

University of Derby

School of Computing & Mathematics

A project completed as part of the requirements for the

BSc (Hons) Computer Games Programming

entitled

Optimisations of the light culling algorithm in a

Forward+ Rendering Pipeline

by

Luke Thatcher

luke.thatcher@live.co.uk

2013 – 2014

mailto:luke.thatcher@live.co.uk

1

1 ABSTRACT

Use of modern graphics hardware capable of general purpose computation has been the focus of recent

developments in the real-time computer graphics community. Various techniques have been proposed

which improve upon more traditional rendering systems through the use of general purpose compute.

Tile based systems, such as Forward+, utilise general purpose compute to dynamically build linked lists of

lights entirely on the GPU, however the effectiveness of the pipeline is heavily dependent on the

accuracy and performance of the light/tile intersection tests. This project focusses on the improvement

of these intersection tests, providing a more efficient Forward+ rendering pipeline.

2

2 TABLE OF CONTENTS

1 Abstract 1

2 Table of Contents 2

3 Table of Figures 5

4 Introduction 7

4.1 Offline verses Real-time Graphics Rendering 7

4.1.1 Offline Rendering 7

4.1.2 Real-time Rendering 7

4.2 Sprite Based Rendering 8

4.3 Three Dimensional Rendering 8

4.3.1 Ray Tracing 9

4.3.2 Rasterization 10

4.4 Forward Rendering 13

4.5 Focus and Objectives 15

5 Literature Review 16

5.1 Alternative Rendering Pipelines 16

5.1.1 Deferred Rendering 16

5.1.2 Light Pre-Pass Rendering 18

5.2 Forward+ (Forward “Plus”) Rendering 19

5.2.1 Inefficiencies in Tile Culling 20

6 Methodology 22

6.1 Forward+ Implementation 22

6.1.1 Culling Algorithm Investigation 22

6.1.2 Chosen Culling Solutions 24

6.1.3 Testing of Culling Solutions 25

6.2 Engine Design 26

3

6.2.1 Engine Modularity 26

6.2.2 Platform Abstraction Layer 26

6.2.3 Render Hardware Interface 27

6.2.4 Efficient Buffer Management 27

6.2.5 Shader and Material System 29

6.2.6 Real-time Performance Analysis 31

6.2.7 Asset Management 31

7 Results 32

7.1 Data Gathering 32

7.1.1 Instability of Offline Performance Analysis 32

7.1.2 Consideration of CPU Performance Bottlenecks 32

7.1.3 Fixed Camera Positions 33

7.1.4 “Countlights” command 33

7.1.5 Target System 33

7.2 Culling Accuracy 34

7.3 Real-Time Performance Results 36

7.4 Heat Map Analysis 39

7.5 Hybrid Culling 42

8 Conclusion And Evaluation 44

8.1 Limitations 44

8.1.1 Support for Orthographic Projections 44

8.1.2 Resolution Issues 45

8.2 Future Work 45

8.2.1 Culling Improvements 45

8.2.2 Graphical Improvements 46

8.2.3 Asset Management Improvements 47

4

8.2.4 Shader System Improvements 47

8.3 Closing Statement 48

9 References 49

10 Appendices 51

10.1 Engine Directory Structure and Working Directory 51

10.2 Engine First Run and Content Importing 51

10.3 Supported Console Commands 52

10.4 Supported Asset Commands 53

10.4.1 Texture 2D Asset Commands 53

10.4.2 Material Asset Commands 53

10.4.3 Material Instance Asset Commands 54

10.4.4 Static Mesh Asset Commands 54

10.5 Engine Input and Controls 55

5

3 TABLE OF FIGURES

Figure 1 – Simplified Rasterization Pipeline 11

Figure 2 – Inefficiencies in plane-sphere based tile frustum tests 21

Figure 3 – Separating Axis Theorem 23

Figure 4 – Modular Engine Structure 26

Figure 5 – Number of light/tile interactions at Camera 0, 64 lights, and 1280x720 resolution 35

Figure 6 – Number of light/tile interactions at Camera 0, 1024 lights, and 1280x720 resolution 35

Figure 7 – Rendering time in milliseconds, at Camera 0, 1280x720 resolution, and no MSAA 36

Figure 8 – Rendering time in milliseconds, at Camera 0, 1280x720 resolution, and 8x MSAA 37

Figure 9 – Rendering time in milliseconds, at Camera 5, 1280x720 resolution, and no MSAA 38

Figure 10 – Rendering time in milliseconds, at Camera 5, 1280x720 resolution, and 8x MSAA 38

Figure 11 – Final rendered scene at Camera 0 40

Figure 12 – Heat map at Camera 0, for AMD Planes Culling 40

Figure 13 – Heat map at Camera 0, for Nearest Vertex Culling 40

Figure 14 – Heat map at Camera 0, for Hybrid Culling 40

Figure 15 – Heat map at Camera 0, for Brute Force Culling 40

Figure 16 – Final rendered scene at Camera 5 41

Figure 17 – Heat map at Camera 5, for AMD Planes Culling 41

Figure 18 – Heat map at Camera 5, for Nearest Vertex Culling 41

Figure 19 – Heat map at Camera 5, for Hybrid Culling 41

Figure 20 – Heat map at Camera 5, for Brute Force Culling 41

Algorithm 1 – Single Light Shadow Mapping 13

Algorithm 2 – Multiple Pass Forward Rendering Pipeline 13

Algorithm 3 – Single Pass Forward Rendering Pipeline 14

Algorithm 4 – Deferred Rendering Pipeline 16

Algorithm 5 – Light Pre-Pass Rendering 18

Algorithm 6 – Forward+ Rendering Pipeline 20

Algorithm 7 – Hybrid Light Tile Culling Algorithm 42

file:///C:/Users/Luke/Dropbox/University%20Work/Year%204%20-%202013-2014/Independent%20Studies/Report/Report%20-%20Final.docx%23_Toc384315236

6

Code Sample 1 – Use of RHI State Objects (Engine.cpp: Lines 1340-1342) 27

Code Sample 2 – Vertex Shader Binding Class (Engine.cpp: Lines 49-55) 29

Table 1 – Culling accuracy measurements for camera position 0, at a resolution of 1280x720 34

Table 2 – Culling accuracy measurements for camera position 1, at a resolution of 1280x720 34

Table 3 – Number of light tile interactions at Cameras 0 and 5, at 1280x720 39

Table 4 – Heat Map Colour Scale 39

Table 5 – Engine Directory Structure 51

Table 6 – List of supported console commands 52

Table 7 – Supported Texture Asset Commands 53

Table 8 – Supported Material Asset Commands 53

Table 9 – Supported Material Instance Asset Commands 54

Table 10 – Supported Static Mesh Asset Commands 54

Table 11 – Engine Keyboard and Xbox 360 Controller Input Mappings 55

7

4 INTRODUCTION

Since the earliest examples of three dimensional video games and computer graphics, there has been a

continuous drive towards greater realism and visual fidelity, led by the desire to create larger, more

immersive worlds with more compelling game play and narratives. Advances in the field of graphics

programming have been realised through the combination of newer, more flexible and powerful

graphics hardware, and innovative research focussing on the use of such hardware to solve the problem

of displaying geometric meshes with a variety of surface and lighting properties on a raster-based

display.

4.1 OFFLINE VERSES REAL-TIME GRAPHICS RENDERING

Computer graphics rendering involves the generation of images based on some source data representing

a virtual world. It has an incredibly wide range of applications, including scientific visualisation, medical

research, computer aided design, education, and entertainment such as movie visual effects and video

games. Each of these applications demand certain characteristics from a computer based renderer, chief

amongst which is the quality of the final image verses the level of interactivity required.

4.1.1 Offline Rendering

Higher quality and higher detail images require a greater amount of computational resources and time to

achieve. In the field of movie visual effects, the emphasis is placed heavily on image quality. Since a

movie is not interactive with the viewer, visual effects studios use rendering systems that may take

several hours, days or weeks to render images, opting to spend a greater amount of computation time to

achieve higher image quality and realism. The output video frames generated by the renderer can be

stored, edited and post-processed, and are ultimately played back to the viewer sequentially in real-

time. These rendering techniques are commonly referred to as “offline”, as they generate the required

images in advance of them being presented to the viewer.

4.1.2 Real-time Rendering

This technique of offline rendering cannot be applied to video games, which are highly interactive forms

of media. Video games must be able to display generated images at a rate fast enough to provide

smooth motion, and in doing so, be able to respond to player input with minimal delay. Rendering

techniques which take even a few seconds to compute an image are unusable for video games.

8

Assuming a display refresh rate of 30 Hz, a video game has just 33.33 milliseconds to render and display

a single frame. For a 60 Hz game, this time is reduced to 16.66 milliseconds. If rendered images take

longer than these times to produce, the player may notice stuttering of motion in the video output, and

may experience an input delay, commonly known as “lag”, which adversely affects game play.

For this reason, well designed graphics rendering systems written for video games aim to achieve the

best possible image quality, but are constrained to work within the short frame times to maintain

interactivity.

4.2 SPRITE BASED RENDERING

Due to the limited availability of memory resources and computational power, the earliest graphics

hardware and video games consoles were only capable of two dimensional rendering, compositing a

series of “sprites” (two dimensional images) onto the screen in layers to build the visual world. Image

composition is not a particularly computationally expensive task, which suited the limited nature of the

hardware in early games consoles and computers.

Sprite based systems, whilst they may achieve visually appealing results, are very limited in the realism

they can provide. Despite this, sprite based games are still common in the video games industry today,

most prevalent in the casual and mobile games market.

4.3 THREE DIMENSIONAL RENDERING

To add a greater depth of realism and immersion for the player, modern, higher budget console and

computer games tend to use three dimensional rendering. Contrary to sprite based rendering, three

dimensional rendering does not rely on images as its source data. Instead, artists define meshes

composed of triangles in three dimensional space. These meshes are placed inside (and moved around

within) a virtual three dimensional world by the game engine. The task of the renderer is then to solve

what colour each pixel on the raster display should be set to, given the current positions and properties

of the meshes within the virtual world, and the properties and position of a virtual camera.

Meshes within the virtual world may have various surface properties and materials associated with

them, which define the way their surface reflects light. The renderer also models various light sources

within the virtual world, and uses this information to determine the final colour of a given mesh’s

surface.

9

Almost all three dimensional rendering techniques in use today can be placed within one of two groups:

rasterization based techniques, and ray tracing based techniques. They both provide solutions for pixel

visibility and colour from input geometry and camera properties, but they do so in very different ways.

4.3.1 Ray Tracing

Ray Tracing is a recursive technique for three dimensional rendering which, as the name implies, traces a

ray for each pixel in the final image, into the scene from the viewer. The ray is defined mathematically

with an origin and a direction vector. To trace a ray through the scene, the renderer performs a series of

collision tests between the ray and each geometry object within the scene, keeping track of the closest

collision found.

Once a collision has been resolved, the ray tracer can then evaluate the incoming light incident on that

point on the object’s surface. This is usually achieved by performing further ray tests against the light

sources in the scene to determine if the current surface position is within shadow of a given light source.

If not, the renderer determines how much light that source will contribute to the surface, using a

computational model of the light source and surface material. Advanced light effects such as reflection,

refraction, caustics, soft shadows and sub-surface scattering can be achieved by spawning further rays to

sample the incoming light on the surface.

The renderer proceeds to recursively cast rays until the current ray exits the world, or a given recursion

limit is reached. The result of a ray test is the total amount of light reflected from the surface point, in

the direction of the ray’s origin. The recursive results of these ray tests are passed back to the parent ray,

accumulating light intensity according to surface reflectance properties, until the final ray has returned

the result for the pixel. This final value then becomes the amount of light reflected in the direction of the

viewer for that pixel, and ultimately determines the colour for that pixel.

Ray tracing renderers are capable of generating exceptionally realistic images, as they are able to

emulate the physical properties of light transport, albeit in the reverse direction to how light behaves in

the physical world. Complex light behaviour is trivial to achieve, simply by casting additional rays to

compute a given physical lighting effect. The realism ray tracing can achieve is highly favoured with the

visual effects industry and their use of offline rendering.

As a contrast to its apparent simplicity, ray tracing is very computationally expensive. Millions of ray to

geometry object collision tests may be required to compute an entire image. This count only increases

with additional geometry and lights, and higher resolutions. To cut down on the number of ray tests

required, ray tracers often employ spatial partitioning structures which filter geometry objects based on

10

their world space position and bounds. This accelerates the ray-geometry tests by quickly identifying

only those objects which are candidates for collision, rather than needing to test every ray against every

object.

However, even with these acceleration structures, the computational requirements of the ray tracing

algorithm exceed the performance constraints demanded by real-time interactive applications on all but

the most powerful graphics hardware. Ray tracing is currently considered not feasible for mainstream

interactive video game development.

4.3.2 Rasterization

Rasterization is an alternative rendering technique which has become the de facto standard in

interactive video games rendering, due to its speed, simplicity, scalability and relatively small memory

footprint. Modern graphics processing units contain dedicated hardware to compute the rasterization

algorithm.

Whilst ray-tracing solves pixels by casting rays into the world, rasterization instead finds the mapping of

geometry to screen positions, allowing it to fill pixels directly. As a result, a rasterization pipeline does

not need to hold the entire scene in memory. On the simplest level, it is possible to render one triangle

at a time.

Vector based source geometry is fed into the rasterization pipeline. The pipeline then performs a series

of matrix transformations to map the vertices of each triangle to the render target. Once the pixel

coordinates of the three points of a triangle have been obtained, the pixels covered by the triangle can

be filled using an algorithm such as scanline conversion. The colour for each pixel is determined by a

function of the interpolated values from the three vertices of the triangle. Depending on the pipeline

design, various stages of the rasterizer may be programmable, allowing custom effects and techniques to

be achieved.

Figure 1 outlines the structure of a simple shader-driven rasterization pipeline. A similar pipeline design

is implemented within Microsoft’s Direct3D 9 graphics API.

11

Figure 1 – Simplified Rasterization Pipeline

Input
Assembler

Stage

Construct vertex data
from one or more source

data streams.

Pass the constructed
stream of vertices to the

next stage.

Vertex
Shader

Transform the position
of each vertex to post-

projection space, using a
projection matrix.

Optionally generate
additional vertex data.

Output resulting vertex
data via interpolator

registers.

Triangulation
Group vertices according

to their connectivity
information.

Pass grouped vertices as
triangle primitives to the

next stage.

Frustum
Clipping

Apply Sutherland -
Hodgman frustum
clipping algorithm.

Interpolate vertex
attributes for any new
vertices generated by
the clipping algorithm.

Perform projective
divide by W on vertex

positions to obtain
position in Normalized

Device Coordinates.

Back Face
Culling

Determine face normal
of current triangle.

Discard triangle if the
normal's Z component
has the incorrect sign.

Scanline
Conversion

Apply viewport
transformation to map
NDC positions to pixel

coordinates.

Trace scanlines along the
extents of the triangle.

Interpolate vertex
attributes for each pixel.

Depth
Testing

Compare depth of
current pixel with value

in depth buffer.

Discard pixel if condition
is not satisfied.

Pixel Shader
Compute pixel colour

from input interpolated
vertex attributes.

Optionally discard pixels
(e.g. masking).

Pass computed colour to
the next stage.

Output
Merger

Apply blending
operation between pixel

shader output and
render target.

Write the new colour for
the pixel to the render

target.

12

Within modern graphics APIs, the pipeline stages highlighted in green are fully programmable. This

provides the pipeline with a great deal of flexibility. Most of the other pipeline stages, whilst their

operation is fixed, are often configurable with render state information. For example, the depth testing

stage is driven by a user-specified comparison function. Manipulating this function provides control over

how pixels are discarded by the depth test. Subsequent versions of Direct3D and OpenGL have

introduced additional pipeline stages to handle features such as dynamic geometry creation (Geometry

Shaders), and tessellation and surface subdivision (Hull and Domain Shaders).

In contrast to ray-tracing, the speed of rasterization is highly suitable for real-time rendering applications

such as video games. An optimised pipeline running on modern graphics hardware can render many

hundreds of thousands of triangle primitives within the allotted frame time. Unfortunately whilst

rasterization is much faster than ray-tracing, it suffers from the inability to accurately compute physical

lighting effects in an intuitive way. Rasterization renders single objects at a time; the entire scene’s

geometry is not all in memory at once. As such, pixel shader functions cannot directly account for effects

such as indirect lighting, shadowing, and reflections, as these effects depend on knowledge of the world

outside of the current surface being rendered.

To achieve these effects, various techniques must be applied to capture certain elements of the scene, to

provide that data to the pixel shader function for a surface. This often involves using an additional

rasterization rendering pass to draw the scene from a different camera’s perspective to an off-screen

texture held in video memory. This texture collects information about the scene, relevant to some effect,

which can then be read back in the pixel shader function to approximate that effect. An example of this

is shadow mapping, a commonly used technique to approximate shadows cast by objects in the scene, as

outlined in Algorithm 1:

set render target to shadow map
FOR each mesh in the scene
 transform mesh vertices using light’s view-projection matrix
 rasterize mesh, apply depth testing to keep only the closest pixels
 write closest depth value to shadow map
ENDFOR
set render target to the back buffer
FOR each mesh in the scene
 transform mesh vertices using camera’s view-projection matrix
 rasterize mesh, apply depth testing to keep only the closest pixels
 LET colour = compute light contribution
 LET distance = compute distance from surface to light
 LET mapValue = read corresponding value from shadow map
 IF mapValue < distance THEN

13

 darken colour
 ENDIF
 write colour to render target
ENDFOR

Algorithm 1 – Single Light Shadow Mapping

The renderer first begins by rendering the scene from the light’s point of view. Rather than colour, the

renderer stores the depth of each pixel from the light in an off-screen depth buffer. Once the shadow

map has been completed, the renderer switches to drawing the world to the screen from the camera’s

point of view. At each pixel, the corresponding location in the shadow map is determined using the

light’s view-projection matrix. The value from the shadow map is read back and compared to the

computed distance between the surface and the light for the current pixel.

If the values are approximately equal, then the current pixel is considered to be in direct line of sight

with the light, so is not in shadow. Otherwise, the value stored in the shadow map will be less than the

value for the current pixel. This implies there was some additional geometry between the light and the

surface, and so the current pixel is in shadow; the colour of the pixel is dimmed to approximate this.

Rasterization based pipelines heavily rely on such techniques to achieve advanced lighting effects, which

ray-tracing can achieve with relatively little effort. The flexibility of rasterization pipelines has driven

research to find better techniques for approximating advanced lighting effects, aiming to improve the

realism and detail within rasterized images. Such research has led to the development of a number of

renderer designs, each aiming to improve image quality and complexity, whilst maintaining real-time

performance.

4.4 FORWARD RENDERING

The simplest rasterizing renderer design maps very closely to the rasterization pipeline described in

Figure 1. This design employs a technique commonly known as “Forward Rendering” to render the effect

of each light on the scene’s meshes, additively accumulating the contribution of each light.

FOR each light in the scene
 FOR each mesh in the scene within the light’s bounds
 transform mesh vertex data
 compute lighting from current light at each pixel
 sum the light result into back buffer using additive blending
 ENDFOR
ENDFOR

Algorithm 2 – Multiple Pass Forward Rendering Pipeline

14

The term “Forward Rendering” originates from the idea that all geometry and lighting data flows in one

direction through the pipeline. Forward rendering suffers from an O(L*M) complexity, and therefore

does not scale well when additional lights are added to the scene. The pipeline is also rather inefficient,

as during each rendering pass the vertex data must be processed. When more than one light is in the

scene, this creates repeated work, wasting time that could be utilised on something more useful in

rendering the final image.

Early graphics hardware was particularly inflexible, and typically employed fixed function rendering

pipelines. Historically, both the OpenGL and Direct3D graphics APIs exposed such pipelines which relied

heavily on the Forward Rendering technique.

The introduction of programmable shader pipelines allowed graphics programmers to implement

optimised versions of the standard forward renderer. One such optimisation involves batching lights

together into single draw operations, avoiding the repetition of vertex calculations at least between the

lights in the current batch.

create light batches from lights in the scene
FOR each light batch
 FOR each mesh in the scene within the batch’s bounds
 transform mesh vertex data
 LET sumLights = 0
 FOR each light in current batch
 sumLights += computed lighting from current light
 ENDFOR
 write sumLights to back buffer using additive blending
 ENDFOR
ENDFOR

Algorithm 3 – Single Pass Forward Rendering Pipeline

Whilst this optimisation avoids the reprocessing of vertex data between lights in a given batch, there is

still a requirement to reprocess vertex data between batches of lights. Furthermore, the shaders

required to implement the algorithm for each light type, batch size, and material can lead to a

combinatorial explosion, creating a graphics pipeline dependent on an excessive number of compiled

shader programs. This results in a great deal of overhead, which adversely affects the pipeline’s

performance and ease of use during development.

15

4.5 FOCUS AND OBJECTIVES

For many years, various techniques have been developed to provide a solution to the light-mesh

coupling, complexity and combinatorial explosion issues found in forward renderers. Whilst these

techniques provide much more efficient pipelines, they are far from perfect and suffer from various

quality issues and limitations.

Recent advances in graphics hardware have introduced the ability to perform general purpose

computing in a highly parallel manner, outside of the standard rasterization pipeline. This has allowed

the implementation of more optimal forward rendering pipelines, involving tile based culling of lights

running entirely on graphics hardware, such as “Forward+” presented by (Harada, et al., 2012), which

shall be the focus of this project.

An investigation will be made into possible improvements to the pipeline discussed by (Harada, et al.,

2012), with an emphasis on the efficiency of the light culling algorithm. This will be implemented within a

graphics framework that takes advantage of the most recent platform features, focussing on the

flexibility of shader management.

After an analysis of various academic sources and industry discussion on graphics rendering techniques,

the following objectives have been outlined as the targeted field of research for this project.

 Implement a Forward+ based rendering pipeline.

o Target native Direct3D 11.1 running on the Windows 8.1 platform.

 Investigate the performance of, and implement performance improvements to, the light culling

phase of Forward+ rendering.

 Focus on the flexibility of the rendering pipeline, implementing the following features:

o Dynamic shader recompilation.

o Support for materials.

o Asset management.

16

5 LITERATURE REVIEW

5.1 ALTERNATIVE RENDERING PIPELINES

The design of a graphics pipeline which avoids the coupling of mesh data and lights has been the focus of

research for many years. These techniques usually involve a “deferred” phase, opting to store some

amount of intermediate data in viewport sized textures held in video memory, rather than passing data

through the entire pipeline at once.

5.1.1 Deferred Rendering

A common alternative to traditional Forward renderers is “Deferred Rendering”, a technique that has

been employed in a number of video game titles across a range of programmable graphics hardware

(Valient, 2007) (Klint, 2008) (Shishkovtsov, 2005).

Rather than computing the surface properties and applying the influence of each light in a single draw

operation, deferred rendering utilises a series of intermediate render targets, named the “G-Buffer”, to

store surface properties. Lighting is then applied as a second, independent pass, reading back the data

stored in the G-Buffer to compute the effect of lighting on visible surfaces. In doing so, Deferred

Rendering achieves an O(L+M) complexity, since geometry data is processed once, rather than once per

light. Applying lighting to the scene is then a process that operates entirely on the data stored in the G-

Buffer.

To increase performance, it is desirable to compute lighting functions only on the pixels within the

sphere of influence of a given light. Various techniques exist, such as Carmack’s Reverse (Carmack &

Kilgard, 2009), also known as Z-Fail stencilling, which utilise the hardware’s stencil buffer to quickly filter

the candidate pixels affected by a given light.

FOR each mesh in the scene
 transform mesh vertex data
 write interpolated surface properties to G-Buffer textures
ENDFOR
FOR each light in the scene
 apply stencilling to mask pixels within the current light’s bounds
 perform lighting calculations at masked pixel positions, using G-Buffer surface data
 write computed lighting to back buffer, using additive blending
ENDFOR

Algorithm 4 – Deferred Rendering Pipeline

17

The use of stencilling within Deferred Rendering is an effective means of culling pixels from lighting

calculations, ensuring that no more work than is strictly necessary is done. The result is a rendering

solution which scales very well with the number of lights or detail of meshes used.

Whilst Deferred Rendering is an attractive solution to many modern video games and interactive

graphics applications, there are a number of inherent limitations.

Firstly, the amount of space available in the G-Buffer is very limited. On modern hardware, the G-Buffer

is implemented as a series of two dimensional textures, which are written to during the initial geometry

pass using “Multiple Render Targets” (MRT). A restriction when using MRT is that all textures bound as

output for the current pass must have the same pixel width in bits, for example they must all be 32-bits

per pixel.

The result is that careful packing of data within the G-Buffer is necessary, often sacrificing floating point

precision in favour of smaller width fields. The layout of the G-Buffer is also particularly inflexible, which

makes the use of custom material BRDFs (Bi-Directional Reflectance Distribution Functions) very difficult.

Unreal Engine 4 (Epic Games, 2014) attempts to solve this by encoding a two bit value representing the

“material type”. Various fields within the G-Buffer are redefined based on the value stored as the

material type. This allows a choice of up to four unique material BRDF models to be used during lighting

computation, however the input to these BRDFs must still be arranged to fit within the G-Buffer. There is

also an additional ALU cost involved in the encoding and decoding of any data packed in the G-Buffer

textures.

Of course if there are no more fields available within the G-Buffer to store additional data, an entire

additional texture may be used to increase the available space. However, this presents the second

limitation of Deferred Rendering. There is a large bandwidth cost that arises from the read/write

operations on the G-Buffer, a cost which is further exacerbated with the use of additional render targets

to support complex material BRDFs. Accessing texture memory is inherently slower than the local

memory used by a shader program, so often Deferred Rendering is limited by the available memory

bandwidth on the graphics hardware.

Deferred rendering also suffers from several other limitations. Since G-Buffer data is stored per-pixel,

there is no support for hardware Multi-Sample Anti-Aliasing (MSAA) unless G-Buffer data is stored per-

sample, and the lighting for each sample is computed manually during the lighting phase. To achieve

anti-aliasing within a deferred pipeline requires the use of full screen post processing passes after the

scene image has been rendered to blur the edges of polygons. Various techniques exist, such as Fast

18

Approximate Anti-Aliasing (FXAA), and Temporal Anti-Aliasing (TAA), which exhibit various quality issues

often in the form of blurred detail in textures.

Deferred rendering also has no way of handling transparent objects correctly. The G-Buffer is only

capable of storing surface information of the nearest opaque pixel to the camera. To achieve

transparency effects, a separate forward based pipeline must exist which is applied after the opaque

deferred pass. This requires the developer to maintain two unique rendering systems, increasing

development effort.

5.1.2 Light Pre-Pass Rendering

An alternative technique to full Deferred Rendering is Light Pre-Pass Rendering (Lee, 2009). This

technique exists almost as a hybrid approach between full deferred and more traditional forward

renderers. It aims to maintain the decoupling of lights and geometry, but reduce the size of the G-Buffer

to help alleviate the bandwidth and memory usage issues associated with the use of multiple textures.

FOR each mesh in the scene
 transform mesh vertex data
 output depth and surface normal to intermediate textures
ENDFOR
FOR each light in the scene
 apply stencilling to mask pixels within the current light’s bounds
 perform lighting calculations at masked pixel positions
 write diffuse lighting result to diffuse buffer using additive blending
 write specular lighting result to specular buffer using additive blending
ENDFOR
FOR each mesh in the scene
 transform mesh vertex data
 modulate lighting from diffuse/specular buffers with surface material properties
 write computed lighting to back buffer
ENDFOR

Algorithm 5 – Light Pre-Pass Rendering

While light pre-pass rendering addresses several issues related to a full deferred pipeline, a number of

limitations still exist.

The use of a diffuse and specular lighting buffer common to all light types and materials eliminates the

possibility of using specialised material BRDFs. Since the lighting properties of each light are computed in

a common light pre-pass shader, the material of each mesh may only modulate the result, rather than

provide an entirely different lighting model where required, for example in the rendering of hair (which

exhibits highly anisotropic properties), or foliage (which exhibits subsurface scattering effects and light

transmission).

19

Similarly to deferred rendering, light pre-pass rendering also does not provide a solution for correctly

handling translucent materials. A secondary, entirely forward based pipeline is still required to render

such materials.

5.2 FORWARD+ (FORWARD “PLUS”) RENDERING

In recent years, graphics hardware has become vastly more flexible with the introduction of vendor

specific General Purpose Graphics Processing Unit (GPGPU) support, such as NVIDIA’s CUDA, and AMD’s

Stream, and the subsequent extension of cross-vendor graphics APIs to support GPGPU operations using

Compute Shaders (under Direct3D 10/11), and OpenCL (the GPGPU equivalent to OpenGL).

Modern graphics hardware is now capable of performing massively parallel general computation,

outside of the traditional raster pipeline. This has allowed new rendering techniques to be implemented

which were not possible on older generation hardware.

One such technique is Forward+ Rendering, which aims to improve the traditional forward pipeline by

solving the coupling of lights and mesh data using compute shaders, providing a fully forward based

alternative to the wider used deferred and semi-deferred pipelines.

First proposed by AMD, Forward+ utilises a compute shader to generate a linked list of light indices for

each tile in a uniform grid placed across the viewport. The properties of each light are stored in a buffer

in video memory. During the final rendering pass, the pixel shader traverses the linked list for the tile the

current pixel belongs to, and sums the influence of each light.

FOR each mesh in scene
 transform mesh vertex data
 output depth to depth buffer
ENDFOR
FOR each tile in viewport
 find minimum and maximum depth values within the tile
 compute frustum of the tile using depth values
 FOR each light in scene
 IF light’s bounding sphere intersects tile frustum THEN
 atomically insert light index into linked list for tile
 ENDIF
 ENDFOR
ENDFOR
FOR each mesh in scene
 transform mesh vertex data
 LET sumLights = 0
 FOR each light in linked list for pixel’s current tile
 sumLights += computed lighting from current light

20

 ENDFOR
 output sumLights to back buffer
ENDFOR

Algorithm 6 – Forward+ Rendering Pipeline

With this per-tile linked list, the contribution of every light affecting a given mesh can be computed in a

single pass, eliminating the repeated vertex data processing found in traditional single and multi-pass

forward rendering. Forward+ is also much more flexible in terms of material BRDF use when compared

to Deferred Rendering or Light Pre-Pass Rendering, as any shader can be used in the final rendering pass

for a given mesh, allowing different BRDFs to be selected where appropriate.

Forward+ also supports native hardware MSAA, since meshes are rendered directly to the back buffer

rather than an intermediate texture, allowing the pixel shader to operate on sample or pixel granularity

automatically. Forward+ is also capable of handling translucent materials. An additional light culling pass

may be used to compute tile linked lists against any translucent geometry, reusing the same pipeline

with only minor blend state changes. This provides an elegant solution for handling correctly lit

translucent geometry.

Whilst Forward+ solves many of the issues with traditional forward renderers, there are still a few pitfalls

when compared to deferred solutions. All lighting data, including any shadow maps etc., must be

resident in graphics memory and accessible by the final pass shaders, whereas under a deferred pipeline,

only the data associated with the current light being applied need be resident in graphics memory.

5.2.1 Inefficiencies in Tile Culling

Key to the performance of Forward+ is the tile culling compute shader stage. Since each light added to a

tile’s linked list directly affects the performance of the final rendering pass, it is beneficial to cull as many

lights as possible from these lists. In their paper, (Harada, et al.) do not specifically outline how they

achieve this culling beyond simply stating that a sphere-frustum test is performed between each light

and tile. However, example source code provided by (Advanced Micro Devices, Inc, 2013) unveils they

perform a series of sphere-plane tests against the six planes of the frustum.

These tests are very efficient to compute on graphics hardware, as once the plane equations have been

computed, the sphere-plane test can be reduced to a single dot product and comparison for the outer

four planes. However the simple use of planes does not lead to the accurate intersection test between

spheres and frusta. There exists a number of cases where a sphere which does not directly intersect a

frustum, does at least partially lie on the positive half-space of all six planes, resulting in a false positive

intersection result.

21

Figure 2 details this issue in two dimensions. False

positives may arise when the circle’s centre is in the

Voronoi region of one of the trapezoid’s vertices. When

extended to three dimensions, false positives may be

found when the sphere’s centre is within the Voronoi

region of any of the frustum’s vertices or edges. These

false positives are accumulated in the tile linked lists

creating additional work for the final rendering pass.

Whilst many CPU based frustum culling implementations

used for visibility testing in game engines rely on these

sphere-plane tests and provide acceptable results, these

are mostly cases with a single very large frustum (the frustum of the camera’s projection) and

comparatively smaller object bounding spheres.

The likelihood of a false positive result from these tests is exacerbated when the size of the frusta

decrease in relation to the size of the bounding spheres, as is the case with Forward+ light culling. The

tile frusta are generally very narrow, thin, and have potentially a long extension in depth. This results in

very inefficient culling between tiles and light bounding spheres.

Generally, the tile culling phase of the Forward+ pipeline is much less costly than the final rendering pass

where the lighting, shadowing and material properties are apply by traversing the linked lists. It is

therefore desirable to reduce the amount of work required in the final rendering pass, even if that

means increasing the total compute time for the light culling phase. The cost of a slightly more

expensive, but more accurate culling algorithm is likely to be vastly outweighed by the performance

saving found during the final scene rendering pass.

Figure 2 – Inefficiencies in plane-sphere based tile

frustum tests

The green circle does not directly intersect the blue
trapezoid, but does lie at least partially on the

positive half-space of every plane.

22

6 METHODOLOGY

6.1 FORWARD+ IMPLEMENTATION

The primary focus of this project is the efficient implementation of a Forward+ rendering pipeline. The

development of the pipeline relied heavily on the underlying engine design, discussed in section 6.2.

The Forward+ pipeline has two main sections. The tile culling of lights is handled by the

ForwardPlusTileCulling.fx compute shader, and the final rendering of the scene where the lighting is

calculated is handled by the ForwardPlusMainMaterial.fx material shader.

The pipeline supports directional, point and spot light sources, although only point lights were used for

testing and gathering of performance results. Directional lights do not participate in tile culling, as they

apply to every pixel, and so are added to the linked lists for every tile. Spot lights use the same culling

technique as point lights, the only difference being the addition of a spot light attenuation factor in the

material shader.

Various settings have been hardcoded through the use of pre-processor macros, such as the total

number of lights supported, and the tile width and height in pixels. To support a given number of lights,

the pipeline assumes worst case memory usage and allocates linked list buffer textures to hold one entry

per light, per tile. The actual memory usage for a real-world game would be considerably less than this,

but for the purposes of performance analysis, it is simpler to allocate for the worst case. In a production

game, the size of the linked list buffers should be tailored to fit the game’s use of the rendering pipeline.

6.1.1 Culling Algorithm Investigation

A primary goal of this project was the investigation of more optimal culling algorithms for use in the

ForwardPlusTileCulling.fx compute shader. This led research into various techniques for computing

sphere-frustum intersections, and evaluation of their suitability for the compute shader.

The selected algorithm must maximise the number of light-tile interactions culled, whilst minimising the

required work done within the compute shader. Careful balancing is required to ensure that the extra

compute time spent in the culling phase is less than the time that extra culling work saves during the

scene rendering phase. As such, an algorithm which allows a trade-off between culling accuracy and

compute time is favourable.

23

6.1.1.1 Gilbert–Johnson–Keerthi (GJK) Distance Algorithm

One possibility of an improved sphere-frustum intersection test is the GJK algorithm (Gilbert, et al.,

1988). This algorithm solves intersection tests between two arbitrary convex hulls in three dimensional

space by computing the Minkowski difference of the two hulls.

The algorithm operates iteratively until either the origin is found to be enclosed by the Minkowski

difference, or the next iteration moves further away from the origin, in which case there is found to be

no intersection.

Whilst the GJK algorithm will provide an exact solution for the intersection between tile frusta and light

bounding spheres, it is not an appropriate choice for the light culling compute shader. The algorithm

must complete fully before a result can be returned. There is no scope to balance the work done in the

culling algorithm and the accuracy of the results.

6.1.1.2 Separating Axis Theorem

The Separating Axis Theorem (SAT) states that two convex hulls do not intersect if there exists a

hyperplane which separates them. To test this, both shapes are projected onto an arbitrary axis. The

resulting projections are tested for overlap. If no

overlap exists, then the two objects can be separated

by a hyperplane perpendicular to this axis, and

therefore do not intersect.

To fully test two given convex shapes, the SAT test is

repeated for each possible separating axis between

the two shapes until either one of the tests finds no

overlap in the projections, or all axes have been

exhausted. Between a trapezoid and a circle in two

dimensions, there are seven possible axes of

separation: one axis perpendicular to each edge of the

trapezoid (excluding the duplicate axis, since the top

and bottom edges of the trapezoid are parallel), and

an axis from each vertex in the trapezoid to the centre

of the circle.

Whilst there are seven possible axes to test, it is not necessary to test every vertex-to-circle-centre. Only

the vertex closest to the centre of the circle need be considered. More specifically, only the axis between

Figure 3 – Separating Axis Theorem

The two shapes have been projected onto the axis
parallel to the vector from the lower right vertex of the

trapezoid to the centre of the circle.

The projections (denoted by the thick lines) do not
overlap, therefore there exists a hyperplane that

separates the two shapes, perpendicular to the axis of
projection (black arrow).

24

the circle centre and the nearest feature of the trapezoid need be considered. The nearest feature is

given by the feature associated with the Voronoi region containing the circle’s centre.

When applied to the example previously given in Figure 2, the SAT test correctly finds that the two

shapes do not intersect, as shown in Figure 3.

Considering a frustum and a sphere in three dimensions, there are 25 total unique possible separating

axes (five axes from the face normals of the frustum, eight axes from each vertex to the sphere centre,

and twelve axes to test the edges of the frustum).

Again, only the axes given by the Voronoi region in which the sphere’s centre lies must be tested.

Selection of the correct Voronoi region is trivial in the case of orthographic projection, as the frustum

becomes a cuboid. However determining which region to select when using perspective projection is not

trivial, particularly given the asymmetric nature of the tile frustums, and involves several point to feature

distance tests.

As a result, it is not possible to quickly determine the correct axis of separation to test, given an arbitrary

frustum and sphere. An alternative approach is required for reducing the work done in the collision test.

The SAT algorithm begins with the assumption that the two objects intersect, and then searches for a

separating plane to prove that they do not. If a number of separating axes are skipped, the algorithm will

likely overestimate the number of positive intersection tests. This is desirable when applied to tile

culling, as underestimations in the intersection test will result in light disappearing from portions of the

scene.

Due to the shape of the frustums involved in tile culling, it was hypothesised that a given bounding

sphere of a light within a typical game world is likely to be closest to one of the frustum’s vertices than

any of the frustum’s other features. Therefore, the vertex-sphere axis tests are likely to be the test which

gain the greatest culling benefit for the least work done in the culling compute shader.

6.1.2 Chosen Culling Solutions

Initially, two culling solutions were selected for performance analysis: an implementation of plane based

frustum culling, as found in the example source code provided by (Advanced Micro Devices, Inc, 2013)

and discussed in section 5.2.1, and a full Separating Axis Theorem (SAT) test between the frustum and

the bounding sphere. The SAT test was grouped by frustum features, i.e. faces, edges and vertices. Each

group can be enabled or disabled via a pre-processor macro at the top of the shader file. This allowed

the performance results of each feature group to be investigated, aiming to confirm the hypothesis that

vertex tests are the most beneficial.

25

6.1.3 Testing of Culling Solutions

Each combination of edges, faces and vertices for the SAT algorithm were tested. Their culling accuracy

was compared against the best-case culling found by the full “brute-force” SAT test involving every

feature, and the AMD planes culling algorithm.

From the information obtained by these tests, two further culling algorithms were devised. “Nearest

Vertex” which involves a single SAT test against the axis given by the vertex nearest to the sphere’s

centre, and “Hybrid” which combines the original AMD planes algorithm with the “Nearest Vertex”

algorithm.

Analysis of each method was driven by timing information obtained through real-time performance

counters discussed in section 6.2.6, and a heat-map visualisation to show the concentration of lights in

each tile.

For testing purposes, each culling algorithm was implemented within the ForwardPlusTileCulling.fx

compute shader and selectively enabled or disabled using pre-processor macros. From the support

provided by the shader and material system in the engine discussed in section 6.2.5, it is then possible to

switch between culling modes at runtime by modifying the controlling macro in the source file directly,

followed by issuing a “recompileshaders” command at the in-engine console.

26

6.2 ENGINE DESIGN

Many engine design decisions in this project have been heavily influenced by Unreal Engine 4 (Epic

Games, 2014). The early development process focussed on the creation of a platform abstraction layer, a

shader management system, and a render hardware interface module. The framework built from these

systems aided in the efficient implementation of the Forward+ pipeline. The rendering systems focus on

the abstraction of Direct3D functionality, and provide various utility classes and optimisations to ensure

Direct3D is used in an efficient manner. They also provided the basis to implement the performance

analysis system, enabling the comparison between the Forward+ light culling techniques.

The emphasis on engine design intended to focus the pipeline on a more realistic and useful

implementation than that typically found in most technology demonstrations, which tend to focus purely

on the algorithm being presented. An engine style framework helps ground the pipeline, and prove its

viability as a technique for advanced game graphics rendering.

6.2.1 Engine Modularity

The engine takes a modular approach within its source code structure, as outlined in Figure 4. Modules

are compiled into Dynamic Link Libraries (DLLs), with a well-defined public interface through the use of

DLL import/export macros, such as CORE_API, or SHADERCORE_API. The compilation of each module, and

inclusion of appropriate public module headers, is handled through the use of MSBuild property files

contained within each module’s source directory.

Figure 4 – Modular Engine Structure

6.2.2 Platform Abstraction Layer

An integral part of the “Core” module is the platform abstraction layer. The layer provides the engine

with a common interface for file, window and thread operations. This allows the core module to hide the

implementation details of the Win32 API, wrapping its functionality in various C++ classes to be more

“engine friendly”.

D3D11RHI Shader Core
Module Core

Core

Engine

RHI

27

A platform abstraction layer also simplifies the task of porting the engine to a different platform, as the

underlying operating system functionality the engine relies on is focused in a single module, which can

be replaced with a layer targeting a different operating system as required.

6.2.3 Render Hardware Interface

The Render Hardware Interface (RHI) is a concept used within Unreal Engine 4 (Epic Games, 2014). It is

similar to the platform abstraction layer, but is responsible for directly communicating with the

underlying graphics API, which in this instance is Direct3D 11.1. Like a platform abstraction layer, the RHI

provides a common interface to the graphics API, allowing the engine to be retargeted to a different

graphics API by providing an alternative implementation of the RHI.

Whilst the implementation within Unreal Engine focuses on providing a minimal interface to Direct3D 11,

the RHI created for this project features optimisations such as device context state shadowing. This helps

to eliminate any unnecessary API calls which can lead to CPU side performance issues. For example, an

attempt to re-set the same rasterization state to the RHI that is already in effect will be discarded,

preventing a duplicate call to IDirect3DDeviceContext::RSSetState. This state shadowing technique is

applied to almost all state objects and pipeline stages held by the device context.

The RHI also provides similar utility classes as Unreal Engine, to simplify the creation and use of various

pipeline state objects, such as rasterizer, blend, and depth-stencil states. The properties of each state

object are defined as template arguments in a static class. Direct3D state objects are then only created

by the RHI when a particular combination of template arguments have never been used before.

Instances with the same arguments reuse the same, shared state object.

// Set the default rasterizer state and disable color writes.
GDynamicRHI->SetRasterizerState(TStaticRHIRasterizerState<>::GetRHI());
GDynamicRHI->SetBlendState(TStaticRHIBlendState<false, false,
 ERHIColorWriteMask::None>::GetRHI(), FVector4(), INDEX_NONE);

Code Sample 1 – Use of RHI State Objects (Engine.cpp: Lines 1340-1342)

6.2.4 Efficient Buffer Management

Key to an optimal rendering pipeline is the prevention of pipeline stalls. Stalls arise when the CPU

requests read or write access to a resource currently in use by the GPU. An example is during the update

of a constant buffer:

1. The CPU creates the buffer and specifies the buffer’s initial data.

2. The CPU then issues a draw call that makes use of that buffer.

28

3. The GPU begins reading data from the constant buffer as part of a draw operation.

4. The CPU attempts to lock the buffer for write access before the GPU has completed the

preceding draw operation.

In this scenario, there are two possible outcomes. The graphics driver may allow the CPU to write the

new constant buffer data to an area of temporary system memory. The driver then commits the new

data to the buffer once the buffer is no longer in use by the GPU, and then frees the temporary memory.

Alternatively, the graphics driver will stall the CPU, preventing the calling application from continuing

until the GPU has finished accessing the buffer. When the graphics driver resumes the calling application,

it grants direct write access to the buffer.

Both of these outcomes are not desirable from a performance perspective. In the first instance, an

additional memory copy is required, and in the second the entire pipeline is flushed and synchronised.

To avoid this situation, careful buffer management is required. Direct3D 11 introduced the

D3D11_MAP_WRITE_NO_OVERWRITE flag, used when locking a buffer for write access. This flag allows the

graphics driver to grant the CPU direct buffer write access, on the condition that the CPU does not write

to areas of the buffer the GPU is currently using. The use of this flag prevents any pipeline stalls or

additional copies to temporary buffers. It then becomes the engine’s responsibility to ensure it does not

write to areas of the buffer in use by the GPU, otherwise undefined behaviour may occur.

This engine features a ring buffer system for dynamic vertex, index and constant buffers, similar in

implementation to the “Discard-Free Temporary Buffers” discussed by (McDonald, 2012). The Direct3D

RHI module tracks the GPU’s progress by issuing an event query at the end of each frame. Allocations

made by the CPU within a ring buffer are associated with the current frame number. These areas remain

allocated and are assumed to be in use by the GPU until the event query for the frame a given area was

allocated in returns true, signalling the GPU has completed the frame. The allocated areas are then

freed, allowing the CPU to reallocate them as required.

The ring buffer system handles several edge cases so that from the engine’s perspective, ring buffers

behave exactly like regular buffers. The system “steals” an allocation from a previous frame if the buffer

is reused in a subsequent frame without the CPU first making a new allocation. The buffers are also

demand grown, doubling in size if not enough space is available to make an allocation. After a few

frames have been rendered, the buffers have automatically grown to a sufficient size to handle

subsequent frames, and no further reallocations are made, providing the complexity of the frames

remain the same.

29

6.2.5 Shader and Material System

A focus of this project was the implementation of a flexible shader and material system. Such a system is

capable of easing development effort, as shaders may be recompiled dynamically whilst the engine is

running, allowing iterative development of shaders without the overhead of having to restart the engine

with each iteration. The system also allows data-driven shader compilation, a key requirement for

supporting an artist driven material system such as the one found in Unreal Engine 4 (Epic Games, 2014).

The primary components of the shader system are implemented within the “ShaderCore” module. Each

shader defined in a source file must be attached to the engine through the creation of a binding class, as

shown in Code Sample 2.

class FDepthOnlyVS : public TShader<ERHIShaderFrequency::Vertex>
{
 DEFINE_GLOBAL_SHADER(FDepthOnlyVS, Vertex, STR("DepthOnlyVertexShader.fx"), "VSMain")
 FDepthOnlyVS(const FShaderInitializer& InInitializer)
 : TShader(InInitializer)
 {}
};

Code Sample 2 – Vertex Shader Binding Class (Engine.cpp: Lines 49-55)

The source shader file and entry point are given by the last two arguments of the DEFINE_GLOBAL_SHADER

macro. Each binding class automatically registers a new shader type with the shader system on engine

start-up. The shader system maintains a list of all the shader types present in the engine, allowing the

system to detect when a given shader requires recompilation.

6.2.5.1 Shader Types

There are two main kinds of shader type: global shaders, and material shaders. Global shaders are stand-

alone shaders which have a single compiled instance, and are accessible by the renderer as global

singletons. The ForwardPlusTileCulling.fx compute shader is an example of a global shader.

Material shaders are shaders which are controlled by the material system and used to render meshes in

the world. One compiled instance of a material shader exists for each material asset in the engine. The

compiled shader instances themselves are only accessible to the renderer via a material asset instance. If

the renderer does not have a valid reference to a material (for example, a given mesh’s material field is

null), the material system provides a default material instance as a replacement. The

ForwardPlusMainMaterial.fx pixel shader is an example of a material shader.

6.2.5.2 Shader Modules

Shader types contain a number of shader modules. Shader modules provide the mechanism to hook up

shader compilation to various other graphics systems in the engine. Global and material shaders contain

30

an HLSL shader module, and a constant buffer shader module. Material shaders contain an additional

material shader module.

During compilation, the shader system receives a callback from the D3D11 shader compiler for each

included file. The shader system then iterates through the shader modules for the current shader being

compiled, and allows the modules to resolve the given filename into HLSL source code, which is passed

back to the D3D11 shader compiler. Using this mechanism, the material and constant buffer systems can

inject HLSL source code from various different sources, including HLSL code generated at runtime, to

produce different shader instances.

6.2.5.3 Recompilation Detection

Once shaders have been compiled successfully, they are saved to a file along with various metadata,

such as the list of files included, and a raw byte array per shader module. This metadata is used to

determine if a given shader instance is out of date due to source or asset changes somewhere in the

engine. The engine uses file timestamps to detect changes in shader source files. For changes in runtime

generated data, the shader system relies on the raw byte array produced by each shader module. The

data contained in the array is specific to each module, and allows the module to detect when a change

has occurred, for example, a material’s type has been changed from “default” to “masked”.

6.2.5.4 Compilation Error Recovery

To maintain productivity during shader development, the shader system must be resilient to compilation

failures due to programmer error. To achieve this, the shader system does not unload previously loaded

shader instances until a compilation has completed successfully. The newly compiled shader is saved to

disk, and then reloaded from disk to replace the shader instance currently in use. By doing this, the

shader system can avoid causing an engine crash even if a compilation error has been introduced that

has damaged all shaders in the engine. Unreal Engine 4 (Epic Games, 2014) does not achieve this

resilience, resulting in shader compilation errors that can cause full engine crashes, requiring the engine

to be restarted.

When compilation has failed, a message is displayed on screen to indicate this, and the older shader

available from disk is used instead. The engine can also survive restarts with bad shaders. The changes

which caused a failed shader compilation will trigger a shader recompilation on engine start-up. Unless

the issue has been resolved, the compilation will fail again. The engine will then resort to using the older

shader from disk, and display the shader compilation error message. The only time an engine crash will

occur is when a global shader has a compilation error, and no older shader is available on disk.

31

6.2.6 Real-time Performance Analysis

To obtain performance results of different light culling techniques, a system for gathering the elapsed

time of each draw operation on the graphics hardware is required. Direct3D exposes several event query

objects which provide a timestamp of an internal clock for accurate measurement of elapsed time

durations on graphics hardware.

The RHI provides the PushEvent and PopEvent functions which enclose draw and dispatch calls in these

timestamp queries to establish how long those calls took to complete on the GPU. The RHI builds a

hierarchy of these events, which is returned when the GPU has finished processing that frame (which

may be several frames later from the CPU’s perspective). The tick counts in each event entry within the

hierarchy are converted to milliseconds and drawn to the screen. The RHI also performs CPU

performance monitoring within the same hierarchy structure.

6.2.7 Asset Management

Each asset file begins with the asset header. This contains the asset’s Globally Unique Identifier (GUID),

and type enumeration. On engine start-up, the asset manager scans the “Content” directory to find all

valid asset files, and using the data from their asset headers, builds a map of assets keyed by their GUIDs

for fast lookup.

6.2.7.1 Serialization

Each asset class is responsible for serializing its members on request. References to other assets are

serialized using the target asset’s GUID. To load an asset, the asset manager first looks up the asset’s

record in the asset map. If found, the asset’s type enumeration value is used to create an instance of the

correct class, which then loads the data it requires from the asset’s file stream. Inter-asset references are

resolved recursively as they are encountered.

6.2.7.2 Asset Identity

An asset’s identity is formed exclusively by its GUID. The GUID is allocated when the asset is created and

remains the permanent identity of the asset throughout the engine. All inter-asset references are

serialized using the GUID of the target asset referred to.

Assets may also be referred to by their path name, however the path name of an asset is not permanent.

It is determined at engine start-up during the directory scan. This allows asset files to be freely moved

within the content directory. Since the asset’s identity is embedded within the file, references to that

asset remain intact, regardless of its position in the content directory.

32

7 RESULTS

7.1 DATA GATHERING

Millisecond event times have been collected from the real-time performance analysis system discussed

in section 6.2.6. Whilst the data is not averaged across several frames, the values themselves were very

stable, fluctuating by only a few fractions of a millisecond between frames.

7.1.1 Instability of Offline Performance Analysis

Both Intel GPA (Intel Corporation, 2014), and NVIDIA nSight (NVIDIA Corporation, 2014) were also used

to obtain performance results. The advantage of offline performance analysis is that it eliminates any

bottlenecks caused by the CPU, which lead to incorrect results gathered from the GPU timestamp event

queries. There are cases where the GPU may be left idle during a frame if the CPU does not maintain a

constant feed of dispatch/draw commands, but the timestamp system is unable to remove GPU idle time

from the results for each event. This leads to timing values that are falsely inflated compared to the

actual time spent doing work by the GPU. In these cases, the engine is actually CPU bound.

Offline performance analysis ensures that the GPU is not idle during testing, since the entire command

buffer was captured in advance. It is therefore desirable to perform offline analysis when concerned

specifically with GPU performance. However, NVIDIA nSight proved to be highly unstable, and crashed

the development system before results could be obtained. Similarly, whilst Intel GPA was more stable,

the results it provided had an unacceptably high variance, making the data very unreliable. This

instability may be related to hardware or graphics driver issues in the test system. As a result, offline

analysis was abandoned.

7.1.2 Consideration of CPU Performance Bottlenecks

As offline analysis was not possible, results were gathered from the real-time performance analysis built

into the engine. Whilst this creates the possibility of discrepancies due to CPU bottlenecks, the CPU

workload was constant between tests, with only the culling method changing, an entirely GPU side

change which has no effect on the work done by the CPU.

To further ensure CPU bottlenecks are not causing incorrect results, the CPU performance values were

monitored alongside those from the GPU. In the case of a CPU bottleneck, the reported time for

completion on the CPU will be roughly equal to that of the GPU. Throughout testing, this situation was

not found. This is a strong indication that the engine is not CPU bound.

33

7.1.3 Fixed Camera Positions

For consistent results, pre-defined camera positions were included, to ensure the same scene is

rendered between tests, or restarting of the engine. These positions were chosen manually after

performing preliminary fly-through tests to gauge the general performance of different areas of the

scene.

Tests for all culling techniques were repeated across three main camera positions, specifically positions

0, 1, and 5, each of which highlight different characteristics of the chosen culling techniques. The

repositioning of the camera can be performed using the “setcam index” command, where index is an

integer between 0 and 6 inclusive.

7.1.4 “Countlights” command

The length of each tile linked list generated by the tile culling compute shader is a good overall indication

of how accurate a given culling algorithm is across the entire frame, particularly when compared to the

best case culling generated by the brute force full SAT test. To obtain these results, a compute shader is

used to sum the lengths of each tile linked list for the current frame into a shared output buffer. The

graphics pipeline is then stalled and the CPU awaits the results, which it prints to the engine’s console.

This operation is performed when the command “countlights” is entered at the in-engine console.

The result of the “countlights” operation was also particularly useful in confirming the correctness of the

culling algorithm. If the value returned by the operation was less than the value returned under the

brute force full SAT test, then the algorithm has underestimated the light/tile interactions, and there will

be visual discrepancies in the rendered scene.

7.1.5 Target System

The data presented here was obtained from a system with the following specifications:

 NVIDIA GeForce GTX 690 Graphics Card

 Intel Core 2 Quad Q9300 CPU @ 2.50 GHz

 4GB Dual Channel DDR2 RAM @ 800 MHz

 Intel DP35DP Motherboard, with Intel P35 Chipset

 Microsoft Windows 8.1

34

7.2 CULLING ACCURACY

The following two tables contain the total number of light/tile interactions at two different camera

positions for each culling method and varying number of lights. The values are the sum of the lengths of

each tile linked list, gathered using the “countlights” command as outlined in section 7.1.4.

The SAT based culling methods list the combination of features which were tested, where “E” is edges,

“V” is vertices, and “F” is faces.

 Number of Light/Tile Interactions
Culling Method 64 Lights 128 Lights 256 Lights 512 Lights 1024 Lights

None 921,600 1,843,200 3,686,400 7,372,800 14,745,600

AMD Planes 49,106 83,415 187,200 368,046 940,339

SAT (E) 50,406 89,106 191,121 361,423 950,090

SAT (V) 28,443 49,880 105,445 183,937 453,789

SAT (F) 49,030 83,302 186,885 366,915 937,421

SAT (E + V) 27,993 49,162 103,904 181,262 448,642

SAT (E + F) 39,053 67,018 140,571 258,860 654,539

SAT (V + F) 27,726 48,633 102,769 179,009 442,891

SAT (E + V + F) 27,681 48,559 102,627 178,710 442,258

Nearest Vertex 28,499 49,971 105,639 184,254 454,379

Hybrid 27,729 48,639 102,789 179,045 443,011

Table 1 – Culling accuracy measurements for camera position 0, at a resolution of 1280x720

 Number of Light/Tile Interactions
Culling Method 64 Lights 128 Lights 256 Lights 512 Lights 1024 Lights

None 921,600 1,843,200 3,686,400 7,372,800 14,745,600

AMD Planes 99,199 186,105 303,138 507,752 839,107

SAT (E) 89,340 174,198 290,225 493,689 847,912

SAT (V) 64,770 110,618 181,715 308,129 519,727

SAT (F) 98,942 185,535 302,310 506,125 836,028

SAT (E + V) 62,959 107,152 175,252 292,178 483,699

SAT (E + F) 76,797 139,401 227,457 380,007 627,147

SAT (V + F) 61,617 104,051 168,521 278,077 452,547

SAT (E + V + F) 61,598 104,007 168,418 277,877 452,037

Nearest Vertex 64,822 110,727 181,948 308,586 520,655

Hybrid 61,622 104,060 168,540 278,126 452,679

Table 2 – Culling accuracy measurements for camera position 1, at a resolution of 1280x720

During the initial investigation to culling accuracy, the SAT tests were compared to the AMD Planes

implementation. In almost all cases it was found that any combination of SAT feature testing provides

more accurate culling than the use of planes alone.

35

More interestingly, the vertices SAT test provides the greatest gain in culling accuracy, as outlined in

Figure 5 and Figure 6. All culling algorithms involving the vertex SAT test have considerably tighter culling

than those methods without the vertex test. The variation between the algorithms using the vertex test

is very minor, and is less than 3% between the best and worst cases.

Figure 5 – Number of light/tile interactions at Camera 0, 64 lights, and 1280x720 resolution

Figure 6 – Number of light/tile interactions at Camera 0, 1024 lights, and 1280x720 resolution

Similar results are found at camera position 1, and at higher resolutions such as 1920x1080.

27,681

27,726

27,729

27,993

28,443

28,499

39,053

49,030

49,106

50,406

0 10,000 20,000 30,000 40,000 50,000 60,000

SAT (E + V + F)

SAT (V + F)

Hybrid

SAT (E + V)

SAT (V)

Nearest Vertex

SAT (E + F)

SAT (F)

AMD Planes

SAT (E)

Light/Tile Interactions (Camera 0, 64 Lights)

442,258

442,891

443,011

448,642

453,789

454,379

654,539

937,421

940,339

950,090

0 200,000 400,000 600,000 800,000 1,000,000

SAT (E + V + F)

SAT (V + F)

Hybrid

SAT (E + V)

SAT (V)

Nearest Vertex

SAT (E + F)

SAT (F)

AMD Planes

SAT (E)

Light/Tile Interactions (Camera 0, 1024 Lights)

36

7.3 REAL-TIME PERFORMANCE RESULTS

From this lack of variation and the large effect the vertex SAT tests have on culling accuracy, the vertex

SAT test along with the AMD Planes algorithm were taken forward for direct performance testing,

measuring the actual compute time required on the target hardware to render the scene with these

given culling algorithms.

From these observations, a third culling algorithm was also devised, and named “Nearest Vertex”, as

outlined in section 6.1.3, aiming to reduce the complexity of performing multiple SAT vertex tests to only

a single test with the vertex closest to the sphere’s centre.

Figure 7 – Rendering time in milliseconds, at Camera 0, 1280x720 resolution, and no MSAA

3.47

3.04

2.68

19.08

7.16

9.16

12.19

7.58

0.00 5.00 10.00 15.00 20.00 25.00 30.00

Hybrid

Nearest Vertex

AMD Planes

Brute Force

Rendering Time (ms)
Camera 0, 1024 Lights, 1280x720 MSAA 1

Depth Only Pass Collect Lights Draw Scene

37

Figure 8 – Rendering time in milliseconds, at Camera 0, 1280x720 resolution, and 8x MSAA

At camera position 0, the values obtained from the Brute Force, AMD Planes and Nearest Vertex

algorithms were largely as expected, as shown in Figure 7 and Figure 8. Whilst the Brute Force algorithm

has the greatest cost in the Collect Lights phase, it has the lowest cost in the final Draw Scene phase.

Likewise, whilst the AMD Planes algorithm has the least cost in the Collect Lights phase (due to the

relative simplicity of the algorithm), it has a larger final Draw Scene phase cost due to the inefficient

culling.

The effect of Multi-Sample Antialiasing is noticed most greatly in the cost of the Draw Scene phase, as is

expected. The only additional work required in the Collect Lights phase to allow MSAA is to compute the

minimum and maximum depth values per tile from each sample, rather than each pixel.

If considering only camera position 0, then the Nearest Vertex algorithm would be the most efficient of

the three algorithms tested. However, similar results were not found at alternative camera positions.

4.89

4.49

4.13

20.35

9.45

12.39

15.67

9.35

0.00 5.00 10.00 15.00 20.00 25.00 30.00 35.00

Hybrid

Nearest Vertex

AMD Planes

Brute Force

Rendering Time (ms)
Camera 0, 1024 Lights, 1280x720 MSAA 8

Depth Only Pass Collect Lights Draw Scene

38

Figure 9 – Rendering time in milliseconds, at Camera 5, 1280x720 resolution, and no MSAA

Figure 10 – Rendering time in milliseconds, at Camera 5, 1280x720 resolution, and 8x MSAA

Figure 9 and Figure 10 show that camera position 5 exhibits drastically different results to camera

position 0 for the Nearest Vertex algorithm. Whilst the Collect Lights phase has remained at

approximately the same proportion to the other techniques, the Draw Scene cost is vastly inflated, even

surpassing the total cost of the Brute Force algorithm with 8x MSAA. This despite the Nearest Vertex

algorithm achieving a lower number of light/tile interactions than the AMD Planes algorithm, according

to the “countlights” test, as outlined in Table 3.

3.35

2.61

3.10

19.15

10.65

14.71

25.76

10.77

0.00 5.00 10.00 15.00 20.00 25.00 30.00 35.00

Hybrid

AMD Planes

Nearest Vertex

Brute Force

Rendering Time (ms)
Camera 5, 1024 Lights, 1280x720 MSAA 1

Depth Only Pass Collect Lights Draw Scene

4.70

4.02

20.27

4.50

14.83

19.90

14.98

31.66

0.00 5.00 10.00 15.00 20.00 25.00 30.00 35.00 40.00

Hybrid

AMD Planes

Brute Force

Nearest Vertex

Rendering Time (ms)
Camera 5, 1024 Lights, 1280x720 MSAA 8

Depth Only Pass Collect Lights Draw Scene

39

Camera Culling Mode
Position AMD Planes Brute Force Nearest Vertex Hybrid

0 940,339 442,258 454,379 443,011

5 1,059,524 544,656 662,369 546,454

Table 3 – Number of light tile interactions at Cameras 0 and 5, at 1280x720

7.4 HEAT MAP ANALYSIS

It was determined that the likely cause of such variance in the rendering cost for the Nearest Vertex

algorithm is linked to the distribution of light/tile interactions in relation to depth disparities in the

scene.

To investigate this further, a “heat map” visualisation was created. The heat map displays a colour for

each tile chosen according to the total number of lights linked to that tile, determined by the culling

algorithm. The colour assigned to each tile is chosen according to the following scale:

Colour Number of Lights
Black 0
Blue 1 – 7
Cyan 8 – 15

Green 16 – 31
Yellow 32 – 63

Red 64 – 127
White 128 +
Table 4 – Heat Map Colour Scale

It is clear from comparing the heat maps at Camera 5 for AMD Planes (Figure 17) and Nearest Vertex

(Figure 18) culling, that whilst Nearest Vertex provides better overall culling, there are a larger number of

white tiles around areas with large depth disparities, such as the flag poles and edges of the columns.

These particular tiles have very poor culling compared to the best case solution given by Brute Force

culling (Figure 20).

The additional work required to render the scene under these tiles is becoming the bottleneck during the

Draw Scene phase, creating the large increase in overall frame rendering time as shown in Figure 9 and

Figure 10, particularly when MSAA is involved.

Analysis of the heat maps also explains how the Nearest Vertex culling algorithm produces better results

than AMD Planes at Camera 0. At this position, there are less tiles with large depth disparities, resulting

in the number of white tiles in Figure 13 being approximately the same as Figure 12. In this

configuration, the Draw Scene phase benefits from the tighter culling granted by the Nearest Vertex

algorithm.

40

Figure 11 – Final rendered scene at Camera 0

Rendered at 1280x720 resolution, with Hybrid Culling, 8x MSAA, and 1024 lights.

Figure 12 – Heat map at Camera 0, for AMD Planes Culling

Figure 13 – Heat map at Camera 0, for Nearest Vertex Culling

Figure 14 – Heat map at Camera 0, for Hybrid Culling

Figure 15 – Heat map at Camera 0, for Brute Force Culling

41

Figure 16 – Final rendered scene at Camera 5

Rendered at 1280x720 resolution, with Hybrid Culling, 8x MSAA, and 1024 lights.

Figure 17 – Heat map at Camera 5, for AMD Planes Culling

Figure 18 – Heat map at Camera 5, for Nearest Vertex Culling

Figure 19 – Heat map at Camera 5, for Hybrid Culling

Figure 20 – Heat map at Camera 5, for Brute Force Culling

42

7.5 HYBRID CULLING

The Nearest Vertex algorithm is not suitable for use as it is too sensitive to changes in depth across the

pixels of a tile. The results discussed in the previous sections drove the development of an improved

culling algorithm to avoid the issues present in both the Nearest Vertex and AMD Planes algorithms.

The Hybrid Culling algorithm combines the AMD Planes and Nearest Vertex tests into a single algorithm,

as detailed in Algorithm 7. The plane tests are computed first, as their computational simplicity provides

an “early-out” case for the majority of lights which fail the plane tests, avoiding the computation of the

nearest vertex or projection of the frustum. The Hybrid algorithm replaces the second FOR loop in

Algorithm 6, with the rest of the Forward+ pipeline remaining unmodified.

FOR each tile in the viewport
 find minimum and maximum depth values within the tile
 compute frustum of the tile using depth values
 FOR each light in the scene
 LET intersection = TRUE
 FOR each plane in frustum
 IF light’s bounding sphere lies on the negative half space of the plane THEN
 intersection = FALSE
 BREAK
 ENDIF
 ENDFOR
 IF intersection is TRUE THEN
 find nearest frustum vertex to light’s position
 project frustum and sphere against axis from vertex to light position
 IF projection of frustum overlaps projection of sphere
 atomically insert light index into linked list for tile
 ENDIF
 ENDIF
 ENDFOR
ENDFOR

Algorithm 7 – Hybrid Light Tile Culling Algorithm

The results for the Hybrid algorithm are provided alongside the results for the other algorithms in the

above figures. Specifically, the number of light/tile interactions given for the Hybrid algorithm in Table 1

and Table 2 show only a 0.17% increase over the best case, Brute Force algorithm.

Analysis of the heat maps generated by the Hybrid algorithm show a similarly tight culling, with very little

difference between Figure 14 and Figure 15, and between Figure 19 and Figure 20.

The Hybrid algorithm provided the best case performance results in all real-time performance tests

conducted, not only at the pre-defined test camera positions, but throughout the scene when directly

controlling the camera.

43

The accuracy of the culling is reflected in the real-time performance results gathered for the Draw Scene

phase, listed in Figure 7, Figure 8, Figure 9, and Figure 10. The Draw Scene phase for the Hybrid

algorithm is approximately equal to the same phase for the Brute Force algorithm in these cases. The

benefit of the Hybrid solution is that it achieves very tight light culling, on par with the best case Brute

Force algorithm, but at a substantially reduced computational cost to the Brute Force algorithm.

Whilst the Hybrid algorithm is the most expensive of the three optimised algorithms, the computational

saving it makes in the Draw Scene phase greatly outweighs this cost, making it the most optimal of the

three solutions.

44

8 CONCLUSION AND EVALUATION

Referring to section 4.5, the primary focus of this project was the investigation and improvement of the

light culling algorithm employed within a Forward+ rendering pipeline. The improvement of light culling

in such a pipeline will improve the overall efficiency of the entire pipeline. The greater the efficiency of

the rendering pipeline, the more scope there is for added scene complexity, and visual fidelity whilst

maintaining an interactive frame rate.

As outlined in section 7.5, a new algorithm for solving light bounding sphere verses tile frusta collision

tests has been created. In all test cases explored, the Hybrid culling algorithm exceeds the performance

of all other algorithms tested. It has therefore improved on the efficiency of the standard Forward+

pipeline by reducing computation time required in the final Draw Scene phase.

A secondary focus of this project was the implementation of the Forward+ pipeline within a modular

engine framework capable of supporting a robust shader and material system, and asset management.

Throughout the development of the Forward+ pipeline, the underlying shader system proved invaluable

in the fast iteration and debugging of shaders.

8.1 LIMITATIONS

8.1.1 Support for Orthographic Projections

The current implementation of the AMD Planes algorithm, which forms the first half of the Hybrid

algorithm, does not support orthographic projections. To simplify the computation of the planes for the

top, bottom, left and right sides of each tile, an assumption is made that the plane intersects the view-

space origin. In doing so, the plane may be constructed using only the two view-space vertices from an

edge on the near plane of a tile frustum, as a simple cross product.

Whilst this would likely not be an issue in a game scenario which tend to exclusively use perspective

projections, it will cause issues for any tools or editor software created for the engine which use

orthographic viewports. In these cases, the light culling algorithm will break, leading to incorrect lighting

results.

To correct this, the plane computation needs to be extended to handle orthographic projection cases

where the planes do not converge on the view-space origin, by computing the plane given the two near

plane vertices and one vertex at the far plane. This is a very small change, and would likely result in only

a minor performance hit in the compute shader execution time.

45

8.1.2 Resolution Issues

The current implementation requires that the resolution of the viewport be an exact multiple of the tile

size, currently set as 8x8 pixels. This ensures that pixels on the right and bottom edges of the viewport lie

exactly within a tile. Issues arise when resolutions such as 1366x768 or 1680x1050 are used, which result

in the tiles on the far right and bottom edges being clipped by the bounds of the viewport.

The current tile culling compute shader does not account for this, leading to incorrect results if these

resolutions are used. This would be a particular limitation for end users on desktop and laptop systems,

as many standard monitor resolutions are not completely divisible by eight. This would be less of an

issue on modern console platforms, as their supported output resolution is usually restricted to either

720p (1280x720), or 1080p (1920x1080), in accordance with high definition television standards.

To correct this, the computation of tile bounds must be modified to account for these additional pixels. A

special case must also be made when reading depth values from pixels in these clipped tiles, to avoid

reading any values from outside the bounds of the depth buffer.

8.2 FUTURE WORK

8.2.1 Culling Improvements

There still remains a number of areas for investigation in the optimality of the light/tile culling algorithm.

8.2.1.1 Screen Space Light Acceleration Structure

Under the current Hybrid algorithm, all tiles are tested against all lights. The AMD Planes section of the

Hybrid algorithm tests each plane in turn against a given light sphere, regardless of the relative positions

of the tile and the light sphere in screen space. Tiles on the extreme left side of the screen will still be

testing lights on the extreme right, which are likely not to be intersecting that tile’s frustum.

A better approach may be to first coarsely pre-filter the lights into a screen space structure, such as a

quad-tree. Using such a structure, the frustum-sphere tests will only be made between lights and tiles in

close proximity in screen space. This has the potential to reduce the cost of the Collect Lights compute

shader phase, whilst maintaining the culling accuracy given by the Hybrid algorithm.

8.2.1.2 Improved Culling for Tiles with Large Depth Disparities

Since tiles are constructed using the minimum and maximum depth value obtain from all pixels within

the tile, it is possible for tiles to have frustums which stretch very far into the scene. Whilst the Hybrid

algorithm provides very accurate culling, these long, thin frusta still results in a high number of false

46

positives for these tiles. These are particularly visible in Figure 19 at the edges of the foreground column.

The frusta for these tiles extend from the foreground column, through the entire open space at the

centre of the scene, and end at the far wall. As such, they intersect a great number of lights, most of

which will have no effect on any of the pixels within those tiles.

This effect is a key limitation of the standard Forward+ pipeline, and leads to suboptimal performance in

areas with large depth disparities within tiles. This may cause performance issues when rendering

outdoor/forest scenes with a large amount of masked foliage geometry. The high frequency detail in the

leaves of the foliage is likely to create large numbers of tiles with extended frusta.

An improvement can be made to the standard Forward+ pipeline by introducing a “2.5D clustering”

scheme, as described by (Harada, et al., 2013). The depth extent of each tile frustum is split into a

number of sub-frustums. The occupancy of scene geometry is determined in each sub-frustum and

marked in a bitmask for the tile. During the Collect Lights compute shader phase, lights are only linked to

a given tile if the light intersects at least one of the sub-frustums marked as occupied.

This extension would fit into the existing engine with minimal changes, and would still benefit from the

tighter sphere-frustum culling given by the Hybrid algorithm. Once implemented, it will provide much

more stable performance results in scenes with a larger number of tile depth disparities, such as those

caused by foliage and masked geometry.

8.2.1.3 Spot Light Cones

Spot lights were not a focus of the performance investigation. They are currently implemented using the

same sphere-based culling scheme as point lights. The field of influence of a spot light is cone shaped, so

sphere based culling is very wasteful. An alternative culling technique should be investigated to provide

tighter cone-based culling to spot lights. This would likely involve direct SAT tests between the frustum

and cone shapes, or involve an alternative approximation of the cone.

8.2.2 Graphical Improvements

The Forward+ technique is fully compatible with a number of other advanced lighting, shading and post-

processing techniques. When dealing with a scene more representative of a production game, the

optimisations obtained within this project provide additional performance scope in which these

techniques may be implemented, without sacrificing frame rate. Such features would include Shadow

Mapping, High Dynamic Range lighting, Screen Space Ambient Occlusion, and various post-processing

effects to achieve higher image quality, alongside more complex materials and BRDFs to take advantage

of the inherent flexibility in a forward based rendering pipeline.

47

8.2.3 Asset Management Improvements

The asset system employed by the engine, whilst suitable for supporting the implementation and

refinement of the Forward+ pipeline, is lacking a number of features such as versioning support,

required by more advanced game engines. Versioning support allows changes to be made to the

underlying data structures, without breaking compatibility with older assets generated by the engine. In

a production environment, such changes can happen quite regularly, and without versioning support in

asset serialization, all assets affected by a change would have to be upgraded manually. This process

would be particularly cumbersome and error-prone.

Unreal Engine 4 (Epic Games, 2014) primarily handles asset versioning through a C++ reflection system

which relies on a build tool to parse type information from specific C++ header files. The resulting

reflection data is used not only for asset serialization to disk, but also for data replication over the

network in multiplayer game scenarios, and dynamic construction of classes via their “Blueprint” system.

8.2.4 Shader System Improvements

Binding a vertex shader to the RHI is a rather manual process, requiring the input vertex format to be

specified at the creation of the bound shader state object. Feeding materials with vertex data is also very

manual, restricting the flexibility of the material system. The engine is currently unable to support

alternative vertex sources, such as particle systems, skinned characters, and instanced foliage, without

manual implementation of vertex shaders for each specific material.

To rectify this, the material and shader system should be extended to support the concept of “vertex

factories”, such as those implemented by (Epic Games, 2014) in Unreal Engine 4. A vertex factory

provides a unified interface to the material system, allowing a given material asset to be applied to a

number of different geometry types, regardless of how the vertex data for that geometry is generated.

Within the context of this engine, vertex factories should be implemented as an additional shader

module, allowing the new vertex factory system to inject vertex shader definitions as HLSL source code.

Vertex input formats would then be tied to a specific vertex factory type, removing the need to specify

the input format when binding the vertex shader to the RHI.

48

8.3 CLOSING STATEMENT

The algorithm presented by this project has successfully improved upon the standard plane-sphere

based light culling employed within Forward+ rendering, as confirmed by the results presented in section

7. The performance savings found in this project should not be taken in isolation, as there are still many

avenues of performance improvements to explore, as detailed in section 8.2.

The dynamic nature of the graphics industry has never been more apparent than now, with the

introduction of general purpose compute, and the release of new video games consoles and PC

platforms. Microsoft’s recent announcement of DirectX 12 (Sandy, 2014) at the Games Developers

Conference 2014 in San Francisco, has the potential for a revolution in game engine design. The removal

of the graphics driver abstraction overhead that has plagued PC based games development for years is a

great step forwards, providing console-style low-level access to graphics hardware, allowing developers

to get the most out of the available hardware.

Whilst a relatively new technique within the graphics community, Forward+ rendering has the potential

to provide the foundation of next generation graphics in games. Of course, as with all elements of

programming, the costs of such a system should be evaluated alongside the costs of others, and the best

solution chosen for a given game production. With this in mind, Forward+ still remains a strong

candidate for providing the next generation of graphics fidelity in future production game engines and

interactive rendering systems.

49

9 REFERENCES

Advanced Micro Devices, Inc, 2013. Radeon SDK - TiledLighting11 v1.1. [Online]

Available at: http://developer.amd.com/tools-and-sdks/graphics-development/amd-radeon-sdk/

[Accessed 20 March 2014].

Carmack, J. & Kilgard, M., 2009. Practical and Robust Shadow Volumes - John Carmack on Shadow

Volumes. [Online]

Available at: http://web.archive.org/web/20090127020935/http://developer.nvidia.com/attach/6832

[Accessed 20 March 2014].

Epic Games, 2014. Unreal Engine 4. [Online]

Available at: https://www.unrealengine.com/

[Accessed 21 March 2014].

Gilbert, E., Johnson, D. & Keerthi, S., 1988. A fast procedure for computing the distance between

complex objects in three-dimensional space. IEEE Journal of Robotics and Automation, 4(2), pp. 193-203.

Harada, T., McKee, J. & Yang, J. C., 2012. Forward+: Bringing Deferred Lighting to the Next Level.

EUROGRAPHICS 2012.

Harada, T., McKee, J. & Yang, J. C., 2013. Forward+: A Step Toward Film-Style Shading in Real Time. In: W.

Engel, ed. GPU Pro 4: Advanced Rendering Techniques, Volume 4. s.l.:s.n., pp. 115-136.

Intel Corporation, 2014. Intel Graphics Performance Analyzers. [Online]

Available at: http://software.intel.com/en-us/vcsource/tools/intel-gpa

[Accessed 21 March 2014].

Klint, J., 2008. Deferred Rendering in Leadwerks Engine. [Online]

Available at: http://www.leadwerks.com/files/Deferred_Rendering_in_Leadwerks_Engine.pdf

[Accessed 20 March 2014].

Lee, M., 2009. Pre-lighting in Resistance 2. [Online]

Available at: http://www.insomniacgames.com/tech/articles/0409/files/GDC09_Lee_Prelighting.pdf

[Accessed 23 March 2014].

50

McDonald, J., 2012. Don’t Throw it all Away: Efficient Buffer Management. [Online]

Available at:

https://developer.nvidia.com/sites/default/files/akamai/gamedev/files/gdc12/Efficient_Buffer_Manage

ment_McDonald.pdf

[Accessed 23 March 2014].

NVIDIA Corporation, 2014. CUDA Parallel Computing. [Online]

Available at: http://www.nvidia.co.uk/object/cuda-parallel-computing-uk.html

NVIDIA Corporation, 2014. NVIDIA Nsight Visual Studio Edition. [Online]

Available at: https://developer.nvidia.com/nvidia-nsight-visual-studio-edition

[Accessed 21 March 2014].

Sandy, M., 2014. DirectX 12 - DirectX Developer Blog. [Online]

Available at: http://blogs.msdn.com/b/directx/archive/2014/03/20/directx-12.aspx

[Accessed 03 April 2014].

Shishkovtsov, O., 2005. GPU Gems 2. Chaper 9 - Deferred Rendering in S.T.A.L.K.E.R.. [Online]

Available at: http://http.developer.nvidia.com/GPUGems2/gpugems2_chapter09.html

[Accessed 20 March 2014].

Valient, M., 2007. Deferred Rendering in Killzone 2. [Online]

Available at: http://www.guerrilla-

games.com/presentations/Develop07_Valient_DeferredRenderingInKillzone2.pdf

[Accessed 20 March 2014].

51

10 APPENDICES

10.1 ENGINE DIRECTORY STRUCTURE AND WORKING DIRECTORY

This section details the directory structure used by the engine to organise source code, assets and

binaries. In order for the engine to find the content and shader directories, it must be run from the root

directory, not the binaries output directory.

The paths in the following table are relative to the working directory.

Folder Description

Assets\Engine Engine specific source texture and material assets, and import .ebat scripts.

Assets\Sponza All source assets specific to the Sponza atrium scene, and import .ebat scripts.

Binaries Output build directory organised by target platform (Win32/x64).

Build\Intermediate Compiler Intermediate build directory. Contains object files and build logs.

Build\Properties Contains MSBuild property files common to all modules.

Content Imported .asset files created by the engine, and searched on engine start-up.

DataCache\Shaders Output compilation directory for shaders, used by the shader system.

Source\Engine All source code for the main engine modules as defined in section 6.2.1.

Source\Shaders HLSL shader source code for all shaders in the engine.

Source\ThirdParty Third party source code and static libraries used by the engine.

Source\Tools Content processing tools used during the development of the engine.

Table 5 – Engine Directory Structure

10.2 ENGINE FIRST RUN AND CONTENT IMPORTING

Before the engine can run the Sponza atrium demo, the content files must be imported from the Assets

directory. The in-engine console is displayed immediately after engine start-up. On the first run issue the

following command:

batch Assets\ImportAll.ebat

This will execute a batch script to create and import all engine and Sponza assets, and then save the

imported assets to disk under the Content directory.

Once the content has been imported, issue the demo command to load the Sponza demo scene.

52

10.3 SUPPORTED CONSOLE COMMANDS

Command Description

asset Performs actions on the specified asset. See section 10.4.

batch Executed a series of commands as defined by the specified batch file.

clear Clears the console log.

close Closes the Sponza demo scene, if running.

countlights If the Sponza demo is running, executes a compute shader at the end of the next
frame to count the total number of light/tile interactions. Reports the count in
the console log.

create Creates a new asset of the specified name and type.

demo Loads the Sponza demo scene.

dumpcampos Prints the current camera position and rotation as vectors to the console log.

exit Shuts down the engine, and terminates the application.

info Prints information specific to the specified asset.

msaa Sets the Multi-Sample Anti-Aliasing count. Valid counts are 1 (MSAA disabled), 2,
4 and 8.

numlights Sets the number of lights visible in the Sponza scene. Valid numbers are 0 to 1024
inclusive.

recompileshaders Scans for any out of date shaders, and if any are found, recompiles them. For all
shaders that were recompiled successfully, they are dynamically loaded into the
engine, replacing any previously loaded instance.
Compile failures are printed to the console log, and a fixed error message is
displayed in the centre of the screen when running the Sponza demo.

save Saves all modified/newly created assets to disk.

setcam Sets the camera position in the Sponza demo to one of 7 predefined positions.
Valid position indices are 0 to 6 inclusive.

setres Sets the resolution and full screen mode of the engine using the following format:
[width]x[height][w|f]

e.g.
setres 1280x720w
setres 1920x1080f

stats Toggles the display of real-time performance counters in the Sponza scene.

visdebug Toggles the display of a 3-axis measuring grid in the Sponza scene. Grid lines are
spaced one world unit apart.

vislightvolumes Toggles the display of a series of axis aligned bounding boxes, which are used
when generating the list of randomly positioned lights.

visnumlights Toggles the display of the heat-map visualization overlay in the Sponza scene.

visorbs Toggles the display of small semi-transparent orbs at the position of each point
light.

visres Toggles the back buffer resolution text in the upper left corner of the window.
Table 6 – List of supported console commands

53

10.4 SUPPORTED ASSET COMMANDS

The asset command allows the manipulation of asset properties, and performs tasks such as importing

textures and meshes, and setting material parameters. Asset commands begin with the asset’s name and

a command action specific to that asset type, in the following format:

asset [asset name] [action] [options]

The options field is dependent on the asset type and action chosen. Asset names are given as the file

path relative to the Content directory.

The following is an example of an asset command to set the “DiffuseTexture” material parameter on the

“MI_Bricks” material instance to the 2D texture asset “Bricks_A_Diffuse”:

asset Materials\Sponza\MI_Bricks set DiffuseTexture
texture2d Textures\Sponza\Bricks_A_Diffuse

10.4.1 Texture 2D Asset Commands

Command Description

import [source image] {options} Imports the image data from the specified source file. Options are
given as key=value pairs.

The following options are supported:

 Compress
Specifies the compression format to apply to the
image data. Valid values are 0 (uncompressed) to
7 inclusive.

Most engine textures use compress=3 for BC3 encoding.
Table 7 – Supported Texture Asset Commands

10.4.2 Material Asset Commands

Command Description

import [HLSL file] Links the material with the specified source HLSL file, then
triggers a shader compilation for that material.

option [key=value] Sets the specified option on the material to the given value.

Only one option is supported:

 mode=[default|masked]
Sets the material rendering mode to default
(solid) or masked.

Table 8 – Supported Material Asset Commands

54

10.4.3 Material Instance Asset Commands

Command Description

parent [parent asset name] Sets the parent of the material instance to the specified material
or material instance assert.

set [variable name] [type]
[value]

Sets the value and type of the specified variable on the material
instance. Variables set on a material instance override the value
provided by the parent, if specified.

Type is one of the following:

 scalar

 float2

 float3

 float4

 texture2d
Components of vector type values are separated by a comma
character, for example:

1.0, -3.5, 2

Texture 2D assets are specified using their asset path name.

unset [variable name] Removes the specified variable from the material instance. This
returns the variable to its default (inherited) value.

list Lists all the variables defined in this material instance and their
values.

Table 9 – Supported Material Instance Asset Commands

10.4.4 Static Mesh Asset Commands

Command Description

import [static mesh file]
{scale=value} {center}
{discard=meshname}

Imports mesh data from the specified source file.

Additional options:

 scale=value
Scales the source mesh by the specified value.

 center
Centres the source mesh in object space.

 discard
Does not import meshes with the specified name.
Multiple discard meshes may be specified.

Once the source data has been imported, all mesh parts have the
engine default material assigned.

material [bone name] [mesh
name] [material asset name]

Applies the specified material or material instance asset to the
mesh part with the given bone and mesh name.

Table 10 – Supported Static Mesh Asset Commands

55

10.5 ENGINE INPUT AND CONTROLS

Keyboard Xbox 360 Controller Description

Escape Close the console, or exit the engine.
Tab Display the small console.
` (Back quote) Display the full screen console.
Page Up/Down Scroll the full screen console log.
Up/Down Key Previous/Next command in console history.
Enter Execute command in console.
W Left Stick Up Move Camera Forwards
S Left Stick Down Move Camera Backwards
A Left Stick Left Move Camera Left
D Left Stick Right Move Camera Right
Q Right Trigger Move Camera Upwards
E Left Trigger Move Camera Downwards
Z Left Shoulder Decrease Camera Speed
X Right Shoulder Increase Camera Speed

Table 11 – Engine Keyboard and Xbox 360 Controller Input Mappings

