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Abstract 
Due to the growing popularity of consumer virtual reality devices, the new surge in the use of computer-
generated terrain is already happening. That leads to the need to develop new fast and efficient methods 
of landscapes generation. However, lack of flexibility of user control over terrain generation in most 
popular modern terrain generation algorithms is a big part of terrain generation problem. In this paper, 
we present a new method for generating three-dimensional landscapes based on modified Dijkstra 
algorithm. The proposed method allows a user to set the initial location of landscape features and select 
or create weight functions that determine the appearance of the generated terrain. It has a lower 
computational cost compared to the closest analogs giving the equal quality of results and allows users 
to create various types of terrain, as well as to combine them together in one landscape.  
 
Keywords: terrain generation, weight functions, virtual worlds, visualization 

1 Introduction 
Generation and visualization of virtual landscapes is an actual task in different areas, such as 

development of the educational and simulation environments, video games, the creation of decorations 
for movies and animations, as well as environments for simulation of various natural processes [1]. Due 
to the growing popularity of consumer virtual reality devices, the new surge in the use of computer-
generated terrain is already happening. That leads to the need to develop new fast and efficient methods 
of landscapes generation. 

Most of the modern generation algorithms generate terrains that require subsequent manual revision 
by designers or in need of automatic completion by sophisticated algorithms of erosion, climate and 
weather strains, like a thermal distortion of the landscape. Such approach is well suited for applications 
where it is necessary to create a single rather small area or when the landscapes are configured manually 
but is ill-suited for the generation of large terrain areas in a fully automatic mode. 
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This paper describes a new method of terrain generation based on Dijkstra algorithm and the use of 
advanced weight functions that allow to balance between initial user control and fully automated 
generation.  

2 Related Works 
The problem of the terrain generation has a long history and still a universal algorithm that can be 

used for any task does not exist. In the 1968 Mandelbrot and Van Ness described the fractal Brownian 
motion [2] and 15 years later Fournier et al. proposed a method for fractal Brownian surfaces generation 
based on midpoint displacement with linear time complexity [3]. In 1985 Perlin presented a gradient 
noise [4] to generate procedural textures, including height maps, that is still commonly used as a part of 
terrain generation pipeline. All these studies laid the foundation for the family of fractal methods based 
on the addition of the level of details using self-similarity. Despite the simplicity of these methods, they 
are still used for the terrain generation and underpin the popular powerful tools, such as World Machine 
[5] and Terragen [6]. 

Modern requirements for terrain generation algorithms have been formulated by Saunders [7]. 
However, the most popular algorithms do not meet requirements in “permit a high degree of human 
control” and “be able to reproduce a wide variety of recognizable terrain types and features realistically, 
in believable relationship to one another”. They generate uniform landscapes and locations that quickly 
become boring. Attempts to solve these issues lead to the unnecessary complication of the initial 
parameters and the need for active participation of the human in the terrain creation. Also, the 
development of the generation algorithms is always an attempt to strike a balance between these two 
extremes. 

Further development of the landscape generators went in several directions. Kelley et al. [8] 
presented a method of terrain generation based on the stream erosion, and Musgrave et al. [9] developed 
the idea of using the hydraulic and thermal erosion. This determined the new direction of the generators 
based on erosion that was extended further by works of Nagashima [10], Benes et al. [11], Cordonnier 
et al. [12] and other authors. Using different types of erosion is one of the most popular ways to improve 
the look of the landscape. However, such methods are also not entirely satisfying the Sanders’ 
requirements, mainly due to the low performance. Furthermore, the implementation of erosion still 
requires the basic landscape and generation of this basic terrain must meet the same requirements. Brosz 
et al. in [13] introduced a method of details improving for low-quality landscapes using highly detailed 
real terrain data, which allows increase the realism of the terrain created in any manner without the use 
of erosion. 

Another approach to landscape generation is to use patch-based and feature-based generators. These 
algorithms allow the user to mark the location of the main elements (features) of the landscape, and the 
algorithm completes the terrain mesh using this data. Belhadj and Audibert [14] proposed a method that 
uses precomputed ridge lines and rivers network and fills the rest of the landscape using midpoint 
displacement. Zhou et al. in their work [15] proposed a method for transporting real landscape elements 
on the user-defined features. Their method allows to create a detailed and nice-looking landscape but 
poorly solves the problem of the diversity of terrain features. Moreover, this method is in need of real 
landscape data that is not always possible. Also, a significant drawback is the high computational cost 
of this method, caused by the need not only to build the landscape but also to search for suitable areas 
in the existing height map. 

In 2009, Gain [16] presented a method to create mountains relying on the custom profiles. It is well 
suited as an editing tool, but not for entirely automatic generation. Hnaidi et al. [17], developed the idea 
of Gain by filling in the landscape between feature lines using diffusion equation. Such method gives 
good results but requires advance preparation of detailed locations of features. 



Dijkstra-based Terrain Generation Using Advanced Weight Functions Kirill Golubev et al.

154 

 

In [18] Rusnell et al. describe a method based on Dijkstra algorithm and blending of layers, which 
are generated in accordance with individual features. Method works significantly faster than Zhou’s 
and, in some cases, able to produce results with better quality, but it has several drawbacks. They include 
the monotonous shape of slopes that belong to the same profile, as well as the procedure of blending 
that significantly increases the time of generation of the landscape.  

The method proposed in this paper is based on Dijkstra's algorithm, the same approach as by Rusnell 
et al., but it uses other ways of calculating weights of the edges and performs all the computations on a 
single mesh that gives a significant gain in performance. 

3 Method Description 
The primary goal of the proposed method is to obtain a landscape in the form of a height map. To 

do this, we form intermediate weight maps that represent the impact of various landscape features. Then 
we define a weight function that receives values of all detail maps and data in a current node and 
calculates the height difference for this node. Next, the initial set of nodes is used as a frontier for the 
modified Dijkstra algorithm that uses weight function instead of static weights. The proposed method is 
summarized in Listing 1. 

 
Listing 1: Dijkstra-based terrain generation method using advanced weight functions. 

1. 
2. 
3. 
4. 

a. 
b. 
c. 
d. 
e. 
f. 
g. 
h. 
i. 
j. 
k. 
l. 
m. 
n. 

Define weight function delta (m1, m2, …, mn, p) 
Define detail maps M1-Mn,  
Define initial points of algorithm P. 
Execute modified Dijkstra algorithm: 

Q <- P 
while(|q| > 0) 
  Q -> p 
  p.processed = true 
  for each n - neighbor of p 
    if (not p.processed) 
 d = delta(M1[p], M2[p], …, Mn[p], p) 
      if (h[n] < h[p] - d) then 
   h[n] = h[p] - d 
        Q <- n 
      end if 
    end if 
  end for 
end while 

 
Positive weight function delta(m1, m2, … ,mn, p) is declared on step 1. It can be either uniformly 

distributed random value or complex conditional sub-algorithm that computes height difference based 
on detail maps values and data of parent node p such as height, position on height map, parent of the 
node, spawn (node p_0 from P from which we come to p) and feature stats. By using different weight 
function behaviors allows to split generated landscape into biomes and combine different terrain types, 
such as dunes and cliffs. 

At the second step, terrain detail maps are chosen. Different detail maps can be used for different 
purposes: from simple noises to define steepness or feature intensity, to biomes placement, road maps, 
shorelines definition, etc. 

The third step sets the initial nodes that represent highest points of landscape features and used as 
initial values for Dijkstra algorithm. For examples in this paper, a uniform distribution of features was 
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used, mostly with single points or Bezier-based lines. However, different approach can be used to create 
specific landscapes, for example, using hand-drawn features placement. 

On the final step modified Dijkstra algorithm is running. It uses priority queue Q to store all nodes 
that ready to be processed. It checks its neighbors n for each node p taken from the queue. If the neighbor 
node is not processed by an algorithm yet, it calculates its new height h[n] as a difference between 
height of p and an edge weight d and updates it if the old value is lower. The weights of the edges are 
not set beforehand and are calculated dynamically on the basis of the weight function delta at the time 
of treatment to the edge. Point updates only if the new height is greater than the previously recorded 
values at this point. 

The computational complexity of steps from 1 to 3 is O(n). Dijkstra's algorithm works for 
O(n*log(w)), where w is not more than 6*n (and in fact significantly less). Thus, the total running time 
is O(n*log(n)). The number of computations of the weight functions value is O (n) at the same time. 

3.1 Weight Functions 
Weight functions are a powerful way to alter landscape generated by the proposed method. Using 

different weight functions, it is possible to create hills, mountains, dunes or any other type of terrain, 
pack them into biomes and join them without any artifacts. 

Weight function can differ from simple linear or uniform math functions using only vertex value 
from a height map, to complex sub-algorithms depending on detail map value, child and parent node 
relative position, etc. For example, dunes can be created by using basic constant multiplied by the scalar 
product of wind direction (specified in user settings) and direction to feature-spawn node (Figure 1). 
That weight function can be described in the following equation: 

δ
where  is base weight that can be a constant, a noise value or somehow interpolated parent node 
height, I and R is interpolation and reverse interpolation δ δ

, respectively  is normalized wind direction and δ is distance between current node and node 
from initial Dijkstra frontier.  

As another example, canyons, terraces and crags can be created by setting higher weight values at 
specific nodes, determined by spawn-node distance or detail map values. 

 
Figure 1: An example of the desert landscape, generated using the advanced weight functions and the shape of 

basic features. 
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3.2 Placement of Initial Points 
Another way to customize generated landscape is to set specific basic nodes for Dijkstra algorithm. 

It can be set by the user or generated by the placement algorithm. If the initial set consists of randomly 
selected single points (mountain peaks), mountains look uniform and unnatural. In this case, the 
landscape can be improved by the user by setting not only points but lines, Bezier curves or more 
complicated shapes, like sine sum graphs that were used to produce the sides of the dunes at Figure 1. 
For the mountain landscape polylines of Bezier curves are well suited. To generate ridges, we took three-
dimensional Bezier curve, placed it on the height map and added Perlin noise. After all these operations 
we set all of this points as initial nodes for the algorithm. Resulting landscape presented in Figure 2. 

In general, for any type of weight function, it makes sense to choose individual initial set guided by 
the basic purpose of the landscape, real data, and user’s fantasy. 

4  Results and Performance Evaluation 
We use Unity3D game engine and C# programming language to implement the proposed method 

and terrain component to visualize resulting landscape. All tests were performed on AMD Athlon(™) 
II X4 645 Processor 3.11GHz with 8 GB RAM and NVidia GeForce GT440 video card. Figure 3 shows 
a set of landscape examples generated by the proposed method and Table 1 shows a performance 
evaluation for this examples.   

 
Figure 2: Mountain ridges generated using Bezier curves as an initial data. 

Example Height map 
resolution 

Features count Computation 
time, sec 

Weight function 
calls 

1 512x512 128 3.17 825224 
2 512x512 4 2.58 776535 
3 1024x1024 48 12.35 3201594 
4 2048x2048 2048 75.89 13077911 

Table 1: Performance evaluation of proposed method for examples from Figure 3. 
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The first example (Figure 3a) demonstrates low-resolution landscape of big area and shows 
irregularity in mountain placement, untypical for most fully-automated terrain generators. The second 
example at Figure 3b shows big mountains created using a height map with the same resolution as the 
previous one and demonstrates the ability of our method to generate detailed landscapes. The third 
example at Figure 3c and 3d show complex landscape with different feature types, created on 1024x1024 
resolution height map with a medium scale of mountains. The fourth example at Figure 3e and 3f 
demonstrates a desert, created on a big 2048x2048 height map and contains a lot of small features like 
dunes and crags. 

For more precise evaluation of the proposed method complexity, we made measurements of weight 
function calls and computation time by varying height map size and initial features count and 
summarized it in Table 2.  

It can be noticed that execution time grows even when weight function calls count decreasing at 
512…2048 features count examples. From this we can conclude that the time required for the calculation 
of weight functions is significantly lower than for the implementation of a priority queue in Dijkstra 

 
Figure 3: Screenshots of generated landscapes: a – (example 1) a big area landscape using low-resolution height 
map; b - (example 2) a small area (single mountain) with the same resolution as the example 1; c, d - (example 3) 
a complex landscape with different feature types, e, f - (example 4) a highly detailed desert landscape with a lot 

of small features like dunes and crags.  



Dijkstra-based Terrain Generation Using Advanced Weight Functions Kirill Golubev et al.

158 

 

algorithm, which has O(log(n)) operation time per node that exceeds the constant time needed to 
compute weight functions. Thus, their complexity does not reduce the performance of the method. 

As it is shown in Table 2, algorithm execution time does not depend on feature types or its amount 
a lot, but mostly on height map resolution. At the same time, its ability to create compound multi-
featured terrain surpass closest analogs that are currently used for terrain generation. 

 

4.1 Comparison with Rusnell`s Method 
As was mentioned in Section 2, in [18] Rusnell et al. presented terrain generation method also based 

on Dijkstra algorithm, using separate Dijkstra runs for each landscape feature and then mixing the 
resulting height maps.  

The method that we are proposing in this paper is also based on Dijkstra algorithm. However, instead 
of calculating the profiles for each generator node, we use weight functions. They are based on one or 
more features maps that are matched with the vertices on a height map. Also, in the presented algorithm, 
the height of the point is calculated in the first pass of the algorithm that can significantly reduce the 
landscape generation time. For some particular cases, the performance benefit of our method reaches a 
few dozen times. However, one pass execution makes landscapes coarser at the junctions of the slopes 
with different features and at the initial points. 

Using the detail maps instead of the usual noise allows creating a much more detailed terrain. 
Particularly in Rusnell’s method mountains have a pronounced symmetry, that can be easily solved 
using our method by setting detail maps. Figure 4 shows a comparison of landscapes generated by 
Rusnell et al. and our methods with same basic settings. 

For full comparison, we present time and complexity stats for different landscape sizes for examples 
1 and 2. 

According to the results obtained in comparative tests, it can be seen that the Rusnell’s method has 
significantly greater execution time at the same initial values and with the very close quality of the result.     
Also, execution time depends on features count almost linearly. Even while Rusnell’s method gives 
smoother landscape, this big difference in time allows us to create better resolution height map with 
more complex weight function to achieve better results and still generate it faster than Rusnell’s method. 

Height map 
resolution 

Features count 
2 8 32 128 512 1024 2048 

512 700447 
2.48 sec 

740697 
2.55 sec 

804382 
2.89 sec 

824056  
3.14 sec 

825921  
3.53 sec 

814417 
3.53 sec 

817596  
3.79 sec 

1024 2802248 
11.6 sec 

2912436  
11.44 sec 

3397056  
12.73 sec 

3403763  
13.04 sec 

3289422  
14.01 sec 

3296215  
15.19 sec 

3271992  
15.47 sec 

2048 11326938 
50.48 sec 

11809117  
48.66 sec 

13440152  
55.82 sec 

13336477 
58.26 sec  

13240730  
59.97 sec 

13168505 
62.96 sec 

13193554  
64.6 sec 

Table 2: Performance of the proposed method for different initial parameters. 

 Method 
Sample 1 (features count = 80) Sample 2 (features count = 40) 

512 1024 2048 512 1024 2048 
Execution 
time, sec 

Rusnell et al. 224.07 1121.04 4930.04 146.07 685.31 4967.06 

Proposed method 3.12 13.24 57.23 3.15 13.18 57.40 

Weight 
fun. calls 

Rusnell et al. 125992960 503644160 1938399232 64571392 258117632 1032134656 

Proposed method 956970 3832207 15465736 970772 3890438 15396538 
Table 3: Performance comparison of the proposed method and method from paper by Rusnell et al. [18]. 
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5 Conclusion and Future Work 
In this paper we have presented a new Dijkstra-based method for virtual terrain generation, which 

can be easily parameterized by weight function to set appropriate terrain type and detail maps to control 
it more precisely. By varying these parameters and input data, it is possible to generate an enormous 
diversity of landscapes using the proposed method - from individual biomes to complex landscape 
structures.  

There are many ways for the further development of proposed methods. Improved use of weight 
functions by storing multiple feature parameters in nodes and selecting more suitable ones can lead to 
better results on different features junctions. Even more, approximating different features heights on the 
same node can make junctions even better. Also, we can use feature data for texturing terrain mesh. All 
of this further method developments can bring a new effective terrain generation tool.  

 
Figure 4: A comparison of landscapes built by Rusnell’s method (left) and the proposed method (right) based on 

the same initial data: a-d – Sample 1; e-f – Sample 2. 
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