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Simple Summary: In South America, the natural habitats of wild canids have undergone significant
environmental disruptions, leading to interactions between these animals and domestic dogs (Canis
lupus familiaris). Previous studies have documented hybridization between wild canids and domestic
dogs in North America and Europe. However, there have been no reports of such hybridization in
South America until now. In 2021, a female canid from Vacaria in Rio Grande do Sul State, Brazil,
was brought to the Center for Conservation and Rehabilitation of Wild Animals—Preserves. This
animal exhibited unusual phenotypic characteristics, displaying intermediate traits between domestic
dogs and wild canids. Based on these observations, we hypothesized that this animal might result
from interspecific hybridization. Therefore, this study aimed to test this hypothesis using genetic
and cytogenetic approaches. Our analysis suggests that the canid under investigation is a hybrid
between the pampas fox and domestic dog, but future studies are necessary to investigate additional
cases of this hybridization in nature. Therefore, the combination of genetic and cytogenetic markers
proved valuable in elucidating this case of hybridization. To our knowledge, this represents the first
documented case of hybridization between these two species.

Abstract: Hybridization between species with different evolutionary trajectories can be a powerful
threat to wildlife conservation. Anthropogenic activities, such as agriculture and livestock, have led to
the degradation and loss of natural habitats for wildlife. Consequently, the incidence of interspecific
hybridization between wild and domestic species has increased, although cases involving species
of different genera are rare. In Vacaria, a Southern city in Brazil, a female canid with a strange
phenotype, which had characteristics between the phenotype of the domestic dog (Canis familiaris)
and that of the pampas fox (Lycalopex gymnocercus), was found. Our analysis suggests that the animal
is a hybrid between a domestic dog and a pampas fox, but future studies are necessary to investigate
additional cases of this hybridization in nature. This finding worries for the conservation of wild
canids in South America, especially concerning Lycalopex species. Hybridization with the domestic
dog may have harmful effects on pampas fox populations due to the potential for introgression and
disease transmission by the domestic dog. Therefore, future studies to explore the consequences of
hybridization on genetics, ecology, and behavior of wild populations will be essential to improve the
conservation of this species.
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1. Introduction

Interspecific hybridization among animals has increased over the years, such as in
mammals [1], birds [2], and fish [3], among others. Hybridization gives rise to new
genotypes by combining sets of isolated genes [4]. However, when a new gene pool
lacks local adaptation, hybridization may reduce the fitness of hybrid individuals and
populations [5–7]. Anthropogenic disturbances and habitat loss have increased interspecific
hybridization, both due to altered mating patterns that increase the propensity to hybridize
and because they can change the landscape to favor hybrids in disturbed areas [8–10].
Continuous hybridization events lead to introgression, the permanent introduction of
genes from one species to another [11].

The Canidae family is represented by species that arose and diverged in North America
about 40 Ma ago [12]. Currently, the Caninae subfamily is the only representative taxon
comprising 12 genera and 36 species [13]. In South America, there are six genera of Canidae:
Atelocynus, Cerdocyon, Chrysocyon, Speothos, Urocyon, and Lycalopex [13]. Most of the range
of South American canids has suffered a massive environmental disturbance [14–16],
bringing wild canids into contact with domestic dogs, Canis lupus familiaris [14–16]. This
contact increases the transmission of infectious diseases from domestic dogs to wild canids,
threatening their survival [17–20].

In animals, while hybridization among congeneric species is relatively frequent, hy-
bridization between species from different genera is extremely rare since the formation of
reproductive barriers increases with the expansion of divergence time [4,21]. Hybridization
among species with separate evolutionary trajectories can homogenize genetic pools and
defer the speciation process [22]. For instance, several studies showed the occurrence
of hybridization between wild canids [23–25] and between wild canids and domestic
dogs [23,26,27]. Bohling and Waits [23] found evidence of minimal introgression of dogs
(C. lupus familiaris) and gray wolves (Canis lupus) into the coyote population in North Car-
olina, USA. Vila and Wayne [27] observed dog–wolf hybrids in wild European populations
and found no significant introgression of dog alleles into the wild wolf. Hinton et al. [25]
hypothesized that size disparities between red wolves and coyotes in North America in-
fluence positive selective mating and may represent a reproductive barrier between the
two species. To our knowledge, there has yet to be a report of hybridization between dogs
and wild canids in South America.

In 2021, a female canid with unusual phenotypic characteristics (Figure 1A), henceforth
called ‘canid’, was run over in Vacaria City, Rio Grande do Sul State, Brazil. The canid was
transferred to the Center for Conservation and Rehabilitation of Wild Animals (Preservas)
of the Veterinary Hospital of the Universidade Federal do Rio Grande do Sul, where it
recovered fully. Four species of canids occur in the State of Rio Grande do Sul [28] and
display distinct phenotypic characteristics from this animal. The Speothos venaticus is a
canid with small, rounded ears, short legs and tail, and brown coloring, and its range
does not include the region of Vacaria [29,30]. The Chrysocyon brachyurus is the biggest
canid in South America, weighing about 30 kg and reaching up to 1.6 m. It has long legs
and ears, and the pelage of its coat is reddish-brown [31]. These species’ body size and
shape were inconsistent with the body shape and size of the canid. Furthermore, only a
limited number of occurrence records for Chrysocyon brachyurus are known in the State
of Rio Grande do Sul [32]. The other two canids in this region are Cerdocyon thous and
Lycalopex gymnocercus [28]. These species have a body shape and size similar to the canid;
however, their pelage color is not similar. While the pelage color of Lycalopex gymnocercus is
yellowish-grey in the coat and light-colored in the legs [33] (Figure 1B), and in Cerdocyon
thous, it is light gray with a dark stripe in the coat and dark hairs in the paws [34], the
pelage color of the canid was completely dark with scarce white hairs.
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Figure 1. Canid with unusual phenotypic characters investigated herein (A) and pampas fox
(Lycalopex gymnocercus) (B). Credits by Thales Renato Ochotorena de Freitas (A) and by Bruna
Elenara Szynwelski (B).

Because the canid has intermediate phenotypic characteristics between the domestic
dog and other wild canids found in Brazil, we hypothesized that it would be a case of
interspecific hybridization. To investigate this further, we tested all possible hybridization
scenarios involving canid species with distribution in the local area where the canid has
been found (Table 1). Thus, our study aimed to apply genetic and cytogenetics approaches
to test this hypothesis. Our data suggest that the canid investigated is a hybrid between a
pampas fox and a domestic dog. This is the first case of hybridization between a pampas
fox and a domestic dog.

Table 1. Hybridization hypothesis tested in our study.

Hybridization Hypothesis Expected Number of Chromosomes Cytogenetics Reference

C. lupus familiaris (2n = 78) X L. gymnocercus (2n = 74) 76 [34,35]
C. lupus familiaris (2n = 78) X C. thous (2n = 74) 76 [34,35]
C. lupus familiaris (2n = 78) X C. brachyurus (2n = 76) 77 [34,35]
C. brachyurus (2n = 76) X L. gymnocercus (2n = 74) 75 [34]
C. brachyurus (2n = 76) X C. thous (2n = 74) 75 [34]
C. thous (2n = 74) X L. gymnocercus (2n = 74) 74 [34]

2. Materials and Methods
2.1. Sampling

To obtain skin biopsies and blood to perform cytogenetics and genetics analysis,
respectively, the canid (Figure 1A) was sedated with tiletamine and zolazepam (5 mg/kg
or 1 mL). A small skin biopsy was collected using a surgical punch (5 mm). The surgical
wound was cleaned daily with saline solution, and the stitch was removed after ten days.
In the same procedure, 2 mL of blood was collected using a hypodermic needle in the
cephalic vein of a thoracic limb.

2.2. Cell Culture, Chromosome Preparation, and Cytogenetics Analysis

Fibroblast cell cultures from a skin biopsy were established to obtain metaphase
chromosomes following Verma and Babu [36]. Briefly, the cells were grown at 37 ◦C in
Dulbecco’s Modified Eagle’s Medium-high glucose (Gibco), enriched with 15% fetal bovine
serum (GIBCO), penicillin (100 units/mL), and streptomycin (100 mg/mL). Chromosome
preparations were obtained following standard procedures: 1 h in colchicine, 15 min in
hypotonic solution (0.075 M KCl), and fixation in 3:1 methanol:glacial acetic acid. The
cell suspension was dropped onto clean slides and stained with Giemsa, 10% in 0.07 M
phosphate buffer at pH 6.8 for 5 min, followed by air drying. The diploid number and chro-
mosome morphology were identified by analyzing 50 metaphase chromosomes. According
to Sumner [37], the chromosomal regions rich in heterochromatin were identified via C-
banding. All cytogenetic observations were made with a ZEISS Axiophot Epifluorescence
Microscope (Zeiss, Oberkochen, Germany) and ZEN 2 (Blue edition) software.
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2.3. Molecular Analysis

DNA was extracted from blood following the phenol–chloroform protocol [38]. The
mitochondrial gene COI (551 bp) [39] was amplified to access the maternal inheritance of
the canid. Biparental inheritance was accessed using amplifying five nuclear segments,
APOB (889 bp) [40], BDNF (542 bp) [41], CHRNA1 (339 bp) [42], GHR (749 bp), and FES
(407 bp) [43], previously successfully amplified for South America canids [44]. PCR mix
was performed with 1 µL of DNA (50 ng/µL), 0.2µL of 10 mM forward and reverse primers,
0.2µL of 10 mM deoxynucleotide triphosphates, 2.0µL of 10X PCR buffer, 1.5µL of 50 mM
MgCl2 polymerase cofactor, and 0.2µL of 5 U/µL DNA Taq polymerase (Ludwig Biotec,
Alvorada, Brazil), for 20 µL in total with the addition of ultrapure water. PCR cycling fol-
lowed Eizirik [45] for nuclear sequences and Folmer et al. [39] for COI. PCR products were
checked in 1% agarose gel. Purification and sequencing in both directions on an ABI 3730
automatic sequencer were performed in Macrogen Inc., Seoul, Korea. The sequences were
submitted to GenBank under the accession numbers shown in Supplementary Table S1.

The Basic Local Alignment Search Tool (BLAST) was run for COI and showed the
highest similarity with the pampas fox. Due to mitochondrial DNA indicating that the
maternal lineage was from pampas fox, we obtained two representative DNA samples of
this species from the scientific collection at PUCRS to conduct nuclear genome comparisons.
Moreover, representative tissue from two carcasses of domestic dogs was obtained in the
Veterinary Hospital of Universidade Federal do Rio Grande do Sul, and the DNA was
extracted using the CTAB protocol [46]. To perform mtDNA analysis, we compiled sequences
from GenBank for two possible pampas fox parental lineages (access codes MK321457.1,
KF572951.1, MK321456.1, MK321455.1, MK321448.1, MK321447.1, MK321442.1, MK321433.1,
and MK321411.1) and domestic dogs (access codes MN542345.1, MN542344.1, MN542343.1,
MN542342.1, MN542341.1, MN542340.1, MN542339.1, MN542338.1, and MN542337.1).

Chromatograms were inspected by eye, and sequences were edited in Chromas 2.6.6.
The alignment used the Clustal W algorithm [47] implemented in Mega X [48]. The
haplotype relationships of mtDNA were examined using the Median Joining method [49]
in PopART v1.7 [50] using epsilon = 0.

The heterozygous sites of nuclear segments were identified in the chromatograms,
and they were represented using the ambiguity codes following the International Union
of Pure and Applied Chemistry. A BLAST was run for each nuclear segment of the canid,
and the sites in which the dog and pampas fox presented exclusive polymorphisms and
were homozygous for them were represented in a table with the polymorphisms found in
the canid.

2.4. Photographs Analysis

We conducted a thorough search on INaturalist to investigate whether any individuals
with similar characteristics to the canid (Figure 1A) have been previously reported in
L. gymnocercus (Figure 1B) photographs.

3. Results
3.1. Chromosomal Analysis

The female individual analyzed showed a karyotype with 76 chromosomes (Figure 2A),
with the autosomes acrocentric and one X chromosome submetacentric and the other X
chromosome metacentric. Heterochromatin was found at the centromeric regions of 13 auto-
somes, at the telomeric regions of 12 autosomes, and at the interstitial regions of another two
autosomes (Figure 2B). The submetacentric X chromosomes showed a conspicuous block
of heterochromatin subcentromeric on its long arm, while the metacentric X chromosome
displayed a weak signal at the same region in all metaphases analyzed (Figure 2B).
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Figure 2. Giemsa-stained (A) and C-banded (B) metaphase in a hybrid canid showing 76 chromosomes.
The chromosome number is intermediate between that of the domestic dog (Canis lupus familiaris, 2n = 78)
and of the pampas fox (Lycalopex gymnocercus, 2n = 74). C-band positive heterochromatic appear as dark
signals (B). Arrows signal the two X chromosomes (XX).

3.2. MtDNA Analysis

Maternal inheritance, represented by mitochondrial lineage, shows that the canid has
pampas fox maternal ancestry. In total, we obtained 551 bp fragments of the mitochondrial
gene COI, where 550 sites were identical to the pampas fox reference used MK321448.1
haplotype (H4). The exception was at one site (23rd position), where the canid haplotype
has a polymorphism that had not been previously observed in the domestic dog and pam-
pas fox haplotypes. Nevertheless, the canid was clustered with all pampas fox sequences in
the haplotype network. Domestic dog sequences were isolated from the pampas fox/canid
cluster by 62 mutational steps (Figure 3).
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Figure 3. Haplotype relationships for mtDNA COI among pampas fox (Lycalopex gymnocercus),
domestic dog (Canis lupus familiaris), and the canid.

3.3. Nuclear Analysis

Among five nuclear segments used to investigate biparental inheritance, four showed
polymorphisms. The BDNF segment was not polymorphic and was excluded from our
results. The polymorphic sites of the four polymorphic genes are represented in Table 2.
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Table 2. Polymorphic sites in nuclear segments. * The polymorphisms in sites 231 and 308 are
represented in sites 241 and 318 in the domestic dog, once domestic dogs present a segment of 10 bp
after site 167 (see below).

Polymorphic Sites

161

APOB

Pampas fox 1 *

Pampas fox 2 G

Canid R

Domestic dog 1 A

Domestic dog 2 A

110 192 267 287

CHRNA1

Pampas fox 1 T C G C

Pampas fox 2 T C G C

Canid T C G Y

Domestic dog 1 K Y G C

Domestic dog 2 K T A C

88 231 * 308 *

FES

Pampas fox 1 A G S

Pampas fox 2 A G S

Canid M K G

Domestic dog 1 C T G

Domestic dog 2 C T G

99 446 569 638 671

GHR

Pampas fox 1 T T W Y C

Pampas fox 2 T T W Y C

Canid Y W T T C

Domestic dog 1 C A W C Y

Domestic dog 2 C A T C C
Heterozygous sites in italics were classified following the International Union of Pure and Applied Chemistry
code A or G = R, C or T = Y, G or C = S, A or T = W, G or T = K, A or C = M. * segment not amplified in individual
pampas fox 1.

The polymorphic sites should be distinct and homozygous between the pampas fox
and dog to support our hypothesis. That way, if the canid is a hybrid between these species,
it should have a heterozygous site reporting the base found in the pampas fox and the base
found in the dog. A total of 13 polymorphisms were presented in our nuclear dataset, and
the GHR segment had the highest polymorphism (5), followed by CHRNA1 (4), FES (3),
and APOB (1). However, the sites 192 and 267 of CHRNA1 were distinct between the two
dogs. At site 287 of CHRNA1, the canid had a heterozygous site, while the domestic dog
and pampas fox had a homozygous site, all displaying the Cytosine base. At site 110, the
canid was homozygous for Thymine, shared by dog and pampas fox. The polymorphic
sites of CHRNA1 did not contribute to understanding the biparental inheritance of the
canid because they are not distinct and homozygous between the domestic dog and the
pampas fox. This also happened at sites 569, 638, 671 of GHR and 308/318 of FES. Biparental
inheritance is clear at sites 99 and 446 of GHR, sites 88 and 231/241 of FES, and sites 161 of
APOB. In these positions, dogs and pampas foxes were homozygous and had exclusive
polymorphisms. Consequently, the canid shows a heterozygous site, reporting both bases
from domestic dogs and pampas foxes.
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In addition to the single nucleotide polymorphisms described here, an indel (insertion
or deletion) was observed in the FES segment. In this segment, the dog had 10 base pairs
from site 168 to site 177, which were absent in the pampas fox. Since the DNA strands
overlap in the sequencing chromatogram, this 10-base segment derived from the dog
appeared to overlap on the pampas fox strand in canid (Figure S1). Including 47 GenBank
sequences belonging to 27 canid species in the FES alignment, we observed that the 10-base
segment occurs in 25 species of canids (Table S2). The only species that did not show this
segment were Lycalopex fulvipes, and the sister species of pampas fox, Lycalopex griseus
(Table S2) [51]. Neither sequence belonging to pampas fox was available in the GenBank
database for this segment. Three of these 27 species that presented the 10-base segment
occur in the Vacaria City region. They are Chrysocyon brachyurus, Cerdocyon thous, and the
dog (Canis lupus familiaris), but according to cytogenetic data, a hybridization involving
C. brachyurus or C. thous could not result in the karyotype found in the canid (see Section 4).

3.4. Photographs Analysis

We discovered a total of 1112 photographs on INaturalist that were registered as
L. gymnocercus. However, upon reviewing these photographs, we did not come across any
specimens with a pelage color resembling that of the canid found in Vacaria City.

4. Discussion

This study investigated an intriguing canid individual exhibiting unusual phenotypic
characteristics, which could not be associated with any known canid species with distri-
bution in Brazil, according to our photographs analysis. Using genetic and cytogenetic
markers, our findings suggest that this individual represents a first-generation hybrid
between a dog (Canis lupus familiaris) and a pampas fox (Lycalopex gymnocercus). This
discovery implies that, although these species diverged about 6.7 million years ago [52] and
belong to different genera, they might still produce viable hybrids. Hence, these species are
isolated by postzygotic barriers, although further investigations are required to determine
the fertility of these hybrids.

Cytogenetic techniques offer an easy and cost-effective approach to identifying hybrid
individuals [53,54], particularly when the parental species possess distinct karyotypes, as
observed in the Canidae family [34,35,55–57]. Thus, the initial phase of our study involved
determining the number of chromosomes and morphologies of the individual under inves-
tigation. We identified 76 autosomal chromosomes, all acrocentric, and the X chromosomes
displaying submetacentric and metacentric morphologies. Chrysocyon brachyurus is the
only canid with distribution in Brazil with 2n = 76 [34]. However, this species significantly
differs in physical appearance from the individual under study. The karyotype of the
individual closely resembled that of the dog [35] and the pampas fox [34], as both species
exhibited acrocentric morphology for their autosomes and a metacentric or submetacen-
tric X, respectively. Nonetheless, dogs possess 2n = 78 [35], while pampas foxes have
2n = 74 [34]. Thus, this finding provided the initial evidence indicating that the individual
in question is a hybrid between these species, as the haploid number for dogs (39 chro-
mosomes) and pampas foxes (37 chromosomes) explain the diploid number found in the
individual (2n = 76). Additional evidence supporting the hybridization hypothesis was the
observation that the canid individual possessed one X chromosome with a submetacentric
morphology and the other X chromosome with a metacentric morphology.

We further explored C-banding in the canid. Our analysis revealed that heterochro-
matin was predominantly located in the telomeric and centromeric regions of several auto-
somal pairs as well as the X chromosome. The dog is known to have heterochromatin only
on the centromeric regions of six pairs [35,58]. On the other hand, the pampas fox exhibits
heterochromatin in both the centromeric and telomeric regions of most autosomes [34].
Further, the submetacentric X chromosomes in the canid showed a conspicuous block
of heterochromatin in the pericentromeric region, while the metacentric X chromosome
exhibited a weak signal in all metaphases analyzed. The submetacentric X chromosome,
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with a conspicuous block of heterochromatin in the pericentromeric region, resembles the X
in pampas foxes [34]. On the other hand, the metacentric X chromosome with a weak signal
of heterochromatin resembles the dog X chromosome. Fujinaga et al. [35] did not find the
block of heterochromatin, while Manolache et al. [58] found a minor heterochromatic area
on this chromosome in dogs. Hence, the C-banding results corroborate the hybridization
hypothesis between dogs and pampas foxes.

The analysis of mtDNA revealed that the maternal lineage of the canid belonged to
the pampas fox. Additionally, five APOB, FES, and GHR segment polymorphisms were
consistent with our cytogenetic and mtDNA data. These segments are specific to each
species, so the parental species (dog and pampas fox) exhibited homozygote sites, while the
canid showed a heterozygote site with both dog and pampas fox polymorphisms. Although
the observed indel in the FES segment is also found in two canids, C. brachyurus and C. thous,
with a geographic distribution in Vacaria City, the cytogenetic data do not support the
hypothesis of hybridization involving these species (Table 1). Moreover, the hybridization
between Canis lupus familiaris (2n = 78) and C. thous (2n = 74) would produce a hybrid with
76 chromosomes, but most of the autosomal chromosomes in C. thous are bi-armed, which
is not characteristic of the Canid karyotype, effectively discarding this possibility.

Although our nuclear analysis was limited to only two specimens of the putative
parental species, it does not undermine our evidence of hybridization. While it does not
offer sufficient information to definitively determine whether the observed genotypes
in the canid are the result of hybridization or intraspecific variation within the pampas
fox population, it does provide valuable insights into the hybridization event. When we
consider our integrative analysis, which includes photographs, cytogenetic data, mtDNA
analysis, and nuclear analysis, the possibility of hybridization between the pampas fox and
the dog should not be disregarded.

The Pampas biome represents a large proportion of the pampas fox distribution range.
However, this species is also common in open woodlands and in modified habitats, such as
grazed pastures and croplands [59]. The geographic region where the hybrid was found
belongs to the Atlantic Forest biome, the most anthropic biome in Brazil [60,61]. The
anthropization of the pampas fox habitat has caused this species to be tolerant of human
disturbance [16], increasing overlapping ranges of this species with the domestic dog and
may have facilitated the interspecific hybridization between these two taxa.

This study suggests a unique case of hybridization between the pampas fox and the do-
mestic species Canis lupus familiaris. Further studies are necessary to examine the frequency
of hybridization and the potential for genetic introgression of dog genes into Pampas fox
populations once the occurrence of introgression of dog alleles to pampas fox populations
means introgression of alleles shaped by artificial selection on species vulnerable to natural
selection. The pampas fox has a coat color very similar to its habitat, as shown in Figure 1B,
while the hybrid has a very dark coat color (Figure 1A), contrasting with the typical color
of the pampas fox. Hybridization and introgression can have harmful impacts on the
fitness of wild populations via disrupting local adaptation [8,62]. Further, the possibility of
cross-species transmission of canine diseases [63,64] may represent another risk for pampas
fox populations, especially since the pampas fox is susceptible to coronavirus, parvovirus,
distemper, and brucellosis, diseases associated with the anthropic environments where
dogs live [14,64].

5. Conclusions

In conclusion, here we suggest the first report of hybridization between a domestic
dog and a pampas fox. Genetic management of interspecific hybrids is important to species
conservation. This step requires the application of methodologies able to provide an easy
and undoubted genetic characterization of parents and hybrids [3]. In this context, the
combination of cytogenetics, mtDNA, and the nuclear markers APOB, FES, and GHR was
useful to clarify this case of hybridization. Nevertheless, additional efforts are required to
investigate hybridization frequency, the possibility of genetic introgression of dog genes
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into pampas fox populations, and the impacts of this event on genetic, behavioral, and
ecological factors of pampas fox populations.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/ani13152505/s1. Figure S1: Sequencing of the FES segment in the
pampas fox (Lycalopex gymnocercus), the dog (Canis lupus familiaris), and the canid; Table S1: GenBank
sequences belonging to species of canids used in the alignment of FES to compare the presence or
absence of the 10 bp segment. Table S2: GenBank sequences belonging to species of canids used in
the alignment of FES to compare the presence or absence of the 10 bp segment.
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