
Copyright © 2006 by the Association for Computing Machinery, Inc.

Permission to make digital or hard copies of part or all of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for commercial advantage and that copies bear this notice and the full citation on the

first page. Copyrights for components of this work owned by others than ACM must be

honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on

servers, or to redistribute to lists, requires prior specific permission and/or a fee.

Request permissions from Permissions Dept, ACM Inc., fax +1 (212) 869-0481 or e-mail

permissions@acm.org.

© 2006 ACM 1-59593-295-X/06/0003 $5.00
I3D 2006, Redwood City, California, 14–17 March 2006.

Real-Time Texture-Mapped Vector Glyphs

Zheng Qin Michael D. McCool Craig S. Kaplan

Computer Graphics Lab, School of Computer Science, University of Waterloo

Figure 1: Vector texture demonstrating resolution-independent antialiased edges at over 90fps (on a NVIDIA 7800GT at 512×512).

Abstract

We present a vector graphics representation suitable for real-time
rendering on GPUs. Our representation can be used in place of a
texture map, and renders precise antialiased edges at any magnifi-
cation. A combination of texture data and procedural computation
is used to evaluate an exact signed distance to a contour and its
gradient. An optimized uniform grid accelerator is created using
Voronoi analysis and redundancy elimination, so only the distances
to a small constant number of features need be computed at every
access. Contours and sharp features can be exactly reconstructed
using a constant amount of computation per pixel. Our represen-
tation supports inexpensive high-quality anisotropic antialiasing as
well as special effects such as outlining (with both rounded and
sharp miters) and embossing.

We have applied our representation to the important applica-
tion of glyph rendering. Variations in glyph complexity are han-
dled by storing different glyphs at different grid resolutions. Large
blocks of glyphs can be rendered efficiently with a single indirec-
tion through an index texture.

CR Categories: I.3.3 [Computer Graphics]: Picture/Image
Generation—Antialiasing I.3.7 [Computer Graphics]: Three-
Dimensional Graphics and Realism—Color, shading, shadowing,
and texture

Keywords: vector graphics, texture mapping, antialiasing, dis-
tance function, font rendering

1 Introduction

Vector graphics image representations are a useful alternative to
raster image representations for images that contain precise geo-
metric features with sharp intensity boundaries. Examples include
logos and other symbols; user-interface buttons and indicators; car-
toons, graphs, and line drawings; and text rendered using outline
fonts. A vector graphics image is described with a collection of ge-
ometric primitives. A raster image, on the other hand, approximates

a conceptually continuous function by interpolating a regular grid
of samples.

We would like to use vector graphics images in the same way
we use raster images in real-time rendering: as textures. Although
real-time graphics accelerators do process geometric descriptions
of scenes, texture maps and programmable shaders are designed
around the manipulation and generation of raster images. This is
because raster images can be easily point-sampled at random loca-
tions in constant time.

Vector graphics can be used in a real-time 3D rendering con-
text by converting them into 2D raster images, a process which (of
course!) can be accelerated by rasterization hardware. However,
when magnified, the raster nature of sampled images is apparent.
Furthermore, due to perspective distortion and texture map param-
eterization, the magnification of an image can vary spatially. What
is needed is an image representation that can be sampled in constant
time, but supports an accurate representation of sharp features at all
magnifications. It is also important that this representation support
efficient anisotropic antialiasing over continuously varying scales.

While we eventually intend to extend our approach to general
vector graphics, in this paper we have focused on one specific prob-
lem: the rendering of text. Rendering text is a classic problem
in computer graphics, and one of the original motivations for an-
tialiasing [Crow 1977; Crow 1978; Warnock 1980]. The standard
approach to rendering text is to prerender antialiased glyphs into
a table and then composite together images drawn from this table.
However, this means that the glyphs are stored at a fixed (and usu-
ally low) resolution. Mapping them onto a 3D surface then requires
resampling, which can degrade quality and introduce artifacts. Di-
rect rendering of the glyphs on the GPU as we propose avoids these
problems, since the antialiasing can be adapted procedurally to the
local spatial distortion.

In this paper we consider only the problem of rendering display
text, not body text. For maximum readability, body text needs to
be aligned with and fitted to the display grid, a process supported
by hinting, or subtle variations in the shape of the characters. Hint-
ing assumes a fixed-scale, orthographic projection. Hinting cannot
be supported in a texture map representation since the characters
will be dynamically deformed by surface parameterization and per-
spective. For display text, the shape of the glyph is represented
independently of the sampling grid.

Glyphs in scalable fonts are represented using geometric con-
tours consisting of line segments, quadratic splines, and cubic
splines. To render text, many of these glyphs have to be placed
in an image with precise positioning relative to one another. The
representations of the glyphs themselves can be precomputed, but

125

it must be possible to quickly lay out and modify an arrangement
of glyphs interactively. However, the problem of text rendering is
simpler than that of general vector graphics: although glyphs must
be instanced many times, glyphs in normal text rendering do not
exceed a certain density in any one area and usually do not overlap.
In the rare cases that glyphs do overlap, for instance for accents or
strikethroughs, it is with a constant offset and we can generate new
glyphs for these cases. Bounding box overlap must be supported
for kerning, but this is only in the horizontal direction in normal
text layout. We can handle more general cases such as support for
glyph rotation or more complex overlap at some additional cost in
memory and shader execution time.

This paper makes the following contributions:

1. An efficient anisotropic antialiasing technique for texture-
mapped vector graphics (Section 4);

2. A GPU-based representation of contours, including an in-
side/outside test, based on exact evaluation of distance-to-
feature functions (Sections 3 and 5);

3. A packed grid accelerator structure based on Voronoi anal-
ysis supporting efficient constant-time evaluation of signed
distance-to-contour functions (Section 6);

4. A sprite mapping technique that supports the dynamic compo-
sition of large numbers of glyphs in a single procedural texture
map (Section 7); and

5. Techniques for supporting special effects such as outlining,
miter rules, and embossing (Figures 6 and 8).

2 Previous Work

Other researchers have developed approaches for representing vec-
tor graphics using sampled representations. Some of these repre-
sentions are aimed at or can be adapted to procedural texture map-
ping, real-time rendering, and GPU computation.

Adaptive distance fields [Frisken et al. 2000] can represent
polygonal boundaries of 2D and 3D shapes to arbitrary preci-
sion, but they only approximate corner features and require a
O(log(1/ε)) random-access lookup cost for precision ε , since more
levels of a quadtree (or octtree) need to be traversed near corners.
The ADF has been applied in the Saffron text rendering engine, af-
ter having been extended with a biquadratic approximation of the
sampled distance field [Frisken et al. 2005] and an explicit represen-
tation of the distance field around sharp corners [Perry and Frisken
2005; Frisken and Perry 2004, among several other patents]. Com-
bining explicit corners and biquadratic interpolation reduces the
lookup and storage cost but requires use of different specialized
cell types in different parts of the image. A method using procedu-
ral shading and texture mapping to compute and combine distance
fields at every pixel is also described: The distance field is decom-
posed into cells and a region containing the support of each cell is
rendered with geometric primitives; the distance field in each cell is
then evaluated using shaders. They also mention the use of Voronoi
analysis to find an optimal cell decomposition. However, unlike our
approach, their representation does not include a shader-based ap-
proach to select cells and so does not create a unified representation
that can be evaluated as an encapsulated procedural texture.

Silhouette maps [Sen et al. 2003; Sen 2004] give constant time
lookup for random access, and can be implemented as procedural
textures, but can only represent a limited class of edge structures in
a single texel. For instance, two edges cannot both go through the
same side of a texel. Feature-based textures [Ramanarayanan et al.
2004] can represent an unbounded number of boundaries in a single

texel and use the notion of reachability to generalise bilinear inter-
polation in the presence of edges. However, their representation is
complex and does not guarantee constant-time lookup, since an ar-
bitrary number of features are stored per texel. Neither approach
explicitly handles anisotropic antialiasing or mitering rules. Bix-
els [Tumblin and Choudhury 2004] are similar to silhouette maps,
but with generalized interpolation rules similar to those of feature-
based textures. We do not consider interpolation of colours in the
present work. Instead we focus on the accurate and efficient repre-
sentation of closed contours and bilevel images.

Recent work uses graphics hardware to evaluate an implicit rep-
resentation of glyph contours [Loop and Blinn 2005] for real-time
rendering, the same goal as this paper. However, their approach re-
quires segmenting the contour and embedding each convex region
in a triangular element. To represent the entire contour, a mesh
covering each glyph is generated. The representation is not com-
pletely embedded in a procedural texture, and requires a rendering
mechanism similar to that described in [Perry and Frisken 2005],
so “texture mapping” a surface requires computing the intersection
of two meshes and modification of the base geometry. In contrast,
our approach completely separates the mesh and the texture repre-
sentation. They also only approximate the distance field very close
to the contour. Unfortunately, advanced features like mitering and
embossing require an accurate distance field in a relatively wide
region around the contour.

We extend our vector representation with a mechanism to dy-
namically combine the precomputed representations of a large
number of glyphs on a single page. Our approach is similar to that
of texture bombing [Glanville 2004], texture sprites [Lefebvre et al.
2005], and pattern based procedural textures [Lefebvre and Neyret
2003]. We combine the idea of sprites with that of multiresolution
texture maps [Kraus and Ertl 2002] to permit different amounts of
storage to be used for glyphs with different levels of complexity.

3 Outline of Representation

Our goal was to design a semi-procedural representation of vector
graphics images that could be used as if it were a random-access
texture map in a shader. The representation must support arbitrary
contours and efficient antialiasing. Also, as GPU fragment shaders
do not support control flow without a loss of efficiency, and since
such support is not yet universal, we decided to avoid a dependency
on control flow in our representation.

Our representation will consist both of data structures stored in
texture maps and shader code to interpret that data. However, our
system is implemented using the object-oriented Sh GPU program-
ming system [McCool et al. 2004; McCool and Du Toit 2004],
which allows us to strongly encapsulate our representation and use
it in any context that a raster texture could be used.

We begin with signed distance functions. Given a 2D shape, a
signed distance function f measures the distance to the closest point
on the shape’s boundary contour. The distance function is negative
inside the shape, positive outside, and zero on the contour. Thresh-
olding these functions at zero reproduces the original contours, and
it is easy to antialias edges by using a smooth transition function
[Gupta and Sproull 1981; McNamara et al. 2000], or to support
special effects like outlining or embossing.

Signed distance functions can be precomputed and sampled. In-
terpolation of these samples can reproduce linear edges at any ori-
entation, but interpolation tends to round off corner features. To
address this problem, distance fields can be adaptively sampled
[Frisken et al. 2000]. This could be implemented on the GPU using
multiresolution textures [Kraus and Ertl 2002], but would require
an extra level of indirection and, to support hardware bilinear inter-
polation, redundant storage. It also does not completely solve the
problem: at some magnification, the corners will still be rounded.

126

Instead, we compute the distance function procedurally and ex-
actly, using geometric feature information rather than interpolation
of distance samples. We use a Voronoi diagram to build an accelera-
tor, so at every point we only have to consider the minimal number
of features required to evaluate the distance field. We overlay a
Voronoi diagram with a grid, and in each grid cell we make a list
of the contour features that contribute to the distance field in that
cell. The resolution of the grid is adapted to the complexity of each
glyph, so we can use less storage for simple glyphs and more for
complex glyphs. Our accelerator structure also takes advantage of
spatial coherence to reduce redundancy by searching neighbouring
texels for features. During preprocessing, an optimization process
assigns features to texels in anticipation of this runtime local search.

Our second major challenge was to support dynamic layout of
large numbers of glyphs. First, the feature data for a set of desired
glyphs are packed into a “font” texture. Then, at every texel of
a “sprite” texture we store the offset, scale, and extent of a glyph
that covers that texel’s cell. During rendering, we access (using
dependent texturing) a set of features from the glyph referenced
from the current cell and from any neighbours whose glyphs might
overlap the current cell. We then compute the overall minimum
distance function to these features. This approach requires only
one level of texture indirection, is spatially coherent, and takes a
constant amount of time per rendered pixel.

4 Antialiasing

One of the major advantages of an implicit representation of con-
tours is that it can be antialiased easily. For an infinite straight
edge, it has been shown that using the signed distance function (nor-
malized plane equation) as the implicit representation and using a
smooth transition function is equivalent to convolution with a ra-
dial filter [Gupta and Sproull 1981]. For corners, in order for a
smooth thresholding to be equivalent to convolution, theoretically
we have to do more work, using the distance to the two closest
edges and a 2D lookup table. However, this is not necessary for
good results [Gupta and Sproull 1981]: in practice simpler rules
with approximately the right behaviour suffice. For example, we
can use the minimum distance as the implicit representation of a
corner [Turkowski 1982] (which is suggested by the usual imple-
mentation of CSG operations on implicit representations), or the
thresholded edge functions can be combined with multiplication
[McNamara et al. 2000]. The important thing about antialiasing
is to bound the bandwidth of a signal before sampling it, not to sim-
ulate convolution exactly. It is also not necessary to use the distance
function, a fact that can be exploited to simplify the representation
or compute various special effects, such as mitering. Any implicit
function with the same zero set can be used, although its gradient
should be normalized to unity if we plan to control the width of the
transition region [Loop and Blinn 2005].

The simplest smooth transition function is a clamped linear
ramp, which in 1D would be equivalent to convolution by a box
filter. A better choice is the smooth cubic ease curve given by the
formula

smoothstep(g) = 1/2+gc(3/2−2g2
c), (1)

where gc is g clamped to the interval [−1,1]. All figures in this
paper use this cubic transition function.

Let f be a signed distance function. Relative to the texture coor-
dinates (u,v), the gradient ∇ f (u,v) of the signed distance function
has magnitude 1. It points towards the closest point on the contour
on the inside (negative distances), and away from the closest point
on the outside (positive distances). For implicit representations that
are not true distance functions, the gradient can be explicitly nor-
malized to unit length.

Figure 2: Isotropic filtering (left) vs. anisotropic filtering (right).

The normalized texture-space gradient can be used to implement
inexpensive anisotropic antialiasing. The texture-space gradient
can be transformed into screen space coordinates (x,y) as follows:

∇ f (x,y) =

[

∂ f /∂x
∂ f /∂y

]

(2)

=

[

∂u/∂x ∂v/∂x
∂u/∂y ∂v/∂y

][

∂ f /∂u
∂ f /∂v

]

(3)

= Jx,y(u,v)∇ f (u,v). (4)

where J is the Jacobian of the (possibly procedural and usually non-
linear) transformation from texture space to screen space. GPUs
provide the ability to approximate these derivatives using differ-
encing in fragment shaders, although they could also be computed
exactly using automatic differentiation.

The gradient vector gives the direction of the maximum rate of
change of an implicit function. We can therefore compute the width
of the transition region based on the magnitude of ∇ f in screen
space, then reparameterize a smooth step function to get the desired
final intensity value I,

s =

√

(∂ f /∂x)2 +(∂ f /∂y)2, (5)

I = smoothstep(f /2sw), (6)

where w is the desired width of the transition region in pixels.
By contrast, isotropic antialiasing, as is typically used in MIP-

mapping [Williams 1983], computes the scale factor using

mx =

√

(∂u/∂x)2 +(∂v/∂x)2, (7)

my =

√

(∂u/∂y)2 +(∂v/∂y)2, (8)

s = max(mx,my). (9)

The isotropic computation of s estimates the width of a worst case
filter. Isotropic antialiasing is often too conservative and can cause
severe blurring when the transformation is anisotropic, for instance
under perspective foreshortening for oblique views near silhouette
edges, or for highly nonlinear texture deformations (see Figure 2).
Isotropic antialiasing can severely degrade the readability of text in
particular. Fortunately, when the gradient of the distance function
is available, anisotropic antialiasing is inexpensive, and produces a
filter of constant screen-space width.

5 Features and Distance Functions

Each contour in a glyph is a piecewise path. The pieces of the path
are line, quadratic curve, and cubic curve segments. In this work,
we consider primarily line segments. Quadratic and cubic curves
are adaptively approximated by line segments. While we have some
preliminary results based on computing distances to quadratic poly-
nomial curves, and plan to follow up on this in future work, com-
putation of distances to line segments is simpler and faster.

127

Figure 3: A glyph with 11 line segments, its distance field, the
gradient of its distance field, and its pseudodistance.

To construct a signed distance function for a contour, we break
it down into geometric features, in such a way that the distance
function for the contour can be found as the distance to the closest
feature. We primarily considered two features: individual line seg-
ments, and “corners” consisting of two half-segments meeting at a
vertex.

For any feature, we want to compute not only the distance, but
the gradient of the distance function, a sign to be used in an in-
side/outside test, and optionally a “pseudodistance” to be used for
mitering (see Figures 3 and 6). The pseudodistance is the distance
to the closest point on the infinite line containing the closest seg-
ment; the true distance takes the segment endpoints into account.

The choice of features and distance function evaluation tech-
niques for them is a separate decision from the rest of our system.
However the distance field is generated, it can be used for antialias-
ing and glyph placement as described later.

Any 2D curve can be described parametrically as a function P :
IR 7→ IR2. Given a test point Q, we can solve for the parameter
t∗ that minimizes |Q− P(t∗)|. For a curve segment, we have to
consider the endpoints as well. Without loss of generality, let the
endpoints of a curve segment be P0 = P(0) and P1 = P(1). If t∗ ∈
[0,1], then the closest distance is given by |Q−P(t∗)|, otherwise it
is given by min(|Q−P0|, |Q−P1|).

For line segments, by clamping the value of t∗ to [0,1] we can re-
construct the true distance function and gradients, taking endpoints
into account. If we don’t clamp, we compute the pseudodistance. It
is also convenient to compute only the squares of the distances and
compare these, taking a single square root of the minimum distance
to all features under consideration. Likewise we can defer certain
operations, such as normalization of the gradient vector, until after
we have found the closest of a set of features.

5.1 Line Segments

Figure 3 shows a glyph represented with line segments and the var-
ious fields associated with it.

It is relatively inexpensive to compute the distance to line seg-

Figure 4: Errors caused by vertex ambiguity, and the relevant re-
gions and boundaries around a corner where two lines meet.

ment features. However, we also have to compute the sign of the
distance to the contour, which depends on whether our test point is
on the inside or the outside of the contour. Unfortunately, certain
difficulties arise at corners.

A naive approach to computing the sign is to determine the clos-
est line segment, and then use the sign of the plane equation of that
segment. However, this approach may fail at corners since the dis-
tance to a shared vertex will be the same in the region bounded by
lines perpendicular to each segment, shown as c1 to c2 in Figure 4.
This may result in the wrong sign being computed in the shaded
regions shown in that figure.

One inexpensive (but inelegant) solution to this problem is to
“shrink” the line segments by a small amount, putting small gaps
in the contour. In Figure 4, the gap induces a separating plane at f
that bisects the corner. Unfortunately, if the gap is too large, it can
introduce artifacts in the rendering, and if it is too small, the angle
of the separating planes between the endpoints can be inaccurate
(especially if the endpoints are stored at low precision). To get the
correct bisection angle (important in mitering), the shrink distance
has to be the same on both sides of a vertex. Care also has to be
taken not to reverse or eliminate very short line segments, which
often arise as the result of curve subdivision.

Another approach is to use the pseudodistance to break ties:
above line b, the maximum absolute pseudodistance gives the clos-
est line segment (consider that the pseudodistance is the distance
to extensions of the segments a). Below c, the true distance gives
the correct answer, and below b, the maximum absolute pseudodis-
tance rule is wrong, so we need to not use it. To avoid pixel dropout,
we need to switch between the two rules midway between b and c,
where they are both correct. Using this disambiguating rule unfor-
tunately results in a distance computation that requires about twice
as many arithmetic operations as using shrunken line segments.

A line segment is described by its endpoints P0 and P1. Paramet-
rically, points along the line can be generated by linear interpolation
between these points:

P(t) = (1− t)P0 + tP1. (10)

For points on the line segment, t must lie in the range [0,1]. Given
a test point Q = (u,v), the parameter of the closest point on the
(extrapolated) line can be found using the following computations:

~d = P1 −P0, (11)

~q = Q−P0, (12)

t∗ = ~d ·~q/~d ·~d. (13)

128

Figure 5: A glyph with 6 quadratic segments, its distance field, the
gradient of its distance field, and its pseudodistance.

Note that no square root is required, only a division. However,
t∗ may not lie in the interval [0,1], so a clamped value should be
generated: t∗c = min(1,max(0, t∗)).

Then, the squares of the distance g and pseudodistance h can be
calculated as

g2 = (Q−P(t∗c)) · (Q−P(t∗c)) (14)

h2 = (Q−P(t∗)) · (Q−P(t∗)) (15)

To compute the sign (that is, determine which side of the line the
point Q is on), we can take the dot product of~q with the normal:

~n = (dy,−dx), (16)

s = sign(~n ·~q), (17)

where

sign(a) =

−1 : a < 0
0 : a = 0
1 : a > 0

(18)

Note that we do not have to normalize ~n to unit length to get the
correct sign. However, if we are willing to do so, an alternative way
to compute the pseudodistance along with the sign is

n̂ = ~n/|~n|, (19)

h = ~q · n̂. (20)

All the dot products in these computations are on two-tuples,
but GPUs use four-tuple registers. However, we often compute
distances to several line segments at once before comparing their
magnitudes. A useful optimization in practice is to use “vertical”
as well as “horizontal” SIMD computations. For instance, we can
use four-tuple operations to compute two two-tuple operations in
parallel, or four scalar operations to compute the distance to four
line segments in parallel. Some GPUs can also co-issue two two-
tuple instructions in a single cycle.

Figure 6: Using a smooth pulse rather than a smooth step gives
antialiased outlines. Using the true distance gives rounded outlines;
using the pseudodistance gives sharp miters.

5.2 Corners

Corners are pairs of line segments meeting at a common point. A
closed contour expressed as a sequence of N line segments can also
be expressed as a sequence of N corners by dividing all line seg-
ments at their midpoints. Although it is slightly more expensive to
compute the distance to a corner, and corners take more parameters
to represent, corners do not suffer from ambiguity about which one
is closer, since they always meet with derivative continuity.

Corners are specified with three points: endpoints P0 and P2 and
vertex P1. We compute the direction tangents, then use these to
compute the normal of the bisecting line:

~d0 = P0 −P1, (21)

~n0 = (dy,0,−dx,0), (22)

n̂0 = ~n0/|~n0|, (23)

~d1 = P2 −P1, (24)

~n1 = (dy,1,−dx,1), (25)

n̂1 = ~n1/|~n1|, (26)

~d = n̂0 + n̂1, (27)

~n = (dy,−dx). (28)

We make both tangent vectors point away from the corner point.
Averaging the perpendiculars of the direction tangents rather than
the tangent vectors themselves avoids a degeneracy when the cor-
ner’s vertices are colinear. Two normalizations are required to
get the actual bisector. Once we have the normal of the bisector,
though, it does not have to be normalized.

Then, we compute a vector from the center vertex of the corner
to the test point Q = (u,v), and test this against the bisector normal:

~q = Q−P1, (29)

s = ~q ·~n. (30)

If s is positive, then we compute the distance to the line segment
given by P0 and P1, otherwise we compute the distance to the line
segment given by P1 and P2, reusing the vector~q. If~n is precom-
puted, the extra cost of computing the distance to a corner relative
to a line segment is one dot product and a conditional assignment—
plus the cost of storing the additional center point and the pre-
computed bisection normal. A corner feature therefore requires
between 1.5 and 2 times as many stored values as a line segment
feature. However, since there is no ambiguity problem, we can po-
tentially use lower precision for storage compared to shrunken line
segments, which can result in an equivalent storage cost.

129

Figure 7: Voronoi analysis of some TrueType glyphs.

5.3 Quadratics

For higher quality, we can consider features based directly on poly-
nomial curves. Glyphs in standard font formats use both quadratic
and cubic segments. We only considered distances to quadratic seg-
ments in our preliminary research; a test glyph is shown in Figure 5.
Unfortunately, solving for the nearest distance to a quadratic poly-
nomial curve requires finding the roots of a cubic polynomial. We
have found that it is most convenient to do this with an iterative
root solver, since the analytic solution to a cubic equation requires
cube roots (which, on GPUs, would be solved with two iterative
solvers for logarithms and exponentiation anyway) and a case anal-
ysis (which we can avoid with suitable starting conditions on our
own iterative solver). Quadratic splines, like corners, require a min-
imum of six coordinates to specify. It is also possible to speed up
their computation by precomputation, but then twelve numbers are
required for every quadratic, which requires three texture elements
to store.

Quadratics suffer from the same problem as line segments: dis-
tances to endpoints can be ambiguous. As with line segments, ei-
ther endpoint shrinking or midpoint subdivision and grouping into
corners can be used to resolve this.

5.4 Performance

At the resolution of the results in this paper, roughly 512× 512,
and on our test machine (Pentium 4 2.6GHz and an NVIDIA
7800GT GPU), a glyph with 11 line segments (the A glyph shown
in the figures) runs at 150fps without explicit disambiguation (us-
ing shrunken line segments) and 80fps with pseudodistance disam-
biguation. Using 11 corners and precomputed separation planes,
the same glyph runs at 60fps. Surprisingly, the 6 quadratic poly-
nomial features used in the curved test glyph (the D glyph shown
in the figure) runs at 70fps at the same resolution. In practice we
found the quality of representations computed with linear features
to be adequate. For the rest of the results in this paper, we used
only line segment features and the “shrinking” approach for disam-
biguation.

6 Voronoi Grid Accelerator

The test renderings and performance numbers given so far were
generated using a brute-force approach, comparing the distances
to all features in all contours of a glyph. This is not practical for
real glyphs, and certainly not for a page of text. We therefore have
to accelerate the computation by limiting the number of features
considered at each texel.

6.1 Voronoi Analysis

In order to build an accelerated representation of the glyphs in a
font, we read in the contour information using the FreeType library.
We adaptively approximate quadratics and cubics by line segments,
subdividing the splines recursively until a given error bound is met.
We then compute the Voronoi diagram of each glyph using hard-
ware acceleration [Hoff III et al. 1999]. The hardware acceleration
approach to drawing a Voronoi diagram can also suffer from end-
point ambiguity, so we shrink endpoints to resolve it (this problem
would not arise if corners were used as features). Some example
analyses are shown in Figure 7. We compute the Voronoi diagram
only within some finite distance d of the contour. We also stretch
each character non-uniformly to fit a square with a minimum mar-
gin of d. The Voronoi cones we draw are non-uniformly scaled so
the distance computation is still correct even though nonuniform
scales are non-Euclidean: we get a scaled image of the Voronoi di-
agram of the unscaled contours. It would also be possible to use a
brute-force shader computation to compute this diagram, to use a
geometric (CPU only) Voronoi analysis, or to compute the diagram
for corner or polynomial features.

6.2 Grid Packing

Once the Voronoi diagram is computed, it is overlaid with a regular
grid. Within each cell of the grid, we make a list of all the features
associated with regions in that cell. These are the only features
which need be considered when computing the minimum distance
to any point in this cell. Also, there are cells that are more than
d from any contour. These cells are black in the diagram, but we
perform an additional test on the CPU to determine if they are com-
pletely inside or completely outside. In a flag texture, we store
(in a suitably biased fashion) -1 for cells completely inside, 0 for
cells on the boundary, and 1 for cells completely outside. Then,
in a feature texture, we store the parameters of features. These
can be clipped and quantized, since we don’t care about features or
parts of features more than distance d away. Note that only one fea-
ture can fit in each cell of the feature texture. However, adjacent
cells often refer to the same features. In our shader, we will look
at not only the features stored in the cell containing the test point,
but also at a number of neighbours (four is reasonably fast, but nine
can also be used). We use a simulated annealing process to assign
features to texels of the feature texture so that all the required
features for each cell will be accessed by the shader. Note that it is
acceptable for a feature to be accessed and evaluated even if it is not
necessary, a fact we exploit to avoid conditionals. The flag texture
marks texels that are completely inside or outside, and more than
distance d from the boundary. We multiply the value in flag by a
large number and add it to the computed minimum distance. Thus,
we can store “extra” features in these texels as well. The distance
computation from these cells will be incorrect, but we are going to
swamp it with a value of the correct sign (and then clean up the dis-
tance field with a clamp), so it doesn’t matter. This provides extra
storage for features that won’t fit near a contour. We also make sure
that the border of the glyph is bounded by cells marked as being
outside the contour. At a resolution of approximately 512× 512,
using four features per sample, a single magnified glyph renders at
about 100fps on our test machine.

6.3 Multiresolution

It is possible that the features for complex glyphs cannot be
“packed” at a given resolution. We therefore start at the lowest pos-
sible resolution and, if we cannot successfully pack the features at
that resolution, increase the resolution of the accelerator in power-
of-two steps until we find a packing. Due to subdivision, curved
edges can result in a large number of features, whereas glyphs with

130

Figure 8: Some examples showing embossed glyphs. The gradient
of the distance field is used to perturb the normal.

straight edges can be stored at a relatively low resolution. If we
wanted to use curved features, the process would be the same but
the accelerator resolution required would be smaller, since there
would be a smaller number of features required for similar quality.

Different glyphs may now require accelerator structures of dif-
ferent resolutions. We pack glyphs together into a quadtree, taking
note of the scale factor and offset of each glyph. This latter in-
formation is not stored in a texture; rather, it is retained in a CPU
data structure and used later by the CPU when placing sprites, as
discussed in the next section.

The analysis process takes about one second per glyph. This is
not fast enough to be done in real time, but is fast enough that a
font subset can be computed for individual textures during a pre-
processed encoding of a given vector texture.

It is possible but rare that the analysis process will fail if the
Voronoi diagram contains a vertex of high outdegree, where more
regions are adjacent than the number of features accessed per pixel.
In this case, we can

1. consider a larger number of features per pixel (globally);

2. accept an approximation of the distance field around that ver-
tex, since they are usually far from the contour; or

3. on newer GPUs, use conditional execution to consider more
features only around this point.

Use of conditional execution maintains high performance on aver-
age since extra computation will only be required in small regions.

7 Glyph Sprite Mapping

The output of the previous step is a multiresolution font table, which
is visualized on the right of Figure 9. Now we wish to instance
multiple glyphs on a document. We use a sprite table for this (Fig-
ure 9, left). The size of a cell in a sprite table must be less than the
minimum distance possible between glyphs. For text, this can be
computed from the advance distance for each glyph and the kern-
ing information containined in the font file, as well as the desired
minimum text size.

B

A

C

L T

VE F

D J K

N

P Q

R S

?

Z

X

!

M

H

G

I O

W Y

.

LOVE

PEACE
@ U

Figure 9: Sprite and font tables.

In each sprite cell, we store the 2D offset of a sprite that (par-
tially) covers that cell, the 2D location of the origin of that sprite in
the font table, the two factors by which we wish to scale the glyph
in the vertical and horizontal directions (the ratio of these should
be calculated to return a glyph to its original aspect ratio so that
distance calculations are correct), and the total scale factor of the
glyph relative to its absolute size in a canonical coordinate system
(so we can correct the distance computations for each glyph and
make them comparable). We must store this information in every
cell covered by a sprite’s bounding box, except for the cells on the
right that are only partially covered. Two textures of four compo-
nents each are required.

Now, to sample this “virtual” texture, we look up the sprite in-
formation in the cell containing the sample point and the cell to the
immediate left of that cell. For each of pair of sprites, we access
the appropriate set of features in the font table and compute the
minimum distance to them, then compute the minimum distance
of these two distances. By clamping the offsets in the font table
to normalized coordinates for each cell, we can avoid picking up
features from adjacent glyphs. The boundary of empty cells around
each glyph in the font table gives us white space around each glyph.
Sprite table cells that are not used must refer to the “blank” glyph
in the font.

This process lets two sprites overlap horizontally. In our imple-
mentation, we consider four features per glyph, requiring the com-
putation of eight point to feature distances. Example renderings
are shown in Figure 1; performance of this scene at a resolution of
512×512 is about 60fps on our test machine.

If we look at four sprites at once, one to the right, one below, and
one to the right and below, and omit the top row of partially cov-
ered cells when placing sprites, we can also handle vertical overlap.
However, this is not (usually) needed in normal text rendering, and
doubles the cost. Likewise, we could add extra information to the
sprites, such as rotations, to handle more general cases. The ability
to rotate glyphs and permit four-way overlap might be useful in the
rendering of map labels, for instance.

131

Figure 10: A map using a vector texture for labels, with an enlarge-
ment of a distorted region to demonstrate anisotropic antialiasing.

8 Conclusions

We have presented a technique for rendering outline font glyphs di-
rectly on the GPU as encapsulated procedural textures, and for plac-
ing multiple instances of these glyphs anywhere in a texture, sub-
ject to some constraints on overlap. Our approach is based on ex-
act computation of distance fields and supports efficient anisotropic
antialiasing. We have introduced a new representation for vector
graphics in general, in which features of a vector graphics image
are analysed using a Voronoi diagram and then packed into a grid
under the assumption of lookup over a neighbourhood to avoid re-
dundancy. Our approach can be thought of as a generalization of
texture sprites to implicit function generators.

For many purposes, font glyphs can be prerendered and placed
in a texture map. Even then, the sprite approach may be useful
for rendering pages of text using compositing rather than minimum
distance computations. It is also possible to prerender sampled
distance fields, which would still support efficient anisotropic an-
tialiasing. However, the exact procedural approach provides the
assurance that no matter what 3D distortion or magnification is ap-
plied, the edges will always be crisp and the corners sharp. Since
our representation gives the exact distance field rather than an ap-
proximation, applications such as outlining and embossing, which
rely on an accurate computation of the distance field far from the
contour, are also possible.

We have demonstrated that the storage and computational costs
of vector textures are feasible. In fact, at high magnifications the
bandwidth requirements of vector textures are lower than raster
images of equivalent resolution would be, although of course the
computational requirements are higher. However, since GPU com-
putational performance is scaling much faster than bandwidth, ul-
timately image representations using more computation but less
bandwidth will prove superior.

References

CROW, F. C. 1977. The Aliasing Problem in Computer-Generated
Shaded Images. Communications of the ACM 20, 11, 799–805.

CROW, F. C. 1978. The Use of Grayscale for Improved Raster
Display of Vectors and Characters. SIGGRAPH, 1–5.

FEIBUSH, E. A., LEVOY, M., AND COOK, R. L. 1980. Synthetic
texturing using digital filters. vol. 14, 294–301.

FRISKEN, S., AND PERRY, R. 2004. Method for generating an
adaptively sampled distance field of an object with specialized
cells. U.S. Patent Application 20040189642.

FRISKEN, S. F., PERRY, R. N., ROCKWOOD, A. P., AND JONES,
T. R. 2000. Adaptively sampled distance fields: a general rep-
resentation of shape for computer graphics. SIGGRAPH (July),
249–254.

FRISKEN, S., PERRY, R., AND JONES, T. 2005. Detail-directed
hierarchical distance fields. U.S. Patent 6,396,492 (July 12).

GLANVILLE, R. S. 2004. Texture Bombing. In GPU Gems: Pro-
gramming Techniques, Tips and Tricks for Real-Time Graphics,
Addison-Wesley, F. Randima, Ed.

GUPTA, S., AND SPROULL, R. F. 1981. Filtering edges for gray-
scale displays. In SIGGRAPH, 1–5.

HOFF III, K. E., KEYSER, J., LIN, M., MANOCHA, D., AND

CULVER, T. 1999. Fast Computation of Generalized Voronoi
Diagrams using Graphics Hardware. In SIGGRAPH, 277–286.

KRAUS, M., AND ERTL, T. 2002. Adaptive Texture Maps. In
Proc. Graphics Hardware, 7–15.

LEFEBVRE, S., AND NEYRET, F. 2003. Pattern Based Procedural
Textures. In ACM Symposium on Interactive 3D Graphics.

LEFEBVRE, S., HORNUS, S., AND NEYRET, F. 2005. Texture
Sprites: Texture Elements Splatted on Surfaces. In ACM Sympo-
sium on Interactive 3D Graphics.

LOOP, C., AND BLINN, J. 2005. Resolution independent curve
rendering using programmable graphics hardware. In Proceed-
ings of ACM SIGGRAPH 2005, 1000–1010.

MCCOOL, M., AND DU TOIT, S. 2004. Metaprogramming GPUs
with Sh. AK Peters.

MCCOOL, M., DU TOIT, S., POPA, T., CHAN, B., AND MOULE,
K. 2004. Shader Algebra. In ACM Trans. on Graphics (Proc.
SIGGRAPH), vol. 23, 787–795.

MCNAMARA, R., MCCORMACK, J., AND JOUPPI, N. P. 2000.
Prefiltered Antialiased Lines using Half-Plane Distance Func-
tions. In SIGGRAPH/EUROGRAPHICS Workshop on Graphics
Hardware, 77–85.

PERRY, R., AND FRISKEN, S. 2005. Method and apparatus for
rendering cell-based distance fields using texture mapping. U.S.
Patent 6,917,369 (July 12).

RAMANARAYANAN, G., BALA, K., AND WALTER, B. 2004.
Feature-based textures. In Eurographics Symposium on Render-
ing.

SEN, P., CAMMARANO, M., AND HANRAHAN, P. 2003. Shadow
silhouette maps. ACM Trans. on Graphics (Proc. SIGGRAPH)
22, 3 (July), 521–526.

SEN, P. 2004. Silhouette maps for improved texture magnification.
In Proc. Graphics Hardware, 65–74,147.

TUMBLIN, J., AND CHOUDHURY, P. 2004. Bixels: Picture sam-
ples with sharp embedded boundaries. In Eurographics Sympo-
sium on Rendering.

TURKOWSKI, K. 1982. Anti-aliasing through the use of coordinate
transformations. ACM Trans. on Graphics 1, 3 (July), 215–234.

WANG, S. W., AND KAUFMAN, A. E. 1996. Volume sampled
voxelization of geometric primitives. In IEEE Visualization 96,
78–84.

WARNOCK, J. E. 1980. The Display of Characters Using Gray
Level Sample Arrays. 302–307.

WILLIAMS, L. 1983. Pyramidal parametrics. In Computer Graph-
ics (SIGGRAPH ’83 Proceedings), 1–11.

132

