PII S0361-9230(00)00314-2

Changes in autonomic and EEG patterns induced by

hypnotic imagination of aversive stimuli in man

A. Gemignani,

1

E. Santarcangelo,

1

L. Sebastiani,

1

C. Marchese,

2

R. Mammoliti,

2

A. Simoni

1

and

B. Ghelarducci

1

*

Departments of

1

Physiology and Biochemistry; and

2

Electric Systems and Automation, University of Pisa,

Pisa, Italy

[Received 17 January 2000; Accepted 18 February 2000]

ABSTRACT: Autonomic and electroencephalographic (EEG) re-
sponses to aversive stimuli presented by means of hypnotic
suggestion have been studied in man. Healthy volunteers with
simple phobia were screened for susceptibility to hypnosis. The
experimental paradigm included periods of rest during which
the hypnotized subjects were asked to produce an emotionally
neutral mental image and periods of emotional activation in
which they were asked to image a phobic object. Heart rate
(HR), respiratory frequency (RF) and EEG were processed to
obtain the HR-related indexes of sympatho-vagal balance and
the EEG spectral components. The results showed a significant
increase in HR and RF with a shift of the sympatho-vagal in-
dexes towards a sympathetic predominance during the hyp-
notic emotional activation. EEG activity showed a significant
increase in the gamma band with a left fronto-central preva-
lence. There was also a less pronounced increase in the beta
band.

In conclusion, by means of hypnosis, autonomic and

behavioral responses to fear-like stimuli can be induced in man
in a reproducible and controlled manner. Such a paradigm
could be applied in human neuroimaging studies to identify
central nervous structures that modulate stress and fear-re-
lated reactions.

© 2000 Elsevier Science Inc.

KEY WORDS: Hypnosis, Emotions, Heart rate, Respiration, Be-
havior, Humans.

INTRODUCTION

In animals, including humans, the engagement with emotionally
relevant environmental situations is always accompanied by dis-
tinct modifications of autonomic and behavioral variables. These
reactions usually fall into two main categories: one, consistent with
aggressive behavior, is represented by an active type of response to
a fearful stimulus and is characterized by a massive sympathetic
activation and by desynchronization of the electroencephalogram
(EEG); the other is typical of a passive response or withdrawal and
displays an opposite pattern of autonomic and behavioral response
[3]. In general, these emotional reactions have evolved in the
different animal species to produce the optimal behavior to fulfill
basic defensive/offensive requirements or to cope with stressful
situations produced by physical (pain, exercise, postural adjust-
ments, etc.) or purely emotional (fear, anxiety, anger, etc.) stimuli.

The adaptation of the responses to different purposes is assisted by
the coordinated action of several central nervous structures. Ani-
mal studies have indeed shown that fear-related autonomic and
behavioral responses are under the control, besides the hypothal-
amus [62], of specific forebrain areas, such as the central nucleus
of amygdala [27,35], the medial prefrontal cortex [52] and specific
cerebellar lobules [29,59,65]. Although specific autonomic and
behavioral responses can be recorded in man when exposed to
noxious or stressful stimuli [47], very little is known about their
dynamics in controlled situations. Further, the role exerted in man
by these central nervous structures, identified in the animal, in the
integration of stressful stimuli and in the adaptation of these
responses to the environmental context, remains unknown.

Experiments on fear-related behaviours in man can be advan-

tageously performed using hypnosis as a cognitive tool to admin-
ister a complex stimulus to subjects whose attention can be strictly
focussed on the task. In fact, subjects highly susceptible to hyp-
nosis exhibit remarkable attentional and disattentional abilities
[15]; their mental processing is strongly associated with vivid
imagery [16,17,71] and good visuo-spatial skills [24]. They also
exhibit an all-encompassing involvement towards specific atten-
tional objects, which is defined as “absorption” [67], as well as a
“fantasy proneness” [38], involving immersion in a private world
of fantasy and vivid daydreaming. Furthermore, expectation of
hypnosis, in susceptible subjects, enhances the vividness of visual
imagery [46] and a hypnotic induction can improve some of their
cognitive abilities [12,13,40,63]. Hypnosis appears more effective
than simple suggestion in the regulation of some mind– body
relationships, like relaxation, vasomotor and pain control [32]. Due
to the neuro-psychological traits of highly susceptible subjects and
to their possible amplification after a hypnotic induction, hypnosis
can be very useful in allowing subjects to accept complex cogni-
tive aversive stimuli, such as suggestion of fear, so that they can
experience their emotions very deeply and vividly [20,21,74].

It is known that marked changes in autonomic patterns are

present in subjects with a simple phobia when exposed to their
specific phobic object [18,44] and that these individuals display
cognitive capabilities very similar to those found in subjects highly
susceptible to hypnosis [26]. Then, on the basis of the psycholog-
ical traits of phobic and hypnotizable subjects, a paradigm based

* Address for correspondence: Prof. Brunello Ghelarducci, Department of Physiology and Biochemistry, University of Pisa, Via S. Zeno 31, 56127 Pisa,

Italy. Fax:

⫹0039-050-552183; E-mail: ghelarducci@dfb.unipi.it

Brain Research Bulletin, Vol. 53, No. 1, pp. 105–111, 2000

Copyright © 2000 Elsevier Science Inc.

Printed in the USA. All rights reserved

0361-9230/00/$–see front matter

105

on the comparison between the autonomic and behavioral re-
sponses obtained during a hypnotic phobic and a neutral hypnotic
suggestion, offers many advantages. In fact, hypnosis allows us to
present a stimulus very similar to the natural one, to control the
cognitive channels involved in the requested imagery and the
duration of the stimulation, to avoid any effect of stimulus expec-
tation and to control both the long-lasting cognitive stimuli and the
baseline conditions. On the basis of the stereotyped reactions
exhibited by phobics [18] and controlled through hypnosis, the
present experiments were aimed to study the patterns of autonomic
and EEG responses evoked by fearful stimulation and to identify
the best markers to chose proper acquisition times in neuroimaging
experiments.

MATERIALS AND METHODS

Five right-handed (Edinburgh Handedness Inventory Score

⬎16) volunteers (three females, 2 males, aged 21–30 years),
exhibiting a Diagnostic and Statistical Manual of Mental Disor-
ders
, 4

th

edition [1] simple phobia, without any other psychiatric,

neurological and medical disorder, were selected. Each volunteer
signed a written consent approved by the local Ethical Committee
(IRCCS, Stella Maris Scientific Foundation, Pisa, Italy) describing
the procedures and the experimental risks and affirming his right to
withdraw from the experiment at any time. Subjects hypnotic
susceptibility (

ⱖ10/12) was assessed through the Stanford Hyp-

notic Susceptibility Scale A and C [72,73] individually adminis-
tered. The neuropsychological correlates of hypnotizability related
to our task were tested through the Tellegen Absorption Scale
(TAS; score: 0 –34) [67], the Visual Vividness Imagery Question-
naire (VVIQ; score: 20 – 80) [41] and the Differential Attentional
Processes Inventory (DAPQ; score: 36 –252) [30].

During the experimental sessions, subjects sat in an armchair in

a semi-dark room. Only the hypnotist remained in contact with
them throughout the experiment. Recording instrumentation was
not visible and the room was lined with sound attenuating panels
to reduce the environmental noise. Experimental sessions con-
sisted of six conditions of 5 min each: (1) Quiet wakefulness (eyes
closed, QW); (2) neutral hypnosis (hypnosis without any sugges-
tion except relaxation, NH1); (3) suggestions of a neutral object
(NSH); (4) neutral hypnosis (NH2); (5) suggestions of a phobic
object (ASH); (6) neutral hypnosis (NH3). The neutral (NSH) and
phobic object (ASH) were suggested through the request of a
visual and auditory mental imagery; besides, subjects were told
that “they were clearly aware” of the presence of such objects in
the room. Neutral and phobic stimulation were obviously different
in their emotional valence but they were carefully balanced in
terms of their sensory-motor aspects. All experimental sessions
were carried out between 1500 1900 h. During sessions, EEG,
electroonlogram (EOG), frontalis electromyogram (EMG), elec-
trocardiogram (ECG) and respiratory trace were monitored con-
tinuously. After awakening, subjects underwent a structured inter-
view to collect experiential data. Subjects rated their negative
emotion using a numerical scale of 0 to 10 whose endpoints were
“ no fear-like involvement ” and “extremely intense fear-like
sensation”. To avoid a ceiling effect, subjects were instructed to
rate 5 an intense negative emotion, comparable to that usually
induced by the presence of the real phobic object.

The analysis was focused on the ASH condition and its NSH

control since they are the proper indicators of the methodolog-
ical efficacy of the present approach to the study of the auto-
nomic and behavioral responses described in typical fight or
flight reaction to fear.

ECG and Respiratory Trace Acquisition and Data Analysis

For ECG recording Red Dot™ Ag/AgCl electrodes were used

while the respiratory frequency (RF) was detected through a poly-
meric piezoelectric dc-coupled transducer wrapped around the
chest. Signals were amplified (ECG: gain

⫽ 1 K; RA ⫽ 10 K),

filtered (ECG: low pass

⬍100 Hz and high pass ⬎1 Hz) and

digitized at a 256 Hz.

From the ECG signal a derivative/threshold algorithm provided

the series of RR intervals (tachogram) and heart rate (HR). The
series of consecutive RR intervals were used to provide the power
spectral density using a Fast Fourier Transform (FFT)-based ap-
proach. It was evaluated on 128 beats (about 2 min) consecutive
epochs-length. This always provided two power spectrum values
(“a”, “b”) for each experimental condition (5 min). The duration of
the periodical phenomena in the cardiac signal was measured as a
function of cardiac beats, rather than seconds [49,66].

The respiratory frequency signal was sampled once for every

cardiac cycle, in correspondence with the R wave, thus obtaining
a respirogram synchronized with the tachogram. The two series
(tachogram and synchronized respirogram) are generally used for
further cross-spectral analysis [8].

Two major oscillatory components are usually detectable in RR

variability, one of which, synchronous with respiration, is de-
scribed as high frequency (HF; about 0.25 Hz and varying with
respiration), whereas the other, corresponding to the slow waves of
arterial pressure, is described as low frequency (LF; about 0.1 Hz).
Areas under the power spectra in LF (0.03– 0.15 Hz) and HF
(0.15– 0.4 Hz) were calculated and used for statistical compari-
sons. The LF and HF oscillatory components were both presented
in normalized units (nu). In addition, the LF-to-HF ratio has been
calculated to provide an indication of the sympatho-vagal balance.
[43,49].

EEG, EOG and EMG Acquisition and Data Analysis

For EEG, EOG and EMG, Ag/AgCl electrodes (d

⫽ 8 mm;

impedance

⬍10 K⍀) were used. Monopolar EEG electrodes were

placed bilaterally in frontal (F3–F4), central (C3–C4) and posterior
(O1–O2) scalp regions and referred to an indifferent electrode
(Cz). Signals were amplified (EEG: gain

⫽ 100 K; EOG: gain ⫽

1 K; EMG: gain

⫽ 1 K) and filtered (EEG: low pass ⬍100 Hz and

high pass

⬎0.3 Hz; EOG: low pass ⬍30 Hz and high pass ⬎0.3

Hz; EMG: low pass

⬍500 Hz and high pass ⬎1 Hz). The EEG

frequency bands considered were defined as follows: alpha (8 –13
Hz), beta (13–36 Hz) and gamma (36 – 44 Hz).

Digitized signals (sampling rate

⫽ 256 Hz), were divided in 2-s

epochs. Before performing FFT, data have been filtered by means
of a Hanning window. The auto-regressive power spectrum of the
signal has been calculated using a 1-s overlap and it was validated
by comparing collected data with a power spectrum calculated via
FFT [28].

EEG periods altered by body and head movement artifacts have

been visually discarded, while the EOG and frontalis EMG arti-
facts have been automatically removed by means of the Indepen-
dent Component Analysis (ICA) [34].

Statistical Procedures

Because the sample belonged to the same population, two-way

general linear model analysis of variance (ANOVA) has been
applied to normalized data. The descriptive data of HR and RF as
well as the spectral indexes of RR variability relative to the
different experimental conditions were analyzed by means of a two
way ANOVA. The EEG relative power over periods of five epochs
was evaluated and compared across experimental conditions and

106

GEMIGNANI ET AL.

channels for each frequency band by means of three separate
two-way ANOVAs.

Post-hoc Bonferroni test has been performed and threshold for

significance has been set at p

⬍ 0.05.

RESULTS

Psychological Tests

All subjects exhibited remarkable imaginative and attentional

abilities as shown by the high scores obtained in the psychological
tests (TAS: 21.6

⫾ 3.9; DAPQ: 140.8 ⫾ 21.6; VVIQ: 61.2 ⫾ 8.3).

At the end of recording sessions, experiential data were collected
through a structured interview assessing that each subject had
experienced a good hypnotic response and had clearly visualized
both the neutral and phobic object. Moreover, it was ascertained
that after the phobic suggestion all subjects had felt an intense
negative emotion (mean score

⫽ 4.8 ⫾ 0.2), comparable to that

usually induced by the presence of the real phobic object.

Heart Rate and Respiratory Frequency

Heart rate was increased during aversive hypnotic stimulation

(88.1

⫾ 8.4 beats/min) compared to the mean rate during the

baseline experimental conditions (79.0

⫾ 3.5 beats/min) and its

control during neutral hypnotic stimulation (80.2

⫾ 8.7 beats/min).

Respiration frequency also increased during ASH (19.3

⫾ 2.1

resp/min) with respect to the mean frequency during baseline
conditions (15.2

⫾ 0.8 resp/min) and its NSH control (16.7 ⫾ 3.4

resp/min). To highlight the effect of the experimental conditions
on both HR and RF, data have been normalized. For each subject
the normalization has been obtained by subtracting from the values
of HR and RF in each condition, the mean value across the whole
session and dividing the result by the standard deviation [11].
These deviations are shown in Fig. 1.

For HR normalized values, ANOVA yielded a significant dif-

ference among conditions (F(5,20)

⫽ 13.33; ⬍ 0.001) with ASH

different from all the other conditions as indicated by post-hoc test.
RF normalized values exhibited a similar pattern except for a slight
increase during NSH. When compared across experimental con-
ditions, the values were significantly different [F(5,20)

⫽ 12.18;

p

⬍ 9.001] and post-hoc test showed that in ASH they were

significantly higher than in the other conditions.

Power Spectrum Analysis of RR Variability

Figures 2A and B show the mean power of the LF and HF

components of the heart period variability in relation to the exper-
imental conditions.

As can be noted in Fig. 2A, the LF component reached its

maximum in the second part of ASH (70.6

⫾ 3.5 nu) and in the

first part of NH3 (77.4

⫾ 7.9 nu). A similar behavior, although less

pronounced, could be observed during the second part of NSH
(48.2

⫾ 4.7 nu). LF data calculated among conditions were sig-

nificantly different [F(11,44)

⫽ 4.45, ⬍ 0.001]. Post-hoc test

revealed that both the first part of NH3 and the second part of ASH
were different from NH1 (43.3

⫾ 5.6; 46.1 ⫾ 8.7 nu) and NH2

(55.3

⫾ 6.6; 48.2 ⫾ 4.7 nu)

The HF component depicted in Fig. 2B changed in a reciprocal

manner compared to LF, with the lowest values in the second part

FIG. 1. Heart rate (HR) and respiratory frequency (RF). The effects of each
experimental condition on HR (black bars) and RF (white bars), are shown
as deviations of the mean normalized values (mean

⫾ SEM) from the mean

across the whole session (zero line). Abbreviations: ASH, suggestion of a
phobic object; NH1, neutral hypnosis (hypnosis without any suggestion
except relaxation; NH2, neutral hypnosis; NH3, neutral hypnosis; NSH,
suggestion of a neutral ojbect; QW, quiet wakefulness (eyes closed).

FIG. 2. Spectral analysis of RR interval variability. For all the experimental
conditions the low frequency (LF) and high frequency (HF) components
and the LF-to HF ratio are shown in (A), (B), and (C), respectively. For
each condition, two consecutive spectral index values (a,b) are given (see
Materials and Methods). Abbreviations: ASH, suggestion of a phobic
object; NH1, neutral hypnosis (hypnosis without any suggestion except
relaxation; NH2, neutral hypnosis; NH3, neutral hypnosis; NSH, sugges-
tion of a neutral object; QW, quiet wakefulness (eyes closed).

AUTONOMIC RESPONSES, BEHAVIOR AND EMOTIONS

107

of ASH (27.4

⫾ 3.7 nu) and in the first part of NH3 (21.5 ⫾ 7.8

nu). Again, ANOVA showed a significant difference among con-
ditions [F(11,44)

⫽ 4.27 ⬍ 0.001] and post-hoc test indicated

that the first part of NH3 and the second part of ASH were
significantly different from NH1 (54.6

⫾ 5.8; 51.9 ⫾ 9.0 nu), the

second part of NH2 (49.0

⫾ 4.9 nu) and the first part of both NSH

(52.7

⫾ 7.0 nu) and ASH (55.1 ⫾ 5.9 nu).

Figure 2C shows the LF-to-HF ratio in the same experimental

conditions. An increase of the ratio became evident in the second
part of ASH (3.4

⫾ 0.5 nu), reached its maximum in the first part

of NH3 (6.7

⫾2.2 nu) and decreased to baseline values during the

second part of this condition (2.1

⫾ 0.8 nu). The comparison

among LF-to RF ratios in the different conditions (ANOVA)
yielded significant differences [F(11,44)

⫽ 4.63, ⬍ 0.001].

However, at variance with the behavior of the previous indexes,
post-hoc test revealed that only the ratio computed for the first part
of NH3 was different from that of NH1 (0.9

⫾ 0.2; 1.2 ⫾ 0.4 nu),

NH2 (1.5

⫾ 0.4 nu; 1.1 ⫾ 0.2 nu), NSH (0.9 ⫾ 0.2 nu; 2.0 ⫾ 0.3

nu), the first part of ASH (0.8

⫾ 0.2 nu), the second part of NH3

and QW (3.6

⫾ 1.7 nu; 1.6 ⫾ 0.5 nu).

Power Spectrum Analysis of EEG Rhythms

ANOVA did not show any significant change for alpha and

beta bands in our experimental paradigm, even if a trend of beta
power to increase in NSH and ASH in fronto-central regions could
be observed.

For gamma activity (Figs. 3A–C), significant interactions were

detected among hemispheres, lobes, channels and experimental
conditions.

A

two-way

channels

⫻ conditions ANOVA

[F(25,4002)

⫽ 3.45, ⬍ 0.001], showed in NSH (Fig. 3A) a

significant prevalence of gamma power in F4 vs. O2 on the right
side while in ASH (Fig. 3B) post-hoc tests indicated differences in
C4 vs. O2 on the right side and F3 vs. O1 and C3 vs. O1 on the left
side.

Lobes

⫻ conditions [F(10,4020) ⫽ 3.23, ⬍ 0.001] interac-

tions were present and post-hoc comparisons showed in both ASH
and NSH a significant prevalence in frontal vs. posterior and in
central vs. posterior lobes. No differences were detected between
frontal and central regions.

Significant hemispheres

⫻ conditions interactions were also

observed [F(5,4026)

⫽ 5.77, ⬍ 0.001].The comparison for

hemispheres in NSH and ASH revealed a significant left side
dominance.

In NH3 (Fig. 3C), gamma power did not regain its baseline

value. A significant left hemisphere prevalence as well as a lobe
effect were present. In addition, comparisons between channels in
NH3 revealed a marked fronto-occipital gradient on the left side
(F3

⬎C3⬎O1), which was present, albeit attenuated, also on the

right side.

DISCUSSION

The results of the present study indicate that all subjects expe-

rienced an intense negative emotion, as shown by the high scores
of the structured interview and by the remarkable changes in the
cardiorespiratory output and in the EEG pattern after the hypnotic
suggestion of a phobic object. This cognitive tool has proved
useful both to amplify the basal psychological characteristics of
subjects in which the high hypnotizability was combined with a
simple phobia and to provide a reliable model of controlled cog-
nitive stimulation, even if the screening of subjects according to
the standard scales of hypnotic susceptibility is an extremely time
consuming procedure.

Results also show that the respiratory and cardiac frequencies

are significantly increased with respect to the basal condition

during the aversive suggestion. The observed changes in cardio-
vascular variables are strictly related to the suggestions received
by the subjects (relaxation during neutral hypnosis and fear during
the activation period) and do not depend on the hypnotic state. In
fact, when a standard hypnotic induction [72,73] is performed, the
effect of the suggested relaxation is a parasympathetic prevalence
[20,58], which is considered a simple relaxation response [6].

The comparison between neutral and aversive activation indi-

cated that the affective and cognitive components of the stimuli
were able to modulate differently heart and respiratory rates: the
former was more influenced by emotion, while the latter was
affected by both components of the stimulus. Changes in breathing
related to a cognitive task have been described when auditory
stimulation (i.e., listening to a story, as in our case) was added to
the baseline conditions with eyes closed and whenever a music
captured the respiratory rhythm. Such changes may be caused by
a volitional respiratory adjustment to the voice or music rhythm
[60].

The spectral analysis of the RR interval shows that the changes

in cardiac and respiratory frequencies observed during fear-like
stimulation are linked to changes in LF and HF components,
indicating a shift of the sympatho-vagal balance towards a sym-
pathetic prevalence. The time-course of such modifications
showed a delayed onset of the effect which was shifted towards the
end of the stimulation period reaching its peak in the first part of
the following control condition. These findings were confirmed by
the increase of the LF-to-HF ratio, which showed an equivalent
trend, and became statistically higher towards the first part of the
final baseline condition. These data suggest a sympathetic en-
hancement typical of an active response to an aversive situation
[64]. This is in line with the well-known interaction between
cardiovascular and respiratory systems [55], which is even more
pronounced in extreme situations when the cooperation becomes
essential for survival [31].

An increased sympathetic background is also associated with

mental stress [7,33,50] as well as mental and motor imagery
[24,57] and it may represent an essential element in the preparation
for action as part of an integrated and purposeful behavior.

Our choice to limit the analysis to the alpha, beta and gamma

EEG activities rests on the classical assumption that a stressful
stimulus should induce a desynchronization of the EEG pattern,
with a reduction of the alpha and an increase of the beta and
gamma components. However, the interpretation of our results,
which showed the alpha rhythm largely unchanged throughout the
experimental conditions, is complicated by the co-existence of
hypnosis which can elicit, per se, characteristic EEG patterns [14].
In particular the lack of the expected alpha suppression [25] during
the activation periods could be linked to hypnosis. A similar result
has been reported by Orne and Paskewitz [48], who observed that
apprehension or heightened arousal did not always reduce alpha
activity.

The tendency exhibited by beta power to increase bilaterally in

fronto-central regions could be the consequence of a general
arousal due to the presentation of the cognitive stimulus which
appears further increased when it is charged by a negative emo-
tional content. The behavior of gamma activity is particularly
relevant to the aim of this study, because this frequency band has
been related to a series of higher cognitive processes, which
include focused attention [54,69], memory [51,61], linguistic pro-
cessing [53], behavioral and perceptual functions [56], emotional
states [23] associative learning [42] and preparation of motor
responses [56]. In accordance with recent reports [39,45], our
results show a left gamma power increase during the neutral
cognitive activation which is further enhanced by the emotional
valence of the aversive condition. However, these observations

108

GEMIGNANI ET AL.

contrast with other studies [19] that report a right side lateraliza-
tion during negative experiences and with the observation of a
right hemisphere predominance of gamma density related to the
recalling of a negative emotion during hypnosis [22]. The discrep-
ancy may be explained by the characteristics of the stimulus
employed in the different studies. In our case, the stimulus was
presented through the verbal channel, required a focused attention
and contained suggestions of a complex mental imagery. There-

fore, it was strongly directed to the activation of the left hemi-
sphere [25]. Nonetheless, all subjects reported to have experienced
deep negative emotions that were accompanied by marked cardio-
respiratory changes. Particularly relevant for the aim of this study
is the similar behavior exhibited by the gamma EEG activity in the
left fronto-central regions (Fig. 3C) and the sympathetic compo-
nent of the heart period variability (Figs. 2A,C) which exhibited a
parallel increment during the aversive and the subsequent baseline

FIG. 3. Gamma rhythm power spectrum. Distribution of electroencephalographic gamma power within frontal, central and posterior
regions of both sides as a function of the three most relevant experimental conditions: suggestions of a neutral object (A), phobic
object (B) and the following neutral hypnosis (C).

AUTONOMIC RESPONSES, BEHAVIOR AND EMOTIONS

109

conditions, thus supporting the concept of a global involvement,
from central command to peripheral output, in human emotional
responses. The linkage between cerebral areas and autonomic
activities has been investigated in animals in which electrophysi-
ological and neuroanatomical data have shown that frontally lo-
cated cortical areas such as the medial prefrontal and insular cortex
[9] as well as the sensory motor areas [10,70] can modulate the
autonomic output by means of direct projections to areas of the
amygdala [36,37], and hypothalamus [9], as well as brain steam
[5,68] and spinal cord [4] that are involved in neurovegetative
control. Thus cognitive, autonomic and somatic-motor activities
are integrated in the production of patterned responses, which may
differ according to environmental situations. Such integrated re-
sponses may represent a reliable index of a specific emotional state
and could be used as time markers for scanning procedures in
neuroimaging experiments aimed to identify the central nervous
structures involved in the control of the different aspects of human
affective responses.

ACKNOWLEDGEMENTS

The research was funded by a grant of the M.U.R.S.T. (Italian Ministry

of University, Scientific Research and Technology).

REFERENCES

1. American Psychiatric Association. Diagnostic and statistical manual

of mental disorders (4th ed.). Washington, DC: American Psychiatric
Association; 1994.

2. Atkinson, R. P.; Crawford, H. J. Individual differences in afterimage

persistence: Relationships to hypnotic susceptibility and visuospatial
skills. Am. J. Psychol. 105:527–539; 1992.

3. Azevedo, A. D. The defense reaction in different animal species. In:

Brandao, M. L., ed. Neuroscience and behaviour. Vittoria, Brazil:
Grafica de UFES; 1987:263–296.

4. Bacon, S. J.; Smith, A. D. A monosynaptic pathway from an identified

vasomotor center in the medial prefrontal cortex to an autonomic area
in the thoracic spinal cord. Neuroscience 54:719 –728; 1993.

5. Bandler, R.; McCulloch, T.; Dreher, B. Afferents to a midbrain peri-

aqueductal gray region involved in the “defense reaction” in the cat as
revealed by horseradish peroxidase. I. The telencephalon. Brain Res.
330:109 –119; 1985.

6. Benson, H.; Arns, P. A.; Hoffmann, J. W. The relaxation response and

hypnosis. Int. J. Clin. Exp. Hypn. 29:259 –270; 1981.

7. Boutcher, S. H.; Nugent, F. W.; McLaren, P. F.; Weltman, A. L. Heart

period variability of trained and untrained men at rest and during
mental challenge. Psychophysiology 35:16 –22; 1998.

8. Brown, T. E.; Beightol, L. A.; Koh, J.; Eckberg, D. L. Important

influence of respiration on human R-R interval power spectra is largely
ignored. J. Appl. Physiol. 75:2310 –2317; 1993.

9. Buchanan, S. L.; Thompson, R. H.; Maxwell, B. L.; Powell, D. A.

Efferent connections of the medial prefrontal cortex in the rabbit. Exp.
Brain Res. 100:469 – 483; 1994.

10. Cechetto, D. F.; Saper, C. B. Evidence for a viscerotopic sensory

representation in the cortex and thalamus in the rat. J. Comp. Neurol.
262:27– 45; 1987.

11. Chatfield, C.; Collins, A. J. Introduction to multivariate analysis.

Cambridge, UK: Chapman and Hall; 1980.

12. Crawford, H. J.; Allen, S. N. Enhanced visual memory during hypnosis

as mediated by hypnotical responsiveness and cognitive strategies. J.
Exp. Psychol. 112:662– 685; 1983.

13. Crawford, H. J. Imagery processing during hypnosis: Relationships to

hypnotizability and cognitive strategies. In: Wolpin, M.; Shorr, J. F.;
Krueger, M., eds. Imagery: Recent practice and theory. New York:
Plenum Press; 1986:13–22.

14. Crawford, H. J.; Gruzelier, J. H. A midstream view of the neuropsy-

chophysiology of hypnosis: Recent research and future directions. In:
Fromm, E.; Nash, M. R., eds. Contemporary hypnosis research. New
York: Guilford Press; 1992:227–266.

15. Crawford, H. J. Brain dynamics and hypnosis: Attentional and disat-

tentional processes. Int. J. Clin. Exp. Hypn. 42:204 –323; 1994.

16. Crawford, H. J.; Harrison, D. W.; Kapelis, L. Visual fields asymmetry

in facial affect perception: Moderating effects of hypnosis, hypnotic
susceptibility level, absorption and sustained attentional abilities. Int.
J. Neurosci. 82:11–23; 1995.

17. Crawford, H. J.; Allen, S. N. Paired-associate learning and recall of

high and low imagery words: Moderating effects of hypnosis, hypnotic
susceptibility level and visualization abilities. Am. J. Psychol. 109:
353–372; 1996.

18. Curtis, G. C.; Magee, W. J.; Eaton, W. W.; Wittchen, H. U.; Kessler,

R. C. Specific fears and phobias. Epidemiology and classification.
Br. J. Psychiatry 173:212–217; 1998.

19. Davidson, R. J. Cerebral asymmetry, emotion, and affective style. In:

Davidson, R. J.; Hugdahl, K., eds. Brain asymmetry. Cambridge, MA:
MIT Press; 1995:361–387.

20. De Benedittis, G.; Cigada, M.; Bianchi, A.; Signorini, M. G.; Cerutti,

S. Autonomic changes during hypnosis: A heart rate variability power
spectrum analysis as a marker of sympatho-vagal balance. Int. J. Clin.
Exp. Hypn. 42:140 –152; 1994.

21. De Pascalis, V.; Marucci, F. S.; Penna, P. M. 40 Hz EEG asymmetry

during recall of emotional events in waking and hypnosis: Differences
between low and high hypnotizables. Int. J. Psychophysiol. 7:85–96;
1989.

22. De Pascalis, V.; Ray, W. J.; Tranquillo, I.; D’Amico, D. EEG activity

and heart rate during recall of emotional events in hypnosis: Relation-
ships with hypnotizability and suggestibility. Int. J. Psychophysiol.
29:255–275; 1998.

23. De Pascalis, V. Psychophysiological correlates of hypnosis and hyp-

notic susceptibility. Int. J. Clin. Exp. Hypn. 47:117–143; 1999.

24. Decety, J.; Jeannerod, M.; Germain, M.; Pastene, J. Vegetative re-

sponse during imagined movement is proportional to mental effort.
Behav. Brain Res. 42:1–5; 1991.

25. Farah, M. J. Current issues in the neuropsychology of image genera-

tion. Neuropsychologia 33:1455–1471; 1995.

26. Frankel, F. H.; Orne, M. T. Hypnotizability and phobic behavior. Arch.

Gen. Psychiatry 33:1259 –1261; 1976.

27. Garcia, R.; Vouimba, R. M.; Baudry, M.; Thompson, R. F. The

amygdala modulates prefrontal cortex activity relative to conditioned
fear. Nature 402:294 –296; 1999.

28. Gevins, A. R. Handbook of electroencephalographic and clinical neu-

rophysiology, vol. 1. Amsterdam: Elsevier; 1987.

29. Ghelarducci, B.; Sebastiani, L. Contribution of cerebellar vermis to

cardiovascular control. J. Auton. Nerv. Syst. 56:149 –156; 1996.

30. Grumbles, D.; Crawford, H. J. Differential attentional skills and hyp-

notizability. Proceedings of the 33rd Annual Scientific Meeting. Soc.
Clin. Exp. Hypn. Portland OR; 1981.

31. Harper, R. M.; Gozal, D.; Bandler, R.; Spriggs, D.; Lee, J.; Alger, J.

Regional brain activation in humans during respiratory and blood
pressure challenges. Clin. Exp. Pharmacol. Physiol. 25:483– 486;
1998.

32. Holroyd, J. Hypnosis as a methodology in psychological research. In:

Fromm, E.; Nash, M. R., eds. Contemporary hypnosis research. New
York: Guilford Press; 1992:202–224.

33. Hoshikawa, Y.; Yamamoto, Y. Effects of Stroop color-word conflict

test on the autonomic nervous system responses. Am. J. Physiol.
272:H1113–H1121; 1997.

34. Jung, T.; Humphries, C.; Won, L. T.; Makeig, S.; McKeown, M. J.;

Iragui, V.; Sejnowski, T. J. Extended ICA removes artifacts from
electroencephalographic recordings. Adv. Neural Inform. Proc. Syst.
10:894 –900; 1998.

35. Kapp, B. S.; Pascoe, J. P.; Blixer, M. A. The amygdala: A neuroana-

tomical systems approach to its contribution to aversive conditioning.
In: Butters, N.; Squire, L. R., eds. The neuropsychology of memory.
New York: Guilford Press; 1983:473– 488.

36. Kapp, B. S.; Schwaber, J. S.; Driscoll, P. A. The organization of

insular cortex projections to the amygdaloid central nucleus and au-
tonomic regulatory nuclei of the dorsal medulla. Brain Res. 360:355–
360; 1985.

37. Kapp, B. S.; Schwaber, J. S.; Driscoll, P. A. Frontal cortex projections

to the amygdaloid central nucleus in the rabbit. Neuroscience 15:327–
346; 1985.

110

GEMIGNANI ET AL.

38. Kirsh, I.; Council, J. R. Situational and personality correlates of

hypnotic responsiveness. In: Fromm, E.; Nash, M. R., eds. Contem-
porary hypnosis research. New York: Guilford Press; 1992:267–291.

39. Kosslyn, S. M.; Shin, L. M.; Thompson, W. L.; McNally, R. J.; Rauch,

S. L.; Pitman, R. K.; Alpert, N. M. Neural effects of visualizing and
perceiving aversive stimuli: A PET investigation. NeuroReport
7:1569 –1576; 1996.

40. Malott, J. M.; Bourg, A. L.; Crawford, H. J. The effects of hypnosis

upon cognitive responses to persuasive communication. Int. J. Clin.
Exp. Hypn. 37:1– 40; 1989.

41. Marks, D. F. Visual imagery differences in the recall of pictures. Br. J.

Psychol. 64:17–24; 1973.

42. Miltner, W. H.; Braun, C.; Arnold, M.; Witte, H.; Taub, E. Coherence

of gamma-band EEG activity as a basis for associative learning.
Nature 397:434 – 436; 1999.

43. Montano, N.; Ruscone, T. G.; Porta, A.; Lombardi, F.; Pagani, M.;

Malliani, A. Power spectrum analysis of heart rate variability to assess
the changes in sympathovagal balance during graded orthostatic tilt.
Circulation 90:1826 –1831; 1994.

44. Mountz, J. M.; Modell, J. G.; Wilson, M. W.; Curtis, G. C.; Lee,

M. A.; Schmaltz, S.; Kuhl, D. E. Positron emission tomographic
evaluation of cerebral blood flow during state anxiety in simple pho-
bia. Arch. Gen. Psychiatry 46:501–504; 1989.

45. Muller, M. M.; Keil, A.; Gruber, T.; Elbert, T. Processing of affective

pictures modulates right-hemispheric gamma band EEG activity. Clin.
Neurophysiol. 110:1913–1920; 1999.

46. Nilsson, K. M. The effect of subject expectations of “hypnosis” upon

vividness of visual imagery. Int. J. Clin. Exp. Hypn. 38:17–24; 1990.

47. Obrist, P. A. Cardiovascular psychophysiology: A perspective. New

York: Plenum Press; 1981.

48. Orne, M. T.; Paskewitz, D. A. Aversive situational effects on alpha

feedback training. Science 186:458 – 460; 1974.

49. Pagani, M.; Lombardi, F.; Guzzetti, S.; Rimoldi, O.; Furlan, R.;

Pizzinelli, P.; Sandrone, G.; Malfatto, G.; Dell’Orto, S.; Piccaluga, E.
Power spectral analysis of heart rate and arterial pressure variabilities
as a marker of sympatho-vagal interaction in man and conscious dog.
Circ. Res. 59:178 –193; 1986.

50. Pagani, M.; Rimoldi, O.; Malliani, A. Low-frequency components of

cardiovascular variabilities as markers of sympathetic modulation.
Trends Pharmacol. Sci. 13:50 –54; 1992.

51. Pantev, C. Evoked and induced gamma-band activity of the human

cortex. Brain Topogr. 7:321–330; 1995.

52. Powell, D. A. The prefrontal-thalamic axis and classical conditioning.

Integr. Physiol. Behav. Sci. 27:101–116; 1992.

53. Pulvermuller, F.; Lutzenberger, W.; Preissl, H.; Birbaumer, N. Spec-

tral responses in the gamma-band: Physiological signs of higher cog-
nitive processes? NeuroReport 6:2059 –2064; 1995.

54. Pulvermuller, F.; Birbaumer, N.; Lutzenberger, W.; Mohr, B. High-

frequency brain activity: Its possible role in attention, perception and
language processing. Prog. Neurobiol. 52:427– 445; 1997.

55. Richter, D. W.; Spyer, K. M. Cardiorespiratory control. In: Loewy,

A. D.; Spyer, K. M., eds. Central regulation of autonomic functions.
New York/Oxford: Oxford University Press; 1990:189 –207.

56. Rodriguez, E.; George, N.; Lachaux, J. P.; Martinerie, J.; Renault, B.;

Varela, F. J. Perception’s shadow: Long-distance synchronization of
human brain activity. Nature 397:430 – 433; 1999.

57. Roure, R.; Collet, C.; Deschaumes-Molinaro, C.; Delhomme, G.; Ditt-

mar, A.; Vernet-Maury, E. Imagery quality estimated by autonomic
response is correlated to sporting performance enhancement. Physiol.
Behav. 66:63–72; 1999.

58. Santarcangelo, E. L.; Emdin, M.; Picano, E.; Raciti, M.; Macerata, A.;

Michelassi, C.; Kraft, G.; Riva, A.; L’Abbate, A. Can hypnosis modify
the sympathetic-parasympathetic balance at heart level? J. Amb. Mon-
itor. 5:191–196; 1992.

59. Sebastiani, L.; La Noce, A.; Paton, J. F.; Ghelarducci, B. Influence of

the cerebellar posterior vermis on the acquisition of the classically
conditioned bradycardic response in the rabbit. Exp. Brain Res. 88:
193–198; 1992.

60. Shea, S. A. Behavioural and arousal-related influences on breathing in

humans. Exp. Physiol. 81:1–26; 1996.

61. Singer, W.; Gray, C. M. Visual feature integration and the temporal

correlation hypothesis. Annu. Rev. Neurosci. 18:555–586; 1995.

62. Smith, O. A.; DeVito, J. L.; Astley, C. A. The hypothalamus in

emotional behaviour and associated cardiovascular correlates. In: Mor-
rison, A. R.; Strick, P. L., eds. Changing concepts of the nervous
system. New York: Academic Press; 1982:569 –584.

63. Spanos, N. P. Hypnosis, non-volitional responding and multiple per-

sonality: A social psychological perspective. In: Maher, B.; Maher,
W., eds. Progress in experimental personality research. New York:
Academic Press; 1986:1– 62.

64. Spyer, K. M. Neural mechanisms involved in cardiovascular control

during affective behaviour. Trends Neurosci. 12:506 –513; 1989.

65. Supple, W. F. Jr.; Kapp, B. S. The anterior cerebellar vermis: Essential

involvement in classically conditioned bradycardia in the rabbit.
J. Neurosci. 13:3705–3711; 1993.

66. Task Force of the European Society of Cardiology and the North

American Society of Pacing and Electrophysiology. Heart rate vari-
ability: Standards of measurement, physiological interpretation and
clinical use. Circulation 93:1043–1065; 1996.

67. Tellegen, A.; Atkinson, G. Openness to absorbing and self altering

experiences (“absorption”), a trait related to hypnotic susceptibility. J.
Abnorm. Psychol. 83:268 –277; 1974.

68. Terreberry, R. R.; Neafsey, E. J. Rat medial frontal cortex: A visceral

motor region with a direct projection to the solitary nucleus. Brain Res.
278:245–249; 1983.

69. Tiitinen, H.; Sinkkonen, J.; Reinikainen, K.; Alho, K.; Lavikainen, J.;

Naatanen, R. Selective attention enhances the auditory 40-Hz transient
response in humans. Nature 364:59 – 60; 1993.

70. Yasui, Y.; Itoh, K.; Takada, M.; Misani, A.; Kaneko, T.; Mizuno, H.

Direct cortical projections to the parabrachial nucleus in the cat.
J. Comp. Neurol. 234:77– 86; 1985.

71. Wallace, B.; Allen, P. A.; Propper, R. E. Hypnotic susceptibility,

imaging ability and anagram-solving activity. Int. J. Clin. Exp. Hypn.
44:324 –337; 1996.

72. Weitzenhoffer, A. M.; Hilgard, E. R. Standford Hypnotic Susceptibil-

ity Scale, form A. Palo Alto, CA: Consulting Psychologist Press; 1959.

73. Weitzenhoffer, A. M.; Hilgard, E. R. Standford Hypnotic Susceptibil-

ity Scale, form C. Palo Alto, CA: Consulting Psychologist Press; 1962.

74. Whorwell, P. J.; Houghton, L. A.; Taylor, E. E.; Maxton, D. G.

Physiological effects of emotion: Assessment via hypnosis. The Lan-
cet 34:69 –72; 1992.

AUTONOMIC RESPONSES, BEHAVIOR AND EMOTIONS

111