Equation of State.
-

Using the potential energy of separation between molecules in a gas, it can be shown
that the states of real gases can be modelled by the equation:
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With critical temperature;
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And Boyle temperature:
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Where £ is the potential energy of separation well depth.
All real gases can be described exactly by the equation of state;
PV, = RTZ
Where Z is the compression factor, a measure of departure from ideal behaviour.

_ PV

F=__M
RT

The behaviour of Z can be explained by the potential energy of separation between the
molecules of the gas, U(r).

1. When U(r)>0 . repulsive forces between the molecules dominate. V,, and hence Z
is greater than the ideal value as a result, i.e. Z>1.

2. When U{(r)=0, there are no forces acting between the molecules thus Vn, is the
same as the ideal value and Z=1.

3. When U(r)<0, attractive forces dominate which make Vx smaller than the ideal
value. Z<1.

From these explanations it can be said that;
Z—10cclU(r)
U(r) is modelled by the Lennard-Jones potential,
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Therefore:
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r is the average separation between gas molecules equal to;
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o is the average separation between the gas molecules when U(r)=0. At U(r)=0 the gas
is behaving ideally meaning that the relation PV¥=NkT becomes valid. Therefore;
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Atr = o. The expression can now be written purely in terms of state functions of the gas.
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Solving the above equation for V gives 4 solutions (3 real + 2 complex):
V=V i=1230r4

Each volume corresponds to an intermolecular separation which in turn corresponds to
a potential energy level. In this case there are 4 potential energy levels that the
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intermolecular separations between the molecules are allowed to occupy. The physical
interpretation of this is that rather than there being just one distance between all
molecules, or even a continuous range of distances, the nature of the equation
constrains the allowed distance between any two molecules to just 4 allowed values at
each pressure and temperature. The ideal volume, P/nRT is always a solution of the
equation and is always the solution that corresponds to the highest energy level in the
gas phase. This is because completely ignoring the intermolecular forces puts the
potential energy at a very high level.
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Gas phase potential energy levels

These energy levels start out all filled equally. Because E igza is at a much higher energy
than all other levels, if the levels are filled equally the E igea energy level will dominate
thus giving the gas overall ideal character. [t is important to note that as a result of the
lower energy levels still being full, although a gas can start to behave most/yideally in
the limit of P—0 it will never behave completelyideally.
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As the gas is compressed, the highest energy levels gradually depopulate and the lowest
levels populate by an equivalent amount. This causes the gas to lose ideal behaviour and
gain real behaviour: real behaviour can either mean V>V jgea or V<V jgea1 depending on
whether the values of V on the energy levels below V ;.4 are larger or smaller than V
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This continues until only 2 energy levels are filled. At this point the gas is now also
allowed to satisfy another relation:

U(r) = constant
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The gas is now allowed to satisfy this equation in addition to the other because this
equation is a quadratic. Therefore it only allows for a maximum of 2 degenerate energy
levels, which is what the gas can now have. If the gas does start obeying the new
relation, since;
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If U(r) = constant. F = 0. When this occurs there is no force acting between the
molecules: the volume of the gas decreases without any increase in pressure. Therefore
it follows that when all energy levels except the last 2 are depopulated the gas has the
option to condense to a liquid.
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TransItion phase energy levels

Energy

Liquid phase energy levels

At any given temperature a proportion p; of volumes Vi occupy each of the 4 energy
levels within the gas.

This gives an average volume, V of;
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piis given by the Boltzmann Distribution:



Eiis given by the Lennard-Jones Potential;
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Putting all three equations together gives:
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This is the overall macroscopic (average) volume of the gas.

According to this equation, when T—{ the exponential function goes to 0 and V—0. This
is verified by Charles’ Law which states that the volume of a gas goes to zero as its
temperature goes to zero. When T—oo the exponential function goes to 1 and V-V /4.
As explained earlier, when each energy level is equally filled to 25% the gas behaves
mostly ideally: the gas behaves more ideally as T increases. The physical explanation is
that molecules at higher temperatures have higher speeds which in turn make them
harder to capture by intermolecular forces.

At the Boyle temperature, T the gas continues to behave mostly ideally over a much
more extended range of pressures than usual. In this model Ty is the minimum
temperature at which E igea never depopulates completely no matter how much the
pressure is increased.

In order to find this temperature the number of energy levels populated must be
analysed. This information is given by the partition function;
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If E igeat has reached the point of complete depopulation the number of energy levels left
occupied are 3. Therefore below T the partition function can equal 3 or less.
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As there are 4 energy levels the partition function equals 3 if and only if:
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Taking logs of each side,
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This can then be rearranged to,
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The minimum temperature at which there is a value of V; that does not allow q=3 is the
Boyle temperature. This temperature occurs when
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Therefore:
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Taking the modulus of Te and ignoring any infinitesimal increase that is required for the
above equation to result in the number of states occupied never going to 3 or below,
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Above this temperature there is no gas volume that allows the ideal energy level to be

completely empty and the gas always behaves perfectly to some extent. The following
table contains theoretical and experimental values of T for comparison.

| Gas | Theoretical Boyle temperature/K | Experimental Boyle temperature/K |

Nitrogen 3193 3272
Carbon dioxide 7012 7148
Krypton 5383 575
Argon 3B88 4115
Duygen 4059 3937
Xenon 7437 768

The critical temperature, T: is the maximum temperature at which the gas can be
condensed into a liquid via compression alone. In this model because gases can only
condense to a liquid if no more than 2 energy states are occupied, T. is the minimum

temperature at which E: is never completely depopulated ne matter how much the
pressure is increased.

If E2 has reached the point of complete depopulation the number of energy levels left
occupied are 2. Therefore below T. the partition function can equal 2 or less.

g=2

As there are 4 energy levels the partition function equals 2 if and only if;
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Similar algebraic manipulations to what was used in order to find the Boyle
temperature yields the result
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Again, taking the modulus and ignoring any infinitesimal increase that is required for
the above equation to result in the number of states occupied never going to 2 or below
gives;
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Above this temperature the requirement that no more than 2 energy levels must be
filled in order for the gas to condense cannot be met, thus the gas never condenses
whatever the pressure. Below is a table with theoretical and experimental values of the
critical temperature for comparison.

_ Theoretical critical temperature/K | Experimental critical temperature /K

Argon 1614 150.7
Ethyiene 289.7 283.1
Ethane 3118 3054
Benzene 544 6 5627
Chlorine 427.4 417.2
Carbon dioxide 291 3042
Krypton 2234 2094
Nitrogen 1325 1263
Oxygen 163.4 154 B
Xenon 308.7 2808

For an ideal gas there is no potential well, resulting in £ = 0. It follows that the
experimental critical temperature for an ideal gas is zero Kelvin. This means that an
ideal gas cannot condense at any temperature, which is what is observed in ideal gas
isotherms.

Also note that,
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i.e. the ratio of the Boyle temperature to the critical temperature of any gas is constant.



