commonly used. The
applications of 3-D DWT include video coding, medi-
cal data compression, video watermarking, medical im-
age enhancement, or segmentation of medical volumes.

This paper presents SIMD-accelerated single-loop al-
gorithm for 3-D discrete wavelet transform computa-
tion. Considering this proposed algorithm, every source
memory element is visited only once while the resulting
output coefficients are instantly produced.

This paper discusses implementation of 3-D DWT im-
plemented over single-precision floating-point format
(referred to as binary32 in IEEE 754 standard). As indi-
cated above, the CDF 9/7 wavelet was employed. Only
a single level of the transform is considered wherein
subband coefficients (LLL, LLH, LHL, LHH, HLL,
HLH, HHL, HHH) are kept interlaced in an output
memory area. All the methods presented in this pa-
per are evaluated using mainstream PCs with Intel x86
CPUs. The SIMD-accelerated methods was coded us-
ing the Streaming SIMD Extensions (SSE) instruction
set. Intel Core2 Quad Q9000 running at 2.0 GHz and
AMD Opteron 2380 running at 2.5 GHz were used in
the tests below. Intel CPU has 32 KiB of level 1 data
cache and 3 MiB of level 2 shared cache (two cores
share one cache unit). In contrast, AMD CPU has
64 KiB of level 1 data, 512 KiB of level 2 cache per core
and 6 MiB of level 3 shared cache (all four cores share
one unit). All the algorithms below were implemented



in the C language, using the SSE compiler intrinsics.1

In all cases, a 64-bit code compiled using GCC 4.8.1
with -O3 flag was used.

The rest of the paper is organized as follows. Section
2 discusses the state of the art. Especially, the lifting
scheme and the single-loop approach is described here.
Section 3 proposes a novel SIMD-accelerated single-
loop algorithm for computing the discrete wavelet
transform in 3-D. Finally, Section 4 summarizes the
paper and outlines the future work.

2 RELATED WORK
On conventional architectures, the lifting scheme [20,
12] is the most efficient scheme for computing the dis-
crete wavelet transform. Any discrete wavelet trans-
form can be factorized into a sequence of N pairs of
lifting steps. These steps are denoted as the predict Pn
and update Un convolution operators where each Pn cor-
responds to an FIR filter p(n)i and each Un to a filter u(n)i .
The lifting factorization is not generally unique. This
non-uniqueness can be exploited to maintain the sym-
metry of lifting steps in case of symmetric DWT filters.

α

β

γ

δ

Figure 1: Lifting scheme of CDF 9/7 wavelet. Areas
between dashed green lines represent the vertical and
dotted blue lines the diagonal vectorization.

In [12], Daubechies et al. demonstrated an example of
CDF 9/7 transform factorization. This lifting scheme
consists of four lifting steps (two pairs). After these
steps, an additional scaling of the coefficients is per-
formed. The individual lifting steps use 2-tap sym-
metric filters. When evaluating this lifting scheme,
some intermediate results can be appropriately shared
between neighbouring coefficients. The original cal-
culation is presented as an in-place algorithm, which
means the transform might be calculated in a place of
the input signal. However, this formulation is not ad-
vantageous especially due to a) a complicated border
treatment (e.g., symmetric extension), b) a tendency to
evicting the intermediate results from the CPU cache.

The entire calculation of CDF 9/7 DWT (without scal-
ing) is depicted in Figure 1. In this figure, the α,β ,γ,δ
are real constants specific to CDF 9/7 transform. For-

1 http://www.fit.vutbr.cz/research/prod/?id=211

mally, the forward transform in the referred figure can
be expressed by the dual polyphase matrix

P̃(z) =
[

1 α
(
1+ z−1

)
0 1

][
1 0

β (1+ z) 1

]
[

1 γ
(
1+ z−1

)
0 1

][
1 0

δ (1+ z) 1

][
ζ 0
0 1/ζ

]. (1)

The ζ is called the scaling constant.
A naive approach of the lifting scheme evaluation can
directly follow the lifting steps. Using this strategy, an
entire input signal is updated several times using the
predict Pn and update Un convolution operators. This
method will hereinafter be referred to as a horizontal
vectorization. Chrysafis et al. [10] addressed the prob-
lem of online (pipelined, line-based) implementations
of the lifting scheme. However, their approach was very
general and it is not focused on a real implementation.
In contrast, Kutil [16] presented an useful implementa-
tion of CDF 9/7 lifting employing SSE instruction set.
He splits the lifting scheme into vertical areas (see Fig-
ure 1). Thus, his method is below referred to as a ver-
tical vectorization. Due to data dependencies between
adjacent vertical areas, the vertical vectorization cannot
be directly parallelized. For this reason, we have pre-
sented a diagonal vectorization (Figure 1) of the scheme
in [1]. This vectorization allows the use of SIMD in-
structions directly without buffering of the coefficients
into blocks.
In the image processing, a fast implementation of 2-D
DWT is a widely examined area. At this place, we will
briefly revise important works. Chatterjee et al. [7]
proposed two techniques intended for an optimization
of the 2-D transform. The first one interleaves the oper-
ations of several 1-D transforms on multiple columns.
The second one modifies the memory layout so that
each sub-band is situated there contiguously. Chaver et
al. [8] pipelined computation in a vertical direction on
subsequent rows. This is similar to pipelined strategies
mentioned above in case of 1-D transform. Other sim-
ilar approaches can be found in [8] and [9], where the
authors vectorized a transform using an approach sim-
ilar to the one described in [16]. Considering the CPU
cache, the authors of [18] as well as [19] proposed sev-
eral techniques for reducing cache misses.
However, the most important work was done by Kutil in
[16]. The author fused vertical and horizontal 1-D fil-
terings into a single loop (from here the single-loop ap-
proach). This was partly done in the pipelined 2-D ap-
proaches above, although not performed on the whole
image at once. Let us revise the Kutil’s work in more
detail. The original single-loop approach is based on
the vertical vectorization. One step of this vectorization
requires two values to perform a single iteration. Con-
sequently, the approach needs to perform two filterings
on two consecutive rows at once. For each row, two

http://www.fit.vutbr.cz/research/prod/?id=211


coefficients are produced, which makes four values in
total. The vertical vectorization algorithm passes four
values from one iteration into the other for each row.
Finally, the Kutil’s approach needs to pass four rows
between merged iterations. Moreover, using the prime
stride between subsequent rows of the image was sug-
gested in his paper.

In [2], we have extracted the minimal core of the origi-
nal single-loop approach leading to a novel single-loop
core approach. This core can be built over the verti-
cal as well as the diagonal vectorization. Several such
cores can be further fused together in order to exploit
a suitable SIMD instruction set. The core approach
completely eliminated the problems of a complicated
border treatment used by the original approach. This
fact is caused by the separation of data accesses from
the intrinsic transform. The influence of CPU caches
on the 2-D transform was also studies in this work.
In the end, we have proposed a parallelization of the
SIMD-vectorized core approach that led to additional
speedups.

Furthermore, many papers exist in the field of an ef-
ficient 3-D DWT implementation. Let us to mention
the most significant works. In [4], Bernabe et al. pre-
sented two methods reducing the 3-D transform exe-
cution time. However, in both of these methods, they
employed the convolution scheme that does not take ad-
vantage from benefits of the lifting scheme. In their first
method, they split the original 3-D volume into several
independent sub-volumes. Thus, they have performed
several independent transforms2 which is different and
much easier task comparing to what we are dealing with
in this paper. On the other hand, such method bene-
fits from a small working set of the transformed data.
The independent transforms can be further applied in
an overlapped and non-overlapped manner. The sec-
ond method is just a modification of the first one where
the independent transforms are applied on cuboid sub-
volumes instead of cubes. The method should better
exploit the memory locality occurred due to their par-
ticular memory layout. The authors also exploited a
fine-grained parallelism by vectorizing loops using the
SSE instructions. Unfortunately, their methods are far
away from the single-loop and also the single-loop core
approaches. Finally, the authors reported 5× speedup
compared to the non-tuned implementation. In [5],
Bernabe et al. published a subsequent work. They ex-
ploited advantages of a parallel processing using mul-
tiple threads. The work is closely focused on hyper-
threading (HT) technology. However, the principles of
the methods employed remained the same as in previ-
ous paper.

2 introducing a block effect

In [17], Lopez et al. introduced a fast frame-based 3-D
DWT video encoder with low memory usage. The au-
thors used the convolution scheme. In their approach,
the video frames are continuously consumed by the 2-D
DWT algorithm. Then, this transformed frame is stored
in a buffer. Unfortunately, this buffer must be able to
hold as many frames as the number of taps for the FIR
filter in the temporal direction. Although their encoder
reduced memory as well as computational requirements
compared to the original 3D-SPIHT algorithm, it is still
far away from the true 3-D pipelined transform.

In another two papers [15, 3], the authors applied sep-
aratelly 2-D spatial and 1-D temporal transform. Both
of the works deal with a video compression. As in the
previous case, their approaches still need several input
frames to be accumulated in a buffer in order to filter
the frames along the third dimension.

The implementation of 3-D DWT was also studied on
modern programmable graphics cards (GPUs). For in-
stance, the authors of [14] and [6] used the convolution
scheme keeping transforms along three dimensions sep-
arated.

As it can be seen, the problem of the efficient 3-D
discrete wavelet transform implementation on conven-
tional PCs was studied to some extent. However, we see
several gaps which can allow for additional speedups.

3 PROPOSED METHOD
In this section, several 3-D transform techniques are
proposed. At the beginning, we discuss a problem of
appropriate choice of row and slice strides (steps be-
tween consecutive rows or slices). Then, we gradually
extend the single-loop core approach to three dimen-
sions.

3.1 Naive Approaches
Several works, e.g. [16], studied a performance degra-
dation of 2-D transform in the vertical filtering caused
by poor choice of the row stride. This degradation is
especially significant when the stride is a power of two.
The same problem occurs in 3-D. Fortunately, the prob-
lem is eliminated by using the single-loop approach in
which there is no separated horizontal and vertical fil-
tering.

Based on our previous works [1, 2], we have imple-
mented the 3-D transforms in two naive ways. Firstly,
a volume was transformed using the horizontal vector-
ization separately along each dimension. This is the
most naive method employing the lifting scheme. Sec-
ondly, we have implemented this transform using the
vertical vectorization. This method suffers from fewer
CPU cache related problems than the one employing
the horizontal vectorization. However, both of them ex-
hibit huge amount of cache misses as soon as a size of



set offset

LSB

tag

MSB

Figure 2: Address structure in relation to the CPU
cache. The sizes of the individual parts depend on the
particular architecture.

the data exceeds a size of the CPU cache. In both imple-
mentations, the transform in the first dimension is com-
puted coupled with copying the data into a destination
area. This is followed by a real in-place computation
for the remaining two dimensions.
The cache of the considered CPUs consists of many 64-
bytes buckets called cache lines. They are divided into
several sets according to a associativity of the cache
(e.g., four sets for 4-way associativity). Considering
such CPU cache, a virtual address is split into three
parts. Low six bits specify offset in a cache line. Few
upper bits specify the associativity set of the cache. The
rest of bits represent a tag stored for each individual
cache line. Such address structure is outlined in Fig-
ure 2. The details can be found in [13].
We have measured the performance for both of the de-
scribed naive methods in combination with unchanged
as well as modified strides. Note that we are talking
about the row stride as well as the slice stride. The un-
changed stride means that rows and slices are placed
without gaps densely one by one. In relation to the sec-
ond choice, we have modified the strides in the follow-
ing way. Low six bits of the addresses correspond to
offsets in cache lines and thus do not directly influence
the selection of the cache set. These are set to zero. The
other bits are changed to the next highest prime number
(the "set" and "tag" in Figure 2). Although a choice of
the next highest odd number is sufficient since any odd
number is coprime with any power of two. The perfor-
mance comparison is shown in Figure 5.
As it can be seen, the performance of unchanged stride
is unstable. It exhibits poor properties especially on the
power-of-two strides. However, the data has smaller
memory footprint. So, if the stride length does not hit
the inappropriate value, the entire transform runs faster
than in the case with modified stride. In the rest of this
paper, we will continue using the modified stride (i.e.
prime stride).
As an intermediate step towards the full 3-D single-
loop transform, we have experimented with highly op-
timized 2-D transforms followed by a separated filter-
ing in the third dimension. The implementation of the
optimized 2-D transform is described in our previous
paper [2]. Essentially, this transform is computed "out
of place" in the single loop by a single-threaded SIMD-
optimized 4× 4 core. Afterwards, the transform in the
third dimension is computed "in place" using the verti-
cal vectorization. For 4×4 core approach, the auxiliary
buffer of a slice edge size times four has to be allocated.

The buffer is used to transfer information between steps
of the vertical vectorization along y axis direction. The
comparison with the previous two methods is shown in
Figure 6. We have plot only the implementations using
the modified (stable) strides. The transform performed
in the slices outperforms the two naive implementations
practically for all sizes on the x axis.

3.2 True 3-D Approaches
Based on our work in [2], we have created two base-
line implementations transforming the entire volume
in the single loop. These implementations employing
23 cores – first built over the vertical and the second
over the diagonal vectorization. Both of them process
the data out of a place. The implementation with the
diagonal core is inherently accelerated by SIMD in-
structions. The vertical implementation does not allow
SIMD-optimizations at this stage.

In more detail, both 23 cores are composed from three
parts. The first part loads the input data from a source
memory area. The inner part performs a fragment of
the transform computation. Finally, the last part stores
the resulting coefficients into a destination area. The
first and last parts treat data borders using the symmet-
ric extensions.

Figure 3: Illustration of 23 cubic core. Portions of aux-
iliary buffers to update are shown on each side.

Access to three auxiliary buffers is required during the
inner part of the computation. See Figure 3. This
most important part consists of three blocks perform-
ing calculations corresponding to the three dimensions.
Each block updates the necessary intermediate results
in the corresponding auxiliary buffer. This is followed
by scaling of the output coefficients.

In the most generic variant, each 2-D auxiliary buffer
has the same size like the corresponding volume side.
The depth of each auxiliary buffer is 4 coefficients for
the vertical vectorization or 12 coefficients for the diag-
onal one. See Figure 4. This memory consumption can
be reduced using a appropriate processing order. When
using the horizontal3 order, it is not necessary to allo-
cate the full side size buffers. It is sufficient to allocate
only the following sizes. One full side size buffer for
the first dimension. One edge size buffer for the second
dimension. Finally, one point size buffer for the third

3 raster scan



x

y

z

buffer x

buffer y

buffer z

Figure 4: Complete processing of the volumetric data
by the 3-D single-loop core. Auxiliary buffer for each
dimension is shown on the sides of the volume.

dimension. For instance, considering the vertical vec-
torization and 23 core, it is sufficient to allocate buffers
of total size 4 · (sx · sy + sx · 2+ 2 · 2) elements, where
sx,sy are sizes of the volume in first two dimensions.

Now, we take a closer look on the conjoined scaling.
With the scaling constant ζ , the scaling of one pair of
coefficients can be written as element-wise multiplica-
tion by a scaling vector

Z1(x) =
[
ζ−1 ζ

]
, (2)

where the coordinate x ∈ {0,1}.
In 2-D case, the scaling of one 2× 2 block of coeffi-
cients can be written as element-wise multiplication by
a scaling matrix

Z2(x,y) = Z1(x) ·Z1(y), (3)

where the coordinates x,y ∈ {0,1}, giving

Z2(x,y) =
[

ζ−2 1
1 ζ 2

]
. (4)

Finally, in 3-D case, the scaling of one 23 box of coeffi-
cients can be written as element-wise multiplication by
a scaling cube

Z3(x,y,z) = Z1(x) ·Z1(y) ·Z1(z), (5)

where x,y,z ∈ {0,1}. For better understanding, the
slices through the z axis look like

Z3(x,y,0) =

[
ζ−2 1

1 ζ 2

]
·ζ−1 =

[
ζ−3 ζ−1

ζ−1 ζ

]
Z3(x,y,1) =

[
ζ−2 1

1 ζ 2

]
·ζ =

[
ζ−1 ζ

ζ ζ 3

] .

(6)

We have compared the performance of the two 3-D core
approaches to the previous methods. The result can be

Intel Core2 AMD Opteron
method time speedup time speedup

naive horiz. 159.8 1.0 105.7 1.0
naive vert. 100.1 1.6 73.5 1.4
vert. slice 42 53.8 2.9 41.0 2.5
vertical 23 23.3 6.8 21.7 4.7
diagonal 23 22.8 6.9 21.1 4.9
vertical 43 13.5 11.7 12.9 8.0

Table 1: Performance evaluation for large data. Best
results are in bold.

seen in Figure 7. Apparently, the 3-D approaches ap-
proximately above 1 megavoxel outperform all the pre-
vious methods.

Within the context of the vertical vectorization, utiliza-
tion of SIMD instruction set is straightforward. In first
two dimensions, 2× 2 small 23 cores are merged to-
gether in analogous manner as in [2]. In the third di-
mension, there is no reason to increase the size of the
core as SIMD can be used directly. In all three dimen-
sions, the basic building block of the transform is 2×4
core. In this 2× 4 core, four steps of the vertical vec-
torization are computed in parallel using SIMD instruc-
tions. The scaling of coefficients is performed together
as the last step of the calculation. As a result, 4×4×2
SIMD-vectorized core was formed.

Although there is no reasonable justification, it can be
tempting to build a compact 43 core as an analogy to the
well-performing 42 counterpart. Such core is internally
composed of two dependent 4×4×2 sub-cores. How-
ever, such a connection may be slightly advantageous
due to prefetching of intermediate results. Moreover,
the implementation is more regular.

The final comparison is shown in Figure 8. The SIMD-
optimized 3-D cores exhibit the best results. The 43

core slightly outperforms the baseline 4× 4× 2 one.
Above initial transients, all the single-loop approaches
confirm the linear asymptotic complexity of the discrete
wavelet transform.

Based on [2], the single-loop core method can be fur-
ther accelerated utilizing the multi-threading. Table 1
summarizes performances and speedups for a volume
of 238 megavoxels. The testing platforms are described
in Section 1. The speedups are given against the sep-
arable method using the horizontal vectorization and
the prime stride. The achieved processing time 13
nanoseconds per sample is roughly equivalent to pro-
cess 37 frames per second with Full HD resolution
(1920× 1080 per frame). For 4× 4× 2 core and any
infinite video sequence, only two frames (the currently
coded and the immediately preceding) have to be held
in memory. The summarizing comparison of all signif-
icant approaches is shown in Figure 9.



20.0ns
40.0ns
60.0ns
80.0ns

100.0ns
120.0ns
140.0ns
160.0ns
180.0ns
200.0ns
220.0ns

1.0k 10.0k 100.0k 1.0M 10.0M 100.0M 1.0G

ti
m

e
 /

 v
o
xe

l

voxels

unchanged horizontal
modified horizontal
unchanged vertical

modified vertical

(a) Intel Core2

0.0 s

100.0ns

200.0ns

300.0ns

400.0ns

500.0ns

600.0ns

1.0k 10.0k 100.0k 1.0M 10.0M 100.0M 1.0G

ti
m

e
 /

 v
o
xe

l

voxels

unchanged horizontal
modified horizontal
unchanged vertical

modified vertical

(b) AMD Opteron
Figure 5: Performance comparison of naive approaches with unchanged and prime strides.

0.0 s

20.0ns

40.0ns

60.0ns

80.0ns

100.0ns

120.0ns

140.0ns

160.0ns

0.0 50.0M 100.0M 150.0M 200.0M 250.0M

ti
m

e
 /

 v
o
xe

l

voxels

naive horizontal
naive vertical

vertical slices 

(a) Intel Core2

10.0ns
20.0ns
30.0ns
40.0ns
50.0ns
60.0ns
70.0ns
80.0ns
90.0ns

100.0ns
110.0ns

0.0 50.0M 100.0M 150.0M 200.0M 250.0M

ti
m

e
 /

 v
o
xe

l

voxels

naive horizontal
naive vertical

vertical slices 

(b) AMD Opteron
Figure 6: Performance comparison of slicing 42 and naive approaches under the prime stride.



0.0 s

20.0ns

40.0ns

60.0ns

80.0ns

100.0ns

120.0ns

140.0ns

160.0ns

0.0 50.0M 100.0M 150.0M 200.0M 250.0M

ti
m

e
 /

 v
o
xe

l

voxels

naive horizontal
naive vertical

vert. slices
vert. 23

diag. 23

(a) Intel Core2

0.0 s

20.0ns

40.0ns

60.0ns

80.0ns

100.0ns

120.0ns

140.0ns

0.0 50.0M 100.0M 150.0M 200.0M 250.0M

ti
m

e
 /

 v
o
xe

l

voxels

naive horizontal
naive vertical

vert. slices
vert. 23

diag. 23

(b) AMD Opteron
Figure 7: Performance comparison of two baseline 3-D approaches with previous ones.

0.0 s

20.0ns

40.0ns

60.0ns

80.0ns

100.0ns

120.0ns

140.0ns

0.0 50.0M 100.0M 150.0M 200.0M 250.0M

ti
m

e
 /

 v
o
xe

l

voxels

vert. 23

diag. 23

vert. 4×4×2
vert. 43

(a) Intel Core2

0.0 s

20.0ns

40.0ns

60.0ns

80.0ns

100.0ns

120.0ns

140.0ns

0.0 50.0M 100.0M 150.0M 200.0M 250.0M

ti
m

e
 /

 v
o
xe

l

voxels

vert. 23

diag. 23

vert. 4×4×2
vert. 43

(b) AMD Opteron
Figure 8: Performance comparison of all 3-D approaches.



0.0 s

20.0ns

40.0ns

60.0ns

80.0ns

100.0ns

120.0ns

140.0ns

160.0ns

0.0 50.0M 100.0M 150.0M 200.0M 250.0M

ti
m

e
 /

 v
o
xe

l

voxels

horiz. naive
vert. naive

vert. 42

vert. 23

diag. 23

vert. 43

(a) Intel Core2

0.0 s

20.0ns

40.0ns

60.0ns

80.0ns

100.0ns

120.0ns

140.0ns

0.0 50.0M 100.0M 150.0M 200.0M 250.0M

ti
m

e
 /

 v
o
xe

l

voxels

horiz. naive
vert. naive

vert. 42

vert. 23

diag. 23

vert. 43

(b) AMD Opteron
Figure 9: Summarizing performance comparison of all approaches under the prime stride.

4 CONCLUSIONS
We have presented a true single-loop approach designed
to transform 3-D data. The proposed method can be
understood as a streaming unit which visits every in-
put as well as output data element only once. The core
can further be improved by exploiting suitable SIMD
instruction set. The best of proposed methods reaches
speedup 11× on Intel and 8× on AMD compared to the
naive implementation. The measurements confirm the
linear theoretical complexity of the transform in 3-D. In
absolute numbers, the best method can transform a data
sample in 13 nanoseconds what is roughly equivalent to
transform 37 frames per second in Full HD.

As a future work, our methods can be parallelized by
multithreading. For real applications, it can be neces-
sary to perform several levels of such decomposition.

Acknowledgements

This work has been supported by the IT4Innovations
Centre of Excellence (no. CZ.1.05/1.1.00/02.0070).

REFERENCES

[1] D. Barina and P. Zemcik. Minimum memory vec-
torisation of wavelet lifting. In Advanced Con-
cepts for Intelligent Vision Systems, volume 8192
of Lecture Notes in Computer Science, pages 91–
101. Springer, 2013. ISBN 978-3-319-02894-1.
doi: 10.1007/978-3-319-02895-8_9.

[2] D. Barina and P. Zemcik. Vectorization and paral-
lelization of 2-D wavelet lifting. Journal of Real-
Time Image Processing, 2015. ISSN 1861-8200.
doi: 10.1007/s11554-015-0486-6.

[3] E. Belyaev, K. Egiazarian, and M. Gabbouj.
Low complexity bit-plane entropy coding for 3-D
DWT-based video compression. In Proceedings
of SPIE, volume 8304, 2012. doi: 10.1117/12.
912017.

[4] G. Bernabe, J. Garcia, and J. Gonzalez. Re-
ducing 3D fast wavelet transform execution time
using blocking and the streaming SIMD exten-
sions. Journal of VLSI signal processing systems
for signal, image and video technology, 41(2):
209–223, 2005. ISSN 0922-5773. doi: 10.1007/
s11265-005-6651-6.

[5] G. Bernabe, R. Fernandez, J. M. Garcia, M. E.
Acacio, and J. Gonzalez. An efficient implemen-
tation of a 3D wavelet transform based encoder



on hyper-threading technology. Parallel Comput-
ing, 33(1):54–72, 2007. ISSN 0167-8191. doi:
10.1016/j.parco.2006.11.011.

[6] G. Bernabe, G. Guerrero, and J. Fernandez.
CUDA and OpenCL implementations of 3D fast
wavelet transform. In IEEE Third Latin American
Symposium on Circuits and Systems (LASCAS),
pages 1–4, Feb. 2012. doi: 10.1109/LASCAS.
2012.6180318.

[7] S. Chatterjee and C. D. Brooks. Cache-efficient
wavelet lifting in JPEG 2000. In Proceedings of
the IEEE International Conference on Multime-
dia and Expo (ICME), volume 1, pages 797–800,
2002. doi: 10.1109/ICME.2002.1035902.

[8] D. Chaver, C. Tenllado, L. Pinuel, M. Prieto, and
F. Tirado. Wavelet transform for large scale im-
age processing on modern microprocessors. In
High Performance Computing for Computational
Science – VECPAR 2002, volume 2565 of Lec-
ture Notes in Computer Science, pages 549–562.
Springer, 2003. ISBN 978-3-540-00852-1. doi:
10.1007/3-540-36569-9_37.

[9] D. Chaver, C. Tenllado, L. Pinuel, M. Prieto, and
F. Tirado. Vectorization of the 2D wavelet lifting
transform using SIMD extensions. In Proceedings
of the International Parallel and Distributed Pro-
cessing Symposium (IPDPS), page 8, 2003. doi:
10.1109/IPDPS.2003.1213416.

[10] C. Chrysafis and A. Ortega. Minimum memory
implementations of the lifting scheme. In Pro-
ceedings of SPIE, Wavelet Applications in Signal
and Image Processing VIII, volume 4119 of SPIE,
pages 313–324, 2000. doi: 10.1117/12.408615.

[11] A. Cohen, I. Daubechies, and J.-C. Feau-
veau. Biorthogonal bases of compactly supported
wavelets. Communications on Pure and Applied
Mathematics, 45(5):485–560, 1992. ISSN 1097-
0312. doi: 10.1002/cpa.3160450502.

[12] I. Daubechies and W. Sweldens. Factoring
wavelet transforms into lifting steps. Journal
of Fourier Analysis and Applications, 4(3):247–
269, 1998. ISSN 1069-5869. doi: 10.1007/
BF02476026.

[13] U. Drepper. What every programmer
should know about memory, 2007. URL
http://www.akkadia.org/drepper/
cpumemory.pdf.

[14] J. Franco, G. Bernabe, J. Fernandez, and M. Ujal-
don. Parallel 3D fast wavelet transform on many-
core GPUs and multicore CPUs. Procedia Com-
puter Science, 1(1):1101–1110, 2010. ISSN 1877-
0509. doi: 10.1016/j.procs.2010.04.122. ICCS
2010.

[15] V. Galiano, O. Lopez-Granado, M. Malumbres,
and H. Migallon. Multicore-based 3D-DWT
video encoder. EURASIP Journal on Advances
in Signal Processing, 2013(1):84, 2013. doi:
10.1186/1687-6180-2013-84.

[16] R. Kutil. A single-loop approach to SIMD par-
allelization of 2-D wavelet lifting. In Proceed-
ings of the 14th Euromicro International Confer-
ence on Parallel, Distributed, and Network-Based
Processing (PDP), pages 413–420, 2006. ISBN
0-7695-2513-X. doi: 10.1109/PDP.2006.14.

[17] O. Lopez, M. Martinez-Rach, P. Pinol,
M. Malumbres, and J. Oliver. A fast 3D-
DWT video encoder with reduced memory
usage suitable for IPTV. In 2010 IEEE Inter-
national Conference on Multimedia and Expo
(ICME), pages 1337–1341, July 2010. doi:
10.1109/ICME.2010.5583570.

[18] P. Meerwald, R. Norcen, and A. Uhl. Cache issues
with JPEG2000 wavelet lifting. In Visual Commu-
nications and Image Processing (VCIP), volume
4671 of SPIE, pages 626–634, 2002.

[19] A. Shahbahrami, B. Juurlink, and S. Vassiliadis.
Improving the memory behavior of vertical filter-
ing in the discrete wavelet transform. In Proceed-
ings of the 3rd conference on Computing fron-
tiers (CF), pages 253–260. ACM, 2006. ISBN
1-59593-302-6. doi: 10.1145/1128022.1128056.

[20] W. Sweldens. The lifting scheme: A custom-
design construction of biorthogonal wavelets. Ap-
plied and Computational Harmonic Analysis, 3
(2):186–200, 1996. ISSN 1063-5203.

http://www.akkadia.org/drepper/cpumemory.pdf
http://www.akkadia.org/drepper/cpumemory.pdf

	Introduction
	Related Work
	Proposed Method
	Naive Approaches
	True 3-D Approaches

	Conclusions

