
Chapter 1

Introduction

Julian Togelius, Noor Shaker, Mark J. Nelson

You have just started reading a book about Procedural Content Generation in Games.

This book will contain quite a lot of algorithms and other technical content, and

plenty of discussion of game design. But before we get to the meat of the book,

let us start with something a bit more dry: definitions. In particular, let us define

Procedural Content Generation, which we will frequently abbreviate as PCG. The

definition we will use is that PCG as the algorithmical creation of game content

with limited or indirect user input [33]. In other words, PCG refers to computer

software that can create game content on its own, or together with one or many

human players or designers.

A key term here is “content”. In our definition, content is most of what is con-

tained in a game: levels, maps, game rules, textures, stories, items, quests, music,

weapons, vehicles, characters, etc. The game engine itself is not considered to be

content in our definition. Further, non-player character behaviour – NPC AI – is not

considered to be content either. The reason for this narrowing of the definition of

content is that within the field of artificial and computational intelligence in games,

there is much more research done in applying CI and AI methods to character be-

haviour than there is on procedural content generation. While the field of PCG is

mostly based on AI methods, we want to set it apart from the more “mainstream”

use of game-based tasks to test AI algorithms, where AI is most often used to learn

to play a game. Like all definitions (except perhaps those in mathematics), our def-

inition of PCG is somewhat arbitrary and rather fuzzy around the edges. We will

treat it as such, and are mindful that other people define the term differently. In par-

ticular, some would rather use the term “generative methods” for a superset of what

we call PCG [8].

Another important term is “games”. Games are famously hard to define (see

Wittgenstein’s discussion of the matter [37]), and we will not attempt this here. Suf-

fice to say that with games we mean such things as video games, computer games,

board games, card games, puzzles, etc. It is important that the content generation

system takes the design, affordances and constraints of the game that it is being gen-

erated for into account. This sets PCG apart from such endeavours as generative art

1

2 Julian Togelius, Noor Shaker, Mark J. Nelson

and many types of computer graphics, which do not take the particular constraints

and affordances of game design into account. In particular, a key requirement of

generated content is that it must be playable – it should be possible to finish a gener-

ated level, ascend a generated staircase, use a generated weapon or win a generated

game.

The terms “procedural” and “generation” imply that we are dealing with com-

puter procedures, or algorithms, that create something. A PCG method can be run

by a computer (perhaps with human help), and will output something. A PCG sys-

tem refers to a system that incorporates a PCG method as one of its part, for example

an adaptive game or an AI-assisted game design tool. This book will contain plenty

of discussion of algorithms and quite a lot of pseudocode, and most of the exercises

that accompany the chapters will involve programming.

To make this discussion more concrete, we will list a few things we consider to

be PCG:

• A software tool that creates dungeons for an action adventure game like The

Legend of Zelda without any human input – each time the tool is run, a new level

is created;

• a system that creates new weapons in a space shooter game in response to what

the collective of players do, so that the weapons that a player is presented with

are evolved versions of weapons other players found fun to use;

• a program that generates complete, playable and balanced board games on its

own, perhaps using some existing board games as starting points;

• a game engine middleware that rapidly populates a game world with vegetation;

• a graphical design tool that lets a user design maps for a strategy game, while

continuously evaluating the designed map for its gameplay properties and sug-

gesting improvements to the map to make it better balanced and more interesting.

In the upcoming chapters, you will find descriptions of all of those things de-

scribed above. Let us now list a few things that we do not consider to be PCG:

• A map editor for a strategy game that simply lets the user place and remove items,

without taking any initiative or doing any generation on its own;

• an artificial player for a board game;

• a game engine capable of integrating automatically generated vegetation.

Several other authors have tackled the issue of surveying PCG or part of the field

we call PCG, though the overlap is far from complete [12, 26].

1.1 Why use procedural content generation?

Now that we know what PCG is, let us discuss the reasons for using and developing

such methods. It turns out there are a number of different reasons.

Perhaps the most obvious reason for generating content is that it removes the need

for having a human designer or artist generate that content. Humans are expensive

1 Introduction 3

and slow, and it seems we need more and more of them all the time. Ever since com-

puter games were invented, the number of man-months that go into the development

of a successful commercial game have increased more or less constantly 1. It is now

common for a game to be developed by hundreds of people over a period of a year

or more. This leads to a situation where fewer games are profitable, and fewer de-

velopers can afford to develop a game, leading in turn to less risk-taking and less

diversity in the games marketplace. Many of the costly employees necessary in this

process are designers and artists rather than programmers. The game development

company that could replace some of the artists and designers by algorithms would

have a competitive advantage, as games could be produced faster and cheaper while

preserving quality. (This argument was made forcefully by legendary game designer

Will Wright in his talk “The Future of Content” at the 2005 Game Developers Con-

ference, a talk which helped reinvigorate interest in procedural content generation.)

Of course, threatening to put them out their jobs is no way to sell PCG to design-

ers and artists. We could therefore turn the argument around: content generation,

especially embedded in intelligent design tools, can augment the creativity of in-

dividual human creators. This could make it possible for small teams without the

resources of large companies, and even for hobbyists, to create content-rich games

by freeing them from worrying about details and drudge work while retaining over-

all directorship of the games.

Both of these arguments assume that what we want to make is something like the

games we have today. But PCG methods could also enable completely new types

of games. To begin with, if we have software that can generate game content at the

speed it is being “consumed” (played), there is in principle no reason why games

would need to end. For everyone who has ever been disappointed by their favourite

game not having any more levels to clear, characters to meet, areas to explore, etc.,

this would be an exciting prospect.

Even more excitingly, the newly generated content could be tailored to the tastes

and needs of the player playing the game. By combining PCG with player mod-

elling, for example through measuring and using neural networks to model the re-

sponse of players to individual game elements, we can create player-adaptive games

that seek to maximise the enjoyment of players. The same techniques could be used

to maximise the learning effects of a serious game, or perhaps the addictiveness of

a “casual” game.

Another reason for using PCG is that it might help us be more creative. Humans,

even those of the “creative” vein, tend to imitate each other and themselves. Algo-

rithmic approaches might come up with radically different content than a human

would create, through offering an unexpected but valid solution to a given content

generation problem. Outside of games, this is a well-known phenomenon in e.g.

evolutionary design.

Finally, a completely different but no less important reason for developing PCG

methods is to understand design. Computer scientists are fond of saying that you

1 At least, this is true for “AAA” games, which are boxed games sold at full price worldwide. The

recent rise of mobile games seems to have made single-person development feasible again, though

average development costs seem to be rising on that front too.

4 Julian Togelius, Noor Shaker, Mark J. Nelson

don’t really understand a process until you have implemented it in code (and the

program runs). Creating software that can competently generate game content could

help us understand process by which we can “manually” generate the content, and

clarify the affordances and constraints of the design problem we are addressing. This

is an iterative process, whereby better PCG methods can lead to better understanding

of the design process, which in turn can lead to better PCG algorithms.

1.2 Games that use PCG

Overcoming the storage limitations of computers was one of the main driving forces

behind the development of PCG techniques. The limited capabilities of home com-

puters in the early eighties constrained the space available to store game content

forcing designers to pursue other methods for generating and saving content. Elite

[4] is one of the early games that solved this problem by storing the seed numbers

used to procedurally generate eight galaxies each with 256 planets each with unique

properties. Another classical example of the early use of PCG is the early eight-

ies’ game Rogue, a dungeon-crawling game in which levels are randomly generated

every time a new game starts. Automatic generation of game content, however, of-

ten comes with tradeoffs; Rogue-like games can automatically generate compelling

experiences, but most of them (such as Dwarf Fortress [1]) lack visual appeal.

Recently, procedural content generation has witnessed increasing attention in

commercial games. Diablo [2] is an action role-playing hack and slash video game

featuring procedural generation for creating the maps, the type, number and place-

ment of items and monsters. PCG is a central feature in Spore [15] where the designs

the players create is animated using procedural animation techniques [22]. These

personalized creatures are then used to populate a procedurally generated galaxy.

Civilization IV [10] is a turn based strategy game that allows unique gameplay ex-

perience by generating random maps. Minecraft [19] is one of the recent popular

indie games featuring extensive use of PCG techniques to generate the whole world

and it’s content. Spelunky [39] is another notable 2D platform rogue-like indie game

that utilizes PCG to automatically generate variations of game levels (Figure 3.12).

Tiny Wings [13] is yet another example of a mobile 2D game featuring a procedural

terrain and texture generation system giving the game a different look with each

replay.

1.3 Visions for PCG

As we can see in the previous section, procedural content generation has been a part

of some published games for three decades. In the past few years, there has also

been a surge in academic research on PCG, where researchers from very different

academic backgrounds have brought their perspectives and methods to bear on the

1 Introduction 5

Fig. 1.1: Snapshot from Spelunky.

problems of game content generation. This has resulted in a number of new meth-

ods, and variations and combinations of old methods, some of which are in need of

further research and development before being useful in actual games. The chapters

of this book will present many of the most significant contributions of recent years’

research.

To guide the research being done, it is useful to have some visions of where we

might be going; this is analogous to lists of “unsolved problems” in some research

fields such as mathematics and physics. The authors of a recent survey paper defined

three such visions for procedural content generation [32]. These are things that we

cannot do with current technology, and might never be possible to achieve exactly

as stated, but serve to point out limitations of the state of the art and by extension

interesting problems to work on.

1. Multi-level, multi-content PCG refers to a content generator that, for a given

game engine and set of game rules, would be able to generate all of the content for

the game such that the content is of high quality and fits perfectly together with

each other. For example, given the engine and ruleset for the popular computer

role-playing game Skyrim, this imaginary software would generate backstory,

quests, characters, items, weapons, vegetation, terrain, graphics, etc. in such a

fashion that it all becomes a coherent, believable new world and an enjoyable

game to play.

2. PCG-based game design refers to creating games that do not only rely on proce-

dural content generation, but for which PCG is an absolutely central part of the

gameplay, so that if you took the content generation part away there would not be

anything recognisable left of the game. Some progress have been made towards

this, notably in games such as Galactic Arms Race [11] or Endless Web [29],

6 Julian Togelius, Noor Shaker, Mark J. Nelson

but these games are still based on established game genres and core parts of the

games could function without PCG.

3. Generating complete games refers to a generator capable of generating not only

content for a given game, but the game itself. This means the rules, reward struc-

tures and graphical representation as well as the levels, characters, etc. Some

work has been done in this direction, mainly to generate rules for different kinds

of games [34, 7, 20, 9], but the rules generated are so far rather simplistic.

Much of the work described in the upcoming chapters can be seen as making

progress towards one or several of these visions, but as you will see, there is much

work to be done. At the same time, it is important to keep in mind that it is equally

worthwhile to develop generators for more narrowly defined tasks.

1.4 Desirable properties of a PCG solution

We can think of implementations of PCG methods as solutions to content generation

problems. A content generation problem might be to generate new grass with a low

level of detail which does not look completely weird within 50 milliseconds. It might

also be to generate a truly original idea for a game mechanic after days of computing

time, or it might be to polish up in-game items to a perfect sheen in a background

thread as they are being edited by a designer. The desirable – or required – properties

of a solution are different for each application. The only constant is that there are

usually tradeoffs involved, e.g. between speed and quality, and expressivity/diversity

and reliability. Here is a list of common desirable properties of PCG solutions:

• Speed: Requirements for speed vary wildly, from a maximum generation time of

milliseconds to months, depending on (amongst other things) whether the content

generation is done during gameplay or during development of the game.

• Reliability: Some generators shoot from the hip, whereas others are capable or

guaranteeing the content they generate indeed satisfy some given quality criteria.

This is more important for some types of content than others, for example a

dungeon with no exit or entrance is a catastrophic failure, whereas a flower that

looks a bit weird just looks a bit weird without this necessarily breaking the

game.

• Controllability: There is frequently a need for content generators to be control-

lable in some sense, so that a human user, or an algorithm (such as a player-

adaptive mechanism), can specify some aspects of the content to be generated.

There are many possible dimensions of control, e.g. one might ask for a smooth

oblong rock, a car that can take sharp bends and has multiple colours, a level that

induces a sense of mystery and rewards perfectionists, or a small rulesets where

chance plays no part.

• Expressivity and diversity: There is often a need for being able to generate a di-

verse set of content, to avoid the content looking like it’s all minor variations on a

tired theme. At an extreme of non-expressivity, consider a level “generator” that

1 Introduction 7

always outputs the same level but randomly changes the colour of a single stone

in the middle of the level; at the other extreme, consider a “level” generator that

assembles components completely randomly, yielding senseless and unplayable

levels. Measuring expressivity is a non-trivial topic in its own right, and design-

ing level generators that generate diverse content without compromising with

quality is even less trivial.

• Creativity and believability: In most cases, we would like our content not to look

like it has been designed by a procedural content generator. There is a number

of ways in which generated content can look generated as opposed to human-

created.

1.5 A taxonomy of PCG

With the variety of content generation problems and methods that are now available,

it helps to have a structure that can highlight the differences and similarities between

approaches. In the following, we introduce a revised version of the taxonomy of

PCG that was originally presented by Togelius et al. [35]. It consists of a number of

dimensions, where an individual method or solution should usually be thought of as

lying somewhere on a continuum between the ends of that dimension.

1.5.1 Online versus offline

PCG techniques can be used to generate content online, as the player is playing the

game, allowing the generation of endless variations, making the game infinitely re-

playable and opening the possibility of generating player-adapted content, or offline

during the development of the game or before the start of a game session. The use of

PCG for offline content generation is particularly useful when generating complex

content such as environments and maps. An example of the use of online content

generation can be found in the game Left 4 Dead [36], a recently released first-

person shooter game that provides dynamic experience for each player by analysing

player behaviour on the fly and altering the game state accordingly using PCG tech-

niques [3].

NERO [31] is an example of the use of AI techniques to allow the players to

evolve real-time tactics for a squad of virtual soldiers. Forza Motorsport [17] is a

car racing game where the Non-Player Characters (NPCs) can be trained offline to

imitate the player driving style and can later be used to drive on behalf of the player.

Another important use of the offline content generation is the creation and sharing of

content. Some games such as LittleBigPlanet [16] and Spore [15] provide a content

editor (level editor in the case of LittleBigPlant and creature editor for Spore) that

allows the players to edit and upload complete creatures or levels to a central online

server where they can be downloaded and used by other players.

8 Julian Togelius, Noor Shaker, Mark J. Nelson

1.5.2 Necessary versus optional

PCG can be used to generate necessary game content that are required for the com-

pletion of a level, or it can be used to generate auxiliary content that can be discarded

or exchanged for other content. The main distinctive feature between necessary and

optional content is that necessary content should always be correct while this condi-

tion does not hold for optional content. An example of optional content is the gen-

eration of different types of weapons in first-person shooter games or the auxiliary

rewarding items in Super Mario Bros [21]. Necessary content can be the main struc-

ture of the levels in Super Mario Bros, or the collection of certain items required to

pass to the next level.

1.5.3 Degree and dimensions of control

The generation of content by PCG can be controlled in different ways. The use of

random seed is one way to gain control over the generation space, another way is

to use a set of parameters that control the content generation along a number of

dimensions. Random seeds were used when generating the world in Minecraft [19]

which allow regenerating the same world if the same seed is used [18]. A vector of

content features was used in [25] to generate levels for Infinite Mario Bros [23] that

satisfy a set of feature specifications.

1.5.4 Generic versus adaptive

Generic content generation refers to the paradigm of PCG where content is gener-

ated without taking player behaviour into account as opposite to adaptive, person-

alised or player-centered content generation where player interaction with the game

is analysed and content is created based on player’s previous behaviour. Most of the

attempts that can be found in commercial games tackle PCG in a generic way, while

adaptive PCG has been receiving increasing attention in academia recently. A recent

extensive review of PCG for player-adaptive games can be found in [38].

Left 4 Dead [36] is an example of the use of adaptive PCG in a commercial game

where an algorithm is used to adjust the pacing of the game on the fly based on

player’s emotional intensity. In this case, adaptive PCG is used to adjust the diffi-

culty of the game in order to keep the player engaged [3]. Adaptive content gener-

ation can also be used with another motive such as the generation of more content

of those the player seems to like. This approach was followed in the Galactic Arms

Race [11] game where the weapons presented to the player are evolved based on

her previous weapon use and preferences. Figure 1.2 presents examples of evolved

weapons for different players.

1 Introduction 9

Fig. 1.2: Three example weapons created in the Galactic Arms Race game for dif-

ferent players. Adapted from [11].

1.5.5 Stochastic versus deterministic

Deterministic PCG allows the regeneration of the same content given the same start-

ing point and method parameters as opposite to stochastic PCG where recreating the

same content is usually not possible. The regeneration of the galaxies in Elite [4] is

an example of the deterministic use of PCG.

1.5.6 Constructive versus Generate-and-test

In constructive PCG, the content is generated once and modifications are not permit-

ted, e.g. rogue-like games. Generate-and-test PCG techniques, on the other hand, go

through the loop of generate-test for a number of times until a satisfactory solution

is generated. Yavalath [5] is a two players board game generated completely by a

computer program using the generate-and-test paradigm [7].

1.5.7 Automatic generation versus mixed authorship

Up until recently, PCG has allowed limited input from game designers who usu-

ally tweak the algorithm parameters to control and guide content generation while

the main purpose of PCG remains the generation of infinite variations of playable

content [39, 7, 1, 2]. A new interesting paradigm, however, has emerged recently

focusing on incorporating designer and/or player input through the design process.

In the mixed-initiative paradigm, a human (designer or player) cooperates with the

algorithm to generate the desired content.

Tanagra [30] is an example of a system where the designer draws part of a 2D

level and a constraint satisfaction algorithm is used to generate the missing parts

while retaining playability. Another example is SketchaWorld framework [27] which

is an interactive procedural sketching system for creating landscapes and cityscapes

where designers can manually edit and tune the generated results while the virtual

world model is kept consistent. Ropossum [24] is yet another recent example of

10 Julian Togelius, Noor Shaker, Mark J. Nelson

the use of PCG for completing unfinished designs, suggesting modifications, han-

dling constraints and testing for playability for the 2D physics-based game Cut the

Rope [40].

1.6 Metaphors for PCG

In the phrase “procedural content generation system”, we discussed what the words

“procedural”, “content”, and “generation” mean. But what about the word system?

A PCG system is a generic term for any piece of software that does PCG. But these

systems do different things, are used in different ways, and have quite different

relationships to the overall game-design process. Some PCG systems try to help a

designer out with a small part of the design process. Others try to provide a new way

of working with game content. Some are interactive; others aren’t. Some aim to do

fully autonomous, creative game design; others aim to automate routine or common

aspects of design.

To break this broad term, PCG system, into more specific kinds of systems,

Khaled et al. [14] proposed four metaphors for thinking of how PCG systems re-

late to the game-design process. Some PCG systems are tools: instruments that give

designers enhanced capabilities, in the way that a programmer’s development en-

vironment or an architect’s CAD system do. Others define new kinds of materials,

allowing a designer to work in a new medium, the way stone, clay, and laser in-

stallations are different materials for an artist. Some PCG systems are intended to

be designers themselves, carrying out fully autonomous design of parts or even en-

tire games, rather than assisting game designers. And some systems are primarily

domain experts, carrying with them extensive knowledge of game-design that can

be used to critique or improve designs. Many systems can be viewed through more

than one of these lenses, though few will exhibit all of them equally.

PCG tools, like non-PCG design tools, aim to improve a designer’s workflow,

but PCG tools do it by adding a generative component. A common example is a

PCG-enhanced level editor. The level-editing tools included with many game en-

gines already improve the level-design process by providing specialized ways of

editing and laying out levels, rather than the designer having to do level design in a

more generic tool, or entirely in code. A PCG-enhanced level editor adds a genera-

tive component to the passive traditional level editor. The Tanagra [30] level editor

generates levels that fit a theory of rhythmic patterns in platformer games, which the

designer can modify and add more constraints to, followed by re-generation of the

relevant portions. This back-and-forth pattern, alternating procedural content gen-

eration and human editing, is called mixed-initiative generation, and is covered in

Chapter 11. Among the visions for PCG discussed earlier in this chapter, “multi-

level multi-content PCG” can be seen as using a tool metaphor.

PCG systems can also create new, generative, materials that a game designer

manipulates and sculpts to produce content. A popular commercial example is

SpeedTree. In one sense it’s a tool for designing trees to place as scenery in

1 Introduction 11

videogames. But the way it does this is by turning trees into an interactive generative

material: the designer can click and drag them around, add and remove branches,

etc., and they always look like a tree, because the trees are procedurally generated

in real time as the designer manipulates them. The fractal landscapes discussed in

Chapter 4 are also a kind of procedurally generative material, which a designer ma-

nipulates to produce their desired landscapes. For the PCG vision of “PCG-based

game design”, the appropriate metaphor is material.

A procedural content designer has less interaction with the human designer, and

instead has ambitions of designing content all on its own. In the limit case, a PCG

designer turns into a fully autonomous game generator that creates new games, usu-

ally in a specific genre. Work on automatic game design is still at an exploratory

stage, but promising prototype systems exist [20, 34, 7, 9]. A key challenge for a

lead designer is that it must design not only the content in a game, but the rules

of the game itself. Chapter 6 looks at these systems that generate rules and game

mechanics. The PCG vision of “generating complete games” relies on a designer

metaphor.

A procedural domain expert is a slightly different kind of system, full of knowl-

edge about games or players, and able to apply it to critique and modify content.

Often it will apply that expertise by being part of a system that also serves as a

tool or a designer. A domain expert may have purely formal knowledge of games,

such as what makes a particular set of rules elegant [6]. Or it may have extensive

knowledge of human players, being able to predict what people will do in a game,

and what they will find challenging, fun, or boring. For a PCG-based educational

game, the domain expert may have pedagogical knowledge. For example, the pro-

cedural level generation in the fraction-teaching game Refraction is constrained so

that generated levels meet the system’s pedagogical goals [28]. Chapter 10 discusses

the experience-driven PCG approach, which builds PCG systems that are experts in

player behaviour and reactions.

1.7 Outline of the book

This book is structured as a series of chapters, co-written by the main authors of the

book and the leading experts on the topic of each chapter. Most chapters are organ-

ised so that they introduce both a family of methods (e.g. fractals or grammars) and

an application domain (e.g. plants or dungeons). The method is typically introduced

through an example in the application domain, and the chapter then also discusses

how the same method could be used for other domains or how different methods

could be used for that domain. This structure is partly motivated by the interdisci-

plinary nature of PCG research and practice, where the algorithms used come from

numerous different fields (and thus rarely build on each other) and game design

knowledge is vital in all cases. Each chapter ends with a summary and typically

also with a proposed lab exercise.

12 Julian Togelius, Noor Shaker, Mark J. Nelson

In Chapter 2 we present the search-based approach to procedural content gener-

ation, which is very versatile and which has recently been used in a large number

of academic research projects as well as some released games. In the search-based

approach, evolutionary algorithms are used to search for good game content us-

ing principles from Darwinian evolution. The two main challenges when building

a search-based content generator is the evaluation function, which evaluates candi-

date content artefacts, and the content representation, which defines the search space

for the algorithm. While this chapter contains several examples of content genera-

tors based on artificial evolution, there are further such examples scattered in the

upcoming chapters.

Chapter 3 discusses the specific example of creating dungeons for roguelike

games, and similar levels based on navigating a mostly two-dimensional space –

for example, levels for platform games or first-person shooters. A number of fast

and constructive algorithms for generating such levels are described. Some of these

algorithms come from the game development community and are widely used in

roguelikes such as Diablo. Others, such as cellular automata, have their origin in

physics. We also describe the Mario AI framework, a common testbed for level

generation algorithms based on a clone of Super Mario Bros.

Chapter 4 describes several algorithms with a background in computer graphics

research, namely simple fractal algorithms and other noise algorithms. These are

commonly used to produce terrains and complete landscapes, as well as textures and

features such as clouds. While these algorithms are fast and reliable, they lack some

forms of controllability. Therefore two other approaches to generating landscapes

are presented, one search-based and one based on collections of agents.

Chapter 5 is about grammars. Grammars, common to computer science and lin-

guistics, prove to be very useful for creating many types of game content. The chap-

ter starts with the example of creating lifelike plants, which is a very common form

of PCG; in fact, hundreds of AAA games from recent years feature procedurally

generated vegetation based on grammars. But grammars can also be used for e.g.

level generation; the rest of the chapter details how to use grammars for generat-

ing levels and missions for Zelda-style action-adventure games, and how to evolve

grammars that generate Super Mario Bros levels.

While some of the application domains of the previous chapters may be seen as

somewhat peripheral, Chapter 6 addresses the problems of generating the absolutely

most central part of any game: its rules. We describe a number of different attempts

at generating rules for games, from board games to card games and arcade games.

Some of these attempts are constructive, but most of them are search-based in one

way or another. The chapter also describes the Video Game Description Language,

a way of encoding game rules for simple arcade games of the kind you would find

in the early eighties – one of the purposes of this language is to enable automatic

generation of complete games.

Most games feature stories of some kind, either backstories or interactive stories

that the player can affect; stories can be seen as content, so Chapter 7 is devoted to

the generation of game stories. It turns out that almost all methods for story gener-

ation are based on planning algorithms; planning is a classic AI method originally

1 Introduction 13

developed for robot control and now widely used in various domains. The chapter

also discusses how story generation can be combined with map generation, so that

game maps are generated that fit with the generated story.

Chapter 8 is focused on a single method, namely Answer Set Programming

(ASP). This is a form of logic programming based on constraint satisfaction: condi-

tions are specified in a language called AnsProlog, and a solver produces all config-

urations of certain variables that are compatible with the specified conditions. While

this might seem abstract and unrelated to PCG, it has recently been demonstrated

that certain PCG problems can be easily stated in AnsProlog form, and the results

of the solver interpreted as game content. This yields a highly efficient method for

creating some form of game content, for example levels for puzzle-like games.

Chapter 9 returns to the topic of Chapter 2, search-based PCG, and dwells on

the question of how to represent the game content. Representation is important as

it defines the shape of the search space and the ways in which it can be explored.

This chapter demonstrates how a wise choice of representation can alter the style of

the generated content as well as enable more effective search for content that better

satisfies the evaluation function. Examples include flowers represented as neural

networks and level generators represented as collections of agents.

One of the motivations for PCG is that it can enable player-adaptive games.

Chapter 10 describes a framework for adapting games to the player, namely that

of experience-driven PCG. We describe different methods for creating models of

player experience based on data collected from players.

A theme throughout much of the book is that the relationship between procedural

content generation and human game designers can be quite varied. PCG can be

used in a highly automated way, but it can also be used in close coupling with the

designer’s own design choices. Chapter 11 looks at this close coupling explicitly,

considering mixed-initiative systems, in which a human designer and a procedural-

content system collaborate to produce content.

Finally, Chapter 12 discusses how the quality of a PCG solution can be evaluated

once it has been implemented.

1.8 Summary

Procedural content generation (PCG) in games is the algorithmical creation of game

content with limited or indirect user input. PCG methods are developed and used

for a number of different reasons, including saving development time and costs, in-

creasing replayability, allowing for adaptive games, assisting designers and studying

creativity and game design. While PCG algorithms have been used in some com-

mercial games since the early eighties, they are typically either used in a peripheral

role or their scope is highly limited; current research in academia is trying to push

the boundaries of what can be generated and with what quality it can be gener-

ated. Ideally, a PCG solution should be fast, reliable, controllable, expressive and

creative, but in practice there are certain tradeoffs that need to be made between

14 Julian Togelius, Noor Shaker, Mark J. Nelson

these properties. PCG solutions can be classified according to a relatively extensive

taxonomy, which might help identify their strengths and weaknesses. Another lens

through which to understand a PCG system is the metaphor according to which it

is used; here we can differentiate between using a system as tool, material, designer

or domain expert. PCG algorithms are drawn from a variety of different fields, and

this methodological diversity is evident from the table of contents of this book.

References

1. Adams, T.: (2006). Dwarf Fortress, Bay 12 Games

2. Blizzard North: (1997). Diablo, Blizzard Entertainment, Ubisoft and Electronic Arts

3. Booth, M.: The AI systems of Left 4 Dead. In: Keynote, Fifth Artificial Intelligence and

Interactive Digital Entertainment Conference (AIIDE) (2009)

4. Braben, D., Bell, I.: (1984). Elite, Acornsoft, Firebird and Imagineer

5. Browne, C.: Yavalath (2007). URL http://www.cameronius.com/games/yavalath/

6. Browne, C.: Elegance in game design. IEEE Transactions on Computational Intelligence and

AI in Games pp. 229 –240 (2012)

7. Browne, C., Maire, F.: Evolutionary game design. IEEE Transactions on Computational In-

telligence and AI in Games, (1), 1–16 (2010)

8. Compton, K., Osborn, J.C., Mateas, M.: Generative methods. In: Proceedings of the 4th Work-

shop on Procedural Content Generation in Games (2013)

9. Cook, M., Colton, S.: Multi-faceted evolution of simple arcade games. In: IEEE Conference

on Computational Intelligence and Games (CIG), pp. 289–296. IEEE (2011)

10. Firaxis Games: (2005). Civilization IV, 2K Games & Aspyr

11. Hastings, E.J., Guha, R., Stanley, K.: Evolving content in the galactic arms race video game.

In: Proceedings of the 5th international conference on Computational Intelligence and Games,

pp. 241–248. IEEE (2009)

12. Hendrikx, M., Meijer, S., van der Velden, J., Iosup, A.: Procedural content generation for

games: a survey. ACM Transactions on Multimedia Computing, Communications and Appli-

cations (2011)

13. Illiger, A.: (2011). Tiny Wings, Andreas Illiger

14. Khaled, R., Nelson, M.J., Barr, P.: Design metaphors for procedural content generation in

games. In: Proceedings of the 2013 ACM SIGCHI Conference on Human Factors in Comput-

ing Systems, pp. 1509–1518 (2013)

15. Maxis: (2008). Spore, Electronic Arts

16. Media Molecule, SCE Cambridge Studio, Tarsier Studios, Double Eleven, XDev, United Front

Games: (2008). Little Big Planet, Sony Computer Entertainment Europe

17. Microsoft Game Studios: (2005). Forza Motorsport, Microsoft

18. Minecraft Wiki: Minecraft wiki. URL http://www.minecraftwiki.net/

19. Mojang: (2011). Minecraft, Mojang and Microsoft Studios

20. Nelson, M.J., Mateas, M.: Towards automated game design. In: AI*IA 2007: Artificial In-

telligence and Human-Oriented Computing, pp. 626–637. Springer (2007). Lecture Notes in

Computer Science 4733

21. Nintendo Creative Department: (1985). Super Mario Bros, Nintendo

22. PCG Wiki: Procedural content generation wiki. URL http://pcg.wikidot.com/

23. Persson, M.: Infinite mario bros. URL http://www.mojang.com/notch/mario/

24. Shaker, M., Shaker, N., Togelius, J.: Ropossum: An authoring tool for designing, optimiz-

ing and solving cut the rope levels. In: Proceedings of the AAAI Conference on Artificial

Intelligence and Interactive Digital Entertainment (AIIDE). AAAI Press (2013)

1 Introduction 15

25. Shaker, N., Togelius, J., Yannakakis, G.N.: Towards automatic personalized content generation

for platform games. In: Proceedings of the AAAI Conference on Artificial Intelligence and

Interactive Digital Entertainment (AIIDE) (2010)

26. Smelik, R., De Kraker, K., Tutenel, T., Bidarra, R., Groenewegen, S.: A survey of procedural

methods for terrain modelling. In: Proceedings of the CASA Workshop on 3D Advanced

Media In Gaming And Simulation (3AMIGAS). Citeseer (2009)

27. Smelik, R., Tutenel, T., de Kraker, K., Bidarra, R.: Integrating procedural generation and man-

ual editing of virtual worlds. In: Proceedings of the Workshop on Procedural Content Gener-

ation in Games, p. 2. ACM (2010)

28. Smith, A.M., Andersen, E., Mateas, M., Popović, Z.: A case study of expressively constrain-

able level design automation tools for a puzzle game. In: Proceedings of the Seventh Interna-

tional Conference on the Foundations of Digital Games, pp. 156–163 (2012)

29. Smith, G., Othenin-Girard, A., Whitehead, J., Wardrip-Fruin, N.: Pcg-based game design:

creating endless web. In: Proceedings of the International Conference on the Foundations of

Digital Games, pp. 188–195. ACM (2012)

30. Smith, G., Whitehead, J., Mateas, M.: Tanagra: A mixed-initiative level design tool. In: Pro-

ceedings of the Fifth International Conference on the Foundations of Digital Games, pp. 209–

216. ACM (2010)

31. Stanley, K., Bryant, B., Miikkulainen, R.: Real-time neuroevolution in the nero video game.

IEEE Transactions on Evolutionary Computation (6), 653–668 (2005)

32. Togelius, J., Champandard, A.J., Lanzi, P.L., Mateas, M., Paiva, A., Preuss, M., Stanley, K.O.:

Procedural content generation: Goals, challenges and actionable steps. In: Dagstuhl Seminar

12191: Artificial and Computational Intelligence in Games. Dagstuhl (2013)

33. Togelius, J., Kastbjerg, E., Schedl, D., Yannakakis, G.N.: What is procedural content genera-

tion?: Mario on the borderline. In: Proceedings of the 2nd Workshop on Procedural Content

Generation in Games (2011)

34. Togelius, J., Schmidhuber, J.: An experiment in automatic game design. In: IEEE Symposium

On Computational Intelligence and Games, pp. 111–118. IEEE (2008)

35. Togelius, J., Yannakakis, G.N., Stanley, K., Browne, C.: Search-based procedural content gen-

eration. Applications of Evolutionary Computation pp. 141–150 (2010)

36. Valve Corporation: (2008). Left 4 Dead, Valve Corporation

37. Wittgenstein, L.: Philosophical Investigations. Blackwell (1953)

38. Yannakakis, G.N., Togelius, J.: Experience-Driven Procedural Content Generation. IEEE

Transactions on Affective Computing pp. 147 – 161 (2011)

39. Yu, D., Hull, A.: (2009). Spelunky, Independent

40. ZeptoLab: (2010). Cut the Rope

Chapter 2

The search-based approach (DRAFT)

Julian Togelius and Noor Shaker

2.1 What is the search-based approach to procedural content

generation?

There are many different approaches to generating content for games. In this chap-

ter, we will introduce the search-based approach, which has been intensely investi-

gated in academic PCG research in recent years. In search-based procedural content

generation, an evolutionary algorithm or some other stochastic search/optimisation

algorithm is used to search for content with the desired qualities. The basic metaphor

is that of design as a search process: a good enough solution to the design problem

exists within some space of solutions, and if we keep iterating and tweaking on one

or many possible solutions, keeping those changes which make the solution(s) bet-

ter and discarding those that are harmful, we will eventually arrive at the desired

solution. This metaphor has been used to describe the design process in many dif-

ferent disciplines: for example, Will Wright (designer of SimCity and The Sims)

described the game design process as search in his talk at the 2005 Game Develop-

ers Conference ??. Others have previously described the design process in general,

and in other specialised domains such as architecture, the design process could be

conceptualised as search and implemented as a computer program [29, 2].

The core components of the search-based approach to solving a content genera-

tion problem are the following:

• A search algorithm. This is the “engine” of a search-based method. As we will

see, often relatively simple evolutionary algorithms work well enough, though

sometimes there are substantial benefits to using more sophisticated algorithms

that take e.g. constraints into account, or that are specialised for a particular con-

tent representation.

• A content representation. This is the representation of the artefacts you want to

generate, e.g. levels, quests or winged kittens. The content representation could

be anything from an array of real numbers to a graph to a string. The content

17

18 Julian Togelius and Noor Shaker

representation defines (and thus also limits) what content can be generated, and

determines whether effective search is possible.

• One or more evaluation functions. An evaluation function is a function from an

artefact (an individual piece of content) to a number indicating the quality of the

artefact. The output of an evaluation function could indicate e.g. the playability of

a level, the intricacy of a quest or the aesthetic appeal of a winged kitten. Crafting

an evaluation function that reliably measures the aspect of game quality that it is

meant to measure is often among the hardest tasks in developing a search-based

PCG method.

This chapter will describe each of these components in turn. It will also discuss

several examples of search-based methods for generating different types of content

for different types of games.

2.2 Evolutionary search algorithms

An evolutionary algorithm is a stochastic search algorithm loosely inspired by Dar-

winian evolution through natural selection. The core idea is to keep a population of

individuals (also called chromosomes or candidate solutions), which in each gener-

ation are evaluated, and the fittest (highest evaluated) individuals get the chance to

reproduce and the least fit are removed from the population. A generation can thus

be seen as divided into selection and reproduction phases. In your backyard, a gener-

ation of newly born rabbits may be subject to selection by the hungry wolf who eats

the slowest of the litter, with the surviving rabbits being allowed to reproduce. The

next generation of rabbits is likely to, on average, be better at running from the wolf.

Similarly, in your search-based PCG implementation, a generation of strategy game

units might be subject to selection by an evaluation function that grades them based

on how complementary they are, and then mixed with each other (recombination or

crossover) or copied with small random changes (mutation). The next generation of

strategy game units is likely to, on average, be more complementary. It is important

to note that this process works even when the initial generation consists of randomly

generated individuals which are all very unfit for the purpose; some individuals will

be less worthless than others, and a well-designed evaluation function will reflect

these differences.

To make matters more concrete, let us describe a simple but fully usable evolu-

tionary algorithm, the µ + λ evolution strategy (ES). The parameter µ represents

the size of the part of the population that is kept between generations, the elite;

the parameter λ represents the size of the part of the population that is generated

through reproduction in each generation. For simplicity, imagine that µ = λ = 50

while reading the following description.

1. Initialise the population of µ +λ individuals. The individuals could be randomly

generated, or include some individuals that were hand-designed or the result of

previous evolutionary runs.

2 The search-based approach (DRAFT) 19

2. Shuffle the population (permute it randomly). This phase is optional but helps

escaping loss-of-gradient situations.

3. Evaluate all individuals with the evaluation function, or some combination of

several evaluation functions, so that each individual is assigned a single numeric

value indicating its fitness.

4. Sort the population in order of ascending fitness.

5. Remove the λ worst individuals.

6. Replace the λ removed individuals with copies of the µ remaining individuals.

The newly made copies are called the offspring. If µ = λ , each individual in the

elite is copied once; otherwise, it could be copied fewer or more times.

7. Mutate the λ offspring, i.e. perturb them randomly. The most suitable mutation

operator depends on the representation and to some extent on the fitness land-

scape. If the representation is a vector of real numbers, an effective mutation

operator is Gaussian mutation: add random numbers drawn from a Gaussian dis-

tribution with a small standard deviation to all numbers in the vector.

8. If the population contains an individual of sufficient quality, or the maximum

numbers of generations is reached, stop. Otherwise, go to step 2 (i.e. start the

next generation).

Despite the simplicity of this algorithm (it could be implemented in 10-20 lines

of code), the µ +λ ES can be remarkably effective; even degenerate versions such

as the 1+1 ES can work well. However, the evolution strategy is just one of several

types of evolutionary algorithms; another commonly used type is the genetic al-

gorithm, which relies more on recombination and less on mutation, and which uses

different selection mechanisms. There are also several types of stochastic search/op-

timisation algorithms that are not strictly speaking evolutionary algorithms but can

be used for the same purpose, e.g. swarm intelligence algorithms such as particle

swarm optimisation and ant colony optimisation. A good overview of evolutionary

algorithms and some related approaches can be found in Eiben and Smith’s book [8].

Some evolutionary algorithms are especially well suited to particular types of

representation. For example, numerous variations on evolutionary algorithms have

been developed especially for evolving runnable computer programs, often repre-

sented as expression trees [18]. If the artefacts are represented as vectors of real

numbers of relatively short length (low dimensionality), a particularly effective al-

gorithm is the Covariance Matrix Adaptation Evolution Strategy (CMA-ES), for

which there are several open source implementations available [9].

In many cases we want to use more than one evaluation function, as it is hard

to capture all aspects of an artefact’s quality in one number. For using a standard

single-objective evolutionary algorithm such as the evolution strategy, the evalua-

tion functions could be combined as a weighted sum. However, this comes with its

own set of problems, particularly that some functions tend to be optimised at the

expense of others. Instead, one could use a multiobjective evolutionary algorithm,

that optimises for several objectives at the same time and finds the set of nondomi-

nated individuals which have unique combinations of strengths. The perhaps most

popular multiobjective evolutionary algorithm is the NSGA-II [7].

20 Julian Togelius and Noor Shaker

2.2.1 Other types of search algorithms

It could be argued that an evolutionary algorithm is “overkill” for some content gen-

eration problem. If your search space is very small and/or you have lots of time at

hand to produce your content, you could try an exhaustive search algorithm that

simply iterates through all possible configurations. In other cases, when it is easy to

find good solutions and it is more important to maintain high diversity in the gener-

ated content, random search – simply sampling random points in the search space –

could work well. Even when using exhaustive or random search the content needs

to be represented in such a way that the space can be effectively searched/sampled

and an evaluation function is necessary to tell the bad content from the good.

Another approach to content generation which can also be seen as search in con-

tent space is the solver-based approach, where e.g. Answer Set Programming is used

to specify the logical conditions on game content. That approach will be discussed

in Chapter 8.

2.3 Content representation

Content representation is a very important issue when evolving game content. The

representation chosen plays an important role in the efficiency of the generation al-

gorithm and the space of content the method will be able to cover. In evolutionary

algorithms, the solutions in the generation space are usually encoded as genotypes

which are used for efficient searching and evaluation. Genotypes are later converted

to phenotypes; the actual entities being evolved. In a game content generation sce-

nario, the genotype might be the instructions for creating a game level, and the

phenotype is the actual game level.

Examples of content representation in the game domain include the work done

by Togelius et al. [26] who used an indirect representation for evolving maps for

the real-time strategy game StarCraft [1]. In this experiment, the genotypes of maps

were simply arrays of real numbers, whereas the phenotypes were complete Star-

Craft maps including passable/impassable areas, positions of bases and resources,

etc. This experiment will be discussed in more detail in section 2.5.

In another game genre, Cardamone et al. [4] conducted a study for evolving

tracks for a car racing game. The tracks were represented as a set of control points

the track has to cover and Bezier curves were employed to connect these points and

ensure smoothness, a method inspired by the work done by Togelius et al. [24] on

the same game genre. An example track evolved following this method is presented

in Figure 2.1. This work will be discussed further in section 2.6

As a concrete example of different representations, a level in Super Mario Bros

might be represented:

1. directly as a level map, where each variable in the genotype corresponds to one

“block” in the phenotype (e.g. bricks, question mark blocks, etc.);

2 The search-based approach (DRAFT) 21

Fig. 2.1: A track evolved based on sequences of Bezier curves. Adapted from [24]

2. more indirectly as a list of the positions and properties of the different game

entities such as enemies, platforms, gaps and hills (an example of this can be

found in [19]);

3. even more indirectly as a repository of different reusable patterns (such as col-

lections of coins or hills), and a list of how they are distributed (with various

transforms such as rotation and scaling) across the level map (an example of this

can be found in [23]);

4. very indirectly as a list of desirable properties such as number of gaps, enemies,

coins, width of gaps (an example of this can be found in [20]); or

5. most indirectly as a random number seed.

These representations yield very different search spaces. It’s easy to think that the

best representation would be the most direct one, which gives the evolutionary pro-

cess most control over the phenotype. One should be aware, however, of the “curse

of dimensionality” associated with representations that yield large search spaces:

the larger the search space, the harder it is (in general) to find a certain solution. An-

other useful principle is that the representation should have a high locality, meaning

that a small change to the genotype should on average result in a small change to

the phenotype and a small change to the fitness value. In that sense, the last repre-

sentation is unsuitable for search-based PCG because there is no locality and in this

case, all search methods perform as badly (or as well) as random search.

The choice of proper representation depends on the type of problem one is trying

to solve. In the work done by Shaker et al. [20], the levels of Infinite Mario Bros

[17], a public clone of the popular game Super Mario Bros [14], are represented

according to option 4 as a vector of integers; each level is parametrized by four

selected content features with the intension of finding the best combination of these

features that can be used to generate content that optimises specific experience for

a particular player. In a latter study by the same authors [19], a more expressive

representation is used following option 2, in which the structure of the levels of

the same game was described in a Design Grammar, written in Backus-Naur Form

which specifies the type, position and properties of each item to be placed in the

22 Julian Togelius and Noor Shaker

level map. The design grammar is later employed by Grammatical Evolution [15] to

evolve level design. A set of design elements, following option 3, was proposed in

[23], also on the same game, where levels were described as a list of design elements

placed in 2D maps, and in this study a standard genetic algorithm was used to evolve

content.

An issue closely related to the representation on the direct-indirect continuum is

the expressive range of the chosen representation. The expressive range is relative

to a particular measure of it: one could measure the expressivity of a platform game

level generator in terms of how many different configurations of blocks it could

produce, but it would make more sense to measure some quality that is more relevant

to the experience of playing the game as a human. For example, the four-feature

vector representation used to represent Infinite Mario Bros levels allows control of

the generation over only the four dimensions chosen, and consequently the search

space is bounded by the range of these four features. On the other hand, a generator

with a wider expressive range was built when representing the possible level designs

in a design grammar which imposes fewer constraints on the structures evolved.

Chapter 9 discusses the issue of representation in search-based PCG further, and

gives additional examples of representations tailored to particular content generation

needs.

2.4 Evaluation functions

Candidate solutions, represented in the proper representation, are evaluated by an

evaluation function that assigns a score (a fitness value or evaluation value) to each

candidate. This is essential for the search process; if we do not have a good evalu-

ation function, the evolutionary process will not work as intended and will not find

good content. In general, the evaluation function should be designed to model some

desirable quality of the artefact, e.g. it’s playability, regularity, entertainment value,

etc. The design of an evaluation function depends to a great extend on the designer

and what she thinks are the important aspects that should be optimised and how to

formulate that.

For example, there are many studies on evolving game content that is “fun” [25,

24, 20, 4]. This term, however, is not well defined and hard to measure and for-

malise. This problem has been approached by many authors from different perspec-

tives. In some studies, fun is considered a function of player behaviour and it is

measured accordingly. An example of such method can be found in the work done

by Togelius et al. [25] for evolving entertaining car racing tracks. In this study, in-

dicators of player performance, such as the average speed achieved, were used as a

measure of suitability of each evolved track for individual players. In another study

by Shaker et al. [20], fun is measured through self reports by directly asking the

players about their experience. In other studies [22], a game is considered fun if the

content presented follows predefined patterns that specify regions in the game and

2 The search-based approach (DRAFT) 23

alternate between segments of varying challenge. In this case, challenge is consid-

ered the primary cause of a fun experience.

In search-based PCG, one commonly distinguishes between three classes of eval-

uation functions:

2.4.1 Direct evaluation functions

Direct evaluation functions map features extracted from the content generated to a

content quality value and in that sense, they base their fitness calculations directly on

the phenotype representation of the content. Direct evaluation functions are fast to

compute and often relatively easy to implement, but it is sometimes hard to devise

a direct evaluation function for some aspects of game content. Example features

include the placement of bases and resources in real-time strategy games [26] or the

size of the ruleset in strategy games [12]. The mapping between features and fitness

might be contingent on a model of the playing style, preferences or affective state of

players. An example of this form of fitness is the study done by Shaker et al. [20, 21]

for personalising player experience using models of players as a measures of content

quality.

Within direct evaluation functions, one distinguishes between theory-driven and

data-driven functions. Theory-driven functions are guided by intuition and/or quali-

tative theories of player experience. Togelius et al. [24] used this method to evaluate

the tracks in a car racing game. The evaluation function derived is based on several

theoretical studies on fun in games [6, 11] and the authors’ intuition of what makes

an intertraining track. Data-driven functions, on the other hand, are based on quan-

titative measures of player experience that approximate the mapping between the

content presented and players’ affective or cognitive states collected via question-

naires or physiological measurements [21, 30].

2.4.2 Simulation-based evaluation functions

Simulation-based evaluation functions use AI agents that play through the content

generated and estimate its quality. Statistics are usually calculated about the agents

behaviour and playing style and used to score game content. The type of the evalu-

ation task determines the area of proficiency of the AI agent; if content is evaluated

on the basis of playability, that is the existence of a path from the start to the end

in a maze or a level in a 2D platform game, then AI agents should be designed that

are excel in reaching the end of the game. On the other hand, if content is optimised

to maximise particular player experience, then an AI agent that imitates human be-

haviour is usually adopted. An example study that implements a human-like agent

for assessing content quality is presented in [24] where neural network-based con-

trollers are trained to drive like human players in a car racing game and then used to

24 Julian Togelius and Noor Shaker

evaluate the generated tracks. Each track generated is given a fitness value according

to playing behaviour statistics calculated while the AI controller is playing. Another

example of a simulation-based evaluation function is measuring the average fighting

time of bots in a first-person shooter game [5].

An important distinction within simulation-based evaluation functions is between

static and dynamic functions. Static evaluation functions assume that the agent be-

haviour is maintained during gameplay. A dynamic evaluation function, on the other

hand, uses an agent that adapts during gameplay. In such agents, the fitness value

can be dependent on learnability: how well and/or fast the agent learns to play the

content that is being evaluated.

2.4.3 Interactive evaluation functions

Interactive functions evaluate content based on interaction with a human, so they

requires a human “in the loop”. Examples of this method can be found in the work

done by Hastings et al. [10] who implemented this approach by evaluating the qual-

ity of the personalised weapons evolved implicitly based on how often and how long

the player chooses to use these weapons. Cardamone et al. [4] also used this form of

evaluation to score racing tracks according to the users’ reported preferences. The

first case is an example of an implicit collection of data while players’ preferences

were collected explicitly in the second. The problem with explicit data collection

is that it usually requires interrupting the gameplay session if not well integrated.

This method however provides a reliable and accurate estimator of player experi-

ence as opposite to implicit data collection which is usually noisy and based on

assumptions. Hybrid approaches are sometimes employed to accommodate for the

drawbacks of these two methods by collecting information across multiple modal-

ities such as combining player behaviour with eye gaze and/or skin conductance.

Example studies that use this approach can be found in [13, 21, 30].

2.5 Example: StarCraft maps

In two recent papers, Togelius et al. presented a search-based approach to generat-

ing maps for the classic real-time strategy game (RTS) StarCraft [26, 27]. Despite

being released in the previous millennium, this game is still widely played and was

until very recently the focus of large tournaments broadcast on national TV in coun-

tries such as South Korea. The focus of the game is on building bases, collecting

resources, and waging war with armies of units built using these bases. The maps of

the game play a crucial role, as they constrain what strategies are possible through

their distribution of paths, obstacles, resources, etc. Given the competitive nature of

the game, it is very important that the maps are fair. Therefore, evaluation functions

2 The search-based approach (DRAFT) 25

were designed to measure the fairness of the maps as well as their affordances for

interesting and diverse strategies.

Representation: The maps are represented as vectors of real numbers (of around

100 dimensions). In the genotype-to-phenotype process, some of these numbers are

interpreted directly as the positions of resources or base starting locations. Other

numbers are interpreted as starting positions and parameters for a turtle-graphics-

like procedure that “draws” impassable regions (walls, rocks, etc.) on the initially

empty map. The result of the transformation is a two-dimensional array where each

cell corresponds to a block in the StarCraft map format; this can then automatically

be converted to a valid StarCraft map.

Evaluation: Eight different evaluation functions were developed that address

base placement, resource placement and paths between bases. These evaluation

functions are based mostly on calculations of free space in different areas of the

map and on the shortest paths between different points as calculated by the A* al-

gorithm, and the functions are thus direct (though, if you see the path calculations

as abstract simulations of unit behaviour in the game, the functions can be seen as

simulation-based). There are functions for evaluating that bases are sufficiently fair

from each other, that there is enough space to grow a base, and that there is equal

access to nearby resources. One particularly complicated function is the choke point

function, which returns a higher value if the shortest path between two bases has a

so called choke point, where a tactically skilled player can defend against a superior

attacking forces through using the level geometry.

Algorithm: Given the number of evaluation functions, it seemed very compli-

cated to combine all of them into a single objective. The SMS-EMOA, a state-of-

the-art multiobjective evolutionary algorithms, was therefore used to evolve combi-

nations of two or three objectives (some additional objectives were also converted to

constraints). It was found that there are partial conflicts between several objectives,

meaning that it is impossible to find a map that maximises all of them, but certain

combinations of objectives yield interesting and reasonably fair maps.

2.6 Example: Racing tracks

In an early and influential paper, Togelius et al. evolved racing tracks to fit particular

players’ playing style in a simple two-dimensional racing game [24]. This particular

game had already been used for a series of experiments investigating how evolution-

ary algorithms could best be used to create neural networks that could play the game

well, when the authors decided to see whether the same technique could be applied

to evolve the tracks the car was racing on. The reasoning was that creating challeng-

ing opponent drivers for commercial racing games is actually quite easy, especially

if you are allowed to “cheat” by giving the computer-controlled cars superior per-

formance (and who would stop you?) – on the other hand, creating an interesting

racing track is not trivial at all.

26 Julian Togelius and Noor Shaker

Representation: The tracks are represented as vectors of real numbers, which

are interpreted as control points for b-splines, i.e. sequences of Bezier curves.

Evaluation: The tracks are meant to be personalised for individual players.

Therefore, the first stage in evolving a track for a given player is to model the playing

style of that player. This is done by teaching a neural network (via another evolu-

tionary process) to drive like that player. Then a candidate track is evaluated in a

simulation-based manner by letting the neural network driver drive on that track in

lieu of the human player and investigate its performance. This information is used by

three different evaluation functions, that measure whether the track has appropriate

challenge and diversity for the player.

Algorithm: Given that there are three different evaluation functions, there re-

mains the problem of combining them. The algorithm used, cascading elitism, is

similar to µ +λ ES but has several stages of selection to ensure appropriate selec-

tion pressure on all objectives.

2.7 Example: Board game rules

In an influential paper, Browne and Maire demonstrated that it is possible to auto-

matically generate complete board games of such quality that they can be sold as

commercial products [3]. The system described, Ludi, is restricted to simple board

games similar to Go, Othello and Connect Four, but does a remarkable job of ex-

ploring this search space. This example will be discussed further in Chapter 6.

Representation: The board games, including board layouts and rules, are repre-

sented as strings (which can be interpreted as expression trees) in a special purpose

game description language. This is a relatively high-level language, describing en-

tire games in just a few lines.

Evaluation: The games were evaluated by playing them with a version of the

MiniMax algorithm, with an evaluation function that had been automatically tuned

for each game. A number of values are extracted from investigating the performance

of the algorithm on the game, e.g. how long time it took to finish the game, how often

the game ends in a draw, how many of the rules were used etc. These values were

combined using a weighted sum based on empirical investigations of the properties

of successful board games.

Algorithm: A relatively standard genetic algorithm was used.

2.8 Example: Galactic Arms Race

Galactic Arms Race (GAR) is a space shooter video game where the player traverses

the space in a space ship, shoots enemies, collects items and upgrades her ship.

The game was first released in 2010 as a free research game and a commercial

version of the game was recently released in 2012. The game is interesting from a

2 The search-based approach (DRAFT) 27

research perspective because it is one of very few games, if any, that incorporate

online automatic personalised content generation in a highly and very well-chosen

playable context. The main innovation of the game is in personalising the weapons

used by the player through evolution. As the game is played, new particle weapons

are automatically generated based on player behaviour.

Representation: Particle system weapons are controlled by Artificial Neural

Networks (ANNs) evolved by a method called NeuroEvolution of Augmenting

Topologies (NEAT) [10] which evolves neural network through complexification;

a term refers to starting the evolution with a population of simple, small networks

and increasingly complexity the network topologies over generations. Each weapon

in the game is represented as a single ANN that controls the motion (velocity) and

appearance (colour) of the particles given the particle’s current position in the space.

The evolution starts with a set of simple weapons that shoot only in a straight line.

Evaluation: During the game, a fitness is assigned for each weapon based on

how much this particular weapon is used by the player. Not picking up a weapon

causes its ineligibility for reproduction. The weapons used by the user are assigned

higher fitness values and thus have higher probability of being evolved. The newly

evolved content are then spawned in the space for the player to pick up.

Algorithm: The whole game thus represents a collective, distributed evolution-

ary algorithm. This process allows the generation of unique weapons for each player

and by playing the game, more novel and personalised weapons based on those pre-

ferred could be found.

2.9 Lab exercise: Evolve a dungeon

Roguelike games are a type of games that use PCG for level generation; in fact,

the runtime generation and thereafter the infinite supply of levels is a key feature of

this genre. As in the original game Rogue from 1980, a roguelike typically lets you

control an agent in a labyrinthine dungeon, collecting treasures, fighting monsters

and levelling up. A level in such game thus consists of rooms of different sizes

containing monsters and items and connected by corridors. There are a number of

standard constructive algorithms for generating roguelike dungeons [16], such as:

• Create the rooms first and then connect them by corridors or,

• use maze generation methods to create the corridors and then connect adjacent

sections to create rooms.

The purpose of this exercise is to allow you to understand the search-based ap-

proach through implementing a search-based dungeon generator. Your generator

should evolve playable dungeons for an imaginary roguelike. The phenotype of the

dungeons should be 2D matrices (e.g. size 50x50) where each cell could be one of

the following: free space, wall, starting point, exit, monster, treasure. It is up to you

whether to add other possible types of cell content, such as traps, teleporters, doors,

keys, or different types of treasures and monsters. One of your tasks is to explore

28 Julian Togelius and Noor Shaker

different content representations and quality measures in the context of dungeon

generation. Possible content representations include [28]:

• A grid of cells that can contain one of the different items including: walls, items,

monsters, free spaces and doors;

• a list of walls with their properties including their position, length and orienta-

tion;

• a list of different reusable patterns of walls and free space, and a list of how they

are distributed across the grid;

• a list of desirable properties (number of rooms, doors, monsters, length of paths

and branching factor); or

• a random number seed.

There are a number of advantages and disadvantages for each of these repre-

sentations. In the first representation, for example, a grid of size 100× 100 would

need to be encoded as a vector of length 10,000, which is more than many search

algorithms can effectively approach. The last option, on the other hand, explores

one-dimensional space but it has no locality.

Content quality can be measured directly by counting the number of unreachable

rooms or undesired properties such as a corridor connected to a corner in a room or

a room connected to too many corridors.

2.10 Summary

In search-based PCG, evolutionary computation or other stochastic search/optimisa-

tion algorithms are used to create game content. The content creation can be seen as

a search for the content that best satisfies an evaluation function in a content space.

When designing a search-based PCG solution, the two main issues are the content

representation and the evaluation function. The same space of content phenotypes

can be represented in several different ways in genotype space; in general, we can

talk about the continuum from direct representations (where genotypes are similar

to phenotypes) to indirect representations (where genotypes are much smaller than

phenotypes). Indirect representations yield less control and potentially sparser cov-

erage of content space, but often cope better with the curse of dimensionality. There

are three types of evaluation functions: direct, simulation-based and interactive. Di-

rect evaluation functions are fast, simulation-based evaluation functions require an

AI to play through part of the game and interactive evaluation functions require a

human in the loop. Search-based PCG is currently very popular in academia and

there are multiple published studies; a few complete games have been released in-

corporating this approach to PCG.

2 The search-based approach (DRAFT) 29

References

1. Blizzard Entertainment, Mass Media: (1998). StarCraft, Blizzard Entertainment and Nintendo

2. Boden, M.A.: The creative mind: Myths and mechanisms. Psychology Press (2004)

3. Browne, C., Maire, F.: Evolutionary game design. IEEE Transactions on Computational In-

telligence and AI in Games, (1), 1–16 (2010)

4. Cardamone, L., Loiacono, D., Lanzi, P.L.: Interactive evolution for the procedural generation

of tracks in a high-end racing game. In: Proceedings of the 13th annual conference on Genetic

and evolutionary computation, pp. 395–402. ACM (2011)

5. Cardamone, L., Yannakakis, G.N., Togelius, J., Lanzi, P.: Evolving interesting maps for a first

person shooter. Applications of Evolutionary Computation pp. 63–72 (2011)

6. Csikszentmihalyi, M.: Flow: The Psychology of Optimal Experience. Harper Perennial (1991)

7. Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast and elitist multiobjective genetic algo-

rithm: Nsga-ii. Evolutionary Computation, IEEE Transactions on 6(2), 182–197 (2002)

8. Eiben, A.E., Smith, J.E.: Introduction to Evolutionary Computing. Springer (2003)

9. Hansen, N., Ostermeier, A.: Completely derandomized self-adaptation in evolution strategies.

Evolutionary computation 9(2), 159–195 (2001)

10. Hastings, E.J., Guha, R., Stanley, K.: Evolving content in the galactic arms race video game.

In: Proceedings of the 5th international conference on Computational Intelligence and Games,

pp. 241–248. IEEE (2009)

11. Koster, R.: A theory of fun for game design. Paraglyph press (2004)

12. Mahlmann, T., Togelius, J., Yannakakis, G.N.: Modelling and evaluation of complex scenar-

ios with the strategy game description language. In: Computational Intelligence and Games

(CIG), 2011 IEEE Conference on, pp. 174–181. IEEE (2011)

13. Martinez, H., Yannakakis, G.N.: Mining multimodal sequential patterns: A case study on af-

fect detection. In: Proceedings of the 13th International Conference in Multimodal Interaction.

ACM (2011)

14. Nintendo Creative Department: (1985). Super Mario Bros, Nintendo

15. O’Neill, M., Ryan, C.: Grammatical evolution. IEEE Transactions on Evolutionary Computa-

tion (4), 349–358 (2001)

16. PCG Wiki: Procedural content generation wiki. URL http://pcg.wikidot.com/

17. Persson, M.: Infinite mario bros. URL http://www.mojang.com/notch/mario/

18. Poli, R., Langdon, W.W.B., McPhee, N.F., Koza, J.R.: A field guide to genetic programming.

Lulu. com (2008)

19. Shaker, N., Nicolau, M., Yannakakis, G.N., Togelius, J., ONeill, M.: Evolving levels for super

mario bros using grammatical evolution. In: Proceedings of the IEEE Conference on Compu-

tational Intelligence and Games (CIG), pp. 304–311 (2012)

20. Shaker, N., Togelius, J., Yannakakis, G.N.: Towards automatic personalized content generation

for platform games. In: Proceedings of the AAAI Conference on Artificial Intelligence and

Interactive Digital Entertainment (AIIDE) (2010)

21. Shaker, N., Yannakakis, G.N., Togelius, J., Nicolau, M., ONeill, M.: Fusing visual and behav-

ioral cues for modeling user experience in games. IEEE Transactions on System Man and

Cybernetics; Part B: Special Issue on Modern Control for Computer Games pp. 1519–1531

(2012)

22. Sorenson, N., Pasquier, P.: The evolution of fun: Automatic level design through challenge

modeling. In: Proceedings of the First International Conference on Computational Creativity

(ICCCX). Lisbon, Portugal: ACM, pp. 258–267 (2010)

23. Sorenson, N., Pasquier, P., DiPaola, S.: A generic approach to challenge modeling for the

procedural creation of video game levels. IEEE Transactions on Computational Intelligence

and AI in Games (3), 229–244 (2011)

24. Togelius, J., De Nardi, R., Lucas, S.: Towards automatic personalised content creation for

racing games. In: IEEE Symposium on Computational Intelligence and Games, 2007. CIG

2007, pp. 252–259. IEEE (2007)

30 Julian Togelius and Noor Shaker

25. Togelius, J., Nardi, R.D., Lucas, S.M.: Making racing fun through player modeling and track

evolution. In: Proceedings of the SAB’06 Workshop on Adaptive Approaches for Optimizing

Player Satisfaction in Computer and Physical Games (2006)

26. Togelius, J., Preuss, M., Beume, N., Wessing, S., Hagelbäck, J., Yannakakis, G.N.: Multiob-

jective exploration of the starcraft map space. In: Proceedings of the IEEE Conference on

Computational Intelligence and Games (CIG), pp. 265–272. Citeseer (2010)

27. Togelius, J., Preuss, M., Beume, N., Wessing, S., Hagelbäck, J., Yannakakis, G.N., Grappiolo,

C.: Controllable procedural map generation via multiobjective evolution. Genetic Program-

ming and Evolvable Machines pp. 1–33 (2013)

28. Togelius, J., Yannakakis, G.N., Stanley, K.O., Browne, C.: Search-based procedural content

generation. In: Proceedings of EvoApplications. Springer LNCS (2010)

29. Woodbury, R.F.: Searching for designs: paradigm and practice. Building and Environment

26(1), 61–73 (1991)

30. Yannakakis, G.N., Hallam, J.: Entertainment modeling in physical play through physiology

beyond heart-rate. Affective Computing and Intelligent Interaction pp. 254–265 (2007)

Chapter 3

Constructive generation methods for dungeons

and levels (DRAFT)

Noor Shaker, Antonios Liapis, Julian Togelius, Ricardo Lopes, and Rafael Bidarra

A dungeon, in the real world, is a cold, dark and dreadful place where prisoners

are kept. A dungeon, in a computer game, is a labyrinthine environment where ad-

venturers enter at one point, collect treasures, evade or slay monsters, rescue noble

people, fall into traps and ultimately exit at another point. This conception of dun-

geons probably originated with the roleplaying board game Dungeons and Drag-

ons, and has been a key feature of almost every computer role playing game (RPG),

including genre-defining games such as the Legend of Zelda series and the Final

Fantasy series, and recent megahits such as The Elder Scrolls V: Skyrim. Of par-

ticular note is the “roguelike” genre of games which, following the original Rogue

from 1980, features procedural runtime dungeon generation; the Diablo series is a

high-profile series of games in this tradition. Because of this close relationship with

such successful games, and also due to the unique control challenges in their design,

dungeons are a particularly active and attractive PCG subject.

For the purposes of this chapter, we define adventure and RPG dungeon levels

as labyrinthic environments, consisting mostly of inter-related challenges, rewards

and puzzles, tightly paced in time and space to offer highly structured gameplay

progressions [13]. An aspect which sets dungeons apart from other types of levels

is a sophisticated notion of gameplay pacing and progression: although dungeon

levels are open for free player exploration (more than e.g. platform levels), this

exploration has a tight bond with the progression of challenges, rewards and puz-

zles, as intended by game designers. In contrast with e.g. platform levels or race

tracks, dungeon levels encourage free exploration while keeping strict control over

gameplay experience, progression and pacing (unlike open worlds, where the player

is more independent). For example, players may freely choose their own dungeon

path among different possible ones, but never encounter challenges that are impos-

sible for their current skill level (since the space to back track is not as open as, for

example, a sandbox city). Designing dungeons is thus a sophisticated exercise of

emerging a complex game space from predetermined desired gameplay, rather than

the other way around.

31

32 Noor Shaker, Antonios Liapis, Julian Togelius, Ricardo Lopes, and Rafael Bidarra

In most adventure games and RPGs, dungeons structurally consist of several

rooms connected by hallways. While originally the term ‘dungeon’ refers to a

labyrinth of prison cells, in games it may also refer to caves, caverns, or human-

made structures. Beyond geometry and topology, dungeons include non-player-

characters (e.g. monsters to slay, princesses to save), decorations (typically fantasy-

based) and objects (e.g. treasures to loot).

Procedural generation of dungeons refers to the generation of the topology, ge-

ometry and gameplay-related objects of this type of levels. A typical dungeon gen-

eration method consists of three elements:

1. A representational model: an abstract, simplified representation of a dungeon,

providing a simple overview of the final dungeon structure.

2. A method for constructing that representational model.

3. A method for creating the actual geometry of a dungeon from its representational

model.

Above, we distinguished dungeons from platform levels. However, there are also

clear similarities between these two types of game level. Platform game levels were

made famous by classic games such as Super Mario Bros, Sonic, the Hedgehog,

and their countless clones and near-clones, as well as by other games that have

drawn inspiration from them; a modern-day example of a game in this tradition that

features procedural level generation is Spelunky, discussed in the first chapter. Like

dungeons, platform game levels typically feature free space, walls, treasures or other

collectables, enemies and traps. However, in the game mechanics of platformers, the

player agent is typically constrained by gravity: the agent can move left or right and

fall down, but can typically only jump a small distance upwards. As a result, the

interplay of platforms and gaps is an essential element in the vocabulary of platform

game levels.

In this chapter, we will study a variety of methods for procedurally creating dun-

geons and platform game levels. Although these methods may be very disparate,

they have one feature in common: they are all constructive, producing only one out-

put instance per run, in contrast with e.g. search-based methods. They also have

in common that they are fast; some were even successful in creating levels at run-

time. In general, these methods provide (rather) limited control over the output and

its properties.The degree of control provided is nowadays a very important charac-

teristic of any procedural method. With ‘control’ we mean the set of options that a

designer (or programmer) has in order to purposefully steer the level generation pro-

cess, as well as the amount of effort that steering takes. Control also determines to

which extent editing those options and parameters causes sensible output changes,

i.e. the intuitive responsiveness of a generator. Proper control assures that a genera-

tor creates consistent results (e.g. playable levels), while maintaining both the set of

desired properties and variability.

As PCG methods grow in complexity, and different PCG methods are combined

to form more complex generation processes, meaningful parameters have been de-

veloped to help generate content towards a specific output. As a result, PCG control

is evolving towards more natural and high-level interaction between designer and

3 Constructive generation methods for dungeons and levels (DRAFT) 33

machine, with the use of techniques like declarative modeling [29, 10], controllable

agents [5] and gameplay-based control [14].

We will discuss several families of procedural techniques. For simplicity, each

of these technique will be presented in the context of a single content type, either

dungeons or platform game levels. The first family of algorithms to be discussed

in this chapter is space partitioning. Two different examples of how dungeons can

be generated by space partitioning are given; the core idea is to recursively divide

the available space in pieces and then connect them to form the dungeon. This is

followed by a discussion on agent-based methods for generating dungeons, with the

core idea that agents dig paths into a primeval mass of matter. The next family of al-

gorithms to be introduced is cellular automata, which turn out to be a simple and fast

means of generating structures such as cave-like dungeons. Generative grammars,

yet another family of procedural methods, are discussed next, as they can naturally

capture higher-level dungeon design aspects. We then turn our attention into sev-

eral methods that were developed for generating platform levels, some of which are

applicable to dungeons as well. The chapter ends with a discussion of the platform

level generation methods implemented in the commercial game Spelunky and the

open-source framework Infinite Mario Bros, and its recent offshoot InfiTux. The lab

exercise will have you implementing at least one method from the chapter using the

InfiTux API.

3.1 Space partitioning for dungeon generation

True to its name, a space partitioning algorithm yields a space partition, i.e. a subdi-

vision of a 2D or 3D space into disjoint subsets, so that any point in the space lies in

exactly one of these subsets (also called cells). Space partitioning algorithms often

operate hierarchically: each cell in a space partition is further subdivided by apply-

ing the same algorithm recursively. This allows space partitions to be arranged in a

so-called space partitioning tree. Furthermore, such a tree data structure allows for

fast geometric queries regarding any point within the space; this makes space par-

titioning trees particularly important for computer graphics, enabling, for example,

efficient raycasting, frustum culling and collision detection.

The most popular method for space partitioning is binary space partitioning

(BSP), which recursively divides a space into two subsets. Through binary space

partitioning, the space can be represented as a binary tree, called a BSP tree. Differ-

ent variants of BSP choose different splitting hyperplanes based on some specific

rules. Such algorithms include quadtrees and octrees: a quadtree partitions a two-

dimensional space into four quadrants and an octree partitions a three-dimensional

space into eight octants. We will be using quadtrees on two-dimensional images as

the simplest example, although the same principles apply for octrees, on 3D space,

and for other types of stored data. While a quadtree’s quadrants can have any rect-

angular shape, they are usually equal-sized squares. A quadtree with a depth of n

can represent any binary image of 2n by 2n pixels, although the total number of tree

34 Noor Shaker, Antonios Liapis, Julian Togelius, Ricardo Lopes, and Rafael Bidarra

(a) Image and partition (b) Quadtree

Fig. 3.1: An example quadtree partition of a binary image (0 shown as red, 1 as

black). Large areas of a single colour, such as those on the right edge of the image,

are not further partitioned. The image is 16 by 16 pixels, so the quadtree has a

depth of 4. While a fully expanded quadtree (with leaf nodes containing information

about a single pixel) would have 256 leaf nodes, the large areas of a single colour

result in a quadtree with 94 leaf nodes. The first layers of the tree are shown in (b):

the root node contains the entire image, with the four children ordered as: top left

quadrant, top right quadrant, bottom left quadrant, bottom right quadrant (although

other orderings are possible).

nodes (and its depth) depend on the structure of the image. The root node repre-

sents the entire image, and its four children represent the top left, top right, bottom

left and bottom right quadrants of the image. If the pixels within any quadrant have

different colors, that quadrant is subdivided; the process is applied recursively until

each leaf quadrant (regardless of size) contains only pixels of the same color (see

Figure 3.1).

When space partitioning algorithms are used in 2D or 3D graphics, their purpose

is typically to represent existing elements such as polygons or pixels rather than

create new ones. However, the principle that space partitioning results in disjoint

subsets with no overlapping areas is particularly suitable for creating rooms in a

dungeon or, in general, distinct areas in a game level. Dungeon generation via BSP

follows a macro approach, where the algorithm acts as an all-seeing dungeon ar-

chitect rather than a ‘blind’ digger as is often the case with agent-based approaches

presented in Section 3.2. The entire dungeon area is represented by the root node of

the BSP tree and is partitioned recursively until a terminating condition is met (such

as a minimum size for rooms). The BSP algorithm guarantees that no two rooms

will be overlapping, and allows for a very ‘structured’ appearance of the dungeon.

How closely the generative algorithms follow the principles of ‘traditional’ par-

titioning algorithms affects the appearance of the dungeon created. For instance, a

dungeon can be created from a quadtree by selecting quadrants at random and split-

ting them; once complete, each quadrant can be assigned a value of 0 (empty) or

1 (room), taking care that all rooms are connected. This creates very symmetric,

‘square’ dungeons such as those seen in Figure 3.2a. Furthermore, the principle that

a leaf quadrant must consist of a uniform element (or of same colour pixels, in the

case of images) can be relaxed for the purposes of dungeon generation; if each leaf

quadrant contains a single room but can also have empty areas allows for rooms of

3 Constructive generation methods for dungeons and levels (DRAFT) 35

(a) (b)

Fig. 3.2: In (a) is a dungeon created using a quadtree, with each cell consisting

entirely of empty space (black) or rooms (white). In (b), a dungeon created using a

quadtree, but with each quadrant containing a single room (placed stochastically) as

well as empty space; corridors are added after the partitioning process is complete.

different sizes, as long as their dimensions are smaller than the quadrant’s bounds.

These rooms can then be connected with each other, using random or rule-based

processes, without taking the quadtree into account at all. Even with this added

stochasticity, dungeons are still likely to be very neatly ordered (see Figure 3.2b).

We now describe an even more stochastic approach loosely based on BSP tech-

niques. We consider an area for our dungeon, of width w and height h, stored in the

root node of a BSP tree. Space can be partitioned along vertical or horizontal lines,

and the resulting partition cells do not need to be of equal size. While generating the

tree, in every iteration a leaf node is chosen at random and split along a randomly

chosen vertical or horizontal line. A leaf node is not split any further if it is below a

minimum size (we will consider a minimal width of w/4 and minimal height of h/4

for this example). In the end, each partition cell contains a single room; the corners

of each room are chosen stochastically so that the room lies within the partition and

has an acceptable size (i.e. is not too small). Once the tree is generated, corridors are

generated by connecting children of the same parent with each other. Below is the

high-level pseudo-code of the generative algorithm, and Figure 3.3 and 3.4 shows

the process of generating a sample dungeon.

1: start with the entire dungeon area (root node of the BSP tree)

2: divide the area along a horizontal or vertical line

3: select one of the two new partition cells

4: if this cell is bigger than the minimal acceptable size:

5: go to step 2 (using this cell as the area to be divided)

6: select the other partition cell, and go to step 4

7: for every partition cell:

8: create a room within the cell by randomly

choosing two points (top left and bottom right)

within its boundaries

9: starting from the lowest layers, draw corridors to connect

rooms in the nodes of the BSP tree with children of the same

parent

10:repeat 9 until the children of the root node are connected

36 Noor Shaker, Antonios Liapis, Julian Togelius, Ricardo Lopes, and Rafael Bidarra

(a) (b)

(c) (d)

(e) (f)

(g)

Fig. 3.3: Stochastically partitioning the dungeon area A, which is contained in the

root node of the BSP tree. Initially the space is split into B and C via a vertical

line (its x-coordinate is determined randomly). The smaller area B is split further

with a vertical line into D and E; both D and E are too small to be split (in terms

of width) so they remain leaf nodes. The larger area C is split along a horizontal

line into F and G, and areas F and G (which have sufficient size to be split) are split

along a vertical and a horizontal line respectively. At this point, the partition cells

of G (J and K) are too small to be split further, and so is partition cell I of F. Cell

H is still large enough to be split, and is split along a horizontal line into L and M.

At this point all partitions are too small to be split further and dungeon partitioning

is terminated with 7 leaf nodes on the BSP tree. Figure 3.4 demonstrates room and

corridor placement for this dungeon.

While binary space partitioning was here primarily used to create non-overlapping

rooms, it should be noted that the hierarchy of the BSP tree can be used for other as-

pects of dungeon generation as well. The previous example of Figure 3.4 has demon-

strated how room connectivity can be determined by the BSP tree: using corridors

3 Constructive generation methods for dungeons and levels (DRAFT) 37

(a) (b)

(c) (d)

(e) (f)

Fig. 3.4: Room and corridor placement in the partitioned dungeon of Figure 3.3. For

each leaf node in the BSP tree, a room is placed by randomly choosing coordinates

for top left and bottom right corners, within the boundaries of the partition cell (1st

image). Then a corridor is added to connect the leaf nodes of the lowest layer of the

tree (L and M); for all purposes, the algorithm will now consider rooms L and M

as joined, grouping them together as their parent H. Moving up on the tree, H (the

grouping of rooms L and M) is joined via a corridor with room I and rooms J and K

ar joined via a corridor into their parent G. Further up, rooms D and E of the same

parent are joined together via a corridor, and the grouping of rooms L, M and I are

joined with the grouping of rooms J and K. Finally, the two subtrees of the root node

are joined together and the dungeon is fully connected.

to connect rooms belonging to the same parent reduces the chances of overlapping

or intersecting corridors. Moreover, non-leaf partition cells can be used to define

groups of rooms following the same theme; for instance, a section of the dungeon

may contain higher-level monsters, or monsters that are more vulnerable to magic.

Coupled with corridor connectivity based on BSP tree hierarchy, these groups of

rooms may have a single entrance from the rest of the dungeon; this allows such a

room to be decorated as a prison or as an area with dimmer light, favoring players

who excel at stealthy gameplay. Some examples of themed dungeon partitions are

shown in Figure 3.5.

38 Noor Shaker, Antonios Liapis, Julian Togelius, Ricardo Lopes, and Rafael Bidarra

Fig. 3.5: The example dungeon from Figure 3.4, using the partitions to ‘theme’

the room contents. Partition cells B and C are only connected by a single corridor;

this allows the rooms of partition B to be locked away (green lock), requiring a key

from cell C in order to be accessed (room L). Similarly, rooms of cell B contain only

treasures and rewards, while rooms of partition C contain predominantly monsters.

Moreover, the challenge rating of monsters in cell C is split between its child nodes:

partition G contains weak goblins while cell F contains challenging monsters with

magical powers. Further enhancements could increase the challenge of cell G by

making it darker (placing fewer light sources), using different textures for the floor

and walls of cell B, or changing the shape of rooms in cell C to circular.

3.2 Agent-based dungeon growing

Agent-based approaches for dungeon generation usually amount to using a single

agent to dig tunnels and create rooms in a sequence. Contrary to the space parti-

tioning approaches of Section 3.1, an agent-based approach such as this follows a

micro approach and is more likely to create an organic and perhaps chaotic dun-

geon instead of the neatly organised dungeons of Section 3.1. The appearance of

the dungeon largely depends on the behaviour of the agent: an agent with a high de-

gree of stochasticity will result in very chaotic dungeons while an agent with some

“look-ahead” may avoid intersecting corridors or rooms. It should be noted that the

impact of the AI behaviour’s parameters on the generated dungeons’ appearance is

difficult to guess without extensive trial-and-error; as such, agent-based approaches

are much more unpredictable than space partitioning methods. Moreover, there is no

3 Constructive generation methods for dungeons and levels (DRAFT) 39

guarantee that an agent-based approach will create a dungeon without rooms over-

lapping with each other or a dungeon which spans only a corner of the dungeon area

rather than its entirety. The following paragraphs will demonstrate two agent-based

approaches for generating dungeons.

There is an infinite amount of AI behaviours for digger agents when creating

dungeons, and they can result in vastly different results. As an example, we will first

consider a highly stochastic, ‘blind’ method. The agent is considered to start at some

point of the dungeon, and a random direction is chosen (up, down, left or right). The

agent starts digging in that direction, and every dungeon tile dug is replaced with

a ‘corridor’ tile. After making the first ‘dig’, there is a 5% chance that the agent

will change direction (choosing a new, random direction) and another 5% chance

that the agent will place a room of random size (in this example, between 3 and 7

tiles wide and long). For every tile that the agent moves in the same direction as the

previous one, the chance of changing direction increases by 5%. For every tile that

the agent moves without a room being added, the chance of adding a room increases

by 5%. When the agent changes direction, the chance of changing direction again is

reduced to 0%. When the agent adds a room, the chance of adding a room again is

reduced to 0%. Figure 3.6 shows an example run of the algorithm, and below is the

pseudo-code for running this algorithm.

1: initialize chance of changing direction Pc=5

2: initialize chance of adding room Pr=5

3: place the digger at a dungeon tile and randomize its direction

4: dig along that direction

5: roll a random number Nc between 0 and 100

6: if Nc below Pc:

7: randomize the agent’s direction

8: set Pc=0

9: else:

10: set Pc=Pc+5

11:roll a random number Nr between 0 and 100

12:if Nr below Pr:

13: randomize room width and room height between 3 and 7

14: place room around current agent position

14: set Pr=0

15:else:

16: set Pr=Pr+5

17:if the dungeon is not large enough:

18: go to step 4

In order to avoid the lack of control of the previous stochastic approach, which

can result in overlapping rooms and dead-end corridors, the agent can be a bit more

informed about the overall appearance of the dungeon and ‘look ahead’ whether

the addition of a room would result in room-room or room-corridor intersections.

Moreover, the change of direction does not need to be rolled in every step, to avoid

winding pathways.

We will consider a less stochastic agent with ‘look ahead’ as a second example.

Like above, the agent starts at a random point in the dungeon. The agent checks

whether adding a room in the current position will cause it to intersect existing

40 Noor Shaker, Antonios Liapis, Julian Togelius, Ricardo Lopes, and Rafael Bidarra

(a)

(b)

Fig. 3.6: A short run of the stochastic, ‘blind’ digger. The digger starts at a random

tile on the map (1st image), and starts digging downwards. After digging 5 tiles

(3rd image), the chance of adding a room is 25%, and it is rolled, resulting in the

4th image. The agent continues moving downwards (4th image) with the chance of

adding a room at 5% and the chance of changing direction at 30%: it is rolled, and

the new direction is right (6th image). After moving another 5 tiles (7th image), the

chance of adding a room is at 30% and the chance of changing direction is at 25%.

A change of direction is rolled, and the agent starts moving left (8th image). After

another tile dug (9th image), the chance of adding a room is 40% and it is rolled,

causing a new room to be added (10th image). Already from this very short run, the

agent has created a dead-end corridor and two overlapping rooms.

rooms. If all possible rooms result in intersections, the agent picks a direction and

a digging distance that will not result in the potential corridor intersecting with ex-

isting rooms or corridors. The algorithm stops if the agent stops at a location where

no room and no corridor can be added without causing intersections. Figure 3.7

shows an example run of the algorithm, and below is the pseudo-code for running

this algorithm.

1: place the digger at a dungeon tile

2: set helper variables Fr=0 and Fc=0

3: for all possible room sizes:

3: if a potential room will not intersect existing rooms:

4: place the room

5: Fr=1

6: break from for loop

7: for all possible corridors of any direction and length 3 to 7:

8: if a potential corridor will not intersect existing rooms:

9: place the corridor

10: Fc=1

11: break from for loop

12:if Fr=1 or Fc=1:

13: go to 2

It should be noted that the examples provided with the ‘blind’ and ‘look ahead’

digger agents show naive, simple approaches; Figures 3.6 and 3.7 show to a large

degree ‘worst-case scenarios’ of the algorithm being run, with resulting dungeons

3 Constructive generation methods for dungeons and levels (DRAFT) 41

(a)

(b)

Fig. 3.7: A short run of the informed, “look ahead” digger. The digger starts at a

random tile on the map (1st image), and places a room (2nd image) and a corridor

(3rd image) since there can’t be any overlaps in the empty dungeon. After placing

the first corridor, there is no space for a room (provided rooms must be at least 3 by

3 tiles) which doesn’t overlap with the previous room, so the digger makes another

corridor going down (4th image). At this point, there is space for a small room which

doesn’t overlap (5th image) and the digger carries on placing corridors (6th image

and 8th image) and rooms (7th image and 9th image) in succession. After the 9th

image, the digger can’t add a room or a corridor that doesn’t intersect with existing

rooms and corridors, so generation is halted despite a large part of the dungeon area

being empty.

being either overlapping or prematurely terminated. While simpler or more complex

code additions to the provided digger behaviour can avert many of these problems,

the fact still remains that it is difficult to anticipate such problems without running

the agent’s algorithm on extensive trials. This may be a desirable attribute, as the

uncontrollability of the algorithm may result in organic, realistic caves (simulating

human miners trying to tunnel their way towards a gold vein) and reduce the dun-

geon’s predictability to a player, but may also result in maps that are unplayable or

unentertaining. Moreso than most approaches presented in this chapter, the digger

agent’s parameters can have a very strong impact on the playability and entertain-

ment value of the generated artefact and tweaking such parameters to best effect is

not a straightforward or easy task.

3.3 Cellular automata

A cellular automaton (plural: cellular automata) is a discrete computational model.

Cellular automata are widely studied in computer science, physics and even some

branches of biology, as models of computation, growth, development, physical phe-

nomena, etc. While cellular automata have been the subject of many publications,

the basic concepts are actually very simple and can be explained in a few paragraphs

and a picture or two.

42 Noor Shaker, Antonios Liapis, Julian Togelius, Ricardo Lopes, and Rafael Bidarra

(a) Moore neighborhood (b) von Neumann neighbourhood

Fig. 3.8: Two types of neighbourhoods for cellular automata. Adapted from

wikipedia

A cellular automaton consists of an n-dimensional grid, a set of states and a set

of transition rule. Most cellular automata are either 1-dimensional (vectors) or 2-

dimensional (matrices). Each cell can be in one of several states; in the simplest

case, cells can be on or off. The distribution of cell states at the beginning of an

experiment (at time t0) is the initial state of the cellular automaton. From then on, the

automaton evolves in discrete steps based on the rules of that particular automaton.

At each time t, each cell decides its new state based on the state of itself and all of

the cells in its neighbourhood at time t −1.

The neighbourhood defines which cells around a particular cell c affects c’s future

state. For one-dimensional cellular automata, the neighbourhood is defined by its

size, i.e. how many cells to the left or right the neighbourhood stretches. For two-

dimensional automata, the two most common types of neighbourhoods are Moore

neighbourhoods and von Neumann neighbourhoods. Both neighbourhoods can have

a size of any whole number, one or greater. A Moore neighbourhood is a square: a

Moore neighbourhood of size 1 consists of the eight cells immediately surrounding

c, including those surrounding it diagonally. A von Neumann neighbourhood is like

a cross centred on c: a von Neumann neighbourhood of size 1 consists of the four

cells surrounding c above, below, to the left and to the right (see Figure 3.8).

The number of possible configurations of the neighbourhood equals the num-

ber of states for a cell to the power of the number of cells in the neighbourhood.

These numbers can quickly become huge, for example a two-state automaton with

a Moore neighbourhood of size two has 225 = 33554432 configurations. For small

neighbourhoods, it is common to define the transition rules as a table, where each

possible configuration of the neighbourhood is associated with one future state, but

for large neighbourhoods the transition rules are usually based on the proportion of

cells that are in each state.

3 Constructive generation methods for dungeons and levels (DRAFT) 43

Cellular automata are very versatile, and several types have been shown to be

Turing complete. It has even been argued that they could form the basis for a new

way of understanding nature through bottom-up modelling [35]. However, in this

chapter we will mostly concern ourselves with how they can be used for procedural

content generation.

In a paper from 2010, Johnson et al. describe a system for generating infinite

cave-like dungeons using cellular automata [7]. The motivation was to create an

infinite cave crawling game, with environments stretching out endlessly and seam-

lessly in every direction. An additional design constraint is that the caves are sup-

posed to look organic or eroded, rather than having straight edges and angles. No

storage medium is large enough to store a truly endless cave, so the content must

be generated at runtime, as players choose to explore new areas. The game does not

scroll but instead presents the environment one screen at a time, which offers a time

window of a few hundred milliseconds to create a new room every time the player

exits a room.

This method uses the following four parameters to control the map generation

process:

• A percentage of rock cells (inaccessible area);

• The number of cellular automata generations;

• A neighbourhood threshold value that defines a rock (T=5);

• The number of neighbourhood cells.

Each room is a 50x50 grid, where each cell can be in one of two states: empty or

rock. Initially, the grid is empty. The generation of a single room works as follows.

• The grid is “sprinkled” with rocks: for each cell, there is probability r (e.g. 0.5)

that it is turned into rock. This results in a relatively uniform distribution of rock

cells.

• A cellular automaton is applied to the grid for n (e.g. 2) steps. The single rule of

this cellular automaton is that a cell turns into rock in the next time step if at least

T (e.g. 5) of its neighbours are rock, otherwise it will turn into free space.

• For aesthetic reasons the rock cells that border on empty space are designated as

“wall” cells, which are functionally rock cells but look different.

This simple procedure generates a surprisingly lifelike cave-room. Figure 3.9

shows a comparison between a random map (sprinkled with rocks) and the results

of a few iterations of the cellular automaton.

But while this generates a single room, the game requires a number of connected

rooms. A generated room might not have any openings in the confining rocks at all,

and there is certainly no guarantee that any exits align with entrances to the adjacent

rooms at all. Therefore, whenever a room is generated, its immediate neighbours

are also generated. If there is no connection between the largest empty spaces in the

two rooms, a tunnel is drilled between those areas at the point where they are least

separated. Two more iterations of the cellular automaton are then run on all nine

neighbouring rooms together, to smooth out any sharp edges. Figure 3.10 shows

the result of this process, in the form of nine rooms that seamlessly connect. This

44 Noor Shaker, Antonios Liapis, Julian Togelius, Ricardo Lopes, and Rafael Bidarra

(a) Random map (b) CA map

Fig. 3.9: Cave generation: Comparison between a CA and a randomly generated

map (r = 0.5 in both maps); CA parameters: n = 4, M = 1, T = 5. Rock and wall

cells are represented by red and white colour respectively. Coloured areas represent

different tunnels (floor clusters). Adapted from [7]

generation process is extremely fast, and can generate all nine rooms in less than a

millisecond on a modern computer.

Fig. 3.10: Cave generation: a 3× 3 base grid map generated with CA. Rock and

wall cells are represented by red and white colour respectively. Grey areas represent

floor. (M = 2;T = 13;n = 4;r = 50%). Adapted from [7]

We can conclude that the small number of parameters, and the fact that they are

relatively intuitive, is an asset of cellular automata approaches like Johnson et al.’s.

However, this is also one of the downsides of the method: for both designers and

programmers, it is not easy to fully understand the impact that a single parameter

has on the generation process, since each parameter affects multiple features of the

3 Constructive generation methods for dungeons and levels (DRAFT) 45

generated maps. It is not possible to create a map that has specific requirements, like

a given number of rooms with a certain connectivity. Therefore, gameplay features

are somewhat disjoint from these control parameters. Any link between this gener-

ation method and gameplay features would have to be carried out through a process

of trial and error.

3.4 Grammar-based dungeon generation

Generative grammars were originally developed to formally describe structures in

natural language. These structures—phrases, sentences, etc.—are modeled by a fi-

nite set of recursive rules that describe how larger-scale structures are built from

smaller-scale ones, grounding out in individual words as the terminal symbols. They

are generative because they describe linguistic structures in a way that also describes

how to generate them: we can sample from a generative grammar to produce new

sentences featuring the structures it describes. Similar techniques can be applied to

other domains. For example, graph grammars [20] model the structure of graphs

using a similar set of recursive rules, with individual graph nodes as the terminal

symbols.

Back to our topic of dungeon generation, Adams [1] uses graph grammars to gen-

erate first-person shooter (FPS) levels. FPS levels may not obviously be the same as

dungeons, but for our purposes his levels qualify as dungeons, because they share the

same structure, a maze of interconnected rooms. He uses the rules of a graph gram-

mar to generate a graph that describes a level’s topology: nodes represent rooms,

and an edge between two rooms means that they are adjacent. The method doesn’t

itself generate any further geometric details, such as room sizes. An advantage of

this high-level, topological representation of a level is that graph generation can

be controlled through parameters such as difficulty, fun, and global size. A search

algorithm looks for levels that match input parameters by analyzing all results of

a production rule at a given moment, and selecting the rule that best matches the

specified targets.

One limit of Adams’ work is the ad-hoc and hard-coded nature of its grammar

rules, and especially the parameters. It is a sound approach for generating the topo-

logical description of a dungeon, but generalizing it to a broader set of games and

goals would require creating new input parameters and rules each time. Regardless,

Adams’ results showcase the motivation and importance of controlling dungeon

generation through gameplay.

Dormans’ work [6] is more extensively covered in Chapter 5, so we will only

briefly refer here to his use of generative grammars to generate dungeon spaces for

adventure games. Through a graph grammar, missions are first generated in the form

of a directed graph, as a model of the sequential tasks that a player needs to perform.

Subsequently, each mission is abstracted to a network of nodes and edges, which is

then used by a shape grammar to generate a corresponding game space.

46 Noor Shaker, Antonios Liapis, Julian Togelius, Ricardo Lopes, and Rafael Bidarra

This was the first method to succesfully introduce gameplay-based control, most

notably with the concept of a mission grammar. Still, the method does not offer

real control parameters, since control is actually exerted by the different rules in the

graph and shape grammars, which are far from intuitive for most designers.

Explicitly inspired by the work of Dormans, van der Linden et al. [12] recently

proposed the use of gameplay grammars to generate dungeon levels. Game design-

ers specify, a priori, design constraints expressed in a gameplay-oriented vocabu-

lary, consisting of player actions to perform in-game, their sequencing and composi-

tion, inter-relationships and associated content. These designer-authored constraints

directly result in a generative graph grammar, a so-called gameplay grammar, and

multiple grammars can be expressed through different sets of constraints. A gram-

mar generates graphs of player actions, which subsequently determine layouts for

dungeon levels. For each generated graph, specific content is synthesized by fol-

lowing the graph’s constraints. Several proposed algorithms map the graph into the

required game space and a second procedural method generates geometry for the

rooms and hallways, as required by the graph.

This approach aims at improving gameplay-based control on a generic basis, as

it provides designers with the tools to effectively create, from scratch, grammar-

based generators of graphs of player actions. The approach is generic, in the sense

that such tools are not connected to any domain, and player actions and related de-

sign constraints can be created and manipulated across different games. However,

integration of graphs of player actions in an actual game requires a specialized gen-

erator, able to transform such a graph into a specific dungeon level for that game.

van der Linden et al. demonstrated such a specialized generator for only one case

study, yielding fully-playable 3D dungeon levels for the game Dwarf Quest [34].

Figure 3.11 show (a) a gameplay graph and (b) a dungeon generated from this

method.

As for gameplay-based control, this approach empowers designers to specify and

control dungeon generation with a more natural design-oriented vocabulary. Design-

ers can create their own player actions and use them as the vocabulary to control and

author the dungeon generator. For this, they specify the desired gameplay which

then constrains game-space creation. Furthermore, designers can express their own

parameters (e.g. difficulty) which control rule rewriting in the gameplay grammar.

Setting such gameplay-based parameters allows for an even more fine-grained con-

trol over generated dungeons.

3.5 Advanced platform generation methods

In this section, we turn our attention to platform generation methods, by discussing

two recent methods that were originally proposed for generating platform levels.

Unlike the previous sections, there is no single category or family to characterize

these methods. Interestingly, as we will point out, the central concepts of each of

them could very well contribute to improve the generation of dungeons as well.

3 Constructive generation methods for dungeons and levels (DRAFT) 47

(a)

(b)

Fig. 3.11: (a) A gameplay graph created by van der Linden et al. [11] and (b) a

corresponding dungeon layout generated for it.

The first method, proposed by Smith et al. [30], is rhythm-base platform gener-

ation. It proposes level generation based on the notion of rhythm, linked to the tim-

ing and repetition of user actions. They first generate small pieces of a level, called

rhythm groups, using a two-layered grammar-based approach. In the first layer, a

set of player actions is created, after which this set of actions is converted into cor-

responding geometry. Many levels are created by connecting rhythm groups, and a

set of implemented critics selects the best level.

Smith et al. propose a set of ‘knobs’ that a designer can manipulate to control the

generation process, including (i) a general path through the level (i.e. start, end, and

intermediate line segments), (ii) the kinds of rhythms to be generated, (iii) the types

and frequencies of geometry components, and (iv) the way collectables (coins) are

divided over the level (e.g. coins per group, probability for coins above gaps, etc.).

There are also some parameters per created rhythm group, such as the frequency of

jumps per rhythm group, and how often specific geometry (springs) should occur for

a jump. Anorher set of parameters provides control over the rhythm length, density,

beat type, and beat pattern.

Overall, the large amount of parameters at different levels of abstraction provides

many control options, and allows for the versatile generation of very disparate levels.

48 Noor Shaker, Antonios Liapis, Julian Togelius, Ricardo Lopes, and Rafael Bidarra

Furthermore, they relate quite seamlessly to gameplay, specially in the platformer

genre. However, this approach could nicely tie in with dungeon generation as well.

As with Dormans, a two-layered grammar is used, where the first layer considers

gameplay (in this case, player actions) and the second game space (geometry). The

notion of ‘rhythm’ as defined by Smith et al. is not exactly applicable to dungeons,

but the pacing or tempo of going through rooms and hallways could be of similar

value in dungeon-based games. The decomposition of a level into rhythm groups

also connects very well with the possible division of a dungeon into dungeon-groups

with distinct gameplay features, e.g. pacing.

Our second method, proposed by Mawhorter et al. [16] is called Occupancy-

Regulated Extension (ORE), and it directly aims at procedurally generating 2D

platform levels. ORE is a general geometry assembly algorithm that supports

human-design-based level authoring at arbitrary scales. This approach relies on pre-

authored ‘chunks’ of level as a basis, and then assembles a level using these chunks

from a library. A chunk is referred to as level geometry, such as a single ground

element, a combination of ground elements and objects, interact-able objects, etc.

This differs from the rhythm groups introduced by Smith et al. [30], because rhythm

groups are separately generated by a PCG method whilst the ORE chunks are pieces

of manually-created content in a library. The algorithm takes the following steps: (i)

a random potential player location (occupancy) is chosen to position a chunk; (ii)

a chunk needs to be selected from a list of context-based compatible chunks; (iii)

the new chunk is integrated with the existing geometry. This process continues until

there are no potential player locations left, after which post-processing takes care of

placing objects such as power-ups.

This framework is meant for general 2D platform games, so specific game ele-

ments and mechanics need to be filled in, and chunks need to be designed and added

to a library. Versatile levels can only be generated given that a minimally interesting

chunk library is used.

Mawhorter et al. do not mention specific control parameters for their ORE al-

gorithm, but a designer still has some control. Firstly, the chunks in the library and

their probability of occurrence are implicit parameters, i.e. they actually determine

the level geometry and versatility, and possible player actions need to be defined and

incorporated in the design of chunks. And above all, their mixed-initiative approach

provides the largest amount of control one can offer, even from a gameplay-based

perspective. However, taken too far, this approach could come too close to manu-

ally constructing a level, decreasing the benefits of PCG. In summary, much control

can be provided by this method, but the generation process may still be not very

efficient, as a lot of manual work seems to still be required for specific levels to be

generated.

This ORE method proposes a mixed-initiative approach, where a designer has

the option to place content before the algorithm takes over and generates the rest of

the level. This approach seems very interesting also for dungeon generation, where

an algorithm that can fill in partially designed levels would be of great value. Imag-

ine a designer placing special event rooms and then have an algorithm add the other

parts of the level that are more generic in nature. This mixed-initiative approach

3 Constructive generation methods for dungeons and levels (DRAFT) 49

Fig. 3.12: Snapshot from Spelunky [4].

would increase both level versatility, and control for designers, while still taking

work out of their hands. Additionally, it would fit to the principles of dungeon de-

sign, where special rooms are connected via more generic hallways. Also, using a

chunk library fits well in the context of dungeon-level generation (e.g. combining

sets of template rooms, junctions and hallways). However, 3D dungeon levels would

typically require a much larger and more complex chunk library than 2D platform

levels, which share a lot of similar ground geometry.

3.6 Example applications to platform generation

3.6.1 Spelunky

Spelunky is a 2D platform indie game originally created by Derek Yu in 2008 [4].

The PC version of the game is available for free. An update version of the game

was later released in 2012 for the Xbox Live Arcade with better graphics and more

content. An enhanced edition was also released on PC in 2013. The gameplay in

Spelunky consists of traversing the 2D levels, collecting items, killing enemies and

finding your way to the end. To win the game, the player needs to have good skills

in managing different types of resources such as ropes, bumps and money. Losing

the game at any level requires restarting the game from the beginning.

The game consists of four groups of maps of increasing level of difficulty. Each

set of levels has a distinguished layout and introduces new challenges and new types

of enemies. An example level from the second set is presented in Figure 3.12.

The standout feature of Spelunky is the procedural generation of game content.

The use of PCG allowed the generation of endless variations of content that are

unique in every playthrough.

50 Noor Shaker, Antonios Liapis, Julian Togelius, Ricardo Lopes, and Rafael Bidarra

Fig. 3.13: Level generation in Spelunky. Adapted from [15]

Fig. 3.14: An example design of a room in Spelunky. Adapted from [15]

Each level in Spelunky is divided into a 4× 4 grid of 16 rooms with two rooms

marking the start and the end of the level (see Figure 3.13) and corridors connecting

adjacent rooms. Not all the rooms are necessarily connected; in Figure 3.13 there are

some isolated rooms such as the ones at the top left and down left corners. In order

to reach these rooms, the player needs to use bombs, which are a limited resource,

to destroy the walls.

The layout of each room is selected from a set of predefined templates. An ex-

ample template for one of the rooms presented in Figure 3.13 can be seen in Fig-

ure 3.14. In each template, a number of chunks are marked in which randomisation

can occur. Whenever a level is being generated, these chunks are replaced by dif-

ferent types of obstacle according to a set of randomised number generators [15].

Following this method, a new variation of the level can be generated with each run

of the algorithm.

More specifically, each room in Spelunky consists of 80 tiles arranged in a 8×10

metrics [3]. An example room template can be:

0000000011

0060000L11

0000000L11

0000000L11

0000000L11

0000000011

3 Constructive generation methods for dungeons and levels (DRAFT) 51

0000000011

1111111111

Where 0 represents an empty cell, 1 stands for walls or bricks, L for ladders. The

6 in this example can be replaced by random obstacles permitting the generation

of different variations. The obstacles, or traps, are usually of 5× 3 blocks of tiles

that overwrite the original tiles. Examples traps included in the game can be spikes,

webs or arrow traps, to name some.

While the basic layout of the level is partially random, with the presence of op-

portunities for variations, the placement of monsters and traps is 100% random.

After generating the physical layout, the level map is scanned for potential places

where monsters can be generated. These include for example, a brick with empty

tiles behind that offer enough space for generating a spider. There are another set

of random numbers that control the generation of monsters. These numbers control

the type and the frequency of the generation. For example, there is a 20% chance

of creating a giant spider and once a spider is generated, this probability is set to 0

preventing the existence of more than one giant spider in a level.

In this sense, level generation in Spelunky can be seen as a composition of three

main phases: in the first phase, the main layout of the level is generated by choosing

the rooms from the templates available and defining the entrance and exit points.

The second phase is obstacle generation which can be thought of as an agent go-

ing through the level and placing obstacles in predefined spaces according to a set

of heuristics. The final phase is the monsters generation phase where another agent

search the level and place a monster when proper space is found and a set of condi-

tions is satisfied.

3.6.2 Infinite Mario Bros

Super Mario Bros is a very popular 2D platform game developed by Nintendo and

released in the mid eighties [17]. A public domain clone of the game, named Infinite

Mario Bros. (IMB) [19] was later published by Markus Persson. IMB features the

art assets and general game mechanics of Super Mario Bros. but differs in level

construction. Infinite Mario Bros is playable on the web, where the Java source

code is also available1. While implementing most features of Super Mario Bros, the

standout feature of Infinite Mario Bros is the automatic generation of levels. Every

time a new game is started, levels are randomly generated by traversing the level

map and adding features according to certain heuristics.

The internal representation of the levels in Infinite Mario Bros is a two-dimensional

array of game elements. In “small” state, Mario is one block wide and one block

high. Each position in the array can be filled with a brick block, a coin, an en-

emy or nothing. The levels are generated by placing the game elements in the two-

dimensional level map.

1 http://www.mojang.com/notch/mario/

52 Noor Shaker, Antonios Liapis, Julian Togelius, Ricardo Lopes, and Rafael Bidarra

Different approaches can be followed to generate the levels for this game [27, 25,

21, 31]. In the following we describe one possible approach.

The Probabilistic Multi-pass Generator (PMPG) was created by Ben Weber [27]

as an entry for the level generation track of the Mario AI Championship [22]. The

generator is an agent-based and works by first creating the base level and then per-

forming a number of passes through it. Level generation consists of six passes from

left to right and adding one of the different types of game elements. Each pass is

associated with a number of events (14 in total) that may occur according to prede-

fined uniform probability distributions. These distributions are manually weighted

and by tweaking these weights one can gain control over the frequency of different

elements such as gaps, hills and enemies.

The six passes considered are:

1. An initial pass that changes the basic structure of the level by changing the hight

of the ground and starting or ending a gap;

2. the second pass adds the hills in the background;

3. the third pass adds the static enemies such as pipes and cannons based on the

basic platform generated;

4. moving enemies such as koopas and goombas are added in the fourth pass;

5. the fifth pass adds the unconnected horizontal blocks, and finally,

6. the sixth pass places coins throughout the level.

Playability, or the existence of a path from the starting to the ending point, is

guaranteed by imposing constraints of the different items created or places. For

example, the width of generated gaps is limited by the maximum number of blocks

that the player can jump over and the hight of pipes is limited to ensure that the

player can pass through.

3.7 Lab session: Level generator for InfiTux (and Infinite Mario)

InfiTux, short for Infinite Tux, is a 2D platform game built by combining the under-

lying software used to generate the levels for Infinite Mario Bros (IMB) with the art

and sound assets of Super Tux [33]. The game was created to replace IMB which

is the platform extensively used in research [18, 28, 32, 9, 2] and the software for

the Mario AI Championship [26, 24, 8]. Since the level generator for InfiTux is the

same as the one used for IMB, the game features infinite variations of levels by the

use of a random seed. The level of difficulty can also be tuned using different dif-

ficulty values which control the number, frequency and types of the obstacles and

monsters.

The purpose of this exercise is to use one or more of the methods presented in

this chapter to implement your own generator that creates content for the game. The

software you will be using is the one used for the Level Generation Track of the

Platformer AI Competition [23]; a successor to the Mario AI Championship that is

based on InfiTux. The software provides an interface that eases the interaction with

3 Constructive generation methods for dungeons and levels (DRAFT) 53

the system and is a good starting point. You can either modify the original level

generator, or use it as an inspiration. In order to help you to start with the software,

we will in the following describe the main components of the interface provided and

how it can be used.

As the software is developed for the Level Generation track of the competition,

which invites participants to submit level generator that are fun for specific play-

ers, the interface incorporates information about player behaviour that you could

use while building your generator. This information is collected while the player is

playing a test level and stored in a gameplay metrics that contains statistical features

extracted from a gameplay session. The features include, for example, the number

of jumps, the time spent running, the number of items collected and the number of

enemies killed.

For your generator to work properly, your level should implement the LevelInter-

face which specifies how the level is constructed and how different types of elements

are scattered around the level:

public byte[][] getMap();

public SpriteTemplate[][] getSpriteTemplates()

The size of the level map is 320× 15 and you should implement a method of

your choice to fill in the map. Note that the basic structure of the level is saved in a

different map than the one used to store the placement of enemies.

The level generator, which passes the gameplay metrics to your level and com-

municates with the simulator, should implement the LevelGenerator interface:

public LevelInterface generateLevel(GamePlay playerMet);

There are quite a few examples reported in the literature that use this software

for content creation, some of them are part of the Mario AI Championship and their

implementation is open source and freely available at the competition website [22].

3.8 Summary

References

1. Adams, D.: Automatic generation of dungeons for computer games (2002). B.Sc. thesis,

University of Sheffield, UK

2. Dahlskog, S., Togelius, J.: Patterns as objectives for level generation. In: Proceedings of the

8th International Conference on the Foundations of Digital Games (2013)

3. Darius Kazemi: URL http://tinysubversions.com/2009/09/spelunkys-procedural-space/

4. Derek Yu and Andy Hull: (2009). Spelunky

5. Doran, J., Parberry, I.: Controlled procedural terrain generation using software agents. IEEE

Transactions on Computational Intelligence and AI in Games 2(2), 111–119 (2010)

6. Dormans, J.: Adventures in level design: generating missions and spaces for action adventure

games. In: PCG’10: Proceedings of the 2010 Workshop on Procedural Content Generation in

Games, pp. 1:1–1:8. ACM (2010). DOI http://doi.acm.org/10.1145/1814256.1814257

54 Noor Shaker, Antonios Liapis, Julian Togelius, Ricardo Lopes, and Rafael Bidarra

7. Johnson, L., Yannakakis, G.N., Togelius, J.: Cellular Automata for Real-time Generation of

Infinite Cave Levels. In: Proceedings of the ACM Foundations of Digital Games. ACM Press

(2010)

8. Karakovskiy, S., Togelius, J.: The mario AI benchmark and competitions. Computational

Intelligence and AI in Games, IEEE Transactions on 4(1), 55–67 (2012)

9. Kerssemakers, M., Tuxen, J., Togelius, J., Yannakakis, G.: A procedural procedural level gen-

erator generator. In: IEEE Conference on Computational Intelligence and Games (CIG),, pp.

335–341 (2012)

10. Liapis, A., Yannakakis, G.N., Togelius, J.: Sentient sketchbook: Computer-aided game level

authoring. In: Proceedings of ACM Conference on Foundations of Digital Games (2013)

11. van der Linden, R., Lopes, R., Bidarra, R.: Designing procedurally generated levels. In: Pro-

ceedings of the the second workshop on Artificial Intelligence in the Game Design Process.

(2013)

12. Linden, R.v.d., Lopes, R., Bidarra, R.: Designing procedurally generated levels. In: Pro-

ceedings of IDPv2 2013 - Workshop on Artificial Intelligence in the Game Design Process,

co-located with the Ninth AAAI Conference on Artificial Intelligence in Interactive Digital

Entertainment, pp. 41–47. AAAI, AAAI Press, AAAI Press, Palo Alto, CA (2013). ISBN

978-1-57735-635-6

13. Linden, R.v.d., Lopes, R., Bidarra, R.: Procedural generation of dungeons. IEEE

Transactions on Computational Intelligence and AI in Games 6(1), 78–89 (2014).

URL http://graphics.tudelft.nl/Publications-new/2014/LLB14. Doi: 10.1109/TCI-

AIG.2013.2290371

14. Lopes, R., Tutenel, T., Bidarra, R.: Using gameplay semantics to procedurally generate player-

matching game worlds. In: PCG ’12: Proceedings of the 2012 Workshop on Procedural Con-

tent Generation in Games. ACM, Raleigh, North Carolina, USA (2012)

15. Make Games: URL http://makegames.tumblr.com/post/4061040007/the-full-spelunky-on-

spelunky

16. Mawhorter, P., Mateas, M.: Procedural level generation using occupancy-regulated extension.

In: IEEE Symposium on Computational Intelligence and Games (CIG), pp. 351 –358 (2010).

DOI 10.1109/ITW.2010.5593333

17. Nintendo Creative Department: (1985). Super Mario Bros, Nintendo

18. Ortega, J., Shaker, N., Togelius, J., Yannakakis, G.N.: Imitating human playing styles in Super

Mario Bros. Entertainment Computing pp. 93–104 (2012)

19. Persson, M.: Infinite mario bros. URL http://www.mojang.com/notch/mario/

20. Rozenberg, G. (ed.): Handbook of graph grammars and computing by graph transformation:

volume I. foundations. World Scientific Publishing Co., Inc., River Edge, NJ, USA (1997)

21. Shaker, N., Nicolau, M., Yannakakis, G.N., Togelius, J., ONeill, M.: Evolving levels for super

mario bros using grammatical evolution. In: IEEE Conference on Computational Intelligence

and Games (CIG), pp. 304–311 (2012)

22. Shaker, N., Togelius, J., Karakovskiy, S., Yannakakis, G.: Mario AI Championship. URL

http://marioai.org/

23. Shaker, N., Togelius, J., Yannakakis, G.: Platformer AI Competition. URL

http://platformerai.com/

24. Shaker, N., Togelius, J., Yannakakis, G., Weber, B., Shimizu, T., Hashiyama, T., Sorenson,

N., Pasquier, P., Mawhorter, P., Takahashi, G., Smith, G., Baumgarten, R.: The 2010 mario ai

championship: Level generation track. IEEE Transactions on Computational Intelligence and

AI in Games, 3(4), 332–347 (2011)

25. Shaker, N., Togelius, J., Yannakakis, G.N.: Towards automatic personalized content generation

for platform games. In: Proceedings of the AAAI Conference on Artificial Intelligence and

Interactive Digital Entertainment (AIIDE) (2010)

26. Shaker, N., Togelius, J., Yannakakis, G.N., Poovanna, L., Ethiraj, V.S., Johansson, S.J.,

Reynolds, R.G., Heether, L.K., Schumann, T., Gallagher, M.: The turing test track of the 2012

mario ai championship: Entries and evaluation. In: Proceedings of the IEEE Conference on

Computational Intelligence and Games (CIG) (2013)

3 Constructive generation methods for dungeons and levels (DRAFT) 55

27. Shaker, N., Togelius, J., Yannakakis, G.N., Weber, B., Shimizu, T., Hashiyama, T., Sorenson,

N., Pasquier, P., Mawhorter, P., Takahashi, G., Smith, G., Baumgarten, R.: The 2010 Mario AI

championship: Level generation track. IEEE Transactions on Computational Intelligence and

Games pp. 332–347 (2011)

28. Shaker, N., Yannakakis, G.N., Togelius, J., Nicolau, M., ONeill, M.: Fusing visual and behav-

ioral cues for modeling user experience in games. IEEE Transactions on System Man and

Cybernetics; Part B: Special Issue on Modern Control for Computer Games (2012)

29. Smelik, R.M., Tutenel, T., de Kraker, K.J., Bidarra, R.: A Declarative Approach to Proce-

dural Modeling of Virtual Worlds. Computers & Graphics 35(2), 352–363 (2011). DOI

doi:10.1016/j.cag.2010.11.011

30. Smith, G., Treanor, M., Whitehead, J., Mateas, M.: Rhythm-based level generation for 2D

platformers. In: Proceedings of the 4th International Conference on Foundations of Digital

Games, FDG 2009, pp. 175–182. ACM (2009)

31. Sorenson, N., Pasquier, P.: Towards a generic framework for automated video game level

creation. In: Proceedings of the European Conference on Applications of Evolutionary Com-

putation (EvoApplications), pp. 130–139. Springer LNCS (2010)

32. Sorenson, N., Pasquier, P., DiPaola, S.: A generic approach to challenge modeling for the

procedural creation of video game levels. IEEE Transactions on Computational Intelligence

and AI in Games (3), 229–244 (2011)

33. SuperTux Development Team: Super Tux. URL http://supertux.lethargik.org/

34. Wild Card: (2013). URL http://www.dwarfquestgame.com/

35. Wolfram, S.: Cellular automata and complexity: collected papers, vol. 1. Addison-Wesley

Reading (1994)

Chapter 4

Fractals, noise and agents with applications to

landscapes (DRAFT)

Noor Shaker, Julian Togelius and Mark J. Nelson

4.1 Terraforming and making noise

This chapter is about terrains (or landscapes – we will use the words interchange-

ably) and noise, two types of content which have more in common than might be

expected. We will discuss three very different types of methods for generating such

content, but first we will discuss where and why terrains and noise are used, so as to

characterise the general case of their content generation problems.

Terrains are ubiquitous. Almost any three-dimensional game will feature some

ground to stand or drive on, and in most of them there will be some variety such

as different types of vegetation, differences in elevation etc. What changes is how

much you can interact directly with the terrains, and thus how they affect the game

mechanics.

At one extreme of the spectrum are flight simulators. In many cases, the terrains

has no game-mechanical consequence – you crash if your altitude is zero, but in

most cases the minor variations in the terrain are not enough to affect your perfor-

mance in the game. Instead, the role of the terrain is to provide a pretty backdrop

and help the player to orientate. Key demands on the terrain is therefore that it is

visually pleasing and believable, but also that it is huge: airplanes fly fast, are not

hemmed in by walls, and can thus cover huge areas. From 30.000 feet one might

not be able to see much detail and a low-resolution map might therefore be seen as

a solution, but preferably it should be possible to swoop down close to the ground

and see hills, houses, creeks and cars. Therefore, a map where the larger features

were generated in advances but where details could be generated on demand would

be useful. Also, from a high altitude it is easy to see the kind of regularities that re-

sults from essentially copying and pasting the same chunks of landscape, so reusing

material is not trivial.

In open-world games such as Skyrim or the those in the Grand Theft Auto terrains

sometimes have mechanical and sometimes aesthetic roles. This poses additional

demands on the design. When driving through a landscape in Grand Theft Auto, it

57

58 Noor Shaker, Julian Togelius and Mark J. Nelson

needs to believable and visually pleasing, but it also needs to support the stretch of

road you are driving on. The mountains in Skyrim look pretty in the distance, but

also function as boundaries of traversable space and to break line of sight. To make

sure that these demands are satisfied, the generation algorithms need a higher degree

of controllability.

At the other end of the spectrum are those games where the terrain severely

restricts and guides the player’s possible course of actions. Here we find first person

shooters such as those in the Halo and Call of Duty series. In these cases, terrain

generation has more in common with the level generation problems we discussed

int the previous chapter.

Like terrains, noise is a very common type of game content. Essentially, noise is

useful wherever small variations need to be added to a surface (or something that

can be seen as a surface). One example of noise is in skyboxes, where cloud cover

can be implemented as white noise on blue background. Other examples where

noise is used are dust that settles on the ground or walls, certain aspects of water

(though water simulation is a complex topic in its own right), fire, plasma, skin and

fur coloration etc. You can also see minor topological variations of the ground as

noise, which brings us to the similarity between terrains and noise.

4.1.1 Heightmaps and intensity maps

Both noise and most aspects of terrains can fruitfully be represented as two-

dimensional matrices of real numbers. The width and height of the matrix maps

to the x and y dimensions of a rectangular surface. In the case of noise, this is called

an intensity map, and the values of cells correspond directly to the brightness of as-

sociated pixels. In the case of terrains, the value of each cell corresponds to height of

the terrain (over some baseline) at that point. This is called a height map. If the res-

olution with which the terrain is rendered is greater than the resolution of the height

map, intermediate points on the ground could simply be interpolated between points

that do have specified height values. Thus, using this common representation, any

technique used to generate noise could also be used to generate terrains, and vice

versa – though they might not be equally suitable.

It should be noted that in the case of terrains, other representations are possible

and occasionally suitable or even necessary. For example, one could represent the

terrain in three dimension, by dividing the space up into voxels (cubes) and com-

pute the three-dimensional voxel grid. An example is the popular open-world game

Minecraft, which uses unusually large voxels. Voxel grids allow structures that can-

not be represented with height maps, such as caves and overhanging cliffs, but they

require much larger amount of storage.

4 Fractals, noise and agents with applications to landscapes (DRAFT) 59

4.2 Random terrain

Let’s say we want to generate completely random terrain. We won’t worry for the

moment about the questions in the previous chapter, such as whether the terrain we

generate would make a fair, balanced, and playable RTS map. All we want for now

is random terrain, with no constraints except that it looks like terrain.

If we encode terrain as a heightmap, then it’s represented by a two-dimensional

array of values, which indicate the height at each point. Can generating random

terrain be as simple as just calling a random-number generator to fill each cell of the

array? Alas, no. While this technically works—a randomly initialized heightmap is

indeed a heightmap that can be rendered as terrain—the result is not very useful. It

doesn’t look anything like random terrain, and isn’t very useful as terrain, even if

we’re being generous. A random heightmap generated this way looks like random

spikes, not random terrain: there are no flat portions, mountain ranges, hills, or other

features typically identifiable on a landscape.

The key problem with just filling a heightmap with random values is is that every

random number is generated independently. In real terrain, heights at different points

on the terrain are not independent of each other: The elevation at a specific point on

the earth’s surface is statistically related to the elevation at nearby points. If you pick

a random point within 100 km of Mount Everest, it will almost certainly have a high

elevation. If you pick a random point within 100 km of Copenhagen, you are very

unlikely to find a high elevation.

There are several alternative ways of generating random heightmaps to address

this problem. These methods were originally invented, not for landscapes, but for

textures in computer graphics [3]. Like when we randomly generated a heightmap’s

values by randomly generating each element of the array, we could randomly gen-

erate graphical textures by randomly generating each pixel of the texture. But this

produces something that looks like television static, which isn’t appropriate for tex-

tures that are going to represent the surfaces of “organic” patterns found in nature,

such as the texture of rocks. We can think of landscapes heightmaps as a kind of nat-

ural pattern, but a pattern that’s interpreted as 3d elevation rather than a 2d texture.

So it’s not a surprise that similar problems and solutions apply.

4.2.1 Interpolated random terrain

One way of avoiding unrealistically spiky landscapes is to require that the land-

scapes we generate are smooth. That change does exclude some realistic kinds of

landscapes, since discontinuities like cliffs exist in real landscapes. But it’s a change

that will provide us with something much more landscape-like than the random

heightmap method did.

How do we generate smooth landscapes? We might start by coming up with a

formal definition of smoothness and then develop a method to optimize for that

criterion. A simpler way is to make landscapes smooth by construction: fill in the

60 Noor Shaker, Julian Togelius and Mark J. Nelson

values in such a way that the result is less spiky than the fully random generator.

Interpolated noise is one such method, in which we generate fewer random values,

and then interpolate between them.

Instead of generating a random value at every point in the heightmap, we gen-

erate random values on a courser lattice. The heights in between the generated lat-

tice points are interpolated in a way that makes them smoothly connect the random

heights. Put differently, we randomly generate elevations for peaks and valleys with

a certain spacing, and then fill in the slopes between them.

That leaves one question: how do we do the interpolation, i.e. how do we connect

the slopes between the peaks and valleys? There are a number of standard interpo-

lation methods for doing so, which we’ll discuss in turn.

4.2.1.1 Bilinear interpolation

A simple method of interpolating is to calculate a weighted average in first the

horizontal, and then the vertical direction (or vice-versa, which gives the same re-

sult). If we choose a lattice that’s one-tenth as finely detailed as our heightmap’s

resolution, then height[0,0] and height[0,10] will be two of the randomly gener-

ated values. To fill in what should go in height[0,1], then, we notice it’s 10% of

the way from height[0,0] to height[0,10]. Therefore, we use the weighted average,

height[0,1] = 0.9×height[0,0]+0.1×height[0,10]. Once we’ve finished this inter-

polation in the x direction, then we do it in the y direction. This is called bilinear

interpolation, because it does linear interpolation along two axes, and is both easy

and efficient to implement.

While it’s a simple procedure, coarse random generation on a lattice followed by

bilinear interpolation does have drawbacks. The most obvious one is that mountain

slopes become perfectly straight lines, and peaks and valleys are all perfectly sharp

points. This is to be expected, since a geometric interpretation of the process just de-

scribed is that we’re randomly generating some peaks and valleys, and then filling in

the mountain slopes by drawing straight lines connecting peaks and valleys to their

neighbors. This produces a characteristically stylized terrain, like a child’s drawing

of mountains—perhaps what we want, but often not. For games in particular, we

often don’t want these sharp discontinuities at peaks and valleys, where collision

detection can become wonky and characters can get stuck.

4.2.1.2 Bicubic interpolation

Rather than having sharp peaks and valleys connected by straight slopes, we can

generate a different kind of stylized mountain profile. When a mountain rises from

a valley, a common way it does so is in an S-curve shape. First, the slope starts rising

slowly. It grows steeper as we move up the mountain; and finally it levels off at the

top in a round peak. To produce this profile, we don’t want to interpolate linearly:

4 Fractals, noise and agents with applications to landscapes (DRAFT) 61

when we’re 10% of the way between lattice points, we don’t want to be 10% of the

way up the slope’s vertical distance yet.

Therefore we don’t want to do a weighted average between the neighboring lat-

tice points according to their distance, but according to a nonlinear function of their

distance. We introduce a slope function, s(x), specifying how far up the slope (ver-

ically) we should be when we’re x of the way between the lattice points, in the

direction we’re interpolating. In the bilinear interpolation case, s(x) = x. But now

we want an s(x) whose graph looks like an S-curve. There are many mathematical

functions with that shape, but a common one used in computer graphics, because it’s

simple and fast to evaluate, is s(x) =−2x3+3x2. Now, when we are 10% of the way

along, i.e. x = 0.1, s(0.1) = 0.028, so we should be only 2.8% up the slope’s vertical

height, still in the gradual portion at the bottom. We use this as the weight for the in-

terpolation, and this time height[0,1] = 0.972×height[0,0]+0.028×height[0,10].
Since the s(x) we chose is a cubic (third-power) function of x, and we again

apply the interpolation in both directions along the 2d grid, this is called bicubic

interpolation.

4.2.2 Gradient-based random terrain

In the examples so far, we’ve generated random values to put into the heightmap.

Initially, we tried generating all the heightmap values directly, but when that proved

too noisy. Instead, we generated values for a coarse lattice, and interpolated the

slopes in between the generated values. When done with bicubic interpolation, this

produced a smooth slope.

An alternate idea is to generate the slopes directly, and infer height values from

that, rather than generate height values and interpolate slopes. The random numbers

we’re going to generate will be interpreted as random gradients, i.e., the steepness

and direction of the slopes. This kind of random initialization of an array is called

gradient noise, rather than the value noise discussed in the previous section. It was

first done by Ken Perlin in his work on the 1982 film Tron, so is sometimes called

Perlin noise.

Generating gradients instead of height values has several advantages. Since

we’re interpolating gradients, i.e. rates of change in value, we have an extra level

of smoothness: rather than smoothing the change in heights with an interpola-

tion method, we smooth the rate of change in heights, so slopes grow shallower

or steeper smoothly. Gradient noise also allows us to use lattice-based generation

(which is computationally and memory efficient) while avoiding the rectangular

grid effects produced by the interpolation-based methods. Since peaks and valleys

are not directly generated on the lattice points, but rather emerge from the rises and

falls of the slopes, they are arranged in a way that looks more organic.

As with interpolated value-based terrain, we generate numbers on a coarsely

spaced lattice, and interpolate between the lattice points. However, we now gen-

erate a 2d vector, (dx,dy), at each lattice point, rather than a single value. This is

62 Noor Shaker, Julian Togelius and Mark J. Nelson

the random gradient, and dx and dy can be thought of as the slope’s steepness in the

x and y directions. These gradient values can be positive or negative, for rising or

falling slopes.

Now we need a way of recovering the height values from the gradients. First, we

set the height to 0 at each lattice point. This might seem like it would produce no-

ticeable grid artifacts, but unlike with value noise, it doesn’t in practice. Since peaks

and valleys rise and fall to different heights and with different slopes away from the

h = 0 lattice points, the zero value is sometimes midway up a slope, sometimes near

the bottom, and sometimes near the top, rather than in any visually regular position.

To find the height values at non-lattice points, we look at the four neighboring

lattice points. Consider first only the gradient to the top-left. What would the height

value be at the current point if terrain rose or fell from h = 0 only according to that

one of the four gradients? It would be simply that gradient’s value multiplied by the

distance we’ve traveled along it: the x-axis slope, dx, times the distance we are to

the right of the lattice point, added to the y-axis slope, dy, times the distance we are

down from the lattice point. In terms of vector math, this is the dot product between

the gradient vector and a vector drawn from the lattice point to our current point.

Repeat this what-if process for each of the four surrounding lattice points. Now

we have four height values, each indicating the height of the terrain if only one

of the four neighboring lattice points had influence on its height. Now to combine

them, we simply interpolate these values, as we did with the value-noise terrain.

We have four surrounding lattice points that now have four height values, and we

have already covered, in the previous section, how to interpolate height values, using

bilinear or bicubic interpolation.

4.3 Fractal terrain

While gradient noise looks more organic, there is still a rather unnatural aspect to

it when treated as terrain: terrain undulates at a constant frequency, the frequency

chosen for the lattice point spacing. Real terrain has variation at multiple scales. At

the largest scale (i.e., lowest frequency), plains rise into mountain ranges. But at

smaller scales, mountain ranges have peaks and valleys, and valleys have hills and

ravines. In fact, as you zoom in to many natural phenomena you see the same kind

of variation that was seen at the larger scale, but reproduced at a new, smaller scale.

This self-similarity is the basis of fractals, and generated terrain with this property

is called fractal terrain.

Fractal terrain can be produced through a number of methods, some of them

based directly on fractal mathematics, and others producing a similar effect via sim-

pler means.

A very easy way to produce fractal terrain is to take the single-scale random ter-

rain methods from the previous section and simply run them several times, at multi-

ple scales. We first generate random terrain with very large-scale features, then with

smaller-scale features, then even smaller, and add all the scales together. The larger-

4 Fractals, noise and agents with applications to landscapes (DRAFT) 63

scale features are added in at a larger magnitude than the smaller ones: mountains

rise from plains a larger distance than boulders rise from mountain slopes. A classic

way of producing multi-scale terrain in this way is to scale the generated noise layers

by the inverse of their frequency, which is called 1/ f noise. If we have a single-scale

noise-generation function, like those in the previous section, we can give it a param-

eter specifying the frequency; let’s call this function noise(f). Then starting from a

base for our lowest-frequency (largest-scale) features, f , we can define 1/ f noise

as:

noise(f)+
1

2
noise(2 f)+

1

4
noise(4 f)+ . . .

4.4 Agent-based landscape creation

In Chapter 1, we discussed the desired properties of a PCG algorithm. The previ-

ously discussed methods satisfy most of these properties, however they suffer from

uncontrollability. The results delivered by these methods are fairly random and they

offer very limited interaction with designers who can only provide inputs on the

global level through modifying a set of unintuitive parameters. [13]. Several varia-

tions of these methods have been introduced that grant more control over the out-

put [7, 1, 12, 15].

The main advantage of software agents approaches for terrain generation over

fractal-based methods is that they offer a greater degree of control while maintaining

the other desirable properties of PCG methods. Similar to the discussion of agent-

based approaches for dungeon growing (Section 3.2), agent-based approaches for

landscape creation constitute the set of techniques that employ a single or multiple

software agents. According to Russell et al. [11] a software agent passes through

the environment, senses it and changes it by performing an agent’s specific task.

The desired agent properties according to Russell et al. include accessibility, deter-

ministic in the results of their effectors, non-episodicality and the ability to work in

a dynamic and in a discrete environment.

When multiple agents are employed in a system, they usually interact directly

with the environment (through sending and acting) and indirectly with each other

(through observing the changes in the environment performed by the other agents).

This allows a simpler implementation of the system, and therefore more control

and possibility of extension. A complex output with the desired properties can be

developed as the result of the interaction between several relatively simple agents,

each following a simple behavioural rules [9].

Agent-based approaches was first introduced for procedural city generation by

Lechner et al. [9]. In this work, cities are divided into areas (such as squares, in-

dustrial, commercial, residential, etc...) and agents are implemented to construct the

road networks. Differenty types of agents were identified such as extenders who

search for unconnected areas in the city and connectors who add highways or direct

connections between roads with long travel time. The authors further introduced

different agents for constructing main roads and small streets [8].

64 Noor Shaker, Julian Togelius and Mark J. Nelson

In the following, we discuss work on agent-based terrain generation by Doran

et al. [2], which focuses primarily on the issue of controllability. Previous attempts

for terrain generation reported in the literature are mostly based on fractal tech-

niques and offer limited, if any, control for designers as discussed in Section ??.

Because of the lack of input and interaction with designers, fractal-based methods

are usually evaluated in term of efficiency rather than the aesthetic features of the

terrains generated [2]. Agent-based approaches on the hand, offer the possibility of

defining more fine-grained measures of the goodness of the terrains according to the

behaviour of the agents. And by controlling how and how much the agent changes

the environment, one can vary the quality of the generated terrains.

4.4.1 Doran and Parberry’s terrain generation

The main objective of the work done by Doran et al. [2] is to provide a greater

degree of control for designers. The authors defined five different types of agents

that work concurrently in an environment simulating natural phenomena. The agents

are allowed to sense the environment and change it at will. Designers are provided

with a number of ways to influence terrain generation: controlling the number of

agents of each type is one way to gain control, another is by limiting the agent

lifetime using a predefined number of actions that the agent can perform. After the

number of steps is consumed, the agent becomes inactive.

The agents can modify the environment by performing three main tasks:

• Coastline: in this phase, the outline or shape of the terrain is generated using

multiple agents.

• Landform: the detailed features of the land are defined in this phase employing

larger number of agents than the one used in the previous phase. The agents work

simultaneously on the environment to set the details of the mountains, create

beaches and shape the lowlands.

• Erosion: this is the last phase of the generation and it constitutes the creation of

rivers through eroding the previously generated terrain. The number of river to

create is determined by the number of agents defined in this phase.

According to these phases, several types of agents can be identified to achieve the

several tasks defined in each phase. The authors focused their work on five different

types:

1. Coastline agents: these agents work in the coastline phase to draw the outline

of the landscape before any other agents. The map is initially placed under sea

level and the agents work by raising points above sea level. The process starts

with a single agent working on the entire map. According to the size of the map,

this agent multiplies by creating many other coastline agents which subdivide

themselves in turn until each agent is assigned with a small part of the map. The

process undertaken by each agent to generate the coastline can be described as

follows:

4 Fractals, noise and agents with applications to landscapes (DRAFT) 65

• Each agent is assigned a single seed point at the edge of the map, a direction

to follow and a number of token to consume.

• The agent checks its surrounding and if it is already a land (this might happens

since all the agents are working simultaneously on the map) the agent starts

searching in the assigned direction for another appropriate starting point.

• Once the starting point is located, the agent stats working on the environment

by changing the hight of the points. This is done by:

a. generating two points at random in different directions: one works as an

attractor and another as a repulser.

b. identifying the set of points for elevation above the sea level.

c. scoring the points according to their distance from the attractor and the

repulser points. The ones closer to the attractor are scored higher.

d. the point with the heighst score is then elevated above sea level and it

becomes part of the coastline.

e. the agent then continue by moving to another point in the map.

This method allows multiple agent to work concurrently on the map while reserv-

ing localisation since each agent moves in its surrounding and has a predefined

number of token to consume. The number of token given to each agent and the

number of agents working on the map are directly related. The smaller the num-

ber of tokens, the larger the number of agents since more agents will be required

to cover the whole map. These parameters also affect the level of details of the

coastline. A map generated with a small number of token will feature more fine

details than a one with a hight number since in the first case more agents will be

created, each of which influencing a small region.

2. Smoothing agents: after the shape of the landscape has been defined by the coast-

line agents, smoothing agents operate on the map to eliminate rapid elevation

changes. This is done by creating a number of agents each assigned with a sin-

gle parameter specifying the number of times that agent has to revisit its starting

point. The more the revisits, the smoother the area around this point.

The agents are scattered around the map, they move randomly and while wan-

dering they change the heights of arbitrary points according to the heights of

their neighbours. For each point chosen, a new height value is assigned taking

the weighted averages of the heights of its four orthogonal surrounding points

and the four points beyond these.

3. Beach agents: after the smoothing phase, the landscape is ready for creating

sandy beaches. This is the work assigned to beach agents. These agents traverse

the shoreline in random directions creating sandy areas close to water. Beach

generation is controlled by the adjusting the agents’ parameters. These include

the depth of the area the agent is allowed to flatten, the total number of steps the

agents can move, the altitude under which the agents are permitted to work and

the range of height values they can assign to the points they effect.

The agents are initially placed in a coastline area where they work on adjusting

the height of their surrounding points by lowering them as long as their height

is below the predefined altitude. This prevent elevation mountain areas located

66 Noor Shaker, Julian Togelius and Mark J. Nelson

close to the sea. The new values assigned to the points are randomly chosen from

the designer specified range. This allows the creation of flat beaches if the range

is narrow and more bumpy beaches when the range is high.

4. Mountain agents: The coastline agents elevate areas of the map above sea level.

These areas are then smoothed by the smoothing agents and beaches along the

shoreline are then flattened via the beach agents. Regions above a certain thresh-

old are kept untouched by the beach agents, and these are then modified by moun-

tain agents.

The agents are placed at random positions in the maps and are allowed to move

in random directions. While moving, if a V shaped wedge of points is encoun-

tered, the wedge is elevated creating a ridge. Frequently, the agents might decide

to turn randomly within 45 degree from their initial course resulting in zig-zag

paths. Mountain agents also produces foothills periodically perpendicular to their

movement direction.

The shape of the mountains can be controlled by designers via specifying the

range of the rate at which the slops can be dropped, the maximum mountain

altitude and the width and slop of the mountain. Designers can also determine

the number of agents, the number of steps each one can perform, the length of

foothills and their frequency.

After mountain generation, a smoothing step is followed to blend nearby points.

This step is further followed up by an addition of noise to retain some of the

details lost while smoothing.

5. Hill agents: these agents work in a similar way to the mountain agents but they

have three distinctive characteristics: they work on a lower altitude, the are as-

signed smaller ranges and they are not allowed to generate foothills.

6. River agents: in the final phase of terrain generation, river agents walk through

the environment digging rivers near mountains and the ocean. To resemble nature

rivers, a river agent works in the following steps:

a. initiate two random points one on the coastline and another on the mountain

ridge line.

b. starting at the coastline, the agent moves towards to mountain guided by the

elevation gradient uphill. This determined the general path of the river.

c. as the agent reaches the mountain, it starts moving downwards while digging

the river. This is done by lowering a wedge of a terrain following a similar

method to the one implemented by mountain agents.

d. increase the width of the wedge as the agent is moving closer to the ocean.

Designers specify the initial width of the river, the frequency of widening and the

downhill slop. Designers also determine the shortest length possible for a river.

A river agent might make several attempts for placing its starting and ending

positions before it satisfies the shortest length threshold. If this condition is not

met after several attempts, the river will not be created.

The method followed for defining the agents and their set of parameters allows

the generation of endless variations of terrains through the use of different random

4 Fractals, noise and agents with applications to landscapes (DRAFT) 67

seed numbers. The technique can be used to generate landscapes on-the-fly or it

can be employed by designers who can investigate different setups and tweak the

system’s parameters as desired.

4.5 Search-based landscape generation

We have seen two families of methods for terrain and noise generation, which both

have several benefits. However, at least in the form presented here, these methods

suffer from a certain lack of controllability. It is not easy to specify constraints

or desirable properties, such that there must be an area with no more than a cer-

tain maximum variation in altitude, or that two points on a terrain should be easily

reachable from each other. This form of controllability is one of the strengths of

search-based methods. Unsurprisingly, there have been several attempts to apply

search-based methods to terrain generation.

4.5.1 Genetic Terrain Programming

In a series of papers, Frade et al. developed the concept of Genetic Terrain Pro-

gramming (GTP). This is a search-based method with an indirect encoding, where

the phenotype representation is a height map but the genotype representation is an

expression tree evolved with genetic programming [5, 6, 4].

Genetic programming is a method for creating runnable programs using evolu-

tionary computation [10]. The standard program representation in genetic program-

ming is an expression tree, which in its simplest case is nothing more than an alge-

braic expression in prefix form such as (+3(∗52)) (written in infix form as 3+5∗2).

This can be visualised as a tree with the + sign as the root node, and the 3 and ∗
in separate branches from the root. The plus and multiplier are arithmetical func-

tions, and the constants are called terminals. In genetic programming, a number of

additional functions are commonly employed, including if-then-else, trigonometric

functions, max, min etc. Additional types of terminals might include external inputs

to the program, random number generators etc. The evolutionary search proceeds

through adding and exchanging functions and terminals, and by recombining parts

of different trees.

In GTP, the function set typically includes arithmetical and trigonometric func-

tions, as well as functions for exponentiation and logarithms. The terminal set in-

cludes x and y location, standard noise functions (such as Perlin noise) and functions

that are dependent on the distance from the centre of the map.

The core idea of GTP is that in the genotype-to-phenotype mapping, the algo-

rithm iterates over cells in the (initially empty) height map and queries the evolved

terrain program with the x and y parameters of that cells as input to the program. This

is therefore a highly indirect and compact representation of the map. The represen-

68 Noor Shaker, Julian Togelius and Mark J. Nelson

tation also allows for infinite scalability (or zooming), as increasing the resolution

or expanding the map simply means querying the program using new coordinates

as inputs.

Several different evaluation functions were tried. In initial experiments, interac-

tive evaluation was used: users selected which of several presented maps should be

used for generating the next generation. Later experiments explored various direct

evaluation functions. One of these functions, accessibility, was motivated by game

design: the objective was to maximise the area which is smooth enough to support

vehicle movement. To avoid that completely flat surfaces are evolved, the accessi-

bility metric had to be counterbalanced by other metrics, such as the sum of the edge

length of all obstacles in the terrain. See figure 4.1 for some examples of landscapes

evolved with GTP.

Fig. 4.1: Landscapes generated by Genetic Terrain Programming. From left to right:

cliffs, corals and mountains. Adapted from [4]

4.5.2 Simple RTS map generation

Another search-based landscape generation method was described by Togelius et

al. [14], in the context of map generation for an imaginary real-time strategy game

with smoothly varying height. The phenotype in this problem consists of a height

map and the locations of resources and base starting locations.

The representation is rather direct. Base and resource locations are represented

directly as polar coordinates (φ and θ coordinates for each location). The height

map is initially flat, and then a number of hills is added. These hills are modelled

4 Fractals, noise and agents with applications to landscapes (DRAFT) 69

Fig. 4.2: Four maps generated using a search based methods with the height map

determined by hills represented by Gaussians. The coloured dots represent locations

of resources and bases in an imaginary RTS game. Adapted from [14]

as simple Gaussian distributions, and encoded in the phenotype with their x and

y positions, their heights z, and their standard distributions σx and σy (i.e. their

widths). Ten mountains were used in each run.

Three different evaluation functions were defined. Two of them relate to the

placements of bases and resources to create a fair game, whereas the third is the

topological asymmetry of the map. This is because the simplest way of satisfying

the first two evaluation functions is to create a completely symmetric map, but this

would be visually uninteresting for players. Given that the three fitness functions are

in partial conflict, a multiobjective evolutionary algorithm was used to optimise all

three evaluation functions simultaneously. Figure 4.2 show three different terrains

that resulted from the same evolutionary run.

4.6 Lab session: Generate a terrain with Diamond-square

The purpose of this exercise is to use the diamond-square method to generate the

hight map of a terrain. The method has already been presented in Section ?? and

your job is to implement it. Basically, you have to implement an interface that con-

tains the following method:

public int[][] buildMap(int iteration, int seed,

int variation, double roughness);

70 Noor Shaker, Julian Togelius and Mark J. Nelson

Fig. 4.3: Three hight maps generated the diamond-square method. The parameters

used are: iteration = 9 for all maps, seed = 12, 128, 128 and roughness = 256, 256,

128 for the first, second and third map, respectively.

For simplicity purposes, you can visualise your map by converting it to an RGB

image. To do this, you can use the Frame class included in the software package

provided in the lab sessions. You can simply instantiate your own generator in the

main method of the Frame class, then a call for your map generation method will

be made and the corresponding hight map will be drawn. Areas in the map with

high values are drawn in light colours while darker areas in the image represent low

values of the hight map. Fig. 4.3 presents three example hight maps generated using

different initialisation setups.

References

1. Belhadj, F.: Terrain modeling: a constrained fractal model. In: Proceedings of the 5th interna-

tional conference on Computer graphics, virtual reality, visualisation and interaction in Africa,

pp. 197–204. ACM (2007)

2. Doran, J., Parberry, I.: Controlled procedural terrain generation using software agents. IEEE

Transactions on Computational Intelligence and AI in Games 2(2), 111–119 (2010)

3. Ebert, D.S., Musgrave, F.K., Peachey, D., Perlin, K., Worley, S.: Texture and Modeling: A

Procedural Approach, 3 edn. Morgan Kaufmann (2003)

4. Frade, M., De Vega, F.F., Cotta, C.: Modelling video games landscapes by means of genetic

terrain programming-a new approach for improving users experience. In: Applications of

evolutionary computing, pp. 485–490. Springer (2008)

5. Frade, M., de Vega, F., Cotta, C.: Evolution of artificial terrains for video games based on

accessibility. Applications of Evolutionary Computation pp. 90–99 (2010)

6. Frade, M., de Vega, F., Cotta, C.: Automatic evolution of programs for procedural generation

of terrains for video games. Soft Computing - A Fusion of Foundations, Methodologies and

Applications 16, 1893–1914 (2012)

7. Kamal, K.R., Uddin, Y.S.: Parametrically controlled terrain generation. In: Proceedings of the

5th international conference on Computer graphics and interactive techniques in Australia and

Southeast Asia, pp. 17–23. ACM (2007)

8. Lechner, T., Ren, P., Watson, B., Brozefski, C., Wilenski, U.: Procedural modeling of urban

land use. In: ACM SIGGRAPH 2006 Research posters, p. 135. ACM (2006)

9. Lechner, T., Watson, B., Wilensky, U.: Procedural city modeling. In: In 1st Midwestern Graph-

ics Conference. Citeseer (2003)

10. Poli, R., Langdon, W.W.B., McPhee, N.F., Koza, J.R.: A field guide to genetic programming.

Lulu. com (2008)

11. Russell, S.J., Norvig, P., Canny, J.F., Malik, J.M., Edwards, D.D.: Artificial intelligence: a

modern approach, vol. 74. Prentice hall Englewood Cliffs (1995)

4 Fractals, noise and agents with applications to landscapes (DRAFT) 71

12. Schneider, J., Boldte, T., Westermann, R.: Real-time editing, synthesis, and rendering of in-

finite landscapes on gpus. In: Vision, modeling and visualization, vol. 2006, pp. 145–152

(2006)

13. Smelik, R.M., De Kraker, K.J., Tutenel, T., Bidarra, R., Groenewegen, S.A.: A survey of pro-

cedural methods for terrain modelling. In: Proceedings of the CASA Workshop on 3D Ad-

vanced Media In Gaming And Simulation (3AMIGAS). Citeseer (2009)

14. Togelius, J., Preuss, M., Yannakakis, G.N.: Towards multiobjective procedural map genera-

tion. In: Proceedings of the 2010 Workshop on Procedural Content Generation in Games,

p. 3. ACM (2010)

15. Zhou, H., Sun, J., Turk, G., Rehg, J.M.: Terrain synthesis from digital elevation models. Vi-

sualization and Computer Graphics, IEEE Transactions on 13(4), 834–848 (2007)

Chapter 5

Grammars and L-systems with applications to

vegetation and levels (DRAFT)

Julian Togelius, Noor Shaker and Joris Dormans

5.1 Plants are everywhere

Just like most games that feature physical movement include some form of terrains,

very many games feature some vegetation in some form. Grass, trees, bushes and

a myriad other forms. Vegetation seems like the perfect case for PCG: we need to

create a huge number of artefacts (there are many trees in the forest and many straws

of grass in the lawn) that are similar to each other, recognisable, but also slightly

different from each other. Just copy-pasting trees won’t cut it1 as players will spot it

quickly. Further, in most roles vegetation is of little functional significance, meaning

that a botched plant will not make the game unplayable, just look a bit weird.

And in fact, vegetation is one of the success stories of PCG. Very many games use

procedural vegetation generation, and there are many software frameworks avail-

able. For example, the SpeedTree middleware has been used in dozens of AAA

games.

It turns out that one of the simplest and best ways to generate a tree or bush

is to use a particular form of formal grammar called an L-system, and interpret

its results as drawing instructions. This fact is intimately connected to the “self-

similar” nature of plants, i.e. that the same structures can be found on both micro-

and macro-levels. For an example of this, take a look at a branch of a fern, and see

how the shape of the branch repeats in each sub-branch, and then in each branch

of the sub-branch. Or look at a romanesco broccoli, which consists of cones on top

of cones of top of cones... (see figure 5.1). As we will see, L-systems are naturally

suited to reproducing such self-similarity.

In this chapter, we will introduce formal grammars in general, L-systems in par-

ticular and how to use a graphical interpretation of L-systems to generate plants.

We will also give examples of how L-systems can be used as a representation in

search-based PCG, allowing you to evolve plants. However, it turns out that plants

1 In William Gibson’s Neuromancer, portal novel of the cyberpunk movement, one of the main

characters is busy copy-pasting trees in one of the early chapters.

73

74 Julian Togelius, Noor Shaker and Joris Dormans

Fig. 5.1: Romanesco broccoli. Note the self-similarity.

are not the only thing for which formal grammars are useful. In the rest of the chap-

ter, we will explain how grammar-based systems can be used to generate quests

and dungeon-like environments for adventure games such as Zelda, and levels for

platform games such as Super Mario Bros.

5.2 Grammars

A (formal) grammar is a set of production rules for rewriting strings, i.e. turning

one string into another. Each rule is of the form (symbol(s)) → (other symbol(s)).

Here are some example production rules:

1. A → AB

2. B → b

Using a grammar is as simple as going through a string, and each time a symbol

or sequence of symbols that occurs in the left hand side (LHS) of a rule is found,

those symbols are replaced by the right hand side (RHS) of that rule. For example,

5 Grammars and L-systems with applications to vegetation and levels (DRAFT) 75

if the initial string is “A”, in the first rewriting step the A would be replaced by B

by rule 1, and the resulting string will be “AB”. In the second rewriting step, the A

would again be transformed to AB and the B would transformed to Bb using rule

2, resulting in the string “ABb”. The third step yields the string “ABbb” and so on.

A convention in grammars is that upper-case characters are nonterminal symbols,

which are on the LHS of rules and therefore rewritten further, whereas lower-case

characters are terminal symbols which are not rewritten further.

Formal grammars were originally introduced in the 1950’s by the linguist Noam

Chomsky as a way of modelling natural languages [3]. However, they have since

found widespread application in computer science, as basically any computer sci-

ence problem can be cast in terms of generating and understanding strings in a given

language. Many results in theoretical computer science and complexity theory are

therefore expressed using grammar formalisms. There is a rich taxonomy of gram-

mars which we can only hint at here. Two key distinctions that are relevant for the

application of grammars in procedural content generation are whether the grammars

are deterministic, and the order in which they are expanded.

Deterministic grammars have exactly one rule that applies to each symbol or

sequence of symbols, so that for a given string, it is completely unambiguous which

rules to use to rewrite it. In nondeterministic grammars, several rules could apply

to a given string, yielding different possible results of given rewriting step. So, how

would you decide which rule to use? One way is to simply choose randomly. In such

cases, the grammar might even include probabilities for choosing each rule. Another

way is to use some parameters for deciding which way to expand the grammar —

we will see an example of this in the section on grammatical evolution towards the

end of the chapter.

5.3 L-systems

The other distinction of interest here is in which order the rewriting is done. Sequen-

tial rewriting goes through the string from left to right and rewrites the string as it

is reading it; if a production rule is applied to a symbol, the result of that rule is

written into the very same string before the next symbol is considered. In parallel

rewriting, on the other hand, all the rewriting is done at the same time. Practically,

this is implemented as new string being implemented at a separate memory location

containing only the effects of applying the rules, and the original string is left un-

changed. Sometimes, the difference between parallel and sequential rewriting can

be major.

L-systems are a class of grammars whose defining feature is parallel rewriting,

and which was introduced by the biologist Aristid Lindenmayer in 1968 explicitly

to model the growth of organic systems such as plants and algae [9]. The following

is a simple L-system defined by Lindenmayer to model yeast growth:

1. A → AB

2. B → A

76 Julian Togelius, Noor Shaker and Joris Dormans

Starting with the axiom A (in L-systems the seed strings are called axioms) the

first few expansions look as follows:

1. A

2. AB

3. ABA

4. ABAAB

5. ABAABABA

6. ABAABABAABAAB

7. ABAABABAABAABABAABABA

8. ABAABABAABAABABAABABAABAABABAABAAB

There are several interesting things about this sequence. For one thing, the obvi-

ous regularity, which is more complex than simply repeating the same string over

and over, and certainly seems more complex than is warranted by the apparent sim-

plicity of the system that generates it. But also note that the rate of growth of the

strings in each iteration is increasing. In fact, the length of the strings is a Fibonacci

sequence: 1 2 3 5 8 13 21 34 55 89... This can be explained by the fact that the string

of step n is a concatenation of the string of step n−1 and the string of step n−2.

Clearly, even simple L-systems have the capacity to give rise to highly complex

yet regular results. This seems like an ideal fit for PCG. But how can we move

beyond simple strings?

5.3.1 Graphic interpretation of L-systems

One way of using the power of L-systems to generate 2D (and 3D) artefacts is to

interpret the generated strings as instructions for a turtle in turtle graphics. Think of

the turtle as moving across a plane holding a pencil, and simply drawing a line that

traces its path. We can give commands to the turtle to move forwards, and to turn

left or right. For example we could use the following key to interpret the generated

strings:

• F: move forward a certain length (e.g. 10 pixels)

• +: turn left 90 degrees

• -: turn right 90 degrees

Such an interpretation can be used in conjunction with a simple L-system to give

some rather remarkable results. Consider the following system, consisting only of

one rule:

1. F → F +F −F −F +F

Starting this system with the axiom F , it would expand into F +F −F −F +F

and then into F +F −F −F +F +F +F −F −F +F −F +F −F −F +F −F +
F −F −F +F +F +F −F −F +F etc. Interpreting these strings as turtle graphics

5 Grammars and L-systems with applications to vegetation and levels (DRAFT) 77

instructions, we get the sequence of rapidly complexifying pyramid-like structures

shown in figure 5.2, known as the Koch curve.

Fig. 5.2: Koch curve generated by the L-system F → F +F −F −F +F after 0, 1,

2 and 3 expansions.

5.3.2 Bracketed L-systems

While interpreting L-system-generated strings as turtle instructions allows us to

draw complex fractal shapes, we are fundamentally limited by the constraint that

the figures must be drawable in one contiguous line – the whole shape must be

drawn “without lifting the pencil”. However, many interesting shapes cannot be

drawn this way. For example, plants are branching and requires you to finish draw-

ing a branch before returning to the stem to draw the next line. For this purpose,

bracketed L-systems were invented. These L-systems have two extra symbols, [and

], which behave like any other symbols when rewriting the strings but act as “push”

and “pop” commands to a stack when interpreting the string graphically. (The stack

is simply a first-in, last-out list.) Specifically, [saves the current position and orien-

tation of the turtle onto the stack, and and] retrieves the last saved position from the

stack and resets the turtle to that position – in effect, the turtle “jumps back” to a

position it has previously been at.

Bracketed L-systems can be used to generate surprisingly plant-like structures.

Consider the L-system defined by the single rule F → F [−F]F [+F][F]. This is in-

terpreted as above, except that the turning angles are only 30 degrees rather than 90

degrees as in the previous example. Figure 5.3 shows the graphical interpretation of

the L-system after 1, 2, 3 and 4 rewrites starting from the single symbol F . Minor

variations of the rule in this system generate different but still plant-like structures,

and the general principle can easily be extended to three dimensions by introducing

symbols that represent rotation along the axis of drawing. For a multitude of beau-

tiful examples of plants generated by L-systems see the book “The Algorithmic

Beauty of Plants” by Prusinkiewicz and Lindenmayer [15].

78 Julian Togelius, Noor Shaker and Joris Dormans F[-F]F[+F][F]}.

n = 1 n = 2 n = 3 n = 4

Fig. 5.3: Four rewrites of the bracketed L-system F → F [−F]F [+F][F].

5.4 Evolving L-systems

Like any parametrisable PCG method, L-system expansions can be used as genotype-

to-phenotype mapping in search-based PCG. An early paper by Ochoa presents a

method for evolving L-systems to attain particular 2D shapes [10]. She restricts her-

self to L-systems with the simple alphabet used above (F +−[]), the axiom F and a

single rule with the LHS F . The genotype is the RHS of the single rule. Ochoa used

a canonical genetic algorithm with crossover and mutation together with a combi-

nation of several evaluation functions. The fitness functions all relate to the shape

of the phenotype, namely the height (“phototropism”), bilateral symmetry, exposed

surface area (“light gathering ability”), structural stability and proportion of branch-

ing points. By varying the contributions of each fitness function, she showed that it

is possible to control the type of the plants generated with some precision. Fig. 5.4

shows some examples of plants evolved with a combination of fitness functions, and

Fig. 5.5 shows some examples of organism-like structures evolved with the same

representation but a fitness function favouring bilateral symmetry.

5.5 Generating missions and spaces with grammars

A game level is not a singular construction, but rather a combination of two inter-

acting structures: a mission and a space [4]. A mission describes the things a player

can or need to do to complete a level, while the space describes the geometric lay-

out of the environment. Both mission and space have their own structural quali-

5 Grammars and L-systems with applications to vegetation and levels (DRAFT) 79

Fig. 6. Fitness function with component weights of: a = 100, b = 90, c = 40, d = 20, e = 30.
Fig. 5.4: Some evolved L-system plants.

Fig. 5.5: Some L-system structures evolved for bilateral symmetry.

ties. For missions it is important to keep track of flow, pacing and causality, while

for the space connectedness, distance and sign posting are critical dimensions. To

successfully generate levels that feel consistent and coherent it is important to use

techniques that can generate each structure in such way that strengthens their indi-

vidual qualities while making sure that the two structures are interrelated and work

together. This section discusses how different types of generative or transformative

grammars can be used to achieve this.

5.5.1 Graph grammars

Generative grammars typically operate on strings, but they are not restricted to that

type of representation. Grammars can be used to generate many different types of

structures: graphs, tile maps, two or three dimensional shapes, and so on. In this

section and the following section, we will explore how grammars can be used to

generate graphs and tile maps. These structures are useful ways to represent game

missions and game spaces that combine into game levels.

Graph are more useful than strings to represent missions and spaces for games,

especially when these missions and spaces need to have a certain level of sophisti-

cation. For example, a completely linear mission (which might be represented by a

80 Julian Togelius, Noor Shaker and Joris Dormans

Fig. 5.6: A mission structure with two paths.

string) might be suitable for simple and linear games, but for explorative adventure

games such as RPG dungeons you will want missions to contain lock and key puz-

zles, bonus objectives, and possibly multiple paths to lead to the level goal. Graphs

can express this type of structures more easily. For example, Fig. 5.6 contains a

mission that can be solved in two different ways.

Graph grammars work quite similar to string grammars; graph grammar rules

also have a left hand part that identifies a particular graph construction that can be

replaced by one of the constructions in the right hand part of the rule. However, to

make the transformation, it is important to identify each node in the left hand indi-

vidually and to match them with individual nodes in each right hand part. Fig. 5.7

represents a graph grammar rule and uses numbers to identify each individual node.

When using this rule to transform a graph, follow 5 steps (as illustrated by Fig. 5.8)2:

1. Find a subgraph in the target graph that matches the left hand of the rule and

mark that subgraph by coping the identifiers of the nodes.

2. Remove all edges between the marked nodes.

3. Transform the graph by transforming marked nodes into their corresponding

nodes on the right hand side, adding a node for each node in the right hand

2 in simple graph transformations there is no need to identify and transform individual edges in the

same way as nodes are identified and transformed. However, a more sophisticated implementation

that requires edges to be transformed rather than removed and added for each transformation can

be realised by identifying and replacing edges in the same way as nodes.

5 Grammars and L-systems with applications to vegetation and levels (DRAFT) 81

Fig. 5.7: A graph grammar rule.

Fig. 5.8: Graph grammar transformation.

that has no match in the target graph, and removing any nodes that have no cor-

responding node in the right hand side3.

4. Copy the edges as specified by the right hand side.

5. Remove all marks [16].

5.5.2 Using graph grammars to generate missions

To generate a simple mission using graph grammars, it is best to start defining the

alphabet the grammar is designed to work with. In this case the alphabet consists of

the following nodes and edges:

• Start (node marked S): the start symbol from which the grammar generates a

mission (the axiom).

3 Take into account that the removal of nodes only works when the node to be removed is only

connected to nodes that have been marked. This is something to take into account when designing

graph grammar rules.

82 Julian Togelius, Noor Shaker and Joris Dormans

Fig. 5.9: Mission rules.

• Entrance (nodes marked e): the starting place of the player.

• Tasks (nodes marked t): arbitrary, unspecified tasks (here be monsters!).

• Goals (nodes marked g): an task that finishes the level when successfully com-

pleted.

• Locks (nodes marked l): a tasks that requires a key to perform successfully.

• Keys (nodes marked k).

• Nonterminal task nodes (nodes marked T)

• Normal edges (represented as solid arrows) connecting nodes and identifying

which task follows which.

• Unlock edges (represented as solid arrows marked with a dash) connecting keys

to locks.

With this alphabet we can construct rules that generate missions. For example,

the rules in Fig. 5.12 were used to generate the sample missions in Fig. 5.104.

One thing you might notice from studying these rules is that graph grammars can

be hard to control. In the case of the rule set represented in Fig 5.12, the number

of task generated (by the application of the “add task” rule) can be as low as one

and has no upper limit. As soon as the Start node is removed from the graph, the

number of tasks no longer grows. One way to get a better grip on the generated

structures is not to apply rules indiscriminately, but to specify a sequence of rules so

that each rule in the sequence is applied once to one possible location in the graph.

For example, if we split up the “add task” rule from Fig. 5.12 into two rules (see

4 The rules use a special wildcard node (marked with a*) to indicate a match with any node.

Wildcards in the right hand side of a rule never change the corresponding node in the graph being

transformed. An alternative to these wildcards is to allow rules to have edges without origin or

target node.

5 Grammars and L-systems with applications to vegetation and levels (DRAFT) 83

Fig. 5.10: Generated Missions.

Fig. 5.11: Two new rules to replace the old “add task”.

Fig. 5.12: Missions generated from the same sequence of rules.

Fig. 5.11), the missions in Fig. 5.12 are generated by apply the following sequence

of rules5:

• start rule (x1),

• add task (x6),

• add boss (x1),

• define task (x6),

• move lock (x5).

5 Obviously, the sequence of rules might be generated by a string grammar.

84 Julian Togelius, Noor Shaker and Joris Dormans

5.5.3 Breaking the process down into multiple generation steps

So far, the graph grammars are relatively simple. However, to generate anything

resembling the complexity of the mission in Fig. 5.6, many more rules are required.

Designing the grammars to achieve such results takes practice and patience. A key

strategy to design successful grammars is to break down the process into multiple

steps. Trying to generate everything at once using only one grammar is a daunting

task, and next to impossible to debug and maintain6.

When breaking down the generation process into multiple steps, it useful to think

of each step as a simulation of the design process. One step might generate the over-

all specifications of the mission, while the next might flesh out those specifications.

In game design, a successful design strategy is to start from a set of random set of

requirements and use your creativity to shape that random collection into a coherent

whole. Following a similar approach for breaking down the generation procedure

and designing individual grammars yields good results. In particular, designing one

simple step to create a highly randomised graph and use a second step the restruc-

ture that graph into something that makes sense from the game’s perspective, is a

very effective strategy to create very expressive generation procedures [6].

For example, we can use a single step to generate a mission of a specified length

and randomly choose between locks, keys and other tasks to fill in the spaces be-

tween the entrance and the goal. Although in this case we also make sure that the

first task is always a key and the last task is always a lock. Fig. 5.13 and Fig. 5.14

represent the rules and a sample mission built using those rules. Note that although

locks and keys are placed, no relationship between them is established.

The next step is to extract lock and key relationships. Based on the spread of the

locks and keys over the tasks, multiple keys can be assigned to a single lock, and

vice versa. This would represent multiple levers that need to be activated to open a

single door, or a special weapon that can be used multiple times to get past a special

type of barrier. Fig. 5.15 represents the rules to add these relationships, and Fig. 5.16

is a sample configuration created from the sample set in Fig. 5.14.

Next steps could include the movement of locks through the graph (as we have

seen in the example above), generating more details of the nature of the locks and

keys, or adding tasks of a different type. One of the advantages of using these two

steps is that two relatively simple grammars can create a large variety of different

relationships (two keys to a single lock, or keys that are reused). Getting the same

level of variation using explicit rules that create an X number of keys to a single lock

would require many more rules which are much harder to maintain. In addition, the

second step can also be executed on graphs that have been built to different specifi-

cations. For example, the same rules can be used to create lock and key relationships

for a dungeon that has two separate paths (see Fig. 5.17).

6 Breaking down the generation into multiple steps is in line with the approach to software en-

gineering and code generation suggested by model driven engineering. When done right, this ap-

proach leads to a flexible generation processes that allow you to generate spaces from missions or

vice versa, and creates opportunities to design generic, reusable generation steps [1, 5].

5 Grammars and L-systems with applications to vegetation and levels (DRAFT) 85

Fig. 5.13: Rules to create random set.

Fig. 5.14: Sample random set.

Fig. 5.15: Rules to add lock and key relationships.

86 Julian Togelius, Noor Shaker and Joris Dormans

Fig. 5.16: Generated lock and key relationships.

Fig. 5.17: Two paths to a single goal.

5.5.4 Generating spaces to accommodate a mission

Having a representation of a mission itself is only one step towards the generation

of levels for a game. Missions need to be transformed into spaces that the player can

actually traverse. Transforming from mission to space is one of the hardest steps in

this process. The problem comes down to generating two different, independent but

linked structures: an abstract mission that details the things a player needs to do, and

a concrete space that creates the world where the player can do these things. Below

you find three strategies to deal with the problem of generating the two structures:

1. Transform from mission to space. The transition from Fig. 5.14 to Fig. 5.16 re-

flects the gradual transition from abstract missions to a more concrete repre-

sentation of a game space. Although in this case, the game space is still highly

abstract. However by using automatic graph layout algorithms and sampling the

results into a tile map, you are able to generate usable level geometry. This ap-

proach works well for games such as action adventure games or games with a

strong narratives, where mission coherence and pacing is important. The disad-

vantage of this approach is that the difficulty of going from mission to space is

most pronounced.

2. Transform a mission to a set of instructions to build a space. Instead of trans-

forming a mission structure into a space directly you can transform the mission

into a set of building instructions that can be used to build a space to match the

requirements. This approach has the advantage that the transition from graphs

5 Grammars and L-systems with applications to vegetation and levels (DRAFT) 87

to tiles or shapes is much easier, it also comes at a cost: it is very difficult to

generate spaces that have multiple paths leading to the same goal or location. So

this approach works best for very linear games like platformers or certain story

driven games.

3. Build level geometry and distill a more abstract representation of the game space

to generate the missions from. This approach reverts the problem by generating

level geometry first and set up missions for that geometry. You can do this by

generating a geometry using cellular automata, grammars, evolution, or any other

technique, then analysing the geometry to create an abstract graph representation

of that same space which you can transform into suitable mission structures.

This approach works well for strategic games, levels that take place in locations

that require some consistent architecture (such as castles, dwarf fortresses, police

stations, or space ships), and for levels that the player is going to visit multiple

times. The downside of this approach is that it is critical that the geometry is

generated with enough mission potential (are there doors to be locked, bottleneck

to set up traps, and so on) and that you have far less control over the mission than

with the other two approaches.

When choosing between these strategies, or when trying to come up with another

strategy, it is important to think like a designer. The most effective way of generating

levels using a multistep process and different representations of missions and spaces

is to model the real design process. Ask yourself, how would you go about designing

a level by hand? Would you start by listing mission goals, or by sketching out a

map? What sort of changes do you make and can those changes be captured by

transformational grammars?

5.5.5 Extended Example: ‘Dules

An extended example following the third strategy concludes this section. The exam-

ple details the part of the PCG for the game ‘Dules, which is currently in develop-

ment. In this game, players control futuristic combat vehicles (tanks, hovercraft, and

so on) in a post-apocalyptic, alien-infested world. The players can choose missions

from a world map, after which the game generates an environment to match the lo-

cation on the map and sets up a mission based on the affordances of the environment

and specifications dictated by the current game state (who controls the environment,

is the player trying to take over, or defending from alien incursion, and so on).

The content generation of ‘Dules makes use of transformation grammars that op-

erate on strings, graphs, and tiles. Tile grammars are very simple. They also consist

of rules with one left and one or more right hands where the left hand can be replaced

by one of the right hand constructions. Like graph grammars, the tile grammars used

in ‘Dules can work with wildcards to indicate that certain tiles can be ignored. In

contrast to string and graph grammars, tile grammars cannot change the number of

tiles. In addition, tile grammars can be made to stack tiles onto each other instead

of replacing them.

88 Julian Togelius, Noor Shaker and Joris Dormans

Fig. 5.18: The generation steps to create a level for ‘Dules.

The procedural content generation procedure roughly follows the steps as out-

lined Fig. 5.18. In this case taking the tile-based world map as an input (1), the

particular location is selected (2). Based on the presence of particular tiles indicat-

ing vegetation, elevation, buildings, and such, a combination of tile grammars and

cellular automata are used to create the terrain (3-7). The terrain is analysed and

transformed into an abstract representation (8). At the same time, mission specifica-

tions are generated using a string grammar (9), which are used as building instruc-

tions to plot a mission onto the space graph (10)7. Finally, some extra enemies are

added to the mission (11), all the mission specific game objects are placed onto the

same tile map (12) and combined with the terrain to create the complete mission

(13).

Almost all steps in the process are handled by grammars. Tile grammars are

used to generate the terrain, tile grammars are even used to specify different cellular

automata. String grammars are used to create the mission specification and graph

grammars are used to create the mission itself. The translation of the terrain into

the space graph is done using a specialised algorithm that distinguishes between

walkable terrain, impassible terrain, and bodies of water. Each node in (8) represents

around 100 tiles, and a reference between the node and the tiles is kept to be able to

place the game objects in the right area during (12).

7 In this case certain graph nodes are represented to contain other nodes. This is just a representa-

tion, for the implementation and the grammars, such a containment is nothing but a special type of

edge, that is rendered differently.

5 Grammars and L-systems with applications to vegetation and levels (DRAFT) 89

5.6 Grammatical evolution for Infinite Mario Bros level

generation

Grammatical Evolution (GE) is an evolutionary algorithm based on Grammatical

Programming (GP) [13]. The main difference between GE and GP is the genome

representation; while a tree-based structure is used in GP, GE relies on a linear

genome representation. Similar to general Genetic Algorithms (GAs), GE applies

fitness calculations for every individual and it applies genetic operators to produce

the next generation.

The population of the evolutionary algorithm is initialised randomly consisting of

variable-length integer vectors; the syntax of possible solution is specified through a

context-free grammar. GE uses the grammar to guide the construction of the pheno-

type output. The context-free grammar employed by GE is usually written in Backus

Naur Form (BNF). Because of the use of a grammar, GE is capable of generating

anything that can be described as a set of rules such as mathematical formulas [18],

programming code, game levels [17] and physical and architectural designs [2, 14].

GE has been used intensively for automatic design [8, 2, 14, 7, 11], a domain where

it has been shown to have a number of strengths over more traditional optimisation

methods.

5.6.1 Backus Naur Form

Backus Naur Form (BNF) is a set of production rules usually used to express a

grammar. A BNF grammar G = {N,T,P,S} consists of terminals, T , non-terminals,

N, production rules, P and a start symbol, S. Such as in any grammar, non-terminals

can be expanded into one or more terminals and non-terminals through applying the

production rules. An example BNF to generate valid mathematical expressions is

given in Fig. 5.19.

(1) <exp> ::= <exp> <op> <exp>

| (<exp> <op> <exp>)

| <var>

(2) <op> :: = + | - | * | /

(3) <var> ::= X

Fig. 5.19: Illustrative grammar for generating mathematical expressions.

Each chromosome in GE is a vector of codons. Each codon is an integer num-

ber used to select a production rule from the BNF grammar in the genotype-to-

phenotype mapping. A complete program is generated by selecting production rules

from the grammar until all non-terminal rules are mapped. The resulted string is

90 Julian Togelius, Noor Shaker and Joris Dormans

evaluated according to a fitness function to give a score to the genome. To better

understand the genotype-to-phenotype mapping, we will give a brief example.

Consider the grammar in Fig. 5.19 and the individual genotype integer string

(4,5,8,11). We begin the processing of the mapping from the start symbol < exp >.

In this case there are three possible productions, to decide which production to

choose, we use the first value in the input genome and apply the mapping func-

tion 4%3 = 1, where 3 is the number of possible productions, the result from this

operation indicates that the second production should be chosen, and < exp > is

replaced with (< exp >< op >< exp >). The mapping continues by using the next

integer with the first unmapped symbol in the mapping string, the mapping string

then becomes (< var >< op >< exp >) through the formula 5%3 = 2. At this step

< var > has only one possible outcome and there is no choice to be made, hence, X

is inserted without reading any number from the genome. The expression becomes

(X < op >< exp >). Continuing to read the codon values from the example, indi-

vidual’s genome < op > is mapped to + and < exp > is mapped to X through the

two formulas, 8%4 = 0 and 11%3 = 2, respectively. This results in the expansion

(X +X).
During the mapping process, it is possible for individuals to run out of genes, in

this case GE either declares the individual as invalid by assigning it with a penalty

fitness value or it wraps around and reuses the genes.

5.6.2 Grammatical evolution level generator

In the work done by Shaker et al. [17] grammatical evolution was adopted to gener-

ate content for Infinite Mario Bros (IMB) motivated by the number of advantages it

provides over more traditional optimization methods [12]: it maintains a simple way

of describing the structure of the levels; it enables an open-ended structure where

the design and model size are not known a priori; it enables the design of aestheti-

cally pleasing levels by exploring a wide space of possibilities since the exploratory

process is not constrained or biased by imagination or known solutions; it allows an

easy incorporation of domain knowledge through its underlying grammatical repre-

sentation permitting level designers to maintain greater control of the output and it

makes possible to easily generalize to different types of games.

The following section summarises the work done by Shaker et al. [17]. We start

by presenting the design grammar used by GE to specify the structure of IMB levels,

after that we present how GE was employed to evolve playable levels for the game.

5.6.2.1 Design grammar for content representation

As mentioned earlier, GE uses a Design Grammar (DG), written in BNF, to spec-

ify the representation of solutions (in our case a level design). Several methods can

be followed to specify the structure of the levels in a design grammar, but since the

5 Grammars and L-systems with applications to vegetation and levels (DRAFT) 91

(a) Flat platform (b) Hills (c) Gap

(d) Bill

blaster

(e) Piranha

plant

(f)

Koopa
(g)

Goomba
(h) Boxes (i) Coins

Fig. 5.20: The geometric representation of the different chunks used for constructing

Infinite Mario Bros levels.

grammar employed by GE is of context-free nature, this limits the possible solutions

available. To accommodate for this constraint, and to keep the grammar as simple as

possible; the implementation proposed is to add a game elements to the 2D level ar-

ray regardless of the positioning of the other elements. With this solution, however,

arises a number of conflicts in level design that should be resolved. Section 5.6.2.2

discusses this issue and the proposed solution in details.

The internal representation of the levels in IMB is a two-dimensional array of

objects, such as brick blocks, coins and enemies. The levels are generated by plac-

ing a number of chunks in the two-dimensional level map. The list of chunks that

was considered includes platforms, gaps, stairs, piranha plants, bill blasters, boxes

(blocks and brick blocks), coins, goombas and koopas. Each of these chunks has a

distinguishable geometry and properties. Fig. 5.20 presents the different chunks that

collectively constitute a level. The level initially contains a flat platform that spans

the whole x-axis, this explains the need of defining gaps as one of the chunks.

A design grammar was specified that takes into account the different chunks. In

order to allow more variations in the design, platforms and hills of different types

were considered such as a blank platform/hill, a platform/hill with a bill blaster, and

a platform/hill with a piranha plant.

Variations in enemy placements were achieved by (1) constructing the physical

structure of the level, (2) calculating the possible positions on which an enemy can

be placed (this includes all positions where a platform was generated) and (3) plac-

ing each generated enemy in one of the possible positions.

The design grammar constructed can be seen in Figure 5.21. A level is con-

structed by placing a number of chunks each assigned with two or more properties,

the x and y parameters specify the coordinates of the chunk starting point position

in the 2D level array and are limited to the ranges [5,95] and [3,5], respectively.

These ranges are constrained by the dimension of the level map. The first and last

five blocks in the x dimension are reserved for the starting platform and the ending

92 Julian Togelius, Noor Shaker and Joris Dormans

gate, while the y values have been constrained in a way that insures playability (the

existence of a path from the start to the end position) by placing all items in areas

reachable by Mario by performing jumps. The wg parameter specifies the width of

gaps that insures the ability to reach the other edge, w stands for the width of a plat-

form or a hill, wc defines the number of coins, and h indicates the height of a tube

of the piranha plant or the height of a bill blaster. This height is also constrained to

the range [3,4] assuring the possibility of jumping over tubes and bill blasters.

<level> ::= <chunks> <enemy>

<chunks> ::= <chunk> |<chunk> <chunks>

<chunk> ::= gap(<x>,<y>, <wg>,<wbe f ore>,<wa f ter>)

| platform(<x>,<y>,<w>)

| hill(<x>,<y>,<w>)

| blaster_hill(<x>,<y>,<h>,<wbe f ore>,<wa f ter>)

| tube_hill(<x>,<y>,<h>,<wbe f ore>,<wa f ter>)

| coin(<x>,<y>,<wc>)

| blaster(<x>,<y>,<h>,<wbe f ore>,<wa f ter>)

| tube(<x>,<y>,<h>,<wbe f ore>,<wa f ter>)

| <boxes>

<boxes> ::= <box_type> (<x>,<y>)2 | ...

| <box_type> (<x>,<y>)6

<box_type> ::= blockcoin | blockpowerup

| brickcoin | brickempty

<enemy> ::= (koopa | goomba)(<pos>) 2 | ...

| (koopa | goomba)(<pos>) 10

<x> ::= [5..95]

<y> ::= [3..5]

<wg> ::= [2..5]

<wbe f ore> ::= [2..5]

<wa f ter> ::= [2..5]

<w> ::= [2..6]

<wc> ::= [2..6]

<h> ::= [3..4]

<pos> ::= [0..100000]

Fig. 5.21: The design grammar employed to specify the design of the level. The

superscripts (2, 6 and 10) are shortcuts specifying the number of repetition.

5.6.2.2 Conflict resolution and content quality

There are a number of conflicts inherent within the design grammar. According

to the design approach, each chunk generated can be assigned any x and y values

from the ranges [5,95] and [3,5], respectively, depending on the genotype with-

5 Grammars and L-systems with applications to vegetation and levels (DRAFT) 93

out any restrictions. This means that it is very likely that there will be an over-

lap between the coordinates of the generated chunks. For example: hill(65,4,5)
hill(25,4,4) blaster hill(67,4,4,4,3) coin(22,4,6) plat f orm(61,4,4) is a phe-

notype that has been generated by the grammar and contains a number of con-

flicts: e.g., hill(65,4,5) and blaster hill(67,4,4,4,3) were assigned the same y

value, and overlapping x values; another conflict occurs between hill(25,4,4) and

coin(22,4,6); as the two chunks also overlap on the x−axes.

To resolve these conflicts, a priority value was manually defined and assigned to

each of the chunks. Hills with bill blasters or piranha plants are given the highest

priority followed by blank hills, platforms with enemies (bill blasters or piranha

plants) come next then blank platforms and finally come coins and blocks with

the lowest priority. After generating a genotype (with possible conflicts), a post-

processing step is applied in which the chunks are arranged in a descending order

according to their priorities, coordinates and type. The resulted ordered phenotype

is then scanned and whenever two overlapping chunks are detected, the one with the

higher priority value is maintained and the other is removed. Nevertheless, to allow

more diversity, some of the chunks are allowed to overlap such as hills of different

height (Figure 5.20. b), and coins or boxes with hills (hills here refer to all types

of hills; blaster-hills, tube-hills and flat hills). Without this refinement, most levels

would look rather flat and uninteresting.

To measure content quality, a relatively simple fitness function was implemented.

The main objective of the fitness function is to allow for exploring the design space

by creating levels with an acceptable number of chunks permitting for rich design

and variability. Thus, the fitness function used is a weighted sum of two normalised

measures; the first one, fp, is the difference between the number of chunks placed in

the level and a predefined threshold that specifies the maximum number of chunks

that can be placed. The second, fc, is the number of different conflicting chunks

found in the design. Apparently, the two fitness functions partially conflict since

optimising fp by placing more chunks implicitly increases the chance of creating

conflicting chunks (fc). Some example levels generated are presented in Fig. 5.22.

5.7 Lab exercise: create plants with L-systems

At this point, you should be able to implement a bracketed simple L-system to gen-

erate plants, which is what you will be doing for this lab exercise. Use an L-system

to generate your plants and a turtle graphics program to draw them. You will be

given a software package that contains three main classes: LSystem, State and Can-

vas. Your main work will be to implement the two main methods in the LSystem

class:

public void expand(int depth)

public void interpret(String expression)

94 Julian Togelius, Noor Shaker and Joris Dormans

Fig. 5.22: Example levels generated by the GE-generator using the design grammar

in Fig. 5.21.

Fig. 5.23: Example trees generated with an L-system using different instantiation

parameters.

The L-system has an alphabet, axioms, production rules, a starting point, a start-

ing angle, a turning angle and a length for each step. The expand method is used to

expand the axiom of the L-system a number of times specified in the depth param-

eter. After expansion, the system processes the expansion and visualises it through

the interpret method. The result of each step is drawn on the canvas. Since the L-

system will be in a different number of states during expansion, a State class is

defined to represent each state. An instance of this class is made for each state of

the L-system and the variables required for defining the state are passed on from the

L-system to the state; these include the x and y coordinates, the starting and turing

angels and the length of the step. The L-system is visualised by gradually drawing

each of its states.

The State and the Canvas classes are helpers, and therefore there is no need to

do any modifications to them. The Canvas class has the methods required for sim-

ple drawing on the canvas and it contains the main method to run your program. In

the main method, you can instantiate your L-system, define your axiom, your pro-

duction rules and the number of expansions. Fig. 5.23 presents example L-systems

generated using the following rules: (F,F,F → [−F]F [+F][F]) (Fig. 5.23.??) and

(F, f ,(F → FF, f → F − [[f] + f] + F [+F f]− f)) (Fig. 5.23.??). (Note that the

rules are written in the form G = (A,S,P), where A is your alphabet, S is the axiom

or the starting point and P is the set of production rules).

You can of course use the same software to draw fractal-like forms such as the

ones presented in Fig. 5.24. Some example simple rules that you can use to create

5 Grammars and L-systems with applications to vegetation and levels (DRAFT) 95

Fig. 5.24: Example fractals generated with an L-system using different production

rules.

relatively complex shapes are the followings: (F,F +F +F +F,(F +F +F +F →

F +F +F +F,F → F +F −F −FF +F +F −F)) (Fig. 5.24.??), (F,F ++F +
+F,F →F−F++F−F) (Fig. 5.24.??) and (F, f ,(f →F− f −F,F → f +F+ f))
(Fig. 5.24.??).

References

1. Brown, A.: An introduction to Model Driven Architecture (2004). URL

http://www.ibm.com/developerworks/rational/library/3100.html

2. Byrne, J., Fenton, M., Hemberg, E., McDermott, J., O’Neill, M., Shotton, E., Nally, C.: Com-

bining structural analysis and multi-objective criteria for evolutionary architectural design.

Applications of Evolutionary Computation pp. 204–213 (2011)

3. Chomsky, N.: Three models for the description of language. Information Theory, IRE Trans-

actions on 2(3), 113–124 (1956)

4. Dormans, J.: Adventures in Level Design: Generating Missions and Spaces for Action Adven-

ture Games. In: Proceedings of the Foundations of Digital Games Conference Monterey CA,

June 2010 (2010)

5. Dormans, J.: Level Design as Model Transformation: A Strategy for Automated Content Gen-

eration. In: Proceedings of the Foundations of Digital Games Conference, Bordeaux France,

June 2011 (2011)

6. Dormans, J., Leijnen, S.: Combinatorial and Exploratory Creativity in Procedural Content

Generation. In: Proceedings of the Foundations of Digital Games Conference Chania, Greece,

May 2013 (2013)

7. Hemberg, M., O’Reilly, U.: Extending grammatical evolution to evolve digital surfaces with

genr8. In: Proceedings of the 7th European Conference on Genetic Programming, (EuroGP),

pp. 299–308. Springer-Verlag (2004)

8. Hornby, G., Pollack, J.: The advantages of generative grammatical encodings for physical

design. In: Proceedings of the Congress on Evolutionary Computation, pp. 600–607. IEEE

(2001)

9. Lindenmayer, A.: Mathematical models for cellular interactions in development i. filaments

with one-sided inputs. Journal of theoretical biology 18(3), 280–299 (1968)

10. Ochoa, G.: On genetic algorithms and lindenmayer systems. In: Parallel Problem Solving

from NaturePPSN V, pp. 335–344. Springer (1998)

11. O’Neill, M., Brabazon, A.: Evolving a logo design using lindenmayer systems, postscript &

grammatical evolution. In: IEEE Congress on Evolutionary Computation, pp. 3788–3794.

IEEE (2008)

12. O’Neill, M., McDermott, J., Swafford, J., Byrne, J., Hemberg, E., Brabazon, A., Shotton,

E., McNally, C., Hemberg, M.: Evolutionary design using grammatical evolution and shape

grammars: Designing a shelter. International Journal of Design Engineering (1), 4–24 (2010)

13. O’Neill, M., Ryan, C.: Grammatical evolution. IEEE Transactions on Evolutionary Computa-

tion (4), 349–358 (2001)

96 Julian Togelius, Noor Shaker and Joris Dormans

14. O’Neill, M., Swafford, J., McDermott, J., Byrne, J., Brabazon, A., Shotton, E., McNally, C.,

Hemberg, M.: Shape grammars and grammatical evolution for evolutionary design. In: Pro-

ceedings of the 11th Annual conference on Genetic and evolutionary computation, pp. 1035–

1042. ACM (2009)

15. Prusinkiewicz, P., Lindenmayer, A., Hanan, J.S., Fracchia, F.D., Fowler, D.R., de Boer, M.J.,

Mercer, L.: The algorithmic beauty of plants, vol. 2. Springer-Verlag New York (1990)

16. Rekers, J., Schürr, A.: A Graph Grammar Approach to Graphical Parsing. In: Proceedings

of the 11th International IEEE Symposium on Visual Languages, Darmstadt Germany, May

1995, pp. 195–202 (1995)

17. Shaker, N., Nicolau, M., Yannakakis, G.N., Togelius, J., ONeill, M.: Evolving levels for super

mario bros using grammatical evolution. pp. 304–311 (2012)

18. Tsoulos, I., Lagaris, I.: Solving differential equations with genetic programming. Genetic

Programming and Evolvable Machines (1), 33–54 (2006)

Chapter 6

Rules and mechanics (DRAFT)

Mark J. Nelson, Julian Togelius, Cameron Browne, and Michael Cook

So far in this book, we have seen a large number of methods for generating content

for existing games. So, if you have a game already, you could now generate many

things for it: maps, levels, terrain, vegetation, weapons, dungeons, racing tracks. But

what if you don’t already have a game, and want to generate the game itself? What

would you generate, and how? At the heart of any game are its rules. This chapter

will discuss representations for game rules of different kinds, along with methods to

generate them, and evaluation functions and constraints that help us judge complete

games rather than just isolated content artefacts.

Our main focus here will be on methods for generating interesting, fun, and/or

balanced game rules. However, an important perspective that will permeate the

chapter is that game rule encodings and evaluation functions can encode game de-

sign expertise and style, and thus help us understand game design. By formalising

aspects of the game rules, we define a space of possible rules more precisely than

could be done through writing about rules in qualitative terms; and by choosing

which aspects of the rules to formalise, we define what aspects of the game are in-

teresting to explore and introduce variation in. In this way, each game generator can

be thought of an executable micro-theory of game design, though often a simplified,

and sometimes even a caricatured one [22].

6.1 Encoding game rules

To generate game rules, we need some way of representing or encoding them in a

machine-readable format that some software system can work with.1 An ambitious

starting point for a game encoding might be one that can encode game rules in

general: an open-ended way to represent any possible game. The game generator

1 There are many other uses for machine-readable game rules, such as for use in game-playing AI

competitions [?, ?] and in game-design assistants targeted at human game designers [16, 7]. This

chapter focuses on encodings for generating rules, but multi-use encodings are often desirable.

97

98 Mark J. Nelson, Julian Togelius, Cameron Browne, and Michael Cook

would then work on games in this encoding, looking for variants or entirely new

games in this space. But such a fully general encoding provides a quite unhelpful

starting point. A completely general representation for games cannot say very much

specific about games at all. Some kinds of games have turns, but some don’t. Some

games are primarily about graphics and movement, while others take place in an

abstract mathematical space. The only fully general encoding of a computer game

would be simply a general encoding for all software. Something like “C source

code” would suffice, but it produces an extremely sparse search space. Although all

computer games could in principle be represented in the C programming language,

almost all things that can be represented in C’s syntax are not in fact games, and

indeed many of them are not even working programs, making a generator’s job

quite difficult.2

Instead of having a generator search through the extremely sparse space of all

computer programs to find interesting games, a more fruitful starting point is to

pick an encoding where the space includes a more dense distribution of things that

are games and meet some basic criteria of playability. That way, our generator can

spend most of its time attempting to design interesting game variants. Furthermore,

it’s helpful for game encodings to start with a specific genre. Once we restrict focus

to a particular genre, it’s possible to abstract meaningful elements common to games

in the genre, which the generator can take as given. For example, an encoding for

turn-based board games can assume that the game’s time advances in alternating

discrete turns, that there are pieces on spaces arranged in some configuration, and

that play is largely based on moving pieces around. This means the game generator

does not have to invent the concept of a “turn”, but instead can focus on finding

interesting rules for turn-based board games. An encoding for a side-scrolling space

shooter would be very different: here the encoding would include continuous time;

entities such as terrain, enemies, physics, lives, and spawn points; and events such

as shooting, object collision, and scrolling. Of course, the encoding cannot be too

narrow: at the limit, an encoding that specifies exactly one game (or only a few)

is not very interesting for a game-generation system. The most productive point on

the spectrum between complete generality and complete specificity is one of the

key tradeoffs in designing an encoding for game generators to use: smaller spaces

typically are more dense in playable, interesting candidates, but larger spaces may

allow for more interesting variation [19].3

In addition to being a more fruitful space for game generators to work in, genre-

specific encodings also make it easier to produce playable games. Whereas a com-

puter could generate purely abstract rule systems, making interesting games that are

2 This is not to say generating games encoded as raw programs would be impossible: genetic-

programming techniques evolve programs encoded in fairly general representations [20], and ap-

plying genetic programming to videogame design could produce interesting results. But the tech-

niques in this chapter focus on higher-level representations, which allow the generators to work on

more familiar game-design elements rather than on low-level source code.
3 Some interesting future work lies in modular encodings: instead of choosing a specific genre,

a generator might pick and choose a generative space consisting of a combat system, 2d grid

movement, an inventory system, etc. [15].

6 Rules and mechanics (DRAFT) 99

playable by humans requires connecting those abstract rules to concrete audiovi-

sual representations [14]. For example, the abstract notion of a “capture” in board

games is often represented by physically removing a piece from the board. The idea

of “hidden information” in card games is represented by how players hold their

cards, and which cards on the table are face-up versus face down. Concepts such

as “health” can be represented in any number of ways, ranging from numerical dis-

play of hitpoints or health percentage on the screen, to more indirect methods such

as changing a character’s color, or even varying the music when a player’s health

drops below a threshold. Matching generated rules to these concrete representations

can be a challenging research problem in itself [17], but working with encodings

of specific genres allows us to sidestep the issue, by having a standard concrete

representation for the genre being considered.

Finally, using a genre-specific encoding provides a first step towards answering

a key question: how do we evaluate what constitutes a good set of game rules?

Rather than the extremely general question of what makes a good game, we can

take ask what makes a good two-player board game, a good real-time strategy

game, or a good first-person shooter. That lets us take advantage of existing genre-

specific design knowledge, which is usually better-developed and more amenable

to being formalized. Design of new board games may focus on properties such as

balance, availability of multiple nontrivial strategies, etc. Criteria for designing a

good sidescrolling shooter, meanwhile, may instead focus on the pace of the action,

patterns of enemy waves, and the difficulty progression—very different kinds of cri-

teria. When we generate the rules for games using encodings of these well-defined

genres, we can use a wide variety of existing design knowledge to made our playa-

bility and quality judgments. This allows rule-generating PCG systems to start from

the basis of being domain experts in a specific genre, to use Khaled et al.’s terms for

PCG system roles [10].

The two sections that follow describe game-generator experiments that a number

of researchers have undertaken in those two domains that have seen the most study:

board games, and 2d graphical-logic games.

6.2 Board games

Board games were the first domain in which systems were built to procedurally

generate game rules. They have several features that make them a natural place

to start. For one, there is a discrete, finite structure to the games that simplifies

encoding; unlike computer games, which are defined by an often complex body of

code, games like chess are defined by simple sets of rules. Secondly, there is already

a culture of inventing board-game variants, so automatic invention of game variants

can draw from existing investigations into manual generation of game variants, and

the design books that have been written about those investigations [6, 2].

100 Mark J. Nelson, Julian Togelius, Cameron Browne, and Michael Cook

6.2.1 Symmetric, chess-like games

The earliest rule-generating system, predating the more recent resurgence in PCG

research, was METAGAME [19], which generated “symmetric, chess-like games”.

The chess-like part means that the games take place on a grid, and are structured

around two players taking turns moving pieces according to certain rules; these

pieces can also be removed from the board in certain circumstances. The symmetric

part means that the two players start on opposite ends of the board with symmetric

starting configurations, and all game rules are identical for each player, just flipped

to the other side of the board. For example, if METAGAME invented a chess vari-

ant in which pawns could capture sideways, this would always be true for both the

black and white player; the space of games METAGAME represents doesn’t in-

clude asymmetric games where players start with different pieces, or make moves

according to differing rules.

The symmetric aspect of the game rules is enforced by construction: only one

set of rules is encoded in the generator, and those rules are applied to both players,

so any change to an encoded rule automatically changes the rules for both sides.

The space of possible rules is encoded in a hierarchical game grammar that speci-

fies options for the board layout, how pieces can move, how they can capture, win

conditions, and so on. Specific games are generated by simply stochastically sam-

pling from that grammar, and then imposing some checks for basic game playability.

Note that this is a constructive rather than a search-based approach; the system does

not test the quality of generated games as part of the generation process, and does

not search the space of games it can express as much as it randomly samples it.

The generator also has a few parameter knobs available, allowing the user to tweak

some aspects of what’s likely to be generated, such as the average complexity of

movement rules.

Pell’s motivation for building METAGAME was not game generation itself, but

testing AI systems on the problem of general game playing. By the early 1990s,

there was a worry that computer chess competitions were causing researchers to

produce systems so specifically engineered to play chess and only chess, that they

might no longer be advancing artificial intelligence in general. Pell proposed that

more fundamental advances in AI would be better served by forcing game-playing

AI systems to play a wider space of games, where they wouldn’t know all the rules

in advance, and couldn’t hard-code as many details of each specific game [18]. To

actually set up such a competition, he needed a way to define a larger space of

games, and a generator that could produce specific games from that space, to send

to the competing systems. METAGAME was created to provide that more general

space of test games, and as a result, also became the first PCG system for game

rules.

6 Rules and mechanics (DRAFT) 101

6.2.2 Balanced board games

While METAGAME generated a fairly wide range of games, the end result was

controllable only implicitly: games were not selected for specific properties, but

chosen randomly from the game grammar.

One property that is frequently desired in symmetric games is game balance:

there shouldn’t be a large advantage for one side or the other, such that the outcome

is too strongly determined by who starts with the white pieces versus the black

pieces. METAGAME produces games that are often balanced by virtue of having

symmetric rule-sets, which tend to produce balanced gameplay. But a symmetric

rule-set does not automatically mean a game will be balanced: moving first can

often be a large advantage, or it might even in some cases be a disadvantage. Hom

and Marks [9] decided to address the goal of balance directly. They first took a much

smaller space of chess variants, to allow the space to be more exhaustively searched.

Then, they evaluated candidate games for balance by having computer players play

against each other a number of times, and rejected games with simulated win-rates

that deviated too far from 50/50.

This process ends up feeding the original motivating application of METAGAME

back into the generation of game rules. METAGAME had been designed to test

general game-playing agents, which were new at the time. Over the years, a number

of research and commercial systems were developed, which could take an arbitrary

game encoded in a description language, and attempt to play it. Hom and Marks

took one such general game-playing system, Zillions of Games, and set it to play

their generated games as a way of evaluating them.

The changes from METAGAME introduced here are fairly general ones which

are seen in other PCG systems: the idea of an evaluation function to decide what

constitutes a good example, and simulation as a way of specifying an evaluation

function in a complex domain, where it’s difficult to specify one directly. Here, sim-

ulation is done by the computer playing the game against itself, and the evaluation

function is how close its win rate comes to being 50/50 from each side of the board.

6.2.3 Evolutionary game design

The obvious next step is to use this ability to simulate and evaluate general games

to guide the automated search for new games. For example, the evaluation function

(also known as fitness function) can be used to direct the evolution of rule sets, to

search for new combinations of mechanics that produce fit, interesting games. This

section describes an experiment in evolutionary board game design called LUDI,

which produced the first fully computer-invented games to be commercially pub-

lished [3].

102 Mark J. Nelson, Julian Togelius, Cameron Browne, and Michael Cook

6.2.3.1 Representation

Games are described in the LUDI system as symbolic expressions in simple ludemic

form (a ludeme is a unit of game information). For example, Tic-Tac-Toe is de-

scribed as follows:

(game Tic-Tac-Toe

(players White Black)

(board (tiling square i-nbors) (shape square) (size 3 3))

(end (All win (in-a-row 3)))

)

This game is played by two players, White and Black, on a square 3×3 board

including diagonals (i-nbors), and is won by the first player to form 3-in-a-row of

their colour. By default, players take turns placing a piece of their colour on an

empty board cell per turn.

The LUDI language is procedural rather than declarative in nature, being com-

posed of high-level rule concepts rather than low-level machine instructions or logic

operations, as per the Stanford GDL. This makes the language less general as every

rule must be predefined by the programmer, but has the advantages of simplicity

and clarity; most readers should be able to recognise the game described above de-

spite having no prior knowledge of the system. Further, it allows rule sets to be

described and manipulated as high-level conceptual units, much as humans concep-

tualise games when playing and designing them.

6.2.3.2 Evaluation

The LUDI system evaluates a rule set by playing the game against itself over a num-

ber of self-play trials. A rule set is deemed to be “fit” in this context if it produces

an a non-trivial and interesting contest for the players. The basic approach is similar

to that used by Althöfer [1] and Hom and Marks [9], but in this case a much broader

range of 57 aesthetic measurements are made, divided into:

• Intrinsic criteria based directly on the rule set.

• Playability criteria based on the outcomes of the self-play trials.

• Quality criteria based on trends in play play.

The intrinsic criteria measure the game at rest directly from its rule set. However,

the true nature of a game does not emerge until the game is actually played, so it was

not surprising that no intrinsic criteria ultimately proved useful when these criteria

were correlated with human player rankings for a suite of test games.

It was found that the playability criteria, based on the game outcomes, provided

a useful and robust estimate of the basic playability of a game. Four of these criteria

proved particularly good at identifying unfit rule sets, constituting a playability filter

that formed the first line of defense to quickly weed out games that:

6 Rules and mechanics (DRAFT) 103

• result in draws more often than not,

• are too unbalanced towards either player,

• have a serious first or second move advantage, or

• are too short or too long on average.

Games that pass the playability filter are then subject to a number of more subtle

and time-intensive quality measurements, based on the lead histories of the simu-

lated games. The lead history of a game is a record of the difference between the

estimated strength of the board position of the eventual winner and the eventual

loser at each turn. Such quality measurements are more subtle and less reliable than

the playability measurements, but offer the potential to capture a richer snapshot of

the player experience.

0 1() 2() 3() 4() 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27

+1

0

-1

Fig. 6.1: Lead history showing drama in a game.

For example, Figure 6.1 shows the lead history of a game lasting 27 moves. The

white and black dots show the players’ estimated fortunes, respectively, while the

bold line shows the difference between them at each move. This example demon-

strates a dramatic game, in which the ultimate winner (White) spends several moves

in a relatively negative (losing) position before recovering to win the game. Such

drama is a key indicator of interesting play that human designers typically strive to

achieve when designing board games.

6.2.3.3 Generation

Rule sets are evolved using a genetic programming (GP) approach, summarised

in Figure 6.2. A population of games is maintained, ordered by fitness, then for

each generation a pair of relatively fit parents are selected and mated using standard

crossover and mutation operations to produce a child rule set. The symbolic expres-

sions used to describe games constitute rule trees that are ideal for this purpose.

Each child rule set is checked for correctness according to the LUDI language,

playability, performance and similarity to other rule sets in the population. Rule sets

104 Mark J. Nelson, Julian Togelius, Cameron Browne, and Michael Cook

Crossover

Mutate

Rule Check
Well

Formed?

N

Y
Baptise

Too

Slow?

Y

NChoose
Policy

Drawish?

N

Y

Inbred?

N

Y

Evaluate

Bin

Population

Select

Fig. 6.2: Evolutionary game design process.

that pass these checks are given a unique name, officially making them a game, and

are then measured for fitness and added to the population. The name for each game

is also generated by the system, based on letter frequencies in a list of Tolkien-style

names.

6.2.3.4 Evolved Games

LUDI evolved 1,389 new games over a week, of which 19 where deemed “playable”

and two have proven to be of exceptional quality. The best of these, Yavalath, is de-

scribed below:

(game Yavalath

(players White Black)

(board (tiling hex) (shape hex) (size 5))

(end (All win (in-a-row 4)) (All lose (in-a-row 3)))

)

Yavalath is similar to Tic-Tac-Toe played on a hexagonal board, except that

players win by making 4-in-a-row (or more) of their colour but lose by making

3-in-a-row beforehand. This additional condition may at first seem a redundant af-

terthought, but players soon discover that it allows some interesting tactical devel-

opments in play.

6 Rules and mechanics (DRAFT) 105

12

Fig. 6.3: White forces a win in Yavalath.

For example, Figure 6.3 shows a position in which White move 1 forces Black to

lose with blocking move 2. Such forcing moves allow players to dictate their oppo-

nent’s moves to some extent and set up clever forced sequences. This emergence of

complex behaviour from such simple rules provides an “aha!” moment that players

find quite compelling, and is exactly what is hoped for from an evolutionary search.

The other interesting game evolved by LUDI is called Ndengrod:

(game Ndengrod

(players White Black)

(board (tiling hex) (shape trapezium) (size 7 7))

(pieces (Piece All (moves (move

(pre (empty to)) (action (push)) (post (capture surround))

))))

(end (All win (in-a-row 5)))

)

This is also an n-in-a-row game—this rule dominated the rule sets of evolved

games—but in this case players capture enemy groups that are surrounded to have

no freedom, as per Go. This rule set also demonstrates the emergence of interesting

and unexpected behaviour, due to an inherent conflict between the “capture sur-

round” and “5-in-a-row” rules, as shown in Figure 6.4.

White squeezes Black against the edge to force a ladder (left), which Black must

extent each turn to keep their group alive (middle). However, once the ladder reaches

four pieces long after move 5, then White cannot continue the attack at point a but

must instead block the line at point b, allowing White to escape with move 7, and

the game continues with White piece 6 now under threat.

106 Mark J. Nelson, Julian Togelius, Cameron Browne, and Michael Cook

2

4

1

3

5 a

b 6

7

Fig. 6.4: Ladders don’t work as planned in Ndengrod.

6.2.3.5 Legacy

Yavalath and Ndengrod (renamed Pentalath) were the first fully computer-invented

games to be commercially published. Yavalath was the first game released by Span-

ish publisher Nestorgames, and continues to be the flagship product in its catalogue

of over 100 games.

Ndengrod is actually the better game of the two; it is deeper, involving a complex

underlying friction between enclosure and connectivity, and is definitely more of a

brain-burner. However, the more complex rules create a higher barrier to entry for

beginners, hence it is destined to remain second choice. Conversely, the rules of

Yavalath are intuitively obvious to any new player, and it has since been ranked in

the top #100 abstract board games ever invented [4].4

The successful invention of board games by computer did not cause a backlash

from players and designers as expected. The most common response from players

is simply that they’re surprised that a computer-designed game could be this simple

and fun to play, while designers have so far dismissed this automated incursion into

the very human art of game design as not much of a threat, as long as it produces

such lightweight games. However, this attitude may change as PCG techniques—

and their output—becomes increasingly sophisticated and challenges human experts

in the field of design as well as play.

One near-miss produced by LUDI, called Lammothm, is worth mentioning to

highlight a pitfall of the evolutionary approach. Lammothm is played as per Go

(i.e. surround capture on a square grid) except that the aim is to connect opposite

sides of the board with a chain of your pieces. Unfortunately, the evolved rule set

contained the i-nbors attribute, meaning that pieces connect diagonally which all but

ruins the game, but if this attribute is removed then the rule set suddenly becomes

equivalent to that of Gonnect, one of the very best connection games [2]. LUDI

was one mutation away from rediscovering a great game, but the very nature of the

evolutionary process means that this mutation is not guaranteed to ever be tried for

this rule set. It is possible alternative approaches with stronger inherent local search,

including Monte Carlo tree search (MCTS), can help address this issue.

4 BoardGameGeek database, October 2010 (http://www.boardgamegeek.com).

6 Rules and mechanics (DRAFT) 107

6.2.4 Card games

Traditional card games – Poker, Uno, Blackjack, Canasta, Bridge etc. – have many

features in common with board games. In particular, they are turn-based and and

deal in discrete units (cards) which are in limited supply and can exist at any of a

limited number of positions (player hands, piles etc). They have also some features

that distinguish them from most board games, including not typically relying on a

board and the often central importance of imperfect information (a player does not

know which cards their opponents have). The limited ontology and relative easy of

automated playing (due to limited branching factor) make the domain of card games

appealing for research in game generation.

Font et al developed a description language for card games and attempted to gen-

erate card games using evolutionary search in the space defined by this language [8].

The language was defined so as to include thee well-known card games – Texas

Hold’em Poker, Uno and Blackjack – and implicitly games positioned between

these in game space. Initial attempts to evolve new card games in this language

were made, but it was discovered that unexpectedly many of the generated games

were unplayable. Efforts continue to refine the language and evaluation functions to

direct the search towards playable games.

6.3 Graphical games

In the last few years, a small number of researchers have worked on representing

and generating simple 2d graphical-logic games. By 2d graphical-logic games we

mean those games in which gameplay is based on 2d elements moving around,

colliding with each other, appearing and disappearing, and the like.5 While 2d ele-

ments moving around and colliding with each other constitutes a rather simple set

of primitives out of which to build game rules, a quite large range of games can be

built out of them, including such classics as Pong, Pac-Man, Space Invaders, Mis-

sile Command, and Tetris. These games have a different set of properties from those

typically seen in board games. They are usually characterised by featuring more

complex game-agent or agent-agent interaction that could easily be handled by hu-

man calculation in a board game, including semi-continuous positioning, timesteps

that advance much faster than board-game turns, multiple moving NPCs, hidden

state, and physics-based movement that continues even without player input. Many

such games feature an avatar which the player assumes the role of and controls

more or less directly, rather than selecting pieces from a board: the player “is” the

Pac-Man in Pac-Man, which adds a new layer of interpretation [?] and experiential

feeling to such games, and in turn a new axis of opportunity and challenge for rule

generators.

5 We borrow the term from Wardrip-Fruin [?].

108 Mark J. Nelson, Julian Togelius, Cameron Browne, and Michael Cook

6.3.1 “Automatic Game Design”: Pac-Man-like grid-world games

In a 2008 paper, Togelius and Schmidhuber describe a search-based method for

generating simple two-dimensional computer games [23]. The design principles of

this system was that it should be able to represent a simplified discrete version of

Pac-Man, that other games should be easy to find through simple mutations, and

that the descriptions should be compact and human-readable.

The games that this system can represent all take place on a grid with dimensions

15× 15 (see figure ??). The grid has free space and walls, and never changes; see

figure [?]. On the grid, there is a player agent (represented in cyan in the screenshot)

and things of three different colours (red, blue and green). Whether the things are

enemies, food, helpers etc is up to the rules to define. The player agent and the things

can move in discrete steps of one grid cell up, down, left or right. Each game runs

for a certain number of time steps, and is won if the player reaches a score equal to

or above a score threshold.

Fig. 6.5: The Automatic Game Design system by Togelius and Schmidhuger.

Representation: The game representation consists of a few variables and two ma-

trices. The variables define the length of the game, the score limit, and the number

of things of each colour. They also define the movement pattern of each colour. All

things of a particular colour move in the same way, and the available movement

patterns are standing still, moving randomly with frequent direction changes, mov-

ing randomly with infrequent direction changes, moving clockwise along walls and

moving counterclockwise along walls. The first of the the two matrices determines

the collision effects of collisions between things, and between things and the agent.

There is a cell for each combination of thing colours, and a cell for the combination

of each colour with the player agent. The possible effects are that nothing happens,

one or both things die, or one or both things teleport to a random location. For ex-

ample, the matrix could specify that when a blue and a red thing collide, the blue

6 Rules and mechanics (DRAFT) 109

thing dies and the red thing teleports. The other matrix is the score effects matrix.

It has the same structure as the collision effects matrix, but the cells instead contain

negative or positive changes to the score; for example, the player agent colliding

with a blue thing might mean a score increment.

Evaluation: In the experiments described in the paper, the aim was to make

games that were learnable. The motivation for this is the theory, introduced in vari-

ous forms by psychologists such as Piaget and game designers such as Koster, that

playing is learning and that a large part of the fun in games comes from learning

to play them better [?, 11]. Translated to an evaluation function for game rules, the

evaluation should reward games that are hard initially, but which are possible to

rapidly learn to play better. Under the assumption that learnability for a machine

somehow reflects learnability for a human, the evaluation function uses an evolu-

tionary learning mechanism to learn to play games. Games that are possible to win

for random players receive low fitness, whereas games that can be learnt (where the

agent increases score as much as possible) to play receive high fitness.

6.3.2 Sculpting rule spaces: Variations Forever

All of the possible games that can be specified in a particular rule encoding make up

a generative space of games. We’ve just looked at one way to explore a generative

space of games and pick out interesting games from the large sea of uninteresting

or even unplayable games. If we define an evaluation function to rate games from

the space, we can use evolutionary computation to find games that rate highly. A

different approach is to carve out interesting subsets of the space, not by rating each

individual game, but by specifying properties that we want games to have, or want

games to avoid. This leaves a smaller generative space with only games that satisfy

the desired properties; iterative refinement can then let us zoom in on interesting

areas of the generative space.

Variations Forever [21] is a game-generator turned into a game, built with An-

swer Set Programming (ASP, see Chapter 8). In this game, the player explores differ-

ent variations of game rules through playing games. The ontology and rule space is

similar to but expanded compared to the rule space used in the Togelius and Schmid-

huber experiment above. The games all contain things moving in a two-dimensional

space, and the bulk of rules are defined by the graphical-logic effects of various

types of interactions between the moving and stationary elements. However, the

search mechanic is radically different. Instead of searching for rulesets that score

highly on certain evaluation functions, the constraint solver finds rulesets where

certain constraints are satisfied. Examples of constraints on the ruleset include: it

should be possible to win the game by pushing a red thing onto a yellow thing, or it

should not be possible to lose all blue things in the game while there are still green

things. These constraints are specified by the game designer, and different choices

of constraints will produce larger or smaller sets of games, with different properties.

The player then gets a specific game randomly chosen from that constrained space

110 Mark J. Nelson, Julian Togelius, Cameron Browne, and Michael Cook

(and then another one, and then another one), and part of the game is for them to try

to figure out how the rules work, and what’s in common between each successive

game.

The aim of Variations Forever is not to produce a specific game deemed to be

good, but to provide a way for game designers to define and “sculpt” generative

spaces of games, where games can be included in or excluded from the space based

on specific criteria. Players then in turn explore these designer-carved generative

spaces, seeing a series of games that differ in specifics but all share the specified

properties.

6.3.3 Angelina

Angelina is an ongoing project by Cook and Colton to create a complete system for

automatically generating novel videogames. The system has gone through several

iterations, each focusing on developing a different kind of game. In the first iteration,

the focus was on discrete arcade-style 2D games, and the encoding system was along

the lines of the Togelius and Schmidhuber experiment above [5]. The main change

is that rather than keeping the map fixed and placing the agent randomly, Angelina

sees the ruleset, the map, and the initial placement as three separate entities, and

evolves all three of them using a form of cooperative coevolution. This means that

each different design element is evaluated partly in isolation, according to objectives

which are independent of the rest of the game. However, these individual elements

are also combined into full games, which are then evaluated through automated

playouts to assess how well the different elements cooperate with one another. For

example, a level design might be individually fit by exhibiting a certain amount of

branching or dead-ends, but be a bad fit for an object layout because it places walls

over the start point for the player.

Representation: The representation of rules and mechanics in Angelina has

changed through the different iterations of the software, in an attempt to increase the

expressivity of the system and remove constraints on its exploration of the design

space. In the first iteration of Angelina rules are composed out of a grammar-like

representation of rule chunks, which produces good sets of rules, but is very de-

pendent on the grammar it starts with. This is in turn dependent on the human that

wrote the grammar. For Angelina, this is important because the research is partly

motivated by questions of computational creativity. It’s a good idea to think about

issues like this when building a procedural content generator, however—if we want

our systems to create things that are surprising and new, things that we could not

have thought of ourselves, then it helps to consider whether our representation is

constraining our systems with too many of our own preconceptions. Deciding how

general or how specific your representation needs to be is a very important step in

designing a generator of this kind.

To provide Angelina with more responsibility in designing the game’s mechan-

ics and rules, the second iteration of the software provided a less discrete do-

6 Rules and mechanics (DRAFT) 111

main for Angelina to explore. This version was focused on the design of simple

Metroidvania-style platform games, where players incrementally gain powers that

allow them to explore new areas of the world. Powerups are scattered through the

game which change the value of one of a few hand-chosen variables in the game

engine—such as the player’s jump height, or the state of locked doors. The precise

value associated with a given powerup was evolved as a design element in the co-

evolutionary system of this version of Angelina. This meant that Angelina could

make fine-grained distinctions between the player’s jump height being 120 pixels or

121 pixels, which in some cases was the difference between making the player sud-

denly able to access the entire game world, or carefully allowing access to a small

part that would provide a more natural game progression.

This notion of game mechanics as data modifiers was carried through to the next

iteration of Angelina, which took the idea a step further and opened up the codebase

of the underlying game engine to Angelina. This time, instead of being given a fixed

set of obvious variables to choose from, Angelina was responsible for choosing both

the target value and the target variable, out of all the variables hidden away in the

entire game’s code. Below is an example ‘mechanic’ designed by the system. It finds

the acceleration variable in the player object, and inverts the sign on its y

component.

player.acceleration.y *= -1

In the Java-based game engine Flixel-GDX6, which Angelina uses, this is equiv-

alent to inverting the gravitational pull on an object, similar to the gravity-flipping

mechanic in Terry Cavanagh’s VVVVVV [?]. To generate this, Angelina searched

through available data fields within a sample game, and generated a type-specific

modifier for it (in this case, multiplying by a negative number). This exploration of

a codebase was made possible by using Java’s Reflection API—a metaprogramming

library that allows for the inspection, modification and execution of code at runtime.

Code generation and modification is a risky business, in general—the state space can

very quickly become too large to explore in any reasonable timeframe, and modify-

ing code at runtime is similarly perilous, particularly when done in using something

so potentially destructive as evolutionary computation.

The approach used in Angelina tries to mitigate these problems in two ways:

firstly, using Java as a basis for the system means that it has robust error handling.

Generating and executing arbitrary code is liable to throw every kind of error imag-

inable. A typical run of Angelina will throw OutOfMemoryExceptions (by

modifying data which triggers an infinite loop), ArrayIndexExceptions (by

modifying variables which act as indexes into data structures) and ArithmeticExceptions

(by modifying variables used in calculations, causing problems like division by

zero). However, none of these errors cause the top-level execution of Angelina to

fail. Instead, they can be caught as runtime errors, and suppressed. The mechanic

which caused these errors is given a low or zero fitness score, and the system then

proceeds to test the next mechanic.

6 http://www.flixel-gdx.com

112 Mark J. Nelson, Julian Togelius, Cameron Browne, and Michael Cook

The next and most important way that Angelina’s design overcomes issues with

code generation is the evaluation criteria used to assess whether a mechanic is good

or not. Figure 6.6 shows the outline for a simple level from a Mario-like platform

game. The player starts the level in the red square on the left, and can run and jump.

The aim is to reach the blue square on the right. We can verify that this level is

unsolvable for a given jump height—the player is simply unable to scale the wall

in the center of the level. This is the game configuration that Angelina begins with

when evaluating a new game mechanic. The system can then add this new game

mechanic to the game’s codebase, and try to solve the level by reaching the exit.

If Angelina is able to make progress and get to the exit, since we know the level

was previously unsolvable and only the mechanic has been added we can conclude

that the mechanic adds some affordance which we did not previously have. In other

words, it provides some utility for the player.

Fig. 6.6: A test level used by Angelina to evaluate generated game mechanics. The

player starts in the red square on the left-hand side. They must reach the blue square

on the right.

This constraint-like evaluation approach (either the simulation reaches the exit, or

it does not) is helpful in directing search through this kind of unpredictable state

space. There are a few things to note about this kind of evaluation, however. Firstly,

because we are generating arbitrary code modifiers, we can’t give Angelina any

heuristics to help it test the mechanic out. We have no idea whether a given me-

chanic will affect the player, enemies, the level geometry, the physics system, or

whether it will outright crash the game. This means that Angelina’s approach to

simulating gameplay with the new mechanic is to attempt a breadth-first exhaustive

simulation of gameplay. While this is almost tenable for a small example level and

6 Rules and mechanics (DRAFT) 113

a restrictive move set (left, right, jump and ’special mechanic’), it’s hard to imagine

expanding this to a game with the complexity and scale of Skyrim, for example, or

even Spelunky.

The other thing to bear in mind is that how useful a mechanic is does not neces-

sarily relate to whether it is a good idea or not. We could imagine a very useful me-

chanic which automatically teleports the player to the exit, but which trivialises the

rest of the game’s systems entirely. Similarly, many game mechanics are specifically

designed to balance utility with risk (enchanting items in Torchlight might result in

the item being destroyed, for example) or simply exist to entertain the player. This

last category is very important—mechanics such as the infinite parachute in Just

Cause 2 certainly add utility to the player’s mechanical toolkit, but is clearly de-

signed to be enjoyable to interact with. Feelings like flow, tactility or immersion are

difficult quantify at the best of times, and are certainly not captured by the extremely

utilitarian approach taken by Angelina.

Despite these shortcomings, the use of code as a domain for procedural content

generation is exciting, and holds much promise. Angelina was able to rediscover

many popular game mechanics, such as gravity inversion (as seen in VVVVVV), and

bouncing (as seen in NightSky [?]). The purely simulation-based approach also en-

abled Angelina to discover obscure and nuanced emergent effects in the generated

code. In one case, Angelina developed a mechanic for simple teleportation, in which

the player is moved a fixed amount in a particular direction when a button is pressed.

This mechanic can be used for bypassing walls, but Angelina’s breadth-first simula-

tion of gameplay also discovered that by teleporting inside a wall, it was possible to

jump up out of the wall, teleport back inside, and repeat the process. This technique

could be used to wall-climb—even though the game had no code relating to this

feature—all made possible by a single line of code modified by Angelina.

Evaluating Angelina as an autonomous game designer has proven difficult for a

number of reasons. During the development of Angelina many of the games fea-

tures are still static and coded by hand, such as the control schemes or (in earlier

versions of the software) the game’s artwork. Focusing player surveys on the as-

pects of games which change is difficult. Comparative testing is also difficult when

the expressive range of the software is as low as it has been in some versions of

Angelina. The output of the system varies within a small subgenre which means

it is difficult to make strong value judgements on whether one game is better than

another, particularly mechanically. However, survey-based studies might still be the

best way of getting meaningful information about the system’s performance.

6.3.4 The Video Game Description Language

The Video Game Description Language (VGDL) is an effort to create a generic and

flexible but compact description language for video games of the types that were

seen on early home game consoles such as the Atari 2600. In this sense, it is a direct

follow-up to the efforts described above (in particular Togelius and Schmidhuber),

114 Mark J. Nelson, Julian Togelius, Cameron Browne, and Michael Cook

and its conceptual structure is similar. However, it is intended to be more general in

that can encode a larger range of games, and more flexible in that it decouples the

description language from the game engine, the game evaluation metrics, and the

generation method.

The basic design of VGDL was outlined in [?], and a first implementation of

a working game engine for the language (together with several improvements to

the design) was published in [?]. One of the design goals for VGDL is to be usable

for “general video game playing” competitions, where learning artificial intelligence

agents are tested on their capacity to play a number of games which neither the agent

or the designer of the agent has seen before [?]. These games could be manually or

automatically generated, and for the idea to be viable in the long run automatic game

generation will need to be implemented at some point. The language is thus designed

with ease of automatic generation in mind, though the initial stages of development

have rather focused on re-implementing a range of classic games in VGDL to show

the viability of doing this and test the limits of the game engine. A first iteration of

the General Video Game Playing Competition ?? was run in 2014. This competition

tests submitted agents against several unseen games defined in VGDL, and uses

a Java-based implementation of VGDL game engine. For future iterations, there

are plans to use generated games to test agents, and to include competition tracks

focused on game generation and on level generation.

A VGDL game is written in a syntax derived from Python, and is therefore rel-

atively readable. There are four parts to a VGDL game: level mapping, sprite set,

interaction set and termination set. In addition, there are level descriptions for an ar-

bitrary positive number of levels. A level description describes a level for the game

as two-dimensional matrix of standard ASCII characters, where the level mapping

defines which character maps to which type of sprite. The sprite set defines what

types of sprites there are in the game and their movement behaviour, for example

wall (stands still), guard robot (moves around the walls) and missile (chases the

avatar). A special case is the player avatar, which the player controls directly. All

sprites can obey different types of physics, such as grid-based movement or contin-

uous movement with or without gravity. The interaction set defines most of what

we call operational rules in the game, as it describes what happens when two sprites

collide—similarly to the previous graphical game description efforts above, the list

of possible interaction effects include death, teleportation, score increase or decrease

and several others. The termination set describes various ways of ending the game,

such as all sprites of a particular type disappearing, a particular sprite colliding with

another etc.

6.3.5 Rulearn: Mixed-initiative game level creation

All the game generators described above have been non-interactive content gen-

erators, in that they generate a complete ruleset without human contribution. The

Rulearn system by Togelius instead tries to realise interactive generation of game

6 Rules and mechanics (DRAFT) 115

rules [?]. The system starts with the player controlling an agent obeying simple car

physics in a 2D space containing agents of three other colours, moving randomly.

Collisions will happen, but have no consequences. The player is also given an ar-

ray of buttons which will effect consequences, such as “kill red”, “increase score”,

“chase blue” and “split green”. Every time the player presses a button, that conse-

quence will happen. However, the system will also try to figure out why the player

pressed that button. Using machine learning methods on the whole history of past

actions, the system will try to figure out which game the player is playing, and

induce the rules behind it. The result is a mixed-initiative system for game rules,

which in early test has proved far from easy to use.

6.3.6 Strategy games

In a series of papers, Mahlmann et al. have described the evolution a system for gen-

erating key parts of strategy games. Strategy games are games, typically adversarial

and themed on military conflict, where the player manages resources and moves

units (representing e.g tanks, soldiers and planes) around on a board. Examples in-

clude the Civilization series, Advance Wars and Europa Universalis; this genre of

games is closely related to real-time strategy games such as Dune II and StarCraft,

except for being turn-based. They share characteristics with both traditional board

games, such as typically being turn-based and playing out on a discrete board/map,

and with graphical games in the relatively complex interactions between units and

in the world, more complex than would be comfortably simulated in a non-digital

games.

In order to be able to generate strategy games, Mahlmann et al. developed a

description language for such games, aptly called the Strategy Game Description

Language (SGDL). They also developed a game engine that allows a human or a

computer player to play any game described in this language. In a series of exper-

iments, different parts of strategy games represented in this language were evolved

using genetic programming. In initial experiments, the focus was on evolving how

much damage each type of unit could inflict on the others in a simple strategy game

with the aim of creating balanced sets of units [12]. In a later set of experiments, the

complete logics for the strategy game units were evolved, with the goal of finding

sets of units of balanced strengths but which were functionally different between

players [13]. In these experiments several new strategy game mechanics (previously

unseen to the experimenters) emerged from the experiments, including units that

modified the shooting range of other units based on their proximity.

116 Mark J. Nelson, Julian Togelius, Cameron Browne, and Michael Cook

6.3.7 The future: Better languages? Better games? 3D games?

As we can see, all existing work on generating graphical game has targeted games

in the style of classic arcade games and home console games from the early 80’s, or

simple arcade games. There is still considerable work to be done here, and nobody

has yet constructed a system that could generate novel graphical games of high

quality, comparable to the novel high-quality board games produced by Cameron

Browne’s Ludi system. One of the really important open questions is how to best

balance expressivity of the game description language with locality of search and

density of good games; we want a representation which can represent truly novel

games, but we also want that representation to be searchable. However, there is

also considerable opportunities in developing game description languages that can

effectively and economically describe other types of games, and game generators

that take into account the specific game design affordances and challenges that come

with such games. For example, what would it take to generate playable, interesting

and original FPS games?

6.4 Exercise: VGDL

The main theme of this chapter has been that generating rules heavily depends on

how we encode rules for a particular kind of game, since these encodings define a

space of games. The Video Game Description Language (VGDL) provides a fairly

straightforward encoding for a set of graphical-logic games, allowing for some vari-

ation in gameplay styles, without going all the way to the intractable complexity of

trying to encode every possible kind of game. In addition, it includes an interpreter

and simulator in Python (pyVGDL) and another in Java (jVGDL), so that games

produced in the encoding can easily be played.

This exercise is in two parts, with an open research question suggested as an

optional third.

Part 1: Understanding a VGDL game. Download pyVGDL7 or jVGDL8. Both

packages come with a number of example games in the examples directory. Choose

a game, and understand its encoding. You may do this by first playing it, and trying

to figure out what its rules are. Then look at the rules as they’re encoded in its

definition file: are they the rules you figured out? Were there other rules you didn’t

notice? Play it again, this time with the rules in mind. Go back and forth between

the written rules and the gameplay experience until you’re confident you understand

what happens in the game, and how that relates to what’s written in the VGDL

definition.

Part 2: Write a new game in VGDL. Choose a graphical-logic game suitable

for representation using VGDL’s vocabulary. (Many traditional arcade games of the

7 https://github.com/schaul/py-vgdl
8 https://github.com/EssexUniversityMCTS/gvgai

6 Rules and mechanics (DRAFT) 117

Atari 2600 era or early Nintendo or Commodore 64 era are in their essence imple-

mentable in VGDL.) Which are the objects in the game, and which rules specify the

game’s mechanics? You may want to start by first listing these on paper in natural

language, and then figuring out how to encode them in VGDL. You may make up

your own game, or choose an existing arcade-style game to translate to VGDL.

Part 3 (optional): Write a generator for VGDL games. As of this writing, no

generator that produces VGDL games as output exists. How would one work?

References

1. Althöfer, I.: Computer-Aided Game Inventing. Tech. rep., Friedrich-Schiller Univ., Faculty

Math. Comp. Sci., Jena (2003)

2. Browne, C.: Connection Games: Variations on a Theme. AK Peters, Natick, Massachusetts

(2005)

3. Browne, C.: Automatic Generation and Evaluation of Recombination Games. Ph.d. disserta-

tion, QUT, Brisbane (2008)

4. Browne, C.: Evolutionary Game Design. Springer, Berlin (2011)

5. Cook, M., Colton, S.: Multi-faceted evolution of simple arcade games. In: IEEE Conference

on Computational Intelligence and Games (CIG), pp. 289–296. IEEE (2011)

6. Dickins, A.: A Guide to Fairy Chess, 3rd edn. Dover (1971)

7. Dormans, J.: Simulating mechanics to study emergence in games. In: Proceedings of the 1st

AIIDE Workshop on Artificial Intelligence in the Game Design Process, pp. 2–7 (2011)

8. Font, J.M., Mahlmann, T., Manrique, D., Togelius, J.: Towards the automatic generation of

card games through grammar-guided genetic programming. In: FDG, pp. 360–363 (2013)

9. Hom, V., Marks, J.: Automatic design of balanced board games. In: Proceedings of the 3rd

Artificial Intelligence and Interactive Digital Entertainment Conference, pp. 25–30 (2007)

10. Khaled, R., Nelson, M.J., Barr, P.: Design metaphors for procedural content generation in

games. In: Proceedings of the 2013 ACM SIGCHI Conference on Human Factors in Comput-

ing Systems, pp. 1509–1518 (2013)

11. Koster, R.: A theory of fun for game design. Paraglyph press (2004)

12. Mahlmann, T., Togelius, J., Yannakakis, G.N.: Towards procedural strategy game generation:

Evolving complementary unit types. Applications of Evolutionary Computation pp. 93–102

(2011)

13. Mahlmann, T., Togelius, J., Yannakakis, G.N.: Evolving card sets towards balancing domin-

ion. In: 2012 IEEE Congress on Evolutionary Computation (CEC), pp. 1–8. IEEE (2012)

14. Nelson, M.J., Mateas, M.: Towards automated game design. In: AI*IA 2007: Artificial In-

telligence and Human-Oriented Computing, pp. 626–637. Springer (2007). Lecture Notes in

Computer Science 4733

15. Nelson, M.J., Mateas, M.: Recombinable game mechanics for automated design support. In:

Proceedings of the Fourth Artificial Intelligence and Interactive Digital Entertainment Confer-

ence, pp. 84–89 (2008)

16. Nelson, M.J., Smith, A.M., Mateas, M.: Computational support for play testing game sketches.

In: Proceedings of 5th Artificial Intelligence and Interactive Digital Entertainment Conference,

pp. 167–172 (2009)

17. Orwant, J.: EGGG: Automated programming for game generation. IBM Systems Journal

39(3–4), 782–794 (2000)

18. Pell, B.: METAGAME: A new challenge for games and learning. In: Heuristic Programming

in Artificial Intelligence 3: The Third Computer Olympiad. Ellis Horwood (1992). Extended

version available as University of Cambridge Computer Laboratory Technical Report UCAM-

CL-TR-276.

118 Mark J. Nelson, Julian Togelius, Cameron Browne, and Michael Cook

19. Pell, B.: METAGAME in symmetric, chess-like games. In: Heuristic Programming in Artifi-

cial Intelligence 3: The Third Computer Olympiad. Ellis Horwood (1992). Extended version

available as University of Cambridge Computer Laboratory Technical Report UCAM-CL-TR-

277.

20. Poli, R., Langdon, W.B., McPhee, N.F.: A Field Guide to Genetic Programming (2008).

http://www.gp-field-guide.org.uk

21. Smith, A.M., Mateas, M.: Variations Forever: Flexibly generating rulesets from a sculptable

design space of mini-games. In: Proceedings of the IEEE Conference on Computational In-

telligence and Games, pp. 273–280 (2010)

22. Smith, A.M., Mateas, M.: Computational caricatures: Probing the game design process with

AI. In: Proceedings of the 1st AIIDE Workshop on Artificial Intelligence in the Game Design

Process, pp. 19–24 (2011)

23. Togelius, J., Schmidhuber, J.: An experiment in automatic game design. In: IEEE Symposium

On Computational Intelligence and Games, pp. 111–118. IEEE (2008)

Chapter 7

Planning with applications to quests and story

(DRAFT)

Yun-Gyung Cheong, Mark O. Riedl, Byung-Chull Bae, Mark J. Nelson

Games often have storylines. In some games, they are short backstories, serving to

set up the action. The first-person shooter game Doom’s storyline, about a military

science experiment that accidentally opens a portal to hell, is perhaps the canonical

example of this kind of story: its main purpose is to set the mood and general theme

of the game, and motivate why the player is navigating levels and shooting demons.

The level progression and game mechanics have very little to do with the storyline

after the game starts. In other games, the storyline structures the progression of the

game more pervasively, providing a narrative arc within which the gameplay takes

place. The Final Fantasy games are a prominent representative of this style of game

storyline.

Since the theme of this book is to procedurally generate anything that goes into

a game, it will not surprise the reader that we will now look at procedurally gen-

erating game storylines. As with procedural generation of game rules, discussed in

the previous chapter, procedural generation of storylines is somewhat different from

generation of other kinds of procedural content, because storylines are an unusual

kind of content. They often intertwine pervasively with gameplay, and their role in

a game can depend heavily on a game’s genre and mechanics.

A common way of integrating a game’s storyline with its gameplay, especially

in adventure games and role-playing games, is the quest [24, 1]. In a quest, a player

is given something to do in the game world, which is usually both motivated by the

current state of the storyline, and upon completion will advance it in some way. For

example, the player may be tasked with retrieving an item, helping an NPC, defeat-

ing a monster, or transporting some goods to another town. Some games (especially

RPGs) may be structured as one large quest, broken down into smaller sub-quests

that interleave gameplay and story progression.

There are several reasons a game designer might want to procedurally generate

game stories, beyond the general arguments for procedural content generation dis-

cussed in Chapter 1. One reason is that procedurally generated game worlds can

lack meaning or motivation to the player, unless they are tied into the game story

by procedurally generating relevant parts of story along with the worlds. As Ash-

119

120 Yun-Gyung Cheong, Mark O. Riedl, Byung-Chull Bae, Mark J. Nelson

more and Nitsche [2] argue, “without context and goals, the generated behaviors,

graphics, and game spaces run the danger of becoming insubstantial and tedious”.

A second reason is that proceduralizing quests can make them truly playable. Sul-

livan et al. [22] note that computer RPGs often have a particularly degenerate form

of quest, “generally structured as a list of tasks or milestones”, rather than open-

ended goals the player can creatively satisfy. Table-top RPGs have more complex

and open-ended quests, since in those games, quests can be dynamically gener-

ated and adapted during gameplay by the human game-master, rather than being

prewritten. Procedural quest generation gives a way to bring that flexibility back

into videogame quests.

7.1 Procedural story generation via planning

One way to think about procedurally generating stories is to consider them to be

a planning problem. In artificial intelligence, planning algorithms search for se-

quences of actions that satisfy a goal. A robot, for example, plans out the series of

actuator movements necessary to pick up an object and carry it somewhere.

What are the sequences of actions for a story, and what is the goal? There are

a number of ways to answer those questions, and researchers on procedural story

generation started looking at them in the 1970s—at the time, generating purely text-

based short stories, not game stories.

We could answer that a story is a sequence of events in a story world (in our case,

a game world)—a sequence that eventually leads, through the chain of events, to the

story’s ending. Therefore we generate stories by simulating a fictional work: to tell

a story, we first simulate what happens as characters move around and take actions

in the story world, and then the story is comprised of simply recounting the events

that happened. One of the first influential story-generation systems, Tale-Spin [14],

takes this approach.

Generating stories by simulating a story world does have some shortcomings. It

does not take into account what makes a story—particularly an interesting story—

different from simply a log of events. Stories are carefully crafted by authors to

have a certain pace, dramatic tension, foreshadowing, a narrative arc, etc., whereas

a simulation of a day in the life of a virtual character does not necessarily have any

of these features of a good story, except by accident. To solve that problem, we

can look at the story-planning problem from the perspective of an author writing

the story, rather than from the perspective of a protagonist taking actions in the

story world. Story planning then becomes a problem of putting together a narrative

sequence that fits the author’s goals [6]. Universe [12] and Minstrel [26] are two

well-known story generators that take this author-oriented approach.

For videogame stories, planning from the perspective of an author can become a

more problematic concept, because players act in the game’s story world, rather than

in the author’s head. Procedurally generating stories using an approach more like

Tale-Spin, that takes place within the story world, can be more straightforward, since

7 Planning with applications to quests and story (DRAFT) 121

it has the advantage of talking about the same place and events that the player will

be interacting with. On the other hand, we may still want a narrative arc and other

author-level goals, which may lead to hybrid systems that plan author-level goals

on top of story-world events [13, 19]. Many questions remain open, so procedural

story generation in games is an active area of research.

In the rest of this chapter, we’ll introduce the concepts and algorithms behind

story planning, and walk through examples of using planning to generate interactive

stories.

7.2 Planning as search through plan space

Planning can be viewed a process that searches through a space of potential solutions

to find a solution to a given problem, when knowledge about the problem domain is

given. The problem is called a planning problem and consists of the goal state and

the initial state. A solution in planning is called a plan which contains a sequence of

actions. A plan is sound if it reaches the goal state starting from the initial state when

executed. The domain knowledge is represented as a library of plan operators where

each operator consists of a set of preconditions and a set of effects. Preconditions

are just those conditions that must be established for the operator to be executed

and effects are just those conditions that are updated by the execution of the plan

operator.

A space of potential solutions can be represented in two different ways: either as

a state space or as a plan space. A state space can in turn be represented as a tree

that consists of nodes and arcs where a node represents a state and an arc repre-

sents a state transition by the application of an operator. The root node of the space

represents the initial state when the algorithm is forward progression search while

the root node represents the goal state when the algorithm is backward regression

search.

Here is the pseudo-code description of a state space algorithm:

1: construct the root node as the initial state

2: select a non-terminal node

if non-terminal nodes are not found, return failure and exit

if the goal state is true, return the path from the initial state

up to the current node as a solution and exit

3: select an operator applicable

(its preconditions are true in forward progression search and

its effects are true in backward regression search)

if no such operators are found, mark the node as terminal

and go to step 2

4: construct child nodes by applying the operator

if the number nodes in the graph exceeds a predefined

maximum search nodes, return failure and exit

5. go to step 2

122 Yun-Gyung Cheong, Mark O. Riedl, Byung-Chull Bae, Mark J. Nelson

Fig. 7.1: A plan space graph. A box represents an event. A literal on the left side of

the box denotes a precondition and a literal on the right side denotes an effect. An

effect is omitted if it establishes a causal relationship to a precondition of another

event. The root node #1 represents an empty plan that contains the initial and the

goal step only. The initial state contains p as an effect and the goal step contains g

as its precondition. Each arc between two nodes indicates a refinement of the par-

ent node into a child node. The nodes #2 and #3 are partial plans that repairs the

open precondition g by adding two different plan steps S1 and S2. The node #4 is a

complete plan repairing an open precondition p by establishing a causal link from

the initial step. The planning algorithm can return the node as a solution and exit.

To find all the solutions, the refinement search process continues to generate more

children (#5, #6, #7). Although the node #7 is not a complete plan, the algorithm

mark this as terminal since no operators that are applicable to repair the open pre-

condition c are found. The further search process to refine the node #6 is omitted

due to space limit.

A plan space can be represented as a tree which consists of nodes and arcs. Un-

like a state space, however, the root node of the tree specifies the planning problem,

the initial state and the goal state. Each leaf node represents a complete plan (i.e.,

solution) which can achieve the goal state from a given initial state when being ex-

ecuted or a partial plan that cannot be refined any more due to inconsistencies in

the plan. Internal nodes represent partial plans that contain flaws. The search pro-

cess can be viewed as refining the parent node into a plan that fixes a flaw of the

parent node [10]. A flaw in the plan can be an open precondition that has not been

established by a prior plan step or a threat that can undone an established causal

relationship in the plan.

Here is the pseudo-code description of a partial-order planning algorithm.

7 Planning with applications to quests and story (DRAFT) 123

1: construct the root node as the planning problem

2: select a non-terminal node (based on its heuristic value)

3: select a flaw in the node

if no flaw is found, return the node as a solution and exit

4: construct children nodes by repairing the flaw

if the flaw is an open precondition, either

a) establishes a causal link from an existing plan step, or

b) adds a new plan step whose effects establish the precondition

if the flaw is a threat, either

a) add a temporal ordering constraint

so that the threatened causal link is not intervened, or

b) add a binding constraint to separate the threatening step

from the steps involved in the threatened causal link.

if the flaw is not repairable, mark the node as terminal

and go to 2

if the number nodes in the graph exceeds a predefined

maximum search nodes, return failure and exit

5. go to step 2

The complete plans generated by state-space search algorithm are total-order

plans. A total-order plan structure specifies the temporal ordering constraint of ev-

ery step in the plan while a partial-order plan specifies only those temporal order-

ings that must be established to resolve threats. For instance, imagine that you are

given the goal of purchasing milk and bread in a grocery store. The goal can be suc-

cessfully fulfilled without being worried about which one should be purchased first.

And yet, a total-order plan specifies the order of these two purchasing actions and

generates two plans: a) to purchase milk first and to purchase bread, and b) to pur-

chase bread first and to purchase milk. On the other hand, a partial-order plan does

not specify the ordering constraint and defers the decision until when it is necessary.

In a plan-space search, the search process can be guided by a heuristic function

which estimates the length of the optimal complete plan, based on the number of

the plan steps and the number of the flaws that the current plan contains.

While both state-space search and plan-space search algorithms have advantages,

plan-space search planners have been favored in creating stories, because their rep-

resentations are similar to the mental structure that humans construct when reading

a story [25] and their search processes resemble the way humans reason to find

a solution [17]. Furthermore, the causal relationships encoded in the plan struc-

ture allow further investigation of computational models of narrative, such as story

summarization and affect creation [3, 5]. However, Partial-Order Planning (POP) is

computationally expensive because its space exponentially grows as the length of

the plan increases. Therefore, it has not been used in practical applications.

Hierarchical Task Network (HTN) [21, 23] is a simple plan-space search that

recursively replaces non-primitive actions into primitive actions. Figure 7.2 shows

HTN action schemas that decompose abstract tasks into primitive tasks.

A simple HTN algorithm is described below. HTN is relevant to generate a story

via generating character behaviors.

1: construct the root node with an abstract operator

2: select an abstract operator to expand

124 Yun-Gyung Cheong, Mark O. Riedl, Byung-Chull Bae, Mark J. Nelson

Fig. 7.2: The diagram shows an HTN action schema example where an oval denotes

an abstract operator and a rectangle denotes a primitive operator. The method en-

codes an NPC’s activity which can be done for the duration of an hour in the game

world. The NPC can sleep if tired or perform a random task. He may want to get

food if he is hungry. Get Food is an abstract task that needs to be decomposed into

primitive tasks such as Hunt and Learning Hunting. [11]

if no abstract operators are found and

all the preconditions are satisfied,

return the network as a solution and exit

3: select an action schema whose preconditions are true

if no such methods are found, return failure

4: decompose the abstract operator into sub-tasks

as encoded in the action schema

5. go to step 2

7.3 Domain Model

A domain model is the library of plan operator templates that encode knowledge in

a particular domain (in this chapter, a story world). Various formal languages have

been proposed to describe planning problems in terms of states, actions, and goals.

This section focuses on two planning languages, STRIPS and ADL, which have

been widely used for classical planners.

Before we get to the formalism, let us take an example. Imagine that a charac-

ter in a story, named Alex, is on the rooftop of a building. His goal is to be on the

ground level of the building without being injured. Alex can think of several plans

immediately. For instance, Alex can take a lift (Plan 1), can walk the stairs (Plan 2),

or can jump from the roof (Plan 3). Making the decision will consider a variety of

constraints such as his capability (e.g., Alex could be an old man having some mo-

bility problems), the building’s facility (e.g., lift), his preference (e.g., Alex always

7 Planning with applications to quests and story (DRAFT) 125

prefers walking down the stairs for exercise), etc. If the building has a lift and Alex

wants to go to the ground level quickly, Plan 1 would be suitable. Alex may choose

Plan 2 if there is no lift in the building. Alex may take Plan 3 if he has a parachute

with him and a serial killer with knife is running toward him. As explained above,

the goal of planning, often provided with limited resources, is to find a possibly

optimal solution that minimizes the cost of executing the plan considering various

conditions and preference. Thus, it is important to select a formal language that best

expresses the problem domain.

7.3.1 STRIPS-style planning representation

STRIPS, introduced by Fikes and Nilson in 1971 [7], is in many ways a forefather

of modern formal languages in planning. In STRIPS-style, a state is represented

by either a propositional literal or first-order literal where literals are ground (i.e.,

variable-free) and function-free. A propositional literal states a proposition which

can be true or false (e.g., p, q, PoorButler). A first-order logic literal consists of

a relation and objects (e.g., At(Butler,House), Lord(Higginbotham)). In STRIPS-

style representation, we make a closed-world assumption — any conditions that are

not explicitly specified are considered as false. Thus only positive literals are used

for the description of initial states, goal states, and preconditions. The effects of

actions may include negative literals to assure the negativity of particular conditions.

An exemplary planning representation of the previous example using STRIPS-style

formalization is as below:

• Initial state representation

At(Alex,Roo f top) ∧ Alive(Alex) ∧ Walkable (Rooftop, Ground) ∧ Person(Alex)

∧ Place(Rooftop) ∧ Place(Ground)

• Goal State representation

At(Alex, Ground) ∧ Alive(Alex)

• Action representation

Action (WalkStairs (p, from, to))

PRECONDITION: At (p, from) ∧ Walkable (from, to) ∧ Person(p) ∧ Place (from)

∧ Place (to)

EFFECT: ¬At(p, from) ∧ At (p, to)

In the above example, the initial state is represented by the conjunction of six

first-order logic predicates. The goal state is represented by the conjunction of the

two predicates in the same manner. In the action representation, the action named

WalkStairs has three variable parameters (p, f rom, to); the action’s preconditions

are represented by the conjunction of five predicates; and the action’s effects are

denoted by the conjunction of two predicates including a negative literal. The action

WalkStairs will be applicable and executed only when its two preconditions are

satisfied. And then after execution, the condition of At(p, f rom) will be deleted

126 Yun-Gyung Cheong, Mark O. Riedl, Byung-Chull Bae, Mark J. Nelson

from the current state of the world and the condition of At(p, to) will be added to

the current state of the world.

7.3.2 ADL (Action Description Language)

STRIPS is an efficient representation language for modeling states of the world. It

can convert, using relatively simple logic description (e.g., a conjunction of positive

and function-free literals), the states and actions of a particular domain in the real

world into corresponding abstract planning problems. This simplicity, however, can

be clear limitations to representing complicated planning problems. Therefore, as an

effort to extend the expressiveness of STRIPS, ADL has been introduced as an ad-

vanced modification of STRIPS. [16]. Compared to original STRIPS representation,

ADL can represent actions and states in a less restrictive way [20, 16]:

• Both positive and negative literals are allowed for the description of states, as-

suming open-world (that is, any unspecified conditions are considered as un-

known).

• Quantified variables and the combination of conjunction and disjunction are al-

lowed in the goal state description.

• Conditional effects are allowed.

• Equality and non-equality predicates (e.g., (from 6= to)) and type in variable (e.g,

(p: Person), (from: Location)) are supported.

An ADL-style planning representation of the previous example is shown below:

• Initial state representation

At(Alex, Rooftop) ^ ¬Dead(Alex) ^ Walkable (Rooftop, Ground) ^ Person(Alex)

^ Place(Rooftop) ^ Place(Ground) ^ Wearing(Alex, Parachute) ^¬Injured(Alex)

^ Thing(Parachute)

• Goal State representation

At(Alex, Ground) ^ (¬Dead(Alex) _ ¬Injured(Alex))

• Action representation

Action (WalkStairs (p: Person, from: Place, to: Place))

PRECONDITION:At (p, from) ^ (from 6= to) ^ (Walkable (from, to))

EFFECT: ¬At(p, from) ^ At (p, to)

Action (JumpFromRooftop (p: Person, from: Place, to: Place, sth:Thing))

PRECONDITION: At (p, from) ^ (from 6= to) ^ Emergent(p)

EFFECT: ¬At(p, from) ^ At (p, to) ^ (when Wearing(p, Parachute): ¬Dead(p))

7.4 Planning a Story

A story can be represented as a partial-order plan, a tuple < S,O,C > where

7 Planning with applications to quests and story (DRAFT) 127

Fig. 7.3: The Butler story. A rectangle denotes an event and an arrow denotes a

causal link where the event in the source establishes a condition for the event in the

destination. The temporal ordering proceed from the top to the bottom. (The original

story is from [4])

• S is a series of events (i.e., instantiated plan operators),

• O is temporal ordering information represented as (s1 ¡ s2) where s1 precedes s2,

• C is a list of causal links where a causal link is represented by (s, t; c) notating a

plan step s establishes c, a precondition of a step t

Figure 7.3 illustrates a story that consists of four events that fulfills the goal of

dead(Lord) starting from the initial state of have(Butler,Wine)∧ have(Butler,Poison)
∧ serving(Butler,Lord). The textual description of the plan can be read as: (1) But-

ler puts poison in wine. (2) Butler carries wine to Lord Higginbotham. (3) Lord

Higginbotham drinks wine. (4) Lord Higginbotham falls down. (The original story

is from [4])

The plan seems to be reasonable as a story. But, is it an optimal plan that has the

minimum plan steps? What if the butler gives the poison to the Lord instead? Then,

the plan would consist of three steps: 1) The butler carries the poison. 2) The lord

drinks the poison. 3) The lord falls down.

As you may have sensed already, the new plan is logically sound but does not

make a good story since the lord would not cooperate with the plan if he intends

to be alive. This addresses the problem of the author-centric story generation ap-

proach which may ignore individual character’s intention. The alternative approach,

character-centric story generation, lets every character plan his/her own actions,

128 Yun-Gyung Cheong, Mark O. Riedl, Byung-Chull Bae, Mark J. Nelson

expecting that some stories emerge from the character interaction. As one can eas-

ily imagine, however, a tellable situation rarely arises without the help of authorial

goals. To tackle this issue, Riedl and Young have proposed an intent-driven planning

algorithm to balance the author-centric approach and character-centric approach to

story generation [19].

7.5 Generating Game Worlds and Stories Together

Many computer games engage players through interleaved periods of story play

and open-ended play. Story play encompasses the activities of the players that

promote the progression of the game world through a narrative sequence toward

a desired conclusion. As laid out in this chapter, a story can be represented as a

partially-ordered plan of actions that, when executed, transform the world progres-

sively closer to a desired conclusion, represented by the goal situation. Open-ended

play encompasses player activities that do not progress (nor inhibit) the story plan.

Examples of open-ended include exploring the spatial environment, encountering

random enemies, and finding treasure or items.

This section concerns itself with the generation of playable game experiences

including both story play and open-ended play. Players expect to be immersed in a

game world, a spatial environment encompassing all locations relevant to story play

and open-ended play, and inhabited by the player character and all other non-player

characters. Both story play and open-ended play are often tied to the spatial environ-

ment. Unfortunately, the generation of a story plan generator does not necessarily

result in a playable experience without being tied to a spatial environment. In the

case that a game world does not exist that suits the purposes of an automatically

generated story plan, the game world may be automatically generated.

Table 7.1: Example plan with event locations.

1. Take (paladin, water-bucket, palace)

2. Kill (paladin, baba-yaga, water-bucket, graveyard1)

3. Drop (baba-yaga, ruby-slippers, graveyard1)

4. Take (paladin, shoes, graveyard1)

5. Gain-Trust (paladin, king-alfred, shoes, palace)

6. Tell-About (king-alfred, treasure, treasure-cave, paladin)

7. Take (paladin, treasure, treasure-cave)

8. Trap-Closes (paladin, treasure-cave)

9. Solve-Puzzle (paladin, treasure-cave)

10. Trap-Opens (paladin, treasure-cave)

To motivate the need for game world generation, consider the fully-ordered plan

in Table 7.1. The plan involves a player character, the Paladin, performing a series

of tasks to gain the King’s trust, learn about a treasure cave, and escape a trap. Each

action in the plan establishes a number of world conditions necessary for subsequent

7 Planning with applications to quests and story (DRAFT) 129

actions to occur. For example, the Witch will drop her shoes only once dead, and

the King will trust the Paladin once he is presented with the shoes of the Witch. A

story plan only provides the essential steps to progress toward a goal situation, but

does not reason about player activities that do not otherwise impact the progression

of the story.

The domain model abstracts away much of the moment to moment activity of the

player and NPCs in order to focus on the aspects of the world that are most crucial

for story progression. Game play, however, is not always a sequence of discrete

operations. For example, solving a puzzle may require many levers to be triggered

in the right sequence. For the purposes of this chapter, we will refer to operations

in a story plan as events to highlight their abstract nature. Events are temporally

extended; each event can take a continuous duration of time, and there may be large

durations of time that take place between events. The plan also does not account

for opportunities for open-ended play between events. For example, where is the

graveyard relative to the castle, how long does it take to travel that distance, and

what might the player see or experience along the way that is not directly relevant

to the story plan?

If the game world is a given—i.e., there is a fixed world with a number of lo-

cations and NPCs—then there is a mapping of story events in the plan to virtual

locations in the game world. For example, the game world for Table 7.1 requires a

graveyard, a castle, and a treasure cave. However, due to the nature of automatically

generated story plans, it is not always feasible to have a single fixed game world

that meets the requirements of a story plan: Locations may be missing, there may

be too many irrelevant locations, or locations may need to be reordered to make

a more coherent and sensible flow. In the next section, we describe a technique to

automatically generate a playable game world based on a story plan.

7.5.1 From Story to Space: Game World Generation

Recalling that games often interleave plot points and open-ended game play, the

game world to be generated must ensure a coherent sequence of events are encoun-

tered in the world. The problem can be specified as follows: given a list of events

that reference locations of known types, generate a game world that allows a lin-

ear progression through the events. To map from story to space, we will utilize a

metaphor of islands and bridges. Islands are areas in the spatial environment where

events occur. Bridges are areas of the world between islands where open-ended

game play occurs. Bridges can branch, meaning there can be areas that the player

does not necessarily need to visit in the course of the story. The length of bridges

and the branching factor of bridges are parameters that can be set by the designer

or dictated by a player model. A game world is generated in a 3-stage pipeline in

which (1) a story plan is parsed for location information referenced by events, (2)

an intermediate, abstract representation of the navigable space is generated, and (3)

the graphical visualization of the navigable space is realized.

130 Yun-Gyung Cheong, Mark O. Riedl, Byung-Chull Bae, Mark J. Nelson

Table 7.2: A portion of the initial state declaration for a planning domain.

Hero (paladin) Thing (water-bucket) Type (palace, castle)

NPC (baba-yaga) Thing (treasure) Type (graveyard1, graveyard)

NPC (king-alfred) Thing (ruby-slippers) Type (treasure-cave, cave)

Place (palace) Evil (baba-yaga) Type (water-bucket, bucket)

Place (graveyard1) Type (baba-yaga, witch) Type (ruby-slippers, shoes)

Place (treasure-cave) Type (king-alfred, king) Type (treasure, gold)

cave

castle
forest

forest

swamp

swamp

grave-
yard

swamp

forest

forest

mountain

mountain

Fig. 7.4: An example space tree. Islands are marked with bold lines.

castle forest

grave-
yard

mountain

desert

swamp0.3

0.6

0.2

0.4
0.4

0.2

0.1

0.10.2

0.5

cave

0.2

0.2

0.1

1.0

0.1

0.1
0.5

0.3

0.2

0.2
0.8

0.3

Fig. 7.5: An environment transition graph.

First, the generated story plan is parsed to extract a sequence of locations, each

of which becomes an island. The story plan must be fully ordered to generate such

a sequence (any partially ordered plan can be converted into a full-ordered plan).

Each event in the story plan must be associated with a location. For example, in the

story plan in Table 7.1, events occur at places referenced by the symbols palace,

graveyard1, and treasure-cave. Each referenced location must have a type. This

information is often found in the initial state declaration of the planning domain.

Table 7.2 shows a portion of the initial state for the domain used to generate the

example story plan. Thus the example story plan plays out in three locations: a

castle (events 1, 5 and 6), a graveyard (events 2 through 4), and a cave (events 7

through 10).

The next stage is to generate an intermediate representation of the game world as

a graph of location types called a space tree. A space tree is a discrete data structure

that indicates how big the game world will be, how many unique locations, and

which locations are adjacent to each other. Figure 7.4 shows an example of a space

7 Planning with applications to quests and story (DRAFT) 131

tree in which the nodes corresponding to island locations—where story plan events

are to occur—are highlighted in bold and the rest of the nodes comprise the bridges.

The planning domain does not provide enough information to tell us what types

of locations should be used for the bridges. We require an addition knowledge struc-

ture, called an environment transition graph. An environment transition graph is a

data structure that captures the game designer’s beliefs about good environment type

transitions. Each node in an environment transition graph is a possible location type

and edges indicate non-zero probability of transitioning from one location type to

another. Figure 7.5 shows an example of an environment transition graph.

Space Tree generation can utilize any optimization search algorithm to find a

space tree that meets the evaluation criteria. See Chapter 2 for the general search-

based approach to procedural content generation, and see [8] for specific implemen-

tation details. The evaluation criteria are:

• Degree to which the number of bridges nodes in the space tree between islands

have the preferred length.

• Whether the bridges have the preferred branching factor.

• Degree to which the length of side paths—branch nodes that are not directly

between two islands—matches the preferred side path length.

• How closely environment type transitions between adjacent nodes match the en-

vironment transition graph probabilities.

These evaluation criteria make use of parameters set by the designer. Other evalua-

tion criteria may be used as well.

Once the space tree has been generated via a search-based optimization process,

the third stage is to realize the game world graphically. The space tree gives us

an abstract representation of this game world but doesn’t tell us what each locations

should look like. Where should art assets be placed spatially to create the appearance

of a forest, town, or graveyard, etc.?

We describe a graphical realization process that creates a 2-D, top-down, tile-

based, graphical visualization of a game world described by a space tree. Starting

with a grid of empty tiles, we will first map the space tree to the 2D grid and the

choose tiles for each cell in the grid. If the grid is mworld × nworld tiles, then each

mscreen ×nscreen tiles is the number of tiles that can be displayed on the screen at any

one time. Each node in the space tree will be mapped to a mlocation × nlocation grid

of screens. In Figure 7.6, the world is 340× 160 tiles, each screen is 34× 16 tiles,

and each location encompasses a 3× 3 grid of screens (only a portion is shown).

The mapping of space tree to grid is as follows. Use a depth-first traversal of the

space tree, placing each child adjacent to its parent on a grid. In order to prevent an

algorithmic bias toward growing the world in a certain direction (e.g. from left to

right), one can randomize the order of cardinal directions it attempts to place each

child. To minimize the likelihood that nodes will be mapped to the same portion of

the grid, one can constrain the space tree such that nodes have no more than two

children, for a total of three adjacent nodes. Backtrack if necessary. If there is no

mapping solution, discard the space tree and return to the optimization search to

generate the next best space tree.

132 Yun-Gyung Cheong, Mark O. Riedl, Byung-Chull Bae, Mark J. Nelson

cave

castle forest

forestswamp

swamp

grave-
yard

swamp forest

forest

mountain

mountain

Fig. 7.6: A space tree mapped to a grid.

Once each node in the space tree has been assigned a region on the grid, the mod-

ule begins graphical instantiation of the world. Each node from the space tree has

an environment type, which determines what decorations will be placed. Decora-

tions are graphical assets that overlay tiles and visually depict the environment type.

For a 2D tile-based realization of a game world, decorations are sprites that depict

scenery found in different environment types. A forest environment has decorations

consisting of grass, trees, and bushes, while a town has decorations that look like

buildings, castle walls, and street paving stones.

But how does the system know where to place each decoration? This knowledge

is also not present in the domain model, and a third type of external knowledge is

necessary. Each environment type is associated with a function that maps decora-

tions to a probability distribution over XY tile coordinates. We have identified two

types of mapping functions.

A Gaussian distribution defines the dispersement of decorations around the cen-

ter point of a location such that decorations are placed more densely around the

center point of each location. The advantage of a Gaussian distribution is that deco-

rations can be placed in adjacent locations, creating the appearance that one location

blends into the next, as in Fig 7.7.

A custom distribution is an arbitrary, designer-specified function that returns the

probability of placing a decoration at any XY coordinate. Fig 7.8 shows the custom

distribution for a town location type such that buildings are likely arranged in a

grid-like city blocks, paving stones make up streets between city blocks, and guard

towers are arranged in a ring around the town perimeter.

Fig 7.9 shows an example of a complete game world with three islands extracted

from Table 7.1.

7.5.2 From Story to Time: Story Plan Execution

Once the space in which the story will unfold has been generated, there are two ad-

ditional issues that must be addressed: (a) the world must be populated with NPCs,

and (b) the NPCs must act out the story, which was not known prior to execution.

7 Planning with applications to quests and story (DRAFT) 133

Fig. 7.7: A forest adjacent to a swamp, both with Gaussian distributions resulting in

a blended transition.

Population of the world by NPCs is a simple process of parsing the story plan for

references to NPCs and instantiating sprites (based on NPC type) in the location

in which they are first required to participate in an event. Because of the temporal

extension of events, NPCs must elaborate on events, including engaging in com-

bat, engaging in dialogue, setting up and triggering traps (the world itself can be an

NPC), etc. Because the story and world geometry are a priori unknown, the NPCs

must be flexible enough to elaborate on an event under a wide range of conditions

based on what events preceded the current time point and how the world is laid out.

One solution is to pair each event with a reactive script that decomposes the event

into a number of primitive NPC behaviors. Roughly, a reactive script is an AND-OR

tree structure in which internal nodes represent abstract behaviors—possibly joint

between a number of characters—and leaf nodes represent primitive, executable

behaviors such as animations. Reactive script execution is a walk of the tree im-

plementing an event such that AND-nodes create sequences of sub-behaviors and

OR-nodes express alternative means of decomposing achieving a behavior, imple-

menting if-then-else decision-making logic. Internal nodes may implement applica-

bility criteria (similar to preconditions) that are used to prune sub-trees that are not

supported by the state of the virtual world at execution time. Examples of reactive

script technologies include behavior trees [9], hierarchical finite state machines, hi-

erarchical task networks [21] such as SHOP 2 [15], and the ABL reactive behavior

planner [13].

There are two types of reactive scripts necessary to execute an automatically

generated story in an open-ended game world [18]: narrative directive behaviors

and local autonomous behaviors. Narrative directive behaviors are reactive scripts

associated with event templates in the domain model. They operate as above, de-

composing events into primitive behaviors. Narrative directive behaviors enact an

event as if it were a stage manager in a play; they are not associated directly with

134 Yun-Gyung Cheong, Mark O. Riedl, Byung-Chull Bae, Mark J. Nelson

Fig. 7.8: A custom distribution for a town (left) and an example of the result (right).

Brighter color indicates greater probability of a decoration, where red indicates

buildings, green indicates paving stones, and blue indicates towers.

Fig. 7.9: Example game world generated from the islands in the plan in Table 7.1.

any one character, but may control many characters at once. Local autonomous be-

haviors are associated with NPC types and execute whenever an NPC is instantiated

in the world but not otherwise playing a role in an event. Local autonomous behav-

7 Planning with applications to quests and story (DRAFT) 135

iors create the appearance that NPCs have rich internal lives if they are encountered

by the player during open-ended play.

7.6 Summary

Most games have stories, be they backstories as in a typical shooter or stories that

structure the game experience as in a role-playing game. Stories can be seen as con-

tent and generated. The most common approach to generating stories is to use some

kind of planning algorithm. A planning algorithm finds a path from an initial state to

a goal state; the sequence of actions that constitute this path can then be interpreted

as a story. Among planning algorithms, there is a distinction between plan space

search, where the algorithm searches in the space of possible plans, and state space

search, where a plan is built up through adding new parts sequentially. A domain

model is a collection of facts about the (game) world and possible actions that can

be taken in it, which is then used by the planner to create a plan. There are several

ways of representing a domain model, such as the STRIPS and ADL languages. For

stories which have an impact on gameplay, there are ways of generating the map at

the same time as the story, or the map to follow the story. Search and optimisation

techniques can be used to map out plot points to physical locations.

7.7 Lab exercise: Write a story domain model

The purpose of this exercise is to let you be able to write a story domain model and

characterize different planning algorithms.

1. Get familiarized with JSHOP2 - an off-shelf JAVA implementation of SHOP2

HTN planner (originally written in LISP).

• Download and install JSHOP 2.0 (http://www.cs.umd.edu/projects/shop/)

• Check out and test the sample examples included in the package.

2. Write a planning problem in terms of initial state, goal state, and actions by defin-

ing two story domains (Little Red Riding Hood and The Gift of the Magi) using

either STRIPS-style or ADL-style representation. Discuss which representation

is more suitable to describe the two storyworld domains and explain why.

3. Convert the above planning problems into HTN representation that is applicable

in JSHOP2 planner, and execute them. Discuss the strength and weakness of

HTN planning (or SHOP2 planner) as a story generation method/tool.

4. In the Butler story described in Section 1.4, suppose that the lord knows that the

wine is poisoned and he just pretends to be dead, but the butler does not know

that the lord knows. The new authorial goal is now reprensented as ¬dead(Lord)
∧ Arrested(Butler). Make a complete story plan by adding additional actions

136 Yun-Gyung Cheong, Mark O. Riedl, Byung-Chull Bae, Mark J. Nelson

(e.g., Call−911(Lord), Arrest(Police,Butler)), states, and causal links. Do you

think that it will make the story more interesting? Why or why not?

5. Discuss the overall advantages and limitations of planning-based story genera-

tion.

6. Discuss how planning-based story generation techniques can be effectively used

in interactive storytelling systems and games.

References

1. Espen Aarseth. From Hunt the Wumpus to EverQuest: Introduction to quest theory. In Pro-

ceedings of the 4th International Conference on Entertainment Computing, pages 496–506,

2005.
2. Calvin Ashmore and Michael Nitsche. The quest in a generated world. In Proceedings of the

2007 Digital Games Research Association Conference, pages 503–509, 2007.
3. Byung-Chull Bae and R. Michael Young. A use of flashback and foreshadowing for sur-

prise arousal in narrative using a plan-based approach. In Proceedings of the 1st Joint Inter-

national Conference on Interactive Digital Storytelling: Interactive Storytelling, ICIDS ’08,

pages 156–167, Berlin, Heidelberg, 2008. Springer-Verlag.
4. W.F. Brewer and E.H. Lichtenstein. Event schemas, story schemas, and story grammars. In

J.B. Long and A.D. Baddeley, editors, Attention and Performance, volume 9, pages 363–379.

Lawrence Erlbaum Associates, Inc., 1981.
5. Yun-Gyung Cheong and R. Michael Young. Narrative generation for suspense: Modeling and

evaluation. In Ulrike Spierling and Nicolas Szilas, editors, Interactive Storytelling, First Joint

International Conference on Interactive Digital Storytelling, ICIDS 2008, Erfurt, Germany,

November 26-29, 2008, Proceedings, volume 5334 of Lecture Notes in Computer Science.

Springer, 2008.
6. Natalie Dehn. Story generation after TALE-SPIN. In Proceedings of the 7th International

Joint Conference on Artificial Intelligence, pages 16–18, 1981.
7. Richard E. Fikes and Nils J. Nilsson. Strips: A new approach to the application of theo-

rem proving to problem solving. Technical Report 43R, AI Center, SRI International, 333

Ravenswood Ave, Menlo Park, CA 94025, May 1971. SRI Project 8259.
8. Ken Hartsook, Alexander Zook, Sauvik Das, and Mark Riedl. Toward supporting storytellers

with procedurally generated game worlds. In Proceedings of the 2011 IEEE Conference on

Computational Intelligence in Games, pages 297–304, Seoul, South Korea, August 2011.
9. Damian Isla. Handling complexity in the Halo 2 AI. Presentation at the 2005 Game Devel-

opers Conference. Available at: http://www.naimadgames.com/publications/gdc05/gdc05.doc

(retrieved September 9, 2013).
10. Subbarao Kambhampati, Craig A. Knoblock, and Qiang Yang. Planning as refinement search:

A unified framework for evaluating the design tradeoffs in partial order planning. Artificial

Intelligence, 76(1-2), 1995.
11. John Paul Kelly, Adi Botea, and Sven Koenig. Offline planning with hierarchical task networks

in video games. In AIIDE, 2008.
12. Michael Lebowitz. Story-telling as planning and learning. Poetics, 14:483–502, 1985.
13. Michael Mateas and Andrew Stern. A Behavior Language: Joint action and behavior idioms.

In Helmut Prendinger and Mitsuru Ishizuka, editors, Life-like Characters: Tools, Affective

Functions and Applications. Springer, 2004.
14. James R. Meehan. The Metanovel: Writing Stories by Computer. PhD thesis, Department of

Computer Science, Yale University, 1976.
15. Dana Nau, Okhtay Ilghami, Ugur Kuter, J. William Murdock, Dan Wu, and Fusun Yaman.

Shop2: An htn planning system. Journal of Artificial Intelligence Research, 20:379–404,

2003.

7 Planning with applications to quests and story (DRAFT) 137

16. Edwin P. D. Pednault. Formulating Multi-Agent Dynamic-World Problems in the Classical

Planning Framework. In Michael P. Georgeff and Amy L. Lansky, editors, Reasoning About

Actions and Plans: Proceedings of the 1986 Workshop, pages 47–82, San Mateo, CA, 1987.

Morgan Kaufmann Publishers.

17. Mary Jo Rattermann, Lee Spector, Jordan Grafman, Harvey Levin, and Harriet Harward. Par-

tial and total-order planning: evidence from normal and prefrontally damaged populations.

Cognitive Science, 25(6):941–975, 2001.

18. Mark O. Riedl, Andrew Stern, Don M. Dini, and Jason M. Alderman. Dynamic experience

management in virtual worlds for entertainment, education, and training. International Trans-

actions on System Science and Applications, 3(1):23–42, 2008.

19. Mark O. Riedl and R. Michael Young. Narrative planning: balancing plot and character. Jour-

nal of Artificial Intelligence Research, 39(1):217–268, 2010.

20. Stuart J. Russell and Peter Norvig. Artificial Intelligence: A Modern Approach (2nd Edition).

Prentice Hall, December 2002.

21. Earl D. Sacerdoti. A Structure for Plans and Behavior. Elsevier, New York, 1977.

22. Anne Sullivan, Michael Mateas, and Noah Wardrip-Fruin. Making quests playable: Choices,

CRPGs, and the Grail framework. Leonardo Electronic Almanac, 17(2):146–159, 2012.

23. A. Tate. Generating project networks. In Proceedings of IJCAI-77, pages 888–893, 1977.

24. Susana Tosca. The quest problem in computer games. In Proceedings of the 1st International

Conference on Technologies for Interactive Digital Storytelling and Entertainment, pages 69–

81, 2003.

25. Tom Trabasso and Linda L. Sperry. Causal relatedness and importance of story events. Journal

of Memory and Language, 24(5):595 – 611, 1985.

26. Scott R. Turner. The Creative Process: A Computer Model of Storytelling and Creativity.

Psychology Press, 1994.

Chapter 8

ASP with applications to mazes and levels

(DRAFT)

Mark J. Nelson and Adam M. Smith

A common theme underlying procedural content generation is that we need to be

able to specify both what we want our generated content to be like, and how to

generate it. Sometimes these two parts are tightly intertwined. In the constructive

methods of Chapter 3 and the fractal and noise methods of Chapter 4, we can pro-

duce different kinds of output by tweaking the algorithms until we’re satisfied with

their output. But if we know what properties we’d like generated content to have,

it’s more convenient to be able to directly specify what we want, and then have a

more general algorithm find content meeting our criteria.

The search-based framework introduced in Chapter 2 is one common way of

making a content-generation algorithm general, so we can tell it what kind of con-

tent we want, and have it search for content meeting our request. An evaluation

function specifies the properties we’d like the content to have, by numerically rating

the quality of generated content according to whatever criteria we choose. A search

algorithm then searches a space of content encodings to find highly rated content.

Evaluation functions summarize a large range of possible content qualities into a

single numerical rating. Then the search process, such as an evolutionary algorithm,

finds content that rates highly on that scale. Elements of an evaluation function may

include both hard constraints—things that the content absolutely must have, such as

a level being passable—and softer preferences. Evaluation of content quality may

also depend on the game’s mechanics. For example, whether a level is passable can

depend on how a player can move, what items are available for the player’s use, how

enemies move, and so on; in search-based PCG this is often addressed by simulating

gameplay when compute the rating.

In this chapter we look at another way of dealing with the what and how of PCG.

We specify what we want our generated content to be like by writing programs

in answer-set programming (ASP), a language for writing logic and constraints.

We then do the actual generation by passing the program to an ASP solver, which

outputs content that meets the specifications of our program.

139

140 Mark J. Nelson and Adam M. Smith

8.1 Game logic and content constraints

Instead of using a content encoding and a numerical evaluation function, here we

define the logic of a content domain, along with constraints on the properties that

we want the generated content to exhibit [9].

The logic of a game content domain is its structure and game mechanics. A grid-

based map has a structure in which tiles are arrayed horizontally and vertically,

with walls, items, structures, or other entities placed on tiles. Mechanics specify

how gameplay takes place on this grid. Common mechanics include: a player starts

somewhere, can move to any unoccupied adjacent square, can pick up certain kinds

of items, can break certain kinds of barriers (this might require an item), etc. In short,

how a game works makes up its logic. This logic can be encoded in computational

logic [7], which means we will be able to use it to guide PCG. We don’t encode how

the entire game works, to be clear: just how the game works to the extent that it’s

relevant to generating the content we want.

Once we have the logic of a domain, we can write down properties that we want

all generated content to have, by writing constraints that refer to the game’s logic.

For example: a level must have a valid path through it. What is a valid path? A se-

quence of moves that a player can legally make. The sequence of moves the player

can legally make in turn depends on the logic of the particular game’s world and

rules, discussed in the previous paragraph. Some other possible constraints: all valid

paths should be at least a certain minimum length, the exit and entrance must be at

opposite edges of the map, and so on. We can add and remove from these prop-

erties, as we think of them: perhaps the player shouldn’t be able to get through a

level without using at least one item (if our game has items). Maybe at least one

jump should be required, or there should be a boss placed somewhere that can’t be

avoided. Specifying these constraints will often be done iteratively. Once we gener-

ate a few example levels, we may see things we didn’t expect, and modify the set of

desired properties accordingly.

The logic and constraints together serve the role that the encoding and evaluation

function in search-based PCG, but in a more explicit, symbolic form, where we’ve

written out the logic of a game world and the properties we’d like in the generated

content. The logic and constraints are then passed to a tool, called a solver, which

solves the logic problem: it finds content that conforms to the logic of the game

world and satisfies all the constraints we’ve specified. This approach is particularly

useful when many of our desired properties are hard constraints, and may depend

(perhaps in complex ways) on the game’s mechanics.

8.2 Answer set programming

To apply the approach we just described in practice, we need a specific language

in which to encode the game logic and constraints, and a solver for that language.

In this chapter, we use answer-set programming (ASP), a logic programming lan-

8 ASP with applications to mazes and levels (DRAFT) 141

guage. While there are other possible ways to do PCG with constraint solving [6],

answer-set programming is a well-developed programming language with reliable

existing tools, and which can be used to specify both game logic and constraints

within the same language. Therefore it serves as good general-purpose choice for

programming logic- and constraint-based PCG systems.1

Before we jump into using ASP for a content generation task, we will first in-

troduce some basic syntax. Answer set programs are expressed in a language called

AnsProlog [1, 4], a language that visually resembles Prolog while having semantics

that are more directly relatable to SAT and MAX-SAT problems.

The simplest ASP construct is a fact. A fact is something we declare to be true.

It can be an atomic fact, which is simply a symbol that is declared true:

game_over.
gravity_enabled.

Or, a fact can be specified using predicates, which take parameters. A predicate can

be declared true for specific choices of parameters:

max_jump(3).
contains((2,2),wall).

So far, this is just a bare list of facts. We could encode a whole level this way,

specifying the locations of walls, items, etc. But the interesting part comes when we

add rules in addition to lists of facts. Rules specify that we can infer certain facts

from others. This encodes dependencies between game elements, and also lets us

start specifying dynamic elements of the game, like game mechanics. For example,

let’s say a tile is impassable if it contains a wall:

impassable(Tile) :- contains(Tile,wall).

We could have specified a list of facts listing explicitly which tiles are impassable,

but this rule captures in one line that every tile with a wall is impassable. Here,

Tile is a logic variable. In AnsProlog, variables start with a capital letter, while

predicates and atoms start with a lowercase letter. These rules can be thought of

as a reversed version of the implication formulas in first-order logic. Written in

conventional mathematical notation, it would be:

∀Tile, item at(Tile,wall) =⇒ impassable(Tile)

Read left to right, this says: for all tiles, if the tile contains a wall, then the tile is

impassable. The symbol :- in AnsProlog is a leftward-pointing version of this im-

plication arrow, following the programming-language convention that assignments

go from right to left. Variables in AnsProlog are implicitly universally quantified, so

the “for-all” (∀) in the mathematical version doesn’t appear in the AnsProlog code.

Once we have facts and rules, that would in principle be enough to constructively

generate content. However, it is typically difficult to write a set of facts and rules

so that only content we want is derived by the implications, placing everything in

exactly the right combination of places and never generating broken or undesirable

output. Instead, we usually generate content in two steps. First, we constructively

1 ASP has also been used for content generation outside of games, notably to generate music [2].

142 Mark J. Nelson and Adam M. Smith

define a design space. Then we specify constraints that exclude unwanted parts of

the design space.

The initial, larger design space is created by using the AnsProlog construct of

choice rules. A choice rule specifies that the solver has an arbitrary choice in how

to assign certain facts—as long as they meet some numerical constraints, and any

other constraints that we might add later. The following choice rule specifies that

there are between 5 and 10 walls in the level, but it doesn’t specify exactly how

many, or on which tiles they’re located:

5 { item_at(T,wall) : tile(T) } 10.

More precisely, this syntax says that, if we construct a big collection of candidate

item_at(T,wall) facts, for every possible T that is a tile, then the size of this set

is at least 5, but no greater than 10. If we have no desire to constrain the set size, we

can leave off one or both of these numbers. The following choice rule simply says

that a level has any number of walls:

{ item_at(T,wall) : tile(T) }.

A program consisting of only the above rule produces a generative space of lev-

els that contains any possible arrangement of walls on a grid. Of course, interesting

levels require more than this. Besides adding numerical constraints on how the ASP

solver makes it choices, we can exclude unwanted choices by adding different con-

straints that the solver must take into account. A standalone constraint is written like

a rule, but has nothing on the left hand side of the :- syntax. A solution that matches

the right-hand side of the rule will be rejected as an invalid choice. The following

example rule excludes any generated map that has a wall at (1,1):

:- item_at((1,1),wall).

If we read this again as a logical implication written backwards, this translates to:

itemat((1,1),wall) =⇒ [reject]

By intermixing rules that create generative spaces, and others that prune them

back down to interesting subsets, we can achieve strong control over the kinds of

content that is generated.

AnsProlog code is put into files with the conventional extension .lp (for “logic

program”), and then passed to the solver. In this chapter we use the solver clingo

from the University of Potsdam, a free and actively maintained AnsProlog solver

that’s part of the Potassco project of answer-set programming tools [5].

Now that we have the basic machinery of AnsProlog, we can define facts and

implications, specify design spaces as free choices, and specify constraints rejecting

some of those choices. We’ll walk through some complete examples to show how

to build and modify procedural level generators using this method.

8 ASP with applications to mazes and levels (DRAFT) 143

8.3 Perfect mazes

Using our new found ability to reason over all possible logical worlds, we will start

with a simple maze generation problem. In particular, we will look at generating

perfect mazes. A perfect maze (which may or may not actually be a desirable maze)

is one in which every location is reachable while not having any closed loops. In

effect, perfect mazes are trees that have been embedded into a fixed space, usually

a grid.

One way to represent a tree embedded in a grid is to assign each tile in the grid a

parent pointer that points to one of its adjacent cells. If the choice of parent pointers

actually forms a tree, then it will be possible to traverse these pointers back to the

root of the tree no matter where we start.

Let’s begin by establishing a representational vocabulary for our mazes. Fig-

ure 8.1 is a self contained AnsProlog program that uses a choice rule to assign

each X/Y location a unique parent direction. This choice rule can produce facts like

parent(5,7,0,-1) which might read that the tile at location (5,7) has a parent of

(5,6). The location (1,1) will later function as the root of our tree, so we don’t

assign it a parent direction.

#const width = 5.
dim(1..width).

1 { parent(X,Y, 0,-1),
parent(X,Y, 1, 0),
parent(X,Y,-1, 0),
parent(X,Y, 0, 1) } 1 :-
dim(X), dim(Y), (X,Y) != (1,1).

Fig. 8.1: maze-core.lp

With just a single interesting rule, we can already begin visualizing the output of

the design space we are representing so far. Using a command like the following,

which uses the answer set solving system from the Potassco project (discussed in the

previous section), we can generate ASCII-art previews of possible mazes. Examples

from our program so far can be seen in Figure 8.2.

clingo maze-core.lp --rand-freq=1

To make sure we only see valid trees, we should enforce the property that the

root is reachable from every tile on the grid. Figure 8.3 uses a fact, a recursive rule,

and an integrity constraint to accomplish this. The linked(X,Y) property holds for

the root of the tree trivially. Any tile that has a parent that is linked is linked as well.

Finally, if there is some tile which does not have the linked property, something is

wrong with the current assignent of parent directions and this possible world should

be rejected.

144 Mark J. Nelson and Adam M. Smith

Fig. 8.2: When each tile in the maze is assigned a random parent, typical outputs

show several disconnected components. Some tiles on the edges of the maze even

point to a parent cell outside of the maze.

linked(1,1).
linked(X,Y) :- parent(X,Y,DX,DY), linked(X+DX,Y+DY).

:- dim(X;Y), not linked(X,Y).

Fig. 8.3: maze-reach.lp

After adding these rules, we can sample examples of all and only those perfect

mazes by running a command like the following. Example outputs are showin in

Figure 8.4

clingo maze-core.lp maze-reach.lp

Fig. 8.4: After adding reachability constraint for each tile, the desired tree network

appears. This program captures exactly the set of all perfect mazes of a given width.

So far, we have used only hard constraints: tiles have exactly one parent, and

every tile must be linked to the root. We can express soft constraints in AnsProlog

as well by defining optimization criteria. As an example of this for the primitive do-

main of mazes, let us suppose that vertical links in the maze are undesirable and that

their use should be minimized. To accomplish this, the rules in Figure 8.5 define two

ways of detecting a vertical link (an upward or downward parent), and the minimize

8 ASP with applications to mazes and levels (DRAFT) 145

statement tells the solver that solutions which use the least-possible count of verti-

cal links are those that interest us. Although such statements are typically read as

implying an optimality constraint (that only globally optimal solutions should be

emitted, most answer set solvers will emit a series of answer sets they find along

the way to finding one such optimal solution. By stopping the solver once it gets

close enough or runs for enough time, we can implement approximate optimization

within this framework as well.

% soft style preferences : minimize vertical links
vertical(X,Y) :- parent(X,Y,0, 1).
vertical(X,Y) :- parent(X,Y,0,-1).
#minimize { vertical(X,Y) }.

Fig. 8.5: maze-bias.lp

Including the rules defining our bias against vertical links, a command like the

following will allow us to sample maze designs that optimize our working evaluation

criterion. Example outputs are show in Figure 8.6.

clingo maze-core.lp maze-reach.lp maze-bias.lp

Fig. 8.6: Using the count of horizontal connections as an evaluation function, we

can sample several alternative designs with a globally optimal score.

8.4 Playable dungeons

Mazes are an overly simplistic example of how to carry out content generation using

ASP because they can be represented with only a single kind of choice. As a slightly

richer example, this section looks at generating simple dungeon maps in which a few

different types of sprites are stamped down onto the familiar two-dimensional grid.

Our task will be to design a level in which the player character starts in the top-

left of the grid, finds a gem in the wall of the dungeon, carries it to a central altar

146 Mark J. Nelson and Adam M. Smith

when it is used to magically unlock the exit, and then walks out of that exit in the

bottom right. We would like every generated level to be guaranteed to be solvable

as well as have some basic control over the pacing of the level.

To begin, examine Figure 8.7. This program establishes a vocabulary of dimen-

sion values, tiles as value pairs, and adjacency between pairs of tiles. In the character

movement model we intend to capture, tiles that are one step up/down/left/right of

each other are considered adjacent. A mathematical statement of this is that tile pairs

with a coordinate distance of one are considered adjacent. The key part of this pro-

gram is the choice rule that states that every tile has between zero and one sprites

from the set of walls, the gem, and the altar. Because we know we only want to see

maps with one gem and one altar, we immediate add integrity constraints that reject

those maps for which there isn’t exactly one of each.

#const width=10.

param("width",width).

dim(1..width).

tile((X,Y)) :- dim(X), dim(Y).

adj((X1,Y1),(X2,Y2)) :-
tile((X1,Y1)),
tile((X2,Y2)),
#abs(X1-X2)+#abs(Y1-Y2) == 1.

start((1,1)).
finish((width,width)).

% tiles have at most one named sprite
0 { sprite(T,wall;gem;altar) } 1 :- tile(T).

% there is exactly one altar and one gem in the whole level
:- not 1 { sprite(T,altar) } 1.
:- not 1 { sprite(T,gem) } 1.

Fig. 8.7: level-core.lp

Starting with these core rules, commands like the following will generate outputs

like those seen in Figure 8.8.

clingo level-core.lp --rand-freq=1

Our preliminary outputs hardly resemble interesting dungeon maps. There are

many interesting maps lurking in the space we have defined, but they are hard to

spot amongst the multitude of other combinations in the space. To zoom in on those

maps of stylistic interest, we’ll use a mixture of rules and integrity constraints to

carve undesirable alteratives. A dungeon with only a sparse set of walls doesn’t feel

like a dungeon. A single wall sprite takes on the character of a wall when it is placed

contiguously with other wall sprites. An altar should be surrounded by a few tiles

of blank space, and gems should be well-attached to surrounding walls. Examine

Figure 8.9 for a one-line encoding of each of these concerns.

8 ASP with applications to mazes and levels (DRAFT) 147

W

W

W

W

W

G

A

GAW

W

W

W

W W

W W

W W W W W

W

W W

W

W

WW

W

W W W

W

G

A

W

W

W W W W W

W

W

W

W

W

W

W WW

W

W W W

W

W

W

W

W

W

W W W

W W

W W

W

W W

W

W W

W W

W W

W W

W

W W

W W

W W

W W

W W

W

W

W W

W W

W

W

W W

W W

W W

W

W W W W

Fig. 8.8: A random result given rules that capture the basic representational vocab-

ulary for the dungeon generation problem. A few walls (W, gray) are present, along

with exactly one gem (G, green) and one altar (A, orange).

% style : at least half of the map has wall sprites
:- not (width*width)/2 { sprite(T,wall) }.

% style : altars have no surrounding walls for two steps
0 { sprite(T3,wall):adj(T1,T2):adj(T2,T3) } 0 :- sprite(T1,altar).

% style : altars have four adjacent tiles (not up against edge of map)
:- sprite(T1,altar), not 4 { adj(T1,T2) }.

% style : every wall has at least two neighboring walls (no isolated rocks and spurs)
2 { sprite(T2,wall):adj(T1,T2) } :- sprite(T1,wall).

% style : gems have at least three surrounding walls (they are stuck in a larger wall)
3 { sprite(T2,wall):adj(T1,T2) } :- sprite(T1,gem).

Fig. 8.9: level-style.lp

With this addition, commands like the following can be used to sample stylis-

tically valid maps such as those in Figure 8.10. Note that while the levels look

reasonable locally, they are still completely undesirable on the basis of them not

supporting the kind of play we want—there’s often not even a path from the gem to

the altar, let alone from the entrance to the exit.

clingo level-core.lp level-style.lp

The general strategy for ensuring we only generate playable maps is conceptually

simple: generate a reference solution along with the level design. If a map contains

a valid reference solution, we have a proof (by existence) that it is solvable. Even

though we won’t be representing the reference solution in our final output involving

sprites on tiles, we can use the same language constructs as before to describe and

constrain the space of possible solutions for a working map design.

Examine the rules in Figure 8.11. The key predicate is touch(Tile,State)

which describes which tiles we expect the player character to touch in which game-

play state on the path to solving the level. To capture the sequence of picking up the

gem, bringing it to the altar, and then exiting the level, we define three numbered

states. The first rule tells us that the player will touch the start tile in state 1. From

148 Mark J. Nelson and Adam M. Smith

W W W

WW W W W

W

W

W W

W W WW

W

WW W W

W W

W W

W

W W

W W W

WW W

W

WW W W W

W W

W W WW W

W W

WW W

W

W W

WW W W

W

W W WW

WW

G A

A

G

W

W

W

W

W

W

W

W

W

W

W W

W W

W W

W W W

W

W

W

W

W

W

W W

W

W

WW

W

W W

W W

W

W

W

W

W

W

W

W

W

W

W

W

W

W

W

W

W

W

W

WWW W

W

W

W

W

W

W

A

G

W W

WW

W W

WW

W W

WW

W W

WW

W W

WW W W

WW

W W

WW

W

W

W

W

W WWW

W W W W

W W

W W

W W

W W

W

W W

W

W

W

W

W

W

W

W

W

W

WW

W

WW

W

Fig. 8.10: After adding style constraints, there are many walls, the altar is sur-

rounded by open space, and the gem is surrounded by walls on three sides. The fact

that the gem is walled-off is a clue that we have not yet modeled a key contraint: the

level must be playable.

here, a series of choice rules say that touching one tile allows the player character

to potentially touch any adjacent tile while retaining the same gameplay state. If the

character is touching a tile containing the gem or the altar, they can transition to

the next state in the sequence. The completed predicate holds (is true) if the player

character touches the finish tile in final state (after placing the gem in the altar). By

rejecting every logical world where completed is not true, we zoom in on the space

of different ways of solving the level. No algorithm is needed to solve a level, only

a definition of what it means for a set of touched tiles to constitute a valid solution.

% states :
% 1 −−> initial
% 2 −−> after picking up gem
% 3 −−> after putting gem in altar

% you start in state 1
touch(T,1) :- start(T).

% possible navigation paths
{ touch(T2,2):adj(T1,T2) } :- touch(T1,1), sprite(T1,gem).
{ touch(T2,3):adj(T1,T2) } :- touch(T1,2), sprite(T1,altar).
{ touch(T2,S):adj(T1,T2) } :- touch(T1,S).

% you can’t touch a wall in any state
:- sprite(T,wall), touch(T,S).

% the finish tile must be touched in state 3
completed :- finish(T), touch(T,3).
:- not completed.

Fig. 8.11: level-sim.lp

Although we could use the contents of Figure 8.11 as a stand-alone playabil-

ity checker for human-designed dungeon maps, it is easy enough to simply use

it as the same time as our previous map generator to construct a representation

8 ASP with applications to mazes and levels (DRAFT) 149

of the space of maps-with-valid-solutions. A command like the following yields

guaranteed-playable, styled dungeon maps like those in Figure 8.12.

AG

W W

WW

W W

W W

WW

W W W W

WW

W W

W W

WW

W W

W W

WW

W W

W W

WW

W W

W

W

W

W

W

W

W

W

W

W

W

W

W

W W

W

W

W

W

A

G

W W

WW

W W

WW

W W

WW

W W

WW

W W

WW

W W

WW

W W

WW

W W

WW

W W

WW

W W

WW

W W

WW

W

W

W

W

W

W W

WW

W

W

W

W W W A

G

W W W

WW

W

W

W

W

W W

WW

W W

W W

WW

W W

W W

W W

W W

W W

W W

W

W

W

W W

W

W W

W W

W

W

W

W

WW

W

W

Fig. 8.12: After adding a simulation of player activity and placing constraints on the

outcome, we now only see dungeon maps that have valid solution.

8.5 Constraining the entire space of play

The dungeon maps emerging from the previous section look about as good as sprite-

on-grid maps containing two special objects and some walls can get. However, if we

imagine playing through these maps, perhaps with simple arrow-key controls, there

are still problems to resolve. In many of these maps, the task of placing the gem

in the altar represents only a minor deviation from the more basic task of walking

from the entrance to the exit of the dungeon. If the gem and the altar are to have

any meaning for the gameplay of these maps, their placement and the arrangment

of walls should conspire to make us explore the map, take detours from a start-

to-finish speed-run, and backtrack through familiar areas. Although each of these

concerns could be boiled down to a set of overlapping evaluation criteria in the form

of statements about the relative distances between sprites, there is a better strategy.

If our goal is to get the player to work to progress through the sequence of game-

play states, we can state a much higher-level goal. The low-level design details of

the map should somehow work to make sure the player character spends at least

some amount of time walking around the map in each state. How this is accom-

plished (with with a network of rooms connected by indirect passages perhaps) is

not immediately important to us. Our high-level design goal is most directly cast as

a statement about the player’s experience, not the form of any particular level. We’d

like to demand that, across all possible solutions to a given level design, spending a

minimum amount of time in each state is unavoidable. Interpreted logically, this is

a statement that is quantified over the entire space of play.

Recent advances in the use of ASP for representing design spaces now allow

the direct expression of this kind of design goal. Smith et al. [8] offer a small

metaprogramming library that extends normal ASP with two special predicates.

150 Mark J. Nelson and Adam M. Smith

Their __level_design(Atom) and __concept predicates allow the expression of a

query like this: starting with a given level design and reference solution, does the

design space model allow another possibility in which identical choices are made

for every predicated tagged with __level_design(Atom) and in which __concept

is not true? If so, the tagged __concept condition must not be true for the entire

space of play for the given level design, and it should be rejected. The end result is a

design space of level design with reference solutions in which __concept is an un-

avoidable condition across all alternative solutions to the level. As __concept could

be any quantifier-free logical formula, this language extension allows the class of

extended answer set programs to express any problem in the complexity class Σ
P
2

(conventionally assumed to be much larger than the class NP).

Returning to the dungon map generation scenario, the rules in Figure 8.13 tag

the sprite(Tile,Name) predicate as uniquely defining a level and the condition of

touching at least width-many tiles in each of the three states as the desired unavoid-

able condition. A command like the following, which makes use of a special dis-

junctive answer set solver capable of solving the broader class of high-complexity

problems, yields outputs like those shown in Figure 8.14.

clingo level-core.lp \
level-style.lp \
level-sim.lp \
level-shortcuts.lp \
--reify \

| clingo - meta{,D,O,C}.lp -l \
| clasp

% holding sprites constant , ensure every solution touches at least ”width” many tiles in each state
__level_design(sprite(T,Name)) :- sprite(T,Name).
__concept :-
width { touch(T,1) },
width { touch(T,2) },
width { touch(T,3) }.

Fig. 8.13: level-shortcuts.lp

Before we close this section, it is instructive to ask why the following simple rule

doesn’t achieve the same outcome. It would seem to prune away all those solutions

in which the player doesn’t spend enough time in each state.

:- width { touch(T,1) }, width { touch(T,2) }, width { touch(T,3) }.

This integrity constraint works like the “:- not completed.” rule from before.

It works to make sure we only observe solutions (choices for touch(Tile,State))

that demonstrate an interesting property. Zooming in on solutions which complete

the level doesn’t preclude the player from choosing not to complete the level by

simply wasting time before quitting. Likewise, zooming in on solutions in which

the player wanders for a while doesn’t imply that the wandering was inescapable.

If we were to use this rule instead of the __level_design/__concept construction,

we would most likely see many more examples like those from the previous section

8 ASP with applications to mazes and levels (DRAFT) 151

A

G

W W

W

W W

WW

W W

W

W

W

W

W W

W W

W

W W

W W

W

W

W

W W

W W

W W

W W W

W W W W

W W W

W W W

W W W W

W

W

A

G

W W

W W

W W

W W W

W

W W W

W W W

W

W

W W

W W

W W

W W

W W

W W

W

WW

W

W

W

W

W W W W W

W

W

W

W

W

W

W

W A

G

W

W

W

W

W W

W W

W W

W WW W

W W

W W

W W

W W

W W

W

WWW

W

W

W

W

W

W

W W

W W W

WWW

W

W

W

W

W W

W

W

Fig. 8.14: Ensuring that the player cannot avoid spending a certain amount of time

in each state has interesting emergent effects. Certain patterns that we might expect

in human-crafted designs, such as the presence of hidden rooms of the main path

through the level, occur naturally as the solver searches for the form of a level that

gives rise to our requested function at a higher level.

(Figure 8.12). In every example, it would be possible to wander and backtrack, but

it would be unlikely to be actually required.

The idea of casting the most important properties of a level design as statements

quantified over the entire space of play was first developed in the context of the edu-

cational puzzle game Refraction. What makes a given Refraction level desirable and

relevant to its location in a larger level progression is strongly tied to which spatial

and mathematical problem solving skills must be exercised to solve the level, even

if the level admits many possible solutions. The idea of defining a level progression

primarily on the basis of which concepts were required in which levels was the ba-

sis for one of the direct-manuipulation controls in the mixed-initiative progression

design tool for Refraction [3].

Answer-set programming is not the only way to write down constraints over

which kinds of gameplay must be possible (e.g. a level should be solvable) and

which properties of gameplay are required (e.g. that a certain skill is exercised). The

key strategy to follow is to generate not just a minimal description of the content of

interest, but also a description of how the content can be used towards its desired

function (such as a reference solution). Many interesting properties of a piece of

game content are most naturally expressed as criteria that refer to how the content

is used, as opposed to any direct properties of the content itself: a good level is

one that produces desired gameplay when used together with a particular game’s

mechanics. Despite the fact that generating content under universally-quantified

constraints maps to extremely high-complexity search and optimization problems,

many of these problems can be solved, in practice, in short enough times to power

interactive design tools and responsive online content generators embedded into

games. The use of ASP as a generation technique provides a declarative modeling

language that separates the designer of a content generator from the design of the

search algorithms that will be applied to these complex problems.

152 Mark J. Nelson and Adam M. Smith

8.6 Exercises: Elaborations on dungeon generation

1. Run each of the examples from the text on your own machine.

2. Add a new style constraint. Make sure you understand how it changes the maps

that are generated.

3. Add a new type of tile sprite, call it lava, that can only be traversed after the

player character has touched the special boots tiles.

4. Change the generator so that it can be initialized with a partial map, and the

generator only fills in unconstrained tiles, in a way that fits style constraints.

5. Separate the playability checker from the rest of the dungeon generation pro-

gram. Now apply it as a “machine playtester” [10] to point out playability flaws

in levels you create yourself.

6. Design question: In the previous exercise, you took a playability checker whose

initial job was to say “I wouldn’t let a PCG system generate this level”, and

adapted it to say, “you, human designer, might have some flaws in this level you

showed me”. Are these really answering the same question? If you were writing

a playability checker specifically to comment on human designers’ levels, would

you have written it differently? (See also Chapter 11.)

References

1. Baral, C.: Knowledge Representation, Reasoning, and Declarative Problem Solving. Cam-

bridge University Press (2003)
2. Boenn, G., Brain, M., De Vos, M., Ffitch, J.: Automatic music composition using answer set

programming. Theory and Practice of Logic Programming 11(2–3), 397–427 (2011)
3. Butler, E., Smith, A.M., Liu, Y.E., Popovic, Z.: A mixed-initiative tool for designing level pro-

gressions in games. In: Proceedings of the 26th ACM Symposium on User Interface Software

and Technology, pp. 377–386 (2013)
4. Gebser, M., Kaminski, R., Kaufmann, B., Schaub, T.: Answer Set Solving in Practice. Morgan

and Claypool (2012)
5. Gebser, M., Kaufmann, B., Kaminski, R., Ostrowski, M., Schaub, T., Schneider, M.: Potassco:

The Potsdam answer set solving collection. AI Communications 24(2), 107–124 (2011)
6. Horswill, I.D., Foged, L.: Fast procedural level population with playability constraints. In:

Proceedings of the Eighth Artificial Intelligence and Interactive Digital Entertainment Con-

ference, pp. 20–25 (2012)
7. Nelson, M.J., Mateas, M.: Recombinable game mechanics for automated design support. In:

Proceedings of the Fourth Artificial Intelligence and Interactive Digital Entertainment Confer-

ence, pp. 84–89 (2008)
8. Smith, A.M., Butler, E., Popović, Z.: Quantifying over play: Constraining undesirable solu-

tions in puzzle design. In: Proceedings of the Eighth International Conference on the Founda-

tions of Digital Games, pp. 221–228 (2013)
9. Smith, A.M., Mateas, M.: Answer set programming for procedural content generation: A de-

sign space approach. IEEE Transactions on Computational Intelligence and AI in Games 3(3),

187–200 (2011)
10. Smith, A.M., Nelson, M.J., Mateas, M.: Computational support for play testing game sketches.

In: Proceedings of the Fifth Artificial Intelligence and Interactive Digital Entertainment Con-

ference, pp. 167–172 (2009)

Chapter 9

Representations for search-based methods

Dan Ashlock, Sebastian Risi, Julian Togelius

9.1 No generation without representation

As discussed in Chapter 2, representation is one of the two main problems in search-

based PCG, and one of the two concerns when developing a search-based solution

to a content generation problem. In that chapter, we also discussed the tradeoff be-

tween direct and indirect representations (the former are simpler and usually result

in higher locality, whereas the latter yield smaller search spaces) and presented a few

examples of how different kinds of game content can be represented. Obviously, the

discussion in Chapter 2 has only scratched the surface with regards to the rather

complex question of representation. This chapter will dig deeper, partly relying on

the substantial volume of research that has beed done on the topic of representation

in evolutionary computation [?].

In the first section of this chapter, we will return to the topic of dungeons, and

shows how the choice of representation substantially affects the appearance of the

generated the dungeon. The next section discusses the generation of maps for paper-

and-pen role-playing games in particular. After that, we discuss a particular kind of

representation that has seen some success recently, namely Compositional Pattern-

Producing Networks, or CPPNs. As we will see, this representation can be used for

both flowers and weapons, and many things in between. Finally, we will discuss

how we can represent not only the game content but the content generator itself,

and search for good level generators in a search-based procedural procedural level

generator generator.

9.2 Representing dungeons: a maze of choices

Dungeons or mazes (we mostly use the words interchangeably) is a topic that we

have returned to several times during the book; the topic of most of Chapter ??

153

154 Dan Ashlock, Sebastian Risi, Julian Togelius

was dungeons, as well as the programming exercise in Chapter 2 and some of the

examples in Chapter 8. The reasons for this is both the very widespread use of this

type of content (including but certainly not limited to roguelike games) and the

simplicity of mazes, allowing us to discuss and compare the various vastly different

ways of generating mazes without getting lost in implementation details. It turns out

that when searching for good mazes, the choice of representation matters in several

different ways.

Often when the issue of representation arises, the goal is enhanced performance.

Enhanced performance could be improved speed in the search algorithm, creation of

game features with desirable secondary properties that smooth ease-of-use, or sim-

ply fitting in with the existing computational infrastructure. In procedural content

generation, there is another substantial impact of changing representation: appear-

ance.

Fig. 9.1: Maps generated using four different representations that all generate 1=full

0=empty common currency maps. In reading order the representations are negative,

binary with required content, positive, and binary with rotational symmetry.

9 Representations for search-based methods 155

The pictures shown in Figure 9.1 are all level maps procedurally generated by

similar evolutionary algorithms. Notice that they have very different appearances.

The difference lies in the representation. All representations specify full and empty

squares, but in different manners. The fitness function can be varied depending on

the designer’s goals and so is left deliberately vague.

Negative

The upper left level map in Figure 9.1 starts with a matrix filled with ones. Individ-

ual loci in the gene specify where the upper left corner of a room goes and its length

and height. The corridors are rooms with one dimension of length one. The red dots

represent the position of a character’s entrance and exit from the level. There is a

potential problem with a random level having no connection from the entrance to

the exit. If there is a large enough population and the representation length (number

of rooms in each chromosome) is sufficient then the population contains many con-

nected levels and selection can use these to optimise the level. This representation

creates maps that look like mines.

Binary with Content

The upper right map in Figure 9.1 is created used a simple binary representation, but

with required content. The large room with four pillars and the symmetric room with

a closet opening north and south of it are the required content. They are specified

in a configuration file. The first few loci of the chromosome specify the position of

the required content elements. The remainder specify bits 1=full 0=empty. The fit-

ness function controls relative distances of required content elements and entrances

and exists. The required content represents elements the designer wants placed in

an otherwise procedurally generated level. This representation generates maps that

look like cave systems.

Positive

The lower left map in Figure 9.1 uses a representation in which the loci specify

walls. The starting position, direction, and maximum length of a wall are given

as well as a behavioural control. The behavioural control is 0 or 1. If it is zero it

stops when it hits another wall, if it is one it grows through the other wall. This

representation generates maps that look like floor plans of buildings. The example

shown uses eight directions - eliminating the diagonal directions yields even more

building-like appearances.

156 Dan Ashlock, Sebastian Risi, Julian Togelius

Binary with Symmetry

This representation specifies directly, as full and empty, the squares of one quarter of

the level with a binary gene. Each bit specifies the full/empty status of four squares

in rotationally symmetric positions. There are a large number of possible symme-

tries that could be imposed. The imposition of symmetry yields a very different

appearance.

9.2.1 Notes on Usage

Other than the negative representation, there is an important additional factor needed

when implementing the search algorithm. In the plain binary representation, if the

probability of filling a square is 0.5 then it is incredibly unlikely that there is any path

between entrance and exit. Similarly, if the length of walls in the positive represen-

tation is close to the diameter of the level, connected levels are an unlikely outcome.

In both cases a trick called sparse initialisation is used. Setting the probability of a

filled square to 0.2 or the maximum length of a wall to 5 make almost all random

levels connected. They are also, on average, very highly connected and so not very

good. This leaves the problem of locating good levels to whatever technique the

search algorithm uses to improve levels. In the examples shown, the crossover and

mutation operators of the evolutionary algorithm found this to be quite easy.

The representations shown to illustrate the impact of changing representation are

relatively simple. Figure 9.2 shows a more complex version of the positive repre-

sentation. It has three types of walls. Operating under the presumption that there are

two types of players, one of which can move through water and the other of which

can move through fire, this representation permits the simultaneous generation of

two mazes, stone-fire and stone-water that can be optimised for particular tactical

properties. In this case the stone-water maze is easier to navigate than the stone-fire

maze.

9.3 Automatically Generating Levels for a Fantasy Role-Playing

Game

An under-explored application of procedural content generation is the automatic

creation of pen-and-paper (i.e. played without a computer) fantasy role-playing

(FRP) modules. Popular examples of fantasy roleplaying games include Dungeons

and Dragons and the associated open gaming licence D20 system which are used

for heroic fantasy settings, Paranoia set in a dystopian, Orwellian future, Champi-

ons which is used for comic-book style environments, or Deadlands, set in a haunted

version of the old west. These are typically pencil and paper games in which play-

ers run characters and a referee (also known as game master) interprets their actions

9 Representations for search-based methods 157

Fig. 9.2: An example of a maze, using a positive representation, with three sorts of

walls: stone, fire, and water.

with the help of dice, though some of these games have also been adapted into com-

puter role-playing games. The system described here is intended to generate small

adventure modules for a heroic fantasy setting.

Fig. 9.3: Flowchart of the FRP level generator.

There are a number of ways to structure generation of this type of content. The

one presented here starts with required-content generation of a level. This means that

the designer specifies blocks of the map, such as groups of rooms, that are forced

into the level. The rest of the level is generated by filling in area to match a relative

distance between objects specified by the designer. This technique permits us to

used search based content generation to create many different levels all of which

158 Dan Ashlock, Sebastian Risi, Julian Togelius

have basic properties specified by the designer. An example of a level generated in

this fashion appears in Figure 9.4. Room 14 is an example of required content as

is the block represented by rooms 7, 8, 11, and 12. These four rooms are a single

required content object.

Fig. 9.4: A example of a level with automatically detected and numbered rooms.

Once the level map has been generated, the ACG system then automatically iden-

tifies room-sized open spaces on the map - this includes the rooms in the required

content but also other spaces generated by the search algorithm optimising the level.

The rooms are numbered and a combinatorial graph is abstracted from the map with

rooms as vertices. The adjacency relation on the rooms is the existence of a path be-

tween the rooms that does not contain a square in any other room. The graph for the

map in Figure 9.4 is shown in Figure 9.5. The rooms are coloured to show their grid-

by-grid membership. The map with the numbered rooms, probably sans colours is

saved for use by the referee. The graph is handed off to the room population engine.

We now look at the details of the level generator. Each of these modules is exem-

plary and can be transparently swapped for alternate methods with other capabilities.

9.3.1 Required Content

The underlying representation for creating the levels is a simple binary one in which

1=full and 0=empty. It is modified with specifications of required content. An entry

in the required content configuration file looks like this.

9 Representations for search-based methods 159

Fig. 9.5: This is the room adjacency graph abstraction for the level shown in Figure

9.4. Vertex vn represents room n.

12 12

111111111111

100100000001

100000000001

100111011001

100100001001

100100001001

100130001001

100111111001

100100000002

100100000002

100100000002

111111111111

The object specified is a 12×12 area. The representation specifies the position in

the level of the upper left hand corner of the room, which is part of the optimisation

performed by the search algorithm. The values 0,1 are mapped directly into the level,

forcing values. The value 2 means that those squares are specified by the binary gene

160 Dan Ashlock, Sebastian Risi, Julian Togelius

used to evolve the level. This means that some of the squares in the required content

are seconded to the search algorithm. The 3 is the same as a zero - empty space

- but it marks the check point in the required content object from which distances

are measured. Distances are computed by dynamic programming and the fitness

function uses distances between checkpoints as part of the information needed to

compute fitness.

9.3.2 Map Generation

The map is generated by an evolutionary algorithm. The chromosome has 2N inte-

ger loci for N required content objects that are reduced modulo side length to find

potentially valid places to put required content objects. If required content objects

overlap, the chromosome is awarded a maximally bad fitness. The remainder of the

position in the map, including 2’s in required content, are specified by a binary gene.

This gene is initialized to 20% ones, 80% zeros to make the probability the map is

connected high. This is sparse initialization, described earlier. The fraction of ones

in popualtion members is increased during evolution by the algorithm’s crossover

and mutation operators.

9.3.3 Room Identification

The room identification algorithm contains an implicit definition of what a room is.

The rooms appearing in the required content must satisfy this implicit definition, if

not they will not be identified as rooms. For that reason a relatively simple algorithm

is used to identify rooms.

Room identification algorithm

N=0

Scan the room in reading order.

If a 3x3 block is empty

mark the block as in room N

iteratively add to the room all squares with three neighbors

already in the room

N=N+1

End If

End Scan

Once a square is marked as being part of a room, it is not longer empty, forcing

rooms to have disjoint sets of squares as members. The implementation reports the

squares that are members of each room and the number of squares in each room.

9 Representations for search-based methods 161

9.3.4 Graph Generation

The rooms form the vertices of the graph of the dungeon. Earlier, a painting algo-

rithm was used to partition space. The adjacency of rooms is computed in a very

similar fashion. For each room, a painting algorithm is used to extend the room into

all adjacent empty spaces until no such spaces are left. The rooms that the paint

algorithm reaches are those adjacent to the room that was its focus. Each room

is extended individually by painting and the paint added is erased before treating

the next room. While the painting could be done simultaneously for all rooms, this

might cause problems in empty spaces adjacent to more than two rooms.

The adjacency relationship has the form of a list of neighbours for each room but

can be re-formatted in any convenient fashion. The graph in Figure 9.5 was generate

with the GraphVis package from an edge list - a list of all adjacent pairs of rooms.

9.3.5 Room Population

The adjacency graph for the rooms is the simplest object to pass to a room popu-

lation engine. The designer knows which room(s) and entrances and typically sup-

plies this information to the population engine. The engine then does a breadth-first

traversal of the graph placing lesser challenges, like traps and smaller monsters in

the first layer, tougher monsters in the next layer, treasure (other than that carried by

monsters) in the next layer. Exits to the next level are typically in the last layer.

The required content is tagged if there is a special population engine connected

with it. An evil temple, a crypt, a dragon’s den or other boss can be placed with

required content to make sure they always appear in the automatically generated

level. Correct design of the fitness function ensures that the encounters appear in an

acceptable sequence, even in a branching level, and so enable replayability.

The population engine needs a database of classified opponents, traps, and trea-

sures scaled by difficulty. It can select randomly or in a fashion constrained by

“mood” variables. A dungeon level in a volcano, for example, might be long on

fire elementals and salamanders and short on wraith, vampires, and other flammable

undead. A crypt, on the other hand, would be long on ghouls or skeletons and short

on officious tax collectors. The creation of the encounter database, especially a care-

ful typing system to permit enforcement of mood and style, if a critical portion of

the level creation. The database needs substantially more encounters not associated

with required content that it will use in a particular instance of the output of the level

generator.

162 Dan Ashlock, Sebastian Risi, Julian Togelius

9.3.6 Final Remarks

The FRP level generator described here is an outline. Many details can only be

filled in when it is united with a particular rules system. The level generator has the

potential to create multiple version of a level and so make it more nearly replayable

even when one or more of the players in a group has encountered the dungeon

before. While fully automatic, the system leaves substantial scope for the designer

in creating the required content and populating the encounter database.

9.4 Generating Game Content with Compositional Pattern

Producing Networks

In Chapter ?? we saw how grammars such as L-systems can create natural-looking

plants and we learned that they are well suited to reproduce self-similar structures.

In this chapter we will look at a different representation that also allows the creation

of life-like patterns called Compositional Pattern Producing Networks (CPPNs) [7].

Instead of formal grammars, CPPNs are based on artificial neural networks. In this

chapter, we will first take a look at the standard CPPN model and then see how that

representation can be successfully adapted to produce content as diverse as weapons

in the game Galactic Arms Race [2] (also mentioned in Chapter 1) or flowers in

the social video game Petalz [4]. In Petalz, a special CPPN encoding enables the

player literally to breed an unlimited amount of naturally looking flowers that are

symmetric, contain repeating patterns and have distinct petals.

9.4.1 Compositional Pattern Producing Networks (CPPNs)

Because CPPNs are a variation of artificial neural networks (ANNs), we will first

formally introduce ANNs and then see we can modify them to produce a variety

of different content. ANNs are computational models inspired by real brains that

are capable of solving a variety of different tasks, from handwriting recognition

and computer vision to robot control problems. ANNs are also applied to control

NPCs in games and can even serve as PCG evaluation functions. For example, neural

network-based controllers can be trained to drive like human players in a car racing

game to rate the quality of a procedurally generated track ([?]; Chapter 1).

An ANN (Figure 9.6a) is an interconnected group of nodes (also called neurons)

that can compute values based on external signals (e.g. infrared sensors of a robot)

by feeding information through the network from its input to its output neurons.

Neurons that are neither input nor output neurons are also called hidden neurons.

Each neuron i has an activation level yi that is calculated based on all its incoming

signals x j scaled by connection weights wi j between them:

9 Representations for search-based methods 163

yi = σ

N

∑
j

wi jx j

!

, (9.1)

where σ is called the activation function that determines the response profile of the

neuron. In traditional ANNs the activation function is often the sigmoid function:

σ(x) =
1

1+ e−kx
, (9.2)

where the constant k determines the slope of the sigmoid function. The behaviour of

an ANN is mainly determined by its architecture (i.e. which neurons are connected

to which other neurons) and the strength of the connection weights between the

neurons.

(a) Neural Network (b) CPPN

CPPN
x

y

value
at x,y

x

y

(applied at
each point)

(c) CPPN to Image

Fig. 9.6: While traditional ANNs typically only have Gaussian or sigmoid activation

functions (a), CPPNs can use a variety of different function like sigmoids, Gaussian,

sine and many others (b). The CPPN example in this figure takes two arguments x

and y as input, which can be interpreted as coordinates in two-dimensional space.

Applying the CPPN to all the coordinates and drawing them with an ink intensity

determined by its output results in a two-dimensional image (c). Taken from [2]

While ANNs are usually used for control or classification problems, they can also

be adapted to produce content for games. CPPNs are such a variation of ANN that

function similarly but can have a different set of activation functions [7]. Later we

will see how special kinds of CPPNs can produce flowers in the Petalz video game

and weapons in GAR. While CPPNs are similar to ANNs, they have a different

terminology because CPPNs are mainly used as pattern-generators instead of as

controllers. Let us now take a deeper look at the differences in implementation and

applications between CPPNs and ANNs.

Instead of only sigmoid or Gaussian activation functions, which we can also find

in ANNs (Figure 9.6a), CPPNs can include a variety of different functions (Fig-

ure 9.6b). The type of functions that we include has a strong influence on the type of

patterns and regularities that the CPPN produces. Typically the set of CPPN activa-

tion functions includes a periodic function such as sine that produces segmented pat-

164 Dan Ashlock, Sebastian Risi, Julian Togelius

terns with repetition. Another important activation function is the Gaussian, which

produces symmetric patterns. Both repeating and symmetric patterns are common

in nature and including them in the set of activation functions allows the CPPNs

to produce similar patterns artificially. Finally, linear functions can also be added

to produce patterns with straight lines. The activation of a CPPN follows the ANN

activation we saw in Equation 9.1, except that we now have a variety of different

activation functions.

Additionally, instead of applying a CPPN to a particular input only (e.g. the po-

sition of an enemy, etc.) as is typical for ANNs, CPPNs are usually applied across

a broader range of possible inputs like coordinates of a two-dimensional space (fig-

ure 9.6c). This way the CPPN can represent a complete image or as we shall see

shortly also other patterns like flowers. Another advantage of CPPNs is that they

can be sampled at whatever resolution is desired because they are compositions

of functions. Successful CPPN-based applications include Picbreeder [6], in which

users from around the Internet collaborate to evolve pictures, EndlessForms [1] that

allows users to evolve three-dimensional objects and MaestroGenesis [3], a program

that enables users to generate musical accompaniments to existing songs. Figure 9.7

shows some of the images that were evolved by users in Picbreeder, which demon-

strate the great variety of patterns CPPNs can represent. The CPPNs encoding these

images and the other procedurally generated content in this chapter are evolved by

the NEAT algorithm, which we will now take a closer look at.

Fig. 9.7: Examples of collaboratively evolved images on Picbreeder.

9.4.2 Neuroevolution of Augmenting Topologies (NEAT)

This section will only give a very short introduction to NEAT but the interested

reader is refereed to [8] for a complete overview. NEAT [8] is an algorithm to evolve

neural networks and since CPPNs and ANNs are very similar the same algorithm

can also evolve CPPNs. The idea behind NEAT is that it begins with a population

of simple neural networks or CPPNs that have no initial hidden nodes and over

generations new nodes and connections are added through mutations. The advantage

of NEAT is that the user does not need to decide on the number of neurons and

how they are connected. NEAT determines the network topology automatically and

creates more and more complex networks as evolution proceeds. This is especially

9 Representations for search-based methods 165

Fig. 9.8: Screenshot from a Petalz balcony that a player has decorated with various

available flower pots and player-bred flowers (apps.facebook.com/petalzgame/).

important for encoding content with CPPNs because it allows the content to become

more elaborate and intricate over generations. While there are other methods to also

evolve ANNs, NEAT is a good choice to evolve CPPNs because is worked well in

the past in a variety of different domains [6, 3, 8, 2], and it is also fast enough to

work in real time environments like interactive games.

9.4.3 CPPN-generated Flowers in the Petalz Video Game

Petalz [4] is a recently developed social video game on Facebook in which pro-

cedurally generated content plays a significant role. In Petalz the player can breed

a collection of unique flowers and arrange them on their balconies (figure 9.8). A

flower context menu allows the player, among other things, to create new offspring

through pollination of a single flower or combine two flower genomes together

through cross-pollination. In addition to interacting with the flower evolution, the

player can also post their flowers on Facebook, sell them in a virtual marketplace,

or send them as gifts to other people. An important aspect of the game is that once a

player purchases a flower, he can now breed new flowers from the purchased seed,

and create a whole new lineage. Recently, Petalz was also extended with a collection

game mechanics, which encourages the players to discover 80 unique flower species

[5].

166 Dan Ashlock, Sebastian Risi, Julian Togelius

The flowers in Petalz are generated through a special kind of CPPN that is de-

scribed next. Because the CPPN representation can generate patterns with symme-

tries and repetition, it is especially suited to generate naturally looking flowers with

distinct petals. The basic idea behind the flower encoding is to first deform a circle

to generate the shape of the flower and then to color that resulting shape based on

the CPPN generated pattern. In contrast to the example we saw in Figure 9.6c, we

now input polar coordinates {θ ,r} into the CPPN (Figure 9.9) to generate radial

flower patterns. Then we query the CPPN for each value of θ by inputting {θ ,0}.

However, instead of inputting θ into the CPPN directly, we input sin(Pθ), which

makes it easier for the CPPN to produce flower-like images with radial symmetry

in the form of their petals. Parameter P can also be adjusted to create flowers with

a different maximum numbers of petals. After the first step of the flower generat-

ing algorithm we determined the outline of our flower, i.e. we calculated a radius

value rmax for each θ value. In the next step, we determine the RGB color pattern

of the flower’s surface by querying each polar coordinate between 0 and rmax with

the same CPPN. Finally, the CPPN also allows us to create flowers with different

layers, which reflects the fact that flowers in nature often have internal and exter-

nal portions. This feature is implemented through an additional CPPN input L that

determines the current layer that is being drawn. The algorithm starts by drawing

the outermost layer and then each successive layer is drawn on top of the previous

layers, scaled based on its depth. Because the same CPPN is determining all the

layers, the different patterns can share regularities just like the different layers in

real flowers.

L=.5

L=1.0

r

Fig. 9.9: The flower-encoding CPPN in Petalz has four inputs: polar coordinates r

and θ , current layer L and bias b. The first three outputs determine the RGB color

values for that coordinate. In the first step of the algorithm the maximum radius for

a given θ is determined through output rmax. In the next step RGB values of the

flower’s surface are determined by querying each polar coordinate between 0 and

rmax with the same CPPN. The number and topology of hidden nodes is evolved by

NEAT, which means that flowers can get more complex over time. Taken from [4].

Figure 9.10 shows examples of flowers evolved by players in Petalz. The CPPN-

based encoding allows the discovery of a great variety of aesthetically-pleasing

flowers, which show varying degrees of complexity.

9 Representations for search-based methods 167

Fig. 9.10: Examples of flowers collaboratively evolved by players in the Petalz video

game.

9.4.4 CPPN-generated Weapons in Galactic Arms Race

Galactic Arms Race [2] is another successful example of a game that uses pro-

cedurally generated content and interactive evolution. The procedurally generated

weapon projectiles, which are the main focus of this space shooter game, are evolved

interactively based on gameplay data. The idea behind the interactive evolution

in GAR, which was briefly discussed in Chapter 1, is that the number of times a

weapon is fired is considered an indication of how much the player enjoys that par-

ticular weapon. As the game is played, new particle weapons are automatically gen-

erated based on player behaviour. We will now take a closer look at the underlying

CPPN encoding that can generate these weapon projectiles.

Fig. 9.11: CPPN representation of weapon projectiles in GAR. The movement of

each particle is controlled by the same CPPN, which has four inputs and five outputs.

The first three inputs described the current position of the particle (px, py) and the

distance dc from the location that it was fired from. After the CPPN activation, the

outputs determine the particle’s velocity (vx,vy) and RGB color value. Taken from

[2].

Each weapon in the game is represented as a single CPPN (Figure 9.11) with

four inputs and five outputs. Instead of creating a static image (Figure 9.7) or flower

168 Dan Ashlock, Sebastian Risi, Julian Togelius

(Figure 9.9) the CPPNs in GAR determine the behavior of each weapon particle

over time. Each animation frame the CPPN is queried for the movement (velocity in

the x and z direction) and appearance (RGB color values) of the particles given the

particles current position in the space relative to the ship (px, py) and distance dc to

its starting position. After activating the CPPN the particles are moved to their newly

determined position and the CPPN is queried again in the next frame of animation.

Evolution starts with a set of simple weapons that shoot only in a straight line and

then more and more complex weapons are evolved based on the NEAT method. By

adding new nodes with different activation functions like Gaussian and sine very

interesting particle movements can evolve and the player can discover an unlimited

variety of different weapons.

Figure 9.12 shows a variety of interesting weapons with vivid patterns that were

evolved by players during the game. Interestingly, different weapons do not just

have a different look but also tactical implications. For example, the wallmaker

weapon (Figure 9.12c) can create a wall of particles in front of the player, which

allows for a more defense-oriented play. Other guns like the multispeed weapon

(Figure 9.12a) can be used in tactical situations in which a more offense-oriented

approach is needed.

Fig. 9.12: Examples of CPPN-encoded weapon evolved in the Galactic Arms Race

video game. Take from [2].

9.5 Generating level generators

Our final example of an advanced representation is not a representation of a partic-

ular type of game content, but rather of a level generator itself. This example, due

9 Representations for search-based methods 169

to Kerssemakers et al., takes as its starting point the question what would happen if

we chose to view the content generator itself as a form of content, and create a gen-

erator for it; a procedural procedural content generator generator (PPLGG) ??. The

answer was to create a search-based generator which searches a space of generators

that generate levels for Super Mario Bros in the Mario AI Framework.

As usual, we can understand a search-based generator in terms of representation

and evaluation. The evaluation in this case is interactive: a human user looks at the

various content generators, and chooses which of them (one or several) that will get

to survive and form the basis of the next generation. In order to be able to assess

these content generators, the user can look at a sample of ten different levels gen-

erated by each content generator, and play any one of them; the tool also gives an

estimate of how many of these levels are playable using simulation-based evalua-

tion. Complementarily, the user can see a “cloud view” of each generator, where

a number of levels generated by that generator are superimposed so that patterns

shared between the levels can be seen 9.13. Figure 9.14 shows a single level in con-

densed view, and part of the same level in game view, where the user can actually

play the level.

More interesting from the vantage point of the current chapter is the question

of representation. How could you represent a content generator so as to create a

searchable space of generators? In this case, the answer is that the generator is based

on agents (each generator contains between 14 and 24 agents), and the generator

genome consists of the parameters that define how the agents will behave. During

generation, the agents move concurrently and independently, though they affect each

other indirectly through the content they generate.

The genome consists of specifications for a number of agents. An agent is defined

by a number of parameters, that specify how it moves, for how long, where and when

it starts, how it changes the level and in response to what. The agent’s behaviour is

not deterministic, meaning that any collection of agents (or even any single agent) is

a level generator that can produce a vast number of different levels rather than just

a generative recipe for a single level.

The first five parameters below are simple numeric parameters that consist in

an integer value in the range specified below. The last five parameters are categor-

ical parameters specifying the logic of the agent, which might be associated with

further parameters depending on the choice of logic. The following is a list of all

parameters:

• Spawn time [0-200]: The step number on which this agent is put into the level.

This is an interesting value as it allows the sequencing of agents, but still allows

for overlap.

• Period [1-5]: An agent only performs movement if its lifetime in steps is divisible

by the period.

• Tokens [10-80]: The amount of resources available to the agent. One token

roughly equals a change to one tile.

• Position [Anywhere within the level]: The center of the spawning circle in

which the agent spawns.

170 Dan Ashlock, Sebastian Risi, Julian Togelius

Fig. 9.13: A cloud view of several content generators. Each content generator is

represented by a “cloud” consisting of multiple levels generated by that generator,

overlaid on top of each other with low opacity.

• Spawn radius [0-60]: The radius of the spawning circle in which the agent

spawns.

• Move style: the way the agent moves every step.

– follow a line in a specified direction (of 8 possible directions) with a specified

step size.

– take a step in a random direction

• Trigger state: The condition for triggering an action, checked after each move-

ment step.

• always

9 Representations for search-based methods 171

= = = =

Fig. 9.14: A single generated level, and a small part of the same level in the game

view.

– when the agent hits a specified type of terrain.

– when a specified rectangular area is full of a specified tile type.

– when a specified area does not contain a specified tile type.

– with a specified probability

• Boundary movement: The way the agent handles hitting a boundary.

– bounce away

– go back to start position

– go back to within a specified rectangular area around the start position

• Action type: The type of action performed if it is triggered.

– place a specified tile at position

– place a rectangular outline of specified tiles and size around position

– place a filled rectangle of specified tiles and size around position

– place a circle of specified tiles and size around position

172 Dan Ashlock, Sebastian Risi, Julian Togelius

– place a platform/line of specified tiles and size at position

– place a cross of specified tiles and size at position

Given that the starting position of agents imply a large amount of randomness,

and a number of other behaviours imply some randomness, the same set of agents

will produce different levels each time the generator is run. This is what makes this

particular system a content generator generator rather than “just” a content genera-

tor.

9.6 Summary

This chapter has addressed the issue of content representation within search-based

PCG. How content is represented affects not only how effectively the space can be

searched, but also biases the search process to different parts of the search space.

This can be illustrated by how different ways of representing a dungeon or maze

yields end products that look very differently, even though they are evolved to sat-

isfy the same evaluation function and reach similar fitness. Representations can be

tailored to extend the search-based paradigm in various ways, for example by pro-

viding “required content” that cannot be altered by the variation operators of the

search/optimisation algorithm. More complicated representations might require a

multi-step genotype-to-phenotype mapping that can be seen as a PCG algorithm in

its own right. For example, compositional pattern-producing networks (CPPNs) are

a form of neural network that map position in some space onto intensity, colour,

direction or some other property of pixels or particles at that direction. This is an

interesting content generation algorithm in itself, but can also be seen as an evolv-

able content representation. Taking this perspective to its extreme, we can set out to

evolve actual content generators, and judge them not on any single content artefact

they produce but on samples of their almost infinitely variable output. The last ex-

ample in this chapter explains one this can be done, by representing Mario AI level

generators as parameters of agent-based systems and evolving those.

References

1. Clune, J., Lipson, H.: Evolving 3d objects with a generative encoding inspired by developmen-

tal biology. In: Proceedings of the European Conference on Artificial Life (Alife-2011), 4, pp.

2–12. ACM, New York, NY, USA (2011)

2. Hastings, E., Guha, R., Stanley, K.: Evolving content in the galactic arms race video game. In:

Computational Intelligence and Games, 2009. CIG 2009. IEEE Symposium on, pp. 241–248.

IEEE (2009)

3. Hoover, A.K., Szerlip, P.A., Norton, M.E., Brindle, T.A., Merritt, Z., Stanley, K.O.: Generating

a complete multipart musical composition from a single monophonic melody with functional

scaffolding. In: Proceedings of the 3rd International Conference on Computational Creativity

(ICCC-2012 (2012)

9 Representations for search-based methods 173

4. Risi, S., Lehman, J., D’Ambrosio, D.B., Hall, R., Stanley, K.O.: Combining search-based pro-

cedural content generation and social gaming in the petalz video game. In: Proceedings of the

Artificial Intelligence and Interactive Digital Entertainment Conference (AIIDE 2012) (2012)

5. Risi, S., Lehman, J., D’Ambrosio, D.B., Stanley, K.O.: Automatically categorizing procedurally

generated content for collecting games. In: Proceedings of the Workshop on Procedural Content

Generation in Games (PCG) at the 9th International Conference on the Foundations of Digital

Games (FDG-2014). ACM, New York, NY, USA (2014)

6. Secretan, J., Beato, N., D’Ambrosio, D., Rodriguez, A., Campbell, A., Folsom-Kovarik, J.,

Stanley, K.: Picbreeder: A case study in collaborative evolutionary exploration of design space.

Evolutionary Computation 19(3), 373–403 (2011)

7. Stanley, K.O.: Compositional pattern producing networks: A novel abstraction of development.

Genetic Programming and Evolvable Machines Special Issue on Developmental Systems 8(2),

131–162 (2007)

8. Stanley, K.O., Miikkulainen, R.: Evolving neural networks through augmenting topologies.

Evolutionary Computation 10, 99–127 (2002)

Chapter 10

The experience-driven perspective (DRAFT)

Noor Shaker, Julian Togelius and Georgios N. Yannakakis

10.1 Nice to get to know you

As you play a game, you get to know it better and better. You understand how to

use its core mechanics and how to combine them; you get to know the levels of the

game, or, if the levels are procedurally generated, the components of the levels and

typical ways in which they can be combined. You learn to predict the behaviour of

other creatures, characters and systems in the game. All this you learn from your

interaction from the game. While playing, you also adapt to the game: you change

your behaviour so as to achieve more success in the game, or so as to entertain

yourself better.

However, both you and your game take part in this interaction, and all of your

interaction data is available to the game as well. In principle, the game should be

able to get to know you as much as you get to know it. After all, it has seen you

succeed at overtaking that other car, fail that sequence of long jumps, give up and

shut down the game after crashing your plane for the seventh time or finally resort

to buying extra moves after almost clearing a particular puzzle. A truly intelligent

game should know how you play better than you know it yourself. And then, it

should be able to adapt itself so as to entertain you better, or let you achieve more

or less success in the game, or perhaps to give you some other kind of experience

you would not otherwise have had.

The idea of game adaptation, the game adapting itself in response to how you

play (or some other information if might have about you), is an old one. In its sim-

plest form it is called “dynamic difficulty adjustment” (DDA), and simply means

that the difficulty of the game is increased if the player does well and decreased

if the player plays poorly. This can be seen in many car racing games, where the

opponent cars always seem to be just ahead of you or just behind you, regardless

of how well you play (also known as “rubber banding”). The game design rationale

for rubber banding is that if the player is much in front of the opponents he/she will

not perceive a challenge, and if the player is far behind the opponents he/she will

175

176 Noor Shaker, Julian Togelius and Georgios N. Yannakakis

lose hope of ever catching up; in either case, the player will likely lose interest in

the game. This is sometimes rationalised as a way of keeping the player in the “flow

channel”. Flow is a concept which was invented by the psychologist Czikszentmi-

halyi to signify the “optimal experience”, where someone is completely absorbed

in the activity they are performing; one condition for this is constant but not unas-

sailable challenge [5]. The flow concept has inspired several theories of challenge

and engagement in games, such as GameFlow [?] it is, however, rather limited to

challenge which is only one of the the multiple concurring dimensions of player

experience [3].

DDA mechanisms in racing games are often implemented simply by letting the

opponent cars drive faster or slower. There are interesting exceptions, such as the

Mario Kart series, which gives more powerful power-ups to players who lag be-

hind, some of which allow them to attack players who lead the pack. Other games

might lower the difficulty of a particular section of the game after a player has failed

numerous times; Grand Theft Auto V allows the player to simply skip any action

sequence which the player has failed three times already. There are several propos-

als for how this could be done more automatically, using AI techniques [12]. A key

realisation is that adaptation is about more than just difficulty: to begin with, diffi-

culty is multi-dimensional, as a game could be difficult in many different ways, and

people have unbalanced skill sets. The same game could be different for player A

because of its requirement for quick reactions, for player B because of how difficult

the spatial navigation is and for player C because of the nuances of the story that

needs to be understood in order to solve its puzzles. Also, just having the right dif-

ficulty is in general not enough for a game to be perfectly tailored for a particular

player. Different players might prefer different balances of game elements or atmo-

spheres, such as scary, intense or contemplative parts of the game. Adaptation could

in principle happen among any of multiple axes, many of which are not properly

formalised or even described. There are also many possible methods for adaptation,

many of which would include modifying the content of the game or even generating

new content.

In this chapter, we will focus on the use of PCG methods to adapt games to

the experience of the player. The perspective we adopt is called experience-driven

procedural content generation [39]. In experience-driven PCG, a model of player

experience is learnt, that can predict some aspect of the player’s experience (e.g.

challenge, frustration, engagement, spatial involvement, etc.) based on some aspect

of game content. This model can then used as a base for an evaluation function

in search-based or mixed-initiative PCG. For example, a model might be learned

that predicts how engaging some players think individual building puzzles are in a

physics-based puzzle game. This model can then be used for evolving new puzzles,

where the evaluation function rewards such puzzles that are predicted to be most

engaging for the target player(s).

The chapter is structured as follows. First we describe the various ways we can

elicit player experience through a game and collect information about player expe-

rience. The next section discusses algorithms for creating models of player experi-

ence, such as neuroevolutionary preference learning, based on data collected during

10 The experience-driven perspective (DRAFT) 177

the game interaction (model’s input) and annotated player experience (model’s out-

put). A short section discusses how these models can be used in content generation,

followed by a prolonged example describing experience-driven level generation in

Super Mario Bros in detail.

10.2 Eliciting Player Experience

Games can elicit rich and complex patterns of user experience as they combine

unique properties such as rich interactivity and potential for a multifaceted player

immersion [3]. User experience in games can be elicited primarily through the long

or short term interaction with various core game elements. Arguably social interac-

tion (or else shared involvement [3]) may have a clear impact on a player’s experi-

ence; however, it offers a rather challenging problem for artificial intelligence and

signal processing and experience-driven PCG techniques. While a valid research

question for further study social interaction is not included in the list of player ex-

perience stimuli considered in this chapter.

Experience-driven PCG views game content as potential building blocks of

player experience [39]. That is precisely the fundamental link between game con-

tent and player experience. In that regard, all potential content types can elicit player

experience . Game content refers to the game environment and its impact on player

experience can be directly linked to spatial involvement and affective involvement.

But it also refers to fundamental game design building blocks such as game me-

chanics (linked to ludic involvement), narrative (linked to narrative involvement),

and reward systems [3].

Beyond the game environment itself — such as a game level/map [31, 15] —

game content includes audiovisual settings such as lighting [7], saturation, and mu-

sic [8] and sound effects [25] but also virtual camera profiles and effects [?, 36, 2]

and game rules [32]. The environment usually provides the representation format

of stories and narratives and it is also linked to NPCs (if existent in the game) as it

forms their context, living habitats and surroundings. In a broader sense, both agents

and narratives can be viewed as game content that can be parameterized and altered

[39]. Whether games can tell stories or whether they are more properly understood

as a form of narrative has been extensively debated within game studies [16, ?]. In

any case, stories play an essential part in creating the ambiance, style, climax and

feelings of a game. In interactive storytelling, the story is used as an adaptive mech-

anism that adjusts according to the actions of the players, offering variant player

experiences [?]. By breaking the game narrative into further subareas of game con-

tent we can find core game content elements such as the game’s plotline [9], but

also the ways this story-plot is represented in the game environment.

In summary, all game content surrounding NPCs (whether those are existent in

the game or not) including game mechanics, rules, story-nodes and reward systems

may have an effect on the experience of the player [39]. In addition complex, social

and emotional non-player characters can be used as triggers of desired player expe-

178 Noor Shaker, Julian Togelius and Georgios N. Yannakakis

rience. In order for agents to elicit meaningful experience and immerse the player

they need to engage players in rich and emotional interaction. Towards that purpose

they may embed computational models of cognition, behaviour and emotion which

is e.g. based upon the OCC model [23].

10.3 Modeling Player Experience

The detection and computational modelling of a user’s affective state are core prob-

lems in user experience and affective computing research. Detecting and modelling

affective state in games can be seen as a special case of this, though an unusually

complex special case. Given the complexity and richness of game-player interac-

tion and the multifaceted nature of player experience, methods that manage to over-

come the above challenges and model player experience successfully advance our

understanding of human behaviour and emotive reaction with human computer in-

teraction. Player experience modelling (PEM) can thus be viewed as a form of user

modelling within games incorporating aspects of behaviour, cognition and affect.

PEM involves all three key phases for computational model construction. These

are signal processing, feature extraction and feature selection for the model’s in-

put;, experience annotation for the model’s output; and various machine learning

and computational intelligence techniques that learn the mapping between the two.

Within Experience-driven PCG, game content is also represented in the underlying

function that characterises player experience.

We can distinguish between model-based and model-free approaches to player

experience modelling[39] as well as potential hybrids between them. The differ-

ence is whether the computational model is based on or structured by a theoreti-

cal framework. A completely model-based approach relies solely on a theoretical

framework that maps game context and player responses to experience. In contrast,

a completely model-free approach assumes there is an unknown function between

modalities of user input, game content and experience that a machine learner (or a

statistical model) may discover which does not assume anything about the structure

of this function. The space between a completely model-based and a completely

model-free approach can be viewed as a continuum along which any PEM approach

might be placed. The rest of this section presents the key elements of both model-

based and model-free approaches and discusses the core components of a learned

computational model (i.e. model input, model output and common modeling meth-

ods).

10.3.1 Model Input and Feature Extraction

The PEM’s input can be of three main types: a) player behavioral responses to game

content as gathered from gameplay data (i.e. behavioural data); b) objective data

10 The experience-driven perspective (DRAFT) 179

collected as player experience manifestations to game content stimuli such as phys-

iology and body movements; and c) the game context which comprises of any type

of game content viewed, played through, and/or created [39, 37, 38].

Given the multifaceted nature of player experience the input of a PEM usually

consists of complex spatio-temporal patterns found in user inputs, sometimes sam-

pled from multiple modalities. These signals need to be processed and relevant data

features need to be extracted to feed the model. Relevant features, however, are

hard to find within such signals and the ad-hoc design of statistical features is often

undermining the performance of PEM. There are several available methods within

feature extraction (such as principal component analysis and fisher projection) and

feature selection (such as sequential forward selection and genetic search based se-

lection) that are applicable to the problem. Recently techniques such as sequence

mining [19] for feature extraction and deep learning [17] for feature combination

have shown potential to construct meaningful features for PEM. These methods

have been able to fuse data from multiple sources across several player inputs and

between player input and game content. In particular, deep learning is a powerful

pattern recognition method that manages to detect the most distinct patterns across

multiple signals and provides complex spatio-temporal data attributes that comple-

ment standard ad-hoc feature extraction [17]. Sequence mining, on the other hand,

identifies the most frequent sequences of events across user input modalities and

game context which could be relevant as features for any PEM attempt [19].

The three above-mentioned input types for a PEM are detailed in the remaining

of this section.

10.3.1.1 Gameplay input

The key motivation behind the use of behavioural (gameplay-based) player input

is that player actions and real-time preferences are linked to player experience as

games affect the player’s cognitive processing patterns, cognitive focus and emo-

tional state. Essentially, you express the contents of your mind through gameplay.

Arguably it is possible to infer a player’s current experience state by analyzing pat-

terns of the interaction and associating player experience with game context vari-

ables [4, 10]. The models built on this user input type rely on detailed attributes

from the player’s behavior which are extracted from player behavioural responses

during the interaction with game content stimuli. Such attributes, also named game

metrics, are statistical spatio-temporal features of game interaction [6] which are

usually mapped to levels of cognitive states such as attention, challenge and en-

gagement [28]. In general, both generic measures — such as the level of player

performance and the time spent on a task — as well as game-specific measures —

such as the items picked and used — are relevant for the gameplay-based PEM.

180 Noor Shaker, Julian Togelius and Georgios N. Yannakakis

10.3.1.2 Objective input

The variety of available content types within a game can act as elicitators for com-

plex and multifaceted player experience patterns. As expected such patterns of ex-

perience may affect changes in the player’s physiology, reflect on the player’s facial

expression, posture and speech, and alter the player’s attention and focus level. Mon-

itoring such bodily alterations can assist in recognising and synthesising predictors

of player experience. The objective approach to PEM assumes access to multiple

modalities of player input which manifest aspects of player experience.Thus, the

impact of game content to a number of real-time recordings of the player may be

investigated. Physiology offers the primary medium for detecting a player’s expe-

rience via objective measures: signals obtained from electrocardiography (ECG)

[36], photoplethysmography [36, 33], galvanic skin response (GSR) [11], respira-

tion [33], electroencephalography (EEG) [21] and electromyography (among oth-

ers) are commonly used for the detection of player experience given the recent ad-

vancements on sensor technology and physiology-based game interfacing. In addi-

tion to physiology the player’s bodily expressions may be tracked at different levels

of detail and the real-time cognitive or affective responses to game content may

be inferred. The core assumption of such input modalities is that particular bodily

expressions are linked to basic emotions and cognitive processes. Motion tracking

may include body posture [26], facial expression and head pose [28].

Beyond the non-verbal cues discussed above there is also room for verbal cue in-

vestigation within games. In general, social signals derived from human verbal com-

munication can potentially be used within social games that allow player-to-player

interaction (direct or indirect). Such signals challenge the principles of individual

player experience modelling but are expected to open the horizon and augment the

potential of the EDPCG framework.

10.3.1.3 Game context input

In addition to gameplay and objective data, the context of the game — e.g. the game

content experienced, played or created — defines a necessary input for PEM. Game

context refers to the real-time parameterised state of the game which could extend

beyond the game content. Without the game context input, player experience models

run into the risk of inferring erroneous experience states for the player. For example,

an increase in galvanic skin response (GSR) can be linked to a set of dissimilar high-

arousal affective states such as frustration and excitement. Thus, the cause of GSR

increase (e.g. due to a player’s death in a gap between platforms, or alternatively,

due to a game level completion) needs to be fused within the GSR signal and em-

bedded in the model. Context-free modelling (while important and desired) has not

been investigated to the degree we could identify generic and context-independent

content patterns, features and attributes across games and players. A few recent

studies, however, such as that of Martinez et al. [18] attempt to investigate context-

10 The experience-driven perspective (DRAFT) 181

independent physiological features that can capture player experience across variant

game genres.

10.3.2 Model Output: Experience Annotation

The output of the player experience model is provided through an experience an-

notation process which can either be based on first person reports (self-reports) or

on reports expressed indirectly by experts or external observers [39]. The model’s

output is, therefore, linked to a fundamental research question within player expe-

rience and affective computing: what is the ground truth of player experience and

how to annotate it? To address this challenge a number of approaches have been

proposed; each having benefits and pitfalls. The most direct way to annotate player

experience is to ask the players themselves about their experience and build a model

based on these annotations. Subjective annotation can be based on either players

free-response during play or on forced data retrieved through questionnaires. Al-

ternatively, experts or external observers may annotate the playing experience in a

similar fashion. Third-person player experience annotation entails the identification

of particular user (cognitive, affective, behavioral) states by user experience and

game design experts.

Annotations (either forced self-reports or third-person) can be classified as rat-

ing (scalar), class and preference (or ranking). In rating, annotators are asked to

answer questionnaire items given in a rating/scaling form — such as the Game Ex-

perience Questionnaire [13] or the Geneva Emotion Wheel [1] — which labels user

states with a scalar value (or a vector of values). In a class-based format subjects

are asked to pick a user state from a particular representation which is usually a

simple boolean question (Was that game level frustrating or not? Is this a sad facial

expression?). Using the preference annotation format [34], annotators are asked to

compare a playing experience in two or more variants/sessions of the game (Was

that level more engaging that this level? Which facial expression looks happier?).

Recent comparative studies have exposed the limitations of rating approaches over

ranking questionnaire schemes which include increased order of play and inconsis-

tency effects [35] and lower inter-rater agreement [20].

10.3.3 Modelling approaches

The approach for constructing models of player experience heavily relies on the

modelling approach followed (model-based vs. model-free) and the annotation

scheme adopted. For the model-based approach components of the model and any

parameters that describe them are constructed in an ad-hoc manner and, sometimes,

tested for validity in a trial and error basis. No machine learning or sophisticated

computational tools are required for these approaches even though one could en-

182 Noor Shaker, Julian Togelius and Georgios N. Yannakakis

visage the optimisation of the parameter space to yield more accurate models; that,

however, would require empirical studies which brings the approach closer to a

model-free perspective.

Model-free approaches, on the other hand, are dependent on the annotation

scheme and, in turn, the type of model output available. If data recorded includes

either a scalar representation (e.g. via ratings) or classes of annotated labels of user

states any of a large number of machine learning (regression and classification) al-

gorithms can be used to build affective models. Available methods include artifi-

cial neural networks, Bayesian networks, decision trees, support vector machines

and standard linear regression. Alternatively, if experience is annotated in a ranked

format standard supervised learning techniques are inapplicable, as the problem be-

comes one of preference learning [34]. Neuro-evolutionary preference learning [34]

and rank-based support vector machines [14] but also simpler methods such as lin-

ear discriminant analysis [33] are some of the available approaches for learning

preferences.

10.4 Content generation through player experience models

The ultimate goal of constructing models of player experience is to use these mod-

els as measures of content quality and consequently, realize affective, cognitive and

behavioral interaction in games and generate personalized or player-adapted con-

tent. Quantitative models of player experience can be used to capture player-game

interaction and the impact of game content on player experience. According to Yan-

nakakis and Togelius [?] models of player experience can be used to assess content

quality and achieve game adaptation.

10.5 Example: Super Mario Bros

A successful complete implementation of the EDPCG framework suggested by Yan-

nakakis and Togelius [?] is the work done by Shaker et al. [30, 28, 29] to model and

personalize player experience in Infinite Mario Bros (IMB) [24] — a public do-

main clone of Super Mario Bros [22]. In this work, models of player experience

are built based on information collected from the interaction between the player

and the game. Different types of features capturing different aspects of player be-

havior are considered: subjective self-reports of player experience; objective mea-

sures of player experience are collected by video recording gameplay sessions and

later extracting information about head movement behavior in reaction to game

events [27, 28] (Figures 10.1, 10.2 and 10.3 present example instances of players’

reaction when losing, winning and when encountering hard situations, respectively);

players’ actions while playing the game are also registered and used as gameplay

features [30].

10 The experience-driven perspective (DRAFT) 183

Fig. 10.1: Typical player responses to losing in IMB

Fig. 10.2: Typical player responses to winning in IMB

Fig. 10.3: Typical player responses to hard situations in IMB

The choice of feature representation is vitally important since it allows captur-

ing different dimensions of player experience and game content. Furthermore, the

choice of content representation defines the search space that can be explored and

it affects the efficiency of the content creation method. To accommodate for this,

the different sets of features collected are represented as frequencies describing the

number of occurrences of various events or the accumulated time spent doing a cer-

tain activity (such as the number of killings of a certain type of enemies or the total

amount of time spent jumping). Features are also represented as sequences captur-

ing the spatial and temporal order of events and allowing the discovery of temporal

patterns [30]. Table 10.1 presents representative example features from each repre-

sentation from.

Based on the features collected, a modelling approach is followed in an attempt

to approximate the unknown function between game content, players’ behaviour

and how players experience the game. The player experience models are developed

184 Noor Shaker, Julian Togelius and Georgios N. Yannakakis

Table 10.1: The different types of representations of content and gameplay features.

Feature Description

Flat platform
()(,) A sequence of three coins

(R⌘,R⌘⇑)() Moving then jumping in the right direction when encountering an enemy
(,)() A gap followed by a decrease in platform height
(⇑⌘)(S)(⌘) Jumping to the right followed by standing still then moving right

tright Time spent moving right
n jump Total number of jumps
ncoin Total number of coins

kstomp Number of enemies killed by stomping
Ne Total number of enemies
B Total number of blocks

on different types and representations of features allowing a thorough analysis of

the player-content relationship.

The following sections describe the approach followed to model player experi-

ence and the methodology proposed to tailor content generation for particular play-

ers using the constructed models as measures of content quality.

10.5.1 Player experience modeling

When constructing player experience models, one should identify relevant features

from game content and player behavior that affect player experience. This could be

done by recording gameplay sessions and extracting several features as indicators of

players’ affect, performance and playing characteristics. Given the large size of the

feature set that could be extracted, feature selection becomes a critical step for effi-

cient knowledge discovery. The selection of the relevant subset of features not only

helps us reduce the dimension of the input space resulting in more accurate models

that are easier to analyse, but it also eliminates noisy features that are irrelevant for

the player experience modelling as well as improving the model’s generalisation

capabilities.

Feature selection was applied as a first step when modelling players’ experience.

The input space constitutes of the different features extracted from the gameplay

sessions. The models are trained to predict reported player experience from a subset

of selected features. There are many approaches that could be followed to select the

relevant subset of features, the feature selection method followed in this example

is Sequential Forward Selection (SFS) combined with neuroevolutionary preference

learning (using Single Layer Perceptrons (SLP) and simple Multi-Layer Perceptrons

(MLPs) consisting of one layer of two hidden neurons) to measure the performance

of each subset of features selected. Applying this approach yields different subsets

of selected features for predicting each reported emotional states.

10 The experience-driven perspective (DRAFT) 185

Fig. 10.4: The three-phase player experience modeling approach followed.

The underlying function between gameplay, content features and reported player

experience is considered to be complex and cannot be easily captured using SLPs

and simple MLPs and robust estimators are required if we are to accurately model

the features-experience relationship. Therefore, once all features that contribute to

accurate simple MLP models are found, an optimisation step is followed to build

more powerful MLPs with more sophisticated structures. This is achieved by gradu-

ally increasing the complexity of the MLPs through adding hidden nodes and layers

while monitoring the models’ performance. Figure 10.4 presents an overview of the

process followed to construct the PEMs.

Following this approach, models with high accuracies were constructed for pre-

dicting players’ reports of engagement, frustration and challenge from different sub-

sets of features from different modalities. The models constructed were also of vary-

ing topologies and prediction accuracies.

10.5.2 Grammatical based personalised level generator

In Chapter ??, we described how Grammatical Evolution (GE) can be used to evolve

content for IMB. As discussed earlier, GE employs a design grammar to specify

the structure of possible level designs. The grammar is used by GE to transform

the phenotype into a level structure by specifying the types and properties of the

different game elements that will be presented in the final level design. The fitness

function defined in our earlier description was a purely aesthetics-based measure

that score designs based on the number of elements presented and their placement

properties.

In this section, we present a method for using the GE-based content generator

to evolve personalised content for IMB. This is achieved by employing an adapta-

tion mechanism as a fitness function to optimise player experience. The content is

ranked according to the experience it evokes for a specific player and the content

generator searches the resulting space for content that maximises particular aspects

of player experience. To facilitate this, the player experience models constructed are

used as fitness functions scoring each design evolved according to its appeal for a

particular player. The fitness value assigned for each individual in the population

186 Noor Shaker, Julian Togelius and Georgios N. Yannakakis

Fig. 10.5: The best levels evolved to maximise predicted challenge for two AI

agents.

(a level design) in the evolutionary process is the output of the player experience

model which is the predicted value of an emotional state. The PEMs output is cal-

culated by computing the values of the models’s inputs; this includes the values of

the content features which are directly calculated for each level design generated by

GE and the values of the gameplay features estimated from the player’s behavioural

style while playing a test level.

The search for the best content features that optimise a particular state is guided

by the model’s prediction of the player experience states, with a higher fitness given

to the individuals that are predicted to be more engaging, frustrating or challenging

for a particular player.

10.5.2.1 On-line personalised content generation

While the level is being played, the playing style is recorded and then used by GE

to evaluate each individual design generated. Each individual is given a fitness ac-

cording to the recorded player behaviour and the values of its content features. The

best individual found by GE is then visualised for the player to play.

It is assumed that the player’s playing style is largely maintained during consec-

utive game sessions and thus his playing characteristics in a previous level provide

a reliable estimator of his gameplay behaviour in the next level. To compensate for

the effect of learning while playing a series of levels, the adaptation mechanism

only considers the recent playing style, i.e. the one which the player exhibited in

the most recent level. Thus, in order to effectively study the behaviour of the adap-

tation mechanism, it is important to monitor this behaviour over time. For this pur-

pose, AI agents with varying playing characteristics have been employed to test the

adaptation mechanism since this requires the player to play-test a large number of

levels. Figure 10.5 presents the best levels evolved to optimise player experience of

challenge for two AI agents with different playing styles. The levels clearly exhibit

different structures; a slightly more challenging level with more gaps was evolved

for the second agent with more gaps and enemies than the one generated for the first

agent.

10 The experience-driven perspective (DRAFT) 187

10.6 Lab exercise: Generate personalised level for Super Mario

Bors

In this lab session, you will generate personalised levels for a specific player using

the InfiTux benchmark. The same software interface illustrated in Chapter 3 ?? will

be used but this time you should focus on customisation of content for specific

playing style so that the output of your generateLevel method should be player-

driven content.

In order to facilitate meaningful detection of player experience and to allow you

to develop player experience models, you will be given a dataset of 597 instances

containing several statistical gameplay and content features collected from hundreds

of players playing the game. The data contains information about several aspects of

players’ behaviour captured through features representing the frequencies of per-

forming specific actions such as killing an enemy of jumping and the time spent do-

ing certain behaviour such as moving right or jumping. Your task is to use this data

to build PEM using a machine learning or a dataminig technique of your choice. The

models you build can then be used to recognise the playing style of a new player.

After you build the models and successfully detect player experience, you should

implement a method to adjust game content to change how player experience the

game. You can adopt well-known concepts of player experience such as fun, chal-

lenge, difficulty or frustration and adjust the game content according to the aspect

you would like your player to experience.

10.7 Summary

References

1. Bänziger, T., Tran, V., Scherer, K.R.: The geneva emotion wheel: A tool for the verbal report

of emotional reactions. Poster presented at ISRE (2005)

2. Burelli, P.: Virtual cinematography in games: Investigating the impact on player experience.

In: Proceedings of the International Conference on the Foundations of Digital Games, pp.

134–141 (2013)

3. Calleja, G.: In-Game: From immersion to incorporation. The MIT Press (2011)

4. Conati, C.: Probabilistic assessment of user’s emotions in educational games. Applied Artifi-

cial Intelligence 16(7-8), 555–575 (2002)

5. Csikszentmihalyi, M., Csikzentmihaly, M.: Flow: The psychology of optimal experience,

vol. 41. HarperPerennial New York (1991)

6. Drachen, A., Thurau, C., Togelius, J., Yannakakis, G.N., Bauckhage, C.: Game data mining.

In: Game Analytics, pp. 205–253. Springer (2013)

7. El-Nasr, M.S., Vasilakos, A., Rao, C., Zupko, J.: Dynamic intelligent lighting for directing

visual attention in interactive 3-d scenes. Computational Intelligence and AI in Games, IEEE

Transactions on 1(2), 145–153 (2009)

8. Eladhari, M., Nieuwdorp, R., Fridenfalk, M.: The soundtrack of your mind: mind music-

adaptive audio for game characters. In: Proceedings of the 2006 ACM SIGCHI international

conference on Advances in computer entertainment technology, p. 54. ACM (2006)

188 Noor Shaker, Julian Togelius and Georgios N. Yannakakis

9. Giannatos, S., Nelson, M.J., Cheong, Y.G., Yannakakis, G.N.: Suggesting new plot elements

for an interactive story. In: Intelligent Narrative Technologies (2011)
10. Gratch, J., Marsella, S.: A domain-independent framework for modeling emotion. Cognitive

Systems Research 5(4), 269–306 (2004)
11. Holmgård, C., Yannakakis, G.N., Karstoft, K.I., Andersen, H.S.: Stress detection for ptsd via

the startlemart game. In: Affective Computing and Intelligent Interaction and Workshops,

2013. ACII 2013. 5th International Conference on. IEEE (2013)
12. Hunicke, R., Chapman, V.: Ai for dynamic difficulty adjustment in games. In: Challenges in

Game Artificial Intelligence AAAI Workshop, pp. 91–96. sn (2004)
13. IJsselsteijn, W., de Kort, Y., Poels, K., Jurgelionis, A., Bellotti, F.: Characterising and measur-

ing user experiences in digital games. In: International Conference on Advances in Computer

Entertainment Technology, vol. 2, p. 27 (2007)
14. Joachims, T.: Optimizing search engines using clickthrough data. In: Proceedings of the eighth

ACM SIGKDD international conference on Knowledge discovery and data mining, pp. 133–

142. ACM (2002)
15. Johnson, L., Yannakakis, G.N., Togelius, J.: Cellular automata for real-time generation of

infinite cave levels. In: Proceedings of the 2010 Workshop on Procedural Content Generation

in Games, p. 10. ACM (2010)
16. Juul, J.: Games telling stories? a brief note on games and narratives. Game studies 1(1), 40–62

(2001)
17. Martinez, H.P., Bengio, Y., Yannakakis, G.N.: Learning deep physiological models of affect.

Computational Intelligence Magazine, IEEE 8(2), 20–33 (2013)
18. Martı́nez, H.P., Garbarino, M., Yannakakis, G.N.: Generic physiological features as predic-

tors of player experience. In: Affective Computing and Intelligent Interaction, pp. 267–276.

Springer (2011)
19. Martı́nez, H.P., Yannakakis, G.N.: Mining multimodal sequential patterns: a case study on

affect detection. In: Proceedings of the 13th international conference on multimodal interfaces,

pp. 3–10. ACM (2011)
20. Metallinou, A., Narayanan, S.: Annotation and processing of continuous emotional attributes:

Challenges and opportunities. In: 2nd International Workshop on Emotion Representation,

Analysis and Synthesis in Continuous Time and Space (EmoSPACE 2013) (2013)
21. Nijholt, A.: Bci for games: A state of the artsurvey. In: Entertainment Computing-ICEC 2008,

pp. 225–228. Springer (2009)
22. Nintendo Creative Department: (1985). Super Mario Bros, Nintendo
23. Ortony, A., Clore, G., Collins, A.: The cognitive structure of emotions. Cambridge university

press (1990)
24. Persson, M.: Infinite mario bros. URL http://www.mojang.com/notch/mario/
25. Plans, D., Morelli, D.: Experience-driven procedural music generation for games
26. Savva, N., Scarinzi, A., Berthouze, N.: Continuous recognition of player’s affective body ex-

pression as dynamic quality of aesthetic experience. Computational Intelligence and AI in

Games, IEEE Transactions on (2012)
27. Shaker, N., Asteriadis, S., Yannakakis, G.N., Karpouzis, K.: A game-based corpus for

analysing the interplay between game context and player experience. In: Affective Computing

and Intelligent Interaction, pp. 547–556. Springer (2011)
28. Shaker, N., Asteridadis, S., Karpouzis, K., Yannakakis, G.N.: Fusing visual and behavioral

cues for modeling user experience in games. IEEE Transactions on System Man and Cyber-

netics; Part B: Special Issue on Modern Control for Computer Games
29. Shaker, N., Togelius, J., Yannakakis, G.N.: Towards automatic personalized content generation

for platform games. In: Proceedings of the AAAI Conference on Artificial Intelligence and

Interactive Digital Entertainment (AIIDE) (2010)
30. Shaker, N., Yannakakis, G., Togelius, J.: Crowdsourcing the aesthetics of platform games.

Computational Intelligence and AI in Games, IEEE Transactions on 5(3), 276–290 (2013)
31. Togelius, J., Preuss, M., Beume, N., Wessing, S., Hagelbäck, J., Yannakakis, G.N., Grappiolo,

C.: Controllable procedural map generation via multiobjective evolution. Genetic Program-

ming and Evolvable Machines pp. 1–33 (2013)

10 The experience-driven perspective (DRAFT) 189

32. Togelius, J., Schmidhuber, J.: An experiment in automatic game design. In: Computational

Intelligence and Games, 2008. CIG’08. IEEE Symposium On, pp. 111–118. IEEE (2008)

33. Tognetti, S., Garbarino, M., Bonarini, A., Matteucci, M.: Modeling enjoyment preference from

physiological responses in a car racing game. In: Computational Intelligence and Games

(CIG), 2010 IEEE Symposium on, pp. 321–328. IEEE (2010)

34. Yannakakis, G.N.: Preference learning for affective modeling. In: Affective Computing and

Intelligent Interaction and Workshops, 2009. ACII 2009. 3rd International Conference on, pp.

1–6. IEEE (2009)

35. Yannakakis, G.N., Hallam, J.: Ranking vs. preference: a comparative study of self-reporting.

In: Affective Computing and Intelligent Interaction, pp. 437–446. Springer (2011)

36. Yannakakis, G.N., Martı́nez, H.P., Jhala, A.: Towards affective camera control in games. User

Modeling and User-Adapted Interaction 20(4), 313–340 (2010)

37. Yannakakis, G.N., Paiva, A.: Emotion in games. In: R.C. et al. (ed.) Handbook of Affective

Computing. Oxford University Press

38. Yannakakis, G.N., Spronck, P., Loiacono, D., Andre, E.: Player modeling. In: Dagstuhl Sem-

inar on Game Artificial and Computational Intelligence (2013)

39. Yannakakis, G.N., Togelius, J.: Experience-driven procedural content generation. Affective

Computing, IEEE Transactions on 2(3), 147–161 (2011)

Chapter 11

Mixed-initiative Content Creation (DRAFT)

Antonios Liapis, Gillian Smith and Noor Shaker

Many kinds of PCG discussed so far in this book have focused on fully automated

content generation. Mixed-initiative Mixed-initiative procedural content generation

covers a very broad range of generators, algorithms and tools which share one com-

mon trait: they require human input in order to be of any use. While most generators

arguably require a human to press “generate” or to provide some rudimentary argu-

ments (such as the map size or map type in Civilization maps), mixed-initiative PCG

automates only part of the process, requiring significantly more human input than

other forms of PCG.

As its name suggests, both a human creator and a computational creator “take

the initiative” in mixed-initiative PCG systems. However, there is a sliding scale on

the type and impact of each of these creators’ initiative. For instance, one can argue

that a human novelist using a text editor on their computer is a mixed-initiative

process, with the human user providing most of the initiative but the text editor

facilitating their process (spell-checking, word counting or choosing when to end a

line); on the other extreme, the map generator in Civilization V (Firaxis 2014) is a

mixed-initiative process, since the user provides a number of desired properties of

the map. This chapter will focus on less extreme cases, however, where both human

and computer have some significant impact on the sort of content generated.

It is naive to expect that the human creator and the computational creator always

have equal say in the creative process:

• In some cases, the human creator has an idea for a design, requiring the computer

to allow for an easy and intuitive way to realize this idea. Closer to a word edi-

tor or to Photoshop, such content generators facilitate the human in his creative

task, often providing an elaborate user interface; the computer’s initiative is real-

ized as it evaluates the human design, testing if it breaks any design constraints

and presents alternatives to the human designer. Generators where the creativ-

ity stems from human initiative, as seen in Figure 11.1, and will be discussed in

Section 11.1.

• In other cases, the computer is able to autonomously generate content but lacks

the ability to judge whether what it has created is sufficiently good. In cases

where evaluating generated artifacts is subjective, unknown in advance, or too

daunting to formulate mathematically, such generators request human users to

act as the judge and guide their generative processes towards content that these

users deem better. The most common method for accomplishing this task is in-

teractive evolution, as seen in Figure 11.2, and will be discussed in Section 11.2.

In interactive evolution the computer has the creative initiative while the human

acts as an advisor, trying to steer the generator towards their own goals. In most

191

192 Antonios Liapis, Gillian Smith and Noor Shaker

Fig. 11.1: Computer-Aided Design:

humans have the idea, the computer

supports their creative process.

Fig. 11.2: Interactive Evolution: the

computer creates content, humans

guide it to create content they prefer.

cases, human users don’t have direct control over the generated artifacts; select-

ing their favorites does not guarantee in which way the computer will interpret

and accommodate their choice.

11.1 Computer Aided Design tools

To understand how mixed-initiative PCG systems are designed today, as well as to

attain future inspiration for such systems, it is important to also understand sev-

eral older systems from which current work draws inspiration. There are three

main threads of work that we’ll look at in this section: mixed-initiative interaction,

computer-assisted design, and creativity support tools. Each of these areas of work

have inspired different aspects of the systems we’ll talk about in the chapter.

11.1.1 Mixed-Initiative Interaction

In 1960, J.C.R. Licklider [22] laid out his dream of the future of computing: man-

computer symbiosis. Licklider was the first to suggest that the operator of a com-

puter take on any role other than that of the puppetmaster — he envisioned that one

day the computer would have a more symbiotic relationship with the human oper-

ator. Licklider described a flaw of existing interactive computer systems as: “In the

man-machine systems of the past, the human operator supplied the initiative, the

direction, the integration, and the criterion.”

Notice the use of the term “initiative” to refer to how the human interacts with the

computer, and the implication that the future of man-computer symbiosis therefore

involves the computer being able to share initiative with its human user.

The term “mixed-initiative” was first used by Jaime Carbonell to describe his

computer-aided instruction system, called SCHOLAR [2]. SCHOLAR is a text-

based instructional system that largely consisted of the computer asking quiz-style

questions of the student using the system; the mixed-initiative component of the sys-

tem allows the student to ask questions of the computer as well. Carbonell argued

that there were two particularly important and related aspects of a mixed-initiative

11 Mixed-initiative Content Creation (DRAFT) 193

system: context and relevancy. Maintaining context involved ensuring that the com-

puter would only be able to ask questions that were contextually relevant to the

discussion thus far, so that large sways in conversation did not occur. Relevancy

involves only answering questions with relevant information, rather than all of the

information known about the topic.

Mixed-initiative interaction describes a form of interaction between computer

and human in which initiative is shared. It can be helpful to think about this style of

interaction as a conversation-imagine, for example, two human colleagues having a

conversation in the workplace:

Kevin: “Do you have time to chat about the tutorial levels for the game?”

Sarah: “Yes, let’s do that now! I think we need to work together to re-design the

first level. Do you—.”

Kevin: “Yeah, I agree, players aren’t understanding how to use the powerups. I

was thinking we should make the tutorial text bigger and have it linger on the

screen for longer.”

Sarah: “Well, information I got from the user study session two days ago implied

that players weren’t reading the text at all. I’m not sure if making the text bigger

will help.”

Kevin: “I think it will help.”

pause

Kevin: “It’s easy to implement, at least.”

Sarah: “Okay, how about you try that, and I’ll work on a new idea I have for

having the companion character show you how to use them.”

Kevin: “Great! Let’s meet again next week to see how it worked.”

There are several ways in which Kevin and Sarah are sharing initiative in this

conversation. Novick and Sutton [27] describe several components of initiative:

1. Task initiative: deciding what the topic of the conversation will be, and what

problem needs to be solved. In our example, Kevin takes the task initiative, by

bringing up the topic of altering the tutorial levels, and by introducing the prob-

lem that, specifically, players don’t understand how to use the powerups.

2. Speaker initiative: determining when each actor will speak. Mixed-initiative is

often characterized as a form of turn-taking interaction, where one actor speaks

while the other waits, and vice versa. Our example conversation mostly follows

a turn-taking model, but deviates in two major areas: a) Kevin interrupts Sarah’s

comments because he thinks he already knows what she will say, and b) Kevin

later speaks twice in a row, in an effort to move the conversation along.

3. Outcome initiative: deciding how the problem introduced should be solved,

sometimes involving allocating tasks to participants in the conversation. For this

example, Sarah takes the outcome initiative, determining which tasks she and

Kevin should perform as a result of the conversation.

The majority of mixed-initiative PCG systems focus entirely on the second kind

of initiative: speaker initiative. They involve the computer being able to provide

support during the design process, an activity that design researcher Donald Schön

194 Antonios Liapis, Gillian Smith and Noor Shaker

has described as a reflective conversation with the medium [29] (more on this in the

next section). However, they all explicitly give the human designer sole responsi-

bility for determining what the topic of the design conversation will be and how to

solve the problem; all mixed-initiative PCG systems made thus far have prioritized

human control over the generated content.

11.1.2 Computer-Assisted Design and Creativity Support

Doug Engelbart, an early pioneer of computing, posed that computers stand to aug-

ment human intellect. He envisioned a future in which computers were capable of

“increasing the capability of a man to approach a complex problem situation, to gain

comprehension to suit his particular needs, and to derive solutions to problems” [8].

Engelbart argued that all technology can serve this purpose. His de-augmentation

experiment, in which he wrote the same text using a typewriter, a normal pen, and

a pen with a brick attached to it, showed the influence that the technology (in this

case, the way we write) has on the ways that we write and communicate.

A peer of Engelbart, Ivan Sutherland’s created the Sketchpad system in 1963

[40]. This was the first system to offer computational support for designers; it was

also the first example of an object-oriented system (though it did not involve pro-

gramming). Sketchpad allowed designers to specify constraints on the designs they

were drawing; for example, it was possible to draw the general topology of an item

such as a bolt. The user could then place constraints on the edges of the bolt to

force them to be perpendicular to each other. The system was object-oriented in that

individual sketches could be imported into others to produce entire diagrams and

drawings; if the original sketch was altered, that change would propagate to all dia-

grams that imported the sketch. The idea of letting users create through adding and

removing constraints has carried forward into mixed-initiative tools such as Tanagra

and Sketchaworld, described later in this chapter.

A decade after Engelbart and Sutherland’s work, Nicholas Negroponte proposed

the creation of design amplifiers. Negroponte was particularly interested in how to

support non-expert designers, as he was concerned that experts often push their own

agendas without regard for the need of the occupant [25]. However, home-owners

do not have the domain expertise required to design their own home. His vision

was for tools that could help the general population in creating their own homes

using the computer to support their designs and ensure validity of the design. The

idea that human creators should take the forefront and have the majority of control

over a design situation is reflected in all mixed-initiative design tools; in general,

the computer is never allowed to override a decision made by the human. However,

all tools must push an agenda to some extent, though it may not be intentional: the

choices that go into how the content generator operates and what kind of content it

is capable of creating vastly influences the work that the human designer can create

with the system.

11 Mixed-initiative Content Creation (DRAFT) 195

More recently, Chaim Gingold has pushed the idea of “magic crayons”: software

that supports a novice’s creativity while also being intuitive, powerful, and expres-

sive [10]. Gingold argues that using design support tools should be as simple and

obvious as using a crayon, and allow for instant creativity. Any child who picks

up a crayon can quickly and easily grasp how to use it and go on to create several

drawings quite rapidly. The “magic” part of the magic crayon comes in the crayon’s

computational power and expressive potential: the crayons are imbued with compu-

tational support that allows a user to create something better than what they would

normally create themselves, while still echoing their original design intent.

11.1.3 Requirements, Caveats, and Open Problems for Mixed

Initiative Systems

When designing a mixed-initiative system, there are several main questions to con-

sider. These points are based on the authors’ experiences creating their own proto-

type mixed-initiative tools:

• Who is your target audience?

How to design both the underlying technology and the interface for a mixed-

initiative system depends wildly upon who the target audience is. A tool for pro-

fessional designers might look considerably different than a tool intended for game

players who have no design experience.

• What novel and useful editing operations can be incorporated?

A mixed-initiative environment offers the opportunity for more sophisticated level

editing operations than merely altering content as one could do in a non-AI sup-

ported tool. The way the generation algorithm works might prioritize certain aspects

of the design. For example, Tanagra’s underlying generator used rhythm as a driver

for creating levels; thus, it was relatively straightforward to permit users to interact

with that underlying structure to be able to directly manipulate level pacing.

• How can the method for control over content be balanced?

Mixed-initiative content generators can involve both direct and indirect manipula-

tion of the content being created. For example, the tool will typically support a user

directly drawing in aspects of the content (e.g. level geometry), but also allow the

computer to take over and make new suggestions for the generator. How to balance

these forms of control can be challenging (especially when the human and computer

conflict, see next point). Should the computer be allowed to make new suggestions

whenever it wants, or only when specifically requested? How much of the content

should be directly manipulable?

• How to resolve conflicts that arise due to the human stating conflicting desires?

196 Antonios Liapis, Gillian Smith and Noor Shaker

In situations where both human and computer are editing content simultaneously,

editing conflict inevitably arises. The majority of mixed-initiative tools follow the

principle that the human has final say over what is produced by the tool. How-

ever, when the human user states contradictory desires, the system must decide how

to handle the situation. Should it simply provide an error message? Should it ran-

domly choose which desire is more important for the human? Should it generate

several plausible answers and then ask the human to choose which solution is most

reasonable?

More generally, the issue is: how can the computer infer human design intent via

an interface where the human simply interacts with the content itself.

• How expressive is the system?

All content that a human can produce using a mixed-initiative PCG system must be

possible for the computer to generate on its own. Thus it is vital for the system to

be expressive enough to offer a meaningful set of choices to the human user. More

information about expressivity evaluation is in Chapter 12.

• Can the computer explain itself?

It is difficult for a human and computer to engage in a design collaboration if neither

is able to explain itself to the other. In particular, a human designer may become

frustrated or confused if the computer consistently acts as though it is not following

the model that the human designer has in her head for how the system should work.

The computer should appear intelligent (even if the choices it is making do not

involve a sophisticated AI system), and ideally should be able to explain its actions

to the human. Being able to communicate at a meta-level about the design tasks and

outcomes has not been well-explored in mixed-initiative PCG work thus far.

11.1.4 Examples of CAD tools for Games

Although not comprehensive, the following Computer-Aided Design tools do not

only afford interaction and feedback for the human designer, but also introduce some

initiative (in varying degrees and in different forms) to the computational designer.

11.1.4.1 Tanagra

Tanagra is a mixed-initiative tool for level design, allowing a human and a computer

to work together to produce a level for a 2D platformer [9]. An underlying, reactive

level generator ensures that all levels created in the environment are playable, and

provides the ability for a human designer to rapidly view many different levels that

meet their specifications. The human designer can iteratively refine the level by plac-

ing and moving level geometry, as well as through directly manipulating the pacing

11 Mixed-initiative Content Creation (DRAFT) 197

Fig. 11.3: The Tanagra intelligent level design tool. The large area in the upper left

is where the level is created. Below that is a beat timeline, allowing manipulation of

the pacing of the level. On the right are buttons for editing the level.

of the level. Tanagra’s underlying level generator is capable of producing many dif-

ferent variations on a level more rapidly than human designers, whose strengths

instead lie in creativity and the ability to judge the quality of the generated content.

The generator is able to guarantee that all the levels it creates are playable, thus

refocusing early playtesting effort from checking that all sections of the level are

reachable to exploring how to create fun levels.

A combination of reactive planning and constraint programming allows Tanagra

to respond to designer changes in real-time. A Behavior Language (ABL) [23] is

used for reactive planning, and Choco [43] for numerical constraint solving. Re-

active planning allows for the expression of generator behaviors, such as placing

patterns of geometry or altering the pacing of the level, which can be interleaved

with a human designer’s actions.

The version of Tanagra displayed in Fig. 11.3 incorporates (1) the concept of

a user “pinning” geometry in place by adding numerical positioning constraints,

(2) the system attempting to minimize the number of required positioning changes

(including never being allowed to move pinned geometry), and (3) direct changes

to level pacing by adding, removing, and altering the length of beats. Later versions

of Tanagra altered the UI to make it clearer what geometry was “pinned” and what

was not. The latest version of Tanagra also added the idea of geometry preference

toggles, allowing designers an additional layer of control over the system by letting

them state whether or not particular geometry patterns are preferred or disliked on a

per-beat basis. More information about the Tanagra tool, including a full description

of its system architecture and an evaluation of its expressivity, has been published

[9].

198 Antonios Liapis, Gillian Smith and Noor Shaker

Fig. 11.4: The user interface of Sentient Sketchbook as a

human designer edits their sketch (left) and a generator, act-

ing as the artificial designer, creates map suggestions to the

users sketch (far right).

Fig. 11.5: The map

sketch can be trans-

formed into a high-

resolution map.

11.1.4.2 Sentient Sketchbook

Sentient Sketchbook is a computer-aided design tool which assists a human designer

in creating game levels, such as maps for strategy games [20] (shown in Fig. 11.4)

or dungeons for roguelike games [21]. Sentient Sketchbook uses the notion of map

sketch as a minimal abstraction of a full game level (see Fig. 11.5); this abstraction

limits user fatigue while creating new levels and reduces the computational effort of

automatically evaluating such sketches. Like popular CAD tools, Sentient Sketch-

book supports the human creator by automatically testing maps for playability con-

straints, by calculating and displaying navigable paths, by evaluating the map on

gameplay properties and by converting the coarse map sketch into a playable level.

The innovation of Sentient Sketchbook is the real-time generation and presenta-

tion of alternatives to the user’s sketch. These alternatives are evolved from an initial

population seeded by the user’s sketch, and thus a certain degree of map integrity

is maintained with the user’s designs. The shown suggestions are guaranteed to be

playable (i.e. have all vital components such as bases and resources for strategy

games connected with passable paths) via the use of constrained evolutionary opti-

mization with two populations [15]. The suggestions are either evolved to maximize

one of the predefined objective functions inspired by popular game design patterns

such as balance and exploration [21], or towards divergence from the user’s current

sketch through feasible-infeasible novelty search [19].

11 Mixed-initiative Content Creation (DRAFT) 199

Fig. 11.6: A screenshot from one of the interfaces in Ropossum. The components

highlighted are the ones constrained by the designer and therefore will not be

changed when evolving complete playable levels.

11.1.4.3 Ropposum

Ropossum is an authoring tool for the generation and testing of levels of the physics-

based puzzle game, Cut the Rope [33]. Ropossum integrates many features: (1) au-

tomatic design of complete solvable content, (2) incorporation of designer’s input

through the creation of complete or partial designs, (3) automatic check for playa-

bility and (4) optimization of a given design based on playability.

Ropossum consists of two main modules: an evolutionary framework for proce-

dural content generation [31] and a physics-based playability module to solve given

designs [32]. The second module is used both for evolving playable content and for

play testing levels designed by humans. The parameters of the evolutionary system

and the AI agent were optimized so that the system can respond to the user’s inputs

within a reasonable amount of time. Grammatical Evolution (GE) is used to evolve

the content. The level structure is defined in a Design Grammar (DG) which defines

the positions and properties of different game components and permits an easy to

read and manipulate format by game designers [31]. First-order logic is used to en-

code the game state as facts specifying the game components and their properties

(such as position, speed, and moving direction) [32]. The relationships between the

components are represented as rules used to infer the possible next actions.

The two methods for evolving game design and assessing whether the design is

playable are combined in a framework to evolve playable content. An initial level

design, according to the design grammar, is generated or created by the designer

(see Fig. 11.6) and encoded as facts that can be used by the AI reasoning agent.

Given the game state, the agent infers the next best action(s) to perform. The actions

are then sent to the physics simulator that performs the actions according to a given

priority and updates the game state accordingly. The new game state is sent to the

agent to infer the next action. If the sequence of actions does not lead to winning the

200 Antonios Liapis, Gillian Smith and Noor Shaker

Fig. 11.7: A screenshot from Sketchaworld showing the user input consisting of a

sketch of a mountain, river and forest and the corresponding 3D terrain generated.

level, the system backtracks. A state tree is generated that represents the actions and

states explored. For each action performed, a node in the tree is generated and the

tree is explored in a depth-first approach. The size of the explored branches in the

solution tree was drastically reduced through the use of different priorities for the

actions and the employment of domain knowledge encoded by the rules followed

by the reasoning agent when inferring the best action to perform.

11.1.4.4 Sketchaworld

Sketchaworld is an interactive tool created to enable a non-specialist user to easily

and efficiently create a complete 3D virtual world by integrating different proce-

dural techniques [36]. Sketchaworld integrates many features: (1) it facilitates easy

interaction with designers who can specify procedural modeling operations and di-

rectly visualize their effects, (2) it builds 3D worlds by fitting all features with their

surroundings and (3) it supports iterative modeling.

The tool allows user interactions in two main modes: landscape mode and feature

mode. The first mode consists of the user input which is a 2D layout map of the

virtual world formatted in a coloring grid that includes information about elevations

and soil materials painted with a brush. In the feature mode, users add more specific

land features such as cities and rivers (see Fig. 11.7).

While users sketch on the 2D grid, the effects of their modification is directly

visualized in the 3D virtual world. This requires blending the features added with

its surroundings. To this end, whenever a new feature is created, an automatic local

11 Mixed-initiative Content Creation (DRAFT) 201

adaptation step is performed to ensure smoothness and correctness. This includes

for example removing trees on a generated road’s path or adding a road to connect

a generated bridge.

11.2 Interactive Evolution

As its name suggests, Interactive Evolutionary Computation (IEC) is a variant of

evolutionary computation where human input is used to evaluate content. As artifi-

cial evolution hinges on the notion of survival of the fittest, in interactive evolution

a human user essentially selects which individuals create offspring and which in-

dividuals die. According to Takagi [42], interactive evolution allows human users

to evaluate individuals based on their subjective preferences (their own psycholog-

ical space) while the computer searches for this human-specified global optimum

in the genotypical space (feature parameter space); as such, the collaboration be-

tween human and computer makes IEC a mixed-initiative approach. In interactive

evolution a human user can evaluate artifacts by assigning to each a numerical value

(proportionate to their preference for this artifact), by ordering artifacts in order of

preference, or by simply selecting one or more artifacts that they would like to see

more of. With more control to the human user, the artifacts in the next generation

may match users’ desires better; the user’s cognitive effort may also increase, how-

ever, which results in user fatigue, which is covered in Section 11.2.1

Interactive evolution is often used in domains where designing a fitness function

is a difficult task; for instance, the criteria for selection could be a subjective mea-

sure of beauty as in evolutionary art, a deceptive problem where a naive quantifiable

measure may be more harmful than helpful, or in cases where mathematically defin-

ing a measure of optimality is as challenging as the optimization task itself. Since it

allows for a subjective evaluation of beauty, IEC has often been used to create 2D

visual artifacts based on L-systems [24], mathematical expressions [34], neural net-

works [30] or other methods. Using interactive evolution in art was often motivated

by a general interest in Artificial Life, as is the case with Dawkin’s Biomorph [6]. In

evolutionary art, human users may often evaluate not the phenotypes but situational

system outputs specified by the phenotypes, in cases where the phenotypes are im-

age filters or shaders [7]. Apart from 2D visual artifacts, IEC has also been used in

generating 3D art [5], graphic movies [35], typographies [28] and graphic design

[39]. Evolutionary music has also used IEC to generate the rhythm of percussion

parts [44], jazz melodies [1] or accompaniments to human-authored music scores

[13], among others. Outside evolutionary art and music, IEC has been used for in-

dustrial design [11], image database retrieval [4], human-like robot motion [26] and

many others. The survey by Takagi [42] provides a thorough, if somewhat dated,

overview of IEC applications.

202 Antonios Liapis, Gillian Smith and Noor Shaker

11.2.1 User Fatigue and Methods of Combating it

Since interactive evolution is entirely reliant on human input to drive its search pro-

cesses, its largest weakness is the effect of human fatigue in human-computer inter-

action. Human fatigue becomes an issue when the users are required to perform a

large number of content selections, when feedback from the system is slow, when

the users are simultaneously presented with a large number of content on-screen, or

when users are required to provide very specific input. All of these factors contribute

to the cognitive overload of the user, and several solutions have been proposed to

counteract each of these factors.

As human users are often overburdened by the simultaneous presentation of in-

formation on-screen, user fatigue can be limited by an interactive evolutionary sys-

tem that shows only a subset of the entire population. There are a number of tech-

niques for selecting which individuals to show, although they all introduce biases

from the part of the tool’s designers. An intuitive criterion is to avoid showing in-

dividuals which all users would consider unwanted. Deciding which individuals are

unwanted is sometimes straightforward; for instance, musical tracks containing only

silence or 3D meshes with disconnected triangles. However, such methods often

only prune the edges of the search space and are still not guaranteed to show wanted

content. Another technique is to show only individuals with the highest fitness; since

fitness in interactive evolution is largely derived from user choices, this is likely to

result in individuals which are very similar - if not identical - to individuals shown

previously, which is more likely to increase fatigue due to perceived stagnation.

User fatigue is often induced when the requirement of a large number of se-

lections becomes time-consuming and cumbersome. As already mentioned, fewer

individuals than the entire population can be shown to the user; in a similar vein, not

every generation of individuals needs to be shown to the user, instead showing indi-

viduals every 5 or 10 generations. In order to accomplish such a behavior, the fitness

of unseen content must be somehow predicted based on users’ choices among seen

content. One way to accomplish such a prediction is via distance-based approaches,

i.e. by comparing an individual that hasn’t been presented to the user with those

individuals which were presented to the user: the fitness of this unseen individual

can be proportional to the user-specified fitness of the closest seen individual while

inversely proportional to their distance [14]. Such a technique essentially clusters all

individuals in the population around the few presented individuals; this permits the

use of a population larger than the number of shown individuals as well as an offline

evolutionary sprint with no human input. Depending on the number of seen individ-

uals and the expressiveness of the algorithm’s representation, however, a number of

strong assumptions are made - the most important of which pertains to the measure

of distance used. In order to avoid extraneous bias of the search from these assump-

tions, most evolutionary sprints are only for a few generations before new human

feedback is required.

Another solution to the extraneous choices required of IEC systems’ users is to

crowdsource the selection process among a large group of individuals. Some form

of online database is likely necessary towards that end, allowing users to start evolv-

11 Mixed-initiative Content Creation (DRAFT) 203

ing content previously evolved by another user. A good example of this method is

PicBreeder [30], which evolves images created by compositional pattern-producing

networks (CPPNs). Since evolution progressively increases the size of CPPNs due

to the Neuroevolution of Augmenting Topologies algorithm [38], the patterns of the

images they create become more complex and inspiring with large networks. This,

however, requires extensive evolution via manual labor, which is expected to induce

significant fatigue on a single user. For that reason, the PicBreeder website allows

users to start evolution “from scratch”, with a small CPPN able to create simple

patterns such as circles or gradients, or instead load images evolved by previous

users and evolve them further. Since such images are explicitly saved by past users

because they are visually interesting, the user starts from a “good” area of the geno-

typical space and is more likely to have meaningful variations rather than if they

were starting from scratch and had to explore a large area of the search space which

contains non-interesting images.

Another factor of user fatigue is the slow feedback of evolutionary systems; since

artificial evolution is rarely a fast process, especially with large populations, the

user may have to sit through long periods of inaction before the next set of content

is presented. In order to alleviate that, interactive evolution addresses it by several

shortcuts to speed up convergence of the algorithm. This is often accomplished by

limiting the population size to 10 or 20 individuals, or by allowing the user to ac-

tively interfere directly on the search process by designating an estimated global

optimum on a visualization of the search space [41].

To reduce the cognitive load of evaluating individuals, the most common solution

is to limit the number of rating levels. In the simplest of cases, the rating levels can

be two, i.e. selected and unselected, limiting the user’s effort; they either like the

content or they don’t. Since taste is rarely a boolean value, however, usually more

rating levels are included - often using existing scales such as that of “5 stars” which

is popular in restaurant and cinema reviews. Another solution which is expected to

limit the cognitive load and subjectivity of ratings is to use rankings [16], i.e. stating

preference of A over B without explicitly specifying that A is 3 of 5 stars and B is 1

of 5 stars.

11.2.2 Examples of Interactive Evolution for Games

Recent trends have shown an increase in the use of IEC for evolving game content.

As highly interactive experiences themselves, games are ideal for interactive evolu-

tion as the user’s preference can be inferred based on gameplay traces. In this fash-

ion, the selection of favored content is masqueraded into in-game activities such as

shooting, trading or staying alive. Done properly, interactive evolution in games can

bypass to a large extent the issue of user fatigue. However, the mapping between

player actions and player preference is often not straightforward; for instance, do

humans prefer to survive in a game level for a long time, or do they like to be chal-

lenged and be constantly firing their weapons? Depending on the choice of metric

204 Antonios Liapis, Gillian Smith and Noor Shaker

Fig. 11.8: Galactic Arms Race with multiple players using different weapons.

(in this example, survival time or shots fired), different content may be favored.

Therefore, gameplay-based evaluations may include more biases on the part of the

programmer than traditional interactive evolution, which tries to make no assump-

tions.

11.2.2.1 Galactic Arms Race

Galactic Arms Race [12] is one of the more successful examples of games using

interactive evolution. The procedurally generated weapon projectiles, which are the

main focus of this space shooter game, are evolved interactively based on gameplay

data. In Galactic Arms Race, the number of times a weapon is fired is considered an

indication of preference; Hastings et al. assume that players who don’t like a weapon

will not use it as much as others. Weapon projectiles, represented as particles, are

evolved via neuroevolution of augmenting topologies [38]; the velocity and color

of each particle is defined as the output of a CPPN [37], with the input being the

current position and distance from the firing spaceship. Newly evolved weapons are

dropped as rewards for destroying enemy bases; the player can pick them up, and

use them or switch among three weapons at any given time. Galactic Arms Race can

be also played by many players; in the case of multiplayer, the algorithm uses the

firing rates of all players when determining which weapons to evolve. The weapons

evolved in Galactic Arms Race, and details of its framework have been presented in

Chapter ??.

11 Mixed-initiative Content Creation (DRAFT) 205

Fig. 11.9: The user interface used to visualise and collect the ranking of tracks.

11.2.2.2 TORCS track generation

A more “traditional” form of interactive evolution — with a user directly stat-

ing preference of game content — was applied to generate tracks for a car racing

game [3]. The system uses the Open Racing Car Simulator1 (TORCS) and allows

user interaction through a web browser where users can view populations of rac-

ing tracks and evaluate them (see Fig. 11.9). The other component of the system is

an evolutionary backend which handles all evolutionary-based operations. Racing

tracks are represented in the engine as a list of segments which can be either straight

or turning. In the evolution process, a set of control points and Bezier curves were

employed to connect these points and ensure smoothness.

Different variations of the interactive evolution method are implemented to eval-

uate the generated tracks. In the single-user mode, human subjects were asked to

play 10 generations of 20 evolved tracks each and evaluate them using two scoring

interfaces: like/dislike and rating from 1 to 5 stars. The feedback provided by users

about each track is used as a fitness in the evolution process. In the multi-user mode,

the same population of 20 individuals is played and evaluated by five human sub-

jects. The fitness given to each track in the population is the average score received

1 http://torcs.sourceforge.net/

206 Antonios Liapis, Gillian Smith and Noor Shaker

Fig. 11.10: The user interface of the spaceship generator, where the user can select

their favorite among a subset of the population of feasible spaceships.

by all users. The feedback provided by users showed improvements in the quality

of the tracks and an increase in their interestingness.

11.2.2.3 Spaceship Generation

The work of Liapis et al. [18] is an example of fitness prediction applied for the pur-

pose of speeding up and enhancing the convergence of interactive evolution. This

work generates spaceship hulls and their weapon and thruster topologies in order to

match a user’s visual taste as well as conform to a number of constraints aimed for

playability and game balance [17]. The 2D shapes representing the spaceship hulls

are encoded as pattern-producing networks (CPPNs) and evolved in two populations

using the feasible-infeasible 2-population approach (FI-2pop) [15]. One population

contains spaceships which fail ad-hoc constraints pertaining to rendering, physics

simulation and game balance, and individuals in this population are optimized to-

wards minimizing their distance to feasibility. Removing such spaceships from the

population shown to the user reduces the chances of unwanted content and reduces

user fatigue.

The second population contains feasible spaceships, which are optimized accord-

ing to ten fitness dimensions pertaining to common attributes of visual taste such as

symmetry, weight distribution, simplicity and size. These fitness dimensions are

aggregated into a weighted sum which is used as the feasible population’s fitness

function. The weights in this quality approximation are adjusted according to a

user’s selection among a set of presented spaceships (see Fig. 11.10). This adap-

tive aesthetic model aims to enhance the visual patterns behind the user’s selection

and minimize visual patterns of unselected content, thus generating a completely

11 Mixed-initiative Content Creation (DRAFT) 207

new set of spaceships which more accurately match the user’s tastes. A small num-

ber of user selections allows the system to recognize the users’ preference, reducing

fatigue.

The proposed two-step adaptation system, where (1) the user implicitly adjusts

their preference model through content selection and (2) the preference model af-

fects the patterns of generated content, should demonstrate the potential of a flexible

tool both for personalizing game content to an end-user’s visual taste but also for

inspiring a designer’s creative task with content guaranteed to be playable, novel

and yet conforming to the intended visual style.

11.3 Class Exercise

1. Choose one of the tools described in this chapter. Perform a design task similar

to that which is supported by the tool without any computational support. Reflect

upon this process what was easy and what was hard? What did you wish the

computer could do to help? What do you feel the computer would not be able to

assist with? If the tool is available for download, try to perform the same design

task using the AI-supported tool. What were some of the key differences in your

experience as a designer?

2. Create a requirements analysis document and mock-up architecture diagram for a

mixed-initiative design tool that operates in a domain of your choice. Make sure

to consider: (a) Who is your audience? (b) What, specifically, is your domain?

(c) What is the PCG system capable of creating? (d) What is the mixed-initiative

conversational model the system will follow?

3. Create a paper prototype of the tool you designed in exercise two. Test the pro-

totype with someone else in the class, with you acting as the “AI system” and

your partner acting as the designer. Be careful to only act according to how the

AI system itself would be able to act.

References

1. Biles, J.A.: Genjam: A genetic algorithm for generating jazz solos. In: Proceedings of the

International Computer Music Conference, pp. 131–137 (1994)

2. Carbonell, J.R.: Mixed-initiative man-computer instructional dialogues. Ph.D. thesis, Mas-

sachusetts Institute of Technology (1970)

3. Cardamone, L., Loiacono, D., Lanzi, P.L.: Interactive evolution for the procedural generation

of tracks in a high-end racing game. In: Proceedings of the 13th annual conference on Genetic

and evolutionary computation, pp. 395–402. ACM (2011)

4. Cho, S.B., Lee, J.Y.: Emotional image retrieval with interactive evolutionary computation. In:

Advances in Soft Computing, pp. 57–66. Springer London (1999)

5. Clune, J., Lipson, H.: Evolving three-dimensional objects with a generative encoding inspired

by developmental biology. In: Proceedings of the European Conference on Artificial Life, pp.

144–148 (2011)

208 Antonios Liapis, Gillian Smith and Noor Shaker

6. Dawkins, R.: The Blind Watchmaker. W. W. Norton & Company (1986)

7. Ebner, M., Reinhardt, M., Albert, J.: Evolution of vertex and pixel shaders. In: Genetic Pro-

gramming, Lecture Notes in Computer Science, vol. 3447, pp. 261–270. Springer Berlin Hei-

delberg (2005)

8. Engelbart, D.C.: Augmenting human intellect: A conceptual framework. Air Force Office of

Scientific Research, AFOSR-3233 (1962)

9. Gillian Smith Jim Whitehead, M.M.: Tanagra: Reactive planning and constraint solving for

mixed-initiative level design. IEEE Transactions on Computational Intelligence and AI in

Games (TCIAIG), Special Issue on Procedural Content Generation 3 (2011)

10. Gingold, C.: Miniature gardens & magic crayons: Games, spaces, & worlds (2003)

11. Graf, J.: Interactive evolutionary algorithms in design. In: Proceedings of the International

Conference on Artificial Neural Nets and Genetic Algorithms, pp. 227–230 (1995)

12. Hastings, E.J., Guha, R.K., Stanley, K.O.: Automatic content generation in the galactic arms

race video game. IEEE Transactions on Computational Intelligence and AI in Games 1(4),

245–263 (2009)

13. Hoover, A.K., Szerlip, P.A., Stanley, K.O.: Interactively evolving harmonies through func-

tional scaffolding. In: Proceedings of Genetic and Evolutionary Computation Conference

(2011)

14. Hsu, F.C., Chen, J.S.: A study on multi criteria decision making model: interactive genetic

algorithms approach. In: IEEE International Conference on Systems, Man, and Cybernetics,

vol. 3, pp. 634–639 (1999)

15. Kimbrough, S.O., Koehler, G.J., Lu, M., Wood, D.H.: On a feasible-infeasible two-population

(fi-2pop) genetic algorithm for constrained optimization: Distance tracing and no free lunch.

European Journal of Operational Research 190(2), 310–327 (2008)

16. Liapis, A., Martı́nez, H.P., Togelius, J., Yannakakis, G.N.: Adaptive game level creation

through rank-based interactive evolution. In: Proceedings of the IEEE Conference on Com-

putational Intelligence and Games (CIG) (2013)

17. Liapis, A., Yannakakis, G.N., Togelius, J.: Neuroevolutionary constrained optimization for

content creation. In: Proceedings of the IEEE Conference on Computational Intelligence and

Games, pp. 71–78 (2011)

18. Liapis, A., Yannakakis, G.N., Togelius, J.: Adapting models of visual aesthetics for person-

alized content creation. IEEE Transactions on Computational Intelligence and AI in Games

4(3), 213–228 (2012)

19. Liapis, A., Yannakakis, G.N., Togelius, J.: Enhancements to constrained novelty search: Two-

population novelty search for generating game content. In: Proceedings of Genetic and Evo-

lutionary Computation Conference (2013)

20. Liapis, A., Yannakakis, G.N., Togelius, J.: Sentient sketchbook: Computer-aided game level

authoring. In: Proceedings of ACM Conference on Foundations of Digital Games (2013)

21. Liapis, A., Yannakakis, G.N., Togelius, J.: Towards a generic method of evaluating game lev-

els. In: Proceedings of the AAAI Artificial Intelligence for Interactive Digital Entertainment

Conference (2013)

22. Licklider, J.C.R.: Man-computer symbiosis. IRE Transactions on Human Factors in Electron-

ics HFE-1, 4–11 (1960)

23. Mateas, M., Stern, A.: A behavior language for story-based believable agents. IEEE Intelligent

Systems 17, 39–47 (2002)

24. McCormack, J.: Interactive evolution of l-system grammars for computer graphics modelling.

In: Complex Systems: From Biology to Computation, pp. 118–130. ISO Press (1993)

25. Negroponte, N.: Soft architecture machines. The MIT Press (1975)

26. Nojima, Y., Kojima, F., Kubota, N.: Trajectory generation for human-friendly behavior of

partner robot using fuzzy evaluating interactive genetic algorithm. In: Proceedings of the

IEEE International Symposium on Computational Intelligence in Robotics and Automation

(2003)

27. Novick, D., Sutton, S.: What is mixed-initiative interaction? In: Proceedings of the AAAI

Spring Symposium on Computational Models for Mixed Initiative Interaction (1997)

11 Mixed-initiative Content Creation (DRAFT) 209

28. Schmitz, M.: genoTyp, an experiment about genetic typography. In: Proceedings of Generative

Art (2004)

29. Schon, D.A.: Designing as reflective conversation with the materials of a design situation.

Research in Engineering Design 3, 131–147 (1992)

30. Secretan, J., Beato, N., D’Ambrosio, D.B., Rodriguez, A., Campbell, A., Stanley, K.O.:

Picbreeder: evolving pictures collaboratively online. In: CHI ’08: Proceeding of the twenty-

sixth annual SIGCHI conference on Human factors in computing systems, pp. 1759–1768.

ACM, New York, NY, USA (2008)

31. Shaker, M., Sarhan, M.H., Naameh, O.A., Shaker, N., Togelius, J.: Automatic generation and

analysis of physics-based puzzle games. In: Computational Intelligence in Games (CIG), 2013

IEEE Conference on, pp. 1–8. IEEE (2013)

32. Shaker, M., Shaker, N., Togelius, J.: Evolving playable content for cut the rope through a

simulation-based approach. In: Proceedings of the AAAI Conference on Artificial Intelligence

and Interactive Digital Entertainment (2013)

33. Shaker, M., Shaker, N., Togelius, J.: Ropossum: An authoring tool for designing, optimiz-

ing and solving cut the rope levels. In: Proceedings of the AAAI Conference on Artificial

Intelligence and Interactive Digital Entertainment (AIIDE). AAAI Press (2013)

34. Sims, K.: Artificial evolution for computer graphics. In: Proceedings of the 18th annual confer-

ence on Computer graphics and interactive techniques, SIGGRAPH ’91, pp. 319–328. ACM,

New York, NY, USA (1991)

35. Sims, K.: Interactive evolution of dynamical systems. In: Towards a Practice of Autonomous

Systems: Proceedings of the First European Conference on Artificial Life, pp. 171–178 (1992)

36. Smelik, R.M., Tutenel, T., de Kraker, K.J., Bidarra, R.: Interactive creation of virtual worlds

using procedural sketching. In: Proceedings of eurographics (2010)

37. Stanley, K.O.: Exploiting regularity without development. In: Proceedings of the AAAI Fall

Symposium on Developmental Systems. AAAI Press (2006)

38. Stanley, K.O., Miikkulainen, R.: Evolving neural networks through augmenting topologies.

Evolutionary Computation 10(2), 99–127 (2002)

39. Steve Dipaola Kristin Carlson, G.M.S.S., Sorenson, N.: Adaptation of an autonomous cre-

ative evolutionary system for real-world design application based on creative cognition. In:

Proceedings of the International Conference on Computational Creativity (2013)

40. Sutherland, I.E.: Sketchpad: A man-machine graphical communication system. In: Proceed-

ings of the Spring Joint Computer Conference, AFIPS ’63 (Spring), pp. 329–346 (1963)

41. Takagi, H.: Active user intervention in an ec search. In: Proceedings of the International

Conference on Information Sciences, pp. 995–998 (2000)

42. Takagi, H.: Interactive evolutionary computation: Fusion of the capabilities of ec optimization

and human evaluation. Proceedings of the IEEE (9), 1275–1296 (2001)

43. Team, C.: Choco: an open source java constraint programming library. In: 14th Interna-

tional Conference on Principles and Practice of Constraint Programming, CPAI08 Compe-

tition, (2008)

44. Tokui, N., Iba, H.: Music composition with interactive evolutionary computation. In: Interna-

tional Conference on Generative Art (2000)

Chapter 12

Evaluating content generators (DRAFT)

Noor Shaker, Gillian Smith and Georgios N. Yannakakis

12.1 Motivation: I created a generator, now what?

The entirety of this book thus far has been focused on how to create procedural con-

tent generators, using a variety of techniques and for many different purposes. We

hope that, by now, you’ve gained an appreciation for the strengths and weaknesses

of different approaches to PCG, and also the surprises that can come from writing

a generative system. We imagine that you also have experienced some of the frus-

tration that can come from debugging a generative system: “is the interesting level I

created a fluke, a result of a bug, or a genuine result?”

Creating a generator is one thing; evaluating it is another. Regardless of the

method followed all generators shall be evaluated on their ability to achieve the

desired goals of the designer (or the computational designer). This chapter reviews

methods for achieving that. Arguably, the generation of any content is trivial; the

generation of valuable content for the task at hand, on the other hand, is a rather

challenging procedure.

What makes the evaluation of content (such as stories, levels, maps etc.) difficult

is the subjective nature of players, their large diversity and, on the other end of the

design process, the designer’s variant intents, styles and goals [1]. Most importantly,

content quality is affected by algorithmic stochasticity (such as metaheuristic search

algorithms) and human stochasticity (such as unpredictable playing behavior, style

and emotive responses) that affect content quality at large. All these factors are

obviously hard to control in an empirical fashion.

In addition to factors that affect content quality there are hard (or softer) con-

straints put forward by the designers or the other game content elements that might

be in conflict with the content generated (e.g. a proposed puzzle is not compatible

with the level generated). A PCG algorithm needs to be able to satisfy designer con-

straints as part of its quality evaluation. Constrained satisfaction algorithms such as

the feasible-infeasible two-population evolutionary algorithm used broadly by Li-

apis et al.[2] for mixed-initiative content creation and constrained solvers such as

211

212 Noor Shaker, Gillian Smith and Georgios N. Yannakakis

answer set programming (see Chapter 8 of this book and [7]) are able to handle

this.The generated results is within constraints, thereby valuable for the designer.

Value however has variant degrees of success (depending on all the aforementioned

factors) and this is where alternative methods or heuristics discussed in this chapter

can help.

PGC can be viewed as a computational creator (either assisted or autonomous).

One important aspect that has not been investigated in depth is the aesthetics and

creativity of PCG within game design. How creative can an algorithm be? Is it

deemed to have appreciation, skill, and imagination (Colton, 2008)? Evaluating cre-

ativity of current PCG algorithms a case can be made that most of them possess only

skill. Does the creator manage to explore novel combinations within a constrained

space thereby resulting in exploratory game design creativity (Boden); or, is on the

other hand trying to break existing boundaries and constraints within game design to

come up with entirely new designs, demonstrating transformational creativity (Bo-

den)? If used in a mixed-initiative fashion, does it enhance the designer’s creativity

by boosting the possibility space for her? Arguably, the appropriateness of variant

evaluation methods for autonomous PCG creation or mixed-initiative co-creation re-

mains largely unexplored within both human and computational creativity research.

Content generators exhibit highly emergent behavior, making it difficult to under-

stand what the results of a particular generation algorithm might be when designing

the system. When making a PCG system, we are also creating a large amount of

content for players to experience, thus it’s important to be able to evaluate how

successful the generator according to players who interact with the content.

The next section highlights a number of factors that make evaluating content

generator important.

12.1.1 Why is evaluation important?

There are several main reasons that we want to be able to evaluate procedural content

generation systems:

1. To better understand their capabilities. It is very hard to understand what the

capabilities are of a content generator based solely on seeing individual instances

of their output.

2. To confirm that we can make guarantees about generated content. If there are

particular qualities of generated content that we want to be able to produce, it is

important to be able to evaluate that those qualities are indeed present.

3. To more easily iterate upon the generator by seeing if what it is capable of creat-

ing matches the programmer’s intent. As with any creative endeavor, creating a

procedural content generator involves reflection, iteration, and evaluation.

4. To be able to compare content generators to each other, despite different ap-

proaches. As the community of people creating procedural content generators

continues to grow, it’s important to be able to understand how we are making

progress in relationship to other people.

12 Evaluating content generators (DRAFT) 213

This chapter describes strategies for evaluating content generators, both in terms

of their capabilities as generative systems and in performing evaluations of the con-

tent that they create. The most important concept to remember when thinking of

how to evaluate a generator is the following: make sure that the method you use to

evaluate your generator is relevant to what it is you want to investigate and evaluate.

If you want to be able to make the claim that your generator produces a wide vari-

ety of content, choose a method that explicitly examines qualities of the generator

rather than individual pieces of content. If you want to be able to make the claim

that players of a game that incorporates your generator find the experience more

engaging, then it is more appropriate to evaluate the generator using a method that

includes the player.

12.2 Matching outcomes to design goals

One of the ultimate goal of evaluating content generators is to check their ability to

meet the goals they are intended to achieve while being designed. Looking at indi-

vidual samples gives a very high level overview of the capabilities of the generators

but one would like for example to examine the frequency in which specific content

is generated or the amount of variations in the designs produced by the system. It

is therefore important to visualise the space of content covered by a generator. The

effects of modifications made to the system can then be easily identified in the vi-

sualised content space as long as the dimensions according to which the content is

plotted are carefully defined to reflect the goals intended when designing the system.

12.3 Expressivity measures

A tempting way to evaluate the quality of a content generator is to simply view

the content it creates and evaluate the artifacts subjectively and informally. But if a

content generator is capable of creating thousands, even millions, of unique levels,

it is not feasible to view all of the output to judge whether or not the generator is

performing as desired. If you see five levels that are impressive, among 50 that you

choose to ignore or re-generate, what does that say about the qualities of the content

generator?

To solve this problem, it is possible to evaluate the expressive range of the level

generator. Expressive range refers to the space of potential levels that the generator

is capable of creating, including how biased it is towards creating particular kinds

of content in that space [8]. This evaluation is performed by choosing metrics along

which the content can be evaluated, and using those metrics as axes to define the

space of possible content. A large number of pieces of content are then generated

and evaluated according to the defined metrics and plotted in a heatmap. This heat

214 Noor Shaker, Gillian Smith and Georgios N. Yannakakis

map can reveal biases in the generator, and comparisons of the heatmap across dif-

ferent sets of input parameters can show how controllable the generator is.

• Being able to understand how controllable your generator is by seeing how ex-

pressive range shifts according to input changes.

12.3.1 Visualising expressive range

The expressive range of a content generator can be visualized as an N-dimensional

space, where each dimension is a different quality of the generator that can be quan-

tified. This allows us to imagine authoring level generators as creating these spaces

of potential levels as a result of the emergent qualities of the system. By adding and

removing rules from a rule-based generator, the shape of the generator’s expressive

range (also referred to as a generative space) can be altered.

For only two dimensions, the generative space can be visualized using a two-

dimensional histogram. Higher dimensionality requires more sophisticated visual-

izations, which has not been deeply explored in the procedural content generation

communities. This requires generating a representative sample of the content and

ranking them according to the metrics; determining the amount of content to gener-

ate can be tricky. While it is simple for some systems to compute the total number

of variations that can be generated, others may be able to create infinite variety.

One method to ensure an acceptable sample size in the case of infinite content is

to generate increasingly large amounts of content and visualizing expressive range,

stopping when the graphs begin to look the same as the previous, smaller amount of

content. Expressive range charts are not intended to be perfect, mathematical proofs

of variety; rather, it is a visualization that can help the creator of a generative sys-

tem to understand its behavior, and potential users of that system to understand its

abilities.

Figure 12.1 shows the expressive range of the Launchpad level generator [9].

Notice that there is one large hot-spot for creating medium leniency, low linear-

ity levels, and another bias towards creating medium leniency, high linearity levels

(more on these metrics in the next section). Understanding that the system is biased

towards these areas forces the designer of the system to ask why such biases exist.

Figure 12.2 presents another alternative method for visualising the expressive

range of one of the content generators for Infinite Mario Bros [4]. The figure shows

different distributions of the levels according to three expressive measures defined:

linearity, leniency and density.

12.3.2 Choosing appropriate metrics

The metrics used for any content generator are bound to vary based on the domain

that content is being generated for. The “linearity” and “leniency” metrics used in

12 Evaluating content generators (DRAFT) 215

Fig. 12.1: The expressive range of the Launchpad level generator [9].

the Launchpad generator mentioned above make sense in the context of 2D plat-

forming levels, but perhaps not in the context of weapons for a space shooting game.

The important rule of thumb to remember when choosing metrics for your con-

tent generator is this:

Strive to choose metrics that are as far as possible from the input parameters to

the system. The goal of performing an expressive range evaluation is to understand

the emergent properties of the generative system. Choosing a metric that is highly

correlated to one that is used as an input parameter (e.g. if your generator accepts

“difficulty” as an input and has “difficulty” as an expressive range metric) can only

ever provide confirmatory results. If the system is specifically designed to create a

particular kind of output, measuring for that output can only show that the algo-

rithm operates as expected; it cannot deliver insight into unexpected behaviour or

surprising output.

216 Noor Shaker, Gillian Smith and Georgios N. Yannakakis

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

100

200

300

400

500

600

Expressivity scale

#
 o

f
le

v
el

s

Lineariy

Leniency

Density

Fig. 12.2: The histograms of the linearity, leniency and density measures for one of

the Infinite Mario Bros generator [4].

12.3.3 Understanding controllability

An important consideration in procedural content generation is understanding how

well the generator can be controlled to produce different kinds of output, and espe-

cially how small changes in rule systems or priorities alters the expressivity of the

system. If a designer requests that the system create shorter levels, will it still be ca-

pable of producing a broad range of content? Will adding a new rule to the grammar

fundamentally alter the qualities of levels that can be produced?

Insight into these issues can be visualised by comparing expressive range graphs

for different configurations of input parameters, either through visual comparison

shows the expressive range of the Launchpad level generator when varying its

rhythm input parameters (length of segment, pacing of segment, and type of rhythm)

(see Figure 12.3). Notice that, while several graphs look quite similar to each other,

there are notable parameter configurations that lead to drastically different resulting

spaces. Gaining insight into the problem is helpful not only after creating a sys-

tem and wanting to evaluate it, but also during the development process itself as a

debugging tool.

12.4 User studies

Complementary to qualitative approaches to the evaluation of content generation,

quantitative user studies can be of immense benefit for content quality assurance.

The most obvious approach to evaluate the content experience by players (or de-

signers) is to directly ask them about it. Within the subjective evaluation there are

several schemes and questionnaires one can adopt. The general guidelines for self-

report (or expert/designer-report) suggest that questionnaires should ask subjects

to rank (and not rate) amongst various content experienced [10] as rating-based

12 Evaluating content generators (DRAFT) 217

Fig. 12.3: The expressive range corresponding to different input parameters.

questionnaires — such as the game experience questionnaire [?] — generate higher

levels of inconsistency and order effects, lower inter-rater agreement, and are dom-

inated by a number of critical biases that make any post analysis questionable (to

say the least) [11, ?]. The rank-based game survey approach has been successfully

used in the Super Mario AI competition: level generation track [5]. The study can

involve anything from a small number of dedicated players that will play through

variant amounts of content to a crowd-sourced approach (see [6, ?, ?] among others.

The numerous limitations of self-reporting can be eliminated via the use of rank-

based questionnaires; however, not all issues of self-reporting can be surpassed this

way. Self-reports can be replaced by or fused with alternate measures of player ex-

perience such as physiological manifestations (of e.g. arousal, interest and attention)

and/or behavioral playing patterns that may map to particular a player state directly

(e.g. a player which is stuck at the same map point for several rounds might be

an indication of frustration). More details about objective measurement of player

experience can be found in Chapter 9.

The data-driven (crowd-sourcing approach) has a number of limitations. The core

objection against this method is the potential treatment of subjects as random con-

tent evaluators. Thus, ideally, the generator should be coupled with selection mech-

anisms that will prune the available content (which arguably can be generated in

218 Noor Shaker, Gillian Smith and Georgios N. Yannakakis

massive amounts automatically) prior to it be presented to the players. On that ba-

sis, content can be evaluated (up to a good degree) via a sequence of logic operations

without the need of player behavioral metrics or other input from players [3]. Fur-

ther, the satisfaction of constraints or logical operators can be coupled with rapid

simulations of AI agents that evaluate the quality of generated content (i.e.offline

generate and test PCG).

12.5 Summary

References

1. Liapis, A., Yannakakis, G.N., Togelius, J.: Towards a generic method of evaluating game lev-

els. In: Proceedings of the AAAI Artificial Intelligence for Interactive Digital Entertainment

Conference (2013)

2. Loiacono, D., Cardamone, L., Lanzi, P.: Automatic track generation for high-end racing games

using evolutionary computation. 3, pp. 245–259. IEEE (2011)

3. Nelson, M.J.: Game metrics without players: Strategies for understanding game artifacts. In:

Proceedings of the First Workshop on AI in the Game-Design Process, pp. 14–18 (2011)

4. Shaker, N., Nicolau, M., Yannakakis, G.N., Togelius, J., ONeill, M.: Evolving levels for super

mario bros using grammatical evolution. pp. 304–311 (2012)

5. Shaker, N., Togelius, J., Yannakakis, G.N., Weber, B., Shimizu, T., Hashiyama, T., Sorenson,

N., Pasquier, P., Mawhorter, P., Takahashi, G., et al.: The 2010 mario ai championship: Level

generation track. Computational Intelligence and AI in Games, IEEE Transactions on 3(4),

332–347 (2011)

6. Shaker, N., Yannakakis, G., Togelius, J.: Crowd-sourcing the aesthetics of platform games.

IEEE Transactions on Computational Intelligence and AI in Games (2013)

7. Smith, A.M., Mateas, M.: Answer set programming for procedural content generation: A de-

sign space approach. Computational Intelligence and AI in Games, IEEE Transactions on

3(3), 187–200 (2011)

8. Smith, G., Whitehead, J.: Analyzing the expressive range of a level generator. In: Proceedings

of the First Workshop on Procedural Content Generation in Games, p. 4. ACM (2010)

9. Smith, G., Whitehead, J., Mateas, M., Treanor, M., March, J., Cha, M.: Launchpad: A rhythm-

based level generator for 2-d platformers. Computational Intelligence and AI in Games, IEEE

Transactions on 3(1), 1–16 (2011)

10. Yannakakis, G.N.: Preference learning for affective modeling. In: International Conference

on Affective Computing and Intelligent Interaction and Workshops, pp. 1–6. IEEE (2009)

11. Yannakakis, G.N., Hallam, J.: Ranking vs. preference: a comparative study of self-reporting.

Affective Computing and Intelligent Interaction pp. 437–446 (2011)

