Journal of Middle East Applied Science and Technology (JMEAST) 

 

ISSN (Online): 2305-0225 
Issue 16(4), September 2014, pp. 499-502

 

499 

 

 

Abstract

Methane (CH

4

) is predicted to cause as much global 

warming as carbon dioxide (CO

2

) over the next 20 years. 

Traditionally the global warming potential (GWP) of methane has 
been measured over 100 years. The IPCC’s Fourth Assessment 
Report (IPCC 2007) warns that this underestimates its immediate 
impact. Viewed over 20 years it has 72 times the GWP of CO2. 

The current study was prompted by concern about these 

emissions, and by a recent Government policy study in Melbourne, 
Australia, which recommended composting of municipal waste. The 
mass composting of waste would reduce landfill gas, currently used 
as a fuel. This study uses recent information (2006 IPCC Guidelines) 
with local data to estimate: 

- How much greenhouse gas is emitted to the atmosphere from 

best practice landfill with methane capture Pipes? How much can be 
captured to use as fuel? 

- Is aerobic composting or incineration better at controlling 

emissions than landfill with gas capture? 

 

Keywords

Landfill, incineration,  GHG emission, correction 

factor, bio-fuel. 

 

I.  I

NTRODUCTION

 

I

M

ELBOURNE

,

 METROPOLITAN WASTE MANAGEMENT AND 

R

ESOURCE 

R

ECOVERY 

S

TRATEGY 

(MWMS

 

2008)

 EXAMINED 

SEVERAL OPTIONS FOR SOLID WASTE MANAGEMENT IN 

2008

 

AND PRODUCED A POLICY THIS YEAR

.

 

M

ELBOURNE 

HOUSEHOLDS ARE ALREADY SUPPLIED WITH TWO BINS

,

 ONE FOR 

RECYCLABLES 

(

BOTTLES

,

 CANS

,

 PLASTICS

,

 PAPER

)

 AND 

ANOTHER FOR RESIDUAL WASTE

.

 

S

UBURBAN HOUSEHOLDS 

OFTEN HAVE A THIRD BIN FOR GARDEN WASTE

.

 

A

USTRALIA HAS 

A POLICY OF MINIMIZING WASTE TO LANDFILL

.

 

A

 STUDY OF 

RESIDUAL WASTE IN 

2005-6

 FOUND THAT 

41%

 WAS FOOD 

WASTE

,

 

18%

 GREEN WASTE AND 

6%

 PAPER 

 ALL ORGANIC 

WASTE WHICH COULD BE COMPOSTED

.

 

T

HE 

MWMS

 PLAN 

CONSIDERED OPTIONS FOR DIVERTING ORGANIC WASTE FROM 
LANDFILL

,

 INCLUDING COMPOSTING RESIDUAL WASTE IN 

LARGE

-

SCALE 

A

DVANCED 

W

ASTE 

T

REATMENT COMPOSTERS 

(AWT

S

);

 SEPARATING ORGANIC WASTE FOR AEROBIC OR 

ANAEROBIC COMPOSTING

,

 AND THERMAL POWER FROM WASTE

.

 

H

YDER 

C

ONSULTANTS 

(H

YDER 

2008)

 WERE EMPLOYED TO 

CARRY OUT A STUDY

.

 

T

HEY FOUND THERMAL ELECTRICITY 

 

 

GENERATION PERFORMED BEST IN ALL AREAS

,

 EVEN REDUCING 

AIR POLLUTION BECAUSE IT WOULD REPLACE HIGHLY 
POLLUTING BROWN

-

COAL

-

FIRED ENERGY

,

 WHICH IS THE 

CURRENT SOURCE OF 

M

ELBOURNE

S ELECTRICITY

.

 

B

URNING 

THE WASTE WOULD ALSO REDUCE GHG EMISSIONS BY 
ELIMINATING METHANE FROM LANDFILL

.

 HOWEVER IT 

REJECTED THE OPTION OF INCINERATION BECAUSE OF 
COMMUNITY CONCERNS AND DIFFICULTY IN SITING THE 
INCINERATORS

  

II. 

METHODOLOGY

 

A spreadsheet was set up to compare emissions of methane, 

nitrous oxide and anthropogenic (man-made) carbon dioxide 
from compost, landfill and incineration, based on IPCC 
figures. The IPCC model allows for differences in 
temperature, humidity, dryness and aeration in the landfill, 
and different types of organic waste. 

 

 

Fig. 1 Greenhouse gas emissions over 30 years: compost, landfill 

and incineration 

 
Over the next 30 years, incineration produced the least 

greenhouse gas emissions, followed by landfill with gas 
extraction. Surprisingly, aerobic composting produced the 
highest level of emissions. This is based on the assumption 
that landfill has leachate and gas capture pipes, as is now 
common in Melbourne, with 60% gas capture. We assumed 

Waste management options to control 

greenhouse gas emissions – 

Landfill, compost or incineration?  

Majid Bahramian 

1

 

Journal of Middle East Applied Science and Technology (JMEAST) 

 

ISSN (Online): 2305-0225 
Issue 16(4), September 2014, pp. 499-502

 

500 

 

that 10% of the escaping methane was oxidized as it passed 
through the soil cover, and some waste would break down 
aerobically before anaerobic conditions were established. 
IPCC estimates for CH

4

, N

2

O and anthropogenic CO

2

 

emissions from composting and semi-continuous fluidized bed 
incineration were compared with the landfill emissions.  

A.  Measuring methane from landfill, composting and 
incineration 

Our present study aims to objectively compare the options 

for waste disposal. It uses the United Nations Framework 
Convention on Climate Change (UNFCCC/CCNUCC) “Tool 
to determine methane emissions avoided from disposal of 
waste at a solid waste disposal site”, version 4, 2008 (“the 
tool”) to compare methane generation from landfill versus 
aerobic composting and GHG emissions from incineration. 
Equations and background information from the 2006 IPCC 
“Guidelines for National Greenhouse Gas Emissions”, Vol. 5 
“Waste”, Chapters 2 – 5 and Vol.2, “Energy” were also used. 
The following factors are used to calculate methane 
emissions: 

1. Quantity of organic waste deposited in landfill each year, 

per household. 

2. Fraction of degradable organic carbon in the waste 

(averaged over its various components) 

3. Fraction that actually converts to methane. Only about 

half of this matter ever decomposes, and of this, only half 
converts to methane. 

4. The conversion factor from carbon to methane. 
5. The rate of accumulation of waste in the landfill, and the 

rate of decomposition of waste. 

6. Methane captured from landfill for flaring or fuel. 
7. “Methane correction factor”: Some organic material 

decomposes aerobically due to oxygen inside the landfill: less 
if it is wet and anaerobic, more if it is well managed and dry. 

8. Some methane oxidizes on its way out, if the site has a 

soil or compost “bio cap” cover. 

Altogether, only a very small amount of potential methane 

escapes from best practice landfill, and it is produced very 
slowly, as the decomposition rate in a dry temperate climate is 
only about 5% per year. Aerobic composting produces mostly 
CO

2

, but also releases a small amount of methane (the IPCC 

default estimate is 4 grams of methane per kilogram of 
organic waste). Incineration produces mostly CO

2

. Open 

burning of waste does produce CH

4

 but continuous fluidized 

bed incineration produces none at all. In this study it is 
assumed that semi-continuous fluidized bed incineration is 
used – this produces CH

4

 and N

2

O which have been taken into 

account in calculating emissions. 

 

 

 

Fig. 2 Greenhouse gas emissions over 30 years: landfill compared 

to a range of values for composting. 

 
The top chart shows maximum expected GHG emissions 

for managed composting. These are likely to be found in a 
warm climate, where compost is kept wet. The second chart 
shows the IPCC default value for compost. The third shows 
minimum values, probably inapplicable to Australia. Much of 
the IPCC’s referenced data is from Scandinavia and Finland 
where it is very much colder than Australia and so little 
methane is produced. Methane and N2O emissions from 
poorly managed composting may be even higher than those 
shown in the top graph. Bert Metz (2007 IPCC) points out 
“CH4 and N2O can both be formed during composting by 
poor management and the initiation of semi-aerobic (N

2

O) or 

aerobic (CH

4

) conditions; recent studies also indicate 

production of CH

4

 and N2O in well-managed systems 

(Hobson et al 2005).” 

A small but disturbing study from the Griffith University, 

Queensland, Australia (the Insinkerator study, 1994) 
compared household composting systems with sink disposal 
units and landfill. Very high levels of methane were found in 

Journal of Middle East Applied Science and Technology (JMEAST) 

 

ISSN (Online): 2305-0225 
Issue 16(4), September 2014, pp. 499-502

 

501 

 

unmanaged household compost bins. 

B.  Assumptions on methane correction factor in landfill 
 

The above graphs assume a methane correction factor 

(MCF) of 0.6 for landfill, i.e. it is 60% anaerobic. The IPCC 
recommends this value if it is not known how the waste is 
managed. If waste is unmanaged in a shallow tip, the MCF 
value is 0.4, as much of the waste will degrade aerobically. If 
the waste is buried deep or the water table is a high, e.g. if it is 
dumped in a swampy area, a value of 0.8 is used. If it just 
compacted or levelled and covered, the MCF is 1. 

In the 1996 IPCC Guidelines, all managed waste was 

assumed to be 100% anaerobic (an MCF of 1). This was a 
heroic assumption. It requires only very low levels of oxygen 
in the waste to produce some aerobic decomposition, 
especially before anaerobic conditions are established in the 
waste (see Metz, IPCC 2007). A recent Swedish study (Smars, 
Sven and Beck-Friis 2002) found some aerobic decomposition 
in waste was still occurring at 1% oxygen levels. In the 2006 
IPCC guidelines a new category of semi-anaerobic landfill has 
been introduced with an MCF of 0.5. This type of landfill has 
leachate drainage, gas capture, ventilation and permeable 
cover. In Melbourne, landfill sites typically have leachate 
drainage and gas capture. It is uncertain whether the tip cover 
is permeable. (It is not intended to be, yet it is estimated that 
40% of the methane escapes through it.) The subsoil is 
extremely dry, relative to Europe and Scandinavia. This would 
tend to allow oxygen to penetrate. Further studies are required 
to establish how much decomposition occurs before landfill 
conditions become anaerobic, how much oxygen is found in 
landfill gas and what the real MCF is in Melbourne. The 
Australian Government Department of Climate change still 
classifies all landfill in Australia as 100% anaerobic on the 
grounds that it is “managed”. This follows the classification in 
the now superseded 1996 IPCC Guidelines. More up-to-date 
estimates are needed.  

 

C.   Why do the results show higher emissions for compost 
relative to landfill and incineration than are generally 
assumed? 

 
Much of the widespread understanding of GHG emissions 

from landfill, compost and incineration is based on early 
modelling in the 1996 IPCC Guidelines. Since then it has been 
discovered that: 

- composting does release CH

4

 and N

2

O. A range of 

estimates has been provided. 

- Landfill is not always 100% anaerobic but can be semi-

anaerobic, with an MCF of 0.5. 

- Much organic material in waste does not degrade under 

anaerobic conditions. The 2006 IPCC advises that only 50% at 
most will decompose in landfill. Of this, only about 5% of 
decomposable organic waste decomposes each year. 

- A “First Order Decay model” has been introduced to 

account for the slow decay of waste in landfill: Earlier models 
erroneously assumed that decomposition all occurred in the 
first year.  

III.  C

ONCLUSION

 

An earlier, more detailed study of the options for 

Melbourne’s municipal waste, suggests that the goal of 
diverting waste from landfill is over-emphasized as 
Melbourne has adequate landfill space, and more is created by 
quarrying activities. The huge volume of poor compost 
produced if all household waste is composted may lead to a 
collapse in the market for compost. 

 Well managed landfill with gas capture can reduce 

methane levels and delay emissions for decades. About 50% 
of the organic carbon is sequestrated and only about 5% of 
waste decomposes in landfill annually. Most of the methane 
can be captured or oxidized at the landfill site. 

 there is great potential for energy generation from 

thermal electricity generation from municipal waste; from 
landfill gas and in some cases anaerobic digestion of separated 
waste. Spark ignition motors are currently used to convert 
methane to electricity, but fuel cells, cogeneration of energy 
and heat, and direct use of methane are all possible. 

 Municipal waste should not be routinely composted 

before disposal, and certainly not in open air windrows. 
Landfill with gas capture is a better option for reducing 
emissions, and producing bio-fuel. 

 Home composting bins may produce more greenhouse 

gas per unit of waste than landfill. 

 Compost can play an important role in Australia, 

especially in organic farming and as tip cover, to oxidize 
escaping methane, but high quality compost from separated 
organics is best for both purposes. The priority is to compost 
rural and animal wastes which currently do not go to best 
practice landfill and may be releasing large quantities of CH

4

 

and N

2

O.  

 

 

R

EFERENCES  

 

[1]  IPCC 2007: Fourth Assessment Report, chapter 2 pp 206, 212 Diagram 

22.25 and text. 

[2]  MWMS 2008: “Draft Metropolitan Waste and Recovery Strategic Plan” 

released on 2 April 2008 at 

[3]  www.sustainability.vic.gov.au , now accepted with some changes. Most 

information is in the “Schedule”. 

[4]  2006 IPCC Guidelines for National Greenhouse Gas Emissions Vol. 5 

“Waste”, Chapter 2-5 and Vol. 2, “Energy”, section 2.3 Table 2.4. 

[5]  UNFCCC/CCNUCC “Tool to determine methane emissions avoided 

from disposal of waste at a solid waster disposal site” (version 4, 2008). 

[6]  R. Pipatti and I. Savolainen 1996, “Role of Energy Production in the 

Control of Greenhouse Gas from Waste Management,” 

Journal of Middle East Applied Science and Technology (JMEAST) 

 

ISSN (Online): 2305-0225 
Issue 16(4), September 2014, pp. 499-502

 

502 

 

[7]  Hyder Consulting (2007): “Modelling and analysis of options for the 

Metropolitan Waste and Resource Recovery Strategic Plan,” 2007. 

[8]  Lifecycle calculations by Tim Grant are in the “Appendix: LCA of 

Waste Management Options”, RMIT Centre for Design, Dec 2007, on 
www.mwmg.vic.gov.au 

[9]  Boral 2007: Comments from Boral in response to reference 3 above, 

from Boral Melbourne, www.boral.com.au, or at: 
www.sustainability.vic.gov.au/resources/documents/boral.pdf 

[10]  Fulhage, Charles et al, 1993. “Generating Methane” University of 

Missouri Extension, 

[11]  Insinkerator Study 1994: Professor Philip Jones et al: “Economic and 

environmental impacts of disposal of kitchen organic wastes using 
traditional landfill - Food waste disposer - Home composting”, Waste 
Management Research Unit, School of Engineering, Griffith University, 
Queensland. 

[12]  Bateman, Sam, Hanson Landfill Services: “Response to the Productivity 

Commission Inquiry Draft Report on Waste Management” Feb 2006. 

[13]  Guzzone. Brian and Mark Schlagenhauf “ Garbage in, energy out - 

landfill gas opportunities for CHP projects” in Cogeneration & On-Site 
Power Production website //www.cospp.com. September 2007G. O. 
Young, “Synthetic structure of industrial plastics (Book style with paper 
title and editor),”   in Plastics, 2nd ed. vol. 3, J. Peters, Ed.  New York: 
McGraw-Hill, 1964, pp. 15–64. 

[14]  “Cover Up with Compost” U.S. EPA fact sheet, Washington 2002. 
[15]  Metz, Bert: IPCC Climate Change 2007: “Mitigation of Climate 

Change” Intergovernmental Panel on Climate Change, Working Group 
3, Chapter 10 Waste Management. 

[16]  Smars, S: “Influence of different temperature and aeration regulation 

strategies on respiration in composting”, Doctoral Thesis, Swedish 
University of Agricultural Sciences, Uppsala 2002, with B. Beck-Friis. 

 
 
 

1-  Majid Bahramian : Email: m.bahramian@ut.ac.ir. 

 Research Student, Master of Civil and Environmental 

Engineering, University of Tehran, Aras International 
Campus. 

 Bachelor’s degree in civil engineering from Tabriz University, 

Tabriz, Iran, 2011.  

 
HE IS THE HEAF OF ENVIRONMENTAL RESEARCH GROUP IN 
KAHKESHAN CITY TOWER COOPERATION. 
 
MEMBERSHIP: 
  Member of Iranian Association for Environmental Assessment. 
  Member of American Water Works Association. 
  Member of German Water Partnership. 
 

   
 

Journal of Middle East Applied Science and Technology (JMEAST) 

 

ISSN (Online): 2305-0225 
Issue 16(4), September 2014, pp. 503-507

 

 

503 

 

 

 
 

Abstract

 One of the main problems engaging the attention of 

scientific communities is air pollution especially in indoor areas such 
as homes. In this regard, radon is one of the most important and 
dangerous pollutants since various studies and researches have shown 
that this gas is the second cause of lung cancer after smoking. Aiming 
to increase efficiency and reduce costs, current buildings have caused 
a lower quality of the air inside homes. Therefore, an appropriate 
ventilation system is required to prevent such pollution in order to 
provide clean and fresh air at an acceptable level. This article tries to 
study an optimum condition for achieving two important goals i.e. 
human health and energy saving optimization in ventilation systems. 

 
Keywords

 

energy saving, radon, dosimetry, radon decay 

products, phantom  

 

 

 

Shila . Banari Bahnamiri. Assistant Professor of Nuclear Physics, Tabari 
University of Babol, Babol, Iran (corresponding author to provide phone: 
+989125856675; fax: +981132206178; e-mail: banari92@ gmail.com).  
Vahid Mirzaei Mahmoud abadi

2

., Assistant Professor of Nuclear Physics 

,Shahid Bahonar University of Kerman, faculty of physics, P.O. Box 76175, 
Iran (e-mail: vahid7mirzaei@gmail.com). 

 

I.  INTRODUCTION 

A

cording to the United Nations Scientific Committee on 

the Effect of Atomic Radiation in 2000, the average annual 
human’s exposure to all natural radiating sources was 
estimated in areas with background radiation of about 2.4 mSv 
and more than 52% of this radiation was due to inhaling radon 
gas and the rest was related to other natural radiating sources 
[1]. 
Uranium is the main source of radon. Also the concentration 
of radon is higher in some stones like granite, limestone and 
phosphate

 

stones. The main danger caused by radon is lung 

cancer [2]. 
Researches indicate that the first cause of death from lung 
cancer is inhaling radon. Since our country (especially the 
northern

 

region like the city of Ramsar) is one of the hottest 

spots in the world in terms of field radiation, we should pay 
special

 

attention to this issue in order for reducing the risk of 

lung cancer. According to the studies, death from Drunk 
driving accidents is the first cause of deaths in America, and 
cancer from inhaling radon, drowning, fire, and plane crashes 
are the next ones. Radon is a radioactive gas produced by the 
natural decomposition of uranium in stones and soil [3]. It 
then reaches the surface of the Earth through the cracks and 
fissures in stones and is then released into the air. Radon is a 
colorless, odorless, tasteless, and neutral gas. As the amount of

 

radon concentration in the environment is low, there isn’t a 

A Study of the Possible Solutions for Radon 

Concentration Reduction in Homes in Order to 

Minimize Energy Consumption in Ventilation 

Systems 

 

 

Shila Banari Bahnamiri

1

, Vahid Mirzaei Mahmoud abadi

 

1- Assistant Professor of Nuclear Physics, Tabari University of Babol, Babol, Iran 

2- Assistant Professor of Nuclear Physics ,Shahid Bahonar University of Kerman, faculty of 

physics, P.O. Box 76175, Iran 

 

 

Journal of Middle East Applied Science and Technology (JMEAST) 

 

ISSN (Online): 2305-0225 
Issue 16(4), September 2014, pp. 503-507

 

 

504 

 

serious threat to humans; however, the amount of this gas goes 
up in an indoor area over time and the level of radon will 
increase. These particles stick to the particles floating or 
aerosols in the air in an indoor place enter the human’s 
respiratory system and then hurt the sensitive tissues there. 
Too much energy will concentrate in a small area of tissues 
and causes chemical ionization, the formation of DNA and 
damage to DNA molecules [4].  
Given the dangers from this gas, some measures should be 
taken to reduce the level of radon in residential buildings. 
Using a standard ventilation system is the best way to reduce it 
because ventilation is the best method for lowering the amount 
of radon in the air inside indoor areas. On the other hand, a 
ventilation system requires about 50% of the energy consumed 
in a building. Therefore, a suitable design for the ventilation 
rate and providing practical solutions can cause the 
achievement of two significant goals i.e. indoor air quality and 
building energy saving. In this study we investigate the 
possible solutions for radon concentration reduction in homes 
in order to minimize energy consumption in ventilation 
systems. 

II.  R

ADON IN THE HOMES

 

Radon is present in almost all Climates, and all people inhale 
(a little) radon every day while those who inhale it too much 
are exposed to the risk of lung cancer more. Radon can enter 
buildings through building materials, the cracks in the 
building, joints, the empty space in the buildings, the cracks in 
the wall, the empty space around the pipes and joints in the 
wall and the floor, underground water, and heating systems 
and ventilators – air pressure is often lower inside the home 
than outside it. 
The appropriate insulation for reducing a waste of energy in 
new buildings increases the level of radon. Another reason for 
such an increase is building the homes on uranium-rich soil in 
a way that the amount of radon is even higher in the basements 
and the first floors closer to the ground. Depending on the 
local geological characteristics in some areas, radon dissolves 
in underground water and is released into the air when the 
water is used. 
 
 
Materials and Methodology 

I.  T

HE 

D

OSIMETRY 

C

ALCULATIONS OF 

R

ADON 

D

ANGERS

 

Among the three natural radon isotopes, i.e.

222

Rn, 

219

Rn and 

220

Rn, only 

222

Rn (t

1/2

 = 3.8 day) is able to reach the Earth’s 

surface [5]. This isotope exists in the 

238

U decay chain. It 

shoes in Fig.(1). 
Using the computational code MCNP4c [7] and the 
mathematical phantom ORNL which is the mathematical 
model of the human body. It shows in Fig (2). This shows the 
anterior view of principal organs in head and trunk of 
phantom. Analytical models of the human body (called human 
phantoms) were described in ORNL publications [6]. These 
phantoms are basically solid-geometry models that describe 
exterior and interior anatomical features of a human body 
using analytical equations. Human phantom consists of three 
types of tissues: skeletal, lung and soft, with different densities 
and elemental compositions [8]. 

 

The dose absorbed by the organs of an adult human who was 
exposed to the gamma and beta rays of radon over a year were 
calculated, and the results indicated that the highest doses 
were absorbed by the lungs, the heart and the esophagus[9]-
[12]. 
 

 

Fig.1 

238

U decay chain 

 

 

 

Fig.2  Disposition of organs in human Phantom of Snyder et al. 

(1969).  

 

Journal of Middle East Applied Science and Technology (JMEAST) 

 

ISSN (Online): 2305-0225 
Issue 16(4), September 2014, pp. 503-507

 

 

505 

 

Since the danger of radon comes from its alpha radiation and 
the radiation dose of alpha is much more than those of beta 
and gamma, it can be concluded that one cannot afford to 
neglect the danger of radon in an indoor place when the 
concentration of radon is too high or when the human is 
exposed to the long-term radiation of radon. Hence, it is 
imperative to take basic steps to reduce the level of radon in an 
indoor place. 
 

II.  E

NERGY 

S

AVING 

S

IMULATION

 

The best way to reduce the concentration of radon in an indoor 
area is to use an appropriate ventilation system. In fact, 
ventilation is a good way to decrease the amount of radon in 
the air of such places in a way that the concentration of the 
present pollutants in these places has an inverse relationship 
with the ventilation rate. The problem is that ventilation uses 
50% of the energy in a building. 
The more fresh air enters a building from outside, the higher 
the quality of the air inside is. However, that is true as long as 
the air outside is not polluted. The energy used by a 
ventilation system especially in colder areas is more than half 
of the total consumed energy; in addition, the heating and 
ventilation systems and the weather conditions affect radon 
concentration. 
Ventilation also affects the amount of pollutants outside a 
building like a home. Research has shown that building 
sources account for 40% of the total pollution in the 
environment [13-14].  
Pollutant control can be obtained using ventilation to dilute 
pollutant concentrations. Pollutant concentrations are inversely 
proportional to ventilation rates. Thus reducing concentrations 
50 percent (1/2 of the original values) require twice the initial 
ventilation. Reducing the concentration by 90 percent (1/10 
of the original value) would require ten times the ventilation 
[14]. 
With the advancement of technology and science, the 
construction of new buildings is directed toward an increased 
level of heating insulation. Moreover, the use of decorative 
stones inside buildings makes using a ventilation system more 
important.  
So it is desirable to create an optimum condition in which 
there is good-quality air with a low level of radon inside 
buildings along with saving energy. 
To compromise between indoor air quality (IAQ) and building 
energy saving (BES), there are several methods that they can 
be used, with respect to special situations, like local or spot 
ventilation displacement ventilation versus mixing ventilation, 

floor heating instead of radiator system or even heat recovery 
ventilation by using heat exchanger [14]. 
For example, the

 

Computational fluid dynamics (CFD), which 

is a computational application and a good substitute for 
experimental methods, is used to create an optimum condition 
of computational fluid dynamics. This research was done by 
Keramatollah Akbari and Jafar Mahmoudi in 2009. This 
application is able to simulate air current patterns and the 
distribution concentration of heating pollutants inside a 
building in order to find the optimum energy consumption and 
the pollutants at a low cost [14]. 
Generally, the main goal of energy saving is to keep a suitable 
condition with a steady rate of optimum ventilation. Indeed, 
the optimum point in Fig (3) is the one at which the most 
appropriate air is provided with the lowest consumption of 
energy. Too little air flow causes adequate IAQ while a too 
high flow rate leads to a higher demand of energy. 
 

 

Fig.3 pollutant control based on the ventilation rate and the source 
energy consumption [14] 

 

III.  R

ESULTS AND 

D

ISCUSSION

 

Although the contribution of alpha particles (emitted from radon 
progeny) in effective dose is about 15 mSvWLM

-1

 [15], just 

lungs received their absorbed dose and alpha particles cannot be 
exhaled out of the lungs because of their short range. Photons 
contribution in effective dose is important because all organs 
received the photon absorbed dose from radon progeny.  
UNSCEAR 2006 reported the radon concentration in Iran. The 
results showed the minimum and maximum concentration are 

3

/

82

m

Bq

 and

3

/

31000

m

Bq

, respectively. 

Journal of Middle East Applied Science and Technology (JMEAST) 

 

ISSN (Online): 2305-0225 
Issue 16(4), September 2014, pp. 503-507

 

 

506 

 

 Based on this results, the effective dose per year (from photons) 
is 

mSv

1

10

76

.

5

 in 

3

/

31000

m

Bq

. Therefore, this value is 

comparable with 

mSv

1

 (The annual allowable effective dose) 

[16]. 
Corresponding to these results, one cannot afford to neglect 
the danger of radon in an indoor place when the concentration 
of radon is too high or when the human is exposed to the long-
term radiation of radon. 
 

        Tablae 1. The annual absorbed dose of photon emitted from       

radon progeny based on UNSCEAR 2006 radon concentration 

measurement in Iran[12] 

Annual effective dose of photon from 

radon progeny 

year

Gy /

 

 

Oragans 

3

/

31000

m

Bq

 

 

107.52 

Kidneys 

226.34 

Pancreas 

33.61 

Small Intestine 

304.48 

Adrenals 

110.82 

Gall bladder 

554.40 

Heart 

66.61 

Skin 

152.65 

Thyroid 

165.75 

Stomach 

106.79 

Bone surfaces 

1544.99 

Lungs 

541.85 

esophagus 

8.543 

Bladder 

379.70 

Thymus 

262.84 

Liver 

18.08 

Brain 

27.97 

Colon 

335.08 

Breast 

15.77

 

Uterus 

16.76

 

Ovaries 

2.99

 

Testes  

118.60 

Red Bone 
Marrow 

126.76 

Muscle  

218.09

 

Spleen  

 

      As expected, the results in table (1) show that the lungs 
being the source receive the highest absorbed dose than other 
organs. The second and third highest dose after lungs is 
received by the heart and the esophagus, respectively, because 
both of them are located close to the lungs. 

So It is necessary to take major steps to reduce the level 
of     radon concentration inside buildings down to an 

acceptable level, and save energy at the same time, which 
is all for pursuing the goal of energy saving properly. 
Overall, radon can be handled with a minimum use of 
energy in ventilation systems in indoor areas through the 
following methods and steps: 

1-Prioritizing the discovery and examination of the 
paths and cracks of radon penetration 

2-Using plastic covers under foundations during 
construction 
3-Improving the ventilation system of indoor areas 
especially enhancing ventilation at lower levels and the 
floor 
4-Insulating and filling the cracks in the walls and floors 
against radon penetration 
5-Using radon drainage under building floors to lead 
radon out directly 
6-Installing an air pressure regulator to increase the air 
pressure inside building against radon penetration and 
minimize the effect of low air pressure inside buildings 
7-Using concrete mixtures with a high density as well as 
8-using compact cinder blocks instead of the hollow ones 
9-Doing the radioactive analysis of building materials 
before construction 
 

CANCULATION 

A investigation on radon dosimetry from radon progeny 

    

was performed. Hence, the danger caused by radon 
progeny in places with a high concentration of radon 
cannot be ignored. It is thus suggested to take necessary 
measures in such places to reduce the concentration of 
radon with optimum or minimum saving energy. If we 
take the preventive actions above to avoid the entrance of 
radon into residential building more seriously and 
basically, the consumption of energy used by a stronger 
ventilation system which uses more energy decreases. 
Thus, the main objective which is to minimize the threat 
of radon to human health is accomplished. 

 
 

REFRENCES 

[1]  UNSCEAR, source and effect of ionizing radiation, United Nations 

Scientific Committee on the Effect of Atomic Radiation. Report to 
general, assembly with annexes, (2000). 

[2]  M.WILENING,"RADON IN THE ENVIRONMENT", Elsevier scince 

publishers B.V, 1990 

[3]  A.Abbasnezhad,"Environmental Impacts and Implications of Radon-222, 

and Its Urgency Attention in Iran", Geology Department Shahid Bahonar 
University, P.O.Box:76175-133, Kerman, Iran 

Journal of Middle East Applied Science and Technology (JMEAST) 

 

ISSN (Online): 2305-0225 
Issue 16(4), September 2014, pp. 503-507

 

 

507 

 

[4]  A.Cavallo,"the radon equilibrium factor and comparative dosimetry in 

home and mines", Radiation Protection Dosimetry, (2000), Vol 92, No4, 
pp.295-298 

[5]  Table of Radioactive Isotopes. Periodic Table linked to decay data for 

known isotopes of each element. Available on 
http://ie.lbl.gov/education/isotopes.  html last accessed on December 15, 
(2008). 

[6]  Hashem Miri Hakimabad* and Lalle Rafat Motavalli,” EVALUATION 

OF SPECIFIC ABSORBED FRACTIONS FROM INTERNAL 
PHOTON SOURCES IN ORNL ANALYTICAL ADULT PHANTOM”, 
Radiation Protection Dosimetry (2008), Vol. 821, No. 4, pp. 134–724 

[7]  Briesmeister JF. MCNP - A general Monte Carlo N-Particle transports 

Code. Version ٤C Ed. Los Alamos New Mexico: Los Alamos National 
Laboratory 2000. 

[8]  Ulanovsky AV, Eckerman KF. Absorbed fractions for electron and 

photon emissions in the developing thyroid: fetus to five-years old. 
Radiat Prot Dosimetry. 1998;79(1-4):419-24. 

[9]  K.N. Yu, B.M.F. Lau, D. Nikezic," Assessment of environmental radon 

hazard using human respiratory tract models", Journal of Hazardous 
Materials 132 (2006) , pp.98–110 

[10]  . Markovic VM, Krstic D, Nikezic D. Gamma and beta doses in human 

organs due to radon progeny in human lung. Radiat Prot Dosimetry. 
2009; 531 (3):197-202. 

[11]  Shila Banari Bahnamiri, Reza Izadi Najafabadi, Seyed Hashem Miri 

Hakimabad, “The Monte Carlo Assessment of Photon Organ Doses from 
222Rn Progeny in Adult ORNL Phantom “, Iranian Journal of Medical 
Physics, Vol 9, No.2,Spring 2012, 93-102 

[12]  Shila Banari Bahnamiri, Seyed Hashem Miri Hakimabad ,Reza Izadi 

Najafabadi, electron dosimetry using variance reduction with OPRNL 
phantom,pp:

 

٦٢

 ،

٢٨

-

٣٦

,1391 

[13]  David T. Grimsrud, Daniel E. Hadlich, and  Patrick H. Huelman 1996 

Assessment of Radon Mitigation Methods in Low-rise Residential 

[14]  Keramatollah Akbari, Jafar Mahmoudi, Influence of residential 

ventilation on Radon mitigation with energy saving emphasis, Scientific 
Conference on "Energy system with IT" March ,2009, Stockholm, ISBN 
number 978-91-977493-4-3 

[15]  Nikezic D, Yu KN. Micro dosimetric calculation of absorption fraction 

and the resulting dose conversion factor for radon progeny. Radiat 
Environ Biophys. 2001; 40(3):207–11.  

[16]  International Commission on Radiological Protection. Human 

Respiratory Model for Radiological Protection. Ann ICRP. 1994;24:1-
120.  

[17]  International Commission on Radiological Protection. Human 

Respiratory Model for Radiological Protection. Ann ICRP. 1994;1:42-21 

[18]  David T. Grimsrud, Daniel E. Hadlich, and Patrick H. Huelman 1996 

Assessment of Radon Mitigation Methods in Low-rise Residential 
Buildings 

[19]  HVAC Systems in the Current Stock of US K-12 Schools, U.S. 

Environmental Protection Agency, EPA-600/R-92/125. 

[20]  Nuess, M. and R. Prill (1990). "Radon Control - Towards a Systems 

Approach." Indoor Air '90, Toronto, ICIAQC Inc 

Journal of Middle East Applied Science and Technology (JMEAST) 

 

ISSN (Online): 2305-0225 
Issue 16(4), September 2014, pp. 513-518

 

 

513 

 

 

Abstract

In this paper has been paid to investigates a hybrid 

buildings (solar-Fossil) in Kerman. Amount of thermal load is 
calculated in the two positions of typical walls and insulation walls.  
Then, according to the consumer of hot water is calculated hot water 
thermal load of building. From a Catalog is considered a solar 
collector and amount of energy extracted from this collector is 
calculated. Meanwhile, the number of collectors required to be 
installed on a building is determined. Also, due to limited the roof 
number of collectors installed on the roof and also amount of 
Percentage of hybrid is estimated in this building. The results of this 
study is that the total thermal load of requirements in Conditions of 
insulated and non-insulated 561036 Btu/h.ft

2

 to 952102 Btu/h.ft

2

 

respectively. However, the rate of energy extraction from the per unit 
collector area is estimated to equal to 926 Btu/h.ft

2

 

Keywords

Thermal load, insulation, solar collector, collector 

number required, recoverable energy collector. 

 

I.  I

NTRODUCTION

 

ith the increase in population and technological 
development in all countries of the world is also 

increased energy consumption too. One challenge that 
recently all countries faced by is finitude of fossil fuels, for 
this reason, researchers today has prompted research on 
alternative renewable energy. This energies also have less 
environmental pollution and are renewable too. Nonrenewable 
resources are divided into two categories. Nuclear sources and 
fossil sources including: coal, oil and natural gas, each of 
which in turn can have detrimental effects on the environment. 
The most damaging effects of the environment is the use of 
coal and oil and the most damaging effect on wildlife is 
related to the nuclear fuel in the long run their show. 
Excessive use from the fossil resources has caused collide the 
Earth's ecosystems that Including natural disasters have 
occurred in recent years can be pointed continuous droughts, 
ozone hole, global warming earth, floods and floods, Forest 
fires and … [1, 2]. According to statistics provided by the 
World Health Organization, the direct and indirect effects of 
climate change led to the deaths of 16 people per year and this 
rate will be doubled until 2009. Climate change caused by 
natural disasters such as floods, droughts, significant changes 

 

Department of Mechanical Engineering, Science and Research Branch, 

Islamic Azad University, Sirjan, Iran (corresponding author to provide phone: 
+98345-4233501; fax: +98345-4233501; e-mail: nazari.fatah@ gmail.com).  

Department of Mechanical Engineering, Science and Research Branch, 

Islamic Azad University, Sirjan, Iran (e-mail: araghizadeharef@ yahoo.com). 

in atmospheric temperature and outbreaks of infectious 
disease.  
    Due to the increasing urbanization in the world and 
domestic, public, commercial and office uses along the urban 
industries need to review and finding ways of meet the energy 
needs through renewable sources (green energy), has been 
attention more than before [3]. In the Table 1 has been shown 
compares the effectiveness of different types of energy 
sources on the environment [4].  
 

Tab. 1 compares the effectiveness of different types of energy 

sources on the environment. 

Sources of 

Energy 

Wildlife Air 

Pollution 

Climate 

Change 

Coal 

Very much 

Very much 

Very much 

Oil Medium 

to 

high 

Medium to 

high 

high 

Natural 

Gas 

Low to 

high 

Low to 

high 

Low to 

medium 

Biomass Low 

to 

high 

Low to 

medium 

Low to 

high 

Wind 

Near zero 

Near zero 

Low 

Sun 

Near zero 

Near zero 

Low 

Geothermal 

Near zero 

Near zero 

Low 

Nuclear high Near 

zero Low 

 

     According to the table 1, most adverse environmental 
changes is related to fossil fuel that In the meantime, coal 
accounted for the highest ranking in terms of destruction and 
nuclear energy has the greatest destruction of wildlife. 
According to the table, we can say the least adverse effects 
related to renewable energy sources, respectively sun, wind, 
geothermal and biomass have the least impact. Use solar 
energy in providing hot water consumption of homes and 
industrial centers, one of the most practical and most cost 
effective ways of using renewable energy in the world today, 
that's why most developed and developing countries are 
investing massively in this context. Equipment simple and 
inexpensive, lack of little requiring to maintenance, high 
efficiency and the possibility to produce and quick and easy 
installation, and also allows operation of all communities are 
for using the system strong reasons of this plan.  
     Industrial  countries  to  have  achieved  these  results  with 
energy efficiency in the industry and buildings can reduce 
energy consumption by 30 to 40 percent. In the surveys 

Analysis of a hybrid building in Kerman 

Fatah Nazari, Aref Araghizadeh 

W