
See	discussions,	stats,	and	author	profiles	for	this	publication	at:	https://www.researchgate.net/publication/311361632

Dijkstra-based	Terrain	Generation	Using
Advanced	Weight	Functions

Article		in		Procedia	Computer	Science	·	December	2016

DOI:	10.1016/j.procs.2016.11.019

CITATIONS

0

READS

60

3	authors,	including:

Some	of	the	authors	of	this	publication	are	also	working	on	these	related	projects:

Supercomputer	simulation	of	critical	phenomena	in	complex	social	systems	View	project

Andrey	Karsakov

ITMO	University

19	PUBLICATIONS			24	CITATIONS			

SEE	PROFILE

All	content	following	this	page	was	uploaded	by	Andrey	Karsakov	on	30	December	2016.

The	user	has	requested	enhancement	of	the	downloaded	file.	All	in-text	references	underlined	in	blue	are	added	to	the	original	document

and	are	linked	to	publications	on	ResearchGate,	letting	you	access	and	read	them	immediately.

https://www.researchgate.net/publication/311361632_Dijkstra-based_Terrain_Generation_Using_Advanced_Weight_Functions?enrichId=rgreq-515f338f4e7e0a32984686aa0a2f36b2-XXX&enrichSource=Y292ZXJQYWdlOzMxMTM2MTYzMjtBUzo0NDUwMjI4MjM4MTcyMTdAMTQ4MzExMzExODAwMA%3D%3D&el=1_x_2&_esc=publicationCoverPdf
https://www.researchgate.net/publication/311361632_Dijkstra-based_Terrain_Generation_Using_Advanced_Weight_Functions?enrichId=rgreq-515f338f4e7e0a32984686aa0a2f36b2-XXX&enrichSource=Y292ZXJQYWdlOzMxMTM2MTYzMjtBUzo0NDUwMjI4MjM4MTcyMTdAMTQ4MzExMzExODAwMA%3D%3D&el=1_x_3&_esc=publicationCoverPdf
https://www.researchgate.net/project/Supercomputer-simulation-of-critical-phenomena-in-complex-social-systems?enrichId=rgreq-515f338f4e7e0a32984686aa0a2f36b2-XXX&enrichSource=Y292ZXJQYWdlOzMxMTM2MTYzMjtBUzo0NDUwMjI4MjM4MTcyMTdAMTQ4MzExMzExODAwMA%3D%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/?enrichId=rgreq-515f338f4e7e0a32984686aa0a2f36b2-XXX&enrichSource=Y292ZXJQYWdlOzMxMTM2MTYzMjtBUzo0NDUwMjI4MjM4MTcyMTdAMTQ4MzExMzExODAwMA%3D%3D&el=1_x_1&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Andrey_Karsakov?enrichId=rgreq-515f338f4e7e0a32984686aa0a2f36b2-XXX&enrichSource=Y292ZXJQYWdlOzMxMTM2MTYzMjtBUzo0NDUwMjI4MjM4MTcyMTdAMTQ4MzExMzExODAwMA%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Andrey_Karsakov?enrichId=rgreq-515f338f4e7e0a32984686aa0a2f36b2-XXX&enrichSource=Y292ZXJQYWdlOzMxMTM2MTYzMjtBUzo0NDUwMjI4MjM4MTcyMTdAMTQ4MzExMzExODAwMA%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/ITMO_University?enrichId=rgreq-515f338f4e7e0a32984686aa0a2f36b2-XXX&enrichSource=Y292ZXJQYWdlOzMxMTM2MTYzMjtBUzo0NDUwMjI4MjM4MTcyMTdAMTQ4MzExMzExODAwMA%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Andrey_Karsakov?enrichId=rgreq-515f338f4e7e0a32984686aa0a2f36b2-XXX&enrichSource=Y292ZXJQYWdlOzMxMTM2MTYzMjtBUzo0NDUwMjI4MjM4MTcyMTdAMTQ4MzExMzExODAwMA%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Andrey_Karsakov?enrichId=rgreq-515f338f4e7e0a32984686aa0a2f36b2-XXX&enrichSource=Y292ZXJQYWdlOzMxMTM2MTYzMjtBUzo0NDUwMjI4MjM4MTcyMTdAMTQ4MzExMzExODAwMA%3D%3D&el=1_x_10&_esc=publicationCoverPdf

Procedia Computer Science

 Procedia Computer Science 101 , 2016 , Pages 151 – 159

YSC 2016. 5th International Young Scientist Conference on Computational Science,

doi: 10.1016/j.procs.2016.11.019

Peer-review under responsibility of organizing committee of the scientific committee of the
5th International Young Scientist Conference on Computational Science

© 2016 The Authors. Published by Elsevier B.V.

Procedia Computer Science

 Procedia Computer Science 101 , 2016 , Pages 152 – 160

YSC 2016. 5th International Young Scientist Conference on Computational Science

Dijkstra-based Terrain Generation Using Advanced
Weight Functions

Kirill Golubev, Aleksander Zagarskikh, and Andrey Karsakov
ITMO University, Saint Petersburg, Russia

golubev1251@gmail.com, alazar.az@gmail.com, kapc3d@gmail.com

Abstract
Due to the growing popularity of consumer virtual reality devices, the new surge in the use of computer-
generated terrain is already happening. That leads to the need to develop new fast and efficient methods
of landscapes generation. However, lack of flexibility of user control over terrain generation in most
popular modern terrain generation algorithms is a big part of terrain generation problem. In this paper,
we present a new method for generating three-dimensional landscapes based on modified Dijkstra
algorithm. The proposed method allows a user to set the initial location of landscape features and select
or create weight functions that determine the appearance of the generated terrain. It has a lower
computational cost compared to the closest analogs giving the equal quality of results and allows users
to create various types of terrain, as well as to combine them together in one landscape.

Keywords: terrain generation, weight functions, virtual worlds, visualization

1 Introduction
Generation and visualization of virtual landscapes is an actual task in different areas, such as

development of the educational and simulation environments, video games, the creation of decorations
for movies and animations, as well as environments for simulation of various natural processes [1]. Due
to the growing popularity of consumer virtual reality devices, the new surge in the use of computer-
generated terrain is already happening. That leads to the need to develop new fast and efficient methods
of landscapes generation.

Most of the modern generation algorithms generate terrains that require subsequent manual revision
by designers or in need of automatic completion by sophisticated algorithms of erosion, climate and
weather strains, like a thermal distortion of the landscape. Such approach is well suited for applications
where it is necessary to create a single rather small area or when the landscapes are configured manually
but is ill-suited for the generation of large terrain areas in a fully automatic mode.

152

http://crossmark.crossref.org/dialog/?doi=10.1016/j.procs.2016.11.019&domain=pdf
https://www.researchgate.net/profile/Andrey_Karsakov?el=1_x_100&enrichId=rgreq-515f338f4e7e0a32984686aa0a2f36b2-XXX&enrichSource=Y292ZXJQYWdlOzMxMTM2MTYzMjtBUzo0NDUwMjI4MjM4MTcyMTdAMTQ4MzExMzExODAwMA==

Dijkstra-based Terrain Generation Using Advanced Weight Functions Kirill Golubev et al.

153

This paper describes a new method of terrain generation based on Dijkstra algorithm and the use of
advanced weight functions that allow to balance between initial user control and fully automated
generation.

2 Related Works
The problem of the terrain generation has a long history and still a universal algorithm that can be

used for any task does not exist. In the 1968 Mandelbrot and Van Ness described the fractal Brownian
motion [2] and 15 years later Fournier et al. proposed a method for fractal Brownian surfaces generation
based on midpoint displacement with linear time complexity [3]. In 1985 Perlin presented a gradient
noise [4] to generate procedural textures, including height maps, that is still commonly used as a part of
terrain generation pipeline. All these studies laid the foundation for the family of fractal methods based
on the addition of the level of details using self-similarity. Despite the simplicity of these methods, they
are still used for the terrain generation and underpin the popular powerful tools, such as World Machine
[5] and Terragen [6].

Modern requirements for terrain generation algorithms have been formulated by Saunders [7].
However, the most popular algorithms do not meet requirements in “permit a high degree of human
control” and “be able to reproduce a wide variety of recognizable terrain types and features realistically,
in believable relationship to one another”. They generate uniform landscapes and locations that quickly
become boring. Attempts to solve these issues lead to the unnecessary complication of the initial
parameters and the need for active participation of the human in the terrain creation. Also, the
development of the generation algorithms is always an attempt to strike a balance between these two
extremes.

Further development of the landscape generators went in several directions. Kelley et al. [8]
presented a method of terrain generation based on the stream erosion, and Musgrave et al. [9] developed
the idea of using the hydraulic and thermal erosion. This determined the new direction of the generators
based on erosion that was extended further by works of Nagashima [10], Benes et al. [11], Cordonnier
et al. [12] and other authors. Using different types of erosion is one of the most popular ways to improve
the look of the landscape. However, such methods are also not entirely satisfying the Sanders’
requirements, mainly due to the low performance. Furthermore, the implementation of erosion still
requires the basic landscape and generation of this basic terrain must meet the same requirements. Brosz
et al. in [13] introduced a method of details improving for low-quality landscapes using highly detailed
real terrain data, which allows increase the realism of the terrain created in any manner without the use
of erosion.

Another approach to landscape generation is to use patch-based and feature-based generators. These
algorithms allow the user to mark the location of the main elements (features) of the landscape, and the
algorithm completes the terrain mesh using this data. Belhadj and Audibert [14] proposed a method that
uses precomputed ridge lines and rivers network and fills the rest of the landscape using midpoint
displacement. Zhou et al. in their work [15] proposed a method for transporting real landscape elements
on the user-defined features. Their method allows to create a detailed and nice-looking landscape but
poorly solves the problem of the diversity of terrain features. Moreover, this method is in need of real
landscape data that is not always possible. Also, a significant drawback is the high computational cost
of this method, caused by the need not only to build the landscape but also to search for suitable areas
in the existing height map.

In 2009, Gain [16] presented a method to create mountains relying on the custom profiles. It is well
suited as an editing tool, but not for entirely automatic generation. Hnaidi et al. [17], developed the idea
of Gain by filling in the landscape between feature lines using diffusion equation. Such method gives
good results but requires advance preparation of detailed locations of features.

Dijkstra-based Terrain Generation Using Advanced Weight Functions Kirill Golubev et al.

154

In [18] Rusnell et al. describe a method based on Dijkstra algorithm and blending of layers, which
are generated in accordance with individual features. Method works significantly faster than Zhou’s
and, in some cases, able to produce results with better quality, but it has several drawbacks. They include
the monotonous shape of slopes that belong to the same profile, as well as the procedure of blending
that significantly increases the time of generation of the landscape.

The method proposed in this paper is based on Dijkstra's algorithm, the same approach as by Rusnell
et al., but it uses other ways of calculating weights of the edges and performs all the computations on a
single mesh that gives a significant gain in performance.

3 Method Description
The primary goal of the proposed method is to obtain a landscape in the form of a height map. To

do this, we form intermediate weight maps that represent the impact of various landscape features. Then
we define a weight function that receives values of all detail maps and data in a current node and
calculates the height difference for this node. Next, the initial set of nodes is used as a frontier for the
modified Dijkstra algorithm that uses weight function instead of static weights. The proposed method is
summarized in Listing 1.

Listing 1: Dijkstra-based terrain generation method using advanced weight functions.

1.
2.
3.
4.

a.
b.
c.
d.
e.
f.
g.
h.
i.
j.
k.
l.
m.
n.

Define weight function delta (m1, m2, …, mn, p)
Define detail maps M1-Mn,
Define initial points of algorithm P.
Execute modified Dijkstra algorithm:

Q <- P
while(|q| > 0)
 Q -> p
 p.processed = true
 for each n - neighbor of p
 if (not p.processed)
 d = delta(M1[p], M2[p], …, Mn[p], p)
 if (h[n] < h[p] - d) then
 h[n] = h[p] - d
 Q <- n
 end if
 end if
 end for
end while

Positive weight function delta(m1, m2, … ,mn, p) is declared on step 1. It can be either uniformly

distributed random value or complex conditional sub-algorithm that computes height difference based
on detail maps values and data of parent node p such as height, position on height map, parent of the
node, spawn (node p_0 from P from which we come to p) and feature stats. By using different weight
function behaviors allows to split generated landscape into biomes and combine different terrain types,
such as dunes and cliffs.

At the second step, terrain detail maps are chosen. Different detail maps can be used for different
purposes: from simple noises to define steepness or feature intensity, to biomes placement, road maps,
shorelines definition, etc.

The third step sets the initial nodes that represent highest points of landscape features and used as
initial values for Dijkstra algorithm. For examples in this paper, a uniform distribution of features was

Dijkstra-based Terrain Generation Using Advanced Weight Functions Kirill Golubev et al.

155

used, mostly with single points or Bezier-based lines. However, different approach can be used to create
specific landscapes, for example, using hand-drawn features placement.

On the final step modified Dijkstra algorithm is running. It uses priority queue Q to store all nodes
that ready to be processed. It checks its neighbors n for each node p taken from the queue. If the neighbor
node is not processed by an algorithm yet, it calculates its new height h[n] as a difference between
height of p and an edge weight d and updates it if the old value is lower. The weights of the edges are
not set beforehand and are calculated dynamically on the basis of the weight function delta at the time
of treatment to the edge. Point updates only if the new height is greater than the previously recorded
values at this point.

The computational complexity of steps from 1 to 3 is O(n). Dijkstra's algorithm works for
O(n*log(w)), where w is not more than 6*n (and in fact significantly less). Thus, the total running time
is O(n*log(n)). The number of computations of the weight functions value is O (n) at the same time.

3.1 Weight Functions
Weight functions are a powerful way to alter landscape generated by the proposed method. Using

different weight functions, it is possible to create hills, mountains, dunes or any other type of terrain,
pack them into biomes and join them without any artifacts.

Weight function can differ from simple linear or uniform math functions using only vertex value
from a height map, to complex sub-algorithms depending on detail map value, child and parent node
relative position, etc. For example, dunes can be created by using basic constant multiplied by the scalar
product of wind direction (specified in user settings) and direction to feature-spawn node (Figure 1).
That weight function can be described in the following equation:

δ
where is base weight that can be a constant, a noise value or somehow interpolated parent node
height, I and R is interpolation and reverse interpolation δ δ

, respectively is normalized wind direction and δ is distance between current node and node
from initial Dijkstra frontier.

As another example, canyons, terraces and crags can be created by setting higher weight values at
specific nodes, determined by spawn-node distance or detail map values.

Figure 1: An example of the desert landscape, generated using the advanced weight functions and the shape of

basic features.

Dijkstra-based Terrain Generation Using Advanced Weight Functions Kirill Golubev et al.

156

3.2 Placement of Initial Points
Another way to customize generated landscape is to set specific basic nodes for Dijkstra algorithm.

It can be set by the user or generated by the placement algorithm. If the initial set consists of randomly
selected single points (mountain peaks), mountains look uniform and unnatural. In this case, the
landscape can be improved by the user by setting not only points but lines, Bezier curves or more
complicated shapes, like sine sum graphs that were used to produce the sides of the dunes at Figure 1.
For the mountain landscape polylines of Bezier curves are well suited. To generate ridges, we took three-
dimensional Bezier curve, placed it on the height map and added Perlin noise. After all these operations
we set all of this points as initial nodes for the algorithm. Resulting landscape presented in Figure 2.

In general, for any type of weight function, it makes sense to choose individual initial set guided by
the basic purpose of the landscape, real data, and user’s fantasy.

4 Results and Performance Evaluation
We use Unity3D game engine and C# programming language to implement the proposed method

and terrain component to visualize resulting landscape. All tests were performed on AMD Athlon(™)
II X4 645 Processor 3.11GHz with 8 GB RAM and NVidia GeForce GT440 video card. Figure 3 shows
a set of landscape examples generated by the proposed method and Table 1 shows a performance
evaluation for this examples.

Figure 2: Mountain ridges generated using Bezier curves as an initial data.

Example Height map
resolution

Features count Computation
time, sec

Weight function
calls

1 512x512 128 3.17 825224
2 512x512 4 2.58 776535
3 1024x1024 48 12.35 3201594
4 2048x2048 2048 75.89 13077911

Table 1: Performance evaluation of proposed method for examples from Figure 3.

Dijkstra-based Terrain Generation Using Advanced Weight Functions Kirill Golubev et al.

157

The first example (Figure 3a) demonstrates low-resolution landscape of big area and shows
irregularity in mountain placement, untypical for most fully-automated terrain generators. The second
example at Figure 3b shows big mountains created using a height map with the same resolution as the
previous one and demonstrates the ability of our method to generate detailed landscapes. The third
example at Figure 3c and 3d show complex landscape with different feature types, created on 1024x1024
resolution height map with a medium scale of mountains. The fourth example at Figure 3e and 3f
demonstrates a desert, created on a big 2048x2048 height map and contains a lot of small features like
dunes and crags.

For more precise evaluation of the proposed method complexity, we made measurements of weight
function calls and computation time by varying height map size and initial features count and
summarized it in Table 2.

It can be noticed that execution time grows even when weight function calls count decreasing at
512…2048 features count examples. From this we can conclude that the time required for the calculation
of weight functions is significantly lower than for the implementation of a priority queue in Dijkstra

Figure 3: Screenshots of generated landscapes: a – (example 1) a big area landscape using low-resolution height
map; b - (example 2) a small area (single mountain) with the same resolution as the example 1; c, d - (example 3)
a complex landscape with different feature types, e, f - (example 4) a highly detailed desert landscape with a lot

of small features like dunes and crags.

Dijkstra-based Terrain Generation Using Advanced Weight Functions Kirill Golubev et al.

158

algorithm, which has O(log(n)) operation time per node that exceeds the constant time needed to
compute weight functions. Thus, their complexity does not reduce the performance of the method.

As it is shown in Table 2, algorithm execution time does not depend on feature types or its amount
a lot, but mostly on height map resolution. At the same time, its ability to create compound multi-
featured terrain surpass closest analogs that are currently used for terrain generation.

4.1 Comparison with Rusnell`s Method
As was mentioned in Section 2, in [18] Rusnell et al. presented terrain generation method also based

on Dijkstra algorithm, using separate Dijkstra runs for each landscape feature and then mixing the
resulting height maps.

The method that we are proposing in this paper is also based on Dijkstra algorithm. However, instead
of calculating the profiles for each generator node, we use weight functions. They are based on one or
more features maps that are matched with the vertices on a height map. Also, in the presented algorithm,
the height of the point is calculated in the first pass of the algorithm that can significantly reduce the
landscape generation time. For some particular cases, the performance benefit of our method reaches a
few dozen times. However, one pass execution makes landscapes coarser at the junctions of the slopes
with different features and at the initial points.

Using the detail maps instead of the usual noise allows creating a much more detailed terrain.
Particularly in Rusnell’s method mountains have a pronounced symmetry, that can be easily solved
using our method by setting detail maps. Figure 4 shows a comparison of landscapes generated by
Rusnell et al. and our methods with same basic settings.

For full comparison, we present time and complexity stats for different landscape sizes for examples
1 and 2.

According to the results obtained in comparative tests, it can be seen that the Rusnell’s method has
significantly greater execution time at the same initial values and with the very close quality of the result.
Also, execution time depends on features count almost linearly. Even while Rusnell’s method gives
smoother landscape, this big difference in time allows us to create better resolution height map with
more complex weight function to achieve better results and still generate it faster than Rusnell’s method.

Height map
resolution

Features count
2 8 32 128 512 1024 2048

512 700447
2.48 sec

740697
2.55 sec

804382
2.89 sec

824056
3.14 sec

825921
3.53 sec

814417
3.53 sec

817596
3.79 sec

1024 2802248
11.6 sec

2912436
11.44 sec

3397056
12.73 sec

3403763
13.04 sec

3289422
14.01 sec

3296215
15.19 sec

3271992
15.47 sec

2048 11326938
50.48 sec

11809117
48.66 sec

13440152
55.82 sec

13336477
58.26 sec

13240730
59.97 sec

13168505
62.96 sec

13193554
64.6 sec

Table 2: Performance of the proposed method for different initial parameters.

 Method
Sample 1 (features count = 80) Sample 2 (features count = 40)

512 1024 2048 512 1024 2048
Execution
time, sec

Rusnell et al. 224.07 1121.04 4930.04 146.07 685.31 4967.06

Proposed method 3.12 13.24 57.23 3.15 13.18 57.40

Weight
fun. calls

Rusnell et al. 125992960 503644160 1938399232 64571392 258117632 1032134656

Proposed method 956970 3832207 15465736 970772 3890438 15396538
Table 3: Performance comparison of the proposed method and method from paper by Rusnell et al. [18].

Dijkstra-based Terrain Generation Using Advanced Weight Functions Kirill Golubev et al.

159

5 Conclusion and Future Work
In this paper we have presented a new Dijkstra-based method for virtual terrain generation, which

can be easily parameterized by weight function to set appropriate terrain type and detail maps to control
it more precisely. By varying these parameters and input data, it is possible to generate an enormous
diversity of landscapes using the proposed method - from individual biomes to complex landscape
structures.

There are many ways for the further development of proposed methods. Improved use of weight
functions by storing multiple feature parameters in nodes and selecting more suitable ones can lead to
better results on different features junctions. Even more, approximating different features heights on the
same node can make junctions even better. Also, we can use feature data for texturing terrain mesh. All
of this further method developments can bring a new effective terrain generation tool.

Figure 4: A comparison of landscapes built by Rusnell’s method (left) and the proposed method (right) based on

the same initial data: a-d – Sample 1; e-f – Sample 2.

Dijkstra-based Terrain Generation Using Advanced Weight Functions Kirill Golubev et al.

160

Acknowledgments
This paper is financially supported by Ministry of Education and Science of the Russian Federation,

Agreement #14.584.21.0015 (11.11.2015)

References
[1] Rastislav Tisovcík, “Generation and Visualization of Terrain in Virtual Environment,” Masaryk

University, 2012.
[2] B. B. Mandelbrot and J. W. Van Ness, “Fractional Brownian Motions, Fractional Noises and

Applications,” SIAM Rev., vol. 10, no. 4, pp. 422–437, Oct. 1968.
[3] A. Fournier, D. Fussell, and L. Carpenter, “Computer rendering of stochastic models,” Commun.

ACM, vol. 25, no. 6, pp. 371–384, Jun. 1982.
[4] K. Perlin, “An image synthesizer,” ACM SIGGRAPH Comput. Graph., vol. 19, no. 3, pp. 287–

296, Jul. 1985.
[5] L. World Machine Software, “World Machine.” [Online]. Available: http://www.world-

machine.com/.
[6] Planetside Software, “Terragen 3.” [Online]. Available:

http://planetside.co.uk/products/terragen3.
[7] R. L. Saunders, “Terrainosaurus: realistic terrain synthesis using genetic algorithms,” Texas

A&M University, 2007.
[8] A. D. Kelley, M. C. Malin, and G. M. Nielson, “Terrain simulation using a model of stream

erosion,” ACM SIGGRAPH Comput. Graph., vol. 22, no. 4, pp. 263–268, 1988.
[9] F. K. Musgrave, C. E. Kolb, and R. S. Mace, “The synthesis and rendering of eroded fractal

terrains,” ACM SIGGRAPH Comput. Graph., vol. 23, no. 3, pp. 41–50, Jul. 1989.
[10] K. Nagashima, “Computer generation of eroded valley and mountain terrains,” Vis. Comput.,

vol. 13, no. 9–10, pp. 456–464, Jan. 1998.
[11] O. Št’Ava, B. Beneš, M. Brisbin, and J. Křivánek, “Interactive terrain modeling using hydraulic

erosion,” in EuroGraphics Symposium on Computer Animation, M. Gross and D. James, Eds.
2008, pp. 201–210.

[12] G. Cordonnier, J. Braun, M. Cani, B. Benes, É. Galin, A. Peytavie, and É. Guérin, “Large Scale
Terrain Generation from Tectonic Uplift and Fluvial Erosion,” Comput. Graph. Forum, vol. 35,
no. 2, pp. 165–175, May 2016.

[13] J. Brosz, F. F. Samavati, and M. C. Sousa, “Terrain Synthesis By-Example,” in Advances in
Computer Graphics and Computer Vision, 2007, pp. 58–77.

[14] F. Belhadj and P. Audibert, “Modeling landscapes with ridges and rivers,” in Proceedings of
the 3rd international conference on Computer graphics and interactive techniques in
Australasia and South East Asia - GRAPHITE ’05, 2005, vol. 1, p. 447.

[15] H. Zhou, J. Sun, G. Turk, and J. M. Rehg, “Terrain synthesis from digital elevation models,”
IEEE Trans. Vis. Comput. Graph., vol. 13, no. 4, pp. 834–848, 2007.

[16] J. Gain, P. Marais, and W. Straßer, “Terrain sketching,” in Proceedings of the 2009 symposium
on Interactive 3D graphics and games - I3D ’09, 2009, vol. 1, no. 212, p. 31.

[17] H. Hnaidi, E. Guérin, S. Akkouche, A. Peytavie, and E. Galin, “Feature based terrain generation
using diffusion equation,” Comput. Graph. Forum, vol. 29, no. 7, pp. 2179–2186, Sep. 2010.

[18] B. Rusnell, D. Mould, and M. Eramian, “Feature-rich distance-based terrain synthesis,” Vis.
Comput., vol. 25, no. 5–7, pp. 573–579, May 2009.

View publication statsView publication stats

https://www.researchgate.net/publication/292192025_Large_Scale_Terrain_Generation_from_Tectonic_Uplift_and_Fluvial_Erosion?el=1_x_8&enrichId=rgreq-515f338f4e7e0a32984686aa0a2f36b2-XXX&enrichSource=Y292ZXJQYWdlOzMxMTM2MTYzMjtBUzo0NDUwMjI4MjM4MTcyMTdAMTQ4MzExMzExODAwMA==
https://www.researchgate.net/publication/292192025_Large_Scale_Terrain_Generation_from_Tectonic_Uplift_and_Fluvial_Erosion?el=1_x_8&enrichId=rgreq-515f338f4e7e0a32984686aa0a2f36b2-XXX&enrichSource=Y292ZXJQYWdlOzMxMTM2MTYzMjtBUzo0NDUwMjI4MjM4MTcyMTdAMTQ4MzExMzExODAwMA==
https://www.researchgate.net/publication/292192025_Large_Scale_Terrain_Generation_from_Tectonic_Uplift_and_Fluvial_Erosion?el=1_x_8&enrichId=rgreq-515f338f4e7e0a32984686aa0a2f36b2-XXX&enrichSource=Y292ZXJQYWdlOzMxMTM2MTYzMjtBUzo0NDUwMjI4MjM4MTcyMTdAMTQ4MzExMzExODAwMA==
https://www.researchgate.net/publication/292192025_Large_Scale_Terrain_Generation_from_Tectonic_Uplift_and_Fluvial_Erosion?el=1_x_8&enrichId=rgreq-515f338f4e7e0a32984686aa0a2f36b2-XXX&enrichSource=Y292ZXJQYWdlOzMxMTM2MTYzMjtBUzo0NDUwMjI4MjM4MTcyMTdAMTQ4MzExMzExODAwMA==
https://www.researchgate.net/publication/220979098_Modeling_landscapes_with_ridges_and_rivers?el=1_x_8&enrichId=rgreq-515f338f4e7e0a32984686aa0a2f36b2-XXX&enrichSource=Y292ZXJQYWdlOzMxMTM2MTYzMjtBUzo0NDUwMjI4MjM4MTcyMTdAMTQ4MzExMzExODAwMA==
https://www.researchgate.net/publication/220979098_Modeling_landscapes_with_ridges_and_rivers?el=1_x_8&enrichId=rgreq-515f338f4e7e0a32984686aa0a2f36b2-XXX&enrichSource=Y292ZXJQYWdlOzMxMTM2MTYzMjtBUzo0NDUwMjI4MjM4MTcyMTdAMTQ4MzExMzExODAwMA==
https://www.researchgate.net/publication/220979098_Modeling_landscapes_with_ridges_and_rivers?el=1_x_8&enrichId=rgreq-515f338f4e7e0a32984686aa0a2f36b2-XXX&enrichSource=Y292ZXJQYWdlOzMxMTM2MTYzMjtBUzo0NDUwMjI4MjM4MTcyMTdAMTQ4MzExMzExODAwMA==
https://www.researchgate.net/publication/220979098_Modeling_landscapes_with_ridges_and_rivers?el=1_x_8&enrichId=rgreq-515f338f4e7e0a32984686aa0a2f36b2-XXX&enrichSource=Y292ZXJQYWdlOzMxMTM2MTYzMjtBUzo0NDUwMjI4MjM4MTcyMTdAMTQ4MzExMzExODAwMA==
https://www.researchgate.net/publication/220868907_Terrain_Synthesis_By-Example?el=1_x_8&enrichId=rgreq-515f338f4e7e0a32984686aa0a2f36b2-XXX&enrichSource=Y292ZXJQYWdlOzMxMTM2MTYzMjtBUzo0NDUwMjI4MjM4MTcyMTdAMTQ4MzExMzExODAwMA==
https://www.researchgate.net/publication/220868907_Terrain_Synthesis_By-Example?el=1_x_8&enrichId=rgreq-515f338f4e7e0a32984686aa0a2f36b2-XXX&enrichSource=Y292ZXJQYWdlOzMxMTM2MTYzMjtBUzo0NDUwMjI4MjM4MTcyMTdAMTQ4MzExMzExODAwMA==
https://www.researchgate.net/publication/220868907_Terrain_Synthesis_By-Example?el=1_x_8&enrichId=rgreq-515f338f4e7e0a32984686aa0a2f36b2-XXX&enrichSource=Y292ZXJQYWdlOzMxMTM2MTYzMjtBUzo0NDUwMjI4MjM4MTcyMTdAMTQ4MzExMzExODAwMA==
https://www.researchgate.net/publication/220067330_Feature-rich_distance-based_terrain_synthesis?el=1_x_8&enrichId=rgreq-515f338f4e7e0a32984686aa0a2f36b2-XXX&enrichSource=Y292ZXJQYWdlOzMxMTM2MTYzMjtBUzo0NDUwMjI4MjM4MTcyMTdAMTQ4MzExMzExODAwMA==
https://www.researchgate.net/publication/220067330_Feature-rich_distance-based_terrain_synthesis?el=1_x_8&enrichId=rgreq-515f338f4e7e0a32984686aa0a2f36b2-XXX&enrichSource=Y292ZXJQYWdlOzMxMTM2MTYzMjtBUzo0NDUwMjI4MjM4MTcyMTdAMTQ4MzExMzExODAwMA==
https://www.researchgate.net/publication/311361632

