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 1. Introduction. Augustin-Louis Cauchy would be pleased. Each year we intro-
 duce our elementary analysis students to the notion of the derivative essentially as
 he gave it to us in 1823 (for details see, e.g. [4, 7]). But there is another, less well
 known, characterization of the derivative which appears in the last textbook [2]
 written by Constantin Caratheodory (1873-1950). This formulation is not only
 elegant but useful on both theoretical and pedagogical grounds. The proofs of
 many important theorems concerning differentiability become significantly easier

 and, in the process, some of the less enlightening details are rightly submerged.
 Caratheodory's formulation also gives us a much clearer view of the fact that

 continuity is essential for differentiability; indeed, the definition itself contains the
 necessary continuity. This formulation, which shifts the details from the theory of
 limits to the theory of continuous functions, requires that our students develop a
 clearer understanding of continuity than is typical and it demands that we
 reevaluate this understanding and continually reinforce it.

 We believe that Caratheodory's insight deserves to be better known and we
 hope that the present article will help in that effort. We also believe, however, that
 since it is somewhat more subtle and less practical from a computational point of
 view than is the standard definition, Caratheodory's approach should be neither
 the first nor the only one that students see. But we also believe that all elementary
 analysis students can appreciate its power and should be exposed to it; in fact even
 the more perceptive first-year calculus students have something to gain from
 working with it.

 2. Caratheodory's derivative formulation. After the usual definitions and theo-
 rems about limits and continuity are presented in a standard elementary real

 analysis course, the definition of the derivative, essentially as given to us by
 Cauchy, is given for functions of a single variable. Typically it is presented in both
 the following forms:

 Definition. The value of the derivative of the function f at a is the number

 fI(a) = lim f(a + h) -f(a)
 h --* 0 h

 if the limit exists; equivalently,

 f'(a) = lim f(x) f(a)
 x --*a x- a

 if the limit exists.

 Caratheodory realized the importance of the fact that the criterion for continu-
 ity is apparent in the second definition above and he proposed the following
 definition for the derivative at a point; see [2, p. 119] or [8, p. 58].

 40
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 CARATHE1ODORY'S DEFINITION OF THE DERIVATIVE. The function f, defined on
 the open interval U, is said to be differentiable at the point a E u if there exists a
 function 4)a that is continuous at x = a and satisfies the relation f(x) - f(a) =

 4)a(X)(X - a) for all x E U.

 We will usually write +(x) instead of a(X), since there seems to be little
 chance of confusion, but we must remember that the function 4 depends on the
 point a. Geometrically, of course, when x = a, 4)a(X) is the slope of the secant line
 through the points (x, f(x)) and (a, f(a)). This alternative definition emphasizes
 the fact that the slopes of the secant lines, by way of which we initially arrive at the
 tangent line, approach the tangent line in a continuous manner; we rarely state this
 important fact explicitly, but we should.

 Clearly all of the subtlety of the limit in the standard definition of the derivative
 is now crouching just below the surface, hiding in the subtlety of the continuity of
 the function 4.

 This definition can be used as is for complex-valued functions of a complex
 variable; in fact, it is in precisely this context that Caratheodory introduced it in
 [2]. It is interesting to note, however, that this formulation does not appear in
 Caratheodory's 1918 text [3] on real-valued functions.

 As pointed out in [2] and [8], two immediate consequences of this formulation
 are:

 * If f has a derivative at a, then f is continuous at a.
 * There is at most one function 4 satisfying the definition; so if f'(a) exists,
 f'(a) = +(a).
 These two corollaries of the definition are both expected and their proofs are

 trivial, assuming only elementary results about continuous functions. The power of
 Caratheodory's approach does not become apparent until we apply it to prove
 some deeper theorems. In the following sections we offer proofs of several
 standard, basic theorems which we hope will demonstrate the value of this
 formulation.

 3. An indicative example: the chain rule. Shortly after the introduction of his
 definition of the derivative, Cauchy used it to prove the chain rule (though his
 proof was incomplete). It seems appropriate then that we do the same with
 Caratheodory's definition. "How incisive Caratheodory's formulation is may be
 seen by applying it to the proof of the chain rule for the derivative of a composite
 function" [8, p. 59]. Many of our students will appreciate the pithy elegance of this
 proof, which is slightly revised from [8].

 THEOREM 1. CHAIN RULE. If f is differentiable at the point a and g is differen-
 tiable at the point b = f(a), then h = g o f is differentiable at a and h'(a) =
 g'(f(a))f '(a).

 Proof. Since f is differentiable at a there is a function 4, continuous at a and
 defined in an open interval V containing a, with f(x) - f(a) = f(x) - b =
 +(x)(x - a) for all x E V. Similarly we get a function q, continuous at b and
 defined in an open interval U containing a, for which g(x) - g(b) = q(x)(x - b)
 for all x E U.
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 Then

 h(x) - h(a) =g(f(x)) - g(f(a)) = [ f(x)] [ f(x) - b]

 = [ ?o f(x)] O(x)(x - a),
 for all x E V with f(x) E U. Since (q o f )0 is continuous at a and has the value
 g'(f(a))f'(a) there, the proof is complete. O

 4. Additional examples. Caratheodory's characterization also leads to some

 sharp, concise proofs of other important theorems and we hope that the examples

 below will demonstrate the merit of Caratheodory's approach.

 THEOREM 2. INVERSE FUNCTION THEOREM. Let f be continuous and strictly

 monotonic on an open interval I containing c and assume that f'(c) exists and is
 nonzero. Then g = f-' is differentiable at d = f(c) and g'(d) = [f'(c)] - .

 Proof. (Our proof here is from [8, p. 61].) We have f(x) - f(c) = +(x)(x - d)
 for all x in I with 4 continuous and +(x) A 0 for all x in I. Let V be the open
 interval which is the domain of g. Then y - d = f(g(y)) - d = f(g(y)) - f(c) =

 0[g(y)][g(y) - c] for all y in V; thus [g(y) - c] = (1/1[g(y)])(y - d) for all y
 in V. Since g is continuous on V, 1/(0 o g) is continuous there as well, and the
 theorem follows. C1

 If Caratheodory's alternative were powerful enough to prove theorems such as
 the two above, but too powerful or cumbersome to handle the earliest calculational
 results of the subject, we would be less likely to introduce it. In fact, it also

 manages these earlier theorems with ease and even some grace.

 THEOREM 3. LINEARITY AND THE PRODUCT AND POWER RULES. If f and g are

 differentiable at a, k is a constant, and n is a natural number, then:
 i) [ kf + g ]'(a) = kf '(a) + g'(a).
 ii) (fg)'(a) = f(a)g'(a) + g(a)f'(a).
 iii) the derivative of f(x) = x at a is f '(a) = nan-i.

 Proof. We assume that there exists 4, i, continuous at a and defined on open
 intervals U and V, respectively, containing a, such that f(x) - f(a) = +(x)(x - a)
 for all x E U and g(x) - g(a) = /(x)(x - a) for all x E V.

 i) Then

 [kf + g](x) - [kf + g](a) = k[f(x) - f(a)] + [g(x) - g(a)]
 = k4(x)(x - a) + i(x)(x - a)

 = [k4(x) + (x)](x - a), forall x E U n V.

 ii) For all x E Un v,

 (fg)(x) - (fg)(a) =f(x)g(x) -f(a)g(a)
 =f(x)g(x) -f(x)g(a) +f(x)g(a) -f(a)g(a)

 =f(x)[g(x) -g(a)] + [f(x) -f(a)]g(a)
 = f(x)0(x)(x - a) + +(x)(x - a)g(a)

 = [f(x)0(x) + O(x)g(a)](x - a).
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 iii) Since x' - a' = [xn-' + xn-2a + xn-3a2 + - - - +xan2 + a n](x - a)
 for all x, we have (x) =xn- +xn-2 a Xn-3a2 + +Xan +a n- and
 hence +(a) = nan-i . El

 Finally, we easily derive another basic but very useful result.

 THEOREM 4. CRITICAL POINT THEOREM. Let f be defined on an open interval I
 containing a. If f(a) is an extreme value then a is a critical point (i.e., f'(a) = 0 or
 [(a) does not exist).

 Proof. We only prove the theorem for f(a) a maximum and we do this by
 assuming f'(a) exists and proving that f'(a) = 0.

 For some open subinterval U of I we have a function 4, continuous at a, such
 that f(x) -f(a) = +(x)(x - a) for all x E U. Let c E U, c < a. Then

 f(c) - f(a) = 0(c)(c - a), and since f(a) is a maximum in U, f(c) < f(a). So
 f(c) - f(a) < 0 and c - a < 0; hence +(c) 2 0. Similarly, for d E U, d > a, we
 have f(d) - f(a) < 0 and so +(d) < 0.

 Since +(c) 2 0 for all c E U, c < a, and +(d) < 0 for all d E U, d > a, the
 continuity of 4 at a forces us to conclude that +(a) = 0. 0

 It is surprising that so few elementary analysis texts even mention this alternate
 view of the derivative. Of ten undergraduate/graduate analysis texts we examined
 only Rosenlicht [12], makes use of it, although he does not mention Caratheodory
 by name; he imbeds it in his proof of the chain rule for one variable and brings it
 out in the open for partial differentiation.

 There are several analysis texts, including Protter and Morrey [10], which offer

 f'(a) + r(x; a), where r(x; a) -* 0 as x --> a, instead of 4'a(x), and use it to good
 advantage in the proofs of several theorems. This approach has the intended
 additional benefit of making transparent the linear approximation of the tangent
 line.

 The simplification of additional proofs using this definition and the extension of
 it to functions of several variables would make interesting projects for enterprising
 analysis students.

 5. Carathetodory's approach in first-year calculus? It is clear that
 Caratheodory's formulation demands too much of most first-year calculus students
 to make its presentation worthwhile. Nevertheless, it can be of value, for example,
 for students in honors calculus courses. The chain rule will serve as a good
 representative example of the relative improvements in such courses afforded by
 the proofs given here.

 Many current standard calculus texts ([11] is typical in this regard) relegate the
 more delicate details of the proof to an appendix, which will be read by few
 students. At the extreme, [5] puts the entire proof in the appendix. At the other
 extreme, [9] gives a 1 '-page "simpler proof that is valid for many functions" and
 then another 13-page complete proof (both proofs are within the same section of
 the text!). Neither of these routes is necessary, however. Using Caratheodory's
 definition we get a very clean, understandable proof of the chain rule which can be
 presented to perceptive first-year students in its entirety without interrupting the
 flow of the text.

 Of 18 standard calculus texts we examined, only one, Gillett [6], refers to
 Caratheodory's formulation of the derivative at all (exercise 66, p. 127), but no
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 mention is made of Caratheodory himself. There are a few calculus texts, including
 Boyce and DiPrima [1], which present the variation mentioned at the end of the
 previous section.

 (Note: Young [13] contains interesting biographical information on
 Caratheodory, from the viewpoint of one of his students and strong admirers.)

 Acknowledgement. Thanks to the referee for several helpful suggestions.
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 Positive Definite Matrices and Sylvester's Criterion

 GEORGE T. GILBERT

 Department of Mathematics, Texas Christian University,

 Fort Worth, TX 76129

 Sylvester's criterion states that a symmetric (more generally, Hermitian) matrix
 is positive definite if and only if its principal minors are all positive. The theorem is

 especially useful when employing the Second Derivative Test for local extrema of
 functions of several variables. When the proof of the sufficiency of positive
 principal minors is included in a linear algebra text, it is usually based on Gaussian

 elimination [4, pp. 331-332] or on the reduction theory for quadratic forms [2, pp.
 328-329]. In either case, the heart of such proofs is a matrix computation. This
 note presents a proof which, while still very dependent on matrices, makes more

 use of ideas from the theory of vector spaces. In a one semester course in linear
 algebra, one often has the feeling of developing the machinery of abstract vector

 spaces without ever really making use of it. The proof here is short, requires only
 concepts that are standard in beginning linear algebra, and provides an opportu-
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