MINIREVIEW

Regulation of antioxidant enzymes: a significant role for melatonin

Introduction

Aerobic organisms require ground state oxygen to live.
However, the use of oxygen during normal metabolism
produces reactive oxygen species (ROS), some of which are
highly toxic and deleterious to cells and tissues. The most
abundant ROS formed in the course of cellular metabolism
is the superoxide radical (O



2

). This radical is mainly

produced during electron transport in the mitochondria
and in the endoplasmic reticulum, although it is also a
byproduct in several enzymatic reactions (oxidases and
oxygenases); likewise, it is formed during the hepatic
metabolism of some molecules and also as a result of the
decomposition of oxyhemoglobin [1].

Dismutation of the O



2

gives rise to hydrogen peroxide

(H

2

O

2

). This molecule is not a free radical per se but, in the

presence of transition metals via the Fenton reaction, it is
rapidly converted to the hydroxyl radical (

OH). The

OH is

widely accepted as being the most damaging ROS produced
by cells [2]. Free radicals in general and the

OH in

particular react with virtually every molecule in living cells
(i.e. lipids, sugars, amino acids, nucleotides)with very high
rate constants [3]; the resulting damage ultimately may lead
to diseases such as cancer, neurodegeneration and autoim-
mune conditions [4–6].

To protect cells from the damage caused by free radicals

and related reactants, organisms have evolved several
defense mechanisms to rapidly and efficiently remove
ROS from the intracellular environment. When the equi-
librium between free radicals (oxidants)and antioxidant
defense systems is imbalanced in favor of oxidants, the
condition causes what is known as oxidative stress. The
oxidants that are not directly scavenged or otherwise not
metabolized attack cellular components producing useless
molecular debris and sometimes cell death.

Antioxidant defense systems may be generally classified

into indirect enzymatic antioxidant enzymes and into small
molecular weight molecules which directly scavenge free
radicals and related reactants. The antioxidant enzymes
represent a first line of defense against these toxic reactants
by metabolizing them to innocuous byproducts.

The first enzymatic reaction in the reduction pathway of

oxygen occurs during the dismutation of two molecules of
O



2

when they are converted to hydrogen peroxide (H

2

O

2

)

and diatomic oxygen. The enzyme at this step is one of two
isoforms of superoxide dismutase (SOD); CuZnSOD is
present in the cytosol while (MnSOD)is located in the
mitochondrial matrix. These enzymes possess transition
metals (Cu

2+

or Mn

3+

, respectively)at their active sites;

this allows for the rapid exchange of electrons between the

Abstract: Antioxidant enzymes form the first line of defense against free
radicals in organisms. Their regulation depends mainly on the oxidant status
of the cell, given that oxidants are their principal modulators. However,
other factors have been reported to increase antioxidant enzyme activity and/
or gene expression. During the last decade, the antioxidant melatonin has
been shown to possess genomic actions, regulating the expression of several
genes. Melatonin also influences both antioxidant enzyme activity and
cellular mRNA levels for these enzymes. In the present report, we review the
studies which document the influence of melatonin on the activity and
expression of the antioxidative enzymes glutathione peroxidase, superoxide
dismutases and catalase both under physiological and under conditions of
elevated oxidative stress. We also analyze the possible mechanisms by which
melatonin regulates these enzymes.

Carmen Rodriguez

1,2

,

Juan C. Mayo

1,3

, Rosa M. Sainz

2,3

,

Isaac Antolı´n

1

, Federico Herrera

1

,

Vanesa Martı´n

1

and Russel J. Reiter

3

1

Departamento de Morfologı´a y Biologı´a

Celular and

2

Instituto Universitario de

Oncologı´a del Principado de Asturias (IUOPA)
Facultad de Medicina, C/ Julian Claveria,
Oviedo, Spain;

3

Department of Cellular and

Structural Biology, University of Texas Health
Science Center, San Antonio, TX, USA

Key words: antioxidant enzyme activity,
antioxidant enzyme gene expression,
antioxidant enzymes, melatonin, regulation

Address reprint requests to Carmen
Rodriguez, Departamento de Morfologı´a y
Biologı´a Celular, Facultad de Medicina,
c/Julian Claveria, 33006 Oviedo, Spain.
E-mail: carro@correo.uniovi.es

Received July 28, 2003;
accepted September 4, 2003.

J. Pineal Res. 2004; 36:1–9

Copyright

 Blackwell Munksgaard, 2004

Journal of Pineal Research

1

two superoxides. Although H

2

O

2

is not a radical itself, it is

reactive and it is rapidly converted into the highly reactive

OH in the presence of ferrous ion (Fe

++

)via the Fenton

reaction unless it is efficiently removed. Two enzymes
participate in the removal of H

2

O

2

from the cellular

environment, peroxidases and catalase. The most abundant
peroxidase is the glutathione peroxidase (GSH-Px), which
is present in both the cytosol and mitochondria. This
enzyme has the transition metal selenium at its active site
and uses reduced glutathione (GSH)as a substrate to
transfer electrons to H

2

O

2

(and other peroxides)thereby

converting it into two molecules of water. The second H

2

O

2

metabolizing enzyme is catalase (CAT); it is present mainly
in the peroxisomes, presents a molecule of ferric ion at its
active site and converts two molecules of H

2

O

2

into one

molecule each of water and diatomic oxygen [7].

Antioxidant enzymes are regulated by multiple factors.

Oxidative status of the cell is the primary factor regulating
gene expression and activity of these enzymes [8–10]. Both
endogenous [11] and exogenous agents [12, 13] act as
oxidants and alter cellular oxidative equilibrium and

therefore antioxidant enzyme gene expression. There are,
however, several other factors which influence antioxidant
enzymes. In addition to developmental changes, differenti-
ation and aging influences [14–18], inflammation [19, 20]
and hormonal regulation of antioxidative enzymes have
been reported [21–23]. Additionally, several antioxidants
and cell protectors are believed to regulate gene expression
and antioxidant enzyme activity [24–29].

Although, melatonin is known to be an indole secreted

by the pineal gland, other organs may produce melatonin
where it has functions without being released. Besides its
properties as a circadian rhythm transducer [30], several
other actions for this interesting molecule have been in
uncovered in the last two decades [31, 32]. Its direct free
radical scavenging activity [33, 34] and its regulation of
gene transcription [35] for antioxidative enzymes are of
special interest in the present review. The antioxidant
properties of melatonin have been extensively studied and
the use of this molecule as a cell protector and as a potential
disease-preventing agent have been summarized [36–40].
Melatonin has been proven to be an efficient oxidant

Fig. 1.

Hypothetical pathways involved in melatonin regulation of antioxidant enzyme gene expression and activity. (1)Melatonin acti-

vation of MT1/2 receptors, vı´a G inhibitory protein (Gi), inhibits adenylate cyclase and reduces cyclic AMP (cAMP). This results in
inhibition of protein kinase A (PKA)and cAMP response element binding protein/activation transcriptor factor (CREB-ATF). This
pathway could modulate immediate early gene (IEG)transcription and consequently gene transcription regulation and antioxidant enzyme
concentration. (2)MT1/2 binding by melatonin activates the phospholipase C pathway. The consequent increase in Ca

2+

concentration will

phosphorylate protein-kinase C (PKC)which activates CREB/ATF thereby increasing the transcription of IEG. Indeed, PKC activates
IEG. PKC activation may also activate NF kappa B (NFjB)and other transcription factors (TF). Melatonin may also, in other systems,
induce a Ca

2+

decrease leading to inhibition of PKC. (3)MT1/2 activation may, through both inhibitory G (Gi)and other G proteins,

activate several mitogen activated protein kinases, i.e., extracellular regulated kinase (ERK)and Jun N-terminal kinase (JNK), which
regulate IEG activation and thereby gene transcription. (4)Melatonin may inhibit calcium-calmodulin (Ca-CaM)complex by direct binding
A lowered Ca

2+

concentration mediated by MT1/2 receptors has been reported in some models. This would inhibit calmodulin-kinase

(CaMK), which in turn may regulate NFjB, the retinoid-related receptor (ROR)and other transcription factor activation, thereby
influencing gene transcription. Ca

2+

-CaM inhibition may also regulate PKC. (5)Melatonin is a free radical scavenger. Although this effect

is not receptor-mediated, its possible involvement in the regulation of antioxidant enzymes should not be ruled out. Changes in the cellular
redox state towards a more reduced environment produces protein reduction which may lead to enzyme activation (a). Also this envi-
ronment may induce translational changes which would increase enzyme concentrations (b). Finally, a decrease of free radicals would allow
repression of redox-sensitive transcription factors (i.e. NFjB, AP-1)which would regulate gene transcription (c). Continuous lines indicate
previously reported melatonin actions. Dashed lines indicate general cellular mechanisms previously known but not probed with melatonin.
*These effects of melatonin have not been documented.

Rodriguez et al.

2

scavenger of a variety of radical and non-radical reactants
[37, 41]. Control of gene expression by melatonin was
initially suggested by Menendez-Pelaez et al. [42, 43].
Thereafter, the regulation of expression of several genes
related to antioxidative enzymes was reported [24, 44–58].
Herein, the literature related to the regulation of enzyme
activity and gene expression of antioxidant enzymes by
melatonin is reviewed.

Regulation of antioxidant enzymes
by melatonin

Regulation under basal oxidative stress
conditions

Reports documenting the influence of melatonin on anti-
oxidant enzyme activity were first published in the mid-
1990s [59, 60]. These papers described the amplification of
GSH-Px activity in the brain of rat and in several tissues
of

chicks

after

exogenously

administered

melatonin

(500 lg/kg)[36, 59, 60]. Thereafter, several groups showed
that melatonin increases the activity of antioxidant enzymes
in other tissues and models. Thus, Ozturk et al. [61] found
increased SOD activity in rat liver after administration of
10 mg/kg of melatonin for 7 days, while Liu and Ng [62]
reported enhancement of SOD activity in rat kidney, liver
and brain after a single melatonin injection (5 mg/kg).

Antioxidant

enzyme

activities

exhibit

endogenous

rhythms under normal light:dark conditions. This is true
both in terms of their activity and gene expression. These
changes with time suggested that these cycles might be
dependent on the circadian melatonin rhythm [63–65].
Abolition of endogenous melatonin cycle by exposure of
animals to constant light, in fact, also abolished the night-
time rise in antioxidative enzyme activity. This illustrates
that changes in physiological levels of melatonin are
adequate to alter the antioxidative defense system as
reflected in the level of activities of antioxidative enzymes.
Continuous exposure to light is known to abolish the
nocturnal melatonin rise; this was associated with a
reduction in the night-time increase in GSH-Px and SOD
activities in several tissues of chicks [64, 66]. These results
were subsequently confirmed by others in rodents [67, 68].
Similarly, Baydas et al. [69] reported that melatonin
deficiency caused by pinealectomy reduced GSH-Px activity
levels in several tissues of rats.

Melatonin administration during pregnancy has also

been shown to stimulate antioxidant enzyme activity in the
fetuses. Okatani et al. [70, 71] have reported this finding in
both rats [70] and humans [71]. They initially showed that
relatively high doses of melatonin (10 mg/kg), administered
to pregnant rats, caused incremental changes in the
concentration of the indole in both maternal serum and
fetal brain as early as 1 hr after its administration.
Concomitantly, GSH-Px and SOD activities were likewise
increased in fetal brain. This indicates that melatonin may
be potentially beneficial in the treatment of stressful
conditions that involve free radical production such as
fetal hypoxia and preeclampsia. Subsequently, they admin-
istered much lower doses of melatonin (100 lg/kg bw)
to pregnant women before they underwent voluntary

interruption of pregnancy and they found an increase in
GSH-Px activity in chorionic homogenates with a peak 3 hr
after indole administration. This again supports the idea
that melatonin may have potential usefulness as a fetal
protector under conditions of elevated oxidative stress.

Melatonin has also been shown to influence antioxidant

enzyme gene expression. As first reported by Antolin et al.
[24], melatonin causes incremental changes in mRNA levels
for both CuZnSOD and MnSOD in the Harderian gland of
female Syrian hamsters after its exogenous administration
(500 lg/kg). Increases in antioxidant enzyme gene expres-
sion following melatonin injections (50 and 500 lg/kg)were
later confirmed by the same group [52] in rat brain cortex.
Finally, Mayo et al. [72] showed that mRNA levels for
antioxidant enzymes were elevated in non-differentiated
PC12 cells and the human neuroblastoma cells SK-N-SH
after melatonin was added to the medium in which the cells
were grown. These workers reported that the increases in
CuZnSOD and gene HnSOD expression were maximal at
24 and 6 hr, respectively, following melatonin administra-
tion. This effect was induced with a melatonin concentra-
tion of 10

)9

m

, the physiological levels of this indole in

night-time serum; conversely, no effect was observed when
higher doses of the indole were used. Regulation of
antioxidant enzyme gene expression by melatonin is
dependent on new protein synthesis, as use of an inhibitor
of protein synthesis, i.e., cycloheximide, prevents mRNA
increases after melatonin administration. The indole also
reduced the half life of CuZnSOD and GSH-Px while it did
not affect that of MnSOD indicating that a larger amount
of less stable mRNA may be generated for GSH-Px and
CuZnSOD. Finally, the presence of melatonin in the culture
medium for 1 hr only is sufficient to increase mRNA for
antioxidant enzymes 24 hr later, indicating a possible role
for melatonin receptors in the regulation of antioxidant
enzymes by this indole.

Regulation under elevated oxidative stress
conditions

When cells are exposed to oxidative stress they increase the
activity and expression of antioxidant enzymes as a
compensatory mechanism to better protect them from the
damage induced by free radicals. In many cases the number
of free radicals generated may be so great that even the
increased activity of the antioxidative enzymes are insuffi-
cient to counteract the potential damage. When antioxidant
enzyme activities and/or gene expression were examined
under highly elevated oxidative stress conditions, it was
found that they are sometimes diminished; thus, it has been
proposed that moderate levels of toxic reactants induce
rises in antioxidant enzymes while very high levels of
reactants reduce enzyme activities as a result of damage of
the molecular machinery that is required to induce these
enzymes [18, 73]. Melatonin has a lengthy history of
beneficial actions. For example, almost two decades ago it
was reported as a protector against glucocorticoid damage
[74, 75], against some degenerative neurological conditions
[76], as an anticancer agent [31, 77–79], and also as an
enhancer of immune function [32, 79]. Subsequently, the
multiple antioxidant properties of melatonin were described

Melatonin regulation of antioxidant enzymes

3

[33, 34, 80, 81] and research on its protective effects against
oxidative processes have now been identified under a very
wide range of conditions in both experimental animals [82–
84] and humans [85, 86]. Some of the earliest studies
documented the antioxidant properties of melatonin in the
central nervous system [87], in the prevention of cataract
formation [88], and in the reduction in the severity of colitis
[89]. At roughly the same time, Pablos et al. [60] described
the regulation of antioxidant enzyme activities by melato-
nin; this was quickly followed by studies confirming the
original findings and extending the observations of the
influence of melatonin on gene expression for antioxidative
enzymes.

Antioxidant enzyme regulation by melatonin has been

shown to occur concomitant with its protection against
elevated oxidative stress in numerous experimental situa-
tions. In the first report to document this correlation it
was shown that melatonin increased GSH-Px activity and
simultaneously reduced free radical damage to the brain
and liver of rats treated with lipopolysaccharide (LPS)
[90]. In this study, LPS increased total glutathione (tGSH)
levels as well as oxidized glutathione (GSSG)concentra-
tions while reducing the activity of GSH-Px. Melatonin
(4 mg/kg)given to LPS-treated rats enhanced tGSH above
basal levels and lowered GSSG concentrations while
stimulating the activity of GSH-Px. This indicated that
melatonin may act on several points in the antioxidant
defense system, not exclusively on GSH-Px. Subsequently,
Antolin et al. [24] reported rises in both CuZn and
MnSOD gene expression in the Harderian gland after
melatonin (500 lg/kg)was administered to female ham-
sters. The female hamster Harderian gland is in continual
jeopardy of experiencing oxidative stress which causes cell
damage because of the extremely high content of porphy-
rins in this organ. The administration of melatonin
lowered porphyrin synthesis and cell damage in this
extraorbital tissue and increased gene expression for both
isoforms of SOD. In a number of subsequent studies, the
activities of both GSH-Px and the SOD were repeatedly
shown to be regulated by melatonin with these changes
being concurrent with the ability of the indole to reduce
oxidative damage.

Multiple reports on neural protection by melatonin via

its antioxidant properties have appeared subsequent to the
initial reports of this action [81, 90, 91]. In several
experiments, antioxidant enzyme activity as well as expres-
sion was studied. Mayo et al. [25] found that in an
experimental model of Parkinson disease in which dop-
aminergic PC12 cells were treated with the neurotoxin
6-hydroxydopamine (6-OHDA), low doses of melatonin
(10

)7

m

)provided protection against apoptotic death

induced by the neurotoxin. In this study, melatonin also
prevented the reduction in gene expression for three
antioxidant enzymes, GSH-Px, CuZnSOD and MnSOD,
which followed 6-OHDA treatments. In vivo experiments
have provided results consistent with the in vitro findings.
When rodents (rats and mice)were treated with either beta-
amyloid peptide 25–35 [92] or with d-galactose [93] both of
which cause oxidative damage to the brain, melatonin at
doses ranging from 0.1 to 10 mg/kg restored both SOD and
GSH-Px activities. Naidu et al. [94] reported reversal of

haloperidol-induced decreases in brain SOD and catalase
activities by 1–5 mg/kg melatonin. Melatonin (10 mg/kg or
2 lg/mL in drinking water, respectively)also has been
shown to be protective against oxidative stress in both fetal
[95] and aging brain of rodents [96], with these beneficial
effects being associated with increased GSH-Px activity.

In addition to the brain, antioxidant enzyme activity

regulation by melatonin has been shown to be involved in
the protection against oxidative damage in other tissues.
Restoration or even augmentation of antioxidant enzyme
activity by melatonin has been shown to be associated with
prevention of free radical damage induced by several toxins
[97–99]. For example, intestinal and gastric damage follow-
ing ischemia-reperfusion or drug administration [100–103],
multiple organ damage resulting from therapeutic and non-
therapeutic chemotherapeutic agents [104–110], ultraviolet
damage to tissues [111], free radical damage in experimental
diabetes [112, 113], as well as chemio- and radiotherapy
lesions [114, 115] are reduced by melatonin. Finally, it has
been recently shown that melatonin may retard aging of the
senescence-accelerated mouse with this being associated
with augmented antioxidant enzyme activity [96].

Intracellular pathways involved
in antioxidant enzyme regulation
by melatonin

Mayo et al. [72] provided an insight into the mechanisms by
which melatonin regulates antioxidant enzyme gene expres-
sion using cultured dopaminergic cells. They found that
melatonin induced synthesis of new protein as a condition
for regulation of gene expression of all the three antioxi-
dative enzymes, CuZnSOD, MnSOD and GSH-Px. Mela-
tonin also diminished the half-life of mRNAs coding for
both CuZnSOD and GSH-Px, without altering that of
MnSOD in this study. This indicates that, in the case of the
two former enzymes, melatonin in the medium probably
induced more abundant levels of mRNAs with shorter half-
lives. Finally, nanomolar concentrations of melatonin were
adequate to induce antioxidant gene expression with a 1-hr
exposure to melatonin being adequate to sustain elevated
mRNA levels 24 hr later. As noted above, this points to the
likelihood of receptors being involved in antioxidant
enzyme gene expression.

The mechanisms involved in the regulation of antioxid-

ant enzymes by melatonin in vivo have not been precisely
determined. It is known, however, that stimulation of
antioxidant enzyme gene expression occurs at nanomolar
concentrations of melatonin in cultured cells [72]; these
melatonin levels are equivalent to the serum concentration
of melatonin at its nocturnal peak in vivo. The quantities of
melatonin used in most of the in vivo experiments, however,
very likely caused circulating levels to exceed physiological
concentrations. Thus, melatonin in these studies may have
functioned as a direct radical scavenger thereby changing
the redox state of cells, which in turn may have altered the
specific activity of these enzymes or their level of translation
[116]. Only twice, as far as could be determined, has gene
expression for antioxidative enzymes under the influence of
melatonin been analyzed in in vivo experiments [24, 52]
and, surprisingly, changes in enzyme activities after

Rodriguez et al.

4

melatonin treatment has not been examined in cell culture
experiments.

Kotler et al. [52] found that after chronic administration

of melatonin (50 and 500 lg/kg)to rats, the lower dose
clearly had a greater stimulatory effect on antioxidant
enzyme gene expression than did the 500 lg/kg dose.
Antolin et al. [117] reported melatonin protection against
in vivo neurotoxicity of MPTP using 500 lg/kg melatonin
(the presumed equivalent melatonin used to induce nano-
molar concentrations in serum may be roughly 25–
50 lg/kg). The work of Barlow-Walden et al. [59] using
500 lg/kg and Kotler et al. [52] using 50 and 500 lg/kg,
indicate that antioxidant enzyme activity and expression,
respectively, are elevated after the administration of mela-
tonin peripherally.

What intracellular molecular pathways are involved in

the regulation of antioxidant enzyme gene expression and/
or activity by melatonin is presently unknown (Fig. 1). A
membrane G-protein-coupled melatonin receptor MT1 was
cloned and characterized by Ebisawa et al. [118]. Subse-
quently, MT2 and Mel 1c receptors have also been
identified, the former mainly differing from MT1 in terms
of the tissues in which it is expressed, while Mel 1c is not
found in mammals [119]. Melatonin also has been tenta-
tively shown to activate a nuclear orphan receptor belong-
ing to the retinoid Z receptor b and a (RZR b and a)family.
Melatonin acts on RORa receptor repressing the expression
of the 5-lipoxygenase gene [35] and inhibiting growth of the
breast cancer MCF-7 cells [120]. The results from Mayo
et al. [72] suggest that melatonin regulation of antioxidant
enzymes is receptor-mediated, thereby most likely implica-
ting the MT1/MT2 receptors via second messengers such as
cAMP, phospholipase C or intracellular calcium concen-
tration. In addition, binding of melatonin to membrane
receptors could stimulate MAP kinase cascades thereby
activating several transcription factors [121]. The possibility
exists that RZR/ROR receptors could also mediate mela-
tonin effects on antioxidative enzymes as suggested by the
results of Pablos et al. [122]; if so, the pathways involved in
their regulation obviously remain unknown. One possibility
may relate to MT1/MT2 melatonin binding that, through
second messengers and phosphorylation cascades, activates
RZR/ROR as reported by Ram et al. [120]. Another
possibility by which melatonin may regulate RZR/ROR
receptors would be via modulation of the calcium/calmod-
ulin signaling pathway, either by changing intracellular
calcium concentrations by binding to MT1/MT2 receptors
[123], or by direct binding to calmodulin [124]. The calcium/
calmodulin signaling pathway has been reported to regulate
transcriptional activity of RZR/ROR receptors via CaM
kinases [125].

Antioxidant enzymes are known to be regulated by

several factors which induce oxidative stress [12, 13, 19,
126]; these factors presumably activate oxidative stress-
sensitive transcription factors. Also, transcriptional acti-
vation of antioxidant enzyme genes has been reported after
the treatment of cells with protective agents [29] where
non-oxidative stress-dependent transcription factors are
involved. Melatonin has been shown to regulate the
activation or repression of several transcription factors
[55, 127–130], all of them present in the promoter region of

the three-antioxidant enzymes reviewed herein. Thus,
subsequent experiments should be undertaken in order to
shed light on the intracellular pathways and transcription
factors involved in the regulation of antioxidant enzyme
gene expression and activity by melatonin.

Acknowledgments

This work was supported by the CICYT grant no. SAF00-
0010, the FICYT grants FC PB MED 01 12 and FC PC
REC 01 11, and ASTURPHARMA SA (CR). JCM and
VM were supported by FICYT. FH acknowledges a
fellowship of the Institute of Health Carlos III (FIS).
RMS was supported by a Fulbright Grant.

References

1. Halliwell B. Reactive oxygen species in living systems:

source, biochemistry and role in human disease. Am J Med
1991; 91:3C14S–3C22S.

2. Halliwell B, Gutteridge MC. Biologically relevant metal

ion-dependent hydroxyl radical generation. FEBS Lett 1992;
307:108–112.

3. Halliwell B, Gutteridge MC. The chemistry of oxygen

radicals and other oxygen-derived species. In: Free Radicals in
Biology and Medicine. Halliwell B, Gutteridge JMC, eds.,
Clarendon Press, Oxford, 1985; pp. 20–66.

4. Halliwell B. Oxidants and human disease: some new con-

cepts. FASEB J 1987; 1:358–364.

5. Gutteridge MC. Hydroxyl radicals, iron, oxidative stress,

and neurodegeneration. Ann N Y Acad Sci 1994; 51:288–295.

6. Feig DI, Reid TM, Loeb LA. Reactive oxygen species in

tumorigenesis. Cancer Res 1994; 54:1890–1894.

7. Mates JM. Effects of antioxidant enzymes in the molecular

control of reactive oxygen species toxicology. Toxicology
2000; 153:83–104.

8. Pahl HL, Baererle PA. Oxygen and the control of gene

expression. BioEssays 1994; 16:497–502.

9. Warner BB, Stuart L, Gebb S, Wispe JR. Redox regulation

of manganese superoxide dismutase. Am J Physiol 1996;
271:L 150–158.

10. Franco AA, Odom RS, Rando TA. Regulation of anti-

oxidant enzymes gene expression in response to oxidative
stress and during differentiation of mouse skeletal muscle.
Free Rad Biol Med 1999; 50:2093–2098.

11. Nicotera TM, Notaro J, Notaro S et al. Elevated super-

oxide dismutase in Bloom’s syndrome: a genetic condition of
oxidative stress. Cancer Res 1989; 49:5239–5243.

12. Yoo HY, Chang MS, Rho HM. The activation of the rat

copper/zinc superoxide dismutase gene by hydrogen peroxide
through the hydrogen peroxide-responsive element and by
paraquat and heat shock through the same heat shock ele-
ment. J Biol Chem 1999; 274:23,887–23,892.

13. Kim HP, Roe JH, Chock PB, Yim MB. Transcriptional

activation of the human manganese superoxide dismutase
gene mediated by tetradecanoylphorbol acetate. J Biol Chem
1999; 274:37,455–37,460.

14. Hayashibe H, Asayama K, Dobashi K, Kato K. Prenatal

development of antioxidant enzymes in rat lung, kidney, and
heart: marked increase in immunoreactive superoxide dis-
mutases, glutathione peroxidase and catalase in the kidney.
Pediatr Res 1990; 27:472–475.

Melatonin regulation of antioxidant enzymes

5

15. Bravard A, Petridis F, Luccioni C. Modulation of anti-

oxidant enzymes p21

WAF1

and p53 expression during prolif-

eration and differentiation of human melanoma cell lines.
Free Rad Biol Med 1999; 26:1027–1033.

16. Vanella A, Villa RF, Gorini A et al. Superoxide dismutase

and cytochrome oxidase activities in light and heavy synaptic
mitochondria from rat cerebral cortex during aging. J Neu-
rosci Res 1989; 22:351–355.

17. Kasapoglu M, Ozben T. Alterations of antioxidant enzymes

and oxidative stress markers in aging. Exp Gerontol 2001;
36:209–220.

18. Wei YH, Lee HC. Oxidative stress, mitochondrial DNA

mutation, and impairment of antioxidant enzymes in aging.
Exp Biol Med 2002; 227:671–682.

19. Jones PL, Ping D, Boss JM. Tumor necrosis factor alpha

and interleukin-1b regulate the murine manganese superox-
ide dismutase gene through a complex intronic enhancer
involving C/EBP-b and NF-jB. Mol Cell Biol 1997; 17:
6970–6981.

20. Rogers RJ, Chesrown SE, Kuo S et al. Cytokine-inducible

enhancer with promoter activity in both the rat and human
manganese-superoxide dismutase genes. Biochem J 2000;
347:233–242.

21. Dougall WC, Nick HS. Manganese superoxide dismutase: a

hepatic acute phase protein regulated by interleukin-6 and
glucocorticoids. Endocrinology 1991; 129:2376–2384.

22. Sampath D, Perez-Polo R. Regulation of antioxidant

enzyme expression by NGF. Neurochem Res 1997; 22:351–
362.

23. Sugino N, Hirosawa-Takamori M, Zhong L et al. Hor-

monal regulation of copper-zinc superoxide dismutase and
manganese superoxide dismutase messenger ribonucleic acid
in the rat corpus luteum: induction by prolactin and placental
lactogens. Biol Rept 1998; 59:599–605.

24. Antolin I, Rodriguez C, Sainz RM et al. Neurohormone

melatonin prevents cell damage: effect on gene expression for
antioxidant enzymes. FASEB J 1996; 10:882–890.

25. Mayo JC, Sainz RM, Urı´a H et al. Melatonin prevents

apoptosis induced by 6-hydroxydopamine in neuronal cells:
implications for Parkinson’s disease. J Pineal Res 1998;
24:179–192.

26. Lii CK, Ko YJ, Chiang MT et al. Effect of dietary vitamin E

on antioxidant status and antioxidant enzyme activities in
Sprague–Dawley rats. Nutr Cancer 1998; 32:95–100.

27. Ozturk-Urek R, Bozkaya LA, Tarhan L. The effects of

some antioxidant vitamin- and trace element-supplemented
diets on activities of SOD, CAT, GSH-Px and LPO levels in
chicken tissues. Cell Biochem Funct 2001; 19:125–132.

28. Nagata H, Takekoshi S, Takagi T et al. Antioxidative

action of flavonoids, quercetin and catechin, mediated by the
activation of glutathione peroxidase. Tokai J Exp Med 1999;
24:1–11.

29. Kim YH, Park KH, Rho HM. Transcriptional activation of

the Cu,Zn-superoxide dismutase gene through the AP2 site by
Ginsenoside Rb

2

extracted from a medicinal plant, Panax

ginseng

. J Biol Chem 1996; 271:24,539–24,543.

30. Cassone VM. Effects of melatonin on vertebrate circadian

systems. Trends Neurosci 1990; 13:457–464.

31. Blask DE, Hill SM, Orstead KM, Massa JS. Inhibitory

effects of the pineal hormone melatonin and underfeeding
during the promotional phase of 7,12-dimethylbenzanthra-
cene-(DMBA)-induced mammary tumorigenesis. J Neural
Transm 1986; 67:125–138.

32. Maestroni GJ, Conti A, Pierpaoli W. Role of the pineal

gland in immunity: II. Melatonin enhances the antibody
response via an opiatergic mechanism. Clin Exp Immunol
1987; 68:384–391.

33. Tan DX, Chen DX, Poeggeler B et al. Melatonin: a potent

endogenous hydroxyl radical scavenger. Endocr J 1993; 1:57–
60.

34. Tan DX, Poeggeler B, Reiter RJ et al. The pineal hormone

melatonin inhibits DNA-adduct formation induced by the
chemical carcinogen safrole in vivo. Cancer Lett 1993; 70:65–
71.

35. Steinhilber D, Brungs M, Werz O et al. The nuclear

receptor for melatonin repress 5-lipoxygenase gene expression
in human B lymphocytes. J Biol Chem 1995; 270:7037–7040.

36. Reiter RJ. Oxidative processes and antioxidative defense

mechanisms in the aging brain. FASEB J 1995; 9:526–533.

37. Reiter RJ. Oxidative damage in the central nervous system:

protection by melatonin. Prog Neurobiol 1998; 56:359–384.

38. Reiter RJ, Maestroni G. Melatonin in relation to the

antioxidative defense and immune systems: possible implica-
tions for cell and organ transplantation. J Mol Med 1999;
77:36–39.

39. Karbownik M, Reiter RJ. Antioxidative effects of melato-

nin in protection against cellular damage caused by ionizing
radiation. Proc Soc Exp Biol Med 2000; 225:9–22.

40. Reiter RJ, Tan DX. Melatonin: a novel protective agent

against oxidative injury of the ischemic/reperfused heart.
Cardiovasc Res 2003; 58:10–19.

41. Allegra M, Reiter RJ, Tan D-X et al. The chemistry of

melatonin’s interaction with reactive species. J Pineal Res
2003; 34:1–10.

42. Menendez-Pelaez

A,

Rodriguez

C,

Dominguez

P.

5-Aminolevulinatesynthase mRNA levels in the Harderian
glands of Syrian hamsters: correlation with porphyrin con-
centrations and regulation by androgens and melatonin. Mol
Cell Endocrinol 1991; 80:177–182.

43. Menendez-Pelaez A, Poeggeler B, Reiter RJ et al. Nuc-

lear localization of melatonin in different mammalian tissues:
immunocytochemical and radioimmunoassay evidence. J Cell
Biochem 1993; 53:373–382.

44. Rodriguez C, Kotler M, Menendez-Pelaez A et al. Cir-

cadian rhythm in 5-aminolevulinate synthase mRNA levels in
the Harderian gland of the Syrian hamster: involvement of
light:dark cycle and pineal function. Endocrine 1994; 2:863–
868.

45. Molis TM, Spriggs LL, Hill SM. Modulation of estrogen

receptor mRNA expression by melatonin in MCF-7 human
breast cancer cells. Mol Endocrinol 1994; 8:1681–1690.

46. Wajs E, Kutoh E, Gupta D. Melatonin affects proopiome-

lanocortin gene expression in the immune organs of the rat.
Eur J Endocrinol 1995; 133:754–760.

47. Reiter RJ, Oh C-S, Fujimori O. Melatonin. Its intracellular

and genomic actions. Trends Endocrinol Metab 1996; 7:22–
27.

48. Rodriguez C, Kotler M, Antolı´n I et al. Regulation of the

aminolevulinate synthase gene in the Syrian hamster Harde-
rian gland: changes during development and circadian rhythm
and role of some hormones. Micro Res Technique 1996;
34:65–70.

49. Li S, Givalois L, Pelletier G. Effects of aging and mela-

tonin administration on gonadotropin-releasing hormones
(GnRH)gene expression in the male and female rat. Peptides
1997; 18:1023–1028.

Rodriguez et al.

6

50. Tang YP, Ma YL, Chao CC et al. Enhanced glial cell line-

derived

neurotrophic

factor

mRNA

expression

upon

(-)-deprenyl and melatonin treatments. J Neurosci Res 1998;
53:593–604.

51. Sainz RM, Mayo JC, Kotler M et al. Melatonin decreases

mRNA for histone H4 in thymus of young rats. Life Sci 1998;
63:1109–1117.

52. Kotler ML, Rodriguez C, Sainz RM et al. Melatonin

increases gene expression for antioxidant enzymes in rat brain
cortex. J Pineal Res 1998; 24:83–89.

53. Sainz RM, Mayo JC, Reiter RJ et al. Melatonin regulates

glucocorticoid receptor: an answer to its antiapoptotic action
in thymus. FASEB J 1999; 13:1547–1556.

54. Crespo E, Macias M, Pozo D et al. Melatonin inhibits

expression of the inducible NO synthase II in liver and lung
and prevents endotoxemia in lipopolysaccharide-induced
multiple organ dysfunction syndrome in rats. FASEB J 1999;
13:1537–1546.

55. Won JS, Song DK, Huh SO et al. Effect of melatonin on the

regulation of proenkephalin and prodynorphin mRNA levels
induced by kainic acid in the rat hippocampus. Hippocampus
2000; 10:236–243.

56. Roy D, Belsham DD. Melatonin receptor activation regu-

lates GnRH gene expression and secretion in GT1-7 GnRH
neurons. Signal transduction mechanisms. J Biol Chem 2002;
277:251–258.

57. Sharman KG, Sharman EH, Yang E, Bondy SC. Dietary

melatonin selectively reverses age-related changes in cortical
cytokine mRNA levels, and their responses to an inflamma-
tory stimulus. Neurobiol Aging 2002; 23:633–638.

58. Pozo D, Guerrero JM, Calvo JR. Vasoactive intestinal

peptide and pituitary adenylate cyclase-activating polypeptide
inhibit LPS-stimulated MIP-1 alpha production and mRNA
expression. Cytokine 2002, 18:35–42.

59. Barlow-Walden LR, Reiter RJ, Abe M et al. Melatonin

stimulates brain glutathione peroxidase activity. Neurochem
Int 1995; 26:497–502.

60. Pablos MI, Agapito MT, Gutierrez R et al. Melatonin

stimulates the activity of the detoxifying enzyme glutathione
peroxidase in several tissues of chicks. J Pineal Res 1995;
19:111–115.

61. Ozturk G, Coskin S, Erbas D, Hasanoglu E. The effect

of melatonin on liver superoxide dismutase activity, serum
nitrate and thyroid hormone levels. Jpn J Physiol 2000;
50:149–153.

62. Liu F, Ng TB. Effect of pineal indoles on activities of

the antioxidant defense enzymes superoxide dismutase, cat-
alase and glutathione reductase, and levels of reduced and
oxidized glutathione in rat tissues. Biochem Cell Biol 2000;
78:447–453.

63. Diaz-Mun

˜ oz

M,

Hernandez-Mun

˜ oz

R,

Suarez

J,

Chagoya de Sanchez

V. Day–night cycle of lipid peroxi-

dation in rat cerebral cortex and their relationship to the
glutathione cycle and superoxide dismutase activity. Neuro-
science 1985; 16:859–863.

64. Albarran MT, Lopez-Burillo S, Pablos MI et al.

Endogenous rhythms of melatonin, total antioxidant sta-
tus and superoxide dismutase activity in several tissues of
chick and their inhibition by light. J Pineal Res 2001;
30:227–233.

65. Martin V, Sainz RM, Mayo JC et al. Daily rhythm of gene

expression in rat superoxide dismutases. Endocrine Res 2003;
29:83–95.

66. Pablos MI, Reiter RJ, Ortiz GG et al. Rhythms of gluta-

thione peroxidase and glutathione reductase in brain of chick
and their inhibition by light. Neurochem Int 1998; 32:69–75.

67. Tunez I, Mun

˜ oz

MC, Feijoo M et al. Melatonin effect on

renal oxidative stress under constant light exposure. Cell
Biochem Funct 2003; 21:35–40.

68. Tomas-Zapico C, Coto-Montes A, Martinez-Fraga J et al.

Effects of continuous light exposure on antioxidant enzymes,
porphyric enzymes and cellular damage in the Harderian
gland of Syrian hamster. J Pineal Res 2003; 34:60–68.

69. Baydas G, Gursu MF, Yilmaz S et al. Daily rhythm of

glutathione peroxidase activity, lipid peroxidation and gluta-
thione levels in tissues of pinealectomized rats. Neurosci Lett
2002; 323:195–198.

70. Okatani Y, Wakatsuki A, Kaneda C. Melatonin increases

activities of glutathione peroxidase and superoxide dismutase
in fetal rat brain. J Pineal Res 2000; 28:89–96.

71. Okatani Y, Wakatsuki A, Shinohara K et al. Melatonin

stimulates glutathione peroxidase activity in human chorion.
J Pineal Res 2001; 30:199–205.

72. Mayo JC, Sainz RM, Antolin I et al. Melatonin regulation

of antioxidant enzyme gene expression. Cell Mol Life Sci
2002; 59:1706–1713.

73. Gechev T, Gadjev I, van Breusegem F et al. Hydrogen

peroxide protects tobacco from oxidative stress by inducing a
set of antioxidant enzymes. Cell Mol Life Sci 2002; 59:708–
714.

74. Mori W, Aoyama H, Mori N. Melatonin protects rats from

injurious effects of a glucocorticoid, dexamethasone. Jpn J Exp
Med 1984; 54:255–261.

75. Aoyama H, Mori W, Mori N. Anti-glucocorticoid effects of

melatonin in young rats. Acta Pathol Jpn 1986; 36:423–428.

76. Sandyk R, Kay SR. The relationship of pineal calcification

and melatonin secretion to the pathophysiology of tardive
dyskinesia and Tourette’s syndrome. Int J Neurosci 1991;
58:215–247.

77. Burns JK. Administration of melatonin to non-human pri-

mates and to women with breast carcinoma. J Physiol 1973;
229:38P–39P.

78. El-Domeiri AA, Das Gupta TK. Reversal by melatonin of

the effect of pinealectomy on tumor growth. Cancer Res 1973;
33:2830–2833.

79. Pierpaoli W, Yi C. The involvement of pineal gland and

melatonin in immunity and aging. I. Thymus-mediated, im-
munoreconstituting and antiviral activity of thyrotropin-
releasing hormone. J Neuroimmunol 1990; 27:99–109.

80. Reiter RJ. Interactions of the pineal hormone melatonin

with oxygen-centered free radicals: a brief review. Brazal J
Med Biol Res 1993; 26:1141–1155.

81. Pierrefiche G, Topall G, Courboin G et al. Antioxidant

activity of melatonin in mice. Res Commun Chem Pathol
Pharmacol 1993; 80:211–223.

82. Jahovic N, Cevik H, Ozer Sehirili A, Yegen BC, Sener G.

Melatonin prevents methotrerate-induced hepatorenal oxida-
tive injury in rats. J Pineal Res 2003; 34:282–293.

83. Jaworek J, Leja-Szpak A, Bonior J et al. Protective effects

of melatonin and its precursor l-tryptophan on acute pan-
creatitis induced by caerulein overstimulation or ischemia/
reperfusion. J Pineal Res 2003; 34:40–52.

84. Reiter RJ, Sainz RM, Lopez-Burillo S, Mayo JC,

Manchester

LC, Tan DX. Melatonin ameliorates neuro-

logic damage and neurophysiologic deficits in experimental
models of stroke. Ann NY Acad Sci 2003; 993:35–47.

Melatonin regulation of antioxidant enzymes

7

85. Gitto E, Karbownik M, Reiter RJ et al. Effects of mela-

tonin treatment in septic newborns. Pediat Res 2001; 50:756–
760.

86. Gitto E, Reiter RJ, Cordaro SP et al. Oxidative and

inflammatory parameters in respiratory distress syndrome of
preterm newborns: beneficial effects of melatonin. Am J Per-
inatol in press.

87. Cagnoli CM, Atabay C, Kharlamova E, Maney H.

Melatonin protects neurons from singlet oxygen-induced
apoptosis. J Pineal Res 1995; 18:222–226.

88. Abe M, Reiter RJ, Orhii PB et al. Inhibitory effect of mela-

tonin on cataract formation in newborn rats: evidence for an
antioxidative role for melatonin. J Pineal Res 1994; 17:94–100.

89. Pentney PT, Bubenik GA. Melatonin reduces the severity of

dextran-induced colitis in mice. J Pineal Res 1995; 19:31–39.

90. Sewerynek E, Abe M, Reiter RJ et al. Melatonin admin-

istration prevents lipopolysaccharide-induced oxidative dam-
age in phenobarbital-treated animals. J Cell Biochem 1995;
58:436–444.

91. Miller JW, Selhub J, Joseph JA. Oxidative damage caused

by free radicals produced during catecholamine autoxidation:
protective effects of O-methylation and melatonin. Free Rad
Biol Med 1996; 21:241–249.

92. Shen YX, Xu SY, Wei W et al. The protective effects of

melatonin from oxidative damage induced by amyloid beta-
peptide 25–35 in middle-aged rats. J Pineal Res 2002; 32:85–
89.

93. Shen YX, Xu SY, Wei W et al. Melatonin reduces memory

changes and neuronal oxidative damage in mice treated with

d

-galactose. J Pineal Res 2002; 32:173–178.

94. Naidu PS, Sing A, Kaur P et al. Possible mechanism of

action in melatonin attenuation of haloperidol-induced oro-
facial dyskinesia. Pharmacol Biochem Behav 2003; 74:641–
648.

95. Wakatsuki A, Okatani Y, Shinohara K et al. Melatonin

protects fetal rat brain against oxidative mitochondrial dam-
age. J Pineal Res 2001; 30:22–28.

96. Okatani Y, Wakatsuki A, Reiter RJ, Miyahara Y.

Melatonin reduces oxidative damage of neural lipids and
proteins in senescence-accelerated mouse. Neurobiol Aging
2002; 23:639–644.

97. Meki AR, Hussein AA. Melatonin reduces oxidative stress

induced by ochratoxin A in rat liver and kidney. Comp Bio-
chem Physiol C Toxicol Pharmacol 2001; 130:305–313.

98. El-Sokkary GH, Omar HM, Hassanein AF et al. Melato-

nin reduces oxidative damage and increases survival of mice
infected with Schistosoma mansoni. Free Rad Biol Med 2002;
32:319–332.

99. Hsu CH, Chi BC, Liu MY et al. Phosphine-induced oxidative

damage in rats: role of glutathione. Toxicology 2002; 179:1–8.

100. Ustundag B, Kazez A, Demirbag M et al. Protective effect

of melatonin on antioxidative system in experimental ische-
mia-reperfusion of rat small intestine. Cell Physiol Biochem
2000; 10:229–236.

101. Cabeza J, Motilva V, Martin MJ, de la Lastra CA.

Mechanisms involved in gastric protection of melatonin
against oxidant stress by ischemia-reperfusion in rats. Life Sci
2001; 68:1405–1415.

102. Othman AI, El-Missiry MA, Amer MA. The protective

action of melatonin on indomethacin-induced gastric and
testicular oxidative stress in rats. Redox Rep 2001; 6:173–177.

103. Bandyopadhyay D, Bandyopadhyay A, Das PK, Reiter

RJ. Melatonin protects against gastric ulceration and increa-

ses the efficacy of ranitidine and omeprazole in reducing
gastric damage. J Pineal Res 2002; 33:1–7.

104. Gultekin F, Delibas N, Yasar S, Kilinc I. In vivo changes

in antioxidant systems and protective role of melatonin and a
combination of vitamin C and vitamin E on oxidative damage
in erythrocytes induced by chlorphyrifos-ethyl in rats. Arch
Toxicol 2001; 75:88–96.

105. Ozbek E, Turkoz Y, Sahna E et al. Melatonin administra-

tion prevents the nephrotoxicity induced by gentamicin. BJU
Int 2000; 85:742–746.

106. Oner-Iyidogan Y, Gurdol F, Oner P. The effects of acute

melatonin and ethanol treatment on antioxidant enzyme
activities in rat testes. Pharmacol Res 2001; 44:89–93.

107. El-Missiry MA. Prophylactic effect of melatonin on lead-

induced inhibition of heme biosynthesis and deterioration of
antioxidant systems in male rats. J Biochem Mol Toxicol
2000; 14:57–62.

108. Arslan SO, Zerin M, Vural H, Coskun A. The effect of

melatonin of bleomycin-induced pulmonary fibrosis in rats.
J Pineal Res 2002; 32:21–25.

109. Cruz A, Padillo FJ, Tunez I et al. Melatonin protects

against renal oxidative stress after obstructive jaundice in rats.
Eur J Pharmacol 2001; 425:135–139.

110. Lankoff A, Banasik A, Nowak M. Protective effect of

melatonin against nodularin-induced oxidative stress. Arch
Toxicol 2002; 76:158–165.

111. Anwar MM, Moustafa MA. The effect of melatonin on eye

lens of rats exposed to ultraviolet radiation. Comp Biochem
Physiol C Toxicol Pharmacol 2001; 129:57–63.

112. Sailaja Devi MM, Suresh Y, Das UN. Preservation of the

antioxidant status in chemically-induced diabetes mellitus by
melatonin. J Pineal Res 2000; 29:108–115.

113. Vural H, Sabuncu T, Arslan SO, Aksoy N. Melatonin

inhibits lipid peroxidation and stimulates the antioxidant
status of diabetic rats. J Pineal Res 2001; 31:193–198.

114. Wahab MH, Akoul ES, Abdel-Aziz AA. Modulatory

effects of melatonin and vitamin E on doxorubicin-induced
cardiotoxicity in Ehrlich ascites carcinoma-bearing mice.
Tumori 2000; 86:157–162.

115. Kaya H, Delibas N, Serteser M et al. The effect of mela-

tonin on lipid peroxidation during radiotherapy in female
rats. Strahlenther Onkol 1999; 175:285–288.

116. Clerch LB, Massaro D. Tolerance of rats to hyperoxia.

Lung antioxidant enzyme gene expression. J Clin Invest 1993;
91:499–508.

117. Antolı´n I, Mayo JC, Sainz RM et al. Protective effect of

melatonin in a chronic experimental model of Parkinson’s
disease. Brain Res 2002; 943:163–173.

118. Ebisawa T, Karne S, Lerner MR, Reppert SM. Expression

cloning of a high-affinity melatonin receptor from Xenopus
dermal melanophores. Proc Natl Acad Sci USA 1994;
91:6133–6137.

119. Reppert SM, Weaver DR, Cassone VM et al. Melatonin

receptors are for the birds; molecular analysis of two receptor
subtypes differentially expressed in chick brain. Neuron 1995;
15:1003–1015.

120. Ram PT, Dai J, Yuan L et al. Involvement of the mt1

melatonin receptor in human breast cancer. Cancer Lett 2002;
179:141–150.

121. Chan A, Lai F, Lo R et al. Melatonin mt1 and MT2

receptors stimulate c-Jun N-terminal kinase via pertussis
toxin-sensitive and -insensitive G proteins. Cell Signal 2002;
14:249–257.

Rodriguez et al.

8

122. Pablos MI, Guerrero JM, Ortiz GG, Agapito MT, Re-

iter

RJ. Both melatonin and putative nuclear melatonin

receptor agonist CGP 52608 stimulate glutathione peroxidase
and glutathione reductase activities in mouse brain in vivo.
Neuroendocrinol Lett 1997; 18:49–58.

123. Vanecek J. Cellular mechanisms of melatonin action. Physiol

Rev 1998; 78:687–721.

124. Benitez-King G, Huerto-Delgadillo L, Anton-Tay F.

Binding of

3

H-melatonin to calmodulin. Life Sci 1993; 53:

201–207.

125. Kane CD, Means AR. Activation of orphan receptor-medi-

ated transcription by Ca

2+

/calmodulin-dependent protein

kinase IV. EMBO J 2000; 19:691–701.

126. Tanaka T, Kurabayashi M, Aihara Y et al. Inducible

expression of manganese superoxide dismutase by phorbol
12-myristate 13-acetate is mediated by Sp1 in endothelial cells.
Arterioscler Thromb Vasc Biol 2000; 20:392–401.

127. Mohan N, Sadeghi K, Reiter RJ, Meltz ML. The neuro-

hormone melatonin inhibits cytokine, mitogen and ionizing
radiation induced NF-kappa B. Biochem Mol Biol Int 1995;
37:1063–1070.

128. Gilad E, Wong HR, Zingarelli B et al. Melatonin inhibits

expression of the inducible isoform of nitric oxide synthase in
murine macrophages: role of inhibition of NFjB activation.
FASEB J 1998; 12:685–693.

129. Ross AW, Barrett P, Mercer JG, Morgan PJ. Melatonin

suppresses the induction of AP-1 transcription factor com-
ponents in the pars tuberalis of the pituitary. Mol Cell End-
ocrinol 1996; 123:71–80.

130. Urata Y, Honma S, Goto S et al. Melatonin induces

c-glutamylcysteine synthetase mediated by activator portein-1
in human vascular endothelial cells. Free Rad Biol Med 1999;
27:838–847.

Melatonin regulation of antioxidant enzymes

9