
Average of digits

Let x ∈ (0, 1) be written in base b ≥ 2. For any x such that its decimal expansion
does not end in all 0s or all (b− 1)s, write

x = 0.x1x2x3...

Then define the function

f(x) = lim
n→∞

1

n

n∑
i=1

xi

(if such a limit exists). We will prove that in any base b, there exists a number such that
f(x) = x.

Proof: Let a base b ≥ 2 be given. First, we will define the auxiliary function g(x). This
function is similar to f(x) except that its domain is x ∈ (0, 1) such that x has a finite
decimal expansion (in base b). For future use, denote the set of such rationals as S. Let
this decimal expansion (in base b) be written

x = 0.x1x2x3...xk00000 · · ·
That is, we take the expansion with all 0s at the end (in the future, we will not include
this). Then g(x) is defined to be

g(x) =
1

k

k∑
i=1

xi

Fact 1: For any x in S, there exists

yn = 0.z1z2...zn
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such that limn→∞ g(yn) = x. Let

x = 0.x1x2x3...xk

and define y1 to be 0.1. Now, define zn recursively to be

zn =

{
0 g(0.z1z2...zn−1) > x

b− 1 g(0.z1z2...zn−1) ≤ x

From this definition, it is obvious that

lim
n→∞

g(0.z1z2...zn) = x

Fact 2: For any x, y ∈ S, there exists

zn = 0.u1u2...un

such that limn→∞ g(y + zn) = x. First, let the decimal expansion of y be

y = 0.y1y2...yt

From Fact 1, we know there exists wn ∈ S such that

lim
n→∞

g(wn) = x

Let the decimal expansion of this wn be

wn = 0.u0u1...uk

Now, choose N large enough such that n ≥ N implies

|x− g(wn)| <
ε

2
and

bt

N
<
ε

2
With this, let

zn = wnb
−t

Then

y + zn = 0.y1y2...ytu1u2...un

and therefore (for n ≥ N )
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g(y + zn) =
1

n

(
t∑
i=1

yi +
n∑
i=1

ui

)
<
bt

n
+

1

n

n∑
i=1

ui <
ε

2
+ g(wn)

g(y + zn) =
1

n

(
t∑
i=1

yi +
n∑
i=1

ui

)
>

0t

n
+

1

n

n∑
i=1

ui = g(wn)

This leads to the final conclusion

|x− g(y + zn)| <
ε

2
+ |x− g(wn)| <

ε

2
+
ε

2
= ε

and we are done.

Fact 3: Let yn be a sequence in S such that

y1 = 0.x1

y2 = 0.x1x2

...

yn = 0.x1x2...xn

and let limn→∞ yn = L 6∈ S. Then

lim
n→∞

g(yn) = f(L)

(when this limit exists). Write

L = 0.L1L2L3...

Since yn approaches L, it is obvious that xi = Li for all i ∈ N. This naturally leads to
the conclusion as f(L) is defined to be

f(L) = lim
n→∞

1

n

n∑
i=1

Li = lim
n→∞

1

n

n∑
i=1

xi = lim
n→∞

g(yn)

and we are done.
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Main Conclusion: We now come to the main portion of our proof. Let x0 = 0.101.
From Fact 2, we know there exists z0 ∈ S such that

|x0 + b−6 − g(x0 + z0)| < b−12

Thus, define x1 = x0 + z0 and note that g(x1) = x0 for at least the first 3 digits. This
suggests a strategy:

• Let φ(n) = t where xn = 0.y1y2...yt

• Define zn such that |xn + b−2φ(n) − g(xn + zn)| < b−4φ(n)

• Define xn+1 = xn + zn

In this manner, we have constructed a sequence xn such that g(xn) = xn for at least the
first φ(n) digits. It is obvious that limn→∞ xn = L. Since g(xn) agrees with xn for an
increasing number of digits, we can use Fact 3 to conclude that

f(L) = lim
n→∞

g(xn) = lim
n→∞

xn = L

We conclude that there exits L such that f(L) = L.
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