MINIREVIEW

Melatonin mitigates mitochondrial malfunction

Introduction

Apoptosis is a form of programmed cell death that
physiologically plays a role in embryogenesis, metamor-
phosis, differentiation, proliferation/homeostasis, and as a
defensive mechanism to remove infected, mutated, or
damaged cells [1]. Under normal conditions, a balance
between apoptosis and cell survival is important in the
development of multicellular organisms and in the regula-
tion and maintenance of cell populations in tissues. In fact,
dysfunction of the apoptotic program is implicated in a
variety of pathological conditions. Thus, defects in apop-
tosis can result in cancer, autoimmune diseases and the
spread of viral infections, while neurodegenerative disor-
ders, AIDS and ischemic diseases are caused or enhanced
by excessive apoptosis [2]. As a consequence, modulation of
the different molecular pathways of the apoptotic process
has emerged as an attractive therapeutic strategy for these
diseases [3]. In particular, recent studies have focused on the
extrinsic or mitochondrial pathway of apoptosis which
leads to mitochondrial membrane permeabilization (MMP)
and translocation of a number of soluble proteins localized
in the matrix and in the intermembrane space to the cytosol
[4]. The cause of MMP is the opening of a nonspecific pore

in the inner mitochondrial membrane, known as mitoch-
ondrial transition pore (MTP), as a consequence of a rise in
matrix calcium levels [5]. Several factors are known to
greatly enhance the sensitivity of the MTP to calcium, of
which the most potent and relevant are oxidative stress,
ATP depletion, mitochondrial depolarization, among oth-
ers [6].

Melatonin is a highly conservative molecule found in

organism from unicells to vertebrates [7]. First discovered
as the main secretory product of the pineal gland, it is
known to be present in the blood, where its concentrations
exhibit a circadian rhythm; it is also found in high
concentrations in others body fluids and tissues and is
differentially distributed in subcellular organelles as well
[8–10]. Its wide extracellular and intracellular distribution
may explain the complexity of melatonin’s role in modu-
lating a diverse number of physiological processes through
different mechanisms of action. Classically, the effects of
melatonin were considered to be receptor mediated; more
recently, nonreceptor mediated actions, including its free
radical scavenging activities, have been uncovered [11–13].
Although two distinct receptors/binding sites have been
identified, i.e. membrane [14] and nuclear [15, 16], they may
not act separately [17]. New recent studies suggest that

Abstract: Melatonin, or N-acetyl-5-methoxytryptamine, is a compound
derived from tryptophan that is found in all organisms from unicells to
vertebrates. This indoleamine may act as a protective agent in disease
conditions such as Parkinson’s, Alzheimer’s, aging, sepsis and other
disorders including ischemia/reperfusion. In addition, melatonin has been
proposed as a drug for the treatment of cancer. These disorders have in
common a dysfunction of the apoptotic program. Thus, while defects which
reduce apoptotic processes can exaggerate cancer, neurodegenerative
disorders and ischemic conditions are made worse by enhanced apoptosis.
The mechanism by which melatonin controls cell death is not entirely known.
Recently, mitochondria, which are implicated in the intrinsic pathway of
apoptosis, have been identified as a target for melatonin actions. It is known
that melatonin scavenges oxygen and nitrogen-based reactants generated in
mitochondria. This limits the loss of the intramitochondrial glutathione and
lowers mitochondrial protein damage, improving electron transport chain
(ETC) activity and reducing mtDNA damage. Melatonin also increases the
activity of the complex I and complex IV of the ETC, thereby improving
mitochondrial respiration and increasing ATP synthesis under normal and
stressful conditions. These effects reflect the ability of melatonin to reduce
the harmful reduction in the mitochondrial membrane potential that may
trigger mitochondrial transition pore (MTP) opening and the apoptotic
cascade. In addition, a reported direct action of melatonin in the control of
currents through the MTP opens a new perspective in the understanding of
the regulation of apoptotic cell death by the indoleamine.

Josefa Leo´n

1

, Darı´o Acun˜a-

Castroviejo

2

, Germane Escames

2

,

Dun-Xian Tan

1

and Russel

J. Reiter

1

1

Department of Cellular and Structural Biology,

University of Texas Health Science Center,
San Antonio, TX;

2

Departamento de

Fisiologı´a, Facultad de Medicina, Instituto de
Biotecnologı´a, Universidad de Granada,
Granada, Spain

Key words: apoptosis, melatonin,
mitochondria, mitochondrial transition pore,
necrosis

Address reprint requests to Russel J. Reiter,
Department of Cellular and Structural Biology,
Mail Code 7762, University of Texas Health
Science Center, San Antonio, 7703 Floyd Curl
Drive, San Antonio, TX 78229-3900, USA.
E-mail: reiter@uthscsa.edu

Received July 1, 2004;
accepted August 30, 2004.

J. Pineal Res. 2005; 38:1–9

Doi:10.1111/j.1600-079X.2004.00181.x

Copyright

 Blackwell Munksgaard, 2004

Journal of Pineal Research

1

calreticulin may represent a new class of high-affinity
melatonin-binding sites involved in some functions of the
indoleamine including genomic regulation [18]. For exam-
ple, some of the antioxidant properties of melatonin are
because of a genomic effect in regulating protein expression
and activities of antioxidant enzymes [19] as well as the
inducible (iNOS) and mitochondrial (mtNOS) isoforms of
nitric oxide synthase [20, 21]. Melatonin inhibits nNOS
activity due its binding to the calcium–calmodulin complex
[22]. Some compounds structurally related to melatonin
including its neural metabolite, N-acetyl-5-methoxykynu-
renamine (AMK), also inhibit nNOS activity in rat striatum
in a dose-dependent manner. This suggests that the effect of
melatonin on cerebral nNOS may be mediated, at least in
part, through its metabolites [22, 23]. AMK and N

1

-acetyl-

N

2

-formyl-5-methoxykinuramine (AFMK) are formed dur-

ing the enzymatic metabolism of melatonin in the brain
[24], but also as secondary products when melatonin acts as
free radical scavenger of reactive oxygen (ROS) and
reactive nitrogen species (RNS). Interestingly, these metab-
olites are also efficient antioxidants [25, 26].

The recent discovery that mitochondria are a target for

melatonin opened a new perspective to understand the
mechanism of action of this indoleamine [27]. Melatonin
has a direct role in mitochondrial homeostasis [9, 28, 29],
which may explain the protective effect of this molecule in
diseases such as Parkinson’s disease, Alzheimer’s disease,
epilepsy, aging, ischemia–reperfusion and sepsis, all of
which have mitochondrial dysfunction as a primary or
secondary cause of the condition [30]. As apoptosis is a
mechanism involved in the cell death described in these
diseases, it was expected that melatonin may exhibit
antiapoptotic effects [27]. In fact, several findings document
a role for melatonin in modulating experimentally induced
apoptosis by a variety of agents. The indoleamine inhibits
apoptosis in immune cells [31, 32], peripheral tissues [33, 34]
and prevents neuronal cell death in models of Parkinsonism
[35–37], Alzheimer’s disease [38–41] and ischemia–reper-
fusion injury [42–44]. The mechanism by which melatonin
reduces apoptosis seems to be related to its antioxidant and
free radical scavenging properties. However, recently, a new
mechanism has revealed that the antiapoptotic effects of
melatonin may be explained by a direct interaction with the
MTP [45]. Interestingly, melatonin acts as a proapoptotic
agent in cancer models [46], and, therefore, it appears to
have differential actions in regulating the apoptotic process
in normal and cancer cells [47].

Mitochondria and cell death

Apoptosis and necrosis are two forms of cell death, with
clearly distinguishable morphological and biochemical
features [48]. Apoptosis is morphologically characterized
by cytoplasmic contraction, chromatin condensation, nuc-
lear fragmentation, internucleosomal DNA fragmentation,
plasma membrane bleb formation, apoptotic body forma-
tion and retention of organelle integrity [49]. Many of these
changes are activated specifically by a set of cysteine
proteases called caspases. They possess an active site,
cysteine, and cleave substrates after aspartic acid residues
[1]. Apoptotic cells are rapidly sequestered by phagocytes or

by neighboring cells before they can lyse, spill their contents
and cause an inflammatory reaction [50].

In contrast to apoptosis, necrosis does not involve any

regular DNA or protein degradation pattern and is
accompanied by swelling of the entire cytoplasm (oncosis)
and of the mitochondrial matrix, both of which occur
shortly before the cell membrane ruptures [51].

These two types of cellular demise can occur concurrently

in tissues or cell cultures exposed to the same stimulus [52]
and, often, the intensity of the same initial insult dictates
the prevalence of either apoptosis or necrosis and it can also
vary among experiments [53]. This suggests that while some
early events may be common to both types of cell death, a
downstream controller may be required to direct cells
toward the organized execution of apoptosis [54]. Thus, the
early phase of both modes of cell death may involve a
similar change in MMP [51].

The cause of the MMP is the opening of a nonspecific

pore in the inner mitochondrial membrane, known as the
MTP. Opening of the MTP allows the passage of any
molecule of >1500 Da across the inner mitochondrial
membrane; it can be rapidly closed by chelation of calcium.
Because the MTP also allows rapid passage of protons, its
opening is accompanied by depolarization of the mito-
chondria and uncoupling of oxidative phosphorylation. In
addition, the equilibration of small solutes across the inner
mitochondrial membrane leaves behind high concentrations
of proteins in the matrix and these exert a colloidal osmotic
pressure that is responsible for the extensive swelling of
mitochondria associated with MTP opening [5].

If the MTP remains open, ATP levels can be totally

depleted leading to cell necrosis. On the contrary, transient
opening of the MTP may be involved in the intrinsic
pathway or mitochondrial-mediated apoptosis through the
release of proteins usually confined to the mitochondrial
compartment. Known as apoptogenic proteins, these
released molecules include cytochrome c [55], AIF [56],
HtrA2/Omi [57], SMAC/Diablo [58] and EndoG [59] of
which cytochrome c has been the most intensively studied.
Upon intrinsic apoptotic stimulation, cytochrome c is
released into the cytosol where it triggers the formation of
the apoptosome, a multimeric molecule composed of
apoptotic protease activating factor-1 (Apaf-1), dATP
and cytochrome c [60]. At present, the only known function
of the apoptosome is the recruitment and activation of
caspase 9 [61]. The caspase 9/apoptosome complex targets
and activates caspase 3. This is considered the point of no
return in the apoptotic signaling cascade [4]. However,
mitochondria play an important role in apoptosis even in
the absence of the MTP opening as release of proapoptotic
factors from the intermembrane space of mitochondria may
occur through changes in the outer membrane permeability.
These are induced by proapoptotic proteins such as Bax
and Bid, two members of the Bcl-2 protein family [62].

The exact composition of the MTP is not known; it is

currently believed to involve cytosolic proteins (hexoquin-
ase), outer membrane proteins (peripheral benzodiazepine
receptor, voltage-dependent anion channel or VDAC),
intermembrane proteins (creatine kinase), inner membrane
proteins (adenine nucleotide translocator or ANT); and
also matrix proteins (cyclophilin D) [6].

Leo´n et al.

2

It appears that any major change in energy balance

(absence of oxygen, depletion of ATP, depletion of NADH/
NADPH, disruption of the DW

m

) or changes in the redox

balance (oxidation/depletion of reduced gluthatione, exces-
sive production of ROS/RNS) may induce MTP opening.
In addition, determined signal transduction pathways
triggered via intracellular or cell surface receptors can
result in MTP opening. Thus, second messengers such as
increases in cytosolic calcium concentration, ceramide and
caspase 1-like enzymes facilitate MTP [51].

The Bcl-2 family of proteins are potent regulators of

apoptosis. This family is divided into three groups, based
on structural similarities and functional criteria. Members
of group I (Bcl-2 and Bcl-x

L

) possess antiapoptotic activity,

whereas members of groups II (Bax and Bak) and group III
(Bid) promote cell death [62]. One hypothesis proposes that
permeabilization of the mitochondrial outer membrane to
small proteins occurs through interaction of a Bcl-2 family
member with the MTP. Bax has been shown to induce the
MTP in cells upon induction of apoptosis via an interaction
with VDAC. However, other experiments suggested the
involvement of ANT in Bax-mediated apoptosis [63].

Apoptotic cell death can also be triggered when death

signals, i.e. tumor necrosis factor (TNF) or Fas ligand,
interact with the death receptors at the plasma membrane,
resulting in the recruitment of adaptor molecules such as
the Fas-associated protein with the death domain, which is
responsible for activating caspase 8. Activated caspase 8
can directly activate caspase 3 and caspase 7, but it can also
cleave Bid. The cleaved C-terminal Bid (truncated Bid or
tBid) translocates to the mitochondria and induces the
release of cytochrome c, linking the death receptor pathway
with the mitochondrial pathway [64]. Interaction of tBid
with the mitochondria does not seem to require the
activation of the MTP or Bax, although tBid and Bax can
function synergistically [65]. In addition, Bid-induced
cytochrome c release can be antagonized by Bcl-2 death
repressor protein [64].

Mitochondria, free radicals and cell death

Cells possess multiple sites for ROS/RNS production and a
number of mechanisms for their detoxification [66]. Small
fluctuations in the steady-state concentrations of ROS/RNS
may play a role in intracellular signaling [67]; however,
uncontrolled increases in these metabolites lead to free
radical-mediated chain reactions which indiscriminately
target proteins, lipids and DNA resulting in cell death [66].

Mitochondria are considered the main source of free

radicals in the cell and oxidants produced by the electron
transport chain (ETC) have been implicated in cell death
[68]. Most available data indicate that the origin of
excessive ROS generation is a consequence of an impair-
ment of the ETC [68].

The major consequence of an increased ROS production

is the subsequent decreased availability of intracellular
antioxidants such as NAD(P)H or GSH, leading to an
imbalance in the redox status. This, in turn, results in
damage to the mitochondrial respiratory chain and a
further elevation of free radical generation [69]. Other
major consequence of a reduction in the mitochondrial

GSH content is the opening of the MTP because of the
oxidation of critical sulfhydryl groups present in the
channel [6].

The ROS produced by mitochondria can be discharged

into the cytoplasm where they induce calcium release from
the endoplasmic reticulum, which leads to mitochondrial
calcium loading. The increase in the concentration of
mitochondrial calcium can induce opening of the MTP [70].
Other consequence due to the accumulation of calcium in
the mitochondria include the induction of mtNOS causing a
rise in nitric oxide (NO

) and peroxynitrite (ONOO

)

)

production which induce (cyclosporine-insensitive) cyto-
chrome c release associated with peroxidation of mitoch-
ondrial lipids [71].

Melatonin and mitochondria

In vitro and in vivo experiments have shown that melatonin
can influence mitochondrial homeostasis. Thus, melatonin
increases the activities of the brain and liver mitochondrial
respiratory complexes I and IV in a time-dependent manner
after its administration to rats [28]. Melatonin also coun-
teracts ruthenium red-induced inhibition of complexes I
and IV in brain and liver mitochondria [28].

Further experiments indicate that the indoleamine, but

not other endogenous antioxidants such as vitamins C and
E, regulates the glutathione redox status in isolated brain
and hepatic mitochondria, correcting it when it is disrupted
by oxidative stress [9]. Under normal conditions, melatonin
reduces mitochondrial hydroperoxide levels and stimulates
the activity of the two enzymes involved in the GSH-GSSG
balance, i.e. glutathione peroxidase (GPx) and glutathione
reductase (GRd) [9]. Melatonin is also able to counteract
the oxidative damage induced by high doses of t-butyl
hydroperoxide (t-BHP), restoring GSH levels and GPx and
GRd activities and scavenging hydroperoxides. However,
vitamins C and E have no such effect under these conditions
[9]. These results are in agreement with other data showing
the effects of melatonin on GSH homeostasis in brain tissue
[72] and in gastric mucosa and testis [73]. As a result of the
interaction of melatonin with complexes I and IV and the
subsequent promotion of electron flux through the ETC,
melatonin increases ATP production under basal condi-
tions and counteracts cyanide-induced depletion of ATP
associated with complex IV inhibition [29]. Although the
indoleamine also reportedly stimulates metabolism of
isolated mitochondria from frog oocytes [74], other experi-
ments have shown that melatonin reduces the oxygen
consumption of liver mitochondria [75], an effect that
may protect this organelle from excessive oxidative damage
[76–79].

The antioxidant and free radical scavenging capacity of

melatonin protects proteins of the ETC and mtDNA from
the ROS/RNS-induced oxidative damage [80]. Melatonin
also interacts with lipid bilayers, reducing lipid peroxida-
tion and stabilizing mitochondrial inner membranes [81], an
effect that may improve ETC activity [30]. In a model of
sepsis induced by the administration of lipopolysacharide in
rats, melatonin prevented functional deterioration which
occurs as a result of mtNOS-induced mitochondrial failure.
In this situation, melatonin administration also reduced

Melatonin, mitochondria and apoptosis

3

both mtNOS activity and NO

production and also

counteracted the inhibition of complexes I and IV [21].

Other studies have described one possible mechanism by

which melatonin increases the activity of the complex IV;
this protective action may be due, at least in part, to an
effect on the expression of mtDNA. Melatonin increases the
expression of mtDNA encoded polypeptide subunits I, II
and III of complex IV in mitochondria from rat liver in a
time-dependent manner which correlates with the increase
in complex IV activity [27]. In experiments with fresh
mitochondria prepared from rats treated for 10 days with
melatonin, the indoleamine reduced the levels of mRNA in
these animals, compared with non-melatonin-treated con-
trols [27]. These effects were also produced by AMK and
this compound was more potent than melatonin itself [82].
Interestingly, AMK is a metabolite of melatonin and its
in vivo production could be responsible for some of the
apparent actions of melatonin [83].

Collectively, these results may help to explain the

protective effects of melatonin in neurodegenerative dis-
eases and other disorders which involve mitochondrial
dysfunction. Thus, melatonin prevents the inhibition of
mitochondrial complex I activity induced by MPTP [84]
and limits dopamine autooxidation [85]. Melatonin is also
neuroprotective in in vitro models of Alzheimer’s disease
through its stimulatory effects on complex V activity [9, 28,
38]. Furthermore, the antiepileptic properties of melatonin
may be due to the regulation of the central GABA-
benzodiazepine receptor complex and inhibition of the
glutamate-mediated response [86]. However, other studies
reveal that melatonin acts by inhibiting ROS-induced
mitochondrial dysfunction in vivo [78, 87] as well as in
cultured cells [88]. In the senescence accelerated mouse,
either chronic or acute melatonin administration restores
the activity of the mitochondrial complexes [89–91]. Treat-
ment with melatonin before injury protects against mitoch-
ondrial dysfunction induced by ischemia–reperfusion of rat
liver [92] and restores hepatic energetic status by inhibiting
both activation of iNOS and the production of TNFa [93].

As mitochondrial dysfunction can lead to ATP depletion,

depolarization and initiation of apoptotic processes, it is
possible that the antiapoptotic effects of melatonin in the
situations described above may be a result of its protective
actions [27, 30, 82]. However, recent findings have shown
that the interaction of melatonin with mitochondria in
terms of antiapoptotic agent is more complex than
described here.

Melatonin, mitochondria and apoptosis

Mitochondrial dysfunction associated with the loss of
calcium homeostasis and enhanced cellular oxidative stress
have long been recognized to play a major role in cell death
associated with excitotoxicity [94], a well-known process
that has been implicated in neurodegeneration in Hunting-
ton’s disease, Alzheimer’s disease, Parkinsonism, epilepsy
and disorders such as ischemia–reperfusion [95]. Excitotox-
icity results from the over-stimulation of ionotropic glu-
tamate receptors, in particular, the N-methyl-d-aspartate
(NMDA) and the a-amino-hydroxy-5-methyl-4-isoxazole-
propionate (AMPA) receptors which lacks the GluR2

subunit [96, 97]. Over-stimulation can occur as a result of
an increase in the liberation of excitatory aminoacids from
the presynaptic neuron. However, energy depletion caused
by mitochondrial dysfunction can result in neuronal depo-
larization, opening of NMDA receptors and the influx of
calcium then activates several intracellular enzymes, inclu-
ding phospholipase A2, NOS, xanthine dehydrogenase,
calcineurin and endonucleases, many of which elicit the
generation of endogenous ROS. Additionally, when taken
up by mitochondria, calcium can induce MTP opening and
cell death [6].

Melatonin is a potent antiexcitotoxic agent which has

been documented in both in vivo and in vitro experiments
[86]. Electrophysiological experiments demonstrate the
antagonism of melatonin on the NMDA receptor [98–
101]. This effect is dose-dependent and, as a consequence of
the treatment, the NMDA receptor channel pore remains
closed, thereby preventing the opening of L-type calcium
channels and calcium influx [102]. Other experiments have
shown that melatonin also inhibits activation of nNOS
through its binding to the calcium–calmodulin complex,
reducing the production of both NO

and ONOO

)

as well

as the presynaptic release of additional glutamate [22].
Some synthetic melatonin-related kynurenines also reduce
striatal NMDA excitability in a dose-dependent manner;
some of these kynurenines were 100 times more potent than
melatonin in this action. The effects of these drugs were
linked to their inhibition of nNOS activity and a reduction
in NO

production and were not because of an interaction

with melatonin membrane receptors [22, 23]. Further
experiments demonstrate that melatonin is able to diminish
the rises in cytosolic calcium induced by NMDA in cultured
mouse striatal neurons [45]. Taken together, these results
show that melatonin limits cytosolic calcium rises and, as a
consequence, the concomitant production of free radicals;
additionally, melatonin reduces the associated mitochond-
rial membrane depolarization [103]. Other experiments
carried out using rat brain astrocytes [104] and cultured
PC12 cells [105] show that melatonin prevents ROS-
induced calcium overload and mitochondrial membrane
depolarization. In these two reports, melatonin indirectly
inhibited the opening of the MTP and blocked MTP-
dependent cytochrome c release, the downstream activation
of caspase 3 and the cell death by apoptosis [104]. In a
recent in vivo experiment as well, melatonin was reported to
inhibit caspase 3 activation in the mouse brain damaged by
ischemia–reperfusion [106]. However, recordings have been
obtained from the inner mitochondrial membrane of rat
liver mitoplasts using the patch-clamp approach and have
demonstrated a direct effect of melatonin on the MTP
activity at the single channel level. These results showed
that melatonin strongly inhibits MTP currents in a dose-
dependent manner with an IC

50

of 0.8 m [45].

Studies in peripheral tissues have suggested that melato-

nin inhibits apoptotic processes via its antioxidant proper-
ties. For example, melatonin protects against cyclosporin
A-induced hemolysis in human erythrocytes because of
depuration resulting from O



2

produced by mitochondria

[107]. Melatonin is also highly protective against mitoch-
ondrial ROS-induced cardiotoxicity resulting from doxo-
rubicin treatment. In this study, pretreatment with

Leo´n et al.

4

melatonin prevented the release of lactate dehydrogenase
and restored membrane potential [108].

Many lines of evidence indicate an antiapoptotic effect of

melatonin on thymic cells. The methoxyindole reduces
DNA fragmentation induced by glucocorticoids in cultured
thymocytes [31]. A reduction in glucocorticoid-receptor
mRNA levels in the intact thymus as well as in cultured
thymocytes that were treated with melatonin seem to be the
most likely mechanism whereby melatonin inhibits gluco-
corticoid-induced cell death [32]. Other studies reported
that melatonin inhibits DNA fragmentation and the release
of cytochrome c from mitochondria of mouse thymocytes
treated with dexamethasone. Melatonin may act by inhib-
iting the mitochondrial pathway, presumably through the
regulation of Bax protein levels [109], although melatonin
was ineffective per se on this parameter.

Interestingly, proapoptotic effects of melatonin have

been noted in a number of tumor cell lines [47]. In MCF-
7 breast tumor cell studies conducted in the absence of
exogenous steroid hormones, treatment with melatonin
produced a 64% reduction in the cellular ATP levels
through a membrane receptor-modulated pathway [110].
These findings in tumor cells are in contrast to the described
actions of melatonin in normal cells and suggest melato-
nin’s potential use in killing cancer cells while preserving
the function of normal cells.

Concluding remarks

The actions of melatonin on mitochondria may be mediated
via at least three mechanisms (Fig. 1). First, antioxidant and
free radical scavenging properties of the indoleamine protect
the organelle from oxidative damage. Secondly, its actions at
the mtDNA level increase the expression of complex IV.
Thirdly, a direct interaction of melatonin with the MTP was
found recently. These effects suggest that melatonin, because
of these direct and indirect mitochondrial actions, may have
utility as an antiapoptotic agent for normal cells.

In addition, some of the products that are produced

when melatonin detoxifies reactive species [25, 111–114],
especially AMK and AFMK, are also both efficient
antioxidants [25, 83, 115] that may be found in mitochon-
dria; these metabolites can also act at the mitochondrial
genomic level, resulting in a cascade of protective reactions.
Given that these compounds exert the same actions as
melatonin, they also could act as antiapoptotic drugs in
normal cells and as proapoptotic agents in cancer models.
In all the studies where comparisons were made, melato-
nin’s metabolites AMK and AFMK were more potent than
melatonin itself [82]. Therefore, these compounds may exert
the same regulatory effects on apoptotic processes in a more
efficient manner than melatonin.

References

1. Gupta S. Molecular steps of death receptor and mitochond-

rial pathways of apoptosis. Life Sci 2001; 69:2957–2964.

2. Fadeel B, Orrenius S, Zhivotovsky B. Apoptosis in human

disease: a new skin for the old ceremony? Biochem Biophys
Res Commun 1999; 266:699–717.

3. Barisic K, Petrik J, Rumora L. Biochemistry of apoptotic

cell death. Acta Pharm 2003; 53:151–164.

4. Henry-Mowatt J, Dive C, Martinou JC, James D. Role of

mitochondrial membrane permeabilization in apoptosis and
cancer. Oncogene 2004; 23:2850–2860.

5. Bernardi P. Mitochondrial transport of cations: channels,

exchangers and permeability transition. Physiol Rev 1999;
79:1127–1155.

6. Halestrap AP, Mcstay GP, Clarke SJ. The permeability

transition pore complex: another view. Biochimie 2002;
84:153–166.

7. Hardeland R, Fuhrberg B. Ubiquitous melatonin – pres-

ence and effects in unicells, plants and animals. Trends Comp
Biochem 1996; 2:25–44.

8. Menendez-Pelaez A, Reiter RJ. Distribution of melato-

nin in mammalian tissues: the relative importance of nuc-

MTP

Caspase 9

Apoptosome

Cyt c

Ca

2+

NMDA-R

Ca

2+

Ca-CaM

nNOS

NO•

CaM

Ca

2+

Ca

2+

L-Ca

2+

Channel

DEATH RECEPTOR

Pro-caspase 8

Caspase 8

Pro-caspase 3

Caspase 3

Bid

MELATONIN

MELATONIN

MELATONIN

Bax/Bak

Ca

2+

NO•

mtNOS

mtDNA

CI

ClI

Clll

CIV CV

O

2

•–

O

2

•–

O

2

•–

ADP

ATP

CELL DEATH

Fig. 1

Melatonin is a highly lipophilic

molecule that readily crosses cellular
membranes and enters a variety of sub-
cellular compartments including the mito-
chondria. Once there, melatonin exerts its
effects by a number of mechanisms. This
property may explain how the indoleamine
exerts its differential antiapoptotic effects.
The

intracellular

and

mitochondrial

actions of melatonin, as currently under-
stood, are summarized in this figure.
NMDA-R, NMDA receptor; CaM, cal-
modulin;

CaCaM,

calcium-calmodulin

complex; CI–CV, complexes I–V

Melatonin, mitochondria and apoptosis

5

lear versus cytosolic localization. J Pineal Res 1993; 15:
59–69.

9. Martin M, Macias M, Escames G, Leon J, Acun

˜ a-Cast-

roviejo

D. Melatonin but not vitamins C and E maintains

glutathione homeostasis in t-butyl hydroperoxide-induced
mitochondrial oxidative stress. FASEB J 2000; 14:1677–1679.

10. Reiter RJ, Tan DX. What constitutes a physiological con-

centration of melatonin? J Pineal Res 2003; 34:79–80.

11. Tan DX, Chen LD, Poeggeler B, Manchester LC, Reiter

RJ. Melatonin: a potent endogenous hydroxyl radical scav-
enger. Endocrine J 1993; 1:57–60.

12. Reiter RJ, Tan DX, Manchester LC, EL-Sawi MR.

Melatonin reduces oxidant damage and promotes mitoch-
ondrial respiration: implications for aging. Ann N Y Acad Sci
2002; 959:238–250.

13. Allegra M, Reiter RJ, Tan DX, Gentile C, Tesoriere L,

Livrea

MA. The chemistry of melatonin’s interaction with

reactive species. J Pineal Res 2003; 34:1–10.

14. Witt-Enderby PA, Bennett J, Jarzynka MJ, Firestine S,

Melan

MA. Melatonin receptors and their regulation: bio-

chemical and structural mechanisms. Life Sci 2003; 72:2183–
2198.

15. Acun

˜ a-Castroviejo

D, Reiter RJ, Menendez-Pelaez A,

Pablos

MI, Burgos A. Characterization of high-affinity

melatonin binding sites in purified cell nuclei of rat liver.
J Pineal Res 1994; 16:100–112.

16. Becker-Andre M, Wiesenberg I, Schaeren-Wiemers N

et al. Pineal gland hormone melatonin binds and activates an
orphan of the nuclear receptor superfamily. J Biol Chem 1994;
269:28531–28534.

17. Carlberg C. Gene regulation by melatonin. Ann N Y Acad

Sci 2000; 917:387–396.

18. Macias M, Escames G, Leon J et al. Calreticulin-melatonin:

an unexpected relationship. Eur J Biochem 2003; 270:832–
840.

19. Antolin I, Rodriguez C, Sainz RM et al. Neurohormone

melatonin prevents cell damage: effect on gene expression for
antioxidant enzymes. FASEB J 1996; 10:882–890.

20. Crespo E, Macias M, Pozo D et al. Melatonin inhibits

expression of the inducible NO synthase II in liver and lung
and prevents endotoxemia in lipopolysaccharide-induced
multiple organ dysfunction syndrome in rats. FASEB J 1999;
13:1537–1546.

21. Escames G, Leon J, Macias M, Khaldy H, Acun

˜ a-Cast-

roviejo

D. Melatonin counteracts lipopolysaccharide-in-

duced expression and activity of mitochondrial nitric oxide
synthase in rats. FASEB J 2003; 17:932–934.

22. Leon J, Macias M, Escames G et al. Structure-related

inhibition of calmodulin-dependent neuronal nitric-oxide
synthase activity by melatonin and synthetic kynurenines.
Mol Pharmacol 2000; 58:967–975.

23. Leon J, Vives F, Crespo E et al. Modification of nitric oxide

synthase activity and neuronal response in rat striatum by
melatonin and kynurenine derivatives. J Neuroendocrinol
1998; 10:297–302.

24. Hlrata F, Hayaishi O, Tokuyama T, Seno S. In vitro and

in vivo formation of two new metabolites of melatonin. J Biol
Chem 1974; 249:1311–1313.

25. Tan DX, Manchester LC, Burkhardt S et al. N1-acetyl-

N2-formyl-5-methoxykynuramine, a biogenic amine and
melatonin metabolite, functions as a potent antioxidant.
FASEB J 2001; 15:2294–2296.

26. Tan DX, Hardeland R, Manchester LC et al. Mechanistic

and comparative studies of melatonin and classic antioxidants
in terms of their interactions with the ABTS cation radical.
J Pineal Res 2003; 34:249–259.

27. Acun

˜ a-Castroviejo

D, Escames G, Carazo A, Leon J,

Khaldy

H, Reiter RJ. Melatonin, mitochondrial home-

ostasis and mitochondrial-related diseases. Curr Top Med
Chem 2002; 2:133–151.

28. Martin M, Macias M, Escames G et al. Melatonin-induced

increased activity of the respiratory chain complexes I and IV
can prevent mitochondrial damage induced by ruthenium red
in vivo. J Pineal Res 2000; 28:242–248.

29. Martin M, Macias M, Leon J, Escames G, Khaldy H,

Acun

˜ a-Castroviejo

D. Melatonin increases the activity of

the oxidative phosphorylation enzymes and the production of
ATP in rat brain and liver mitochondria. Int J Biochem Cell
Biol 2002; 34:348–357.

30. Acun

˜ a-Castroviejo

D, Martin M, Macias M et al. Mela-

tonin, mitochondria, and cellular bioenergetics. J Pineal Res
2001; 30:65–74.

31. Sainz RM, Mayo JC, Uria H et al. The pineal neurohor-

mone melatonin prevents in vivo and in vitro apoptosis in
thymocytes. J Pineal Res 1995; 19:178–188.

32. Sainz RM, Mayo JC, Reiter RJ, Antolin I, Esteban MM,

Rodriguez

C. Melatonin regulates glucocorticoid receptor:

an answer to its antiapoptotic action in thymus. FASEB J
1999; 13:1547–1556.

33. Nava M, Romero F, Quiroz Y, Parra G, Bonet L,

Rodriguez-Iturbe

B. Melatonin attenuates acute renal

failure and oxidative stress induced by mercuric chloride
in rats. Am J Physiol Renal Physiol 2000; 279:F910–
F918.

34. Meki AR, Abdel-Ghaffar SK, EL-Gibaly I. Aflatoxin B1

induces apoptosis in rat liver: protective effect of melatonin.
Neuroendocrinol Lett 2001; 22:417–426.

35. Mayo JC, Sainz RM, Uria H, Antolin I, Esteban MM,

Rodriguez

C. Melatonin prevents apoptosis induced by

6-hydroxydopamine in neuronal cells: implications for Par-
kinson’s disease. J Pineal Res 1998; 24:179–192.

36. Chuang JI, Chen TH. Effect of melatonin on temporal

changes of reactive oxygen species and glutathione after
MPP+ treatment in human astrocytoma U373MG cells.
J Pineal Res 2004; 36:117–125.

37. Thomas B, Mohanakumar KP. Melatonin protects against

oxidative stress caused by 1-methyl-4-phenyl-1,2,3,6-tetra-
hydropyridine in the mouse nigrostriatum. J Pineal Res 2004;
36:25–32.

38. Pappolla MA, Sos M, Omar RA et al. Melatonin prevents

death of neuroblastoma cells exposed to the Alzheimer amy-
loid peptide. J Neurosci 1997; 17:1683–1690.

39. Zatta P, Tognon G, Carampin P. Melatonin prevents free

radical formation due to the interaction between beta-amyloid
peptides and metal ions [AI(III), Zn(II), Cu(II), Mn(II),
Fe(II)]. J Pineal Res 2003; 35:98–103.

40. Lahiri DK, Chen D, GE YW, Bondy SC, Sharman EH.

Dietary supplementation with melatonin reduces levels of
amyloid beta-peptides in the murine cerebral cortex. J Pineal
Res 2004; 36:224–231.

41. Li SP, Deng YQ, Wang XC, Wang YP, Wang JZ. Mela-

tonin protects SH-SY5Y neuroblastoma cells from calyculin
A-induced neurofilament impairment and neurotoxicity.
J Pineal Res 2004; 36:186–191.

Leo´n et al.

6

42. Cheung RT. The utility of melatonin in reducing cerebral

damage resulting from ischemia and reperfusion. J Pineal Res
2003; 34:153–160.

43. Pei Z, Cheung RT. Melatonin protects SHSY5Y neuronal

cells but not cultured astrocytes from ischemia due to oxygen
and glucose deprivation. J Pineal Res 2003; 34:194–201.

44. Kilic E, Kilic V, Reiter RJ, Bassettic CL, Hermann DM.

Prophylactic use of melatonin against focal cerebral ischemia
in mice: role of endothelin converting enzyme-1. J Pineal Res,
in press.

45. Andrabi SA, Sayeed I, Siemen D, Wolf G, Horn TF.

Direct inhibition of the mitochondrial permeability transition
pore: a possible mechanism responsible for anti-apoptotic
effects of melatonin. FASEB J 2004; 18:869–871.

46. Winczyk K, Pawlikowski M, Karasek M. Melatonin

and RZR/ROR receptor ligand CGP 52608 induce apoptosis
in the murine colonic cancer. J Pineal Res 2001; 31:179–
182.

47. Sainz RM, Mayo JC, Rodriguez C, Tan DX, Lopez-Bu-

rillo

S, Reiter RJ. Melatonin and cell death: differential

actions on apoptosis in normal and cancer cells. Cell Mol Life
Sci 2003; 60:1407–1426.

48. Wyllie AH, Kerr JF, Currie AR. Cell death: the signifi-

cance of apoptosis. Int Rev Cytol 1980; 68:251–306.

49. Kerr JFR, Harmon BV. Definition and incidence of apop-

tosis: an historical perspective. In: Apoptosis: the Molecular
Basis of Cell Death. Tomei LD, Cope FO eds. Cold Spring
Harbor Laboratory Press, Cold Spring Harbor, NY, 1991; pp.
5–29.

50. Ren Y, Savill J. Apoptosis: the importance of being eaten.

Cell Death Differ 1998; 5:563–568.

51. Kroemer G, Dallaporta B, Resche-Rigon M. The mit-

ochondrial death/life regulator in apoptosis and necrosis.
Annu Rev Physiol 1998; 60:619–642.

52. Ankarcrona M, Dypbukt JM, Bonfoco E et al. Glutam-

ate-induced neuronal death: a succession of necrosis or
apoptosis depending on mitochondrial function. Neuron
1995; 15:961–973.

53. Bonfoco E, Krainc D, Ankarcrona M, Nicotera P,

Lipton

SA. Apoptosis and necrosis: two distinct events

induced, respectively, by mild and intense insults with
N-methyl-D-aspartate or nitric oxide/superoxide in cortical
cell cultures. Proc Natl Acad Sci U S A 1995; 92:7162–7166.

54. Leist M, Nicotera P. The shape of cell death. Biochem

Biophys Res Commun 1997; 236:1–9.

55. Yang J, Liu X, Bhalla K et al. Prevention of apoptosis by

Bcl-2: release of cytochrome c from mitochondria blocked.
Science 1997; 275:1129–1132.

56. Susin SA, Zamzami N, Castedo M et al. Bcl-2 inhibits the

mitochondrial release of an apoptogenic protease. J Exp Med
1996; 184:1331–1341.

57. Suzuki Y, Imai Y, Nakayama H, Takahashi K, Takio K,

Takahashi

R. A serine protease, HtrA2, is released from the

mitochondria and interacts with XIAP, inducing cell death.
Mol Cell 2001; 8:613–621.

58. Du C, Fang M, Li Y, Li L, Wang X. Smac, a mitochondrial

protein that promotes cytochrome c-dependent caspase acti-
vation by eliminating IAP inhibition. Cell 2000; 102:33–42.

59. Li LY, Luo X, Wang X. Endonuclease G is an apoptotic

DNase when released from mitochondria. Nature 2001;
412:95–99.

60. Cain K, Bratton SB, Cohen GM. The Apaf-1 apoptosome: a

large caspase-activating complex. Biochimie 2002; 84:203–214.

61. Hu Y, Ding L, Spencer DM, Nunez G. WD-40 repeat re-

gion regulates Apaf-1 self-association and procaspase-9 acti-
vation. J Biol Chem 1998; 273:33489–33494.

62. Sharpe JC, Arnoul T D, Youle RJ. Control of mitoch-

ondrial permeability by Bcl-2 family members. Biochim Bio-
phys Acta 2004; 1644:107–113.

63. Hengartner MO. The biochemistry of apoptosis. Nature

2000; 407:770–776.

64. Luo X, Budihardjo I, Zou H, Slaughter C, Wang X. Bid,

a Bcl2 interacting protein, mediates cytochrome c release from
mitochondria in response to activation of cell surface death
receptors. Cell 1998; 94:481–490.

65. Kim TH, Zhao Y, Barber MJ, Kuharsky DK, Yin XM.

Bid-induced cytochrome c release is mediated by a pathway
independent of mitochondrial permeability transition pore
and Bax. J Biol Chem 2000; 275:39474–39481.

66. Fleury C, Mignotte B, Vayssiere JL. Mitochondrial

reactive oxygen species in cell death signaling. Biochimie 2002;
84:131–141.

67. Droge W. Free radicals in the physiological control of cell

function. Physiol Rev 2002; 82:47–95.

68. Mignotte B, Vayssiere JL. Mitochondria and apoptosis.

Eur J Biochem 1998; 252:1–15.

69. Lenaz G. The mitochondrial production of reactive oxygen

species: mechanisms and implications in human pathology.
IUBMB Life 2001; 52:159–164.

70. Hajnoczky G, Davies E, Madesh M. Calcium signaling and

apoptosis. Biochem Biophys Res Commun 2003; 304:445–
454.

71. Ghafourifar P, Richter C. Nitric oxide synthase activity in

mitochondria. FEBS Lett 1999; 418:291–296.

72. Floreani M, Skaper SD, Facci L, Lipartiti M, Giusti P.

Melatonin maintains glutathione homeostasis in kainic acid-
exposed rat brain tissues. FASEB J 1997; 11:1309–1315.

73. Othman AL, El-Missiry MA, Amer MA. The protective

action of melatonin on indomethacin-induced gastric and
testicular oxidative stress in rats. Redox Rep 2001; 6:173–177.

74. De Atenor MS, De Romero IR, Brauckmann E, Pisano

A, Legname AH. Effects of the pineal gland and melatonin
on the metabolism of oocytes in vitro and on ovulation in
Bufo arenarum

. J Exp Zool 1994; 268:436–441.

75. Reyes-Toso CF, Ricci CR, DeMignone IR et al. In vitro

effect of melatonin on oxygen consumption in liver mito-
chondria of rats. Neuroendocrinol Lett 2003; 24:341–344.

76. Sewerynek E, Wiktorska J, Lewinski A. Effects of mela-

tonin on the oxidative stress induced by thyrotoxicosis in rats.
Neuroendocrinol Lett 1999; 20:157–161.

77. Yamamoto HA, Mohanan PV. Melatonin attenuates brain

mitochondria DNA damage induced by potassium cyanide
in vivo and in vitro. Toxicology 2002; 179:29–36.

78. Yamamoto HA, Mohanan PV. Ganglioside GT1 B and

melatonin inhibit brain mitochondrial DNA damage and
seizures induced by kainic acid in mice. Brain Res 2003;
964:100–106.

79. Karbownik M, Reiter RJ, Garcia JJ, Tan DX, Qi W,

Manchester

LC. Melatonin reduces rat hepatic macromo-

lecular damage due to oxidative stress caused by delta-ami-
nolevulinic acid. Biochim Biophys Acta 2000; 1523:140–146.

80. Karbownik M, Tan D, Manchester LC, Reiter RJ. Renal

toxicity of the carcinogen delta-aminolevulinic acid: anti-
oxidant effects of melatonin. Cancer Lett 2000; 161:1–7.

81. Garcia JJ, Reiter RJ, Pie J et al. Role of pinoline and

melatonin in stabilizing hepatic microsomal membranes

Melatonin, mitochondria and apoptosis

7

against oxidative stress. J Bioenerg Biomembr 1999; 31:609–
616.

82. Acun

˜ a-Castroviejo

D, Escames G, Leon J, Carazo A,

Khaldy

H. Mitochondrial regulation by melatonin and its

metabolites. Adv Exp Med Biol 2003; 527:549–557.

83. Ressmeyer AR, Mayo JC, Zelosko V et al. Antioxidant

properties of the melatonin metabolite N1-acetyl-5-meth-
oxykynuramine (AMK): scavenging of free radicals and pre-
vention of protein destruction. Redox Rep 2003; 8:205–213.

84. Khaldy H, Escames G, Leon J, Bikjdaouene L, Acun

˜ a-

Castroviejo

D. Synergistic effects of melatonin and deprenyl

against MTPP-induced mitochondrial damage and DA
depletion. Neurobiol Aging 2003; 24:491–500.

85. Khaldy H, Escames G, Leon J, Vives F, Luna JD, Acun

˜ a-

Castroviejo

D. Comparative effects of melatonin, L-depre-

nyl, Trolox and ascorbate in the suppression of hydroxyl
radical formation during dopamine autoxidation in vitro.
J Pineal Res 2000; 29:100–107.

86. Acun

˜ a-Castroviejo

D, Escames G, Macias M et al. Cell

protective role of melatonin in the brain. J Pineal Res 1995;
19:57–63.

87. Bikjdaouene L, Escames G, Leon J et al. Changes in brain

amino acids and nitric oxide after melatonin administration in
rats with pentylenetetrazole-induced seizures. J Pineal Res
2003; 35:54–60.

88. Dabbeni-Sala F, Floreani M, Franceschini D, Skaper

SD, Giusti P. Kainic acid induces selective mitochondrial
oxidative phosphorylation enzyme dysfunction in cerebellar
granule neurons: protective effects of melatonin and GSH
ethyl ester. FASEB J 2001; 15:1786–1788.

89. Okatani Y, Wakatsuki A, Reiter RJ. Melatonin protects

hepatic mitochondrial respiratory chain activity in senescence-
accelerated mice. J Pineal Res 2002; 32:143–148.

90. Okatani Y, Wakatsuki A, Reiter RJ, Miyahara Y.

Hepatic mitochondrial dysfunction in senescence-accelerated
mice: correction by long-term, orally administered physiolo-
gical levels of melatonin. J Pineal Res 2002; 33:127–133.

91. Okatani Y, Wakatsuki A, Reiter RJ, Miyahara Y.

Acutely administered melatonin restores hepatic mitochond-
rial physiology in old mice. Int J Biochem Cell Biol 2003;
35:367–375.

92. Okatani Y, Wakatsuki A, Enzan H, Miyahara Y. Pro-

tective effect of melatonin against mitochondrial injury in-
duced by ischemia and reperfusion of rat liver. Eur J
Pharmacol 2003; 469:145–152.

93. Rodriguez S, Leal C, Portilla E, Olivares N, Muniz J.

Effect of exogenous melatonin on hepatic energetic status
during ischemia/reperfusion: possible role of tumor necrosis
factor-alpha and nitric oxide. J Surg Res 2001; 100:141–149.

94. Frandsen A, Schousboe A. Excitatory amino acid-mediated

cytotoxicity and calcium homeostasis in cultured neurons.
J Neurochem 1993; 60:1202–1211.

95. Rego AC, Olivelra CR. Mitochondrial dysfunction and

reactive oxygen species in excitotoxicity and apoptosis:
implications for the pathogenesis of neurodegenerative dis-
eases. Neurochem Res 2003; 28:1563–1574.

96. Tymianski M, Charl Ton MP, Carlen PL, Tator CH.

Source specificity of early calcium neurotoxicity in cultured
embryonic spinal neurons. J Neurosci 1993; 13:2085–2104.

97. Carriedo SG, Sensi SL, Yin HZ, Weiss JH. AMPA expo-

sures induce mitochondrial Ca(2+) overload and ROS gen-
eration in spinal motor neurons in vitro. J Neurosci 2000;
20:240–250.

98. Castillo-Romero JL, Vives-Montero F, Reiter RJ,

Acun

˜ a-Castroviejo

D. Pineal modulation of the rat caud-

ate-putamen spontaneous neuronal activity: roles of melato-
nin and vasotocin. J Pineal Res 1993; 15:147–152.

99. Castillo-Romero JL, Acun

˜ a-Castroviejo

D, Escames G,

Vives

F. Age-related changes of neuronal responsiveness to

melatonin in the striatum of sham-operated and pinealec-
tomized rats. J Pineal Res 1995; 19:79–86.

100. Escames G, Acun

˜ a-Castroviejo

D, Vives F. Melatonin-

dopamine interaction in the striatal projection area of senso-
rimotor cortex in the rat. Neuroreport 1996; 7:597–600.

101. Escames G, Acun

˜ a-Castroviejo

D, Leon J, Vives F.

Melatonin interaction with magnesium and zinc in the
response of the striatum to sensorimotor cortical stimulation
in the rat. J Pineal Res 1998; 24:123–129.

102. Escames G, Macias M, Leon J et al. Calcium-dependent

effects of melatonin inhibition of glutamatergic response in rat
striatum. J Neuroendocrinol 2001; 13:459–466.

103. Smith IF, Plant LD, Boyle JP, Skinner RA, Pearson HA,

Peers

C. Chronic hypoxia potentiates capacitative Ca2+

entry in type-1 cortical astrocytes. J Neurochem 2003;
85:1109–1116.

104. Jou MJ, Peng TI, Reiter RJ, Jou SB, Wu HY, Wen ST.

Visualization of the antioxidative effects of melatonin at the
mitochondrial level during oxidative stress-induced apoptosis
of rat brain astrocytes. J Pineal Res 2004; 32:55–60.

105. Kilic E, Kilic U, Yulug B, Hermann DM, Reiter RJ.

Melatonin reduces disseminate neuronal death after mild fo-
cal ischemia in mice via inhibition of caspase-3 and is suitable
as an add-on treatment to tissue-plasminogen activator.
J Pineal Res 2004; 36:171–176.

106. Park JW, Youn YC, Kwon OS, Jang YY, Han ES, Lee CS.

Protective effect of serotonin on 6-hydroxydopamine- and
dopamine-induced oxidative damage of brain mitochondria
and synaptosomes and PC12 cells. Neurochem Int 2002;
40:223–233.

107. Kwak CS, Mun KC, Suh SI. Production of oxygen free

radicals and of hemolysis by cyclosporine. Transplant Proc
2002; 34:2654–2655.

108. Xu M, Ashraf M. Melatonin protection against lethal my-

ocyte injury induced by doxorubicin as reflected by effects on
mitochondrial membrane potential. J Mol Cell Cardiol 2002;
3:75–79.

109. Hoijman E, Rocha Viegas L, Keller Sarmiento MI,

Rosenstein

RE, Pecci A. Involvement of Bax protein in the

prevention of glucocorticoid-induced thymocytes apoptosis
by melatonin. Endocrinology 2004; 145:418–425.

110. Scott AE, Cosma GN, Frank M, Wells RL, Gardner HS,

Jr Disruption of mitochondrial respiration by melatonin in
MCF-7 cells. Toxicol Appl Pharmacol 2001; 171:149–156.

111. Carampin P, Rosan S, Dalzoppo D, Zagotto G, Zatta P.

Some biochemical properties of melatonin and the charac-
terization of a relevant metabolite arising from its interaction
with H

2

O

2

. J Pineal Res 2003; 34:134–142.

112. De Almeida EA, Martinez GR, Klitzke CF, De Medei-

ros

MH, Di Mascio P. Oxidation of melatonin by singlet

molecular oxygen (O2(

1

O

2

) produces N1-acetyl-N2-formyl-5-

methoxykynurenine. J Pineal Res 2003; 35:131–137.

113. Rozov SV, Filatova EV, Orlov M et al. N1-acetyl-N2-

formyl-5-methoxykynuramine is a product of melatonin oxi-
dation in rats. J Pineal Res 2003; 35:245–250.

114. Hardeland R, Poeggeler B, Niebergall R, Zelosko V.

Oxidation of melatonin by carbonate radicals and chemilu-

Leo´n et al.

8

minescence emitted during pyrrole ring cleavage. J Pineal Res
2003; 34:17–25.

115. Lopez-Burillo S, Tan DX, Rodriguez-Gallego V et al.

Melatonin and its derivatives cyclic 3-hydroxymelatonin, N1-

acetyl-N2-formyl-5-methoxykynuramine and 6-hydroxymela-
tonin reduce DNA oxidative damage induced by Fenton
reagents. J Pineal Res 2003; 34:178–184.

Melatonin, mitochondria and apoptosis

9