This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TC.2016.2636840, IEEE

Transactions on Computers

IEEE TRANSACTIONS ON COMPUTERS, VOL. X, NO. X, XXXX XXXX

Dynamic Load Balancing of Dispatch
Scheduling for Solid State Disks

Myung Hyun Jo, Student Member, IEEE, and Won Woo Ro, Senior Member, IEEE Computer Society

Abstract—Providing low-latency and high-throughput is an important design feature of an 1/O scheduler. Especially, when multiple
applications share and compete for a storage resource, the operating system is required to schedule the 10 requests for the maximum
throughput. Recently, the flash-based storage, solid-state drive (SSD) has been popularly used in various computing systems and
traditional scheduling algorithms have been researched and tuned for the emerging flash-based storages. However, the SSDs suffer
from the contention problem caused by multiple I/O requests and experience significant performance degradation. This is mainly due to
the concurrently accesses to a finite set of flash memory chips. In this paper we propose Dynamic Load Balanced Queuing (DLBQ)
that reorders the 1/0O requests and evenly distributes the accesses on flash memory chips to avoid contention. For that purpose, we
have introduced a virtual time method which chases the run-time status of the SSD. We have evaluated the throughput and latency of
DLBQ versus the four I/0O schedulers with micro benchmarks and server benchmarks. The experimental results show that the
throughput of DLBQ is improved by 11 % on a 128 GB SSD and 15 % on a 256 GB SSD while ensuring a bounded latency.

Index Terms—Scheduling, storage management, performance

1 INTRODUCTION

IGH-speed storage such as flash-based solid-state

drives (SSDs) have emerged and provided enhanced
performance especially for data-centric systems. In fact,
SSDs can provide high throughput by concurrently access-
ing multiple flash memory chips where data are striped over
as in RAID-0 architecture [1], [2], [3]. This parallel accesses
are originally expected to bring huge advantages for data-
intensive applications such as web server, file server, and
database [4]. However, the amount of data those applica-
tions normally access cannot fully exploit the parallelism of
multiple flash chips; the data sizes are mostly as small as 8
or 16 KB [5], [6]. On the perspectives of flash-based storage,
the small size data can normally cause frequent accesses
to a set of specific memory chips under a static striping
fashion (RAID-0) and consequently results in contention;
the contention means that I/O requests are handled by only
specific flash memory chips during a short time interval
[5], [6], [7], [8]. The slack delay caused by the contention
substantially decreases the storage utilization [9], [10], and
hence significantly degrades the performance of the appli-
cations.

Traditionally, I/O scheduling algorithms for mechanical
disks have been studied to guarantee the fairness and pre-
defined latency [11], [12], [13], [14], [15], [16], [17]. To ensure
fairness, the algorithms exploited time-based strategies such
as virtual time [11] or budget [15], in which resource is pro-

o The authors are with the School of Electrical and Electronic Engineering,
Yonsei University, Sinchon-dong, Seodaemun-gu, Seoul, Korea.
E-mail: {myunghyun.jo, ws.jeong, wro}@yonsei.ac.kr

e M.H.Jo is also with the Software Development Team, Memory Division,
Samsung Electronics, Hwasung, Gyeonggi-Do 445-701, Korea.
E-mail: {myunghyun.jo}@samsung.com

This paper is an extension of our previous study, ”"Contention-Free Fair Queu-
ing for High-Speed Storage with RAID-0 Architecture,” which appeared in the
2015 IEEE 17th International Conference on High Performance Computing
and Communications.

portionally allocated to the competing applications based
on the predefined weights or service rates. In addition, a
feedback control method keeps a desired latency by limiting
the number of the I/O requests that can be simultaneously
executed in a constant time interval [12], [14], [16]. However,
the contemporary storages with a plurality of flash chips
have experienced significant performance variation by the
internal operations such as static striping, wear leveling,
or garbage collection. Recent I/O schedulers have targeted
to achieve high throughput of storage rather than ensuring
fairness or bounded latency [5], [8], [18], [19], [20]. To mini-
mize the response delay of read requests caused by the long
write operations of flash memory, the algorithms separately
handle read and write I/O requests [5], [18], [19], [21], [22].
Moreover, some scheduling algorithms have tried to avoid
the conflict of the parallel resources within the storage such
as flash memory chips [8], [20] or channels [5].

Although the recent I/O schedulers have overcome the
constraints of flash-based storage such as the chip collision
and the latency difference between read and write requests,
the existing methods are insufficient to achieve both high
throughput and low latency for the following three reasons.
Firstly, the previous chip collision-avoidance dispatches a
set of requests that do not access the same flash memory
chips [5], [8]. This collision-avoidance is efficient if the
request size is small so that each request accesses only a
dedicated flash memory chip. Unfortunately, the requests of
server workloads mostly access two or more flash memory
chips with a random pattern. It implies that selectively gath-
ering the non-competing requests is significantly difficult.
Furthermore, this predicted collision may not coincide with
the actual collision if an I/O scheduler does not recognize
the completion of the dispatched requests. Unlike the con-
ventional hard disk, the response time of requests handled
on the flash-based storage can be longer than expected due
to the internal operations such as garbage collection. Sec-

0018-9340 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TC.2016.2636840, IEEE

Transactions on Computers

IEEE TRANSACTIONS ON COMPUTERS, VOL. X, NO. X, XXXX XXXX

ondly, the batch techniques of minimizing the interference
between read and write requests within the storage are
not explicitly optimized [5], [22]. The inter-mixing extent
of read/write requests is considerably different depending
on the sizes, patterns, and read/write ratios of workloads.
To accurately ensure a constant interval in which read
and write requests are not mixed, a batch method should
be globally aware the chip access distribution in runtime.
In addition, the scheduling ratio between read and write
queues must be balanced for diverse workload sets or sys-
tem environments. Finally, the previous algorithms do not
attempt to bound the long-tail latency occurred by the re-
quest reordering, which is carried out for high performance.

To overcome these problems, we propose a new 1/0
scheduling algorithm, called Dynamic Load Balanced Queu-
ing (DLBQ), that reorders the I/O requests to maximize
throughput of the flash-based storage while limiting the
worst-case latency. Because the contention problems of
read/write interference and chip collision incur the sig-
nificant slack time of flash memory chips, DLBQ is de-
signed to achieve both the contention-avoidance and high
throughput. To solve the contention problem, DLBQ first
defines the cost model that represents the load of the flash
memory chips in a virtual time fashion. When an I/O
request is dispatched, the virtual finish times of accessing
flash memory chips are accumulated by the request length.
If the dispatched request is completed, the virtual start times
of associated flash chips are accumulated. By the difference
between two virtual times, DLBQ can dynamically verify
the load assigned to each flash chip.

Using the cost model, DLBQ applies two algorithms:
the dynamic queue selection (DQS) and the balanced chip
utilization (BCU). To prevent the mixing of the read/write
requests in the storage, DQS chooses one of two queues
dedicated to request types, i.e., read and write. Further, DQS
evenly balances the activation time for dispatching between
two queues, especially for guaranteeing the fairness of read
requests. After deciding the target queue by DQS, BCU finds
an I/0O request that can improve the storage utilization
among the backlogged requests in the selected queue. To
estimate the utilization for each request, BCU exploits the
ratio of the total load assigned to flash memory chips
until the expected finish time of the request. In addition,
BCU compensates the utilization for the waiting cost of the
request which is pushed back from a dispatching order.
Therefore, DLBQ can dispatch an I/O request with high
utilization and bounded worst-case latency.

The rest of the paper is organized as follows. In Section 2,
we present works related to our research. In addition, we
describe the architecture and characteristics of flash-based
storage. On the basis of the properties of flash-based storage,
we present a new I/O scheduler to meet our goals in
Section 3. In Section 4, we compare the throughput and
latency between various I/O schedulers with a diverse set
of workloads. Finally, Section 5 concludes the paper.

2 BACKGROUND

This section first illustrates the structure and internal oper-
ations of flash-based storage. In addition, we present our
research motivations.

2

STORA(%

page address

(oo)
HOST

Applications

(database,

(/8-
L, [ow]

FLASH ____.
MEMORY C
CHIPS

web server,
file server, ...)

1/0 request

—
1/0 response

COMMAND
QUEUE

.

Fig. 1. Overview of flash-based storage

1/0 Scheduler

Device Driver

2.1 Flash-Based Storage

To represent the internal constraints of flash-based storage,
we show the general architecture of flash-based storage
in Fig. 1. The basic structure resembles typical computer
systems, except the command queue and the multiple flash
memory chips. CPU executes the embedded firmware with
internal operations such as static striping, address transla-
tion, and wear leveling. DRAM is used for transmitting data
from/to the host. A plurality of flash memory chips are
statically partitioned and connected to multiple channels
and ways; it can simultaneously load/store the request
data from/to the flash memories. The command queue
is equipped for enabling the asynchronous execution of
multiple I/O requests.

In practical, the number and size of the components,
i.e.,, CPU, DRAM, the command queue, and flash memory
chips, are configured considering cost, power, and perfor-
mance. The number of flash memory chips is determined
by storage capacity. Moreover, the size of a command queue
is limited to 32 by the storage specification such as SATA
[23]. Accordingly, I/O requests from server applications are
mostly waiting in the queue of I/O scheduler located on op-
erating system. Because the server workloads are generally
produced from more than 100 threads [24], the number of
the requests passed at the same time far exceeds the size of
command queue.

Here we present the internal operations related to the
processing of 1/0 requests in the flash-based storage. First,
I/0 requests from the host are pushed into the command
queue of storage. As shown in Fig. 1, four I/O requests
with the address of 0, 1, 2, and 11 can be enqueued
continually if the command queue is not full. Then, an
embedded firmware sequentially pops a single request from
the command queue. To handle the requests in parallel,
the firmware performs an modular operation of request
address according to the number of flash memory chips;
in this paper, the address and length of 1/O requests are
configured as the page size of 4 KB because the processing
(READ and PROGRAM) unit of flash memory is generally
4 KB. If the request size is larger than the striping size of 4
KB, the request is divided into the striping size. Then, the
partitioned requests are distributed to the associated flash
chips. In Fig. 1, the four requests are assigned to the first
way of channel A, channel B, and channel C in the three-
channel/three-way storage. The last two requests with the
address of 2 and 11 are assigned to the same flash chip.

0018-9340 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TC.2016.2636840, IEEE

Transactions on Computers

IEEE TRANSACTIONS ON COMPUTERS, VOL. X, NO. X, XXXX XXXX

Dissue I finish |:| data H flash_read

Dissue I Sfinish I:Idata D flash_read

Dissue I finish |:| data D flash_read Egﬂash_write

o [

e ——2|

Chip. [

e

Chip

o [0 o]

Storage

View

B

Chipl Chipl

Chipl

*(I/O type, 1/0O address, 1/O size) Time

(a) Sequential pattern

Fig. 2. Lifecycles of various /O patterns in the flash-based storage

2.2 Motivation

Fig. 2(a) shows how parallel access in modern flash-based
SSDs can improve the throughput. For example, two read
requests with the logical page address of 1 and 2 are allo-
cated to different flash memory chips and handled parallely.
Assuming that the read operations of flash memory Chip 0
and Chip 1 are executed in parallel, the storage throughput
is roughly linear to the number of flash memory chips.

However, the real throughput can be considerably var-
ied according to the I/O patterns. As mentioned before,
the flash-based storage statically distributes multiple I/O
requests to flash memory chips according to the request
address. Therefore, simultaneous accesses to the same flash
chip can happen. As shown in Fig. 2(b), two read requests
with the address of 0 and 9 are assigned to the same flash
chip when the storage is constructed to nine chips. Then,
the two read operations of flash memory Chip 0 should be
executed sequentially. Accordingly, the completion of the
trailing read request is delayed.

Meanwhile, if the workloads have a random address
pattern, the storage throughput does not decrease largely
even if the chip collision of single page is occurred. Because
the storage has sufficient multiple chips, e.g., 16 or 32,
the other non-conflicted chips can be preferentially served.
Then, the requests with single-page size can be completed
immediately by finishing an associated flash operation. Ac-
cordingly, when the command queue is full, a new request
can be entered into the storage if only one of multiple
flash operations is completed. However, if an I/O request
causes accesses to multiple pages, the frequency of chip
collision would increase [6]. When the states of several flash
memory chips are busy, there is a high possibility that the
requests to multiple pages would access the busy chips. It
will cause request conflicts and result in the long response
time because the request cannot be completed until all pages
are serviced.

Furthermore, the throughput can be also degraded due
to the latency discrepancy between the read and write
requests. For example, let us assume that a write request
with the address of 3 and the size of 4 KB precedes a
read request with the address of 11 and the size of 8 KB,
as shown in Fig. 2(c). If the storage employs an internal
write buffer, the data is first stored in the write buffer and
moved to each corresponding flash chips. For the tailing
read request, the first 4 KB data of the address 11 can be
instantly read and sent to the host because the flash memory
Chip 0 is not blocked. However, the second 4 KB data of
the address 12 is blocked until the previous write operation

(b) Collision pattern of single page

Time

(c) Collision pattern of multiple pages

on Chip 1 is finished. This scenario shows that the trailing
read request can be significantly delayed due to the long
write operation; in fact, the read delay is 50 ps whereas the
write delay can be as large as 1 ms [25]. Moreover, in the
storage specification of SATA [23], the storage cannot receive
additional I/O requests during data transmission even if
the command queue is not full. With this observations, we
consider separation of read and write request handling for
better scheduling.

These contention problems substantially increases the
slack time of flash memories when a single request does not
fully utilize all flash memory chips. Therefore, we target that
the proposed 1/0 scheduler solves the contention problems
when the flash-based storage is used for the server work-
loads that are composed of mixed, medium size, and many
threads.

2.3 Related Work

I/0 scheduling algorithms have been long studied to pro-
vide guaranteed quality-of-service (QoS) of storage with in-
ternal parallelism. Because multiple competing applications
share limited resources, a scheduler should fairly divide the
total bandwidth of storage into N applications with different
weights. To ensure the proportional bandwidth allocation,
SFQ(D) [11], Argon [13], PARDA [14], BFQ [15], and Maestro
[16] have exploited the time-based strategies, which evenly
allocate a virtual time or budget to each application.

In fact, an accurate time model is needed to achieve a
fair distribution of bandwidth. However, the realistic time
model will enforce computation intensive and repeated
recalculation procedures every time when a request is made
or selected for transmission [26]. To lessen this computation
overhead, the concept of virtual time is introduced. The
virtual time can allocate the bandwidth for each application
without recalculating the actual finish time for previously
queued requests [27]. At the virtual time model, a request
easily can determine the virtual finish time by incrementing
the request length to the virtual start time, when requests
arrive at the queue dedicated to each application. Accord-
ingly, a scheduler dispatches preferentially a request with
the earliest virtual finish time among the application queues,
and the bandwidth of each application is evenly distributed
according to the request size.

In addition, Avatar [12], PARDA [14], and Cake [17]
exploit adaptive feedback control to ensure the user-defined
latency. By throttling the number of outstanding 1/O re-
quests, the schedulers adjust the number of concurrently

0018-9340 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TC.2016.2636840, IEEE

Transactions on Computers

IEEE TRANSACTIONS ON COMPUTERS, VOL. X, NO. X, XXXX XXXX

s \ /

4 Dacklog ho. STORAGE “ivided /0 request
(sh, I, yi) read request 'qi FC'(k= ;
2 | dispatch i
g) i
< ~P
Za |-y - |
= add iplete|COMMAND \—
< QUEUE(Q") |FC(k=P;
write request queue FC: flash memory chip
N o ‘requesl queue size
L) QLBQ Scheduler / DQS : dynamic queue selection

BCU : balanced chip utilization

Fig. 3. The system model of DLBQ

activated resources within the storage; any requests dis-
patched from the I/O scheduler are outstanding if their
completions have not received a response from the storage
device. Guaranteeing the fairness and bounded latency is
essential for ensuring the QoS for the shared storage. How-
ever, the traditional scheduling methods are not easy to
improve the throughput of storage especially for flash-based
storage, because they typically treat the storage system as
a black box; PARDA [14] and BFQ [15] optimize only the
overheads of mechanical disk drives, e.g., the seek time of a
HDD.

As emerging the flash-based solid-state-drives (SSD), an
I/0 scheduling algorithm has been increased the opportu-
nity to improve the storage performance. First, the algo-
rithms have proposed a method of avoiding the read/write
interference occurred by the latency discrepancy of flash
memory [5], [18], [19], [21], [22]. With the separated queue
per a request type, ParDispatcher [22] and PIQ [5] dispatch
a set of requests with the same type in a batch fashion,
whereas FIOS [21] and BCQ [8] preferentially dispatch a set
of read requests. ParDispatcher uses a batch size predefined
by a micro-benchmark [22] and PIQ distinguishes a batch of
irrelevant requests according to a request type [5]. Though
the previous algorithms solve a part of the read/write
interference, these batch techniques are not enough to avoid
the interference adaptively for diverse workloads or system
environments. Second, BCQ [8], PIQ [5], and CFFQ [20] are
trying to prevent the performance degradation caused by
the contention of shared resources, i.e., channels or flash
memory chips. BCQ splits I/O requests to an associated
channel queue [8]. PIQ leverages the conflict vector that
records the chip access of requests to collect multiple ir-
relevant requests into a single batch [5]. The our previous
research, CFFQ, exploits the device-oriented virtual time
that represents the load assigned to flash memory chips [20].
However, these collision-avoidance methods are designed
only from the application viewpoint. They do not verify the
actual chip collision in runtime. Though BCQ recomputes
periodically the cost of read and write requests through
a feedback, they do not consider the actual chip collision.
Furthermore, the conflict vector method of PIQ mostly
postpones the order of the large-size requests that are more
likely to conflict with the other requests.

3 DyNAMIC LOAD BALANCED QUEUING

In this section, we first present a system model for flash-
based storage with limited resources. Then, the section

dispatch()

4
update virtual start time S()
(equation (3))

adjust virtual times S(7), F(1)
(equation (5))

(1Y)

find with max U(¢)
i | in the active request queue

read write |: (equation (11))

push 7 to read
request queue

push F to write| |
request queuc) | update deficit time

D(t) «— D(t-1) + I

D!

1
no i

1
= g

update virtual finish time F(7)
(equation (3))

no :
(retain | |
current] !
request| |
queue) | |

switch
1| request queue

DQS': dynamic queue selection
BCU": balanced chip utilization

Fig. 4. The execution flow of DLBQ

describes design and implementation of the proposed 1/0
scheduler.

3.1 Overview

Fig. 3 shows the system model of the proposed I/O sched-
uler, called the Dynamic Load Balanced Queuing (DLBQ). The
scheduler handles I/O requests between multiple applica-
tions and the storage using three functions of add, dispatch,
and complete provided by the linux kernel. An 1/O request r*
consists of the starting logical address s’, length I, and type
(read or write) y*. In addition, our system model directly
defines the internal constraints of the flash-based storage.
As shown in Fig. 3, there are a command queue with a
limited size (Q) and the flash memory chips (FCs) with a
limited number (P). The concurrency degree of the storage
is restricted by the size of command queue or the number
of flash memory chips.

To give an overview of the proposed system, Fig. 4
shows the flow chart of the modified scheduler functions of
add, dispatch, and complete. First of all, when multiple com-
peting applications a;...ax send multiple I/O requests, the
scheduler function of add() is called for each request. Then,
DLBQ pushes a request 7 into one of two request queues of
DLBQ according to the request type y’. To minimize the
interference between read and write requests, we design
two queues dedicated to each request type, i.e., read and
write.

Afterwards, the operating system calls the scheduler
function of dispatch(). In the function of dispatch(), DLBQ
finds an I/O request that can improve the utilization of
flash memory chips among the backlogged requests in the
activated queue. The possible storage utilization when each
request is served can be computed by balanced chip utilization
(BCU) in Section 3.4. Then, the proposed cost model is
updated to reflect the storage status changed by the dispatch
request.

When an I/0 request is completed from the storage, the
scheduler function of complete() is called in Fig. 4. In the
function of complete(), the proposed cost model is adjusted
by the actual completion of requests. Because the flash-
based storage internally handles the complex operations

0018-9340 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TC.2016.2636840, IEEE

Transactions on Computers

IEEE TRANSACTIONS ON COMPUTERS, VOL. X, NO. X, XXXX XXXX

TABLE 1
Notation used
Symbols | Description
7 i-th request
st logical page address of ¢
I page length of r*
¥ type (read or write) of r*
Ct actual completion time of r?
R’ actual response time of r*
I actual processing time of page
Q size of command queue in the storage
P total number of flash memory chips (FCs)
Cn index of FC accessed by the n-th page of r?
Sk virtual start time of the k-th FC
Fy. virtual finish time of the k-th FC
L load assigned to each active FC for r*
RF? virtual completion time of 7?

such as garbage collection and wear leveling, our cost model
is dynamically compensated by the feedback of the storage.
After that, DLBQ chooses one of two request queues to
dispatch with dynamic queue selection (DQS) described in
Section 3.3.

3.2 Cost Model

To quantitatively reduce the contention problems of
read /write interference and chip collision, DLBQ presents
the cost of an I/0O request using a virtual time scheme. In
fact, our virtual time strategy is similar with the virtual time
methods of conventional schedulers [11], [28]; the existing
virtual time substitutes the request length for the processing
cost of request. However, on a flash-based storage, a single
request can be assigned to multiple flash memory chips in
parallel. In our design, we consider the parallel accesses
to multiple flash chips to accurately measure the operation
cost of a request. For the convenience, we summarize the
notations used in this paper in Table 1.

The cost model first finds the flash chips (FCs) that are
accessed by the I/0 request; we refer to them as active FCs.
Because the unit of the request length is equal to the striping
size of 4 KB, we can get the indexes of active FCs through a
modular computation of the starting address and the length
of request. Thus, when a dispatch request r* is handled in
the storage, the index c,, of the active FC accessed by the
n-th page is defined as follows:

cn — (s"4+n)modP, 0<n<min(,P) (1)

where s’ is the starting page address of ’, P is the total
number of flash memory chips, and I is the page length of
r'. If I' is greater than P, the upper value of n is limited to
P because all flash memory chips are utilized. Otherwise,
only several flash memory chips are accessed. For example,
when the I/O request with the starting address of 13 and the
data size of 8 KB is sent to the storage with nine chips, ¢y is
four and c; is five because P is nine. Only two flash memory
chips are accessed to process this request. On the other hand,
a flash-based storage exploits the low-level resources such
as die or plane within a flash memory chip to maximize the
parallelism of storage [29]. In this case, P can be defined as
the total number of low-level resources.

5

After finding the indexes of active FCs, the operation cost
of each flash chip is calculated considering the request size.
The operation cost is the unit time to handle the amount of
request assigned to each flash chip. The operation cost L,
of each active FC for r* is defined as follows:

T |5]+1, if (I mod P) > n
Cn K .
5], otherwise

where 0 < 1 < min(l*,P), c,, is the index of FC accessed by
the n-th page of r*, I' is the page length of r*, and P is the
total number of flash memory chips. For example, let the
size of an I/O request be 224 KB and P is configured as 32.
Then, each operation cost for the first 24 chips is two but the
operation cost for the remaining 8 chips is one.

@

=

Using equations (1) and (2), the virtual time of flash
memory chip is accumulated by adding the previous virtual
time and the operation cost. Therefore, the virtual start time
S, () and virtual finish time F. () of each active FC are
defined as follows:

Se,(t) « S, (t—1)+ L. when completed

N . : 3
F. (t) < F.(t—1)+ L, when dispatched ©)

where 0 < n < min(li,P), ¢y, is the index of FC accessed by
the n-th page of 1%, t is the event when a request completion
occurs, and 7 is the event when a request dispatch occurs.
Initially, the virtual start time S(0) and virtual finish time
F(0) are zero. When an 1/O request 1’ is dispatched to
the storage, the virtual finish times F., of active FCs are
incremented by the operation cost L. . Afterwards, when
the storage media responses the request completion, the
virtual start times S., of active FCs are accumulated by
L. . When completed, if the virtual start time is equal to
the virtual finish time, there are no pending operations in
the flash memory chip. The flash memory chip becomes
inactive.

In fact, a flash-based storage internally processes various
operations such as wear leveling and garbage collection.
When the virtual times of specific chips are delayed due
to the heavy operations, simply adding the request length is
not accurately model the operation cost. To further enhance
the accuracy of virtual time of the equation (3), we utilize
the actual processing time of a page monitored at runtime.
For that purpose, we first measure R® which is the actual
response time of r* and calculate the actual processing time
of a single page which is denoted I as follows:

7
I(t) «+ {%
IHTELLX(FC” (t) —

Se. (B) @)

where 0 < n < min(l*,P), t is the event when a request
completion occurs, ¢ is the event when a request dispatch
occurs, and ¢, is the index of FC accessed by the n-th
page of r'. To calculate I, the scheduler divides the actual
response time by the maximum number of the accumulated
operations.

To accurately track the runtime status of storage, the
lagged virtual times need to be appropriately adjusted
considering the actual completion of the delayed operation.
Therefore, when the virtual start time of the accessing chip
is behind the request completion time normalized by the

0018-9340 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TC.2016.2636840, IEEE

Transactions on Computers

IEEE TRANSACTIONS ON COMPUTERS, VOL. X, NO. X, XXXX XXXX

page processing time (S, (t) < %), the virtual times are

adjusted to the actual time as follows:

.0 1

I(t) ‘ 5)

T = 5, (1)
IO

where t is the event when a request completion occurs, ¢,
is the index of FC accessed by the n-th page of r*, C' is the
actual completion time of %, and I is the average processing
time of a page. As shown in Fig. 4, the equation (5) is
performed after the equation (3). With applying the equation
(5), we can adjust the heavily lagged virtual time due to
the idleness, especially when a heavy operation of garbage
collection is occurred. More specifically, we can make that
the virtual start time is more accurate by following the
actual completion time of request and a value of virtual time
is bounded to L.

The computational overhead for managing this virtual
time table is O(2P) in the worst case. When an I/0O request
is dispatched, the virtual finish times of active FCs are
updated. In addition, when an I/O request is completed,
the lagged virtual times are inspected for the adjustment.
Though the worst overhead is proportional to the number
of flash memory chips (P), the real value is limited to
the constant value of relatively small size as 16, 32, or
64. We believe that our cost model can be applied for the
large size SSDs with many flash memory chips. In fact, the
commercial product of 16TB SSD has 512 chips [31]. The
simple arithmetic computation of virtual time is negligible
with a large number of flash chips because I/O performance
is mostly bounded to storage performance.

F. (t) « F. (t)+(

3.3 Dynamic Queue Selection

On the basis of the cost model, this section solves the
contention problem of the read/write interference. Like the
conventional methods to reduce the interference, we also
separately dispatch the read and write requests in a batch
fashion. The conventional algorithms preferentially dispatch
the read requests rather than the write requests [8], [21],
dispatch a set of requests with the same type according to
the pre-defined number of requests [22], or dispatch a set of
irrelevant requests that do not access the same flash memory
chips [5].

However, the previously proposed batching techniques
cannot sufficiently reduce the interference between read and
write requests; the access pattern of I/O requests is very
complicated considering the dispatching order, pattern, or
size of the requests. In contrast, our cost model can easily
see the access distribution of I/O requests using the virtual
time table. Thus, the method of dynamic queue selection
(DQS) can be implemented and alternately schedules one
of two request queues every a dynamic interval of virtual
time. In addition, DQS can fairly control the activation time
of read and write queues.

On the flash-based storage, the write operation of flash
memory is much longer than the read operation. Also, the
write operation would include additional procedures such
as wear leveling and garbage collection. It would cause
long response time of read requests when a write operation

6

is processed on the same chip. To evenly distribute the
activation time for dispatching between read and write
queues while ensuring the fairness of delayed read requests,
we first define the scheduling ratio of read queue over write
queue (SR,) as follows:

TL,(t) x L,(t)
TLo(t) x I(1)

where t is the event when a request completion occurs, T'L,.
is the average total workloads of requests waiting on the
read queue, and I, and I, are the average processing time
of read and write pages, respectively. The scheduling ratio
of write queue SR,, is the inversion of SR,. Basically, the
scheduling ratio of read and write queues is determined
by the read/write ratio of workloads generated by the
host application. However, this external ratio is statically
determined without considering the internal state of storage
device. Thus, we additionally take into account the process-
ing time of a page on runtime.

SR (t) (6)

In general, the processing time of read page I, is almost
constant [18]. For example, the processing time of 4 KB read
page takes 100 ps on Samsung SSD [30]. However, I, can
be considerably longer when the read and write requests
are mixed. Because the long delay of read page is incurred
by the excessive interference of write requests, we use an
original value of I, that is acquired in advance using a read-
only workload. In contrast, the processing time of write
page I, is dynamically measured on runtime because it is
varied by the additional operations such as wear leveling
and garbage collection.

Using the equation (6), DQS can fairly control the dis-
patching ratio between read and write requests. However,
there still remains a question on how long the selected
queue is activated. If the selected queue is activated for
a long time, the other queue might be severely sacrificed
and therefore, the bounded latency of requests cannot be
guaranteed. To solve the problem, DQS defines and uses the
virtual interval NI in which a set of read or write requests
utilize exclusively all flash memory chips. NI is the previous
non-mixed virtual interval passed by the requests with the
opposite type and the value is dynamically adjusted. By
assigning a dynamic interval of NI to each queue, read or
write requests can be separated adaptively from the run-
time status of storage. In addition, the activation time of
queue is allocated considering the current virtual finish time
to exclude a mixed interval. Therefore, DQS distributes the
activation time between two queues by the following virtual
batch time BT, for a request type y:

BT,(t) <« max Fi(t) + NI, x SR,(t) @)

where 0 < k < P, F}, is the virtual finish time of the k-th
FC, NI, is the previous non-mixed virtual interval for the
opposite type queue, and SR, is the scheduling ratio of y-
type queue. Initially, we configure the lower bound value
of NI as two to ensure the pipelined execution of flash
operations assigned on a chip. When the active queue is
switched, the virtual batch time is recalculated by adding
the maximum virtual finish time and the non-mixed virtual
interval revised by the scheduling ratio.

As shown in Fig. 4, DQS switches the active queue

0018-9340 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TC.2016.2636840, IEEE

Transactions on Computers

IEEE TRANSACTIONS ON COMPUTERS, VOL. X, NO. X, XXXX XXXX

. switch for load balancing
regular switch

. BT2)=19

BT,(0)=8 | BT,(1)=12
0 6 7 >8 9 10>11 12 13,
T e B e S I e
actual read . <
duration . o g
actual write
duration — " >
0] .- waiting time
0 ~ 8 4
0 8
g wq rq wq rq wq rq wq rq wq
1 2 1 1
8 9 5 z
rq :read queue : H
wq : write queue W}R

r

Fig. 5. Example of dynamic queue selection

by the following three conditions and updates the virtual
batch time. Firstly, if there are no waiting requests on the
active queue, the active queue is switched. Secondly, when
the delay ratio of inactive write queue is greater than the
scheduling ratio of active read queue, the write queue is
selected. For example, if the scheduling ratio of write queue
is two times of the scheduling ratio of read queue, the
average waiting time of read requests cannot exceed twice of
the average waiting time of write requests. Thus, the second
condition for switching between read and write queues is as
follows:

SR,.(t) < WR,(t) when read queue is active (8)

where WR,, is the ratio of the average waiting time of write
requests over the average waiting time of read requests.
When the write queue is active, the equation (8) checks that
the delay ratio of inactive read queue is greater than the
scheduling ratio of write queue (SR,, < WR;). Lastly, when
the minimum virtual start time is greater than equal to the
virtual batch time, the active queue is switched. The third
condition for switching between read and write queues is
as follows:

min S(t) > BT(t — 1))

where 0 < k < P, Sj, is the virtual start time of the k-th FC,
and BT is the virtual batch time. According to the equation
(3), the virtual start time is updated when a flash memory
chip is actually used. In this regard, the minimum virtual
start time is increased only if all flash chips are used at least
once. Thus, to guarantee that a set of read or write requests
use exclusively all flash chips, DQS compares the minimum
virtual start time to the virtual batch time.

Fig. 5 shows an example of the proposed dynamic queue
selection (DQS). The gray box on each queue represents the
waiting requests and the page length of the requests is all
one. When the requests are served from the queue, the gray
box is changed to the white box. The number denoted in the
gray box indicates the time passed since the corresponding
request is enqueued. To easily explain DQS, let us assume
that the average read/write ratio of workloads is 2:1. In
addition, the processing times of read and write page are
configured as 100 ps and 200 us, respectively. Thus, the
scheduling ratio of read queue SR, is four, whereas the
scheduling ratio of write queue SR,, is 1/4. Further assume

7

virtual N ()
time T ° y

- “|FC
F,(0 - ’

r FC, max of storage
) s utilization P
RF(») -~ r FC, during
RF(6) — min S, (¢)
FCy,

RFi(t) — min S, (9

RFi(f) — min S, ()

F :dispatch candidate
RF' : virtual completion time of ri
B : load distribution for outstanding requests

Fig. 6. Balanced chip utilization

that initially there are four read requests and two write
requests and one unit of virtual time as 100 ps.

Initially, the read queue is activated and the virtual batch
time BT, (0) is set to eight according to the equation (7);
SR, is four and the non-mixed virtual interval NI is two.
The read requests are continuously dispatched/completed
from the read queue, whereas the write requests are waiting.
Later, when the minimum virtual start time becomes eight,
the write queue is activated according to the equation (9).
At this point, two read requests with the waiting time of
one are held in the read queue. In addition, assuming that a
read request with the virtual finish time of ten exists in the
storage. Thus, the next virtual batch time BT,,(1) is set to
the sum of the maximum virtual finish time of ten and NI of
two. Though NI passed by the read requests is eight, NI is
decreased into two due to SR,,. When the virtual time is 11,
the delay ratio of read queue WR, exceeds the scheduling
ratio of the write queue SR,,. According to the equation (8),
the active queue is changed to the read queue and the next
virtual batch time BT,.(2) is recalculated.

3.4 Balanced Chip Utilization

After choosing the target queue with DQS, the second algo-
rithm of DLBQ), called Balanced Chip Utilization (BCU), re-
orders I/O requests in the queue to alleviate the contention
problem of chip collision. The reorder policy of BCU is to
evenly distribute workload to flash memory chips while
maintaining a bounded latency.

To achieve well-balanced utilization of storage, we
should first acquire the total load of flash memory chips
in runtime. According to the equation (3) and (5), the load
amount of each flash chip is calculated by the difference
between the virtual finish time and the virtual start time. In
addition, the total load amount includes the load amount of
a dispatch candidate that is waiting in the queue. Therefore,
in sum, the total load amount for a dispatch candidate * is
defined as follows:

P-1
TC(t) + Y (min(RF'(t), Fy(t)) — Sk(t))

k=0

(10)

where k is the index of flash memory chip, P is the total
number of flash memory chips, RF" is the virtual completion
time of r*, Fy, is the virtual finish time of the k-th FC, and S,

0018-9340 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TC.2016.2636840, IEEE

Transactions on Computers

IEEE TRANSACTIONS ON COMPUTERS, VOL. X, NO. X, XXXX XXXX

TABLE 2
Workload characteristics

] Workloads \ Patterns \ I/O Sizes \ R/W Ratios \ Number of threads ‘
| Micro Benchmark | Random | 4 KB-32 KB \ 1:1 \ 32-256 \
Web Server Random 0.5 KB-64 KB (AVG: 11 KB) 9:1,1:9 100
File Server Random 4 KB-512 KB (AVG: 64 KB) 9:1,1:9 100
Database Random 8 KB-64 KB (AVG: 22 KB) 2:1,1:2 200
Mail Server Sequential 16 KB 4:1,1:1,1:4 130

is the virtual start time of the k-th FC. The virtual completion
time RF’ is determined as the max value among the virtual
finish times of the flash chips accessed by the dispatch
candidate 1. Because a single request does not access all
flash memory chips always, the virtual finish times of some
chips can be greater than the virtual completion time of
the request. Thus, if the virtual finish time Fj is greater
than the virtual completion time RF?, the load amount is
calculated only up to RF’. The reason for limiting the upper
bound of the total load amount is to find an I/O request
that maximizes the utilization in the expected finish time of
request.

Now we can calculate the utilization ratio and choose
a dispatch request based on the ratio. As shown in Fig. 6,
the utilization is defined as a ratio of the total amount of
load over the maximum load amount for the completion
of a dispatch candidate. Therefore, the utilization for each
dispatch candidate ? is estimated as follows:

TC(t)
P x (RFi(t) — min Sy ()

where 0 < k < P-1, TC(t) is the total load amount of flash
memory chips in runtime, P is the total number of flash
memory chips, Sj is the virtual start time of the k-th FC,
and RF' is the virtual completion time of r*. As shown in
Fig. 4, the utilization is investigated for Q-requests which
are pending in the request queue; to bound the latency
of requests, the number of dispatch candidates is limited
to the size of the command queue (Q). Among them, a
request with the maximum utilization is selected and chosen
from the request queue and transmitted to the storage; any
request can be selected among the backlogged requests and
therefore, BCU employs the request queue of the linked-list
structure.

When a new request is issued from the host, the utiliza-
tion of the request is examined together with the waiting
requests issued in advance. If the utilization of the new
request is greater than that of the waiting requests, the
waiting requests cannot be dispatched. When the waiting re-
quests are not dispatched repeatedly, their latencies increase
significantly. To bound the worst-case latency of requests,
BCU compensates the waiting requests for the deficit time
D(t); in fact, this methodology is inspired by the deficit time
of DRR [32]. Therefore, the storage utilization of a dispatch
candidate 7' is finally defined as follows:

TC(t) + D(t — 1)
P x (RF'(t) — min Sy (t))

where D(t-1) is the deficit time of the dispatch candidate.
Initially the deficit time of request is zero. After a dispatch

U(t) (11)

U(t)

(12)

request is determined, the deficit times of the requests
enqueued earlier than the dispatch request are updated.
For each request, the deficit time is accumulated by adding
the previous deficit time and the length of dispatch request.
In the next dispatch, the utilization of the waiting requests
increases by D(t-1), and hence their dispatching chance also
increases.

As explained before, the number and size of the out-
standing I/O requests is finite due to the limited concur-
rency of storage. Accordingly, the load interval (RFi(t) - min
Si(t)) cannot be larger than a certain value. In contrast, when
some requests are staying in the request queue persistently,
their deficit times D(t) steadily increase. If the deficit time of
a waiting request is greater than the total load amount, the
waiting request is dispatched unconditionally.

In overall, the computational overhead of DLBQ is O(2P
+ QxP + Q) in the worst case, where P is the total number
of flash memory chips and Q is the size of command queue.
As mentioned in Section 3.2, the overhead for managing the
virtual times is O(2P). In addition, the overhead to search a
dispatch request is O(Q x P). If the Q-th request is dispatched
from the request queue, the computation of the deficit times
needs the overhead of O(Q). On the other hand, the space
complexity of DLBQ is O(2P+2Q). Two virtual times are
needed per a chip. In addition, the maximum load of the
accessing chips and the deficit time are handled for each
request.

4 EXPERIMENTS

In this section, we evaluate the proposed scheduler with
various workloads. To verify the effectiveness of DLBQ,
we first validate our cost model. Then, we evaluate the
micro-benchmark and server benchmarks with various data
sets. In addition, we show the performance improvement of
DLBQ compared with the previous I/O schedulers.

4.1 Experimental Setup

All of the experiments presented in this section are con-
ducted on a Intel(R) Core(TM) i5-3330 (3.0 GHz, four cores)
and 4 GB of RAM. To measure the enhancement due to
DLBQ for flash-based storage, we use two Samsung SSDs
(PM850 Pro) [30] of 128 GB and 256 GB attached to the
storage interface of SATA 6G [23]. Because the number of
flash memory chips is differently configured depending on
the storage capacity, we test two SSDs of different capacities;
the reason for using the SSDs with the same industry is
because the internal algorithms or policy of SSDs consider-
ably differs according to industry. In DLBQ, the total flash
memory chips of 128 GB and 256 GB storage (P) are set to 16

0018-9340 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TC.2016.2636840, IEEE

Transactions on Computers

IEEE TRANSACTIONS ON COMPUTERS, VOL. X, NO. X, XXXX XXXX

1400
1200
1000
800
600

400

Response time of requests (us)
Number of accumulated operations

200

0 20000

40000 62000 82000

Number of requests

(a) Request response time according to the number of
accumulated operations

Fig. 7. Cost model validation

and 32, respectively. Also, the size of command queue (Q)
is set to 32. DLBQ is implemented on the GNU/Linux oper-
ating system with kernel version 3.5.0. DLBQ is compared
to the previous I/O schedulers of NOOP [33], FlashFQ [28],
ParDispatcher [22], and PIQ [5].

The main purpose of our experiments is to validate
whether the throughput and latency of the flash-based
storage is improved by using the DLBQ scheduler. For this
purpose, we exploit Flexible 1/O generator (Fio) that can
produce raw 1/Os [34]. To produce asynchronous 1/Os,
the ioengine of Fio is configured as Linux Native AIO
(libaio). In addition, Direct I/O is used to bypass the data
buffering within the file system. To reduce the performance
dependency between experiments, the experiment always
precedes the SSD TRIM command [23]; the frequency of
garbage collections can decrease because TRIM command
informs SSDs about the invalid blocks, which are no longer
used in the storage device. Each measurement performs 10
million requests.

Table 2 summarizes the characteristics of various work-
loads generated by Fio. Basically, the 1/O size, read/write
ratio, patterns, and threads of workloads are differently con-
figured; the I/O depth of all threads is limited to one. The
workloads are categorized in two types of micro-benchmark
and server benchmark.

4.2 Cost Model Validation

In order to validate our cost model, we first evaluate the
accuracy of our delay estimation using equation (3) and (5).
Fig. 7(a) plots the response time of requests for the web
server workload on the 128 GB SSD. The actual response
time of requests varies between 600 us and 1000 ps. As
shown in Fig. 7(a), we can observe that the response time
varies according to the number of the accumulated opera-
tions represented in the bar graph. Similarly, our cost model
(DLBQ) well follows the actual response time depending on
the number of operations. The error rate of DLBQ is 8 % on
average.

From the results, we demonstrate that our cost model is
accurate for the read-intensive workload such as web server.
However, when the write-intensive workload such as file
server causes an operation of garbage collection, it might be
a little difficult to provide an accurate modeling; the equa-
tion (3) is basically designed by the external loads produced
by host application and therefore it is difficult to predict
the internal loads produced by the garbage collection in

&= Load balance —4— NOOP_read
——DLBQ read === NOOP_write
- = =-DLBQ write

Throughput (MB/s)
-
8
Normalized load balance

112
082 o085 097 099 086

"mE mEEN s

1.6 14 12 1.0 0.8 0.6 0.4 0.2 0.1

Ratio of read threads for 100 write threads

(b) Throughput variation according to the different
read /write ratios of workload

advance. In fact, a major issue of storage performance for the
write-oriented workload is to prevent the significant delay
of read requests from the interference of write requests.
To guarantee the fairness of read performance, this paper
designs the dynamic queue selection (DQS). Accordingly,
the second experiment of cost model validation verifies
whether DQS can fairly dispatch the read requests from the
superfluous interference of write requests.

To generate the scenario that frequently carries out the
heavy operations of wear leveling and garbage collection,
4 KB random workloads has been requested after fully
writing 128 GB SSD. We have varied the number of read
threads while maintaining 100 write threads to change the
read/write workload ratio. Fig. 7(b) shows that the read
throughput of DLBQ highly outperforms that of NOOP for
all read/write ratios, while guaranteeing a constant write
throughput. The read throughput of DLBQ is greater than
the write throughput until the read ratio of workload is
0.4. In contrast, all read throughputs of NOOP significantly
decrease as the read ratio of workload decreases. Even if the
read ratio of workload (1.0) is equal to the write ratio, the
read throughput of NOOP is less than the write throughput.

Meanwhile, we additionally validate a load balance met-
ric that is measured by the deviation between read and write
throughput; as the deviation is greater, the load balance is
lower. The bar graph of Fig. 7(b) shows that the load balance
of DLBQ is normalized by the load balance of NOOP. As
shown in Fig. 7(b), the normalized load balance of DBLQ
is mostly smaller than one as 0.88 on average. Especially,
DLBQ considerably harmonizes the loads between read
and write queues when the read proportion of workload
becomes smaller.

4.3 Micro Benchmark

The micro-benchmark is aimed at evaluating the storage
throughput for five schedulers when the workload param-
eters, i.e.,, I/O size and the number of threads, are stat-
ically varied. In the benchmark, the other parameters of
read /write ratio and I/O pattern are fixed 1:1 and a random
pattern, respectively.

Fig. 8 shows the throughput variation according to the
request size. This experiment examines how well an I/O
scheduler mitigates the contention between I/O requests.
Because the contention is increased according to the number
of accessing flash chips, the request size increases from 4 KB
to 32 KB by 4 KB unit. The number of threads is set to 128.

0018-9340 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TC.2016.2636840, IEEE

Transactions on Computers

IEEE TRANSACTIONS ON COMPUTERS, VOL. X, NO. X, XXXX XXXX

14

2 13 mNOOP mFlashFQ
S OParDispatcher EPIQ
z 12 mDLBQ
é 1.1
s 1w
.g 0.9
= 08
§ 0.7

0.6
z

4 8 12 16 20 24 28 32 avg
1/0 size (KB)

(a) Normalized throughput on 128 GB SSD

Fig. 8. Throughput comparison according to I/O size

ENOOP @ FlashFQ
® ParDispatcher ®PIQ
mDLBQ

Normalized throughput

32 48 64 96 128 192 256
Number of threads

(a) Normalized throughput on 128 GB SSD

Fig. 9. Throughput comparison according to the number of threads

As shown in Fig. 8, the throughput of DLBQ outper-
forms the throughput of the other schedulers for all I/O
sizes; the throughput of all schedulers is normalized by the
throughput of NOOP. On average, the throughput of DLBQ
is 10 % greater than the throughput of NOOP on both SSDs.
Especially, the throughput enhancement is highly greater at
the requests with medium size (8 KB~16 KB). It means that
the medium-sized requests frequently incur the contention
problems of storage. Meanwhile, the throughput for 4 KB
I/0O does not improve even though an I/O scheduler is
exchanged. It is because the requests with a single page
(4 KB) can be mostly avoided by preferentially serving the
other idle chips. In addition, the throughput improvement
of large-sized requests is smaller because the requests fully
utilize all flash memory chips.

The second experiment of micro-benchmark validates
the throughput variation according to the number of
threads. This experiment checks how well an I/O sched-
uler leverages the increasing number of backlogged I/O
requests. For this experiment, the total number of threads
increases from 32 to 256 and the request size is fixed 8 KB.

Fig. 9 shows that the throughput of DLBQ greatly ex-
ceeds the throughput of the other schedulers. Up to 64
threads, the throughput of DBLQ is similar with the other
schedulers because the number of backlogged requests is
not enough to reorder. Since the storage handles inter-
nally 32 outstanding requests, the remaining requests are
only backlogged in the queue of scheduler. However, the
throughput of DLBQ remarkably outperforms the other
beyond 96 threads. The throughput of DLBQ is 30 % greater
than the throughput of the other schedulers. The key inten-
tion behind the increase of the number of threads is that
the opportunity of raising the balance of the distributed
load of flash memory chips increases. Thus, the throughput
of DLBQ can increase as the number of threads increases.
In contrast, the throughputs of the other schedulers are
not improved much even though the number of threads
increases.

10
5 14
2 3 aNOOP FlashFQ
5 L OParDispatcher BPIQ
g 1.2 mDLBQ
fu
zw
20
3 08
E o7
S o
4 8 12 16 20 24 28 32 awg
1/0 size (KB)
(b) Normalized throughput on 256 GB SSD
< 14
2 ;3 | [mNoOP BFlashFQ
) 1, | mParDispatcher mPIQ
é . mDLBQ
fu
T 10
S oe
]
E 0.8
s 07
r4

32 48 64 96 128 192 256
Number of threads

(b) Normalized throughput on 256 GB SSD

4.4 Server Benchmark

The server benchmark evaluates four common server work-
loads of web server, file server, database, and mail server.
These server workloads are referenced by the work of Seh-
gal et al. [24]. Like the micro-benchmark, DLBQ is compared
to the four schedulers of NOOP, FlashFQ, ParDispatcher,
and PIQ. In addition, the performance result of dynamic
queue selection (DQS) is added to verify the performance
impact of two algorithms, DQS and BCU, in DLBQ.

The experiments illustrate both the throughput and
latency in detail. The throughput results are normalized
by the throughput of the NOOP scheduler. In addition,
the throughput results distinguish between read and write
throughput. Meanwhile, the latency evaluation shows the
latency percentile of 90th or more because the worst-case
latency can severely increase due to the reordering policy
of schedulers; in fact, the most server applications want to
minimize tail latencies, which correspond to the worst user
experience [35].

4.4.1 Evaluation of Web Server Workload

The web server workload emulates the web applications
which frequently perform fast lookup for small-size files
such as Web page or Web log. To generate such a read-
intensive workload with small size, the workload is con-
figured as the read /write ratio of 9:1 and the request length
of mostly 4 KB or less. This workload is produced by 100
threads with a random pattern.

Fig. 10(a) shows that the normalized throughput of
DLBQ outperforms the throughput of the other schedulers
for the web server workload. Especially, only with the dy-
namic queue selection (DQS) method of DLBQ), the through-
put considerably increases by 13 % on the 128 GB and
256 GB SSD, when compared to the throughput of NOOP.
It means that the read requests are easily delayed by the
write requests. Accordingly, if the read and write requests
are sufficiently decoupled, the read throughput can largely
increase. Furthermore, when BCU is additionally used, the

0018-9340 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TC.2016.2636840, IEEE

Transactions on Computers

IEEE TRANSACTIONS ON COMPUTERS, VOL. X, NO. X, XXXX XXXX

1.4 25
12 113 118
1.0 1.00 1.00 0.93 0.99
0.8
0.6
0.4
0.2
0.0

1.00 *-

Dwrite
mread

Normalized throughput
Latency (ms)

——NOOP
FlashFQ
------- ParDispatcher
----PIQ
—#*—DQS

128 GB ‘ 256 GB

(a) Throughput

Fig. 10. Throughput and latency for web server workload

14 70
1.2
1.0
0.8
0.6
0.4
0.2
0.0

100 1.00 103 101 102 1.02 1,00 o 1.03 102 1.04 1.04 60

Normalized throughput
Latency (ms)
=
3

90 95 99 99.5 99.9 99.95

Percentile

(b) Latency on 128 GB SSD

99.99

128GB ‘

(@) Throughput

Latency (ms)

——NOOP
FlashFQ

90 95 99 99.5 99.9 9995 99.99

Percentile

(c) Latency on 256 GB SSD

z
g 100
"""""""" g 80 =
———NOOP 5 | a——a—
FlashFQ R FlashFQ
....... ParDispatcher - --no- ParDispatcher
-=--PIQ 40 —==-PIQ
—*—DQS 20 —%—DQS
—a—DLBQ —i— DLBQ
0
90 95 99 995 99.9 9995 99.99 90 95 99 995 999 9995 99.99

Percentile

(b) Latency on 128 GB SSD

Percentile

(c) Latency on 256 GB SSD

Fig. 11. Throughput and latency for file server workload

throughput more increases by 5 % on the 128 GB and 6 % on
the 256 GB SSD. As denoted in Table 2, the average request
size of the web server workload is 11 KB. Because a single
request accesses only two or three chips on the storage,
it results in the idleness of chips when different requests
access the same chip. Thus, BCU can preferentially dispatch
the requests that can increase the storage utilization.

In contrast, the throughput of ParDispatcher [22] is sig-
nificantly worse than the throughput of the other sched-
ulers. The throughput is declined by 7 % on the 128 GB
SSD and 10 % on the 256 GB SSD when compared to
the throughput of NOOP. It is because the batch size of
ParDispatcher is statically predefined at compile time; in
ParDispatcher, the numbers of read and write requests
belonging to a batch are set to 32 and 16, respectively. This
static batching method transmits I/O requests depending on
the internally fixed ratio, irrespective of the external ratios of
workloads. For this web server workload, the ratio of read
and write bandwidth of ParDispatcher is nearly 4:1 (read:
241 MB/s, write: 63 MB/s) on the 256 GB SSD, even though
the external ratio is 9:1. In order to match with the internal
ratio of 2:1, the write throughput slightly increases but the
read throughput considerably decreases. The measurement
shows that the static batching method decreases the storage
throughput more when the predefined batch ratio does not
coincide with the external ratio of workloads.

On the other hand, Fig. 10(b) and Fig. 10(c) show the
long-tail latencies for the web server workload. The latencies
of all schedulers are similar to each other except for the
latency of ParDispatcher. Because the average size of web
server workload is small in overall, the latencies of most
schedulers are the same. However, similar to the throughput
results, the static batching method of ParDispatcher gives an
adverse effect on the long-tail latencies.

4.4.2 Evaluation of File Server Workload

The file server workload emulates the file server applica-
tions that provide the storing and sharing of large-size files
to users. The length of I/O requests is proportional to the
file cluster size of 4 KB. To generate such a write-intensive
workload, the workload is configured as the read/write
ratio of 1:9 and is composed of I/O requests with mostly
32 KB or more. Also, the workload has a random pattern to
access files with various sizes.

Fig. 11(a) shows the throughput results for the file server
workload. In contrast to the web server results, the through-
put of all schedulers are within 4 % difference compared to
NOOP. There is not much performance variation due to the
effectiveness of 1/O schedulers. As described in Table 2, the
average request size of the file server workload is 64 KB. It
means that a single request accesses 16 flash memory chips
at one time, and so most of flash chips are always activated.
Therefore, the throughput is not improved largely even if
the dispatching order of requests is changed.

However, this write-oriented workload is hard to ensure
the fairness of read requests. The response time of read
requests is longer due to the heavy operations associated
with write requests. Thus, we consider the actual operation
time of read/write page to prevent the long latency of read
requests. As shown in Fig. 11(a), the read throughput of
DLBQ improves by 4 % on the 128 GB and 256 GB SSD.

Meanwhile, when the request size is large, I/O reorder-
ing is not effective as shown in Fig. 11(a). Nevertheless, if
reordering is aggressively performed, the latency of requests
is considerably longer. Fortunately, such reordering is lim-
ited by the latency restrain strategies of DLBQ such as the
load balancing between read /write queues and the loss time
of waiting requests. As shown in Fig. 11(b) and Fig. 11(c),
the latency of DLBQ is similar with the latency of the other
schedulers.

0018-9340 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TC.2016.2636840, IEEE

Transactions on Computers

IEEE TRANSACTIONS ON COMPUTERS, VOL. X, NO. X, XXXX XXXX

1.4
1.2
1.0
0.8
0.6
0.4
0.2
0.0

124 128 40

1.17 1.20 1.20

w
=

Normalized throughput
w2
S

Latency (ms)

-
=5

<

Latency (ms)

50

40

30

——NOOP

FlashFQ 20 FlashFQ
------- ParDispatcher = == - ParDispatcher
----PIQ 10 ----PIQ
—%—DQS —»*—DQS

—a—DLBQ

128 GB ‘ 256 GB

(a) Throughput

90 95 99 99.5 99.9
Percentile

(b) Latency on 128 GB SSD

99.95

99.99

—a—DLBQ

90 95 99 99.5 99.9
Percentile

(c) Latency on 256 GB SSD

99.95

99.99

12

Fig. 12. Throughput and latency for database workload

14 25
12 1.12 113
1.0 100 0.9 0.92 095

0.8
0.6
0.4
0.2
0.0

——NOOP
FlashFQ
ParDispatcher
PIQ

1.00 1.01

Latency (ms)
a

Normalized throughput

——NOOP

L s FlashFQ
- z —--e--- ParDispatcher "4
________ S 20 { T700MO
z —*—DQS
g —a—DLBQ
g
5
3

90 95 99

128 GB ‘

256 GB

(a) Throughput

Fig. 13. Throughput and latency for mail server workload

4.4.3 Evaluation of Database Workload

The database workload emulates a specific systems, called
online transaction processing (OLTP), which facilitates and
manages transaction-oriented applications such as order,
finance, or retail. On the typical database engine, the OLTP
workloads tend to select a small number of records in a table
at a time. Thus, the storage receives the data of medium size
which is uniformly distributed from 8 KB to 64 KB. For this
experiment, 200 threads produce the I/O requests with a
random pattern and the ratio of read /write threads is 2:1.

Fig. 12(a) demonstrates that the throughput of DLBQ
is better than the throughput of the other schedulers for
the database workload. The throughput of DLBQ increases
by 20 % on the 128 GB and 28 % on the 256 GB SSD.
Similar to the throughput results of web server workload,
the throughput of DQS highly increases by 17 % on the 128
GB and 24 % on the 256 GB SSD. However, one thing to
note is that the throughput of DQS more increases by 7 %
when the storage capacity increases. As the storage capacity
increases, the number of flash memory chips increases.
It means that the read and write requests are frequently
interfered to each other because the number of accessing
chips increases. Accordingly, the number of I/O requests
belonging to a batch must be varied according to the storage
capacity. Meanwhile, our cost model is basically constructed
according to the total number of flash memory chips (P).
Thus, DQS based on the cost model can well decouple the
read and write requests even though the storage capacity is
changed.

4.4.4 Evaluation of Mail Server Workload

The mail sever workload emulates the internet softwares
such as electronic mail, netnews, or web-based commerce.
Unlike the above three workloads, the mail server workload
is sequentially appended by 130 threads. Because the size
of sequential requests is typically fixed, the length of I/O

99.5 99.9
Percentile

(b) Latency on 128 GB SSD

99.95 99.99 0

90 95 99 99.5 99.9
Percentile

(c) Latency on 256 GB SSD

99.95 99.99

request is set to 16 KB. The ratio of read and write threads
is configured as 1:1.

Fig. 13(a) shows that the throughput of DLBQ is highest
for the mail server workload. The throughput of DLBQ
increases by 12 % on the 128 GB and 256 GB SSD. However,
the throughput gain from the method of BCU increas-
ingly decreases as the write ratio of workload increases.
The throughput gains of web server workload, database
workload, and mail server workload are 6 %, 3 %, and
1 %, respectively. Because recent SSDs are mostly equipped
with a write buffer internally, the data of write requests
are first piled up in the write buffer. Thus, the reordering
method of BCU is effective only for read throughput and
the performance impact of BCU is different depending on
the read ratio of workloads.

On the other hand, Fig. 13(b) and Fig. 13(c) show that
the long-tail latencies of DLBQ are slightly higher than the
latencies of the other schedulers. This latency trend similarly
appears to the database workload in Fig. 12(b) and Fig. 12(c).
The cause of latency increase is that DLBQ more assigns
the read proportion of workload according to the actual
processing time of a single page. It increases the response
time of write requests and thus the long-tail latency becomes
longer. However, the increase rate of latency is bounded
to 10 % because long waiting requests are preferentially
served.

4.4.5 Overall Throughput Evaluation of Server Workloads

Each of the above server workloads shows the performance
results for the only one case of read and write ratio. How-
ever, the performance of flash-based storage is considerably
affected by the read/write ratio [36]. Because the mixed
requests cause various internal operations such as read
prefetch and the flush of dirty data, their competition results
in diverse performance degradation. Thus, to extensively
validate the throughput enhancement of DLBQ, we change

0018-9340 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TC.2016.2636840, IEEE

Transactions on Computers

IEEE TRANSACTIONS ON COMPUTERS, VOL. X, NO. X, XXXX XXXX 13
E 14 .
E‘) i; ONOOP ®FlashFQ mParDispatcher OPIQ ®mDQS ©DLBQ
2 11
= 10 -
£ 09 -
s 08 -
£ 07
z 06 -

web server | web server | database database file server | file server | mail server | mail server | mail server avg avg avg

9:1) (1:9) (2:1) 1:2) 9:1) 1:9) 4:1) (1:1) 1:4) (read-ori.) | (write-ori.) (overall)
Random ‘ Sequential Average
(a) 128 GB SSD

E 14 4
E" }; : ONOOP ®FlashFQ ®ParDispatcher OPIQ ®WDQS ©EDLBQ
FERRE
= 1.0 -
2 09
e 0.8 -
£ o074
z 0.6 -

web server | web server database database file server file server | mail server | mail server | mail server avg avg avg

9:1) 1:9) (2:1) 1:2) 9:1) 1:9) 4:1) 1:1) 1:4) (read-ori.) | (write-ori.) (overall)
Random ‘ Sequential Average

(b) 256 GB SSD

Fig. 14. Overall throughput for server workloads

symmetrically the read/write ratios of the above server
workloads and evaluate additionally the workloads. This
section also shows the average throughput of read-oriented,
write-oriented, and overall workloads. In addition, the
throughput of random workloads and sequential workloads
are separated.

Fig. 14 shows the throughput results for all datasets of
server workloads. Looking at the read-oriented workloads,
the throughput of DLBQ is highly greater than the through-
put of the other schedulers. On average, the throughput is
improved by 13 % on the 128 GB SSD and 17 % on the 256
GB SSD. According to the throughput results of DQS, we can
first observe that the sufficient decoupling between read and
write requests is considerably effective for achieving higher
throughput. Further, the I/O reordering of BCU is effective
when the read ratio of workloads are relatively higher.
When the dispatch order of I/O requests are re-assigned
to mitigate the chip collisions between 1/O requests, the
storage utilization can be more improved. Owing to BCU,
the throughput of DLBQ more increases by 4 % on average.

Meanwhile, for the write-oriented workloads, the aver-
age throughput of DLBQ increases by 8 % on the 128 GB SSD
and 14 % on the 256 GB SSD. Especially, the results on the 1:2
database workload considerably improve the throughput by
24 % on the 128 GB SSD and 38 % on the 256 GB SSD. In fact,
the results of ParDispatcher are also very competitive; this is
because both approaches aim to prevent the unfair schedul-
ing of read operations blocked by the long write operations.
However, as mentioned before, the static batching method
of ParDispatcher significantly degrades the performance
with the read-oriented workloads. The proposed DLBQ can
successfully improve the performance drop caused by the
read /write interference for diverse workload sets.

In overall, DLBQ achieves a 11% of performance im-
provement on the 128 GB SSD and 15 % on the 256 GB SSD
for four common server workloads. Especially, when the
workloads are relatively small sizes and random pattern, the

storage throughput is highly improved. In addition, DLBQ
effectively improves the throughput even if the number of
flash memory chips increases depending on the storage ca-
pacity. Conclusively, DLBQ accomplishes high throughput
of storage for various system environments.

5 CONCLUSIONS

We discovered that the previous works on I/O scheduling
are not optimized when the performance of flash-based
storage greatly varies according to the internal constraints of
the storage, such as static striping and limited concurrency.
In particular, when workloads result in contention in which
requested data are handled only by a subset of the parallel
resources within the storage, the performance is consid-
erably degraded. To solve the contention problems, we
propose the Dynamic Load Balanced Queuing (DLBQ) which
schedules I/O requests to maximize the storage utilization
while limiting the long-tail latency. For that purpose, we
have introduced the cost model which represents the load
assigned to flash memory chips using a virtual time method.
On the basis of the cost model, the strategy of dynamic queue
selection (DQS) prevents the mixing of read/write requests
within the storage device. Also, the method of balanced
chip utilization (BCU) maintains the load asymmetrically
distributed to flash memory chips as balanced as possible.
We have evaluated the throughput and latency of DLBQ
for various workloads. By varying the parameters of the
workloads such as the I/O patterns, read /write ratios, and
sizes, we compared the throughput and latency versus the
previously proposed I/O schedulers for the flash-based
storage. Consequently, we have shown that DLBQ delivers
a significantly higher throughput than the other scheduling
algorithms while maintaining the worst-case latency.

REFERENCES

[1] N. Agrawal, V. Prabhakaran, T. Wobber, J. D. Davis, M. S. Manasse,
and R. Panigrahy, “Design Tradeoffs for SSD Performance.” in
USENIX Annual Technical Conference, 2008, pp. 57-70.

0018-9340 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TC.2016.2636840, IEEE

Transactions on Computers

IEEE TRANSACTIONS ON COMPUTERS, VOL. X, NO. X, XXXX XXXX

(2]

(3]

(4]

(5]

(6]

(71

(8]

(9]

[10]

(1]

(12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

[22]

0018-9340 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

C. Dirik and B. Jacob, “The performance of PC solid-state disks
(SSDs) as a function of bandwidth, concurrency, device archi-
tecture, and system organization,” in ACM SIGARCH Computer
Architecture News, vol. 37, no. 3. ACM, 2009, pp. 279-289.

Y. Hu, H. Jiang, D. Feng, L. Tian, H. Luo, and C. Ren, “Explor-
ing and Exploiting the Multilevel Parallelism Inside SSDs for
Improved Performance and Endurance,” Computers, IEEE Trans-
actions on, vol. 62, no. 6, pp. 1141-1155, 2013.

C. P. Chen and C.-Y. Zhang, “Data-intensive applications, chal-
lenges, techniques and technologies: A survey on Big Data,”
Information Sciences, vol. 275, pp. 314-347, 2014.

C. Gao, L. Shi, M. Zhao, C. J. Xue, K. Wu, and E. H. Sha, “Exploit-
ing parallelism in i/0 scheduling for access conflict minimization
in flash-based solid state drives,” in Mass Storage Systems and
Technologies (MSST), 2014 30th Symposium on. IEEE, 2014, pp.
1-11.

M. Jung and M. T. Kandemir, “Sprinkler: Maximizing resource
utilization in many-chip solid state disks,” in High Performance
Computer Architecture (HPCA), 2014 IEEE 20th International Sym-
posium on. 1EEE, 2014, pp. 524-535.

M. Jung, E. H. Wilson III, and M. Kandemir, “Physically addressed
queueing (PAQ): improving parallelism in solid state disks,” in
ACM SIGARCH Computer Architecture News, vol. 40, no. 3. IEEE
Computer Society, 2012, pp. 404-415.

Q. Zhang, D. Feng, F. Wang, and Y. Xie, “An Efficient, QoS-
Aware 1/0 Scheduler for Solid State Drive,” in High Performance
Computing and Communications & 2013 IEEE International Conference
on Embedded and Ubiquitous Computing (HPCC_EUC), 2013 IEEE
10th International Conference on. IEEE, 2013, pp. 1408-1415.

S.-y. Park, E. Seo, J.-Y. Shin, S. Maeng, and J. Lee, “Exploiting
internal parallelism of flash-based SSDs,” Computer Architecture
Letters, vol. 9, no. 1, pp. 9-12, 2010.

M. Jung and M. Kandemir, “Revisiting widely held SSD expecta-
tions and rethinking system-level implications,” in ACM SIGMET-
RICS Performance Evaluation Review, vol. 41, no. 1. ~ACM, 2013,
pp- 203-216.

W. Jin, J. S. Chase, and]. Kaur, “Interposed Proportional Sharing
for a Storage Service Utility,” in ACM SIGMETRICS Performance
Evaluation Review, vol. 32,no. 1. ACM, 2004, pp. 37-48.

J. Zhang, A. Sivasubramaniam, Q. Wang, A. Riska, and E. Riedel,
“Storage Performance Virtualization via Throughput and Latency
Control,” ACM Transactions on Storage (TOS), vol. 2, no. 3, pp. 283—
308, 2006.

M. Wachs, M. Abd-El-Malek, E. Thereska, and G. R. Ganger,
“Argon: Performance Insulation for Shared Storage Servers.” in
FAST, vol. 7, 2007, pp. 5-5.

A. Gulati, I. Ahmad, C. A. Waldspurger et al., “PARDA: Propor-
tional Allocation of Resources for Distributed Storage Access.” in
FAST, vol. 9, 2009, pp. 85-98.

P. Valente and F. Checconi, “High Throughput Disk Scheduling
with Fair Bandwidth Distribution,” Computers, IEEE Transactions
on, vol. 59, no. 9, pp. 1172-1186, 2010.

A. Merchant, M. Uysal, P. Padala, X. Zhu, S. Singhal, and K. Shin,
“Maestro: Quality-of-Service in Large Disk Arrays,” in Proceedings
of the 8th ACM international conference on Autonomic computing.
ACM, 2011, pp. 245-254.

A. Wang, S. Venkataraman, S. Alspaugh, R. Katz, and I. Stoica,
“Cake: Enabling High-level SLOs on Shared Storage Systems,”
in Proceedings of the Third ACM Symposium on Cloud Computing.
ACM, 2012, p. 14.

J. Kim, Y. Oh, E. Kim, J. Choi, D. Lee, and S. H. Noh, “Disk
schedulers for solid state drivers,” in Proceedings of the seventh
ACM international conference on Embedded software. ~ ACM, 2009,
pp- 295-304.

M. P. DUNN, “A new I/O scheduler for solid state devices,” Ph.D.
dissertation, Texas A&M University, 2009.

M. H. Jo and W. W. Ro, “Contention-Free Fair Queuing for High-
Speed Storage with RAID-0 Architecture,” in High Performance
Computing and Communications (HPCC), 2015 IEEE 17th Interna-
tional Conference on. IEEE, 2015, pp. 175-183.

S. Park and K. Shen, “FIOS: A Fair, Efficient Flash I/O Scheduler.”
in FAST, 2012, p. 13.

H. Wang, P. Huang, S. He, K. Zhou, C. Li, and X. He, “A novel
I/0 scheduler for SSD with improved performance and lifetime,”
in Mass Storage Systems and Technologies (MSST), 2013 IEEE 29th
Symposium on. 1EEE, 2013, pp. 1-5.

(23]

[24]

[25]

[26]

[27]

(28]

[29]

[30]

[31]

[32]

[33]
[34]

[35]

[36]

‘1

14

Serial ATA International Organizations, “Serial ATA Revision 3.1,”
2011.

P. Sehgal, V. Tarasov, and E. Zadok, “Evaluating performance and
energy in file system server workloads.” in FAST, 2010, pp. 253-
266.

J. Yoo, Y. Won, J. Hwang, S. Kang, J. Choi, S. Yoon, and]. Cha,
“VSSIM: Virtual Machine based SSD Simulator,” in Mass Storage
Systems and Technologies (MSST), 2013 IEEE 29th Symposium on.
IEEE, 2013, pp. 1-14.

A. Demers, S. Keshav, and S. Shenker, “Analysis and Simulation
of a Fair Queueing Algorithm,” in ACM SIGCOMM Computer
Communication Review, vol. 19, no. 4. ACM, 1989, pp. 1-12.

A. K. Parekh and R. G. Gallager, “A Generalized Processor Sharing
Approach to Flow Control in Integrated Services Networks: The
Single-Node Case,” IEEE/ACM Transactions on Networking (ToN),
vol. 1, no. 3, pp. 344-357, 1993.

K. Shen and S. Park, “FlashFQ: A Fair Queueing I/O Scheduler for
Flash-Based SSDs.” in USENIX Annual Technical Conference, 2013,
pp- 67-78.

M. Jung and M. T. Kandemir, “An Evaluation of Different Page
Allocation Strategies on High-Speed SSDs.” in HotStorage, 2012.
“Samsung PM850 Pro,” URL http://www.samsung.com/global/business/
semiconductor/minisite/SSD/downloads/document/Samsung_SSD_850
_PRO_Data_Sheet_rev_2_0.pdf, 2015.

“Samsung PM1633a,” URL http://www.samsung.com/semiconductor/
global/file/insight/2016/06/PM1633a-flyer-0.pdf, 2016.

M. Shreedhar and G. Varghese, “Efficient Fair Queuing using
Deficit Round Robin,” Networking, IEEE/ACM Transactions on,
vol. 4, no. 3, pp. 375-385, 1996.

J. Axboe, “Linux block IOpresent and future,” in Ottawa Linux
Symp. Citeseer, 2004, pp. 51-61.

——, “Fio-flexible io tester,” URL http://freecode. com/project s/fio,
2008.

J. Leverich and C. Kozyrakis, “Reconciling high server utilization
and sub-millisecond quality-of-service,” in Proceedings of the Ninth
European Conference on Computer Systems. ACM, 2014, p. 4.

F. Chen, D. A. Koufaty, and X. Zhang, “Understanding Intrinsic
Characteristics and System Implications of Flash Memory based
Solid State Drives,” in ACM SIGMETRICS Performance Evaluation
Review, vol. 37, no. 1. ACM, 2009, pp. 181-192.

Myung Hyun Jo He received his B.S. and M.S.
degree in Computer Science and Engineering
from Hanyang University, Ansan, Korea, in 2004
and 2006. He has been worked as a senior engi-
neer in the Software Development Team, Mem-
ory Division, Samsung Electronics. He is also
currently pursuing his Ph.D. degree in the School
of Electrical and Electronic Engineering, Yonsei
University, and is with the Embedded Systems
and Computer Architecture Lab. His current re-
search interests are /O scheduling and load

balancing using SSD and SSD microarchitecture design.

Won Woo Ro He received his B.S. degree in
Electrical Engineering from Yonsei University,
Seoul, Korea, in 1996. He received his M.S. and
Ph.D. degrees in Electrical Engineering from the
University of Southern California in 1999 and
2004, respectively. He worked as a research
scientist in the Electrical Engineering and Com-
puter Science Department at the University of
California, Irvine. He currently works as an As-
sistant Professor in the School of Electrical and
Electronic Engineering at Yonsei University. Prior

to joining Yonsei University, he worked as an Assistant Professor in the
Department of Electrical and Computer Engineering at the California
State University, Northridge. His industry experience also includes a
college internship at Apple Computer Inc. and a contract software engi-
neer with ARM Inc. His current research interests are high-performance
microprocessor design, compiler optimization, and embedded system
designs.

