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Abstract

We explore the properties of finite topological spaces using the meth-
ods of elementary algebraic topology. Among other results, we prove a key
theorem of McCord relating finite spaces to simplicial complexes without
using any machinery of homotopy theory. Few of our results are original,
but most were discovered independently, and the presentation is intended
to show the motivation behind these results.

Contents

Introduction 2

1 Preliminaries 2
1.1 The T0 quotient . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2 Finite spaces, locally finite spaces, and posets . . . . . . . . . . . 3

2 Exploring finite spaces 5
2.1 Hasse diagrams . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2 Connectedness in locally finite spaces . . . . . . . . . . . . . . . . 5
2.3 A “finite circle” . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.4 Height 1 spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.5 Finite “spheres” . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

3 Order complexes and the Lifting Theorem 12
3.1 Order complexes . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
3.2 The Lifting Theorem . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.3 Barycentric subdivision and order complexes . . . . . . . . . . . 17

4 Maps between (locally) finite spaces 20
4.1 Spaces of maps . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
4.2 Strong homotopy classes of finite spaces . . . . . . . . . . . . . . 22
4.3 Simplicial approximation and finite spaces . . . . . . . . . . . . . 23
4.4 A finitistic “singular” homology for finite spaces . . . . . . . . . 27

1



5 Generalizations and other approaches 29
5.1 Generalizations and counterexamples to the lifting theorem . . . 29
5.2 McCord and the homotopy-theoretic approach . . . . . . . . . . 32
5.3 Other directions and historical notes . . . . . . . . . . . . . . . . 34

6 Acknowledgements 35

References 35

Introduction

In July of 2007, a friend of mine posed the following little problem to me: find
a finite topological space whose fundamental group is nontrivial. After solving
this problem (see Section 2.3), I went on to explore other examples of finite
spaces. Eventually, I realized that there is a beautiful and simple theory of the
algebraic topology of finite spaces, at the heart of which lies the lifting Theorem
3.5 and its corollaries. This paper presents this theory.

The treatment of finite spaces given in this paper is not meant to be the
“deepest” possible treatment or a comprehensive survey of what is known about
finite spaces. Rather, it is intended to guide the reader through the results in
a way that she might stumble upon them for herself. Indeed, the topics in
this paper are organized loosely based on the order in which I discovered them
myself. Really, for the ambitious reader, I might suggest not reading the paper
at all and instead thinking about the problem above and seeing what she can
prove on her own.

I make no claims as to the originality of any of the results in this paper,
but I (re)discovered most of them on my own. Whenever I did not discover a
significant result independently, I mention the original source with the result.
I in particular am not aware of whether Theorem 3.5 has never explicitly been
used to prove the basic properties of finite spaces (the paper [7] that first proved
Corollary 3.7 of the Theorem took a different approach, which is deeper and
more generalizable but less elementary).

I assume the reader is familiar with no more than the basic concepts of alge-
braic topology, all of which can be found in [6], though other books, such as [10],
give better treatments of simplicial complexes. All maps between topological
spaces are assumed continuous unless stated otherwise. We say two spaces X
and Y are “weak homotopy equivalent” not only if there is a weak homotopy
equivalence between them, but if there is a sequence of weak homotopy equiva-
lences X = Z0 ← Z1 → Z2 ← . . .← Zn−1 → Zn = Y connecting X and Y (by
using CW models, in fact, n = 2 always suffices).

1 Preliminaries

Finite topological spaces are pathological beasts, far removed from the spaces
one normally deals with in mathematics. They do bear some resemblance to
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the Zariski topologies of algebraic geometry, but in general they are unlike any
spaces that we normally deal with. In this section, we get a handle on finite
spaces from the perspective of pointset topology.

1.1 The T0 quotient

First, we show that if we are interested only in the homotopy-theoretic prop-
erties of finite spaces (or indeed any spaces), we may ignore the worst possible
pathology that can occur. Recall that a topological space X is T0 if for any
distinct points x, y ∈ X, there is some open set such that either x ∈ U but
y 6∈ U or y ∈ U but x 6∈ U . Given a space X, we can identify pairs of points
x and y such that this fails (i.e. such that x ∈ U iff y ∈ U for any open set U ;
this is clearly an equivalence relation) to obtain a quotient space X0 that is T0.

Proposition 1.1. Let X and X0 be as above and let π : X → X0 be the quotient
map. Then π is a homotopy equivalence.

Proof. Let f : X0 → X be any map such that πf = 1 (i.e., f picks a representa-
tive of each equivalence class); we claim f is a homotopy inverse to π. It suffices
to show that g = fπ is homotopic to the identity on X. Define H : X × I → X
by H(x, t) = g(x) for t = 0 and H(x, t) = x for t ∈ (0, 1]. By definition of π,
g(x) is contained in exactly the same open sets as x is. Thus for any U ⊆ X
open, H−1(U) = U × I, so H is continuous. Hence H is a homotopy from g to
1.

We remark that the construction of X0 from X is functorial, and is in fact
left adjoint to the inclusion of the full subcategory of T0 spaces in the category
of all topological spaces. These facts are straightforward to verify, and their
proofs are omitted here because they are tangential to our main interest. On a
more whimsical note, we observe that Proposition 1.1 is actually equivalent to
the axiom of choice; the proof is left as an exercise to the reader.

In light of this result, in the rest of this paper the term “space” will be taken
to mean “T0 topological space.”

1.2 Finite spaces, locally finite spaces, and posets

We now show that finite spaces are actually essentially the same thing as more
familiar objects, namely finite posets.

Definition 1.2. Let P be a poset and x ∈ P . Then the upset and downset of
x in P are respectively x↑ = {y ∈ P : y ≥ x} and x↓ = {y ∈ P : y ≤ x}. The
order topology on P is the topology that has {x↓ : x ∈ P} as a basis of open
sets. An upset or downset in P is respectively a closed or open set in the order
topology of P .

We will always consider posets to be equipped with the order topology. We
note that the antisymmetry axiom of posets is equivalent to the T0 axiom holding
for the order topology. For x ∈ P , x↑ and x↓ are respectively the minimal closed
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and minimal open sets containing x, and that A ⊆ P is an upset (downset) iff
x ∈ A implies y ∈ A for all y ≥ x (y ≤ x).

Theorem 1.3. The association of a finite poset with its order topology is an
isomorphism from the category of finite posets to the category of finite spaces.

Proof. Let X be a finite space. Define a partial order on X by saying x � y
iff y ∈ {x}. This is clearly transitive, and is antisymmetric since X is T0. We
claim that the order topology induced by � is the same as the given topology
on X. By definition of �, x↑ = {x} so the upsets of single points are closed in
the original topology. Since X is finite, every upset is the union of the upsets
of finitely many single points (namely, its elements), and hence every upset is
closed in the original topology. Conversely, if C ⊆ X is closed in the original
topology, x ∈ C implies x↑ = {x} ⊆ C. Thus C is an upset. Hence a set is
closed in the original topology iff it is closed in the order topology, so the two
topologies are the same.

Conversely, we show that given a poset P with the order topology, the partial
order � defined above agrees with the original order ≤ on P . But this is clear
because for any x ∈ P , {y : y ≥ x} = {x} = {y : y � x}.

Finally, we show that a map f : P → Q between finite posets is order-
preserving iff it is continuous in the order topologies. But f is continuous iff for
all x ∈ Q, f−1(x↓) is a downset, which just says that f(y) ≤ x and z ≤ y imply
f(z) ≤ x, and it is easy to see that this is equivalent to f preserving order.

At times, it will be convenient to consider spaces that are infinite but share
most of the important properties of finite spaces. We thus make the following
definition.

Definition 1.4. A space is called locally finite if there exists a finite neighbor-
hood of each point. A poset is called locally finite if the downset of each point
is finite.

Theorem 1.5. The association of a locally finite poset with its order topology
is an isomorphism from the category of locally finite posets to the category of
locally finite spaces.

Proof. The proof is almost identical to that of Theorem 1.3, and most details
are left to the reader. To show that a subset A of a locally finite space X is
closed in the original topology iff it is an upset in the induced ordering, note
that A is closed iff there is an open covering X =

⋃
Uα such that A ∩ Uα is

closed in Uα for each α. We can then choose the covering of all finite open sets
and apply Theorem 1.3.

From now on, we shall make no distinction between (locally) finite spaces
and (locally) finite posets. Given a finite space X, we denote the finite space
given by the opposite partial order (i.e. x ≤op y iff y ≤ x) by Xop and call it
the opposite space of X. We make the same definition for locally finite spaces,
though the opposite of a locally finite space may fail to be locally finite. If both
a poset and its opposite are locally finite, we say the poset is bilocally finite;
these will be somewhat better behaved than arbitrary locally finite spaces.
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2 Exploring finite spaces

Most of the results in this section follow from and are greatly generalized by
Theorem 3.5. However, in this section we hope to give the reader a chance
to play with (locally) finite spaces and gain some intuition for their behavior
before plunging into greater generality. This section also contains examples that
provide motivation behind Theorem 3.5.

2.1 Hasse diagrams

First, we introduce a useful way of visualizing locally finite spaces. Intuitively,
this consists of simply drawing the poset as a graph in the “obvious” way,
with larger elements at the top of the graph. Formally, we make the following
definition.

Definition 2.1. Let X be a poset and x, y ∈ X. We say y covers x if x < y
and there is no z ∈ X such that x < z < y. The Hasse diagram of X is the
directed graph on vertex set X whose vertices are pairs (x, y) such that y covers
x.

For a locally finite poset, it is easy to see that the order relation is the
transitive relation generated by the covering relation, so the poset is determined
by its Hasse diagram.

Definition 2.2. Let X be locally finite. Then the rank of an element x ∈ X is
defined inductively as rank(x) = max{rank(y) + 1 : y < x}, with the rank of a
minimal element of X being 0. The height of X is supx∈X rank(x) (or −1 if X
is empty).

We leave it as an exercise to the reader to verify that the induction in the
definition of rank is valid, and that every element of a locally finite space has
finite rank. Note, however, that an infinite locally finite space (e.g. N with the
usual ordering) may have infinite height. If the opposite of a locally finite space
is locally finite, it has the same height.

We normally draw the Hasse diagram of a locally finite poset by putting the
elements of each rank in a row, with higher ranks above lower ranks. We draw
the edges as undirected lines, since they must always go from lower ranks to
higher ranks.

Example 2.3. Consider the poset X = {a, b, c, d, e, f} with a < b, a < c, a < d,
a < e, a < f , b < e, b < f , and c < f . Then the Hasse diagram of X is depicted
in Figure 1.

2.2 Connectedness in locally finite spaces

In this section we describe the basic (path-)connectedness properties of locally
finite spaces. The key fact is the following.
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Figure 1: The space in Example 2.3

Proposition 2.4. Let X be a poset with either a greatest or a least element.
Then X is contractible.

Proof. Suppose a ∈ X is a greatest element. Define H : X × I → X by
H(x, t) = x for t ∈ [0, 1/2) and H(x, t) = a for t ∈ [1/2, 1]. Then for x 6= a,
H−1(x↓) = x↓ × [0, 1/2) is open, as is H−1(a↓) = X × I (since a↓ = X by
hypothesis). Thus H is continuous and is a homotopy from the identity on X
to the constant map at a. Hence X is contractible.

The case that X has a least element is similar and left as an exercise to the
reader.

Corollary 2.5. Posets (in particular, locally finite spaces) are locally con-
tractible.

Proof. Let X be a poset, U ⊆ X be open, and x ∈ U . Then x↓ is a neighborhood
of x contained in U . But x is the greatest element of x↓, so by the Proposition
x↓ is contractible.

Corollary 2.6. Every connected locally finite space has a universal cover, and
its universal cover is locally finite of the same height.

Proof. It is a standard theorem that every connected, locally path-connected,
and semilocally simply connected space has a universal cover. But any locally
contractible space is locally path-connected and semilocally simply connected,
so any connected locally finite space has a universal cover. Since covering maps
are local homeomorphisms, any covering space of a locally finite space is locally
finite, and since rank is a local property, covering maps also preserve height.

This result is one reason to be interested in locally finite spaces as well as
finite spaces. As we shall see, the universal cover of a finite space may be only
locally finite.

We now characterize when a locally finite space is connected.

Definition 2.7. Let X be a poset. Let ∼ denote the equivalence relation gener-
ated by the order relation of X. Explicitly, we say x ∼ y if there exist z0, . . . , zn

such that x ≤ z0 ≥ z1 ≤ z2 ≥ . . . ≤ zn ≥ y. Then we call the equivalence classes
of ∼ the order-components of X.
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Proposition 2.8. The order-components of a poset X are exactly the (path-
)connected components of the order topology on X.

Proof. First, if A ⊆ X is an order-component, A =
⋃

a∈A a↓, so A is open.
But the complement of A is a union of order-complements and thus also open,
so A is clopen. It follows that connected components are contained in order-
components. Conversely, if x ≤ y, then since y↓ is contractible and in par-
ticular connected, x and y are in the same connected component. But being
in the same connected component is an equivalence relation, so it follows that
order-components are contained in connected components. Finally, the path-
connected components are the same as the connected components since X is
locally contractible and hence locally path-connected.

For a locally finite space, it is easy to see that order-components coincide
with connected components of the poset’s Hasse diagram. Thus a locally finite
space is connected iff its Hasse diagram is connected.

2.3 A “finite circle”

We now know when a locally finite space is connected and have a simple sufficient
condition for a locally finite space to be contractible. But how, in general, might
we find a locally finite space that is connected but not contractible? Is there,
for example, a connected finite space that is not simply-connected? We strongly
encourage the reader to explore this question for herself before reading on.

Let us try to construct the smallest possible non-contractible (nonempty)
connected finite space. A connected space with 1 or 2 points clearly has a
greatest element and is hence contractible. Suppose we have a connected space
X = {a, b, c} with three points. We may assume WLOG that a is a minimal
element and b > a. Then by connectedness, we must have either c > a or c < b.
In the former case a is a least element and in the latter case b is a greatest
element, so either way X is contractible.

Now suppose we have a connected space with 4 points. Making a similar
analysis as we did for 3 points, we would find several possibly non-contractible
spaces. However, instead of going through the details of that, we observe that
in any locally finite space Y , if y ∈ Y is minimal and is covered by exactly one
point of Y , Y deformation-retracts onto Y − {y} by mapping y to the point
that covers it (the proof is similar to that of Proposition 2.4, and the reader
is encouraged to check the details). Similarly, Y also deformation-retracts onto
Y − {y} if y is maximal and covers exactly one point. Thus since every 3-point
connected space is contractible, for a 4-point space not to be contractible, each
minimal point must be covered by at least two points and each maximal point
must cover at least two points. Also, it must have at least two minimal points
and at least two maximal points, since if there is only one minimal point it is a
least point and similarly for maximal points. Thus a non-contractible connected
4-point space must have two minimal points a and b and two maximal points c
and d with the Hasse diagram in Figure 2. We will (temporarily) refer to this
space as X.
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Figure 2: The noncontractible 4-point space X

Figure 3: The universal cover Y = X × Z of X

Now, it is possible to argue directly that X is not contractible (see Corollary
4.5, for example). However, in order to not only show that X is not contractible
but also more closely analyze its topological properties, we construct the uni-
versal cover of X. Write Y = X × Z, with the ordering indicated in Figure 3.

It is trivial to see that the projection map π : Y → X is a covering map. In
particular, since X has a nontrivial cover, we conclude immediately that X is
not simply connected. To show Y is the universal cover of X, we show that it
is contractible. To simplify notation, we identify Y with Z, ordered as shown in
Figure 4.

Now for each N ≥ 0, define fN : Y → Y by fN (m) = −N if m < −N ,
fN (m) = m if m ∈ [−N,N ] and fN (m) = N if m > N . Note that each fN is
continuous and f0 is the constant map to 0. Now for each N , fN is homotopic to
fN+1 because in [−N−1, N +1] ⊆ Y , −N−1 and N +1 are either minimal and
covered only by −N and N or maximal and only cover −N and N (depending
on the parity of N), so [−N − 1, N + 1] deformation-retracts to [−N,N ]. We
thus define H : Y × I → Y by letting H|Y×[1/(N+2),1/(N+1)] be a homotopy
from fN+1 to fN and H(y, 0) = y for all y. Then H is clearly continuous on

Figure 4: Y identified with Z
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Figure 5: The map f : S1 → X

Y × (0, 1], and as long as we choose reasonable homotopies from fN+1 to fN it
is easy to see that it is also continuous at time 0. Thus H is a homotopy from
the identity to the constant map f0, so Y is contractible.

It is now difficult not to notice that X has the homotopy groups of a circle,
and that the covering map Y → X intuitively “looks like” the universal cover
R → S1. Indeed, let C be the intersection of S1 ⊆ R2 with the open upper
half-plane and D be the intersection with the open lower half-plane. Then the
map

f :


1 7→ c
C 7→ b
−1 7→ d
D 7→ a

is continuous S1 → X and is easily seen to generate π1(X, a1) (see Figure 5).
In particular, this means that f induces an isomorphism on π1, and since

all the other homotopy groups of S1 and X are trivial, f is a weak homotopy
equivalence. We also note that f is a topological quotient map, and that we can
define a similar map f̃ : R → Y that commutes with the universal cover maps
of S1 and X.

In light of this close relationship between X and S1, we will from now on
call X a “finite circle” and write it as S1

f . We think of S1
f as in some sense being

a “finite model”1 of the continuous space S1.

2.4 Height 1 spaces

We now examine how the analysis of S1
f above can be generalized to other finite

spaces of height 1. First, consider the 5-point space in Figure 6, which we
will call K32 because its Hasse diagram is a complete bipartite graph with 3
maximal elements and 2 minimal elements. To compute the fundamental group
of this space, we can simply use van Kampen’s theorem. The subspaces A =
{a, b, d, e} and B = {b, c, d, e} are each open and homeomorphic to S1

f , and their
intersection has a greatest element b and is hence contractible. By van Kampen’s

1Normally, the counterpart to “continuous” would be “discrete,” but in the case of topo-
logical spaces, “discrete” already has another meaning. For this reason we say “finite model”
instead of “discrete model.”
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Figure 6: K32

Figure 7: K23

theorem and our computation of π1(S1
f ) above, we conclude that π1(K32) is free

on two generators. The Mayer-Vietoris sequence of the decomposition K32 =
A∪B can also be used to show that the homology groups of K32 are trivial in all
dimensions greater than 1. We note that van Kampen’s theorem and the Mayer-
Vietoris sequences are valid here, as they require no separation axioms or other
such niceness conditions, at least when the space is being decomposed in to open
subsets. It is clear that these computations can be generalized by induction to
the spaces Kn2 whose Hasse diagrams are complete bipartite graphs with n
maximal elements and 2 minimal elements: π1(Kn2) is free on n− 1 generators
and Hk(Kn2) = 0 for k > 1.

What happens if we have more than 2 minimal elements? Consider the
simplest example of K23 = Kop

32 , shown in Figure 7. We presumably want to
split this space into two copies of S1

f , as we did with K32. However, the subspaces
{a, b, c, d} and {a, b, d, e} (and also {a, b, c, e}) which are homeomorphic to S1

f are
closed, not open. Thus we cannot apply van Kampen’s theorem to compute the
fundamental group. Indeed, it seems that the only elementary way of computing
the fundamental group is to explicitly write down covering spaces. While this is
fairly straightforward for K23, it quickly becomes quite laborious for the more
general spaces K2n = Kop

n2. We spare the reader the details and simply state
the final result, which is that π1(K2n), like π1(Kn2), is free on n− 1 generators.
We note that Mayer-Vietoris still can be used to compute the homology of
K2n (using the subspaces {a, c, d, e} and {b, c, d, e}, for example, for K23), since
it does not require the intersection of the subspaces to be connected. These
straightforward computations show that Hk(K2n) = 0 for k > 1.

Let us now step back and try to see what is “really” going on. It is clear
that the spaces Kn2 and K2n have very similar properties, even though it is easy
to see that they are not homotopy equivalent for n > 2 (the natural bijection
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between them reverses order and is thus not continuous). This is perhaps not
surprising given that, for example, the proof of Proposition 2.4 was essentially
invariant replacing a space with its opposite. Nevertheless, it is not clear how
one would prove in general that, say, the fundamental group of a finite space (or
a bilocally finite space) is isomorphic to the fundamental group of the opposite
space. One might try to use covering spaces and prove, say, that the opposite of
a covering space is a covering space of the opposite space. However, to show that
the opposite of a universal cover is the universal cover of the opposite space,
one must show that the opposite of a simply connected space is still simply
connected.

As an alternate approach, we observe that the fundamental groups and ho-
mology groups we computed for Kn2 and K2n are the same as those of the Hasse
diagrams of these spaces. Indeed, the Hasse diagram of Kn2 or K2n is homotopy
equivalent to a wedge of n−1 circles. One can now construct a natural quotient
map from the Hasse diagram to Kn2 or K2n, similar to how we constructed a
map S1 → S1

f above. Using universal covers to show that the higher homotopy
groups of K2n and Kn2 vanish (as we did with S1

f , but with messier details), one
can conclude that these quotient maps are in fact weak homotopy equivalences.
Indeed, with more work, it is possible to show that any finite height 1 space is
weak homotopy equivalent to its Hasse diagram. In particular, this implies that
a finite height 1 space indeed has the same weak homotopy type as its opposite.
While we invite the curious reader to explore this in more depth, we skip the
details, and instead prove more general results later in Corollaries 3.7 and 3.9.

2.5 Finite “spheres”

We now generalize the example of S1
f in a different direction, looking for finite

models of higher-dimensional spheres. To do so, we first ask, how does one
obtain actual (continuous) spheres? While there are several possible answers,
probably the most natural from the perspective of algebraic topology is that
spheres are suspensions of spheres of lower dimension, starting with S0, a dis-
crete two-point space (or S−1, an empty space). Of course, we cannot take
suspensions with finite spaces, since the suspension of a finite space is not finite
unless the space is empty. Nevertheless, we note that S0 is already finite, and
embeds as a subspace of S1

f by mapping it to the two minimal points. Thus we
can hope that S1

f is in some sense a “suspension” of S0, and that we can then
generalize the “suspension” operation to obtain finite models of Sn for arbitrary
n.

Now, the difference between S1
f and S0 is that S1

f contains two additional
points, each of which is above the two points of S0. Now by Proposition 2.4,
adding a point that is greater than every element of a space makes the space
contractible, and thus could be thought of as taking a cone on the space. Thus
adding two such points is analogous to having two cones over the original space
(attached at the base), which is the same as the suspension of the space. We thus
define the finite suspension of a locally finite space X to be SfX = X t {a, b},
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ordered by the ordering on X plus a > x and b > x for all x ∈ X. In particular,
we inductively define S0

f = S0 and Sn+1
f = SfSn

f , which we call “finite n-
spheres.” More explicitly, Sn

f = {0, 1, . . . , n} × {1,−1} ordered by (k, i) < (l, j)
whenever k < l.

By Mayer-Vietoris and Proposition 2.4, it is easy to show that H̃k(SfX) =
H̃k−1(X) for any locally finite space X. Indeed, the proof is virtually identical
to the proof of this fact for ordinary suspensions. In particular, the spaces Sn

f

have the same homology as Sn. Indeed, as in the case of S1
f , we can construct

a quotient map Sn → Sn
f that induces isomorphisms on all homology groups in

the following way: given a point x = (x0, x1, . . . , xn) ∈ Sn ⊂ Rn+1, map x to
(i, xi/|xi|) ∈ Sn

f for the smallest i such that xi 6= 0. We leave it as an exercise for
the reader to verify that this is a quotient map that it induces isomorphisms on
homology. However, while we could use covering spaces to compute the higher
homotopy groups of S1

f and show that this quotient map is in fact a weak
homotopy equivalence, for general Sn

f no such approach is available. Indeed, if
the quotient map is a weak equivalence, then computing the homotopy groups
of Sn

f is at least as hard as computing the homotopy groups of Sn. Thus in
order to show that Sn

f really deserves to be called a finite sphere, we need some
more direct way of relating it to Sn. This problem is nontrivial, and we solve it
only with Theorem 3.5 below.

3 Order complexes and the Lifting Theorem

In this section we generalize the examples of the previous section to arbitrary
locally finite spaces. The main result Theorem 3.5 and its corollaries show that
every (locally) finite space is essentially a “(locally) finite model” of a naturally
defined simplicial complex, and that conversely every simplicial complex has a
“locally finite model.”

3.1 Order complexes

In Section 2.5, we observed that adding a greatest point to a finite space is
analogous to taking a cone over the space. We now use this to generalize the
quotient maps Sn → Sn

f constructed in that section to an arbitrary locally finite
space. The formal definition below may seem messy, but the basic idea is simple:
you build a “continuous model” for a finite space from the bottom up, and each
time you add a point to the finite space you adjoin a cone over its downset in
the continuous model.

Let X be finite, and extend the partial ordering on X to a total ordering
�. In particular, this means that each initial segment of the total ordering is a
downset under the original ordering and hence open in X. By induction on the
cardinality of X, we define a space δX and a quotient map πX : δX → X such
that for each subset A ⊆ X (with the total ordering � |A), there is a natural
embedding δA ↪→ δX that commutes with the quotient maps. When X is empty,
we let δX be empty and πX be the only possible map. For the induction step,
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let x be the greatest element of X under the total ordering and Y = X − {x}.
By induction we have constructed δY and πY . Let A = Y ∩ x↓. We then define
δX to be δY together with a cone on the subspace δA. Explicitly, we write
δX = δY × {0} ∪ δA × I/δA × {1}.2 We then define πX by πX(y, t) = πY (y)
for t ∈ [0, 1) and πX(δA×{1}) = x. We leave it to the reader to check that this
is continuous and a quotient map, and that δB embeds naturally in δX for any
B ⊆ X.

This construction can also be carried out for locally finite spaces if we choose
� to be a well-ordering and use transfinite induction, taking direct limits at limit
stages. While this in general requires the axiom of choice, we shall see below
that the definition of δX is actually completely constructive.

Now an important question is whether our construction of δX depended on
our choice of a total ordering �. That is, if we add the points to the space in a
different order, do we get a different continuous model? The construction below
gives a simpler description of δX and shows that the answer is no.

Definition 3.1. Let X be a locally finite space. Then the order complex ∆X
of X is the (abstract) simplicial complex on vertex set X whose cells are given
by finite nonempty chains in the partial order on X.

Proposition 3.2. Let X be a locally finite space. Then the (geometric re-
alization of the) order complex of X is naturally homeomorphic to the space
δX constructed above. In particular, δX does not depend on the choice of the
ordering �.

Proof. For any finite nonempty chain C ∈ X, δC naturally embeds in δX.
We leave it to the reader to check that δC is in fact a simplex and that these
simplices define a simplicial complex structure on δX that is isomorphic to the
order complex of X; the proofs of these facts are straightforward but tedious by
induction.

From now on we will make no distinction between δX and |∆X|. Chasing
through the construction above, we observe that the quotient map πX : |∆X| →
X maps the interior of a simplex |∆C| to the least element of the chain C. Also,
for any A ⊆ X, the order complex of A is naturally a subcomplex of the order
complex of X, and it is easy to see that this agrees with the previously defined
embedding δA → δX. Note that |∆A| ⊆ |∆X| is not the same as (or even
homeomorphic to) π−1

X (A) unless A is closed in X, but it’s easy to see that
π−1

X (A) deformation-retracts onto |∆A|.
The association of a locally finite space with its order complex is functorial:

given a map f : X → Y of locally finite spaces, f is order-preserving and hence
maps chains to chains. Thus f induces a simplicial map ∆f : ∆X → ∆Y , and
it is clear that ∆1 = 1 and ∆(fg) = ∆f∆g. Furthermore, it is easy to see that
the geometric realization of such a ∆f commutes with the quotient maps, which
shows that πX is a natural transformation from |∆| to the inclusion functor of
the category of locally finite spaces into the category of all spaces.

2If A is empty, we interpret this quotient to mean that we add an isolated point to δY ×{0}.
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We note that the definition of the order complex generalizes the constructions
in Sections 2.4 and 2.5. For a height 1 space, the order complex is just the Hasse
diagram, since the only chains are singletons (corresponding to vertices of the
Hasse diagram) and pairs with x < y (in which case y covers x and there is
a corresponding edge in the Hasse diagram). Similarly, it is easy to see that
|∆(SfX)| = S(|∆X|), and in particular |∆Sn

f | = Sn. As in those special cases,
we may use induction and Mayer-Vietoris sequences to show that πX induces
isomorphisms on homology for all finite spaces X; we encourage the reader to
verify the details of this. Finally, we observe that the dimension of the simplicial
complex ∆X is the same as the height of X.

When there is no chance of ambiguity, we shall drop the subscript on the
quotient map πX .

3.2 The Lifting Theorem

We now show that the order complex of a locally finite space has a very useful
universal property: any map from a “nice” space to a locally finite space factors
through the order complex, uniquely up to homotopy. To define “nice” more
precisely, we take a brief excursion into pointset topology.

Recall that a space X is called perfectly normal if it is normal and for every
closed subset A ⊆ X, there is a map f : X → I such that f−1({1}) = A. Any
metrizable space is perfectly normal, and any subspace of a perfectly normal
space is perfectly normal. If X is perfectly normal, so is the product X × I (see
[9]).

Lemma 3.3. Let X be perfectly normal, A,B ⊆ X be closed, and f : B → I
be such that f−1({1}) = A ∩ B. Then f extends to a map g : X → I such that
g−1({1}) = A.

Proof. Let h : A ∪ B → I be given by h|A = 1 and h|B = f . Then h is
continuous, so by the Tietze extension theorem it has a continuous extension g1

to all of X. By perfect normality, let g2 : X → I be such that g−1
2 ({1}) = A∪B.

Then g = g1g2 has the desired properties.

Proposition 3.4. Any CW-complex is perfectly normal.

Proof. Any CW-complex is normal, so it suffices to check the second condition.
Let X be a CW-complex and A ⊆ X be closed. By (possibly transfinite)
induction on the cells of X, we define a map f : X → I with f−1({1}) = A.
We start with the empty function on the empty subcomplex of X, and at limit
stages simply glue together the previous functions.

Now we handle successor stages. If we have defined a function f |B for some
subcomplex B ⊂ X with f |−1

B ({1}) = A ∩ B and e is a cell of X − B whose
boundary is contained in B, we can extend f |B to B ∪ e as follows. Since
B ∪ e = B ∪ e and both B and e are closed, it suffices to define g : e → I
such that g agrees with f |B on ∂e and g−1({1}) = A∩ e. Now e intersects only
finitely many cells of X, so it is metrizable and hence perfectly normal. Since ∂e
and A∩ e are closed, the existence of such a g now follows from Lemma 3.3.
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We now prove the main lifting theorem.

Theorem 3.5 (Lifting Theorem for Finite Spaces). Let X be perfectly normal,
A ⊆ X be closed, and Y be a finite space. Then if f : X → Y and g̃ : A→ |∆Y |
is such that πg̃ = f |A for π : |∆Y | → Y the quotient map, there exists a lift
f̃ : X → |∆Y | such that πf̃ = f and f̃ |A = g̃. Furthermore, any two such lifts
are homotopic such that every stage of the homotopy is also such a lift.

Proof. First, we prove the existence of such an f̃ by induction on the cardinality
of Y . When Y is empty, this is trivial.

Now suppose that such a f̃ always exists for any finite space of cardinality
less than |Y |. Let y ∈ Y be any maximal point. Then there is some total
ordering on Y extending the partial ordering of Y such that y is the greatest
element. By Proposition 3.2, this means that for Z = Y −{y} and U = y↓ ∩Z,

|∆Y | = |∆Z| × {0} ∪ |∆U | × I/|∆U | × {1},

or |∆Z| together with a cone on |∆U |. Let V = f−1(Z); then V is open in
X and perfectly normal because X is. Now since g̃ is a lift of f , the image of
g̃|A∩V lies in |∆Y | − |∆({y})| = |∆Z| × {0} ∪ |∆U | × [0, 1). We let g1 be the
composition of g̃|A∩V with the projection |∆Z| × [0, 1)→ |∆Z|; it is easy to see
that g1 is a lift of f |V : V → Z to |∆Z|. By the induction hypothesis, there is
a lift f0 : V → |∆Z| of f |V extending g1.

Now since g̃ is continuous, there is an open neighborhood W0 ⊆ f−1(y↓)
of f−1({y}) such that W0 ∩ A ⊆ g̃−1(|∆(y↓)|) but such that the interior of
g̃−1(|∆(y↓)|) is contained in W0. Using perfect normality, one can construct a
smaller open neighborhood W of f−1({y}) containing W0∩A such that W inter-
sects the boundary of W0 only at points of A (construct a continuous function
that is 0 on f−1({y}), < 1 on W0∩A, 1 on ∂W0∩A, and > 1 on the rest of ∂W0,
and take the inverse image of [0, 1)). Since π−1(y↓) deformation retracts onto
|∆(y↓)| (being essentially an iterated cylinder on it), it is clear by normality
that we can deform f0 on W0 to get a new lift f1 of f |V that agrees with f0 off
of W0 and such that on W , the image of f1 is contained in |∆U | = |∆Z|∩ |∆y↓|.
Since the image of g̃ is already contained in |∆(y↓)| on W0, this can clearly be
done such that f1 is also still an extension of g1.

Now let g2 be the composition of g̃ : A→ |∆Z|× {0}∪ |∆U |× I/|∆U |× {1}
with the projection |∆Z|×I/|∆Z|×{1} → I onto the second coordinate (which
is still well-defined and continuous even for the quotient). Let C = X −W and
D = f−1({y}); these are closed and disjoint in X. Define h : A ∪ C → I by
h|A = g2 and h|C = 0. The condition that g̃ is a lift of f implies that this is
well-defined and hence continuous since A and C are closed. Also, since g̃ is a
lift of f , h−1({1}) = A ∩D. By Lemma 3.3, let f2 : X → I extend h such that
f−1
2 ({1}) = D.

Now define f̃(x) = (f1(x), f2(x)) ∈ |∆Z| × {0} ∪ |∆U | × I/|∆U | × {1} for
x ∈ V and f̃(x) = |∆U | × {1} (i.e., the point |∆({y})|) for x ∈ D = X − V .
Since f2 = 0 on C, x ∈ V and f2(x) > 0 imply f1(x) ∈ |∆U | by definition of C,
so this is indeed well-defined. Since f−1

2 ({1}) = D this is continuous, and it is
easy to check that it is a lift of f extending g̃.
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Now suppose f̃0 and f̃1 are two such lifts. Let H : X × I → Y be given
by H(x, t) = f(x). Define G : X × {0, 1} ∪ A × I → |∆Y | by G(x, 0) = f̃0(x),
G(x, 1) = f̃1(x), and G(x, t) = g̃(x) for x ∈ A. Then G is continuous and a lift
of H since the f̃i are lifts of f extending g̃. By the first part of the theorem,
then, there is a lift H̃ of H to |∆Y | that extends G, and such a lift is a homotopy
from f̃0 to f̃1, every stage of which is a lift of f extending g̃.

Although this theorem only directly applies to finite spaces, the following
fact allows us to use it on arbitrary locally finite spaces.

Lemma 3.6. A locally finite space is compact iff it is finite.

Proof. Clearly any finite space is compact. Conversely, the set of all finite open
subsets of an infinite locally finite space has no finite subcover.

We can now prove the most important corollary of the lifting theorem for
arbitrary locally finite spaces.

Corollary 3.7. Let X be a locally finite space. Then the quotient map π :
|∆X| → X is a weak homotopy equivalence.

Proof. Fix any basepoint x ∈ |∆X|. Let f : (Sn, p) → (X, π(x)) be a base-
pointed map. By Lemma 3.6, Y = f(Sn) is finite. By Theorem 3.5 (with
A = {π(x)}), there is a basepointed lift f̃ : (Sn, p)→ (|∆Y |, x) of f : Sn → Y .
Since the inclusion |∆Y | ↪→ |∆X| commutes with the quotient maps, f̃ :
(Sn, p)→ (|∆X|, x) is also a lift of f : (Sn, p)→ (X, π(x)). This shows that the
induced map π∗ : πn(|∆X|, x)→ πn(X, π(x)) on homotopy groups is surjective.
For injectivity, suppose f0, f1 : (Sn, p) → (|∆X|, x) and H : Sn × I → X is a
basepointed homotopy from πf0 to πf1. Let G : Sn×{0, 1}∪{p}×I → |∆X| be
given by G(x, 0) = f0(x), G(x, 1) = f1(x), and G(p, t) = x. Then as above there
is a lift H̃ of H to |∆X| that extends G, which defines a basepointed homotopy
from f0 to f1.

By the Whitehead theorem, it follows that π induces isomorphisms on ho-
mology, though we could also prove this directly by a similar lifting argument.

This weak equivalence also has a functorial aspect:

Corollary 3.8. Let f : X → Y be a map between locally finite spaces. Then
the induced map |∆f | : |∆X| → |∆Y | induces the same maps on homotopy and
(co)homology groups as f , when we identify the homotopy and (co)homology
groups of X and Y with those of |∆X| and |∆Y | via πX and πY .

Proof. This is immediate from the fact that |∆f | commutes with the quotient
maps (i.e., the naturality of the quotient maps).

In the special case that f : Y ↪→ Y is an inclusion, this implies by the five
lemma that π induces isomorphisms on relative homotopy and (co)homology
groups from (|∆Y |, |∆X|) to (Y,X).

As another corollary, we obtain an answer to a question raised in Section
2.4.
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Corollary 3.9. Let X be a bilocally finite space. Then X and Xop are weak
homotopy equivalent.

Proof. It is clear that X and Xop have the same order complex, so this follows
from the previous corollary.

We now record a version of the lifting theorem for locally finite spaces.

Corollary 3.10 (Lifting Theorem for Locally Finite Spaces). Use the same
notation and hypotheses as in Theorem 3.5, except assume Y is only locally
finite. Then if X is either compact or a CW-complex, the conclusion of Theorem
3.5 still holds.

Proof. If Y is compact, the image of f is finite, so we proceed as in the proof
of Corollary 3.7. If X is a CW-complex, we define f̃ by induction on the cells
of X. Given a lift f̃ |B for a subcomplex B ⊂ X and a cell e whose boundary
is contained in B, we can use Theorem 3.5 to extend f̃ |∂e to all of e since
e is compact, and thus we obtain an extension of f̃ to B ∪ e. Thus we can
construct an f̃ cell-by-cell by induction. For uniqueness up to homotopy, use
the same argument as in the proof of Theorem 3.5, noting that X × I is also a
CW-complex.

For a discussion of further generalizations of Theorem 3.5, see Section 5.1.
Finally, we show that the “continuous model” of a locally finite space is

unique up to homotopy equivalence.

Corollary 3.11. Let Y be a locally finite space, DY be a CW-complex, and
p : DY → Y be a map. Then if Corollary 3.10 holds with |∆Y | replaced by
DY and π replaced by p, there is a homotopy equivalence g : |∆Y | → DY with
homotopy inverse h such that pg = π and πh = p, and g and h are unique in
having this property up to homotopy. Furthermore the homotopies gh ' 1 and
hg ' 1 may be chosen such that each stage is a lift of p or π, respectively.

Proof. By lifting π to DY and p to |∆Y |, we obtain maps g : |∆Y | → DY and
h : DY → |∆Y | such that pg = π and πh = p, and these maps are unique up to
homotopy. Furthermore, gh and hg are then lifts of p and π to DY and |∆Y |,
respectively. Thus by the uniqueness of lifts up to homotopy, gh and hg are
homotopic to the identity through such lifts.

By essentially the same argument, one could prove a similar uniqueness
property when DY satisfies the lifting theorem only up to homotopy (that is,
in the conclusion of Theorem 3.5, we only require πf̃ to be homotopic to f).

3.3 Barycentric subdivision and order complexes

In this section we prove a sort of converse to Corollary 3.7, showing that every
space is weak homotopic to a locally finite space.

First, let X be any abstract simplicial complex. We identify X not with its
set of cells, but with its underlying vertex set, and write F (X) for the set of

17



cells of X. Recall that we may geometrically define the (barycentric) subdivision
of |X| by adding a vertex at the barycenter of each cell; the subdivision is then
a simplicial complex whose geometric realization is naturally homeomorphic
to |X|. It is well-known that the subdivision has vertex set F (X) and cells
corresponding to chains of cells of X ordered by inclusion. That is, if we order
F (X) by inclusion (which is obviously locally finite), the subdivision of X is
∆(F (X)), which we shall abbreviate as ∆F X. We note that a simplicial map
X → Y induces an order-preserving map F (X)→ F (Y ), so F is a functor from
simplicial complexes to locally finite spaces.

As an immediate consequence, we have the following.

Theorem 3.12. Every simplicial complex is weak homotopy equivalent to a
locally finite space.

Proof. Let X be an abstract simplicial complex. Then by Corollary 3.7, |∆F X|
is weak homotopy equivalent to F (X), considered as a locally finite space as
above. But |∆F X| is homeomorphic to |X|, so we conclude that |X| is weak
homotopy equivalent to F (X).

Corollary 3.13. Every topological space is weak homotopy equivalent to a lo-
cally finite space.

Proof. Every topological space is weak homotopy equivalent to a simplicial com-
plex (see, for example, Theorem 2C.5 and Proposition 4.13 of [6]).

Now suppose X is any locally finite space. By the remarks above, this
includes the case of (the cell poset of) a simplicial complex. Since ∆X is a
simplicial complex, we may consider the locally finite space F (∆X). The “con-
tinuous model” of F (∆X) is then the geometric realization |∆F ∆X|. By the
remarks above, |∆F ∆X| is homeomorphic to (in fact, the subdivision of) |∆X|,
so the locally finite spaces F (∆X) and X are weak homotopy equivalent. It is
natural to wonder whether there is actually a natural weak homotopy equiv-
alence directly from F (∆X) to X. To put it another way, we are looking for
a map F (∆X) → X that is analogous to the quotient map π : |∆X| → X.
We can make the word “analogous” precise, since there is a natural function
q : |∆X| → F (∆X) sending a point in the interior of a cell |∆C| to the vertex
C ∈ F (∆X): we want a naturally defined map p : F (∆X) → X such that
π = pq.

We now recall that the map π : |∆X| → X sends the interior of a cell |∆C|
to the least element of the chain C in X. Thus if we let p be the map taking
a chain C to its least element, we have π = pq. However, this map is not in
general continuous; indeed, it is order-reversing, not order-preserving. To make
it order-preserving, we must reverse the ordering on F (∆X). Thus from now
on we will consider F (∆X) to be ordered by reverse inclusion, not inclusion.
We also note that in general, the map q : |∆X| → F (∆X) defined above is
continuous (and in fact a quotient map) only when ∆X is ordered by reverse
inclusion.
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Thus it would appear that the natural ordering to put on F (∆X) would be
reverse inclusion of cells, rather than inclusion. However, there is a technical
problem with this: the ordering by reverse inclusion is not always locally finite.
Indeed, it is easy to see that ∆X is locally finite under this ordering iff X
is bilocally finite, and in that case F (∆X) is also bilocally finite. Thus the
category of bilocally finite spaces is closed under “subdivision,” but the category
of all locally finite spaces is not. Also, bilocally finite spaces have another fairly
natural description: they are exactly the order spaces whose order complexes are
“locally finite” in the sense that every point has a neighborhood that intersects
only finitely many cells. However, it is easy to see that every component of a
bilocally finite space must be countable and in particular connected bilocally
finite spaces have countably generated homology, so bilocally finite spaces fail
to satisfy Theorem 3.12 and Corollary 3.13. These technical difficulties with
infinite locally finite spaces will be revisited in Section 5.1.

We summarize the above discussion in the following proposition.

Proposition 3.14. The association X 7→ F (∆X) is a functor from the category
of bilocally finite spaces to itself. The transformation p : F (∆X) → X sending
a chain to its least element is natural and a weak homotopy equivalence.

Proof. We noted above that ∆ is functorial from locally finite spaces to simplicial
complexes. Given a map f : X → Y , there is thus an induced simplicial
map ∆f : ∆X → ∆Y which clearly induces an order-preserving map F (∆f) :
F (∆X) → F (∆Y ). It follows that F (∆) is a functor. Naturality of p is then
trivial, and the rest of the Proposition is contained in the discussion above.

Since we consider F (∆X) to be ordered by reverse inclusion, we will also
find it more natural to order the poset of cells of any simplicial complex by
reverse inclusion, rather than by inclusion as originally indicated above. Note
that for the locally finite space F (X), the map p above goes from F (∆F X) to
F (X) and corresponds to a simplicial map ∆F X → X. This map sends a cell
of the barycentric subdivision to the cell of the original complex in which it is
contained. Thus from now on, we always consider the set of cells F (X) of a
simplicial complex to be ordered by reverse inclusion. As above, this ordering
is not in general locally finite, but we will be most interested in it for finite
simplicial complexes.

It is worth noting that the process of taking order complexes is essentially
the same as taking subdivisions, and thus it would be natural to write ∆ for
both the order complex functor of finite spaces and the subdivision functor ∆F

of simplicial complexes. By extension, we could also not distinguish between
X and F (X) for a simplicial complex X. While this notation would be more
compact and perhaps more natural, it could also lead to confusion. Thus we will
continue to write “F” and make a clear distinction between simplicial complexes
and posets. However, we will refer to the space F (∆X) as the “subdivision” of a
(bilocally) finite space X. Thus we have a functor ∆ from posets to complexes
and a functor F from complexes to posets, and we call their composition in
either order “subdivision.”
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4 Maps between (locally) finite spaces

By the results of the previous section, locally finite spaces are essentially the
same as simplicial complexes with respect to weak homotopy. However, if we
insist on actual homotopy, locally finite spaces seem to be much more compli-
cated. In this section we prove some basic facts about maps between locally
finite spaces and homotopies between them.

When dealing with maps whose domain is locally finite, there does seem to
be a significant difference between finite spaces and infinite locally finite spaces.
For this reason, most of the results in this section will only hold when the
domains of the maps involved are actually finite.

4.1 Spaces of maps

We begin by analyzing spaces of maps between order spaces to obtain a combi-
natorial characterization of when maps on a finite space are homotopic.

Recall that in Section 2, whenever we showed that a finite space was con-
tractible, we did so by contracting it in a series of discrete steps, such as removing
a minimal point that is covered by only one other point. We now generalize this
notion in the obvious way.

Definition 4.1. Let X and Y be spaces. Then a map H : X × I → Y is an
up-homotopy of maps from X to Y if that H(x, t) = H(x, 0) for all x ∈ X and
all t ∈ [0, 1) and a down-homotopy if H(x, t) = H(x, 1) for all x ∈ X and all
t ∈ (0, 1]. A step-homotopy is either an up-homotopy or a down-homotopy, and
a finite-homotopy is a composition of (finitely many) step-homotopies.

That is, two maps f and g are step-homotopic if you can continuously “jump”
from f to g with nothing in between and finite-homotopic if you can get from f
to g by a finite sequence of such jumps. The reason for the terms “up-homotopy”
and “down-homotopy” is the following fact.

Proposition 4.2. Let f, g : X → Y be maps from a space X to a poset Y .
Then f is up-homotopic to g iff f(x) ≤ g(x) for all x ∈ X and down-homotopic
to g iff f(x) ≥ g(x) for all x ∈ X.

Proof. By definition, f is up-homotopic to g iff the map H given by H(x, t) =
f(x) for t ∈ [0, 1) and H(x, 1) = g(x) is continuous. For any y ∈ Y , H−1(y↓) =
f−1(y↓)× [0, 1)∪g−1(y↓)×{1}, and it is easy to see that this is open iff g(x) ≤ y
implies f(x) ≤ y for all x. Thus H is continuous iff g(x) ≤ y implies f(x) ≤ y
for all x and y, which is easily seen to be equivalent to f ≤ g pointwise. The
case of down-homotopy is similar.

We now note that for any space X and a poset Y , the set Y X of functions
from X to Y is naturally partially ordered by taking the partial order on Y
pointwise. In particular, by restriction the set C(X, Y ) of continuous maps from
X to Y is partially ordered. The result above together with Proposition 2.8 then
says that two maps are finite-homotopic iff they are in the same component of
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the order topology on C(X, Y ). We note that if X is finite and Y is locally
finite, C(X, Y ) is locally finite.

Now there is also another natural topology on C(X, Y ), the compact-open
topology. Recall that for any spaces X and Y , the compact-open topology on
the set C(X, Y ) of continuous maps from X to Y is the topology generated
by the sets D(K, U) = {f : f(K) ⊆ U}, where K ranges over all compact
subsets of X and U ranges over all open subsets of Y . The following theorem,
whose proof we include because it is sometimes stated only for locally compact
Hausdorff spaces, shows that this topology is the “right” topology for spaces of
maps between sufficiently well-behaved spaces.

Theorem 4.3. Let X be a locally compact space, in the sense that every open
set contains a compact neighborhood of each point. Then for any spaces Y and
Z, a map f : X × Z → Y is continuous iff the map f̂ : Z → C(X, Y ) given by
f̂(z)(x) = f(x, z) is well-defined and continuous for the compact-open topology.

Proof. Suppose f is continuous. Then f̂(z) is continuous for all z, so f̂ is well-
defined. Now suppose K ⊆ X is compact and U ⊆ Y is open. We want to show
that A = f̂−1(D(K, U)) is open; let z ∈ A. Then f(K × {z}) ⊆ U , so since f
is continuous and K is compact, there are open neighborhoods V and W of K
and z respectively such that f(V ×W ) ⊆ U . But then W ⊆ A and z ∈ W .
Hence A is open, so f̂ is continuous.

Conversely, suppose f̂ is well-defined and continuous. Let U ⊆ Y be open
and suppose f(x, z) ∈ U . Then g = f̂(z) is continuous, so g−1(U) ⊆ X is
a neighborhood of x. By local compactness, let K ⊆ g−1(U) be a compact
neighborhood of x. Then V = f̂−1(D(K, U)) ⊆ Z is a neighborhood of z. But
then W = K × V is a neighborhood of (x, z) such that f(W ) ⊆ U . Hence f is
continuous.

In particular, in the case Z = C(X, Y ) we find that the evaluation map e :
X×C(X, Y )→ Y given by e(x, f) = f(x) is continuous because ê : C(X, Y )→
C(X, Y ) is the identity.

We now compare the compact-open topology on C(X, Y ) with the order
topology when Y is a poset and X is locally finite.

Proposition 4.4. Let X be a locally finite space and Y be a poset. Then the
order topology on C(X, Y ) is finer than the compact-open topology. If X is
finite, the order topology is the same as the compact-open topology.

Proof. Let K ⊆ X be compact and U ⊆ Y be open. By Lemma 3.6, K is finite,
so since D(K, U) =

⋂
x∈K D({x}, U), we may assume K = {x} is a singleton.

Then D({x}, U) = {f ∈ C(X, Y ) : f(x) ∈ U} is clearly a downset since U is,
and hence it is open in the order topology. Thus the order topology is finer than
the compact-open topology.

Now supose X is finite and let f ∈ C(X, Y ). Then f↓ =
⋂

x∈X{g : g(x) ≤
f(x)} =

⋂
D({x}, f(x)↓) is open in the compact-open topology. Hence the

compact-open topology is finer than the order topology.
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Corollary 4.5. Continuous maps from a finite space to a poset are homotopic
iff they are finite-homotopic.

Proof. Obviously step-homotopic maps are always homotopic. Now suppose X
is finite, Y is a poset, f, g : X → Y are continuous and H : X × I → Y is a
homotopy from f to g. Clearly, any locally finite space is locally compact in the
sense of Theorem 4.3, so Ĥ : I → C(X, Y ) is a path from f to g and is continuous
in the compact-open topology. By Proposition 4.4, Ĥ is also continuous in the
order topology. In particular, f and g are in the same component of C(X, Y )
in the order topology and hence they are finite-homotopic by the discussion
following Proposition 4.2.

Corollary 4.5 is not true in general for infinite locally finite spaces. For
example, in Section 2.3 we showed that the universal cover of S1

f is contractible
via an infinite “composition” of step-homotopies, and it is easy to check that it
is impossible to do so with only finitely many (in fact, no map is step-homotopic
to the identity other than the identity itself). It seems unlikely that there is
any useful result analogous to Corollary 4.5 that allows infinitely many steps .

4.2 Strong homotopy classes of finite spaces

Using Corollary 4.5, we now show that finite spaces are actually quite rigid
under homotopy. The material in this section is taken from [12]. Recall that
in Section 2.3, we used deformation retractions that removed maximal points
that covered exactly one point or minimal points that were covered by exactly
one points. We now show that this is essentially the only kind of deformation
retraction that exists for finite spaces. First, note that if y is the only point that
covers (or is covered by) x, the identity is up-homotopic (down-homotopic) to
the map sending x to y (y to x) and which is otherwise the identity. Here is a
sort of converse to this fact.

Lemma 4.6. Let X be a finite space and suppose the identity map on X is
up-homotopic (or down-homotopic) to a map f : X → X. Then there exists a
point x ∈ X such that f(x) is the only element of X that covers x (is covered
by x).

Proof. By replacing X with Xop, it suffices to consider the up-homotopy case.
Let x ∈ X be a minimal element such that f(x) > x. Then since g is continuous,
for all y > x, f(x) ≤ f(y) = y. Thus in particular, there is no y > x with
y < f(x), so f(x) covers x, and for any y > x other than f(x), x < f(x) < y,
so y does not cover x. Hence x has the desired property.

Definition 4.7. A unique cover in a poset X is a pair of points x, y ∈ X such
that either y is the only point covered by x or y is the only point covering x. We
call a space rigid if the identity map on the space is homotopic only to itself.

Corollary 4.8. A finite space is rigid iff it has no unique covers.
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Proof. By Corollary 4.5 and Lemma 4.6, a space with no unique covers is rigid.
By the remarks preceding Lemma 4.6, if x, y ∈ X is a unique cover, then X
deformation-retracts to X − {x} (or X − {y}).

We now show that rigid spaces correspond exactly to the (strong) homotopy
types of finite spaces.

Theorem 4.9. Let X be a finite space. Then there is a unique rigid space Y ,
the rigidification of X such that there is a quotient map p : X → Y that is a
homotopy equivalence. Furthermore, Y is also a deformation retract of X and
is the only rigid space that is homotopy equivalent to X.

Proof. Set X = X0. If x, y ∈ Xn are a unique cover, inductively define Xn+1 to
be the quotient of Xn that identifies x and y. Note that the fact that x covers or
is covered by y implies that this quotient is still T0. Since X is finite, eventually
we will reach some Xn that has no covers and which is thus rigid. We set Y = Xn

and define p as the composition of the quotient maps X0
p0→ X1

p1→ . . .
pn−1→ Xn.

For each i < n, let qi be either of the two left inverses to pi (i.e., in the notation
above, qi maps the equivalence class x, y ∈ Xi+1 to either x or y and otherwise is
the identity). Then qi is clearly an embedding, with image Xi−{x} or Xi−{y}.
By the remarks preceding Lemma 4.6, this image is a deformation retract of Xi,
and it is clear that pi is the corresponding homotopy inverse to qi.

Thus letting q be the composition of the qi, q : Y → X is an embedding
whose image is a deformation retract of X, and the corresponding homotopy
inverse is p. Hence p is a homotopy equivalence and Y is a deformation retract
of X. It is immediate from the definition that a homotopy equivalence between
two rigid spaces must be a homeomorphism, so any other rigid space homotopic
to X must be homemorphic to Y .

Corollary 4.10. Two finite spaces are homotopy equivalent iff they have the
same rigidification.

By the construction of the rigidification in the proof of Theorem 4.9, Corol-
lary 4.10 says two finite spaces are homotopy equivalent iff you can turn one
into the other by first collapsing some unique covers one at a time and then
adding some unique covers one at a time.

4.3 Simplicial approximation and finite spaces

While by Theorem 3.5, a finite space has the same homotopy classes of maps
from nice spaces as its order complex, the situation for maps from finite spaces
to other spaces is very different. First, any map from a finite space (indeed,
any order space) to a T1 space must be constant on components; we leave the
proof of this to the reader. Furthermore, even when the codomain is another
(locally) finite space, there are much fewer maps from a finite space than from
its order complex. For example, there is a homotopy class of maps S1 → S1

f for
each winding number in Z, but using Corollary 4.5 it is easy to see that only the

23



Figure 8: A rigid space whose order complex is contractible

winding numbers−1, 0, and 1 can be realized by maps S1
f → S1

f . Similarly, while
the canonical map p : F (∆S1

f ) → S1
f is a weak homotopy equivalence, and the

induced map on order complexes is a homeomorphism, any map S1
f → F (∆S1

f )
is nullhomotopic.

One can find even worse counterexamples than the ones above. For instance,
by Corollary 4.8, a space whose order complex is contractible but which has no
unique covers is rigid and hence not itself contractible (unless it is already a
point). An example of such a space is depicted in Figure 8, originally from
[3]. One can simply draw the order complex of this space and see that it is
homeomorphic to a disk, even though the finite space is rigid.

However, if we allow ourselves to first subdivide our finite spaces, it is pos-
sible to realize every map on the order complex as a map on the finite space.
This result is basically an adaptation of the classical simplicial approximation
theorem, which we state below.

Theorem 4.11. Let X and Y be finite simplicial complexes and let f : |X| →
|Y |. Then for some n, f is homotopic to a simplicial map |∆n

F X| → |Y |, where
∆n

F X denotes the nth subdivision of X.

Proof. See, for example, Theorem 2C.1 of [6] or Theorem 3.4.8 of [10].

Now if X and Y are finite spaces and we have a map f : |∆X| → |∆Y |, we can
consider the nth “subdivision” F (∆n−1

F ∆X) of X as a finite space. We want to
use Theorem 4.11 to obtain a map f̂ : F (∆n−1

F ∆X)→ Y such that the induced
map on order complexes is homotopic to f . The theorem gives us a simplicial
map h : ∆n−1

F ∆X → ∆Y , which gives a function g : F (∆n−2
F ∆X) → Y on the

vertex sets of these complexes. However, this g need not be continuous as a map
of finite spaces: the condition that h be simplicial says only that g maps chains
to chains, which does not in general imply that g is order-preserving. However,
if we subdivide g to get F (∆g) : F (∆n−1

F ∆X) → F (∆Y ) then F (∆g) = F (h)
will always be order preserving, since F is functorial. We can then compose
F (h) with the canonical map p : F (∆Y ) → Y to obtain a continuous map
f̂ : F (∆n−1

F ∆X) → Y . Since by hypothesis (the geometric realization of) h is
homotopic to f and the geometric realization of p is the identity (i.e., the natural
homeomorphism |∆F ∆Y → |∆Y |), we conclude that the geometric realization
of f̂ is homotopic to f . Thus we have the following theorem.
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Theorem 4.12. Let f : |∆X| → |∆Y | for a finite space X and a locally finite
space Y . Then for some n, there is a map f̂ : F (∆n−1

F ∆X)→ Y such that |∆f̂ |
is homotopic to f .

Proof. The only part not contained in the discussion above is the possibility
that Y is only locally finite rather than finite. But since X is finite, |∆X| is
compact and hence the image of f is contained in a finite subcomplex of |∆Y |,
which is easily seen to be contained in |∆Z| for some finite subspace Z ⊆ Y .
The discussion above then applies with Z in the place of Y , which proves the
theorem.

By the lifting theorem, this theorem also applies to maps f whose codomain
is Y itself:

Corollary 4.13. Let f : |∆X| → Y for a finite space X and a locally finite
space Y . Then for some n, there is a map f̂ : F (∆n−1

F ∆X)→ Y such that for
πX : |∆X| = |∆n

F ∆X| → F (∆n−1
F ∆X) the quotient map, f̂πX is homotopic to

f .

Proof. By Corollary 3.10, let f̃ : |∆X| → |∆Y | be such that πY f̃ = f . By
Theorem 4.12, for some n there is a map f̂ : F (∆n−1

F ∆X)→ Y such that |∆f̂ |
is homotopic to f̃ . But πY |∆f̂ | = f̂πX by the naturality of π, so this implies
f̂πX is homotopic to πY f̃ = f .

Another way of looking at this result is by considering the following infinite
commutative diagram:

· · · −−−−→ |∆2
F ∆X| −−−−→ |∆F ∆X| −−−−→ |∆X|yπ2

yπ1

yπ0

· · · p−−−−→ F (∆F ∆X)
p−−−−→ F (∆X)

p−−−−→ X

This diagram induces a map from the inverse limit of the top sequence, which
is just |∆X| since all the maps are homeomorphisms, to the inverse limit of the
bottom sequence, which we call ∆∞X. Corollary 4.13 says that up to homotopy,
any map from the top of this diagram to a locally finite space factors through
the bottom of the diagram if you go far out enough to the left. Translated into
a statement about the inverse limits, this implies that any map from |∆X| to a
locally finite space factors through ∆∞X up to homotopy.

In fact, this map i = π∞ : |∆X| → ∆∞X has some even stronger properties.
It is not too difficult to show that i is an embedding whose image is exactly the
set of closed points of ∆∞X, which is a dense subspace. The closure of every
point contains exactly one closed point, and mapping each point to that unique
closed point defines a continuous left inverse r for i. In fact, ir is homotopic
to the identity on ∆∞X via a step homotopy, so |∆X| is a deformation retract
of ∆∞X under i. Thus when we take the inverse limit of the weak homotopy
equivalences πn, we actually obtain a strong homotopy equivalence. As the
proof of all this is fairly involved and rather tangential to our main interest
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here, we leave the details as an exercise for the reader with an good taste for
pointset topology. We recommend first looking at the case when X is a totally
ordered set with two elements, which is relatively simple but illustrative of the
general case.

There is also a version of simplicial approximation for homotopies, rather
than just single maps. First, we recall the following definition.

Definition 4.14. Let X and Y be simplicial complexes and f, g : X → Y
be simplicial maps. Then f and g are contiguous if for every cell A of X,
f(A) ∪ g(A) is a cell of Y . If there is a sequence f = h1, h2 . . . , hn = g of
simplicial maps such that hi is contiguous to hi+1 for each i, we say f and g
are contiguous-equivalent.

It is easy to see that contiguous maps are always homotopic via a linear
homotopy. Conversely, there is the following analog of the simplicial approxi-
mation theorem above.

Theorem 4.15. Let X and Y be finite simplicial complexes and f, g : X → Y
be simplicial maps that are homotopic. Then for some n, ∆F (f)∆(pn−1) :
∆n

F X → ∆F Y and ∆F (g)∆(pn−1) : ∆n
F X → ∆F Y are contiguous-equivalent,

where ∆(pn−1) : ∆n
F X → ∆F X is the simplicial map given by the canonical

map pn−1 : F (∆n−1
F X)→ F (X) of finite spaces.

Proof. This follows from Lemma 3.5.4 and Theorem 3.5.6 of [10], since ∆(pn−1)
is a simplicial approximation to the identity so ∆F (f)∆(pn−1) and ∆F (g)∆(pn−1)
are simplicial approximations to the geometric realizations of f and g.

In order to translate this into a statement about finite spaces, we first have
to relate contiguity to homotopy on finite spaces.

Lemma 4.16. Let X and Y be finite spaces and f, g : X → Y . If f and g are
step-homotopic, then the induced simplicial maps ∆f and ∆g : ∆X → ∆Y are
contiguous-equivalent. Conversely, if ∆f and ∆g are contiguous, f and g are
homotopic.

Proof. Suppose f ≤ g; the down-homotopy case is similar. Let� be a total order
on X extending the partial order, and write X = {xi} with xn ≺ xn−1 . . . ≺ x0.
Let fk : X → Y be given by fk(xj) = f(xj) for j ≥ k and fk(xj) = g(xj)
for j < k. Then since f ≤ g and x ≤ y implies x � y, it is clear that each
fk is order-preserving and fk ≤ fk+1 for each k. Since f0 = f and fn+1 = g,
it suffices to show that ∆fk is contiguous to ∆fk+1 for each k. Now if C
is a cell of ∆X (i.e., a chain in X) and xk 6∈ C, ∆fk(C) = ∆fk+1(C) so
∆fk(C) ∪∆fk+1(C) = ∆fk(C) is a cell of ∆Y since fk is order-preserving. If
xk ∈ C, then for any x < xk in C, fk(x) = fk+1(x) ≤ fk+1(xk), and similarly if
x > xk then fk(x) = fk+1(x) ≥ fk+1(xk). Thus since ∆fk(C) is a chain, so is
∆fk(C)∪{fk+1(xk)} = ∆fk(C)∪∆fk+1(C). Hence fk and fk+1 are contiguous.

Conversely, suppose ∆f and ∆g are contiguous. Then for any x ∈ X,
∆f({x})∪∆g({x}) = {f(x), g(x)} is a chain in Y , so f(x) and g(x) are compa-
rable. Let h(x) = max(f(x), g(x)). Then h is clearly order-preserving, f ≤ h,
and h ≥ g. Thus f and g are homotopic via a finite-homotopy through h.
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Note that this does not imply that f and g are homotopic iff ∆f and ∆g
are contiguous-equivalent, because ∆f and ∆g might be contiguous-equivalent
through simplicial maps that are not order-preserving. However, if we apply
F instead of “removing” ∆, simplicial maps do become order-preserving, so if
∆f and ∆g are contiguous-equivalent, it follows that F (∆f) and F (∆g) are
homotopic.

Theorem 4.17. Let f, g : X → Y where X is finite and Y is locally finite, and
suppose |∆f | and |∆g| are homotopic. Then for some n, fpn : F (∆n−1

F ∆X)→
Y and gpn : F (∆n−1

F ∆X) → Y are homotopic, where pn : ∆nX → X is the
canonical map.

Proof. As in the proof of Theorem 4.12, we may assume Y is actually fi-
nite. Since the simplicial maps ∆f and ∆g on the order complexes are ho-
motopic, by Theorem 4.15 ∆F ∆(f)∆F ∆(p)n and ∆2(g)∆2(p)n are contiguous-
equivalent for some n. By the discussion following Lemma 4.16, this means
that F (∆F ∆(f))F (∆F ∆(p)n) = F∆F ∆(fpn) and F (∆F ∆(gpn)) are homo-
topic. Now for p2

Y : F (∆F ∆Y )→ Y the canonical map, naturality of p implies
that p2

Y F (∆F ∆(fpn)) = fpn+2, and similarly for g. Thus fpn+2 and gpn+2 are
homotopic since F (∆F ∆(fpn)) and F (∆F ∆(gpn)) are.

While it is easy to get lost in the details of these arguments, they are really
just formal manipulations to translate the simplicial approximation theorem
from the language of simplicial complexes to the language of finite spaces.

4.4 A finitistic “singular” homology for finite spaces

While the lifting theorem allows us to compute the singular homology of finite
spaces easily, one might wonder whether there is a natural definition of homol-
ogy that remains completely within the category of finite spaces. A moment’s
reflection shows that it is easy to define simplicial homology in this way: an
n-simplex in the order complex ∆X is exactly a chain C ⊆ X of length n + 1,
which is the same as an injective map Dn → X, where Dn is a totally ordered
set with n + 1 elements. Indeed, ∆Dn is isomorphic as a simplicial complex to
the n-simplex, so Dn is the natural model of an n-simplex in the category of
finite spaces. Simplicial homology on finite spaces is then the homology of the
complex C∆

n (X) = {formal linear combinations of injective maps Dn → X}.
The natural definition of “singular” homology in the category of finite spaces

would thus be to consider chains built from all maps Dn → X, rather than just
injective maps. Thus for a finite space X and n ≥ 0, we let Cf

n(X) be the
free abelian group on the set of maps Dn → X. For c : Dn → X, we define
∂c ∈ Cf

n−1(X) by ∂c =
∑

k(−1)kc|Dn−{xk}. Extending ∂ linearly to Cf
n(X),

we then obtain a chain complex which we call the finite-singular complex of
X. We denote the homology of this complex by Hf

n(X) and call it the finite-
singular homology of X. If we augment the finite-singular complex to include
Cf
−1(X) = Z (generated by the set of maps from D−1, the empty space, to X),

we obtain H̃f
n(X), the reduced finite-singular homology of X. For A ⊆ X, the
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relative finite-singular homology Hf
n(X, A) is defined as for singular homology.

Everything defined here is functorial in the obvious way.
We now show that finite-singular homology is naturally isomorphic to sin-

gular homology. We note that composing with the quotient map |∆Dn| → Dn

turns any finite-singular simplex into an actual singular simplex, so there is
a natural complex map i : Cf

n(X) → Cn(X), for Cn(X) the singular chain
complex of X. We will identify Dn with {0, 1, . . . , n}.

Lemma 4.18. Let X be a finite space with a greatest element x. Then H̃f
n(X) =

0 for all n.

Proof. For c : Dn → X and i ∈ Dn+1, define ci : Dn+1 → X by ci(j) =
c(j) for j < i and ci(j) = x for j ≥ i. Then each ci is continuous since x

is the greatest element of X. We write Hc =
∑n+1

i=1 (−1)ici, and extend to
H : Cf

n(X) → Cf
n+1(X) linearly. Now let αn : Dn → X be the constant map

sending every point to x. If we calculate ∂Hc, we get a signed sum of maps
Dn → X obtained by appending x to c and replacing a tail end of c by x and
then dropping one point. Similarly, H∂c is a signed sum of maps obtained by
dropping a point from c and then appending x and replacing a tail end (but
not the entire chain) with x. It is not difficult to check that these two sums are
equal, except that they have opposite sign and ∂Hc has extra terms −αn and
c that are missing from H∂c. That is, ∂Hc + H∂c = c − αn. By linearity, we
obtain that ∂Hc + H∂c = c− kαn for some k ∈ Z for all c ∈ Cf

n(X).
Now suppose [c] ∈ H̃f

n(X). Then ∂c = 0, so ∂Hc = c − kαn and hence
[c] = k[αn]. If n is even, ∂αn = αn−1, so the only way kαn can be a cycle is if
k = 0. If n is odd, αn = ∂αn+1, so αn is a boundary. Either way, [c] = k[αn]
implies that [c] = 0. Hence H̃f

n(X) = 0, as desired.

Lemma 4.19. Finite-singular homology has Mayer-Vietoris sequences for any
decomposition of a finite space X = U ∪ V as the union of two open subspaces.
Also, i∗ : Hf

n(X) → Hn(X) commutes with the homomorphisms of Mayer-
Vietoris sequences.

Proof. The only part of the usual proof that Mayer-Vietoris sequences exist that
is not pure algebra is the fact that Cf

n(X) is generated by Cf
n(U)∪Cf

n(V ). Now
for any map c : Dn → X, c(n) is either in U or V . Since U and V are downsets
and c is order-preserving, this implies that the entire image of c is in either U or
V . It follows that Cf

n(U)∪Cf
n(V ) generates all of Cf

n(X). The statement about
i∗ follows from the fact that i induces a morphism from the short exact sequence
of complexes defining the finite-singular Mayer-Vietoris sequence to the short
exact sequence of complexes defining the singular Mayer-Vietoris sequence.

Theorem 4.20. For pairs of finite spaces, the relative homology functors Hf
n

and Hn are naturally isomorphic via the induced map i∗ from the complex map
i : Cf

n → Cn.

Proof. By the five lemma, it suffices to show that i∗ is an isomorphism for
absolute (rather than relative) homology. Naturality of i∗ is obvious from the
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way it is defined. Since it is easy to see that both Hf
n and Hn differ from their

reduced versions only in that the 0th homology has an extra Z direct summand
and this Z summand is preserved by i∗, it suffices to show that for any finite
space X, i∗ : H̃f

n(X)→ H̃n(X) is an isomorphism for all n.
We use induction on |X|; the case |X| = 0 is trivial. Now suppose |X| > 0

and let x ∈ X be a maximal point. Let U = x↓ and V = X − {x}. Then
|V | < |X|, so by induction, i∗ induces isomorphisms for V and V ∩U . By Lemma
4.18, the reduced finite-singular homology of U is trivial, and so is the reduced
singular homology since U is contractible. Thus i∗ induces isomorphisms for
U , V , and U ∩ V . By Lemma 4.19, i∗ commutes with the Mayer-Vietoris
sequence for U and V , so by the five lemma i∗ also induces isomorphisms for
U ∪ V = X.

We note that finite-singular homology can also be defined for locally finite
spaces. By the usual compactness argument, the finite-singular homology of a
locally finite space is the direct limit of the finite-singular homologies of its finite
subspaces, and the same holds for singular homology. It follows that Theorem
4.20 is also valid for locally finite spaces.

If we consider finite-singular homology as being defined not on a finite space
but on its order complex, the definition extends in an obvious way to arbitrary
simplicial complexes. We leave it as an exercise for the reader to show that
Theorem 4.20 then holds for all simplicial complexes, not just order complexes.

5 Generalizations and other approaches

In this section we reexamine some of the earlier definitions and theorems and
compare our approach with historical approaches. In particular, we note that
many of the constructions throughout this paper do not quite work as well as
one might hope for infinite locally finite spaces (or just infinite order spaces),
and we examine the extent to which things work better if you use alternate
approaches.

5.1 Generalizations and counterexamples to the lifting the-
orem

First, we look at how one might weaken the hypotheses of the lifting theorem.
Recall the notation of Theorem 3.5: we have a function f : X → Y from a
perfectly normal space to a finite space and want to lift it to a map f̃ : X → |∆Y |
(for simplicity, we work with the case A = ∅). We choose a maximal element
y ∈ Y and let V = f−1(Y − {y}),. The proof of the theorem then (essentially)
uses perfect normality to turn a lift f0 : V → |∆(Y − {y})| of f |V , which exists
by induction, into a lift of f . What in this construction can be weakened?

First, the hypothesis that X be perfectly normal is absolutely necessary: if
C ⊆ X is closed, then f : C 7→ 1, X − C 7→ 0 is a continuous map X → D1,
and any lift f̃ : X → ∆D1 = I would satisfy f̃−1({1}) = C. A slightly more

29



Figure 9: Y = {a, b, c}

complicated construction can be used to show that X must also be normal.
Thus if the lifting theorem always holds for X, X must be perfectly normal.

The hypothesis that Y be finite, however, seems less crucial. In fact, perhaps
Y need not even be locally finite: the definition of the order complex and the
quotient map on it makes sense for any poset. At the very least, if Y is a
well-founded ordered set, it seems plausible that the inductive construction of
Theorem 3.5 might generalize.

However, there is one key difficulty in iterating the induction of Theorem
3.5 infinitely many times: in order to extend our lift f0 of f |V , we first had to
modify it slightly (to obtain what we called f1). The reason for this is illustrated
by the following example. Let Y = {a, b, c} as shown in Figure 9 and define
f : I → Y by f(0) = a, f |(0,1) = b, and f(1) = c. Suppose we are constructing a
lift of f by starting with a lift f0 of f |{a,b}. We identify |∆({a, b})| with I, with
1 mapping to a and [0, 1) mapping to b. Now we obtain |∆Y | from I by adding
a cone on {0}, and our lift of f must map 1 to the vertex of this cone. However,
there is no reason that 0 even has to be in the range of f0 (eg, f0(t) = 1− t/2).
In order to make f̃ continuous while having f̃(1) be the vertex of the cone, we
want to have f̃(t) grow out in the cone dimension as t approaches 1. But the
cone dimension doesn’t even exist at points where f0 > 0, so this is impossible
unless we first modify f0(t) to be 0 near t = 1.

Since at each stage of the induction, we modify the function we had before
rather than just extending it, if we iterate the induction infinitely many times,
the end result may not be well-defined. Indeed, given a point x ∈ X, every time
we add a point y to our range such that y > f(x), the value of our partial lift
at x might change. However, this means that if there are only finitely many
points above f(x), the value of the partial lift at x is eventually stable. This
is true for all x iff Y is bilocally finite. Since connnected bilocally finite spaces
are countable, we can then just use ordinary induction to construct our lift. To
see that the lift we get in the limit is continuous, note that the domain of each
partial lift is open and the partial lifts are eventually constant in a neighborhood
of each point. Thus we have:

Theorem 5.1 (Lifting Theorem for Bilocally Finite Spaces). The statement of
Theorem 3.5 holds when Y is assumed only to be bilocally finite.

One might ask whether it might somehow be possible to salvage the induction
argument to make it work for arbitrary locally finite spaces, or at least some
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Figure 10: Y = {a} ∪ Z

larger class of order spaces. One idea is instead of building Y from the bottom
up in the induction, we can build it from the top down. Indeed, the inductive
description of δY = |∆Y | at the beginning of Section 3.1 is also valid if we build
Y from the top down. The spaces that we can obtain “from the top down” by
repeatedly adding minimal points will not be locally finite spaces but colocally
finite spaces (i.e., Y op is locally finite). With some modification (actually, mostly
simplification), the proof of Theorem 3.5 can be adapted to do induction from
the top down, and it turns out that in this case, it is not necessary to modify
our previous partial lift. Thus if we do an infinite induction, the total lift to a
colocally finite space will alway be well-defined.

However, a new problem arises with colocally finite spaces. Because we’ve
essentially reversed the order of everything, the domains of the partial lifts will
be closed, not open. Thus it is not clear that the total function we obtain will be
continuous. In fact, in general this does fail. For example, consider the infinite
space Y = {a}∪Z with the ordering shown in Figure 10. We identify |∆Y | with
I×Z/{0}×Z in the natural way; note that then π−1({n}) = (0, 1]×{n} for each
n and π−1({a}) is just the wedge point. Define f : I → Y by f |(1/n,1/(n+1)) = n

and f(t) = a for all other t. Then if f̃ is a lift of f , since f is surjective,
the image of f̃ must intersect every (0, 1] × {n}; let εn be such that (εn, n) is
in the image of f̃ . Then U =

⋃
[0, εn) × {n} is an open set in |∆Y | that by

hypothesis does not contain all of (1/n, 1/(n+1)) for any n. But U does contain
the wedge point, so in particular 0 ∈ f̃−1(U). However, any neighborhood of 0
must contain (1/n, 1/(n + 1)) for all n sufficiently large. Hence f̃−1(U) cannot
be open, so f̃ cannot be continuous.

We leave it to the reader to construct a similar counterexample when Y is
the set of negative integers with the usual ordering. This shows that the lifting
theorem fails for colocally finite spaces whether they are infinite because they
are “fat” or because they are “tall”. Furthermore, in these counterexamples X
is just I, an extremely nice space. It is worth noting that these counterexamples
work precisely because the topology on infinite simplicial complexes is extremely
fine, and the lifting theorem requires the construction of maps into these com-
plexes. Perhaps then the solution is to replace the “weak” simplicial complex
topology with, say, the natural product topology obtained by considering the
complex as a subspace of RV for V the vertex set. While it does seem that the
lifting theorem would work with respect to this topology, the usefulness of such
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a theorem is doubtful, since such infinite-dimensional spaces seem no easier to
compute with than the colocally finite spaces themselves.

We thus set aside colocally finite spaces and turn back to locally finite spaces.
By Corollary 3.10, any counterexample must be considerably more exotic than
the ones above for colocally finite spaces. Essentially the only way to construct a
counterexample I know of is to take a space X that is perfectly normal but which
contains a closed discrete subspace D = {xα} such that there is no collection
of disjoint open sets Uα such that xα ∈ Uα for each α.3 Note that such a D is
necessarily uncountable. Now letting Y = {a} ∪ {xα} ordered by xα > a for all
α, the map f : X → Y sending each xα to itself and X −D to a is continuous.
However, identifying |∆Y | with I×D/{0}×D in the obvious way, for any lift f̃
the open sets Uα = f̃−1((0, 1]× {xα}) would be disjoint with xα ∈ Uα for each
α.

Thus the lifting theorem does fail for arbitrary perfectly normal X and
arbitrary locally finite Y . However, this sort of counterexample can only work
if Y is uncountable, and it seems plausible that the lifting theorem might hold for
countable locally finite spaces. In any case, for virtually all practical purposes
Corollary 3.10 is sufficient for locally finite spaces, and by the discussion above
it is unlikely that a version of the lifting theorem would hold for nonlocally finite
spaces (but see Corollary 5.6 below).

5.2 McCord and the homotopy-theoretic approach

We now turn to a totally different approach to finite spaces: the homotopy-
theoretic approach of McCord in [7], the paper in which Corollary 3.7 first
appeared. Interestingly, McCord’s own original method was different and this
approach was suggested by the referee; unfortunately, I have been unable to find
any information about the original method. This approach is based on applying
very general homotopy-theoretic tools for showing that maps are weak homotopy
equivalences. Among the better-known results of this sort are the nerve lemma
and the Quillen fiber lemma. McCord himself proved the following modification
of a theorem of Dold and Thom.

Theorem 5.2 ([7], Theorem 6). Let X and Y be spaces and f : X → Y .
Suppose there is an open cover U of Y such that f |f−1(U) : f−1(U) → U is a
weak homotopy equivalence for each U ∈ U and such that U is a basis for a
topology (i.e., for any U, V ∈ U , U ∩ V =

⋃
{W ∈ U : W ⊆ U ∩ V }). Then f is

a weak homotopy equivalence.

If X is finite and x ∈ X, both x↓ and π−1(x↓) are contractible. Since
sets of the form x↓ clearly form a basis, the theorem then implies Corollary
3.7. However, this argument works just as well for arbitrary posets as it does
for finite spaces. Thus we obtain the following considerable generalization of
Corollary 3.7.

3See Example H in [5] for a construction of such a space; this space is a small modification
of Example 142 in [11].
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Corollary 5.3 ([7], Theorem 2). Let X be a poset. Then the quotient map
π : |∆X| → X is a weak homotopy equivalence.

As an immediate corollary, we generalize Corollary 3.9 to arbitrary posets
(in particular, locally finite non-bilocally finite spaces).

Corollary 5.4. Let X be a poset. Then X and Xop are weak homotopy equiv-
alent.

Interestingly, while a priori Theorem 3.5 (or Corollary 3.10) is a much
stronger statement than Corollary 3.7, and indeed Corollary 5.3 together with
the counterexamples in the previous section show that it is in some sense strictly
stronger, McCord notes that Corollary 5.3 implies at least a form of the lifting
theorem mod homotopy. He states the following result without proof; my proof
is adapted from the proof of Lemma 4.6 of [6].

Theorem 5.5 ([8], Lemma 1). Let p : X → Y be a weak homotopy equivalence,
Z be a CW-complex, and f : Z → Y . Then there is a map f̃ : Z → X such that
pf̃ is homotopic to f .

Proof. It is easy to see that such a f̃ is equivalent to a homotopy from f to a
map f̃ : Z → X ⊆Mp in the mapping cylinder Mp of p. Now since p is a weak
homotopy equivalence, the relative homotopy groups πn(Mp, X) are all trivial.
We construct our homotopy cell-by-cell: if f has already been homotoped into
DY on the boundary ∂Bn of a cell Bn of Z, then f : (Bn, ∂Bn) → (Mp, X)
defines an element of πn(Mp, X). Since πn(Mp, X) = 0, this means that f |Bn

can be homotoped rel ∂Bn to a map whose image is contained in Bn. By the
homotopy extension property, this homotopy on Bn (and whatever else we have
already done inductively) extends to all of X.

Corollary 5.6. Let Y be a poset, X be a CW-complex, and f : X → Y . Then
there is a map f̃ : X → |∆Y | such that πf̃ is homotopic to f .

It is not hard to see that this result could be modified to require f̃ to extend
a partial lift of f on a subcomplex of X. As in Theorem 3.5, this can be used
to show that f̃ is unique up to homotopy. McCord himself uses this result in
[8] to prove a stronger version of Corollary 5.3. Given a space X with an open
covering U sufficiently similar to the open covering of a poset by the downsets
of each of its points, he defines p : X → U by mapping x ∈ X to the smallest
U ∈ U such that x ∈ U ; this map is continuous when U is considered as a poset
ordered by inclusion. We note the similarity between this and the definition of
π : |∆U| → U , which is indeed a special case of this. Theorem 5.2 applied to
the open cover of U by the downsets of points then implies that p is a weak
homotopy equivalence. Theorem 5.5 then says that π : |∆U| → U lifts mod
homotopy to a map π̃ : |∆U| → X, which is easily seen to be a weak homotopy
equivalence. Thus Corollary 5.3 holds not only for posets, but for spaces that
look enough like a poset.
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5.3 Other directions and historical notes

Posets as topological spaces were first analyzed by Alexandroff in [1]. They can
more abstractly be characterized as the spaces in which an arbitrary intersec-
tion of open sets is open, and Theorems 1.3 and 1.5 generalize to say that the
association of an arbitrary poset to its order space is a full faithful embedding
of the category of posets in the category of spaces. Alexandroff called order
spaces “discrete spaces,” but since this term now has a different meaning, they
are often called “Alexandroff spaces” (McCord calls them “A-spaces”).

Alexandroff also defined the order complex of a poset, and observed at least
in a special case that the order complex has the same homology as the poset (as
we noted, this can be easily proven using Mayer-Vietoris sequences). McCord
considably extended this in [7] with Theorem 5.3, and also proved Proposition
1.1 to include non-T0 finite spaces in the analysis. At the same time, Stong
analyzed finite spaces from a more combinatorial point of view in [12]. Stong
discovered most of the results in this paper that do not deal with order com-
plexes, though except for Section 4.2, I discovered them independently. Stong
called rigidifications “cores,” and constructed them as subspaces rather than
as quotients. Among the results in [12] not in this paper are an analysis of
finite H-spaces and a version of Proposition 4.5 for maps from a finite simplicial
complex to a finite space.

In a series of recent papers, Barmak and Minian have explored various topics
in the algebraic topology of finite spaces. In [2], they studied spaces of minimal
cardinality of a given weak homotopy type and proved in particular that Sn

f is
the minimal “finite model” of Sn for all n, a fact which intuitively seems very
likely. In [3], they characterize simple homotopy of simplicial complexes in the
language of finite spaces. That paper also provides what is as far as I know
the first example in print of a finite space that is weak homotopy equivalent to
a point but not contractible, although such spaces are quite easy to construct
using Corollary 4.10. Finally, [4] further explores simple homotopy on finite
spaces and proves that, like simplicial complexes, regular CW-complexes are
weak homotopy equivalent to their posets of cells (in fact, slightly less than
regularity is needed).

Order complexes are well-known among topological combinatorialists, though
their relation to finite spaces less so. Many naturally occurring simplicial com-
plexes are order complexes, and the additional order structure often makes order
complexes easier to work with than arbitrary simplicial complexes. For exam-
ple, a shelling on a simplicial complex is an ordering of its cells which satisfies
certain nice properties, which in particular imply that the complex is homotopy
equivalent to a wedge of spheres. For order complexes, however, instead of hav-
ing to order the entire set of cells, it suffices to give a certain kind of labelling
of the edges in the Hasse diagram of the poset. For a survey of this and many
other appications of order complexes in combinatorics, see [13].
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