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Meta-analysis is an indispensable tool used to synthesize research findings in the social, educational,
medical, management, and behavioral sciences. Most meta-analytic models assume independence
among effect sizes. However, effect sizes can be dependent for various reasons. For example, studies
might report multiple effect sizes on the same construct, and effect sizes reported by participants
from the same cultural group are likely to be more similar than those reported by other cultural
groups. This article reviews the problems and common methods to handle dependent effect sizes.
The objective of this article is to demonstrate how 3-level meta-analyses can be used to model
dependent effect sizes. The advantages of the structural equation modeling approach over the
multilevel approach with regard to conducting a 3-level meta-analysis are discussed. This article also
seeks to extend the key concepts of Q statistics, I2, and R2 from 2-level meta-analyses to 3-level
meta-analyses. The proposed procedures are implemented using the open source metaSEM package
for the R statistical environment. Two real data sets are used to illustrate these procedures. New
research directions related to 3-level meta-analyses are discussed.
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Glass (1976) coined the term “meta-analysis” to describe “the
statistical analysis of a large collection of analysis results from
individual studies for the purpose of integrating the findings” (p.
3). Reviewers who conduct meta-analyses are able to (a) address
whether the effect sizes from a pool of empirical studies are
consistent, (b) determine the average effect size, (c) establish the
degree of heterogeneity due to study-specific random effects, and
(d) specify whether the study characteristics explain the variability
of the effect sizes. After Glass was introduced to the social
sciences, meta-analysis has gradually become an indispensable
tool across many disciplines including psychology, education,
management, and the medical sciences.

Most meta-analytic procedures assume independence among the
effect sizes. This assumption might not be realistic for many
research settings. In general, the degree of dependence can be
classified as either known (i.e., it can be estimated via summary
statistics) or unknown. When the degree of dependence is known,
multivariate meta-analyses can be used to model this dependence
(e.g., Becker, 1992; M. W.-L. Cheung, in press; Gleser & Olkin,
1994; Jackson, Riley, & White, 2011; Nam, Mengersen, & Garth-
waite, 2003; Raudenbush, Becker, & Kalaian, 1988; Stevens &
Taylor, 2009). This type of dependence is not discussed further

because it is not the focus of this article. Several procedures have
been suggested to address unknown dependence (e.g., Borenstein,
Hedges, Higgins, & Rothstein, 2009; Cooper, 2010). This article
uses the three-level meta-analysis (e.g., Konstantopoulos, 2011;
Van den Noortgate, López-López, Marín-Martínez, & Sánchez-
Meca, 2012) to model unknown dependence.

Traditional meta-analyses can be considered two-level models
with participants at Level 1 and the studies at Level 2. The
intra-class correlation (ICC) indicates the degree of between-study
variation (i.e., dependence) with regard to the total variance. When
dependence does not exist, the ICC is 0. Three-level meta-analyses
add another level that allows the effect sizes to be correlated within
a cluster. Rather than one ICC, Level 2 and Level 3 ICCs indicate
the variations at their respective levels. Suppose that multiple
effect sizes are reported for each study; thus, there are within-
(Level 2) and between-study (Level 3) variations. A three-level
model is equivalent to a two-level model when the ICC at Level 3
is 0. The literature on three-level meta-analyses primarily focuses
on parameter estimates and hypothesis testing (e.g., Konstanto-
poulos, 2011; Marsh, Bornmann, Mutz, Daniel, & O’Mara, 2009;
Van den Noortgate et al., 2012). Indices such as the Q statistics, I2,
and R2, which are crucial to a meta-analysis, are missing in the
literature. This article fills this gap by extending these indices to
three-level meta-analyses.

This article had several objectives. The first goal was to review
the problems and common methods to handle dependent effect
sizes in traditional meta-analyses. The second objective was to
introduce how the three-level meta-analysis addresses dependent
effect sizes using structural equation modeling (SEM) perspective.
This article also highlights the advantages of SEM over multilevel
modeling with regard to conducting a three-level meta-analysis.
For example, SEM places flexible constraints on parameters, con-
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structs better confidence intervals (CIs) via the likelihood-based
approach and handles missing covariates using the full information
maximum likelihood (FIML).

In a series of articles (M. W.-L. Cheung, 2008, 2010, 2013, in
press), I proposed a SEM framework to formulate univariate and
multivariate meta-analyses using the maximum likelihood (ML)
and restricted (or residual) ML (REML) estimation methods. This
article extends this line of research to unknown dependence among
effect sizes. Mathematical models of two- and three-level meta-
analyses can be succinctly represented as graphical models using
SEM. The three-level meta-analysis techniques discussed in this
article were implemented using the metaSEM package written by
the author (M. W.-L. Cheung, 2012). These advanced techniques
are readily accessible to applied users.

The rest of the article is organized as follows. In the next
section, the traditional meta-analytic models, problems, and com-
mon methods to handle dependent effect sizes are reviewed. Next,
two-level and three-level formulation of meta-analyses and their
SEM implementations are introduced. The issues related to ex-
tending two-level to three-level meta-analyses and the advantages
of the SEM approach are discussed. Two real data sets are used to
illustrate these procedures. The last section discusses future direc-
tions with regard to three-level meta-analyses.

Traditional Meta-Analytic Models

Let yi be a generic effect size in the ith study. yi can be any effect
size, such as an odds ratio, raw mean difference, standardized
mean difference, correlation coefficient, or its Fisher’s z trans-
formed score. yi is assumed to be approximately normally distrib-
uted with a known variance of vi (see Borenstein et al., 2009, for
the formulas to calculate vi for various effect sizes). The random-
effects model is

yi � �0 � ui � ei, (1)

where Var�ei� � vi is the known sampling variance in the ith study,
�0 is the average population effect, and Var�ui� � �2 is the
study-specific heterogeneity that must be estimated (Borenstein,
Hedges, Higgins, & Rothstein, 2010).

Although fixed-effects models and random-effects models are
conceptually different, mathematically, the former is a specific
type of the latter by fixing �2 � 0. Fixed-effects models are used
for conditional inferences based on selected studies. They are
intended to draw conclusions only for the studies included in the
meta-analysis. In other words, the findings cannot be generalized
beyond the studies included in the analysis. On the other hand,
random-effects models allow for unconditional inferences to be
generalized beyond the studies included under the assumption that
the studies were randomly selected (see Borenstein et al., 2010;
Hedges & Vevea, 1998). The current article primarily focuses on
random-effects models because fixed-effects models can be easily
fit by fixing �2 � 0.

When the estimated �2 is large, the population effect sizes are
likely to be heterogeneous. Reviewers might want to explain
this heterogeneity using study characteristics as predictors.
Suppose covariate xi exists in the ith study; the mixed-effects
model is

yi � �0 � �1xi � ui � ei, (2)

where �0 and �1 are the intercept and the regression coefficient,
respectively, and Var�ui� � �2 is the residual heterogeneity after
controlling for the covariate.

Handling Dependent Effect Sizes in
Traditional Meta-Analysis

In his chapter on statistical considerations in meta-analyses,
Hedges (2009) listed dependence among the effect sizes as one of
the critical considerations in conducting a meta-analysis. Matt and
Cook (2009) also considered a lack of statistical independence on
the effect sizes as one of the threats to the validity of meta-
analyses. I review the problems and common methods to handle
dependent effect sizes in the following section.

Causes of Dependence Among Effect Sizes

Dependence among effect sizes can be introduced by either the
researchers who conducted the primary studies or the reviewers
who are conducting the meta-analysis. The researchers who con-
ducted the primary studies might have collected data from multiple
sites. They might have compared different treatment groups to the
same control group or have used multiple measures for the same
construct. Single case studies might have reported multiple effect
sizes with regard to the same participants (Owens & Ferron, 2012).
Studies might also have reported multiple effect sizes for similar
constructs, over multiple time points or conditions; meanwhile, the
correlations among the effect sizes remain unknown (Van den
Bussche, Van den Noortgate, & Reynvoet, 2009). Effect sizes are
not independent when summary statistics are extracted for a meta-
analysis.

Let us consider Nguyen and Benet-Martínez’s (2013) meta-
analysis as an example. These authors extracted 935 correlation
coefficients between biculturalism (e.g., behavior, values and iden-
tity) and adjustment (e.g., life satisfaction and grades) from 141
studies. Because each study reported multiple effect sizes, it is not
reasonable to assume that the effect sizes are independent.

On the other hand, the reviewers who conducted the meta-
analysis might also have introduced dependence. For example,
reviewers who conduct cross-cultural meta-analyses might hypoth-
esize that culture plays an important role on psychological pro-
cesses. The effect sizes reported by participants from the same
cultural group are likely to be more similar than those reported by
other cultural groups. Although different researchers indepen-
dently conducted the primary studies, these studies will be natu-
rally grouped by culture in the meta-analysis (e.g., Fischer & Boer,
2011; Hanke & Fischer, 2012). In another example, the effect sizes
reported by the same research team or authors might be more
similar compared with those reported by other research teams or
authors (Cooper, 2010; Rosenthal & DiMatteo, 2001; Shin, 2009).
The reviewers who conduct the meta-analysis might group studies
by the research teams.

Importantly, the nested structure depends on the research
questions. A reviewer who conducts a cross-cultural meta-
analysis might consider studies nested within cultures by ignor-
ing the effect of research teams, whereas a reviewer who
conducts a meta-analysis on the effects of research teams might
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ignore cultural effects. Before choosing a statistical model for
the meta-analyses, reviewers should consider how different
sources of dependence affect the validity of the model and the
research questions.

Common Methods for Handling
Dependent Effect Sizes

Several strategies have been suggested for handling dependent
effect sizes (see Chapter 24 in Borenstein et al., 2009; Cooper,
2010). These strategies have pros and cons, which I briefly review
here.

Ignoring dependence. One incorrect strategy is simply to
ignore the dependence and analyze the data as if they were inde-
pendent. Much work has been conducted on the effects of ignoring
this dependence in multilevel modeling (e.g., Hox, 2010; Snijders
& Bosker, 2012). First, studies with multiple effect sizes have a
larger influence than those with one effect size. Fixed-effects
parameter estimates, such as the intercept and regression coeffi-
cients, might be biased against studies with fewer reported effect
sizes. Second, dependent effect sizes appear more “similar” than
independent effect sizes. The associated standard errors (SEs) of
parameter estimates are likely under-estimated due to an under
estimation of uncertainty. Thus, the associated significance tests
are inflated. Ignoring dependence is generally not acceptable for
meta-analyses (Becker, Hedges, & Pigott, 2004).

Averaging dependent effect sizes within studies. One rea-
sonable approach to removing dependence is averaging the depen-
dent effect sizes into a single effect size and then using this
average in subsequent analyses. This approach is also known as
“aggregation.” Several procedures have been suggested for aver-
aging dependent effect sizes (e.g., S. F. Cheung & Chan, 2004;
Marín-Martínez & Sánchez-Meca, 1999; Rosenthal & Rubin,
1986). One simple method is to weigh the dependent effect sizes
equally within a study. Suppose two dependent effect sizes y1j and
y2j exist with their sampling variances (v1j and v2j) and covariance
(v12j) in the jth study. If v12j is unknown, an ad hoc estimate based
on expert knowledge or other sources could be used. We could
compute an average effect size yj � 0.5�y1j � y2j� and its sampling
variance vj � 0.25�v1j � v2j � 2v12j� (e.g., Borenstein et al., 2009;
Gleser & Olkin, 1994). This procedure has several advantages. The
averaged effect sizes and their sampling variances can be used
directly in a traditional meta-analysis. Second, the averaged effect
sizes can also improve the precision of the estimates when depen-
dent effect sizes represent the same construct.

However, this approach has certain associated limitations. Using
Nguyen and Benet-Martínez’s (2013) meta-analysis as an exam-
ple, their 935 effect sizes were reduced to 141 effect sizes in the
analysis. The statistical power of the tests might have been lowered
because some information in the effect sizes was lost (Hedges &
Pigott, 2001, 2004). Although some reviewers (e.g., Hunter &
Schmidt, 2004) do not rely on the use of significance tests in
meta-analyses, less data availability also means that the parameter
estimates will be less precise with larger SEs. Next, this procedure
might limit the research questions that can be addressed in the
meta-analysis. For example, reviewers might want to investigate
the effectiveness of a teaching program on students, and studies
often report teaching effectiveness based on student reports y1j and
teacher self-evaluations y2j. If the reviewers average the effect

sizes reported by students and teachers, then the differences be-
tween student reports and teacher evaluations cannot be compared.
Lastly, a fixed-effects model is used when averaging effect sizes
within studies. These effect sizes are assumed to be homogeneous
within studies, but this assumption has been questioned (e.g.,
Marín-Martínez & Sánchez-Meca, 1999).

Selecting one effect size per study. Another approach is to
select only one effect size per study. This method is also known as
“elimination.” Because only one effect size per study is chosen, the
effect sizes are independent. This approach is useful when the
reviewers believe that selecting one effect size per study is better
than using all the available effect sizes. For example, suppose
certain findings suggest that student reports of teaching effective-
ness are inaccurate due to their biased attitudes toward teachers. In
this case, a meta-analysis of the effect sizes of only teacher
evaluations might be best.

This approach has several limitations. Similar to the problems
listed in the averaging approach, this method affects the statistical
power of the meta-analysis and the precision of the parameter
estimates because some effect sizes have been excluded. Using the
previous example of the teaching program, the reviewers might
need to choose between effect sizes of teaching effectiveness
based on student reports y1j or teacher evaluations y2j. This forced
choice limits the reviewers’ ability to test study characteristics
using a mixed-effects model because not all effect sizes were
included in the meta-analysis.

From the above descriptions, it is clear that selecting or exclud-
ing certain effect sizes depends on the research questions. If the
reviewers believe that not all of the effect sizes are equally good or
relevant to the research questions, then excluding certain effect
sizes is appropriate. If the goal is to remove the dependence among
the effect sizes, however, this method is not the best approach to
handling dependence among effect sizes.

Shifting the unit of analysis. Cooper (2010) proposed an ap-
proach called “shifting the unit of analysis.” The basic idea of this
method is to select a unit of analysis and then average the effect sizes
within those units. For example, when an overall estimate of the
pooled effect size is required, the unit of analysis is the studies. The
dependent effect sizes are averaged within their respective studies
before the analysis. Because each study contributes only one effect
size, the average effect is calculated using independent samples.
When examining study characteristics such as the effect due to gen-
der, the dependent effect sizes are averaged within each gender. This
approach can minimize the effect of dependence. This approach might
be useful when reviewers’ research questions must be addressed using
different sets of effect sizes. However, this method inherits some of
the limitations from the aggregation approach. For example, it does
not resolve issues such as the loss of information, and it assumes
homogeneity within the studies that are averaged.

Ahn, Ames, and Myers (2012) reviewed 56 meta-analyses pub-
lished across eight education journals between 2000 and 2010.
Among other findings, they found that 28 of these meta-analyses
encountered issues related to dependent effect sizes due to multiple
measures of the same construct, multiple outcomes or interventions,
multiple time points, or multiple comparison groups. The methods
that were used to address the dependence were (1) averaging the
dependent effect sizes within studies (18 studies), (2) shifting the unit
of analysis (eight studies), and (3) selecting one effect size per study
or combining with other methods (five studies). For the studies that
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did not mention dependence issues, it is unclear whether dependence
was not found or ignored. It is clear that the issue of dependence
among effect sizes is the rule rather than the exception in meta-
analyses.

Meta-Analytic Models as Multilevel Models

In this section, I briefly review how traditional meta-analyses
can be written as a two-level multilevel model when the Level 1
variances are treated as fixed and known values (e.g., Goldstein,
2011; Raudenbush & Bryk, 2002; Snijders & Bosker, 2012). The
two-level model is then extended to three-level meta-analyses,
which are used to model the dependent effect sizes in this article.

Traditional Meta-Analyses as Two-Level Models

The model for a two-level random-effects meta-analysis is

Level 1 model: yi � �i � ei

and

Level 2 model : �i � �0 � ui, (3)

where �i is the “true” effect size in the ith study and the other
notations are defined in the same way as those in Equation (1).
Level 1 refers to the participants, whereas Level 2 refers to the
studies. A participant subscript does not exist because the raw data
are usually unavailable for meta-analyses. By combining these two
levels, the model becomes the random-effects meta-analytic model
listed in Equation (1).

Similarly, the mixed-effects meta-analytic model in Equation
(2) can be written as a two-level multilevel model:

Level 1 model: yi � �i � ei

and

Level 2 model: �i � �0 � �1xi � ui. (4)

Participant-level covariates are rarely available for meta-analyses
except in individual patient data meta-analyses in medicine (e.g.,
Riley, Lambert, & Abo-Zaid, 2010). This method is also known as
“integrative data analysis” in psychology (see Curran, 2009, in the
special issue of Psychological Methods). Thus, only study-level
covariates are used in mixed-effects meta-analyses. By formulat-
ing traditional meta-analytic models as multilevel models, meta-
analyses are able to be conducted using multilevel modeling pack-
ages (Hox, 2010; Raudenbush & Bryk, 2002).

Three-Level Meta-Analytic Models

The two-level meta-analytic model can be extended to a three-
level model by adding a cluster effect. Let yij be the ith effect size
in the jth cluster. The definition of clusters depends on the data
structure and research questions. For example, yij might represent
one of the multiple effect sizes in the jth study (e.g., Nguyen &
Benet-Martínez, 2013), or it might represent one of the studies in
the jth cultural group of a cross-cultural meta-analysis (e.g., Fi-
scher & Boer, 2011). In single-case studies, this value represents
one of the measures in jth participant (Owens & Ferron, 2012).
The model for a three-level random-effect meta-analysis is

Level 1 model: yij � �ij � eij,

Level 2 model: �ij � �j � u(2)ij,

and

Level 3 model: �j � �0 � u(3)j, (5)

where �ij is the “true” effect size and Var�eij� � vij is the known
sampling variance in the ith effect size in the jth cluster, �j is the
average effect in the jth cluster, �0 is the average population effect,
and Var�u�2�ij� � ��2�

2 and Var�u�3�j� � ��3�
2 are the study-specific

Level 2 and Level 3 heterogeneity, respectively.
��2�

2 might be of substantive interest depending on how Level 2
is defined. For example, if Level 2 represents the effect sizes using
multiple subscales, then ��2�

2 indicates the heterogeneity of the
effect sizes due to the subscales. A small ��2�

2 indicates that the
effect sizes are similar at Level 2. Reviewers might safely con-
clude that the choice of subscales does not affect the magnitude of
the effect sizes. A large ��2�

2 , however, suggests that the magnitude
of the effect sizes varies across the different subscales. Investigat-
ing how the subscales predict the effect sizes is crucial. Types of
subscales can be used as Level 2 covariates to model the hetero-
geneity. ��3�

2 indicates the dissimilarity among the true effect sizes
across the studies at Level 3 after controlling for the multiple
subscales at Level 2. A large ��3�

2 suggests that the population effect
sizes vary across Level 3. Study characteristics can be included to
explain the heterogeneity at Level 3.

Similar to the two-level model, the equations are often com-
bined into a single equation:

yij � �0 � u(2)ij � u(3)j � eij. (6)

The standard assumptions of multilevel modeling are made.
The random effects at different levels and the sampling error
are assumed to be independent, that is, Cov�u�2�ij,u�3�j� �
Cov�u�2�ij,eij� � Cov�u�3�j,eij� � 0. Based on the above assump-
tions, we have E�yij� � �0, where E�.� is the expected value.
Thus, (1) Var�yij� � ��3�

2 � ��2�
2 � vij: The unconditional sam-

pling variance of the effect size is the sum of the Level 2 and
Level 3 heterogeneity as well as the known sampling variance;
(2) Cov�yij, ykj� � ��3�

2 : Effect sizes in the same cluster share the
same covariance; and (3) Cov�yij, ymn� � 0: Effect sizes in
different clusters are independent.

The random-effects model can be extended to a mixed-effects
model by including study characteristics as covariates. Let x be a
covariate that can be either xij for a Level 2 covariate or xj for a Level
3 covariate. xj indicates that the value is the same for all effect sizes
in the jth cluster, whereas xij indicates that the value might vary across
the effect sizes in the jth cluster. So as not to lose generality, I used xij

in the model. The mixed-effect model with one covariate is

yij � �0 � �1xij � u(2)ij � u(3)j � eij. (7)

The conditional mean, variance, and covariances are E�yij � xij� �

�0 � �1xij, Var�yij � xij� � ��3�
2 � ��2�

2 � vij, Cov�yij, ykj � xij� � ��3�
2 ,

and Cov�yij, ymn � xij� � 0. The interpretations of these terms are
similar to those in Equation (6), except that ��2�

2 and ��3�
2 are now the

level-two and level-three residual heterogeneity after controlling for
the covariate. We may fit the three-level meta-analysis using the
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above model-implied means and covariance matrix. I discuss how to
fit this model under the SEM approach later.

Extensions to and Issues Associated With
Three-Level Meta-Analyses

Because the methodological development of the three-level
meta-analysis is not as comprehensive as that of traditional two-
level meta-analyses, this section addresses extensions to and issues
associated with three-level meta-analyses.

Testing Effect Size Homogeneity

Similar to traditional meta-analyses, reviewers might want to test
whether the effect sizes are homogeneous. Suppose that m clusters
exist; the null hypothesis of the homogeneity of effect sizes 	ij is

H0 : 	11 � 	21 � ... � 	1m � ... � 	km. (8)

Cluster effects do not exist when the effect sizes are the same under
the null hypothesis. Thus, the conventional Q statistic proposed by
Cochran (1954) can be applied directly. This statistic is defined as

Q � �
i�1

n

wi(yi 
 �̂fixed)
2, (9)

where wi � 1⁄vi, �̂fixed � �i�1
n wiyi ⁄ �i�1

n wi is the fixed-effects
estimate and n is the number of effect sizes. Under the null hypothesis,
the Q statistic has an approximate chi-square distribution with (n � 1)
degrees of freedom (dfs).

Quantifying Effect Size Heterogeneity

Although the above Q statistic can be used to test the hypothesis of
effect size homogeneity, it does not determine the magnitude of
heterogeneity. A common index of the degree of heterogeneity for
traditional meta-analyses is I2 (Higgins & Thompson, 2002). The
general formula is

I2 �
�̂2

�̂2 � ṽ
, (10)

where �̂2 is the estimated heterogeneity, and ṽ is the “typical” within-
study variance in Equation (1). I2 can be interpreted as the proportion
of the total variation of the effect size due to between-study hetero-
geneity.

Based on the above definition, we can define the Level 2 I�2�
2 and

Level 3 I�3�
2 using the model in Equation (6) as

I(2)
2 �

�̂(2)
2

�̂(2)
2 � �̂(3)

2 � ṽ

and

I(3)
2 �

�̂(3)
2

�̂(2)
2 � �̂(3)

2 � ṽ
. (11)

I�2�
2 and I�3�

2 can be interpreted as the proportions of the total variation
of the effect size due to Level 2 and Level 3 between-study hetero-
geneity. For instance, suppose that Level 2 refers to types of subscales
and Level 3 refers to studies; I�2�

2 and I�3�
2 can be interpreted as the

proportions of the total variation attributed to the types subscales

within and between studies, respectively. In cross-cultural meta-
analyses that use cultural groups as a cluster effect, I�2�

2 and I�3�
2 are

interpreted as the proportions of within cultural variation and between
cultural variation to the total variation, respectively.

Importantly, the generic I2 does not estimate any population
quantity because it contains ṽ, which is treated as a constant. If a
different set of studies is selected, then ṽ likely differs. Both ṽ and
I2 are dependent on sample size. As the sample size increases, ṽ
approaches 0. Therefore, I2 is used as a descriptive rather than an
inferential statistic. Although we are not testing any population pa-
rameter, the CIs of I2 remain useful to quantify the precision of I2.
Higgins and Thompson (2002) discussed several methods of con-

structing CIs for I2. Because I�2�
2 and I�3�

2 are functions of �̂�2�
2 and �̂�3�

2 ,
by treating ṽ as a constant, the metaSEM package implements
likelihood-based CIs (LBCIs) on I�2�

2 and I�3�
2 (see the section on

Constructing Likelihood-Based Confidence Intervals below).
Conceptually, we can also define two ICCs that involve only the

Level 2 and Level 3 quantities (e.g., Snijders & Bosker, 2012).
These ICCs are simply one-to-one transformations of I�2�

2 and I�3�
2 :

ICC(2) �
�̂(2)

2

�̂(2)
2 � �̂(3)

2 �
I(2)
2

I(2)
2 � I(3)

2

and

ICC(3) �
�̂(3)

2

�̂(2)
2 � �̂(3)

2 �
I(3)
2

I(2)
2 � I(3)

2 . (12)

The above indices can be interpreted as the proportions of the total
between-study heterogeneity of the effect size due to the Level 2 and
Level 3 units. One advantage of ICCs over I2 is that their values do
not depend on sample size. Therefore, they estimate the population
quantities ��2�

2 ⁄ ���2�
2 � ��3�

2 � and ��3�
2 ⁄ ���2�

2 � ��3�
2 �. Moreover, I�2�

2 and I�3�
2

approach ICC�2� and ICC�3�, respectively, as ṽ decreases.
Because vi varies across studies, no single correct “typical” within-

study variance exists. Several definitions of “typical” within-study
variance have been proposed. Takkouche, Cadarso-Suárez, and
Spiegelman (1999) suggested using the harmonic mean of vi,

ṽHM �
n

�
i�1

n

1 ⁄ vi

, (13)

whereas Higgins and Thompson (2002) proposed defining “typical”
within-study variance using the Q statistic via

ṽQ �

(n 
 1)�
i�1

n

1 ⁄ vi

��
i�1

n

1 ⁄ vi�2


 �
i�1

n

1 ⁄ vi
2
. (14)

In addition to these estimators, Xiong, Miller, and Morris (2010)
discussed the use of the arithmetic mean of vi:

ṽAM � �
i�1

n

vi ⁄ n. (15)

Of the above estimators, Higgins and Thompson’s (2002) statistic is
the most popular definition among meta-analyses. One reason to
prefer this estimator is that I2 can be simplified to IQ

2 � 1 
 �k 

1�⁄Q in two-level meta-analyses. However, this relationship does not
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apply to I�2�
2 or I�3�

2 . The default estimator in the metaSEM package is
based on Equation (14), although users can switch to other estimators.

Explained Variance in Mixed-Effects Models

When a mixed-effects meta-analysis is conducted, it is of interest to
quantify the percentage of variation explained by the predictors.
Raudenbush (2009) defined R2 in two-level meta-analyses using the
model in Equation (2) as

R2 � 1 

�̂1

2

�̂0
2 , (16)

where �̂1
2 and �̂0

2 are the estimated heterogeneity with and without
predictors, respectively. The above logic can be extended to three-
level meta-analyses in Equation (7). We can define the Level 2 R�2�

2

and the Level 3 R�3�
2 as

R(2)
2 � 1 


�̂(2)1
2

�̂(2)0
2

and

R(3)
2 � 1 


�̂(3)1
2

�̂(3)0
2 . (17)

R�2�
2 and R�3�

2 can be interpreted as the percentages of estimated
heterogeneity at Level 2 and Level 3 that are explained by the
predictors. However, after adding the predictors into Equations (16) and

(17), �̂1
2 can sometimes be smaller than �̂0

2. Because R2, R�2�
2 , and R�3�

2 are
non-negative by definition, negative values are truncated to zero.

A Structural Equation Modeling Approach to
Multilevel Meta-Analytic Models

Many multivariate statistics such as factor analyses, path analyses,
growth models, multilevel models, item response theory and mixture
models have been integrated into the general SEM framework
(Muthén & Muthén, 2012; Skrondal & Rabe-Hesketh, 2004). A
unified model helps methodological advances by integrating various
techniques into a single framework. For example, the use of FIML to
handling missing data is well developed in SEM (e.g., Enders, 2010).
These techniques are directly available to researchers who want to
handle missing data in path analyses, item response theory and even
multilevel models using an SEM approach. Similarly, FIML is also
available for meta-analyses by conceptualizing these models as struc-
tural equation models (M. W.-L. Cheung, 2008, in press). In this
section, I review how two-level meta-analyses can be formulated as
structural equation models. This logic is then extended to three-level
meta-analytic models. The advantages of the SEM approach are
addressed in the next section.

The SEM approach presented here relies on the use of definition
variables (Mehta & Neale, 2005) and phantom variables (Rindskopf,
1984). Definition variables are often used to fix participant-specific
values to any model parameter. For example, consider a latent growth
model. A confirmatory factor analysis is often used to represent a
latent growth model using the factor loadings as the observed time
points (e.g., 0, 1, 2, and 3). When observation times vary across
participants (e.g., 0, 1, 2, and 3 for one participant, and 0, 1, 5, and 7
for another participant), definition variables can be used to fix

participant-specific factor loadings. Different participants may have
different sets of factor loadings.

Phantom variables are another building block of this SEM ap-
proach. Phantom variables can be used to impose equality or inequal-
ity constraints on the parameters. They can also be used to “store”
new parameters. Let us consider a simple regression example in
which Y is regressed on X and b is the regression coefficient. If we
want to ensure that b is non-negative, then we might introduce a
phantom variable P, a latent variable with a variance of 0, in the
model so that X ¡ P ¡ Y (with d as the regression coefficient for
both paths). The effect from X to Y becomes d2, which is always
non-negative. Readers may refer to M. W.-L. Cheung (2008, 2010)
for more details concerning how to apply definition and phantom
variables in meta-analysis.

Two-Level Meta-Analyses

To formulate a two-level meta-analytic model as a structural equa-
tion model, we must specify the model-implied means 	i��� and the
model-implied covariance matrix �i��� for the ith study. These model-
implied moments are the hypothesized values when the proposed
model is correct. The model-implied means and covariance matrix for
the random-effects meta-analysis listed in Equation (1) are

	i(�) � �0

and

�i(�) � �2 � vi. (18)

Figure 1 shows a structural equation of the random-effects meta-
analysis. Rectangles, circles, and triangles are used to represent ob-
served variables, latent variables, and a constant vector of ones,
respectively. Definition variables are used to impose vi on yi, so that
vi is able to vary across studies. Suppose that 10 studies are included
in a meta-analysis; one variable exists with 10 participants. This
model presentation is similar to the “long format” of handling latent
growth model data using a multilevel modeling approach.1

Alternatively, studies can be treated as variables (see Mehta &
Neale, 2005). Figure 2, which is equivalent to the model shown in
Figure 1, displays the model using two studies. The effect sizes of
these studies are represented by variables y1 and y2. This model
representation has three key features. First, all expected means
labeled �0 are the same. Next, the studies are independent. There-
fore, the model-implied covariance between y1 and y2 is zero.
Third, one row is used to represent the entire data set because the

1 For example, suppose two participants have variable X measured at T1 and
T2. The so-called “wide format” treats X measured at T1 and T2 as two

variables (XT1 and XT2). The data frame is �
Subject XT1 XT2

1 X11 X12

2 X21 X22
�. When

missing values exist in X, they are labeled (e.g., “NA”) in the data frame. The
“long format” treats X as a single variable by stacking the measurements

together. The data frame is �
Subject X Time

1 X11 1

1 X12 2

2 X21 1

2 X22 2
� . When missing values

exist in X, the rows with missing values are excluded from the data frame.
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number of studies is represented by the variables. If 10 studies are
included in a meta-analysis, then 10 variables will represent the
data. This model representation is similar to the “wide format” of
latent growth model data using an SEM approach (see the Footnote
1). By using variables as studies, we are able to convert a two-level
model into a single-level model. I apply this technique to model
three-level meta-analyses below.

Three-Level Meta-Analyses

To model three-level effect sizes in SEM, we must treat each
cluster as a participant and the effect sizes within clusters as
variables (e.g., Mehta & Neale, 2005; Preacher, 2011). The basic
idea is to treat the dependent effect sizes within a cluster as
multiple variables. This technique ensures that the clusters are
independent: SEM can be used to model the data.

The following steps outline how to conduct the analysis. First,
we must create as many variables as the maximum number of
studies per cluster. This step ensures that we have sufficient
variables to represent the dependent effect sizes. For example, if
the maximum number of effect sizes per cluster is 5, then we must
create 5 variables. For clusters with fewer than 5 effect sizes, the
incomplete effect sizes are treated as missing values and handled
using FIML (Mehta & Neale, 2005).

Assume that the maximum number of effect sizes per cluster is k; the
model-implied means for the jth cluster is a k  1 vector of �0, that is,

�j (�) � �
1

É

1
��0. (19)

The model-implied covariance matrix for the jth cluster is a k  k matrix
of the sum of three matrices: a k  k matrix ��3�

2 with all the
elements of ��3�

2 that represent the Level 3 heterogeneity, a k  k

diagonal matrix ��2�
2 with the elements of ��2�

2 that represent the
Level 2 heterogeneity, and a kk diagonal matrix V with the
elements of vij (Konstantopoulos, 2011), that is,

�j(�) � �(3)
2 � �(2)

2 � V

� �
1 1 · · · 1

1 1 Ì É

É Ì Ì 1

1 · · · 1 1
��(3)

2 ��
1 0 · · · 0

0 1 Ì É

É Ì Ì 0

0 · · · 0 1
��(2)

2

��
v1j 0 · · · 0

0 v2j Ì É

É Ì Ì 0

0 · · · 0 v11j

� . (20)

For instance, if 10 clusters have a maximum of 5 effect sizes per
cluster, then the structural equation model includes 5 variables
with 10 participants. Figure 3 shows a graphical model of a
three-level meta-analytic model with 2 effect sizes per cluster. As
this figure illustrates, the covariance matrix is a structured matrix
with the elements listed in Equation (20).

When there is a high degree of heterogeneity at Levels 2 or 3,
reviewers might want to explain this heterogeneity by conducting
a mixed-effects meta-analysis. Suppose that one covariate xij ex-
ists; the conditional model-implied mean vector for the jth cluster
is

�j (� � xij) � �
1

É

1
��0 � �

x1j

É

xkj
��1, (21)

whereas the conditional model-implied covariance matrix �j�� � xij� is
the same as that of the random-effects model in Equation (20).

There are two approaches to implement covariates in a meta-
analysis. The first approach, which is commonly used in SEM, is
to treat the covariates as random variables (e.g., M. W.-L. Cheung,
2008). By doing so, we must estimate their means and covariance
matrix. The second approach, which is usually used in regression
and meta-analyses, is to treat the covariates as a design matrix. A
design matrix, 	x1j · · · xkj 
T in Equation (21), represents the
known values of the covariate. The values of the design matrix are
treated as fixed. No distribution assumptions are made on the

Figure 1. A structural equation model with long format for random-
effects meta-analysis.

Figure 2. A structural equation model with wide format for random-
effects meta-analysis with two studies.
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values of the design matrix. This article uses the latter approach
because it is more consistent with traditional meta-analyses.

Figure 4 shows a model with covariate xij for the jth cluster. The
phantom variable P1 (with zero variance) is created to store the
values of the covariate. The specific values of xij are imposed via
definition variables, whereas �1 is the regression coefficient. Let

us consider �y1j

y2j
� in the figure as an example. By using the tracing

rules, the model-implied mean is �1

1 ��0 � �x1j

x2j
��1, which follows

Equation (21).

Restricted (or Residual) Maximum Likelihood
Estimation

ML estimation method is usually used as an estimation method
in the aforementioned SEM procedures. The fixed effects and the
variance components of the random effects are estimated simulta-
neously. The variance components of the random effects are
slightly under-estimated because the uncertainty in the fixed ef-
fects estimation has not been taken into account (e.g., Harville,
1977; Patterson & Thompson, 1971). An REML estimation
method can minimize this bias. REML estimation removes the
fixed-effects parameters before estimating the variance compo-
nents. A contrast matrix is chosen such that the fixed-effects
parameters are not involved in the model. Thus, the estimated
variance components are not biased by treating the fixed-effects
estimates as known.

The REML model for two-level meta-analyses (M. W.-L.
Cheung, 2013) can be extended to three-level meta-analyses by
constructing a contrast to remove the fixed-effects parameters (�
in Equation [21]). Let us stack all yij into a single column vector
y. The three-level meta-analytic model is

y � X� � Z(u(2) � u(3)) � e, (22)

where X, u(2), u(3) and e are stacked over all the units, and Z �

Diag�Z1,Z2, . . . , Zk� is a diagonal selection matrix that selects the
random effects. The structure of Cov�Z�u�2� � u�3�� � e, Z�u�2� �

u�3�� � e� is similar to that represented by Equation (20). Instead of
analyzing y, we can analyze its residuals ỹ:

ỹ � Ay � AX� � A(Z(u(2) � u(3)) � e), (23)

where A � I 
 X�XTX�
1XT with p arbitrary rows is removed, I is
an identity matrix and p is the number of columns of X (Harville,
1977; Patterson & Thompson, 1971). Because the rank of A is not
full, p redundant rows are linearly dependent on the other rows. p
rows can be arbitrarily selected without affecting the results (Har-
ville, 1977). The common practice is to delete the last p rows in A.
Importantly, the mean of ỹ is always zero because these data are
residuals. Thus, the fixed effects (� in Equation [22]) are not
estimable. After estimating the variance component, we can com-
pute the fixed effects by

�̂ � (XTV
1X)
1XTV
1y. (24)

In the context of SEM, we can fit ���� and ���� by treating ��3�
2

and ��2�
2 as fixed values obtained from the REML estimation (see

M. W.-L. Cheung, 2013). The estimates of � under these con-
straints are the same as those in Equation (24). Three-level meta-
analyses, with either ML or REML estimation methods, are im-
plemented in the metaSEM package.

Benefits of Using Structural Equation Modeling to
Conduct Three-Level Meta-Analyses

Three-level meta-analyses can be conducted in multilevel mod-
eling packages such as HLM (Raudenbush & Bryk, 2002) and SAS
(SAS Institute, 2003). Readers might wonder why an SEM ap-
proach is preferable. As discussed in M. W.-L. Cheung (2008),
many state-of-the-art techniques are available to reviewers who
conduct a meta-analysis using an SEM perspective. This section
highlights the benefits of conceptualizing three-level meta-
analyses as an SEM.

Comparisons Between Two- and Three-Level Models
With Constraints

Many research hypotheses can be formulated as comparisons of
nested models. By comparing these nested models, reviewers can
test whether the imposed constraints are appropriate. SEM pro-
vides a flexible framework for comparing models with and without
constraints.

Testing H0 : ��3�
2 � 0. By comparing the two-level meta-

analysis in Figure 2 with the three-level meta-analysis in Figure 3,

Figure 3. A structural equation model on three-level random-effects
meta-analysis with two studies in the jth cluster.

Figure 4. A structural equation model on three-level mixed-effects meta-
analysis with two studies and one predictor in the jth cluster.
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it is clear that the two-level meta-analysis is a special case of the
three-level meta-analysis after fixing ��3�

2 � 0. Because these
models are nested, we can test the null hypothesis H0 : ��3�

2 � 0 by
using a likelihood ratio or chi-square difference test. If this test
statistic is non-significant, then the three-level model is not statis-
tically better than the two-level model.

However, reviewers should be cautious of two items. First, the
test statistic is not distributed with a chi-square distribution with 1
df even when the null hypothesis is true. Because H0 : ��3�

2 � 0 is
tested on the boundary, ��3�

2 cannot be negative. The test statistic is
distributed as a 50:50 mixture of a degenerate random variable
with all of its probability mass concentrated at zero and a chi-
square random variable with 1 df (Self & Liang, 1987; Stoel,
Garre, Dolan, & van den Wittenboer, 2006). One simple strategy
to correct for this bias is to use 2� instead of � as the alpha level.
That is, we reject the null hypothesis at � � .05 when the observed
p value is larger than .10 (Pinheiro & Bates, 2000).

Second, it is inadvisable to decide between two- and three-level
models by testing H0 : ��3�

2 � 0. Similar to the choice between a
fixed- and a random-effects model in a traditional meta-analysis,
this decision should be based on whether a conditional or uncon-
ditional inference is required (Hedges & Vevea, 1998). If the
reviewers want to generalize their findings to Levels 2 and 3, then
a three-level meta-analysis should be used regardless of whether or
not H0 : ��3�

2 � 0 is rejected.
Testing H0 : ��3�

2 � ��2�
2 . Frequently, reviewers might want to

compare the amounts of heterogeneity at Levels 2 and 3. For
example, in the case of cross-cultural research, most researchers
are primarily interested in between-cultural variation. However,
some researchers argue that intra-cultural variation is also mean-
ingful (e.g., Au, 1999; Au & Cheung, 2004). If a cross-cultural
meta-analysis is conducted by treating studies as Level 2 and
cultural groups as Level 3, then reviewers might want to test
H0 : ��3�

2 � ��2�
2 . Under this null hypothesis, the difference of the test

statistic between the models with and without the constraint has a
chi-square distribution with 1 df. Three-level meta-analyses pro-
vide a statistical approach to testing the presence of intra-cultural
variation. Importantly, the above research hypothesis cannot be
tested using common methods to handle dependent effect sizes
such as averaging the dependent effect sizes because these meth-
ods cannot disentangle Level 2 and Level 3 heterogeneity.

Flexible Constraints Using the SEM Approach

Occasionally, reviewers might want to test whether certain
regression coefficients are equal. For example, clinical psycholo-
gists might want to compare the treatment effectiveness of cogni-
tive behavioral therapy (CBT), medication (Med) and a waiting list
(WL). Depending on their theories, the reviewers might only want
to compare CBT with Med. Using a SEM approach, reviewers can
compare two models: H0:yij � �1CBTij � �1Medij � �3WLij �
u�2�ij � u�3�j � eij versus H1:yij � �1CBTij � �2Medij �
�3WLij � u�2�ij � u�3�j � eij, where the covariates are indicator
coded, and an intercept does not exist.2 Under the null hypothesis
H0:�1 � �2, the difference between the test statistics of these two
models follows a chi-square distribution with 1 df. Although the
above covariates are Level 2 variables, the same applies to Level
3 covariates or a mix of Level 2 and Level 3 covariates.

Constructing Likelihood-Based Confidence Intervals

It is always recommended to report CIs to assist the interpreta-
tion of parameter estimates and effect sizes (American Psycholog-
ical Association, 2010; Wilkinson & Task Force on Statistical
Inference, 1999). One common method of constructing CIs is
based on the Wald test (or SE). Thus, these statistics are called the
Wald CIs. The 100(1 � �)% Wald CI for parameter � can be

computed by �̂�z1
�⁄2SE��̂�, where SE��̂� is the estimated SE for
�, and z1
�⁄2 is the 100(1 � �⁄2)th percentile of the standard
normal distribution. Because SE is routinely available in data
analyses, Wald CIs are widely reported.

However, several criticisms have been made with regard to the
Wald CIs. Specifically, Wald CIs are always symmetrical around

�̂; however, the sampling distributions of the estimates can be
asymmetrical. For example, the sampling distributions of the vari-
ance parameters, correlation coefficients that are close to �1, and
the product term of two random variables with regard to indirect
effects are usually asymmetrical. The accuracy of Wald CIs is
questionable in these settings (e.g., MacKinnon, 2008; Searle,
Casella, & McCulloch, 1992). A related issue of symmetrical CIs
is that they can fall outside of meaningful boundaries; for example,
a negative lower limit for variance or CIs beyond �1 for correla-
tion coefficients. The standard practice is to truncate these CIs to
their meaningful boundaries (e.g., zero for variance and �1 for
correlation). However, Steiger and Fouladi (1997) warned that the
width of these CIs might be suspicious as an indicator for the
precision of the measurement because of the truncation.

LBCI is an alternative to Wald CIs (Casella & Berger, 2002).

Suppose that we want to construct a 100(1 � �)% LBCI (�̂Lower,

�̂Upper) on �; we move the parameter estimate (treated as variable)

as far away as possible to the right for �̂Upper (or to the left for

�̂Lower) from its maximum likelihood estimate (MLE), such that it
is just significant at the desired � level (for more details, see
M. W.-L. Cheung, 2009; Neale & Miller, 1997). LBCIs are asym-
metrical and able to capture the distributions of the parameter
estimates. Moreover, they always fall inside meaningful boundar-
ies because the parameter estimates are meaningful. Although
LBCIs are not guaranteed to be optimum, they will seldom be too
bad (Casella & Berger, 2002). Despite this, Casella and Berger
(2002) nevertheless “recommend constructing a confidence set
based on inverting an LRT [likelihood ratio test], if possible” (p.
430). LBCIs have been used to quantify the precision of the
heterogeneity variances in meta-analyses (Hardy & Thompson,
1996; Viechtbauer, 2005). Because the sampling distributions of

�̂�2�
2 , �̂�3�

2 , I�2�
2 , I�3�

2 , ICC(2), and ICC(3) are asymmetrical (i.e., they are
based on variances or variance functions), LBCIs are preferred to
Wald CIs.

Handling Missing Covariates With Full-Information
Maximum Likelihood Estimation

Cooper and Hedges (2009) argued that missing data are the most
pervasive practical problem in the synthesis of research. Publica-

2 The covariates are coded as CBTij � 1, Medij � 0, and WLij � 0 for
the CBT condition; CBTij � 0, Medij � 1, and WLij � 0 for the Med
condition; and CBTij � 0, Medij � 0, and WLij � 1 for the WL condition.
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tion bias refers to when missing values on the effect sizes are
related to whether the studies have been published, which is
beyond the scope of this article (see Rothstein, Sutton, & Boren-
stein, 2005). However, another type of missing data is missing
covariates in mixed-effects meta-analyses. Cooper and Hedges
(2009) commented that “the prevalence of missing data on mod-
erator . . . influences the degree to which the problems investigated
by the synthesis can be formulated” (p. 565).

Three types of missingness mechanisms exist. Data are missing
completely at random (MCAR) when the probability of their
missingness on Y is unrelated to the value of Y itself or the values
of any other variable in the data set. Data on Y are missing at
random (MAR) when the probability of their missingness on Y is
unrelated to the value of Y after controlling for other variables in
the analysis. When the missingness is neither MCAR nor MAR,
the data are missing not at random (MNAR).

Several approaches have been proposed to handle missing data
(see Enders, 2010, for a general review, and Pigott, 2012, for a
review in the context of meta-analyses). These include complete-
case analyses, single value imputations, EM algorithms, multiple
imputation (MI) and ML, which is also widely known as FIML in
the SEM literature. MI and FIML are generally recommended as
the best approaches to handle MCAR or MAR data (Enders, 2010;
Schafer & Graham, 2002).

Compared with MI, FIML has at least three advantages. First,
the results based on MI are asymptotically equivalent to those
based on FIML. That is, they are equal when the number of
imputations in MI approaches infinity. In general, 3–5 imputations
are considered sufficient to obtain excellent results using MI (e.g.,
Schafer & Olsen, 1998). However, Graham, Olchowski, and Gil-
reath (2007) showed that many more imputations are required.
They suggested requiring m imputations based on the fraction of
missing information (�). They recommended that researchers use
m � 20, 20, 40, 100, and �100 imputations for data with � � 0.1,
0.3, 0.5, 0.7, and 0.9. Based on their simulations results, they
concluded that FIML is superior to MI in terms of power for
testing small effect sizes (unless one has a sufficient number of
imputations).

Second, conducting MI for multilevel data is challenging (cf.
van Buuren & Groothuis-Oudshoorn, 2011). More importantly,
how to apply MI on three-level meta-analysis data remains un-
clear. Lastly, FIML is more robust than MI when the data are
non-normal (Yuan, Yang-Wallentin, & Bentler, 2012). Specifi-
cally, the performance of FIML is less biased and more efficient
than that of MI. By formulating three-level meta-analyses as
single-level structural equation models, it is straightforward to
apply FIML to handling missing covariates. Moreover, auxiliary
variables at Level 2 and Level 3 are allowed. Auxiliary variables
are those that predict the missing values or are correlated with the
variables that contain missing values. The inclusion of auxiliary
variables can improve the efficiency of the estimation and the
parameter estimates (Enders, 2010).

Illustrations Using Two Published Data Sets

This section demonstrates how to conduct a three-level meta-
analysis using the metaSEM package, that was based on the
OpenMx package (Boker et al., 2011) for the R statistical envi-
ronment (R Development Core Team, 2013). The metaSEM pack-

age was written to provide a general framework for conducting
meta-analyses using an SEM approach. There are several functions
to conduct meta-analyses. meta() implements the univariate and
multivariate meta-analyses (M. W.-L. Cheung, 2008, in press),
whereas reml() implements the same analysis using the REML
estimation method (M. W.-L. Cheung, 2013). tssem1() and
tssem2() conduct meta-analytic structural equation modeling using
the two-stage SEM approach (M. W.-L. Cheung & Chan, 2005,
2009). meta3(), meta3X(), and reml3() implement the three-level
meta-analysis discussed in this article. The metaSEM package also
provides functions to calculate the Q statistics, I2, R2 indices,
LBCIs, and constraints on parameter estimates. The R code for the
analyses is listed in the Appendix. The explanations of the R code
and the output are available at the author’s website (http://courses.nus
.edu.sg/course/psycwlm/internet/metaSEM/3level.html). This website
also includes detailed steps on how to implement the three-level
meta-analyses as structural equation models.

This section provides two examples. The first example (Cooper,
Valentine, Charlton, & Melson, 2003; Konstantopoulos, 2011)
compares the results between two- and three-level meta-analyses.
The second example (Bornmann, Mutz, & Daniel, 2007; Marsh et
al., 2009) is used to demonstrate more advanced three-level meta-
analysis techniques.

Three-Level Meta-Analysis With Cooper et al.’s (2003)
Data Set

Data description. Cooper et al. (2003) conducted a meta-
analysis on the effectiveness of modified school calendars with
regard to student achievement as well as school and community
attitudes. Using a modified calendar, children can be placed in
groups with alternating vacation sequences. This arrangement in-
creases the number of students that a particular school can accom-
modate. Because modified calendars are more popular in school
districts in which great needs for additional schools and class-
rooms exist, the effect sizes are likely to be more similar for
schools in the same district than those between districts. Thus,
Cooper et al. considered schools to be nested within districts. To
address the dependence among the effect sizes, Cooper et al. used
district as the unit of analysis. The effect sizes were averaged
within districts before estimating the average effect.

Konstantopoulos (2011, Table 1) illustrated a three-level meta-
analytic procedure with selected cases from Cooper et al. (2003).
This data set included 56 effect sizes nested within 11 districts.
The effect size employed was the d index (standardized mean
difference). Positive values of d denoted modified school calendar
effectiveness. Year of publication was included as a covariate.
This data set was stored as Cooper03 in the metaSEM package.
The effect size and its sampling variance, year of publication, and
district are labeled as y, v, Year, and District in the data set.

Results and discussion. In this section, I present the results of
a traditional (two-level) meta-analysis. The results of a three-level
meta-analysis and the comparisons between these analyses are
then presented.

The Q statistic was �2 �df � 55� � 578.87, p � .001, which
indicates that the null hypothesis of effect size homogeneity was
rejected. Thus, a fixed-effects model that assumes effect size
homogeneity cannot sufficiently describe the data variability. The
average effect size (and its 95% Wald CIs) based on a two-level
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random-effects model was 0.1280 (0.0428, 0.2132). The estimated

amount of heterogeneity �̂2 and the I2 based on the Q statistic were
.0865 and .9459, respectively. These results indicate that the study
level explained 95% of the total variation using a two-level model.
When year of publication was included as a covariate, the esti-
mated coefficient (and its 95% Wald CIs) was 0.0051 (�0.0033,
0.0136) with R2 � .0164. Because the CIs included 0, this result
was not significant at � � .05, which suggests that the year of
publication does not statistically explain variation in the effect
size.

The average effect size (and its 95% Wald CIs) for a three-level
meta-analysis was 0.1845 (0.0266, 0.3423). The estimated amount

of heterogeneity at Level 2 �̂�2�
2 and Level 3 �̂�3�

2 were 0.0329 and
0.0578, respectively. The Level 2 I�2�

2 and the Level 3 I�3�
2 based on

the Q statistic were .3440 and .6043, respectively. These values
indicate that schools (Level 2) and districts (Level 3) explained
34% and 60% of the total variation, respectively. The remaining
6% of the total variation was due to known sampling error. It
appears that Level 3 (the district effect) explains much more of the
variance than Level 2 (the school effect). I tested the null hypoth-
esis H0 : ��3�

2 � ��2�
2 . The chi-square difference test statistic was

�2�df � 1� � 0.6871, p � .4072, which indicates that we cannot
reject the null hypothesis of equal variances. In other words, the
amount of heterogeneity is not significantly different at both
levels.

The two-level model with the ��3�
2 � 0 constraint was fit and

tested against the three-level model. The test statistic was signif-
icant (�2�df � 1� � 16.50, p � .001) after adjusting for the testing
on the boundary condition. Therefore, the three-level model pro-
vided a better fit than the two-level model. If a two-level meta-
analysis is used, then the model is misspecified. The parameter
estimates and their associated SEs are likely incorrect. When year
of publication was included as a covariate, the estimated coeffi-
cient (and its 95% Wald CIs) was 0.0051 (�0.0116, 0.0218) with
R�2�

2 � .0000 and R�3�
2 � .0221. Because the CIs included 0, this

result was not significant at � � .05.
Having presented both the traditional (two-level) and three-level

meta-analyses, I highlight the major differences between them
here. Table 1 lists the results between the two- and the three-level
models. Several observations can be made. First, the width of the
CIs (or the SEs) of the fixed-effect parameters (the intercept and
regression coefficient) was usually smaller in the two-level model.
This finding is typical when a higher level is incorrectly ignored by
a multilevel analysis (e.g., Snijders & Bosker, 2012).

Second, �2 and I2 in the two-level meta-analysis were overesti-
mated. These values were approximately equal to the sum of ��2�

2

and ��3�
2 in the three-level meta-analysis. When Level 3 was ig-

nored, the between-study heterogeneity was incorrectly attributed
to Level 2. If a two-level meta-analysis was conducted and re-
ported, then the reviewers might draw the incorrect conclusion that
a large amount of heterogeneity (I2 � .95) exists at the school
level. In fact, the school level can only explain 34% of the total
variation, whereas the other 60% of the total variation is attributed
by the district level.

Third, the Wald CIs on the variance components can have
non-meaningful bounds. For example, the 95% lower bounds of
the Wald CIs on ��3�

2 in the three-level models were negative. When

LBCIs were used, the lower bounds on ��3�
2 stay within a mean-

ingful range. LBCIs are preferred to quantify precise variances.

More Complex Three-Level Meta-Analysis With
Bornmann et al.’s (2007) Data Set

Data description. The second data set was based on Born-
mann et al. (2007) and Marsh et al. (2009). Bornmann et al.
extracted 66 effect sizes from 21 studies of gender differences in
the peer reviews of grant and fellowship applications. The effect
size was an odds ratio; specifically, the odds of being approved
among the female applicants divided by the odds of being ap-
proved among the male applicants. To improve the normality
assumption with regard to the effect sizes, a logarithm was applied
to the odds ratio. Bornmann et al. and Marsh et al. used a three-
level meta-analysis to handle dependent effect sizes. Level 1 was
the authors, whereas Levels 2 and 3 were the proposals and
studies, respectively.

This data set was stored as Bornmann07 in the metaSEM
package. The effect size and its sampling variance are logOR and
v, respectively, whereas Cluster is the cluster effect at Level 3. The
covariates are Year (Year of publication), Type (Fellowship vs.
Grants), Discipline (Physical sciences, Life sciences/biology, So-
cial sciences/humanities, or Multidisciplinary), and Country
(United States, Canada, Australia, United Kingdom, or Europe).

Results and discussion. I first present the results for the
three-level meta-analysis. More advanced data analyses, such as
those that include covariates and missing covariates, are addressed
next.

The Q statistic was 221.2809 (df � 65), p � .001. This value
rejected the null hypothesis that all effect sizes were homogeneous.
The estimated average effect (and its 95% Wald CIs) under a
three-level model was �0.1008 (�0.1794, �0.0221). The test
statistic on H0:��3�

2 � 0 was �2�df � 1� � 10.2202, p � .01, after
adjusting for the testing on the boundary condition. This result

Table 1
Results of the Two- and Three-Level Meta-Analyses and Their
95% Wald Confidence Intervals (CIs)

Model type Two-level meta-analysis Three-level meta-analysis

Random-effects
model

�0 0.1280 (0.0428, 0.2132) 0.1845 (0.0266, 0.3423)
��2�

2 0.0865 (0.0483, 0.1247) 0.0329 (0.0110, 0.0547)
��3�

2 0a 0.0577 (�0.0025, 0.1180)b

I�2�
2 .9460 (.9194, .9651) .3440 (.1274, .6573)

I�3�
2 0a .6043 (.2794, .8454)

ICC�2�
2 Not defined .36273 (.1310, .7015)

ICC�3�
2 Not defined .63727 (.2985, .8690)

Mixed-effects
model

�0 0.1259 (0.0412, 0.2106) 0.1780 (0.0202, 0.3358)
�1 0.0051 (�0.0033, 0.0136) 0.0051 (�0.0116, 0.0218)
��2�

2 0.0851 (0.0478, 0.1224) 0.0329 (0.0111, 0.0548)
��3�

2 0a 0.0565 (�0.0024, 0.1153)c

R�2�
2 .0164 .0000

R�3�
2 0a .0221

a Fixed at 0 in the two-level meta-analysis. b 95% likelihood-based CIs
(LBCIs): 0.0198–0.1763. c 95% LBCIs: 0.0192–0.1720.
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shows that the three-level model was a better fit than the two-level
model.

�̂�2�
2 and �̂�3�

2 were 0.0038 and 0.0141, respectively. I�2�
2 and I�3�

2 ,
which are based on the Q statistics, were .1568 and .5839, respec-
tively. These values suggest that Level 3 (studies) had a higher
degree of heterogeneity than Level 2 (proposals). The test statistic
on H0:��2�

2 � ��3�
2 was �2�df � 1� � 1.3591, p � .2437, however,

which was not significant. Thus, the amount of Level 2 (proposals)
and Level 3 (studies) heterogeneity did not significantly differ.

Type indicates whether the proposals were grants or fellow-
ships. A dummy variable for Type was created where 0 denoted
grants, and 1 represented fellowships. The estimated intercept and
slope (and their 95% Wald CIs) were �0.0066 (�0.0793, 0.0661)
and �0.1956 (�0.3017, �0.0894), respectively, with R�2�

2 �

.0693 and R�3�
2 � .7943. Thus, the estimated effect size for grants

was �0.0066, whereas the difference between grants and fellow-
ships was –0.1956, which is significant at � � .05. Type primarily
explains the variation at Level 3 (studies), rather than at Level 2
(proposals). For ease of interpretation, an equivalent model would
be yij � �1Grantsij � �2Fellowshipij � u�2�ij � u�3�j � eij. The
advantage of this parameterization is that the estimated effect sizes
and their CIs for both grants and fellowships are available. After
rerunning the analysis, the estimated effect sizes (and their 95%
Wald CIs) for the grants and fellowships were �0.0066 (�0.0793,
0.0661) and �0.2022 (�0.2805, –0.1239), respectively.

Marsh et al. (2009) hypothesized a quadratic relationship exists
between year of publication and effect sizes. Following Marsh et
al., Year was standardized prior to creating a quadratic term. This
analysis revealed that both Year and Yearˆ2 were non-significant,
�2�df � 2� � 3.4190, p � .1810. Therefore, the evidence does not
support this quadratic relationship.

To illustrate how an SEM approach can be used to handle
missing covariates with FIML in the metaSEM package, I created
missing values in Type. The purpose of this exercise was to
illustrate the procedures rather than compare the results between a
complete-case analysis and FIML. Readers may refer to Enders
(2010) for the findings that compare different methods of handling
missing data.

Approximately 25% of the data in Type were randomly deleted.
Because this missingness was random, it is considered MCAR.
The estimated intercept and slope (and their 95% Wald CIs) based
on a complete case analysis were �0.0048 (�0.0820, 0.0723) and

�0.2109 (�0.3157, �0.1061), respectively. �̂�2�
2 and �̂�3�

2 were
0.0045 and 0.0009, respectively. FIML was used to handle the
missing covariate via the meta3X() function. The estimated inter-
cept and slope (and their 95% Wald CIs) were –0.0106 (�0.0886,

0.0673) and –0.1753 (�0.2895, –0.0611), respectively. �̂�2�
2 and

�̂�3�
2 were 0.0037 and 0.0037, respectively.

To create MAR data, values in Type were treated as missing
when Year fell below 1996. Approximately 40% of the data in
Type was missing. Because the missingness in Type depended on
Year, it is MAR when Year is included in the model. The esti-
mated intercept and slope (and their 95% Wald CIs) based on a
complete case analysis were �0.0159 (�0.0933, 0.0616) and

�0.1757 (�0.2998, �0.0517), respectively. �̂�2�
2 and �̂�3�

2 were
0.0026 and 0.0027, respectively. FIML was used to handle the
missing covariate by including Year as a Level 2 auxiliary vari-
able. The estimated intercept and slope (and their 95% Wald CIs)

were �0.0264 (�0.1385, 0.0857) and �0.2004 (�0.3359,

�0.0649), respectively. �̂�2�
2 and �̂�3�

2 were 0.0039 and 0.0030,
respectively.

General Discussion and Future Directions

This article reviewed how three-level meta-analyses might ad-
dress the dependence among effect sizes. The advantages of for-
mulating three-level meta-analyses as structural equation models
were discussed. Several examples illustrated how the metaSEM
package can be used to conduct analyses. Because three-level
meta-analytic applications are new, several questions remain un-
answered and require additional study.

Empirical Comparisons Between Two- and
Three-Level Meta-Analyses

This study demonstrated that the SEs (or CIs) of the fixed effects
are likely inflated, whereas the heterogeneity of the random effects
is overestimated using a traditional meta-analysis. Although three-
level meta-analyses are theoretically preferable and methodologi-
cally apt for nested data, some researchers may still want to use
two-level meta-analyses if they primarily focus on fixed-effects
estimates.

Traditional two-level meta-analyses can be considered as three-
level meta-analyses with misspecified covariance structures where
��3�

2 � 0. The use of robust statistics to address model misspecifi-
cation is popular in the SEM literature (e.g., Yuan & Bentler,
2007). Many SEM packages have implemented types of robust
statistics and SEs.

Similar ideas have also been suggested in the meta-analysis
literature. Hedges, Tipton, and Johnson (2010) showed that robust
(sandwich) SEs perform well in terms of coverage probability in
traditional meta-analyses when testing fixed effects with depen-
dent effect sizes. Importantly, however, �2 and I2 are likely to be
overestimated when one level is ignored. Because both three-level
meta-analyses and robust SEs for dependent effect sizes are new,
additional studies should address their pros and cons by analyzing
dependent effect sizes.

Two-, Three-, or Even More Levels?

This article argued that three-level meta-analyses are the pre-
ferred way of handling dependent effect sizes in meta-analyses. In
reality, data structures might be more complicated. Recall Nguyen
and Benet-Martínez (2013), who analyzed 935 effect sizes nested
within 141 studies. Because these authors were interested in cul-
ture, their analysis involved four levels: individuals (Level 1),
multiple effect sizes within the study (Level 2), studies (Level 3),
and cultures (Level 4). Rather than considering culture as a level,
these authors treated cultural groups as a fixed effect and handled
them using dummy variables. The authors considered studies to be
the unit of analysis and averaged multiple effect sizes within
studies.

The situation becomes even more complicated when researchers
want to address the effect of publications by the same research
teams or the same data sets (e.g., Shin, 2009) because the same
authors might be involved in several different research teams and
publications. Thus, the effect of authors is usually cross-classified
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rather than nested. The current meta-analytic methodology is lim-
ited to three levels without cross-classified effects. Additional
studies should address whether more levels (e.g., four) and cross-
classified effects are necessary to better handle the data structure
and address more complex research questions.

The Empirical Performance of I2 and R2 in
Three-Level Meta-Analyses

In this article, the I2 and R2 statistics of traditional two-level
meta-analyses were extended to three-level meta-analyses. Al-
though these definitions appear to be intuitive, the empirical per-
formance of these indices is unclear. With regard to I2, comparing
different estimates of the “typical” within-study variance is of
interest. vi was treated as a constant in this article, and ṽ was
calculated without considering the cluster effect. Additional stud-
ies should address whether ṽ must be adjusted for the cluster effect.

In a traditional meta-analysis, it was found that different esti-
mation methods can result in different R2s (Aloe, Becker, & Pigott,
2010; López-López, Marín-Martínez, Sánchez-Meca, Van den
Noortgate, & Viechtbauer, 2013). Three-level meta-analyses can
only be analyzed with either ML or REML estimation methods.
Further studies may address how these estimation methods affect
R2. Moreover, additional research should address the likelihood of
obtaining negative values before truncation and how the inclusion
of predictors at one level (e.g., Level 2) affects the R2 at another
level (e.g., Level 3).

Extensions to Multivariate Three-Level Meta-Analyses

This article and the metaSEM package only addressed univari-
ate three-level meta-analyses. When study designs or measures are
complicated, studies might report multiple effect sizes. These
multivariate effect sizes can be nested within a higher level (e.g.,
studies or cultural groups). In theory, three-level multivariate
meta-analyses can be implemented as structural equation models
by extending multivariate meta-analyses (M. W.-L. Cheung, in
press) and three-level meta-analyses (this article). Observing how
three-level multivariate meta-analyses can be used to address more
complex research questions is of interest.

To summarize, SEM is a viable alternative to model meta-
analytic data. Showing how three-level meta-analyses can be in-
tegrated using an SEM approach further demonstrates the useful-
ness of SEM in meta-analyses. Many state-of-the-art SEM
techniques are available to reviewers who conduct meta-analyses
by using the SEM approach. This article also generated many new
questions for future research with regard to three-level meta-
analyses. Three-level meta-analyses can be a useful tool to address
methodologically and substantively important questions in re-
search synthesis. Finally, this article might further help to develop
a unified SEM approach for primary, secondary, and meta-
analyses.
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Appendix

R Code for the Analyses

#### Example on Cooper et al. (2003) 
 
library("metaSEM") 
head(Cooper03) 
 
#### Two-level meta-analysis 
 
## Random-effects model   
summary( meta(y=y, v=v, data=Cooper03) ) 
 
## Fixed-effects model 
summary( meta(y=y, v=v, data=Cooper03, RE.constraints=0) ) 
 
## Mixed-effects model 
summary( meta(y=y, v=v, x=scale(Year, scale=FALSE), data=Cooper03) ) 
 
#### Three-level meta-analysis 
 
## Random-effects model 
summary( meta3(y=y, v=v, cluster=District, data=Cooper03) ) 
 
## Mixed-effects model 
summary( meta3(y=y, v=v, cluster=District, x=scale(Year, scale=FALSE),  
               data=Cooper03) ) 
 
## Model comparisons 
 
model2 <- meta(y=y, v=v, data=Cooper03, model.name="2 level model", silent=TRUE)  
#### An equivalent model by fixing tau2 at level 3=0 in meta3() 
## model2 <- meta3(y=y, v=v, cluster=District, data=Cooper03,  
##                 model.name="2 level model", RE3.constraints=0)  
model3 <- meta3(y=y, v=v, cluster=District, data=Cooper03,  
                model.name="3 level model", silent=TRUE)  
anova(model3, model2) 
 

## Testing 
2
)3(

2
)2( τ=τ  

modelEqTau2 <- meta3(y=y, v=v, cluster=District, data=Cooper03,  
                     model.name="Equal tau2 in both levels", 
                     RE2.constraints="0.1*Eq_tau2", RE3.constraints="0.1*Eq_tau2")  
anova(model3, modelEqTau2) 
 
## Likelihood-based CI 
summary( meta3(y=y, v=v, cluster=District, data=Cooper03,  
               I2=c("I2q", "ICC"), intervals.type="LB") ) 
 
summary( meta3(y=y, v=v, cluster=District, x=scale(Year, scale=FALSE),  
               data=Cooper03, intervals.type="LB") ) 
 
## REML 
summary( reml1 <- reml3(y=y, v=v, cluster=District, data=Cooper03) ) 
 
summary( reml0 <- reml3(y=y, v=v, cluster=District, data=Cooper03, 
                        RE.equal=TRUE, model.name="Equal Tau2") ) 
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anova(reml1, reml0) 
 
summary( reml3(y=y, v=v, cluster=District, x=scale(Year, scale=FALSE), 
               data=Cooper03) ) 
 
#### Example on Bornmann et al. (2007) 
 
library("metaSEM") 
head(Bornmann07) 
 
## Model 0: Intercept   
summary( Model0 <- meta3(y=logOR, v=v, cluster=Cluster, data=Bornmann07,  
                         model.name="3 level model") ) 
 

## Testing 02
)3( =τ  

Model0a <- meta3(logOR, v, cluster=Cluster, data=Bornmann07,  
                 RE3.constraints=0, model.name="2 level model") 
anova(Model0, Model0a) 
 

## Testing 
2
)3(

2
)2( τ=τ  

Model0b <- meta3(logOR, v, cluster=Cluster, data=Bornmann07,  
                 RE2.constraints="0.1*Eq_tau2", RE3.constraints="0.1*Eq_tau2",  
                 model.name="tau2_2 equals tau2_3") 
anova(Model0, Model0b) 
 
## Model 1: Type as a predictor   
## Convert characters into a dummy variable 
## Type2=0 (Grants); Type2=1 (Fellowship)     
Type2 <- ifelse(Bornmann07$Type=="Fellowship", yes=1, no=0) 
summary( Model1 <- meta3(logOR, v, x=Type2, cluster=Cluster, data=Bornmann07)) 
 
## Alternative model: Grants and Fellowship as indicators   
## Indicator variables 
Grants <- ifelse(Bornmann07$Type=="Grants", yes=1, no=0) 
Fellowship <- ifelse(Bornmann07$Type=="Fellowship", yes=1, no=0) 
 
summary(Model1b <- meta3(logOR, v, x=cbind(Grants, Fellowship),  
                         cluster=Cluster, data=Bornmann07, 
                         intercept.constraints=0, model.name="Model 1")) 
 
## Model 2: Year and Year^2 as predictors 
summary( Model2 <- meta3(logOR, v, x=cbind(scale(Year), scale(Year)^2),  
                         cluster=Cluster, data=Bornmann07, 
                         model.name="Model 2") ) 
 

## Testing 02 == YearYear ββ  

anova(Model2, Model0) 
 
## Model 3: Discipline as a predictor 
## Create dummy variables using multidisciplinary as the reference group 
DisciplinePhy <- ifelse(Bornmann07$Discipline=="Physical sciences", yes=1, no=0) 
DisciplineLife <- ifelse(Bornmann07$Discipline=="Life sciences/biology", yes=1, no=0) 
DisciplineSoc <- ifelse(Bornmann07$Discipline=="Social sciences/humanities", yes=1, 
no=0) 
summary( Model3 <- meta3(logOR, v, x=cbind(DisciplinePhy, DisciplineLife, 
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DisciplineSoc),  
                         cluster=Cluster, data=Bornmann07, 
                         model.name="Model 3") ) 
 
## Testing whether Discipline is significant 
anova(Model3, Model0) 
 
## Model 4: Country as a predictor 
## Create dummy variables using the United States as the reference group 
CountryAus <- ifelse(Bornmann07$Country=="Australia", yes=1, no=0) 
CountryCan <- ifelse(Bornmann07$Country=="Canada", yes=1, no=0) 
CountryEur <- ifelse(Bornmann07$Country=="Europe", yes=1, no=0) 
CountryUK <- ifelse(Bornmann07$Country=="United Kingdom", yes=1, no=0) 
 
summary( Model4 <- meta3(logOR, v, x=cbind(CountryAus, CountryCan, CountryEur,  
                         CountryUK), cluster=Cluster, data=Bornmann07, 
                         model.name="Model 4") ) 
 
## Testing whether Discipline is significant 
anova(Model4, Model0) 
 
## Model 5: Type and Discipline as predictors 
summary( Model5 <- meta3(logOR, v, x=cbind(Type2, DisciplinePhy, DisciplineLife,  
                         DisciplineSoc), cluster=Cluster, data=Bornmann07, 
                         model.name="Model 5") ) 
 
## Testing whether Discipline is significant after controlling for Type 
anova(Model5, Model1) 
 
## Model 6: Type and Country as predictors 
summary( Model6 <- meta3(logOR, v, x=cbind(Type2, CountryAus, CountryCan,  
                         CountryEur, CountryUK), cluster=Cluster, data=Bornmann07, 
                         model.name="Model 6") ) 
 
## Testing whether Country is significant after controlling for Type 
anova(Model6, Model1) 
 
## Model 7: Discipline and Country as predictors 
summary( meta3(logOR, v, x=cbind(DisciplinePhy, DisciplineLife, DisciplineSoc, 
                         CountryAus, CountryCan, CountryEur, CountryUK),  
                         cluster=Cluster, data=Bornmann07, 
                         model.name="Model 7") ) 
 
## Model 8: Type, Discipline and Country as predictors 
Model8 <- meta3(logOR, v, x=cbind(Type2, DisciplinePhy, DisciplineLife, DisciplineSoc, 
                           CountryAus, CountryCan, CountryEur, CountryUK),  
                           cluster=Cluster, data=Bornmann07, 
                           model.name="Model 8")  
## There was an estimation error. The model was rerun again. 
summary(rerun(Model8)) 
 
#### Handling missing covariates with FIML 
 
## MCAR 
## Set seed for replication 
set.seed(1000000) 
 
## Copy Bornmann07 to my.df 
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my.df <- Bornmann07 
## "Fellowship": 1; "Grant": 0 
my.df$Type_MCAR <- ifelse(Bornmann07$Type=="Fellowship", yes=1, no=0) 
 
## Create 17 out of 66 missingness with MCAR 
my.df$Type_MCAR[sample(1:66, 17)] <- NA 
 
summary(meta3(y=logOR, v=v, cluster=Cluster, x=Type_MCAR, data=my.df)) 
 
summary(meta3X(y=logOR, v=v, cluster=Cluster, x2=Type_MCAR, data=my.df)) 
 
## MAR 
Type_MAR <- ifelse(Bornmann07$Type=="Fellowship", yes=1, no=0) 
 
## Create 27 out of 66 missingness with MAR for cases Year<1996 
index_MAR <- ifelse(Bornmann07$Year<1996, yes=TRUE, no=FALSE) 
Type_MAR[index_MAR] <- NA 
summary(meta3(logOR, v, x=Type_MAR, cluster=Cluster, data=Bornmann07)) 
 
## Include auxiliary variable 
summary(meta3X(y=logOR, v=v, cluster=Cluster, x2=Type_MAR, av2=Year, data=my.df)) 
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